

 Reach us at: digitalk.fmw@gmail.com

 https://digitalksystems.com/

 DigiTalk Channel:

 https://www.youtube.com/channel/UCCGTnI9vvF_ETMhGUXGdFWw

DigiTalk Systems

 Copyright © [2023] DigiTalk. All rights reserve

 DevOps, Docker and Kubernetes

 Introduction

 DigiTalk Udemy Course Links and Coupon Codes:

Mastering Amazon Web Services AWS: From Zero to Cloud Expert

https://www.udemy.com/course/mastering-amazon-web-services-aws-from-zero-to-cloud-expert/?referralCode=EB7C9CA90D3921152859

Coupon Code: ADE0EE8F6F5C54BB733A

Tomcat Administration: 08/16/2025

https://www.udemy.com/course/mastering-apache-tomcat-from-basics-to-advanced/?referralCode=E6B1CB09E9944CEE8D72

Coupon Code:98D4A190C2D98748998B

Docker Administration 08/27/2025

https://www.udemy.com/course/mastering-docker-administration-from-fundamentals-to-expert/?referralCode=12387A8B195F7B90381D

Coupon Code: 6B7278C46FE035B7C482

Kubernetes Administration 08/27/2025

https://www.udemy.com/course/mastering-kubernetes-administration-from-intro-to-advanced/?referralCode=7E0250BEC21F46192834

Coupon Code: 74D012DC7596A48ED641

Mastering Oracle Internet Direct (OID) Administration

https://www.udemy.com/course/mastering-oracle-internet-direct-oid-administration/?referralCode=906E9AC0059A29A3CD0D

Coupon Code: E0092852C2D53644DB30

Mastering SSL (TLS), Keys and Certificates Management

https://www.udemy.com/course/mastering-ssl-tls-keys-and-certificates-management/?referralCode=DB9F1429CB01921969F6

Coupon Code: 3CFC72A5201850D2B6F7

WebSphere Administration

https://www.udemy.com/course/mastering-ibm-websphere-9x-administration/?referralCode=F372B3EA78D7BEA92416

Coupon Code: 74ADF22AE231AF401FF4

SOA Suite Administration

https://www.udemy.com/course/mastering-oracle-soa-suite-12c-administration/?referralCode=2BCF3895067AA7BC22E0

Coupon Code: F6DA638BB00DBF427017

JBoss 8 Administration

https://www.udemy.com/course/mastering-jboss-eap-8-administration-from-intro-to-advanced/?referralCode=D095CE8B1EE9D065C822

Coupon Code:26E7ACAC91E8E6E7E90F

OHS Administration

https://www.udemy.com/course/mastering-oracle-ohs-http-12c-web-server-administration/?referralCode=165F6A3A8B662CEA1489

Coupon Code: 2CC9716E561B2823A3F0

WebLogic Server Administration

https://www.udemy.com/course/oracle-weblogic-server-12c-and-14c-administration/?referralCode=340FBB94DBFEE1A8CC09

Coupon Code: 0E286E5633D374637B48

For any query or concerns please write us on digitalk.fmw@gmail.com

https://www.udemy.com/course/mastering-amazon-web-services-aws-from-zero-to-cloud-expert/?referralCode=EB7C9CA90D3921152859
https://www.udemy.com/course/mastering-apache-tomcat-from-basics-to-advanced/?referralCode=E6B1CB09E9944CEE8D72
https://www.udemy.com/course/mastering-docker-administration-from-fundamentals-to-expert/?referralCode=12387A8B195F7B90381D
https://www.udemy.com/course/mastering-kubernetes-administration-from-intro-to-advanced/?referralCode=7E0250BEC21F46192834
https://www.udemy.com/course/mastering-oracle-internet-direct-oid-administration/?referralCode=906E9AC0059A29A3CD0D
https://www.udemy.com/course/mastering-ssl-tls-keys-and-certificates-management/?referralCode=DB9F1429CB01921969F6
https://www.udemy.com/course/mastering-ibm-websphere-9x-administration/?referralCode=F372B3EA78D7BEA92416
https://www.udemy.com/course/mastering-oracle-soa-suite-12c-administration/?referralCode=2BCF3895067AA7BC22E0
https://www.udemy.com/course/mastering-jboss-eap-8-administration-from-intro-to-advanced/?referralCode=D095CE8B1EE9D065C822
https://www.udemy.com/course/mastering-oracle-ohs-http-12c-web-server-administration/?referralCode=165F6A3A8B662CEA1489
https://www.udemy.com/course/oracle-weblogic-server-12c-and-14c-administration/?referralCode=340FBB94DBFEE1A8CC09

What is DevOps?

DevOps is a set of practices, philosophies, and tools that aim to bridge the gap between software development

(Dev) and IT operations (Ops). It emphasizes collaboration, automation, and continuous improvement to deliver

software faster and more reliably. The core idea is to integrate development and operations teams, breaking down

silos that traditionally slow down the software lifecycle. Key principles include:

• Continuous Integration (CI): Regularly merging code changes into a shared repository and automating

tests.

• Continuous Delivery/Deployment (CD): Automating the release process so code can be deployed to

production at any time.

• Infrastructure as Code (IaC): Managing infrastructure through code rather than manual processes.

• Monitoring and Feedback: Constantly monitoring applications and infrastructure to gather insights

and iterate.

DevOps isn't a specific tool but a cultural shift, often supported by tools like Jenkins, Git, Ansible, and monitoring

solutions like Prometheus.

What is Containerization and Docker?

Containerization is a virtualization method where applications and their dependencies (libraries, configurations,

etc.) are packaged into isolated units called containers. Unlike traditional virtual machines (VMs), which emulate

entire operating systems, containers share the host OS kernel, making them lightweight and efficient. This allows

applications to run consistently across different environments, from development laptops to production servers.

Docker is an open-source platform that popularized containerization. It provides tools to build, ship, and run

containers. Docker uses a client-server architecture:

• Docker Engine: The core runtime that builds and runs containers.

• Dockerfile: A script to define how to build a container image (a blueprint for containers).

• Docker Hub: A registry for sharing pre-built images.

In essence, Docker makes containerization accessible by simplifying the process of creating portable, self-

contained application environments.

Benefits of Containerization

Containerization offers several advantages over traditional deployment methods like VMs or bare-metal servers:

• Portability: Containers run the same way on any system with a compatible container runtime (e.g.,

Docker), eliminating "it works on my machine" issues.

• Efficiency and Resource Utilization: Containers are lightweight (no full OS overhead), starting in

seconds and using fewer resources than VMs, allowing more apps per server.

• Isolation: Each container runs in its own environment, reducing conflicts between applications while

sharing the host kernel.

• Consistency Across Environments: Ensures development, testing, and production environments are

identical, reducing bugs from environmental differences.

• Scalability: Easy to scale applications by spinning up multiple container instances.

• Faster Development and Deployment: Automates packaging, enabling quicker iterations and

deployments.

• Cost Savings: Better hardware utilization leads to lower infrastructure costs.

• Security: Isolation limits the blast radius of vulnerabilities, though containers must be properly secured

(e.g., scanning images for issues).

Overall, it's ideal for microservices architectures where applications are broken into small, independent

components.

What is Kubernetes?

Kubernetes (often abbreviated as K8s) is an open-source container orchestration platform originally developed

by Google and now maintained by the Cloud Native Computing Foundation (CNCF). It automates the

deployment, scaling, and management of containerized applications across a cluster of machines. Kubernetes

treats a group of servers as a single pool of resources, handling tasks like:

• Scheduling: Deciding where to run containers based on resource needs.

• Scaling: Automatically adding or removing container instances based on demand.

• Load Balancing: Distributing traffic across containers.

• Self-Healing: Restarting failed containers or replacing unhealthy ones.

• Rollouts and Rollbacks: Managing updates to applications without downtime.

Key components include Pods (the smallest deployable unit, often containing one or more containers), Nodes

(worker machines), and a Control Plane (manages the cluster). It's often used with Docker but supports other

container runtimes like containerd.

Benefits of Kubernetes

Kubernetes excels in managing complex, distributed systems:

• Automation: Handles repetitive tasks like deployment, scaling, and recovery, freeing teams from manual

operations.

• Scalability: Easily scales applications horizontally (adding more instances) or vertically (more resources

per instance), supporting massive workloads.

• High Availability and Self-Healing: Automatically detects and replaces failed containers, ensuring

applications stay online.

• Resource Efficiency: Optimizes resource allocation across clusters, reducing waste.

• Portability Across Clouds: Works on any infrastructure (on-premises, public cloud like

AWS/GCP/Azure, hybrid), avoiding vendor lock-in.

• Rolling Updates and Rollbacks: Deploys changes gradually with minimal disruption and easy reversion

if issues arise.

• Service Discovery and Load Balancing: Built-in mechanisms for services to find and communicate with

each other.

• Extensibility: Supports plugins, custom resources, and integrations with tools like Helm for package

management.

• Cost Optimization: In cloud environments, it can auto-scale to match demand, lowering costs during

low usage.

It's particularly valuable for large-scale, production-grade applications but has a learning curve for smaller

setups.

Difference Between Docker and Kubernetes

Docker and Kubernetes are complementary but serve different purposes in the container ecosystem. Here's a

breakdown:

Aspect Docker Kubernetes

Primary

Function

Container runtime: Builds, runs, and

manages individual containers.

Container orchestration: Manages clusters of

containers across multiple hosts.

Scope Focuses on single-host or simple setups;

great for development.

Handles multi-host, production-scale

environments with automation.

Scaling Manual scaling on a single machine; uses

Docker Compose for multi-container apps.

Automatic horizontal/vertical scaling across

clusters.

Management Manages images, containers, networks, and

volumes at a basic level.

Orchestrates scheduling, load balancing, self-

healing, and updates.

Use Case Ideal for developers to package and test apps

locally or in small teams.

Suited for ops teams deploying resilient,

large-scale applications.

Relationship Often used as the underlying runtime for

Kubernetes (e.g., containers run via

Docker).

Builds on top of Docker (or similar); doesn't

create containers but manages them.

Complexity Simpler to learn and use for basics. Steeper learning curve due to cluster

management features.

Examples Building an image with Dockerfile and

running it with docker run.

Defining a Deployment YAML to run

multiple Pods with replicas.

DISCLAIMER AND CONSENT

This document is being provided by DigiTalk as part of its effort to assist users in understanding and working with

DevOps. While every effort has been made to ensure the accuracy and reliability of the information presented in

this document, there is a possibility of typographical errors or inaccuracies. DigiTalk does not guarantee the

correctness or completeness of the content provided in this document.

Users of this document are encouraged to cross-reference the information presented here with official documentation

available on their website or other authoritative sources. Any discrepancies or inaccuracies found in this document

should be reported to us at digitalk.fmw@gmail.com.

By using this document, you acknowledge and consent to the following:

This document is not officially endorsed by any other third party organization..

The Company makes no claims or guarantees about the accuracy or suitability of the information contained in this

document.

Users are responsible for verifying and validating any information presented here for their specific use case.

DigiTalk disclaims any liability for any errors, omissions, or damages that may result from the use of this document.

If you discover any inaccuracies or errors in this document, please report them to digitalk.fmw@gmail.com, and the

Company will endeavor to correct them as necessary.

This consent statement is provided to ensure transparency and understanding of the limitations of the information

contained in this document. By using this document, you agree to abide by the terms and conditions outlined herein.

