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Options: A Graphic Introduction Case 1:  
If stock price drops 
at time T?

STOCK 
(worth $100)

Financial Institution
“ For a $2.00 fee,  
we promise to buy your stock 
for $100 at Expiry Time T ” Case 2: 

If stock price rises 
at time T ?

• Sell stock to 
Institution 

•  Lose only $2.00       
       ( contract fees )

• Sell Stock in the 
Market at $130.00 

• Net Gain of $28.00

Fee to purchase contract:                 
	 $2.00

How to estimate 
this fee  ??

What is an Option? 
  

• A financial derivative (contract) between two parties 
• The buyer has the right to buy/sell the underlying asset 
• At an agreed price (Exercise price, K ) 
• At a specific date (Time of maturity/expiration, T ) 

Time: 0 (today)

Time: Expiry of OptionValue of the Option = ?

Value of the Option = d/dx (value of stock)



The Black-Scholes Option Pricing Model 

The Model:  

Some assumptions:  
• Return on stock price follows geometric Brownian motion (constant drift and volatility)  
• Risk-free interest rate and no dividend payout 
• Frictionless market 
• No arbitrage opportunities 

The Black Scholes Formula (solution) estimates the fair price of an option (V) based on 
price of its’ underlying stock (S) and at any given time (t).   
 	 - Fischer Black , Myron Scholes awarded 1997 Noble Prize in Economics

•   
•   
•   
•  



The Continuous Problem: Black-Scholes PDE for European Call Options 

Terminal Boundary Value Problem: 

• PDE:      2nd order, linear, (backwards-time) parabolic, constant coefficient 
                                                                                                

Initial Boundary Value Problem: with Dirchlet Boundary   
Conditions 

• (forward-time) 1-D Diffusion Equation	 	   

Transforming: 

(with time-dependent 
change of variables) 

Solution Domain:  

Semi-infinite Strip

t = 0 t = ExpiryStock Price = 0

Stock Price = infinity 



Discretizing the PDE – Finite Difference Method

t = 0 t = Expiry

Stock Price = 0

Stock Price = S_Max 

Domain:  
Set of nodes

At each node, replace PDE with Difference Equation

Taylors’ Series Expansion at xo:

Truncating after first derivative: Rearranging terms to get First Order Approximation to 
First Partial Derivative: 

‘Big O’: Truncation Error



• Accumulation of truncation errors at Stock Price (S) = Exercise Price (K) 

• Finally, evaluating PDE at different combinations of nodes  => Different “Schemes” 

• Analyzing 3 standard schemes: Explicit Euler, Implicit Euler and Crank Nicolson

Absolute Error vs Stock price

S = K

Attributed to 
approximating the 
boundary condition  
as S-> infinity

S = K

Call Option: Payoff



Overview of the 3 Schemes

Explicit Euler Implicit Euler  Crank-Nicolson

• Replacing d/dt, d/dS and d^2/dS^2 
with averages of Explicit Euler 
and Implicit Euler

Stencil 

• Replacing d/dt with forward 
differences 

• Replacing d/dS and d^2/dS^2 with 
central differences 

• Order of accuracy: O(dt^2)+O(dS^4) 

• Conditionally Stable

Stencil 

• Replacing d/dt with backward 
differences 

• Replacing d/dS and d^2/dS^2 with 
central differences 

• Order of accuracy: O(dt^2)+O(dS^4) 

• Unconditionally Stable

Symmetric 
around  
t n+1/2

Node at 
which we 
evaluate

• (Highest) Order of accuracy: 
O(dt^4)+O(dS^4) 

• Unconditionally Stable 

Stencil



Numerical Analysis of Finite Difference Schemes 	 
Consistency, Stability, Convergence

• Consistency – How well the exact solution of the PDE satisfies the finite difference 
scheme as mesh becomes finer (dt -> 0 )

Truncation Error: A measure of consistency and order of accuracy of scheme    

Explicit Euler : L-infinity Error Implicit Euler : L-infinity Error Crank Nicolson : L-infinity Error
dS fixed, dt halved dt fixed, dS halved dS fixed, dt halved dt fixed, dS halved dS fixed, dt halved dt fixed, dS halved

p = 2 (in time) p = 4 (in space) p = 4 (in space) p = 4 (in time) p = 4 (in space) p = 2 (in time) 
Highest order of accuracy in both domains 



• Stability – Is the approximate solution at each node bounded, as mesh size 
becomes smaller or larger ? 
• Bounded-ness of Point-wise error: A measure of stability 

• Explicit Euler – Conditionally Stable 

Stability criteria < 1Stability criteria > 1

Solution becomes unstable



• Stability of Implicit Euler and Crank Nicolson - Unconditionally Stable  
            
  measured by error in  L-infinity norm:  

• The error at time = 0 is bounded by a constant as mesh becomes finer

dS dt Implicit Euler : L-infinity Error Crank Nicolson : L-infinity Error

1.5 0.003 0.019544293 0.006853

0.15 0.003 0.019544293 0.006858

0.075 0.0015 0.019544293 0.006859

0.05 0.001 0.019544293 0.00686



• Convergence: Does the approximate solution approach exact solution as mesh 
becomes finer? 

• Lax Equivalence Theorem: for a consistent finite difference method for a well-
posed linear initial value problem, the method is convergent if and only if it is stable. 

• Rate of Convergence (Truncation Error): Measure of how quickly the approximate solution 
approaches the exact solution 

• Crank Nicolson converges the fastest!

dt dS Explicit Euler: 
Approx Solution

Implicit Euler: 
Approx Solution

Crank Nicolson: 
Approx Solution

Exact Solution

1.5 0.0025 2.188576726 2.191644589 2.1780901

0.75 0.00125 2.179979553 2.181531976 2.1780901

0.5 0.000833333 2.175066446 2.176108048 2.1780901

0.3 0.0005 2.17801576 2.178638629 2.1780901

0.15 0.00025 2.177915247 2.178226783 2.1780901

Fastest convergence to exact solution



Application of finite difference schemes to solve the linear Black-Scholes Equation 
for European Call and Put Options:  

• Explicit Euler 
• Fastest computationally, but conditional stability causes it to take longer as 

mesh becomes finer 
• Transforming the PDE to get rid of dependence of S as a co-efficient leads to 

high round-off errors 

• Crank Nicolson 
• Computationally expensive but fastest convergence, highest order of accuracy 

in both domains, and unconditionally stable

Conclusion



• Application of finite difference schemes to: 

• Non-linear Black-Scholes PDE 

• Linear Black-Scholes PDE for pricing American Options (analytical solution does not 
exist)

Future Work
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