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Abstract Plants track changing climate partly by shifting their phenology, the timing of recurring
biological events. It is unknown whether these observed phenological shifts are sufficient to keep pace

with rapid climate changes. Phenological mismatch, or the desynchronization between the timing of critical
phenological events, has long been hypothesized but rarely quantified on a large scale. It is even less clear

how human activities have contributed to this emergent phenological mismatch. In this study, we used

remote sensing observations to systematically evaluate how plant phenological shifts have kept pace with
warming trends at the continental scale. In particular, we developed a metric of spatial mismatch that connects
empirical spatiotemporal data to ecological theory using the “velocity of change™ approach. In northern mid-to
high-latitude regions (between 30-70°N) over the last three decades (1981-2014), we found evidence of a
widespread mismatch between land surface phenology and climate where isolines of phenology lag behind

or move in the opposite direction to the isolines of climate. These mismatches were more pronounced in
human-dominated landscapes, suggesting a relationship between human activities and the desynchronization of
phenology dynamics with climate variations. Results were corroborated with independent ground observations
that indicate the mismatch of spring phenology increases with human population density for several plant
species. This study reveals the possibility that not even some of the foremost responses in vegetation activity
match the pace of recent warming. This systematic analysis of climate-phenology mismatch has important
implications for the sustainable management of vegetation in human-dominated landscapes under climate
change.

Plain Language Summary Plants are expected to track warming climate partly by shifting their
phenology, the timing of recurring biological events. Despite numerous reports on phenological shifts driven
by climate change, it is unknown whether these observed shifts are sufficient to keep pace with rapid warming
trends at large spatial scales. It is even less clear how human activities contribute to the emergent climate-
phenology mismatch. Using global remote sensing data, we employed a novel approach to systematically
evaluate how plant phenological shifts have kept pace with warming trends at a continental scale. We found a
net lag between phenological shift and climate change, which increases with population density, suggesting a
relationship between human activities and the decoupling of phenology dynamics and climate variation. Results
were corroborated with independent ground observations that show how the mismatch of spring phenology
increases with human population density for several plant species. This systematic analysis of climate-
phenology mismatch informs the sustainable management of vegetation in human-dominated landscapes under
climate change.

1. Introduction

Phenology, the timing of recurring biological events, is nature's calendar, and changes in vegetation phenology
are known to be among the most sensitive responses to ongoing climate change (Parmesan & Yohe, 2003). Ev-
idence clearly shows warming-driven shifts in vegetation phenology at the global scale, such as earlier greenup
and later senescence (Laskin et al., 2019; Menzel et al., 2020; W. Zhu et al., 2012). However, changes in phenol-
ogy may fail to keep pace with warming trends (Duputié et al., 2015), possibly due to limited plasticity (B. A.
Richardson et al., 2017), constraints due to photoperiod (Fu, Piao, et al., 2019; Fu, Zhang, et al., 2019), moisture
(Peng et al., 2019; Wheeler et al., 2015), and unfulfillment of chilling requirements (Fu et al., 2015). Such cli-
mate-phenology seasonal mismatches can reduce individual fitness (A. D. Richardson et al., 2018), constrain
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species distributions (Morin et al., 2008), and drive biological invasions (Fridley, 2012). There is, however, little
consensus on the existence and magnitude of climate-phenology mismatches.

Phenological mismatch, or the desynchronization in the timing of critical biotic and abiotic events, has long been
discussed. The Cushing match-mismatch hypothesis (Cushing, 1969), for example, postulates that any change
to the relative timing between consumers' activity and resource availability will lead to a “mismatch.” Though
this concept has mainly been applied to interacting species, we use it here in a broader sense to describe plant
activity under favorable climatic conditions (Ovaskainen et al., 2013; Soolanayakanahally et al., 2013). Despite
abundant evidence of shifting phenology and the sensitivity of phenology to climate change, the quantification of
phenological mismatch remains challenging, partly due to the lack of a baseline from before the onset of anthro-
pogenically driven climate change (Kharouba & Wolkovich, 2020). Such disconnects between ecological data
and theory hinder our ability to understand the mechanisms and consequences of climate change at a large scale.

Human activities, particularly active management of croplands, pastures, and timberlands, have drastically
changed land surface phenology. Possible pathways include modifying environmental conditions such as mois-
ture and temperature (Kariyeva & van Leeuwen, 2012; Roetzer et al., 2000), changing vegetation cover and spe-
cies composition (Buyantuyev & Wu, 2012), or altering natural disturbance regimes (Andela et al., 2017). How-
ever, it is unclear how these factors have been influencing emergent climate-phenology mismatches. On the one
hand, in urban heat islands (Li et al., 2017) and adaptively managed agricultural systems (Bai et al., 2019), earlier
greenup and subsequent longer growing seasons with time might promote synchrony between phenological shifts
and warming. On the other hand, political or economic factors might lead to a decoupling between phenology and
climate, such as the de-intensification of agricultural irrigation during wars (de Beurs & Henebry, 2008) and the
change in crop types in response to policies and markets (Zhang et al., 2019). Despite the contributions of these
local studies, we do not yet know how these results can be generalized to larger extents.

To systematically quantify long-term climate-phenology mismatch in both human-dominated (possessing human
residence and intense land use) and natural landscapes at global scales, we first seek to establish a generaliza-
ble definition of the concept. We define phenological mismatch as the deviation between actual phenological
response and expected phenological response based on historical phenology-environment relationships. This
definition is deeply rooted in ecology. For example, Reed et al. (2013) defined the optimal egg-laying date of
great tits to be 30 days before the date of peak food abundance. Their breeding phenology is expected to shift at
the same pace as the timing of food abundance, but the actual breeding may be earlier or later, therefore poten-
tially lowering the fitness of these birds. There can be multiple ways to quantify phenological response under this
general definition. In this study, we develop a specific metric of spatial mismatch: the deviance between actual
and expected movement in phenological isolines, where the expected movement corresponds to the movement
of climatic isolines. The pace of geographic movement along the isoline over time (Loarie et al., 2009) is estab-
lished as the velocity of change (Burrows et al., 2011) (Figure 1). Numerous studies have used this approach, to
assess the pace of climate change (Burrows et al., 2011; Loarie et al., 2009), and to compare climate change with
changes in species distribution (Burrows et al., 2011; Hamann et al., 2015; Lenoir et al., 2020) and productivity
(Huang et al., 2017). This approach has also been used to compare changes in phenological and meteorological
variables at an annual scale (O’Leary, 2020).

Our generalized definition and quantification method enable large-scale measurement of phenological mismatch
using remote sensing data. Remote sensing data offers an excellent opportunity to examine the climate-phenolo-
gy mismatch due to the extensive temporal and spatial coverage. We used a temporally and spatially contiguous
remotely sensed land surface phenology (LSP) data set (VIPPHEN EVI2 Phenology data product v. 4.1) (Didan
& Barreto, 2016) in this study. We first tested the hypothesis that shifts in vegetation phenology. characterized by
remotely sensed LSP, have not been keeping pace with warming trends in mid-to high-latitudes in the Northern
Hemisphere (between 30-70°N) over the past three decades (1981-2014). We further tested the hypothesis that
climate-phenology mismatch is more pronounced in anthropogenically impacted regions than in natural land-
scapes. We acknowledge that remote sensing data are limited in their spatial resolution and the ability to reflect
ground-observed phenological events. Therefore, in addition, we employed independent ground observations to
analyze the possible anthropogenic influence on the mismatch of spring phenology in several plant species. We
aim to provide insights on the effect of anthropogenic activity on climate-phenology mismatch at a global scale
under ongoing unprecedented rates of climate and land use change. Resolving these questions hold the potential
to inform future sustainable management of croplands, pastures, and timberlands.
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Figure 1. Schematic diagram showing three scenarios of climate tracking and the corresponding climate-phenology metrics.
The velocity of mean annual temperature change, v,, - (km yr~') and the velocity of growing season length change, v,

(km yr~!) at a location were compared using the difference in two velocity directions, O mar () and the spatial mismatch,
Ssmar (km yr~1). (a) A positive JgsLmar and a positive 6y . characterizes a leading mismatch; (b) A negative &
and a positive 6 . characterizes a lagging mismatch; (c) A negative &,

diverging mismatch.
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2. Materials and Methods
2.1. Remote Sensing Analyses
2.1.1. Land Surface Phenology, Climate, Land Use, and Human Population Density Data

For latitudes between 30-70°N, we quantified the velocities of mean annual temperature (MAT) and growing sea-
son length (GSL), defined by the period between greenup and senescence, from 1981 to 2014. We chose to focus
on the mid-to high-latitude Northern Hemisphere because of its high vegetation coverage and strong seasonality
(X. Wang et al., 2019). In this area, GSL is highly correlated to MAT, suggesting a strong temperature control on
phenology (Figure S1 in Supporting Information S1). We retrieved near-surface temperature data from 1981 to
2014 using the Climate Research Unit (CRU) time-series (TS) data set v. 4.03 (Harris et al., 2014). This data set
reports monthly climatic variables from 1901 to 2018 at a 0.5-degree resolution, interpolated from meteorologi-
cal station observations. We calculated the mean annual temperature (MAT) by taking the mean of near-surface
temperatures of all months each year. We employed the VIPPHEN EVI2 Phenology data product v. 4.1 (Didan &
Barreto, 2016) to obtain the satellite-observed LSP, represented by growing season length (GSL) in the present
study. This data product provides reliable phenological metrics at a 0.05-degree resolution, derived from modi-
fied Enhanced Vegetation Index 2 (EVI2) using an adapted Half-Maximum Vegetation Index algorithm (White
et al., 2009). EVI2 was calculated using surface reflectance data from the Advanced Very High Resolution Ra-
diometer (AVHRR) (1981-1999) and Moderate Resolution Imaging Spectroradiometer (MODIS)/Terra MOD09
(2000-2014). Phenological data were subjected to two rounds of filtering in order to focus on areas with a single
growing season and good data quality. Specifically, areas with multiple growing seasons (information provided
in the phenology data product) were excluded as its phenology is often controlled by precipitation, rather than
temperature, patterns (Ralhan et al., 1985). To eliminate the effects of data uncertainty, for each year only pixels
with a single growing season and “excellent,” *
by the “number of seasons™ and “data quality” fields in the data product. The raw LSP data were aggregated to
a 0.5-degree resolution to match the spatial scale of the movement of temperature and phenology isolines over
34 years (Text S1 and Table S1 in Supporting Information S1).

good,” or “acceptable” data reliability were used, determined

To understand the relationship between anthropogenic factors and phenological responses, we used two datasets
to qualitatively and quantitatively characterize anthropogenic land use. Qualitatively, the Anthromes v. 2 data set
(Ellis et al., 2010) classifies land use for the year 2000. Quantitatively, we retrieved human population density for
the year 2000 at a 0.5-degree resolution from the Gridded Population of the World data set v. 4 (Center For Inter-
national Earth Science Information Network-CIESIN-Columbia University, 2018) as a proxy for anthropogenic
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activities. Since we focus on the Northern Hemisphere, we cropped all global datasets to the latitudes between
30°N and 70°N.

2.1.2. Climate and Phenology Velocities

We quantified the velocity of MAT change, v,,,, (km°yr~"), and the velocity of GSL change, v, (km yr~') by
estimating the speed and direction of isoline movement, which implicitly makes use of a space-for-time substitu-
tion (Text S2, Figure S2, and Table S2 in Supporting Information S1). Based on these assumptions, we calculated
instantaneous local velocities from the ratio of temporal (C°yr~! or day®yr~') gradients in the 34 years, and spatial
gradients (C°km~! or day’km™!) in grids of 0.5 for each variable (Burrows et al., 2011) using the VoCC package
in R (Molinos et al., 2019):

dMAT
) _dy dr
MAT dt AMAT
dy
dGSL
YA
VesL = dr dGSL ’ (1)
dy

where ¢ is time and y is space (distance with direction). The temporal gradient (AMAT/dr or dGSL/dr) is the
slope coefficient in the linear regression of the variable of interest with time. Pixels with fewer than 10 out of
the 34 years of valid observations in either the MAT or GSL products were removed from analyses. The spatial
gradient (AMAT/dy or dGSL/dy) is the vector sum of the N-S and E-W gradients in a 3 X 3 pixel neighborhood,
pointing in the direction of the decreasing variable of interest. When the temporal gradient is positive, the di-
rection of the velocity (6,
gradient is negative, the direction of velocity is the opposite of that of the spatial gradient. As velocity metrics are

sensitive to spatial gradients, we acknowledge that high spatial heterogeneity in phenology may lead to slightly

or Oy,,1) is in the same direction as that of the spatial gradient. When the temporal

under-estimated v, values, especially in human-dominated landscapes (Text S3, Figures S3 and S4 in Support-

GSL
ing Information S1).

To quantify how well the velocity of phenology change keeps pace with the velocity of temperature change, we
took the directions of both vectors into account (Ordonez et al., 2016) and calculated two scalar metrics: the di-

rectional difference and relative pacing from two vector measures, v, and v, ... (Figure 1). First, we calculated

GSL

the absolute difference in the directions of velocities, (-)GSLM A Using

Oastyar = min{|gGSL ~ Buar]-360 |6, - gMAT|}’ 2

where 0, and 0,,,, are the directions of v, and v respectively, measured in degrees starting from the
north. g, 4 ranged from 0° to 1807, with smaller 6, ., implying that GSL and MAT isolines move in more
closely aligned directions. This metric describes how GSL and MAT are coupled in space, such that a @ . r

smaller than 90° represents a positive alignment and a 0, ,, . larger than 90° represents a negative alignment.

GSL?

Second, we evaluated the pacing of phenology relative to climate, & by projecting v

subtracting by v, (Figure 1), using

onto v, ., and

GSL.MAT GSL

OGSLMAT = |"GSL| X COSEGSL MAT ~ |VMAT‘ 3

In addition to GSL, we also quantified the velocity of phenology change using the start of season (SOS) and
end of season (EOS). Instead of MAT, we compared these velocities to the velocities of change in mean spring
temperature (MST) (March to May) and mean fall temperature (MFT) (September to November), respectively.

2.1.3. Effects of Anthropogenic Land Use

We assessed the effects of anthropogenic activities on climate-phenology mismatch using two approaches. First,
we compared four climate-phenology metrics (v, Vosp» Ogsr map @0d S5sim Ap) between different land-use

types based on the Anthromes data set (Ellis et al., 2010). The data set broadly classifies our study area into

v
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“dense settlements,” “villages,” “croplands,” “rangelands,” “semi-natural,” and “wildlands,” with the first five
types modified by anthropogenic activities to different extents. The “villages” and “dense settlements™ categories
were then consolidated into a larger land-use type that we call “settlements” and subsequently removed from the
analysis (only 5% of all pixels analyzed) as these patches are usually on a smaller scale than the spatial resolution
of this analysis (0.5 degree). We ranked the other four land-use types according to the median value of the cli-
mate-phenology metrics in each area. We compared the climate-phenology metrics in areas with anthropogenic
land use to those in “wildlands” using one-way ANOVA with post-hoc Tukey HSD tests.

Second, we modeled how four climate-phenology metrics are correlated to both population density and latitude,
in order to detect the underlying anthropogenic gradient in these metrics, while controlling for the latitudinal gra-
dient. We log-transformed the velocities of change and logit-transformed the difference in directions, as an angle,
to better account for their distributions and meet the normality assumption of linear regression:

VMAT = 1Og(vMAT)

VasL = log(vGSL)

' OGSLMAT
G, = log| ———— 4
GSL.MAT g[ 180 — fosy apar 4)

All datasets were upscaled to a 5-degree resolution by taking the median value of all pixels, in order to reduce
noise at the finer scale and focus on large-scale patterns in the regression analyses. The upscaled raster was then
reprojected to an azimuthal equidistant projection centering at the north pole, so that the Euclidean distances
between pixels could be calculated more accurately.

We adopted a Bayesian approach because of its flexibility in incorporating information on spatial structures
empirically determined from the data to infer the effects of population density and latitude. Latitude (related to
photoperiod) is a potential confounding factor as it may be correlated to the rate of warming, rate of phenolog-
ical shift, and population density. Although phenological shift is strongly dependent on topography (Cornelius
et al., 2013; Delpierre et al., 2009; Elmore et al., 2012; Hwang et al., 2011, 2014; A. D. Richardson et al., 2006;
Vitasse et al., 2011), we do not include topographical variables like elevation as predictors, as they are implicitly
accounted for in temperature (Figure S5 in Supporting Information S1). The elevational shift in phenological
variables is expected to track that of temperature variables, as is predicted by Hopkin's law (Hopkins, 1918).
Therefore elevational shifts are reflected in our calculation of horizontal velocities of change, such as environ-
mental lapse rates. We fitted Bayesian spatial linear regression models with exponential spatial correlation using
the spBayes package in R (Finley et al., 2013) (see Text S4, Tables S3 and S4, Figures S6 and S7 in Supporting
Information S1 for comparison with nonspatial models):

Y(S) =5 +/-?1)(1(5) +ﬁ2X2(5) * w(s) te

w(s) ~ N(O,K) K; = Gzexp(fgo"si- + sj“)

5~N(0,1’2)
o 0o)(100 0 o
A |~MVN||0o || 0 100 0
5 o/l 0 0 100
02~IG(2,2)

p~U

log(0.05)  1og(0.05) )
1004 0.01d J
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r2~IG(2,O.I).‘ 5

where the response variable y is ¥’y 0. ¥/ o1 - @' G vare OF 0651 mar the covariates X and X, are human population
density (on a logarithmic scale) and latitude, ,60, ﬂl, and ,32 are the coefficients for intercepts and covariates, s is
the location of observation, and ¢ is the random error. The spatial random effect, w, is determined by the spatial
variance parameter o7, the residual error variance 72, the spatial decay parameter ¢, and the Euclidean distance
between locations i and j. We empirically determined the general form of the spatial correlation structure from
the semivariograms of the residuals of the corresponding nonspatial linear regression models. We empirically
estimated d, the effective range of spatial dependence, d (i.e., the distance at which the correlation drops to 0.05)
is flog(0.0S)/d (Finley et al., 2015), by fitting an exponential function to the semivariograms and calculating
the range (i.e., the distance at which semivariogram meets asymptote). We calculated the interval of ¢ that cor-
responds to a wide interval of possible d, (0.01 4, 100d). For all models, we used common choices of diffuse
multivariate normal (MVN) priors on g, diffuse inverse gamma (IG) priors on 7> and 62, and diffuse uniform (U)
priors on ¢ (Finley et al., 2013).

We ran the Markov chain Monte Carlo (MCMC) sampler for 10,000 samples (Finley et al., 2013), discarding
the first 5,000 samples as burn-in. We verified convergence and stability of estimates by visual inspection of the
MCMC chains, their autocorrelation and partial autocorrelation functions, and summarized the medians and
95% credible intervals (CI) of . For the three models with transformed response variables, the vy, ., v,
OsLmar/180 — Ogsp mat change by B, percent for every percent increase in population density. We back-trans-
formed and then interpreted the coefficients. All calculations and statistical analyses were conducted in R (v.
3.6.0, R Core Team., 2019).

v or

2.2. Ground Observation Analyses
2.2.1. Ground-Observed Phenology Data

In addition to the remote sensing analyses, we used the USA National Phenology Network (USA-NPN) data-
base (Elmendorf et al., 2016) to inform the climate-phenology mismatch on the ground level. In particular, we
retrieved the site-specific onset of leaf-out activities, described as “breaking leaf buds,” “breaking needle buds,”
“budburst,” “emergence above ground,” “emerging leaves,” “emerging needles,” “first leaf,” or “initial growth,”
in the database. We also retrieved the growing degree days, maximum spring temperature, and minimum spring
temperature associated with these phenometrics from the USA-NPN database. To control the data quality and to
limit the scope of our analysis, we focused on the “calibration” species labeled in the database, which are mon-
itored to provide patterns of plant phenophase responses across the US. We also filtered for species with more
than 100 records.

2.2.2. Calculating Mismatch and Inferring Anthropogenic Effect

Due to the limited spatiotemporal coverage of ground observations, we were unable to calculate their velocity
of change in phenology, and therefore the spatial climate-phenology mismatch. As an alternative, we fitted a
climate-phenology model for each species, with the leaf-out day of year as the response, and three temperature
variables (growing degree days, maximum spring temperature, and minimum spring temperature) as predictors.
The absolute model predictive errors were taken as a measure of climate-phenology mismatch. This alternative
method is conceptually consistent with our general definition of climate-phenology mismatch (the deviation
between actual and expected phenological response) and hence consistent with the previous velocity method for
the remote sensing analyses. Here, the assumption is that with close climate-phenology coupling, there should be
a stable functional relationship between climate and phenology, and deviations from this relationship are signs
of decoupling. Due to the limited sample size, we adopted a linear model structure and recognized the nonlinear
relationships as a potential future research direction.

We strived to make the ground-based and remote sensing analyses as comparable as possible. For the ground
observations, we tested the relationship between the prediction error (climate-phenology mismatch) and human
population density (on a logarithmic scale) for each species. Latitude was included as a predictor to account for
its potential confounding effect. Both designs are similar to Equation 5 in the remote sensing analyses. All calcu-
lations and statistical analyses were conducted in R (v. 3.6.0, R Core Team., 2019).
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Figure 2. Spatial patterns of four climate-phenology metrics. (a) Velocity of mean annual temperature change, v, (km yr="). (b) Velocity of growing season length
change, v (km yr™). (¢) Difference in direction, BGSL,M ar (°). (d) Pace of phenology change relative to climate, SGSLMAT (km yr~"). Color bars show the magnitude of
each metric, with cutpoints chosen to divide the data into quantiles. For (a) and (b), the cutpoints were chosen based on pooled v, ;. and v, , so that they are directly
comparable. Arrows show the direction of the velocities of change in selected pixels. Inset figures depict how metrics were calculated (see more details in Figure 1).
Panels on the right show the median and 95% intervals of climate-phenology metrics calculated using growing season length (GSL), start of season (SOS), end of
season (EOS) as proxies for phenology, and using mean annual temperature (MAT), mean spring temperature (MST) and using mean fall temperature (MFT) as proxies

for climate, respectively.

3. Results
3.1. Mismatches Between Velocities of Climate and Phenology

The isolines of climate and phenology show rapid movement in the study region (Figures 2a, 2b, and S8 in
Supporting Information S1), with a median velocity of mean annual temperature change (v,,, ) of 2.2 km yr~!
(95% CI: 0.2, 15.1 km yr"). There is considerable spatial heterogeneity in v,, ., with higher v, in high-latitude
North America and Siberia and low v, in western N. America and E. Asia. The direction of »,,, is northward
in the majority (78.3%) of the area, especially at high latitudes. The median velocity of growing season length
) is 3.4 km yr~! (95% CI: 0.2, 37.5 km yr™!), which is more than twice that of Vyar- Similar to the

change (v,
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spatial pattern observed for vy, ., v, is higher in high-latitude N. America and Siberia, but lower in eastern N.
America and E. Asia. The directions of v, are less consistent than those of v with 61.4% of pixels indicating
a northward direction, mainly at high latitudes.

MAT?

There are wide discrepancies between the directions of vy, . and v ., . as measured by 4, . (Figures 2c and S8
in Supporting Information S1), with 34.1% of pixels having a 0, ,,; greater than 90° and a median 0, . of
54.9° (95% CI: 1.9, 174.1°). We find smaller O mar Values at high-latitudes (50°-70°N) than those of mid-lat-
itudes (30°-50°N), with the largest QGSL_MAT values in castern N. America, Europe, central Asia, and E. Asia. To
quantify how well v, kept pace with v .. we calculated their spatial mismatch, 5, .r (Figures 2d and Figure
S8 in Supporting Information S1). A positive d5q; \ar COITEsponds to v, leading ahead of v, ; (a leading mis-
match), while a negative value corresponds to v, lagging behind (a lagging mismatch) or being in the opposite
direction (a diverging mismatch) (Figure 1). Overall, the combination of high v, .. asL- and large Og yr
leads to a dq; yyap O —0.7 km yr 1 (95% CI: —24.2, 18.1 km yr™!), with negative Bisimar Values in 55.4% of the
study area. The two velocities are similar between 50°=70°N, but 5 \ar 18 highly négative between 30°-50°N.
Highly negative 8., \;4r 18 Observed in Europe and part of N. America, but g, . is near-zero in E. Asia. Fi-
nally, some areas of Siberia and high-latitude N. America possess a positive 5 .- The velocities of change
and spatial mismatches calculated with remotely sensed phenology data are comparable to those calculated with

field data in the order of magnitude.

low vy

Analyses of the climate tracking of spring and fall phenology offer similar, yet more nuanced understandings of
climate-phenology coupling (Figure 2). The velocity of start of season (SOS), v, (median 4.1 km yr=',95% CI:
0.2, 29.7 km yr~') greatly exceeded the velocity of MST, v, (median 2.7 km yr~!, 95% CI: 0.2, 19.5 km yr™"),
but there were large 0 \,op (median 65.4°, 95% CI: 2.3°, 176.0°) and 5sos,M5T (median —2.1 km yr~!, 95% CI:
—25.1, 12.4 km yr~'). Similarly, the velocity of end of season (EOS), Yros (median 6.0 km yr=!, 95% CI: 0.2,
48.7 km yr~') greatly exceeded the velocity of mean fall temperature (MFT), v, (median 3.6 km yr~!, 95%
CI: 0.4, 21.4 km yr!), but there were large aEDS.MFT (median 59.1°, 95% CI: 2.0°, 174.4°) and éEOS.MFT (median
—1.8 km yr™', 95% CI: =33.6, 20.6 km yr~!). The climate-phenology metrics and their spatial patterns (Figures
S9 and S10 in Supporting Information S1) are similar to those calculated using GSL and MAT. Nevertheless, we
did notice that the spatial mismatch found with the growing season length (=0.7 km yr~!) is generally weaker than
those found in the spring (=2.1 km yr~!) and in the fall (—1.8 km yr!), suggesting a stronger coupling between
temperature and spring phenology.

3.2. Climate-Phenology Mismatches in Anthropogenic Landscapes

To examine possible anthropogenic influences on the climate-phenology mismatch, we compared four cli-
mate-phenology metrics (v, 1 ¥as1» @asimar Ogsimar) Pased on the five land-use types from the global anthro-
pogenic biomes Anthromes 2 data (Ellis et al., 2010) (Figure 3). Croplands had the highest v, followed by
wildlands, semi-natural, and rangelands. Croplands had the lowest v, , greatest O,q; yap and lowest Sgg \pap
Semi-natural and rangelands were similar in these three metrics, while wildlands had the highest v, . smallest
Ogspmar and highest 5., . Notably, v ., outpaced v, , . only in wildlands (positive &, ,,..). but it lagged
behind or moved in opposite directions in all anthropogenic land uses (negative 8, \,4r)- Kolmogorov-Smirnov
tests showed that statistical distributions of the four climate-phenology metrics in all anthropogenic land-use
types were significantly different from those in the wildlands (p < 0.001). Nevertheless, the comparison across
land use types might be confounded by the correlation between land use and latitude, which is addressed by a

subsequent model to account for both.

We tested for a natural-anthropogenic gradient underlying climate-phenology mismatches by modeling the re-
lationship between the four climate-phenology metrics and human population density (Center For International
Earth Science Information Network-CIESIN-Columbia University, 2018) (Figure 4). One might argue that these
relationships could be confounded by latitude, as population density, agricultural intensity, and agricultural prac-
tices might covary with the climate-phenology metrics along the latitudinal gradient. We used a Bayesian spatial
model to explicitly account for a latitudinal trend and possible spatial autocorrelation in the response variables
(Text S4 in Supporting Information S1). After accounting for these factors, we found that population density is
significantly correlated with v__ and & (Table S5 in Supporting Information S1). A 1% increase in hu-

GSL GSL.MAT
man population density corresponds to a 0.15% reduction in v, and a 0.69 km yr~! increase in the lagging or
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Figure 3. Climate-phenology metrics by land-use types. (a) Map of land-use types in 2000, based on the Anthromes 2 data (Ellis et al., 2010). Land uses were
classified into five different types: settlements, croplands, rangelands, semi-natural, and wildlands. Settlements were excluded from the following comparisons as their
small spatial scales might lead to inaccurate calculation of climate-phenology metrics. (b) Distributions of the velocity of mean annual temperature change, v, (km
yr), the velocity of growing season length change, v, (km yr™'), the difference in direction, st aar O
(km yr~") in five land-use types. Histograms are ranked based on the medians of the distributions in the land-use type (vertical lines). For v,

values between 2.5% and 97.5% quantiles are presented in the histograms.

MAT

and the pacing of phenology relative to climate, 85 yiar

and §, only

MAT* vGSL’ GSL,MAT*

diverging mismatch between v, and »
a significant predictor of

war- Despite the possible latitude-population correlation, latitude was not

asLvar Dighlighting the role of anthropogenic influence.

3.3. Ground-Observed Climate-Phenology Mismatches Along Population Gradients

In order to understand the natural-human gradient at finer spatial scales, we analyzed the ground-observed leaf-
out dates of seven selected plant species. The median absolute predictive error, representing climate-phenology
mismatch on the ground level, was 6.4 days (95% interval: 0.3-26.7 day). We again tested for the relationship
between the absolute predictive error and the log-transformed human population density (Center For Internation-
al Earth Science Information Network-CIESIN-Columbia University, 2018) (Figure 5). We found that human
population density (on a logarithmic scale) was positively associated with the absolute predictive error in six out
of seven species (coefficient 0.005-0.76) and negatively associated in only red maple (coefficient —0.02). The
relationship was significant (p < 0.05) for common lilacs, which has the largest sample size. Overall, a 1% in-
crease in human population density corresponds to a 0.28 day increase in the absolute predictive error (p < (0.05).
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Figure 4. Relationship between population density and climate-phenology metrics. (a) Map of population density (persons km~2) in the study area in 2000 (Center For
International Earth Science Information Network-CIESIN-Columbia University, 2018). Color shows the population density, with cutpoints chosen to divide the data
into quantiles. (b) Velocity of mean annual temperature change, v, (km yr~1), velocity of growing season length change, Ve, (km yr~1), the difference in direction,

0

asumar (7 and the pacing of phenology relative to climate, 8¢\ (km yr~!) in five quantiles of population density. The lower end of the whiskers, lower boundary

of the boxes, middle of the boxes, higher boundary of the boxes, and the higher end of the whiskers are 0.025, 0.25, 0.5, 0.75, and 0.975 quantiles of the distributions,

respectively. For visualization, the y-axis scales have been log-transformed for v, ;. and v

and logit-transformed for @
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4. Discussion

From our global analyses of remote sensing and ground-based data, we found that plant phenology does not per-
fectly track climate change, and that the mismatch is greater in human-dominated landscapes. Previous studies
have found that the rapid advancement of spring phenology outpaces the shift in the seasonal timing of spring
temperatures (Ovaskainen et al., 2013). Those results are partly supported by our finding of a leading mismatch
between phenological shifts and temperature changes in natural landscapes (Figure 3). However, across the entire
study area, there is an overall lagging or diverging spatial mismatch in mixed natural and anthropogenic land-
scapes. Several possible mechanisms explain why the movement of phenology isolines lags behind or is oriented
in the opposite direction compared with those of temperature isolines, including insufficient phenotypic plasticity
(Duputié et al., 2015), photoperiod limitations (Bauerle et al., 2012; Fu, Piao, et al., 2019; Fu, Zhang, et al., 2019;
Koérner & Basler, 2010; Zohner et al., 2016), and the interaction between warming and chilling requirements (Fu
et al., 2015). These lags might also be explained by phenological response to factors other than temperature,
such as drought stress (Peng et al., 2019) and CO, concentration (S. Wang et al., 2019). In the remote sensing
analysis, the landscape-level lag may be additionally attributed to insufficient species compositional change (Hel-
man, 2018). A possible explanation for the decoupling of phenology and climate is the decreasing sensitivity of
vegetation phenology to temperature (Fu et al., 2015), but this mechanism is open to discussion because of known
issues in the calculation of temperature sensitivity (Keenan et al., 2020). Plant functional types can be another
factor that explains the outpacing phenology patterns in wildlands, especially in high-latitude regions dominated
by shrublands, evergreen needleleaf forests, and grasslands (Text S5, Figure S11 in Supporting Information S1).

Phenology responds to multiple climatic factors in complex ways. We used MAT as a proxy for climate in this
study and focused on temperate areas with distinct seasonality, where temperature is the main driver of phenology
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Figure 5. Anthropogenic influence on the ground-level climate-phenology mismatch calculated from the leaf-out dates of seven selected plant species in the USA-NPN
database. Scatterplot shows the relationships between log-transformed human population density and absolute predictive error (day) between observed and model-
predicted leaf-out dates. Black line and gray ribbon show the overall linear trend and 95% interval, respectively. Colored lines show the species-specific linear trends.
Inset map shows the locations of observational sites with phenometrics on the leaf-out dates of the studied species.

(see a supplementary analysis using mean annual precipitation, Text S6 and Figure S12 in Supporting Informa-
tion S1). However, we acknowledge that there are many ecosystems where phenology is driven by precipitation
instead of temperature, particularly in grasslands (Miao et al., 2017). For example, warming-induced drought
stress could delay greenup onset and advance senescence in temperate grasslands (Tao et al., 2008), whereas
an increase in preseason precipitation often causes the opposite (Ren et al., 2018). Note that climate-phenology
tracking is stronger in spring compared to the fall (8 \isr are generally closer to 0 compared to 8y, pr in Fig-
ure 2d), which can be interpreted as higher sensitivity of senescence to water stress or photoperiod than greenup.
We therefore suggest future studies use multivariate vectors when calculating the velocity of change in climate
and high-dimensional nonlinear models when calculating model predictive errors.

Our findings on phenological shifts can be situated in a broader context of ecological responses to climate change,
including phenological, distributional, and physiological responses (Hiillfors et al., 2021). Apart from plant phe-
nology, recent studies on plant migration and productivity have also shown lags in biotic responses to climate
change. For example, the velocity of climate change has been suggested to exceed optimistic estimates for plant
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migration rates (~1 km yr™!) in 28.8% of the globe (Loarie et al., 2009). This estimation was confirmed by a sys-
tematic analysis of forest inventory data, which revealed that the minimal northward expansion of tree ranges in
the eastern US has failed to keep pace with climate change (K. Zhu et al., 2012). An analysis of changes in plant
productivity suggests that the velocity of productivity change lags behind that of temperature change in 80% of
the northern high latitudes (Huang et al., 2017). Altogether, these studies corroborate results from this analysis
to reveal the possibility that not even some of the most rapid responses in vegetation activity match the pace of
recent climate change.

Our study suggests that anthropogenic effects are closely associated with the desynchronization of land surface
phenology and temperature. Despite intensive land management, croplands had one of the highest climate-phe-
nology mismatches among all land uses, with strong warming trends often accompanied by shortened growing
seasons (Figures 2b and 3b). The accuracy of remote sensing in detecting the phenology of crops has been vali-
dated with ground observations, such as the crop progress stages reported by the U.S. Department of Agriculture
(USDA) National Agricultural Statistics Service (NASS) (Duncan et al., 2015; Gao et al., 2017; Peng et al., 2019;
Sakamoto et al., 2005). Crop phenologies have complex responses to climate change. On the one hand, the estab-
lished climate-phenology coupling may be disrupted. Warming can accelerate crop development and cause early
flowering, maturity, and harvesting, therefore shortening the growing season in croplands (Bai et al., 2019; Liang
et al., 2021). Instead of tracking temperature change, farmers may respond to changing precipitation regimes,
such as that maize is usually planted when average precipitation and potential evapotranspiration fall within
suitable ranges (Sacks et al., 2010). Complex adaptations such as crop rotations (Marini et al., 2020) and hybrid
varietal selection for fast growth, high yield, and stress tolerance (Atlin et al., 2017) may lead to climate-phenol-
ogy decoupling. For example, in the Midwestern US, a significant expansion in maize and soybean cultivation,
coupled with decreases in wheat and oats, delayed greenup at a rate of 1.8-6.7 day decade™! during 1982-2014
(Zhang et al., 2019). Failure to take advantage of the warming-induced extension of the potential growing season
may give rise to a novel yield gap (Lobell et al., 2009) under climate change, leading to a missed opportunity
to enhance productivity and pose challenges to achieving food security. On the other hand, active management
of the agricultural landscape can help maintain the relationship between phenology and changing climate. For
instance, maize and soybeans in the US advanced in planting dates and lengthened growing seasons from 1981
to 2005 due to increased growing degree day accumulation (Sacks & Kucharik, 2011). In northeastern China, the
negative impact of a warming-induced shortened rice growth period was partly offset by earlier sowing dates and
the adoption of cultivars with a longer growth period (Bai et al., 2019). With further studies on the crop yield and
economic consequences of the climate-phenology mismatch, agricultural managers can better optimize sowing
dates and crop varieties. In the long term, assessments of climate-phenology mismatch can help design crop ide-
otypes and guide crop breeding to further expand the toolbox for agro-adaptation.

The relationship between phenological shifts and climate change in semi-natural lands varies greatly over space
(Figure 3b). For example, although forests in New England in the Northeastern United States have been reported
to have lengthened their growing season as a result of warming (Janowiak et al., 2018) our analysis suggests oth-
erwise, with most of the area having experienced a decrease in growing season length (arrows in New England
point to the south in Figure 2b). It should be noted that previous studies have mostly focused on mono-specific
forests at a local scale, but satellite-observed phenology also captures phenological change induced by species
compositional changes, such as the dramatic reduction in evergreen hemlock caused by introduced pathogens
(Knighton et al., 2019) and the replacement of spruce-fir forests with maple-beech-birch and oak-hickory forests
(Alig & Butler, 2004) in the northeastern US. Large-scale afforestation and reforestation programs, such as the
Three-North Shelter Forest Program in Northeastern China (Lu et al., 2018), can significantly alter land surface
phenology, possibly extending the growing season and mitigating climate-phenology mismatch. The influence
of timberland management on phenology and corresponding adaptive strategies under climate change has rarely
been examined and deserves further investigation.

Given the small number of pixels with human settlements as the dominant land use in the study area, we could
not test the net effect of land use changes like urbanization, on climate-phenology mismatch. Nevertheless, phe-
nological shifts in urban areas may be desynchronized from regional climate patterns due to urban heat island
effects (5. Wang et al., 2019), CO, fertilization (S. Wang et al., 2019), irrigation (Buyantuyev & Wu, 2012), and
the introduction of non-native species (Buyantuyev & Wu, 2012). Larger-scale changes in plant phenology might
be observed in the future, given the rapid expansion of urban areas.
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This study provides one of the first quantifications of continental-scale widespread phenological mismatch, es-
pecially in human-dominated landscapes. Looking forward, a concerted effort will be needed to further establish
the mechanisms and consequences of phenological mismatch. First, the scaling of phenological mismatch at finer
resolutions should be investigated, as phenology is highly heterogeneous and mediated by local microclimate
variables in complex terrain (Villegas et al., 2010; Ward et al., 2018). Second, insights from land surface phe-
nology in this study can be enhanced by the inclusion of individual-to species-level phenology data that are free
of confounding factors such as species composition, disturbance, and snow (C. Wang et al., 2017). Last, the re-
lationship between measurements of phenological mismatch and fitness measurements, such as productivity and
stress, needs to be tested systematically, extending beyond several classic examples of interacting species (Visser
& Both, 2005). Although these efforts are currently limited by the lack of long-term phenology observations and
fitness measurements, future data collection may enable us to more rigorously test well-known ecological theo-
ries about phenological mismatch, to more sustainably manage plant species and mitigate the pernicious impacts
of climate change.

5. Conclusions

Plant phenology is expected to closely track the changing climate, but this phenology-climate coupling might
be disrupted by human activities during rapid climate change. While studies have revealed the possibility of
climate-phenology decoupling, until now we lack a systematic quantification of this mismatch and its correlation
with anthropogenic activities. Our findings confirm that land surface phenology changed rapidly over the past
three decades in northern mid-to high-latitudes. Our results show that, however, the movement of phenology
isolines outpaced that of temperature isolines in wildlands but lagged behind those in anthropogenic landscapes.
Anthropogenic activities are not only associated with the slower movement of phenology isolines, but also an
increased climate-phenology mismatch. A stable relationship between land surface phenology and climate in
human-dominated landscapes is critical to maintaining biodiversity and increasing ecosystem productivity. Our
study demonstrates a coherent approach to quantify climate-phenology mismatches and understand their spatial
pattern. Insights from these findings help guide sustainable management strategy through the optimized selection
of species and planting practices in the human-dominated Earth.
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