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Options: A Graphic Introduction LHow to estimate Case 1:

this fee ??

If stock price drops

at time T?
« Sell stock to l

STOCK

Fee to purchase contract:

(worth $100)

~ T - o
Institution
Financial Institution e Loseonly $2.00
- “For a $2.00 fee, ( contract fees )
we promise to buy your stock
What is an Option? for $100 at Expiry Time T” Case 2:
* A financial derivative (contract) between two parties If stock price rises
e The buyer has the right to buy/sell the underlying asset attime T ?
« Atan agreed price (Exercise price, K ) '
* At a specific date (Time of maturity/expiration, T )

e Sell Stock in the

. Market at $130.00
Time: O (today) Value of the Option = d/dx (value of stock) »

Value of the Option = ? Time: Expiry of Option » Net Gain of $28.00



The Black-Scholes Option Pricing Model

The Model:
e 5(t) be the value of the underlying at time t.
OV 1, .0V 9V . | vative at
— + —0° 5= 4 rS——rV =0 | V(5(t), t) be the value of the derivative at time t.
ot 2 0.5% a5 r be the zero risk interest rate.

o be the volatility of the underlying.

Some assumptions:

e Return on stock price follows geometric Brownian motion (constant drift and volatility)
* Risk-free interest rate and no dividend payout

 Frictionless market

« No arbitrage opportunities

The Black Scholes Formula (solution) estimates the fair price of an option (V) based on
price of its’ underlying stock (S) and at any given time (t).

- Fischer Black , Myron Scholes awarded 1997 Noble Prize in Economics



The Continuous Problem: Black-Scholes PDE for European Call Options

Terminal Boundary Value Problem:

« PDE:  2nd order, linear, (backwards-time) parabolic, constant coefficient

1 f) O) . _ . .
rV = Vt 1 Zg46° VSS 4+ I’SVS Stock Price = infinity
2 Solution Domain:
V(0.t) =0, forall t Semi-infinite Strip
V(S t) ~Sas S — x . Stock Price=0 t=0 t = Expiry

V(S, T)=max(S — K,0)

Transforming: Initial Boundary Value Problem: with Dirchlet Boundary

I Conditions
(with time-dependent

change of variables) « (forward-time) 1-D Diffusion Equation




Discretizing the PDE - Finite Difference Method

Taylors’ Series Expansion at xo:

5 U, (X
UGk rh)=UGx 1 U e U)o Ve (%)

2! (n—-1)!

Rearranging terms to get First Order Approximation to
First Partial Derivative:

+O(h")

Truncating after first derivative:

U(x,+h)=U(x_)+hU_(x_)+O(h*) ‘ o
Stock Price = S_Max U = I‘I(Xo +h)_U(Xo )

9 X h

‘Big O’: Truncation Error

+0O(h)

Domain:
Set of nodes

o
o

Stock Price = 0 § ® Q_% At each node, replace PDE with Difference Equation

0—0
t=0 t = Expiry




« Accumulation of truncation errors at Stock Price (S) = Exercise Price (K)
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 Finally, evaluating PDE at different combinations of nodes => Different “Schemes”

» Analyzing 3 standard schemes: Explicit Euler, Implicit Euler and Crank Nicolson




Overview of the 3 Schemes

Explicit Euler Implicit Euler Crank-Nicolson
J.n+l Node at j-1,n+1 j,n+1  j+1,n+1 j-1,n+1 j,n+l1  j+1,n+l
® _ whichwe o O o) O O O
evaluate : Symmetric
Stencil Stencil Stencil e around
tn+1/2
o o o @ . @
J-1,n j'n ]l+lrn j.n j-1,n J.N j+1,n

* Replacing d/dt with forward
differences

* Replacing d/dS and d"*2/dS*2 with
central differences

* Order of accuracy: O(dt"2)+0O(dS"4)

e Conditionally Stable

* Replacing d/dt with backward
differences

* Replacing d/dS and d*2/dS"2 with
central differences

* Order of accuracy: O(dt"2)+O(dS"4)

e Unconditionally Stable

* Replacing d/dt, d/dS and d"*2/dS"2
with averages of Explicit Euler
and Implicit Euler

* (Highest) Order of accuracy:
O(dt"4)+0(dS"4)

e Unconditionally Stable



Numerical Analysis of Finite Difference Schemes
Consistency, Stability, Convergence

 Consistency — How well the exact solution of the PDE satisfies the finite difference
scheme as mesh becomes finer (dt -> 0 )

Truncation Error: A measure of consistency and order of accuracy of scheme

s Joa(E(h)/E(hy))
log(h1 /h2)

Explicit Euler : L-infinity Error Implicit Euler : L-infinity Error Crank Nicolson : L-infinity Error
dS fixed, dt halved dt fixed, dS halved dS fixed, dt halved  dt fixed, dS halved dS fixed, dt halved dt fixed, dS halved

p =2 (in time) p =4 (in space) p =2 (in time) p =4 (in space) p =4 (in time) p =4 (in space)
Highest order of accuracy in both domains



e Stability — Is the approximate solution at each node bounded, as mesh size
becomes smaller or larger ?

* Bounded-ness of Point-wise error: A measure of stability

Explicit Euler — Conditionally Stable
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e Stability of Implicit Euler and Crank Nicolson - Unconditionally Stable

. e N .
measured by error in L-infinity norm: eri’ :=  max V' —=V(h,t=T)|
l<j=Ne—-1
0.003 0.019544293 0.006853
0.15 0.003 0.019544293 0.006858
0.075  0.0015 0.019544293 0.006859
0.05 0.001 0.019544293 0.00686

» The error at time = 0 1s bounded by a constant as mesh becomes finer



» Convergence: Does the approximate solution approach exact solution as mesh
becomes finer?

 [ax Equivalence Theorem: for a consistent finite difference method for a well-

posed linear initial value problem, the method is convergent if and only if it is stable.

» Rate of Convergence (Truncation Error): Measure of how quickly the approximate solution

approaches the exact solution

Explicit Euler: Implicit Euler: Crank Nicolson: Exact Solution
Approx Solution Approx Solution Approx Solution
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/ Fastest convergence to exact solution



Conclusion

Application of finite difference schemes to solve the linear Black-Scholes Equation
for European Call and Put Options:

» Explicit Euler

 Fastest computationally, but conditional stability causes it to take longer as
mesh becomes finer

» Transforming the PDE to get rid of dependence of S as a co-efficient leads to
high round-off errors

e Crank Nicolson

« Computationally expensive but fastest convergence, highest order of accuracy
in both domains, and unconditionally stable




Future Work

» Application of finite difference schemes to:
* Non-linear Black-Scholes PDE

* Linear Black-Scholes PDE for pricing American Options (analytical solution does not
exist)
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