
L
AHB VIP

1

INTRODUCTION

• This is an AHB UVC with full UVM compatibility.

• It has been coded to be robust, reusable, measurable, systematic and efficient, with
easy debug-ability and user-friendly features.

• Objectives:
• To help create various AHB stimulus with ease (minimal codes).

• To shorten the time to bring up AHB UVM testbench with RAL.

• To provide users with high quality industry standard protocol checkers.

• To create an ideal platform for novice UVM users.

• To provide a low cost solution for AHB verification in the industry.

2

THE LVM AHB

3

LVM AHB UVC DUT

Address

& Control

HWDATA

HRDATA

Status

EXAMPLE LVM AHB INSTALLATION

4

TB UVM BASE TEST

LVM AHB

LVM AHB interface

LVM AHB protocol checker

UVM CHILD TESTS
(call AHB APIs: drive, wait, configure)

base vseq

LVM AHB

RAL

child vseq

(call AHB APIs :

drive, wait, configure)

User scoreboard

LVM AHBLVM AHB

DUT

STRENGTHS

5

WHY CHOOSING LVM VIP?

6

Strengths

Robust
Highly configurable.

Parameterized signal

width per instance.

User friendly

Minimum lines of code to send

packet.

Friendly for new UVM engineers.

API based UVC.

Reusable
Codes on lvm VIP is highly reusable.

Ease of

Integration
RAL-ready with adaptor and

predictor.

Minimum steps to integrate.

High debug-

ability
Useful tracker log, interface

signals.

Strong &

Strict Checker
Industry standard checker

embedded.

Support X injection at Read and

Write DATA for inactive lanes.

Embedded memory checker, RAL

access OK checker

Reset aware
Support reset events.

Light weight
CPU efficient UVC.

Setup and Hold

X injection

Inject X outside setup and hold

window.

Ready

testsuite
Provided multiple useful tests to

verify AHB slaves DUT

Register

Partial

Access
Embedded register partial

access where user just need 2

lines of codes to start it

Register

Burst

Access
Embedded register burst

access where user just need

~4 lines of codes to start it

Performance

Analyzer
Performance analyser

USER FRIENDLY
Integration and Configuration

LVM AHB

INTEGRATION & CONFIGURATION

• Very easy to integrate, simpler than other vendor

• All steps are demonstrate in the self test testbench.

• Can configure different protocol per instance

• Can configure different signal width per instance

• Easily can on-off components on the fly.

• Just need to instantiate the UVC, no need to do anything on cfg class, sequence,
adaptor, predictor etc

Your UVM TB

DRIVING PART

EASE OF DRIVING STIMULUS

• All fully pipelined.

• API based.

• Various API to control stimulus style

• Fully pipelined AHB traffic

• Wait and driving capabilities.

• Most API can be done in 1 line of code.

• Full examples at self-test uvm tests.

ADVANCED TECH WITH RAL

• Predictor and Adaptor are built in and connections syntax is ready.

• Support partial and full register access (individual accessible modes) for driving

• 8b accesses

• 16b accesses

• 32b accesses

• Predictor works for burst packets, and partial accesses packets

 LVM AHB
RAL

adaptor

predictor

SETUP AND HOLD X INJECTION

• Already supported X injection for window outside setup and hold time.

• Can be easily configured and can be turned OFF too.

REUSABLE CODE

• As stimulus mostly done using UVC's API, the code is very reuse friendly, where just
the UVC handle is needed.

m_ahb_env.s_write (.HADDR(32'h2000_0000), .hwdata(32'h11111111) , .hresp(hresp), .hexokay(hexokay));

 m_ahb_env. s_read (.HADDR(32'h2000_0000), .hrdata(hrdata), .hresp(hresp), .hexokay(hexokay));

`uvm_info(msg_tag, $sformatf("hrdata='h%0h hresp='h%0h, hexokay='h%0h", hrdata, hresp, hexokay),UVM_DEBUG)

MONITORING PART

SIMPLE SEQ ITEM RETRIEVAL

• Full code for seq item retrieval for all info needed is already part of example user
scoreboard

• Already can be used for various high level scoreboard.

CHECKING PART

EMBEDDED ARM PROTOCOL
CHECKER

• Already integrated SVA from ARM for AHB protocol checker.

• Enhanced to become UVM_ERROR when assertions fail.

LVM AHB

ARM AHB protocol checker

embedded (uvm)

EMBEDDED MEMORY CHECKING

• Built in memory verification scoreboard, where

• all writes within memory range (configurable) will be keep tracked as new data (fulfil the
conditions)

• All reads within memory range (configurable) will check data matching expectation (per last
written data)

LVM AHB
memory

DUT

OUT OF BOUND ADDRESS CHECKING

• Built in out of bound address verification scoreboard, where

• all writes outside valid address range will get HRESP = ERR (default value, user configurable)

• All reads outside valid address range will get HRESP = ERR (default value, user configurable)

LVM AHB
Bad ranges

DUT

AUTO ENSURE SLAVE COMPLETES
ALL REQUESTS

• At the end of test, UVC will ensure slave does not missed out any read / write.

LVM AHB

DUT

Total request ==

total responses

DEBUG PART

ENUM & DEBUG SIGNALS

• Signals are designed in enum, to ease user to read the waveform

22

COMPREHENSIVE TRACKER
• Full info for each packet in the AHB bus can be observed via tracker.

• Make the debug handy

END OF TEST MEMORY PRINTER
END OF TEST SCOREBOARD PRINTER

• Print total read and total write, ensure test is not empty.

TESTSUITE

THE BENEFITS FROM TESTSUITE

• Can verify various aspects, for example:

• Verify the data integrity, with full blast of randomized AHB packets

• Verify the response of every packet to meet expected value.

26

PERFORMANCE ANALYZER

PERFORMANCE ANALYZER

• Performance

28

PARTIAL REGISTER ACCESS VERIFICATION

PARTIAL REGISTER ACCESS
VERIFICATION

• Can verify register partial access

• Full access is fully verified at uvm’s bit bashing sequence

• LVM adds the coverage for partial accesses

30

BYTE 3 BYTE 2 BYTE 1 BYTE 0Register

HWORD 1 HWORD 0Register

BURST REGISTER ACCESS VERIFICATION

BURST REGISTER ACCESS
VERIFICATION

• Can verify register burst access

• Single beat full access is fully verified at uvm’s bit bashing sequence

• LVM adds the coverage for burst accesses

• This enable the bus read / write more than 1 registers in burst modes, where randomized burst
size will be covered as well.

• Example like below, where there are 4 burst packets (in 4 different colors) in 1B to program all the
6 x 32bits registers.

32

BYTE 3 BYTE 2 BYTE 1 BYTE 0Register 0

BYTE 3 BYTE 2 BYTE 1 BYTE 0Register 1

BYTE 3 BYTE 2 BYTE 1 BYTE 0Register 2

BYTE 3 BYTE 2 BYTE 1 BYTE 0Register 3

BYTE 3 BYTE 2 BYTE 1 BYTE 0Register 4

BYTE 3 BYTE 2 BYTE 1 BYTE 0Register 5

STRENGTH SUMMARY

• Robust
• Easy-to-control packet sending style: pipelined or gated styles.
• Fully parameterized UVC

• All the signal's width can be easily parameterized.
• Supports multiple instances with different parameters.

• User friendly
• Easy to use as driving, waiting and configuring are API-based.
• User need not deal with sequence for most of the time (user friendly for engineers new to UVM).
• Does not require in-depth UVM knowledge to use this UVC.
• Ease of configuration

• Component(s) can be turned off.
• Component(s) can be silenced.
• UVC can be configured via API.

• Examples of tests, scoreboard and sequence given as a handy reference for the users.
• Easy to configure the UVC in passive mode.

33

STRENGTH SUMMARY
• Reusable

• Proven to be easily instantiable at module level testbench or SOC level testbench.

• Easy to reuse code that deals with the UVC.

• Ease of integration
• Minimum steps needed from integration to sending the first AHB packet.

• It is RAL ready.

• High debug-ability
• Tracker file: AHB transactions can be traced in the log file.

• Interface provides some debug signals.

• Strong checkers
• Equipped with industry standard protocol checks on the AHB bus.

• Equipped with memory verification scoreboard (background check read and write within address ranges)

• Reset aware feature
• The reset-aware UVC flushes the pending transactions if HRESETn goes active.

• Light weight
• Efficient use of variables for least memory space consumption over the simulation time.

• Setup and hold ready
• It can be configured to inject X outside setup and hold window.

34

CONVENTION

35

ENUM TYPE READY TO BE USED

// X injection or clocking block

 typedef enum bit {

 LVM_CLOCKING = 1'b0,

 // Using old way of injecting the delay via clocking block

 LVM_X_INJECTION = 1'b1

 // Outside setup and hold time, X is injected

 } LVM_SETUP_HOLD_em;

 typedef enum bit {

 LVM_MASTER = 1'b1,

 LVM_SLAVE = 1'b0

 } LVM_ROLE

36

// ON OFF

 typedef enum bit {

 LVM_ON = 1'b1, // ON

 LVM_OFF = 1'b0 // OFF

 } LVM_ON_OFF_em;

 // TRUE FALSE

 typedef enum bit {

 LVM_TRUE = 1'b1,

 LVM_FALSE = 1'b0

 } LVM_TRUE_FALSE_em;

 // RESET

 typedef enum bit {

 LVM_RESET = 1'b0,

 LVM_OUT_OF_RESET = 1'b1

 } LVM_RESET_em;

ENUM TYPE READY TO BE USED

typedef enum logic [2:0] {

 LVM_AHB_1B = 0,

 LVM_AHB_2B = 1,

 LVM_AHB_4B = 2,

 LVM_AHB_8B = 3,

 LVM_AHB_16B = 4,

 LVM_AHB_32B = 5,

 LVM_AHB_64B = 6,

 LVM_AHB_128B = 7

} lvm_ahb_hsize_em;

37

typedef enum logic [2:0] {

 LVM_AHB_SINGLE = 0,

 LVM_AHB_INCR = 1,

 LVM_AHB_WRAP4 = 2,

 LVM_AHB_INCR4 = 3,

 LVM_AHB_WRAP8 = 4,

 LVM_AHB_INCR8 = 5,

 LVM_AHB_WRAP16 = 6,

 LVM_AHB_INCR16 = 7

} lvm_ahb_hburst_em;

typedef enum bit {

 LVM_AHB_OK = 0,

 LVM_AHB_HRESP_ERR = 1

} lvm_ahb_hresp_em;

typedef enum logic {

 LVM_AHB_READ = 0,

 LVM_AHB_WRITE = 1

} lvm_ahb_op_em;

AHB UVC COMPONENTS

38

UVC HIERARCHY PATHS

• If user instantiates the LVM AHB UVC under test, the following paths will be valid:

• uvm_test_top.m_ahb_env

• uvm_test_top.m_ahb_env.agt

• uvm_test_top.m_ahb_env.agt.sqr

• uvm_test_top.m_ahb_env.agt.drv

• uvm_test_top.m_ahb_env.agt.mon

• uvm_test_top.m_ahb_env.cfg

• uvm_test_top.m_ahb_env.prd

• uvm_test_top.m_ahb_env.adp

39

AHB UVC COMPONENTS

• Driver (drv)

• Configurable sending style that can be changed on-the-fly:
• Ungated / Pipelined packets: Everything send in back-to-back.

• Gated packets: Wait for response, then proceed to send.

• Monitor (mon)

• Captures all AHB transactions and provides seq item port for user.

• Prints out tracker log file.

• Configuration (cfg)

• Contains all the configurable parameters and some APIs.

• Environment (env)

• Provider of all the user's API.

40

AHB UVC COMPONENTS

• RAL adaptor (adp)

• Ready-to-use adaptor to convert user's RAL access commands into AHB
transactions.

• RAL predictor (prd)

• Ready-to-use predictor to convert monitored AHB transactions into RAL update
mechanism.

• Protocol Checkers (sva)

• Complete checker for protocol compliancy.

• SVA that flags error using “uvm_error”.

• Provides SVA coverage for user analysis.

41

UVC CONFIGURATION

42

CONFIGURABLE UVC

• LVM AHB UVC is designed to be fully configurable to meet the user's needs.

• All the configuration variables are located inside the config class.

• Most of the variables can be controlled by using API inside the env.

• Besides, this UVC is fully configurable using parameters for signal width.

• For details, please refer to “Step by Step Integration Guide”.

43

LVM POWERED API

44

No API name Example

1 enter_reset <env>.enter_reset;

// This makes the UVC to enter reset state (auto done when HRESETn fall)

2 exit_reset <env>.exit_reset;

// This makes the UVC to exit reset state (auto done when HRESETn rise)

3 deactivate_UVC <env>.deactivate_UVC;

// Driver, monitor etc. stop their operation (called by enter_reset)

4 activate_UVC <env>.activate_UVC;

// Driver, monitor etc. back to being operational (called by exit_reset)

5 posedge_clk <env>.posedge_clk;

// Wait for next posedge of UVC clock

6 negedge_clk <env>.negedge_clk;

// Wait for next negedge of UVC clock

7 recompute_clk_period <env>. recompute_clk_period;

// Restart the UVC clock frequency calculation

// Clock info is shown in log file

[m_ahb_cfg] clock period = 20.000 ns

[m_ahb_cfg] window of 1 = 10.000 ns

[m_ahb_cfg] window of 0 = 10.000 ns

[m_ahb_cfg] duty cycle = 50.0%

LVM POWERED API

45

No API name Example

1 off_driver <env>.off_driver; // Turn OFF driver

2 on_driver <env>.on_driver; // Turn ON driver

3 off_monitor <env>.off_monitor; // Turn OFF monitor

4 on_monitor <env>.on_monitor; // Turn ON monitor

5 off_tracker <env>.off_tracker; // Turn OFF tracker

6 on_tracker <env>.on_tracker; // Turn ON tracker

Useful when user

makes this UVC as

passive.

PROTOCOL

• User can configure AHB5 properties for this UVC, using the following cmd:

• Default it is full AHB5 protocol.

• To enter AHB LITE protocol mode, these variable can be turned OFF.

46

ahb_env.cfg.AHB5_Extended_Memory_Types = LVM_TRUE;

ahb_env.cfg.AHB5_Secure_Transfers = LVM_TRUE;

ahb_env.cfg.AHB5_Exclusive_Transfers = LVM_TRUE;

ahb_env.cfg.AHB_User_Signals = LVM_TRUE;

• This UVC implements the standard clocking blocks.

• When configuring output (VIP → DUT) to be 2.5ns, the impact is as follows:

• The cmd:

CLOCKING BLOCK CONFIGURATION

47

2.5ns gap

m_ahb_env.set_hold_time (2500 ,"ps");

CLOCKING BLOCK CONFIGURATION

• The default value chosen for input (DUT → VIP) is 1ns, the impact is as follows:

• This gap can be configured using the following cmd:

48

m_ahb_env.set_setup_time(1 ,"ns");

1ns gap

Sampling point

DRIVER WAIT STYLE

• The driver can be configured by user to wait for the slave response after it has sent a packet.

For example,

• After AHB read is sent, drv can be made to wait for all HRDATAs to come back with

responses.

• After AHB write are sent, drv can be made to wait for all responses to come back.

49

No API name Example

1 drv_wait_output(LVM_ON) <env>.drv_wait_output(LVM_ON);

// Put driver to wait for response before sending next packet.

2 drv_wait_output(LVM_OFF) <env>.drv_wait_output(LVM_OFF);

// Put driver to continuously send stimulus regardless of the response from

AHB slave.

PIPELINED TRANSACTION
DRV_WAIT_OUTPUT(LVM_OFF)

Back to back write then

read

50

WAIT FOR RESPONSE TRANSACTION
DRV_WAIT_OUTPUT(LVM_ON)

End of read packet HRDATA is

back, only proceed to next write

51

End of write packet where last

HWDATA is transferred, only

proceed to next packet

CARE_BOUNDARY

• This bit will define master UVC to follow the ADDR_TEST_RANGE (more details at “AHB
testsuites” session), where the upper limit won’t be crossed.

• Default is 1

• If user needs to send packet that cross the ADDR_TEST_RANGE upper limit, then can
set this bit to 0

52

m_ahb_env.cfg.care_boundary = 1’b0; // default value is 1

CHANCE_OF_BUSY & MAX_BUSY

• chance_of_busy is percentage number that define the probability of master UVC to
inject busy state during AHB packet sending.

• Default is 0 (will not inject busy)

• To enable the BUSY state

• max_busy define maximum clock number of master to be busy.

• Only effective when chance_of_busy != 0

• Default is 5 (5 clks max for busy state, randomized from 1-5)

53

m_ahb_env.cfg.chance_of_busy = 10; // a value in percentage

m_ahb_env.cfg.max_busy = 5;

CANCEL_ON_ERROR

• This int is probability of master UVC to cancel a stimulus during when it sees
HRESP==ERROR

• Default is 0% (will not cancel)

• To enable the cancel mode

54

m_ahb_env.cfg.cancel_on_error = 50; // 50% chance to cancel

LVM AHB SLAVE CONFIGURATION

• In the self test testbench, LVM slave UVC is connected to LVM master UVC.

• It is configurable to perform different kind of responses to master.

• The note for each variables are documented inside sim/makefile under “Plusargs”
keyword

55

LVM AHB SLAVE CONFIGURATION

• <slave_env>.cfg.auto_reply

o Default value = 1'b1

▪ Slave VIP will be returning HREADY, HRESP per ever_ready, not_ready_clks, bad_hresp,
rand_not_ready, inject_error.

o when <slave env>.cfg.auto_reply == 1'b0, slave VIP will not be returning HREADY,
HRESP until user give value via API

 <slave env>.drive_HREADY(<user value: LVM_AHB_READY / LVM_AHB_NOT_RDY>);

56

HIGH DEBUG-ABILITY

57

HIGH DEBUG-ABILITY UVC

• To speed up the debug process, the UVC provides its user with high visibility of AHB bus
traffic.

• The simulation with monitor = ON & tracker = ON will enable the tracker file dump
• It is a file that contains all the AHB transactions printed systematically.

• It is very useful for the user:
• A user who is new to this API can use this file to observe the effect of a testcode.

• For example, the use of “grep” for the keyword “READ” lets the user know how many reads are being
done.

• During the debug process, it quickly pin-points the transaction that has problem, even before the
user opens the waveform to check.

• User can easily know what is the write data that has taken effect in each beat (auto-generated by
UVC after considering HSIZE, HADDR etc.).

• Same goes for the read data: the effective data makes it easy for the user to know the valid data
value in each beat (auto-generated by UVC after considering HSIZE, HADDR etc.).

58

TRACKER LOG
• LVM AHB provides high debugability by preparing log file for all AHB packets that goes through the bus

and are captured by the monitor.

• This feature can be turned OFF: <env>.off_tracker.

• File name: <testname>/<testname>_<seed>.trk.log

• This path can be configured via <env>.cfg.LogFileName = <string>;

59

Timestamp

Write serial number (++1 for write)
Packet serial

number (++1for

Read / Write)

Beat

count

Effective bits

Effective

addresses

Effective data

Impact for this beat

TRACKER LOG
• For read packet:

60

Source for this beat

Details of ReadTimestamp

Read serial number (++1 for Read)

Packet serial

number

(++1for Read

/ Write)

Beat

count

Effective bits

Effective address

Effective data

TRACKER LOG

• For both read and write, the HPROT will be further presented in more readable form:

61

Signal & value Clear name

READ AND WRITE COUNTER

• There are 2 signals to help user easily point to some specific AHB transactions in the
waveform:

• read_counter: Counts all the read packets.

• write_counter: Counts all the write packets.

62

WRITE COUNTER

63

READ COUNTER

64

PORT WRITE EVENTS

• For the user to easily identify the timing when the packet is written into env's port, the
interface has the following events:

65

No Event name Purpose

1 ev_read_port Marks the time where AHB read packet is written into env's TLM port

2 ev_read_prd_port Marks the time where AHB read packet is sent to RAL predictor

3 ev_write_port Marks the time where AHB write packet is written into env's TLM port

4 ev_write_prd_port Marks the time where AHB write packet is sent to RAL predictor

PORT WRITE EVENTS

• Events for write packets

66

This packet is sent to

env’s port and also to

RAL prd

This packet is sent to env’s

port only, because the address

is outside the range of RAL

PORT WRITE EVENTS

• Events for read packets

67

This packet is sent to

env’s port only, because

the address is outside the

range of RAL

This packet is sent to env’s

port and also to RAL prd

WORKING WITH RAL

68

• The LVM's AHB is ready to work with RAL.

• It has built-in RAL adaptor and RAL predictor.

• To connect the AHB UVC with RAL, the following is to be done at connect phase:

Ref: tests/lvm_ahb_base_test.sv

RAL READY AHB UVC

LVM AHB

RAL

adp prd

69

// Passing in the urm

 m_ahb_env.cfg.urm = urm;

 if(m_ahb_env.cfg.has_prd)

 m_ahb_env.prd.map = urm.default_map;

 if(m_ahb_env.cfg.has_adp)

 urm.default_map.set_sequencer(m_ahb_env.agt.sqr, m_ahb_env.adp);

RAL READ WRITE – DRV_WAIT_OUTPUT = ON

• After the connection is done, user can use the RAL to perform the read/ write access:

• Ref: tests/lvm_ahb_01_ral_access_test.sv

70

<env>.drv_wait_output(LVM_ON);

urm.<regA>.read (status, mydata); // mydata will be loaded with correct read returned data

`uvm_info(msg_tag, $sformatf("HRESP=%h", m_ahb_env.cfg.ral_HRESP[0]), UVM_NONE) // retrieving HRESP

urm.<regB>.write(status, mydata);

`uvm_info(msg_tag, $sformatf("HRESP=%h", m_ahb_env.cfg.ral_HRESP[0]), UVM_NONE) // retrieving HRESP

// proceed only after write response is received

urm.<regB>.read (status, mydata);

// mydata is now the valid data after the write above to regB

RAL READ WRITE – DRV_WAIT_OUTPUT = OFF

• If the user uses the drv_wait_output = LVM_OFF, the effect is as below:

• It is always recommended for the user to use drv_wait_output == LVM_ON during RAL access.

71

<env>.drv_wait_output(LVM_OFF);

 urm.<regA>.read (status, mydata);

 // mydata is X

 urm.<regB>.write(status, mydata);

 // Without waiting, this write is launched

 urm.<regB>.read (status, mydata);

 // At this point, mydata is X

 // and this packet can happen earlier than the write packet above

RAL READY AHB UVC
• User can configure the UVC to send AHB packets with desired value for RAL generated packet.

• For example, when user enters the command urm.<regA>.read / write (...), the value of signals

below can be easily controlled by calling the API below during runtime.

• Available variables to configure for RAL’s access:

No Variable API command

1 HMASTLOCK <env>.cfg.ral_HMASTLOCK = <value>;

2 HPROT <env>.cfg.ral_HPROT = <value>;

3 HNONSEC <env>.cfg.ral_HNONSEC = <value>;

4 HEXCL <env>.cfg.ral_HEXCL = <value>;

5 HMASTER <env>.cfg.ral_HMASTER = <value>;

6 HAUSER <env>.cfg.ral_HAUSER = <value>;

7 HWUSER <env>.cfg.ral_HWUSER = <value>;

72

RAL PREDICTION

• To increase the efficiency of the predictor operation, the predictor working range can be
configured:

• ral_max_addr : max address of the RAL

• ral_min_addr : min address of the RAL

• The built-in RAL predictor works based on range specified by the user for these 2 variables:

73

urm.default_map.set_base_addr (32'h2000_0000);

 m_ahb_env.cfg.add_RAL_ADDR_RANGE (

 .start_addr (<ral_min_addr>),

 .end_addr (<ral_max_addr>),

 .expected_resp({LVM_AHB_OK})

);

ADP & PRD ON/OFF

• The adp or prd can be easily turned OFF by the user if not required.

• To turn OFF adaptor:

• To turn OFF predictor:

Ref: tests/lvm_ahb_30_no_component_test.sv

74

uvm_config_db#(bit)::set(this, "*m_ahb_env*", "has_adp", 1'b0);

uvm_config_db#(bit)::set(this, "*m_ahb_env*", "has_prd", 1'b0);

ADDR AND DATA WIDTH
CONFIGURATION

• User shall configure the UVM_REG_ADDR_WIDTH and UVM_REG_DATA_WIDTH
properly matching the design.

• At compile cmd: (Ref: sim/makefile)

• +define+UVM_REG_DATA_WIDTH=32 +define+UVM_REG_ADDR_WIDTH=32

75

FULL REG WRITE ACCESS

• This UVC supports full register write access as shown previously:
• urm.<regB>.write(status, mydata);

• It will do the hwrite.

• During write, HSIZE=4B for the case data width = 32

76

FULL REG READ ACCESS

• This UVC support full register read access as shown previously:
• urm.<regA>.read (status, mydata);

• It will do the AHB read.

• It is always full access.

77

PARTIAL REG WRITE ACCESS

• If user configures ral field that align with byte boundary as individual_accessible = 1,
then this UVC will send out AHB packet with corresponding HSIZE.

• For example, the field size below is 1 byte, aligned at byte lane 0:

78

B0 = uvm_reg_field::type_id::create("B0");

 B0.configure(

 .parent (this),

 .size (8),

 .lsb_pos (0),

 .access ("RW"),

 .volatile (0),

 .reset ('0),

 .has_reset (1),

 .is_rand (1),

 .individually_accessible(1));

The size must be 8 bits

Must be individually accessible

PARTIAL REG WRITE ACCESS

• When user does the reg.field.write (normally is reg.write), it will trigger the UVC to
send out HWRITE with 1B as below:

79

urm.control_0.B0 .write

(status,32'h99);

PARTIAL REG WRITE ACCESS

• This means, user can easily access various byte boundary fields, for example:

• 8 bits, can be at byte 0, 1, 2 or 3 (provided fields are 8 bits wide and fill up whole byte)

• 16 bits, can be byte 1_0, byte 2_1, or byte 3_2 (provided fields are 16 bits wide and fill
up whole hword)

• However, if the fields are smaller than a byte, like case below, then this line cannot be
used anymore to achieve byte access.

80

31:24 23:16 15:8 7:0

f0f1f2f3

urm.<reg>.<field>.write (status,32'h99);

PARTIAL REGISTER ACCESS
VERIFICATION

• To solve that problem, LVM adds the coverage for partial accesses

• It supports all IEEE field access types, while systematically verify the byte accesses, hword accesses
of DUT.

81

BYTE 3 BYTE 2 BYTE 1 BYTE 0Register

HWORD 1 HWORD 0Register

Can have more than

1 field for each

boundaries

PARTIAL REGISTER ACCESS
VERIFICATION

• [BYTE verification] If there is/are fields that resides from bit 0 to 7, then it will do byte write to
BYTE 0 with random data

• Then byte read to BYTE 0 to confirm the effect, considering the field access (RW, RO, W1C etc)

• Repeat above with various random data.

• Repeat for BYTE 1, 2, and 3

• If there are fields that reside from bit 0 to 15, then it will do hword write to HWORD 0 with
random data

• Then hword read to HWORD 0 to confirm the effect, considering the field access (RW, RO, W1C etc)

• Repeat above with various random data.

• Repeat for HWORD 1

82

PARTIAL REGISTER ACCESS
VERIFICATION

• To enable this, user just need to do so at the testcase:

83

// Example of skipping a field

 urm.control_0_0C.B0.set_compare(UVM_NO_CHECK);

 m_ahb_env.ral_partial_access.map = urm.default_map; // connect to your desired map to verify

 m_ahb_env.ral_partial_access.start(null);

PARTIAL REGISTER ACCESS
VERIFICATION

84

PARTIAL REGISTER ACCESS
VERIFICATION

85

BURST REGISTER ACCESS
VERIFICATION

• Apart from partial register access, LVM add register burst access verification.

• Single beat full access is fully verified at uvm’s bit bashing sequence

• Example: [LEFT] 4 burst write packets (in 4 different colors) in 1B to program all the 6 x 32bits registers.

• [RIGHT] Then 3 burst read packet in 1B to read all registers and check the data to match expected values.

86

BYTE 3 BYTE 2 BYTE 1 BYTE 0Register 0

BYTE 3 BYTE 2 BYTE 1 BYTE 0Register 1

BYTE 3 BYTE 2 BYTE 1 BYTE 0Register 2

BYTE 3 BYTE 2 BYTE 1 BYTE 0Register 3

BYTE 3 BYTE 2 BYTE 1 BYTE 0Register 4

BYTE 3 BYTE 2 BYTE 1 BYTE 0Register 5

BYTE 3 BYTE 2 BYTE 1 BYTE 0Register 0

BYTE 3 BYTE 2 BYTE 1 BYTE 0Register 1

BYTE 3 BYTE 2 BYTE 1 BYTE 0Register 2

BYTE 3 BYTE 2 BYTE 1 BYTE 0Register 3

BYTE 3 BYTE 2 BYTE 1 BYTE 0Register 4

BYTE 3 BYTE 2 BYTE 1 BYTE 0Register 5

BURST REGISTER ACCESS
VERIFICATION

• Example: [LEFT] there are 3 burst packets (in 3 different colors) in 2B to program all the 6 x
32bits registers.

• [RIGHT] Then 3 burst read packet in 2B to read all registers and check the data to match
expected values.

87

Register 0 HWORD 1 HWORD 0

Register 1

Register 2

Register 3

HWORD 1 HWORD 0

HWORD 1 HWORD 0

HWORD 1 HWORD 0

Register 4

Register 5

HWORD 1 HWORD 0

HWORD 1 HWORD 0

Register 0 HWORD 1 HWORD 0

Register 1

Register 2

Register 3

HWORD 1 HWORD 0

HWORD 1 HWORD 0

HWORD 1 HWORD 0

Register 4

Register 5

HWORD 1 HWORD 0

HWORD 1 HWORD 0

BURST REGISTER ACCESS
VERIFICATION

• Example: [LEFT] there are 3 burst packets (in 3 different colors) in 4B to program all the 6 x
32bits registers.

• [RIGHT] Then 3 burst read packet in 4B to read all registers and check the data to match
expected values.

88

Register 0 WORD

Register 1

Register 2

Register 3

WORD

WORD

WORD

Register 4

Register 5

WORD

WORD

Register 0 WORD

Register 1

Register 2

Register 3

WORD

WORD

WORD

Register 4

Register 5

WORD

WORD

BURST REGISTER ACCESS
VERIFICATION

• To enable this, user just need to do so at the testcase:

89

// Example of skipping a field

 urm.control_0_0C.B0.set_compare(UVM_NO_CHECK);

 urm.control_0_0C.B1.set_compare(UVM_NO_CHECK);

 // Sequence configuration

 m_ahb_env.ral_burst_access.support_partial = 1; // 1 means support 1B, 2B accesses (smaller than bus size access)

 m_ahb_env.ral_burst_access.max_beats_num = 16; // this is the max number of beats that the sequence will launch.

 // connect the map to be verified

 m_ahb_env.ral_burst_access.map = urm.default_map; // connect to your desired map to verify

 // User may let it randomized, or fix to certain desired size

 m_ahb_env.ral_burst_access.bytes_per_beat = 'z; // Randomize bytes per beat, user can put 1/2/4/8

 m_ahb_env.ral_burst_access.start(null);

BURST REGISTER ACCESS
VERIFICATION

90

Example of multiple

burst writes in HWORD

size and covering 1 and

more registers

Example of 1 burst read

in HWORD size and

covering more registers

BURST AHB PACKET TO RAL TARGET

91

BACKGROUND AHB READ
DATA CHECK

92

• For all the writes with address fall within user specific range, this UVC will capture the impact
of the write data, considering all write packet parameters, like HADDR, HSIZE etc.

• For example, user set UVC to be as such:

• This means all the AHB write with address range falls between 32'h1000_0000 and
32’h1000_1000 will cause UVC to update embedded memory.

• The data will be the expected data when the read happens for the address within the range.

• UVC will check each data when user set got_mem == 1, and uvm_error will be flagged if
data is mismatched.

BACKGROUND AHB READ DATA
CHECK

m_ahb_env.cfg.got_mem = 1'b1; // this bit turn on the background data check mechanism

 m_ahb_env.cfg.add_ADDR_RANGE(.start_addr(32'h1000_0000), .end_addr(32'h1000_1000));

 // memory start & end addresses (support >1 entry)

93

• If user has initial value for the memory, then can update the UVC
scoreboard (backdoor) first using the following API:

• Then the write impact and read check will be working based on
these initialized values.

• Note:

• store_8_data (8 bytes), store_2_data (2 bytes) and
store_1_data (1 byte) can be used as well

BACKGROUND AHB READ DATA
CHECK

94

for(bit [31:0] addr=32'h1000_0000 ; addr<=32'h1000_0FFF ; addr+=4)

 m_ahb_env.cfg.mem.store_4_data(addr,32'h0000_0000); // Addr and Data

• To verify AHB memory, user commonly will initialize the memory
with random value, via frontdoor write.

• The API below will initialize the memory within the range with
AHB writes (multiple single beat AHB write)

FRONTDOOR MEMORY
INITIALIZATION

95

m_ahb_env.frontdoor_init_mem;

• At the end of test, the UVC can be programmed to print the full
content of the memory when

• It is based on the writes that happen throughout the test.

• This feature can be turned OFF by

END OF TEST MEMORY PRINTING

96

m_ahb_env.cfg.got_mem = 1'b1;

m_ahb_env.cfg.end_of_test_mem_print = 1'b0;

• Based on user preference, the size per line can be configured:

• Example below on left is 64b version, right is 32b version

END OF TEST MEMORY PRINTING

97

m_ahb_env.cfg.mem_print_size = 128; // support 32,64,128

• User can retrieve the current stored data from memory database
using the following API as well.

BACKDOOR MEM DATA RETRIEVAL

98

bit [31:0] my_spy_data;

my_spy_data = m_ahb_env.cfg.mem.get_4_data(32’h1000) ; // data from 1003,1002,1001,1000 addresses

my_spy_data = m_ahb_env.cfg.mem.get_2_data(32’h1000) ; // data from 1001,1000 addresses

my_spy_data = m_ahb_env.cfg.mem.get_1_data(32’h1000) ; // data from 1000 addresses

SETUP AND HOLD TIME

99

BACKGROUND

• Setup time:

• signals must be stable for tsetup before the rising clock edge sampling.

• Hold time:

• signals must be stable for thold after the rising clock edge sampling.

100

Ref:

https://download.tek.com/document/55W_61095_0_Identifying_Setup-and-Hold_AN_03.pdf

X INJECTION

• LVM AHB UVC has been programmed to be able to verify the setup and hold violations using X
injection.

• This is most straight forward method.

• Windows outside setup and hold will be injected with X.

• If X propagates into the DUT, it implies that the DUT side does not meet the tsetup and thold
values.

101

tsetup thold

STEPS TO ENABLE X INJECTION
• Configure the UVC for the setup and hold length:

• Make sure to wait long enough to allow the UVC to calculate the UVC clock period.

• Note: this macro is located at src/lvm_ahb_defines.svp. It defines the total clocks the UVC

has to wait for before calculating the clock period.

• This is to make the UVC flexible enough to accommodate those designs where the clock is

unstable at the beginning.

• After that, just send packet like usual.

102

m_ahb_env.cfg.setup_hold = LVM_X_INJECTION;

 m_ahb_env.set_setup_time(3.5 ,"ns");// Recommended to move this to base test

 `define LVM_AHB_CLK_STABLE 3

API PART 1: PACKET
SENDING

1. read

2. write

3. s_read

4. s_write

5. write_16

6. read_16

103

7. write_8

8. read_8

9. Idle

10. write_32, read_32, write_64, read_64,
write_128, read_128, write_256,
read_256, write_512, read_512,
write_1024, read_1024

1. READ

• UVC sends an AHB read packet.

• When drv_wait_output == LVM_ON, the read data will be returned as
arguments to the API, thus gating it until all the read data are received.

• When drv_wait_output == LVM_OFF, the read data returned is not captured
as arguments. Read data is invalid.

104

1. READ
• Arguments accepted:

• HADDR
• HBURST
• HMASTLOCK
• HPROT
• HSIZE
• HNONSEC
• HEXCL
• HMASTER
• HWRITE
• HSEL
• HAUSER
• HWUSER
• HRUSER
• beats

105

Outputs:
HRDATA []
HRESP []
HEXOKAY[]

logic [31:0] HRDATA [];

 logic HRESP [];

 logic HEXOKAY[];

 m_ahb_env.read(

 .HADDR (32'h1000_004C),

 .HBURST (LVM_AHB_WRAP4),

 .HSIZE (LVM_AHB_2B),

 .HMASTLOCK (LVM_AHB_M_UNLOCK),

 .HRDATA (HRDATA),

 .HRESP (HRESP),

 .HEXOKAY (HEXOKAY)

);

 // the parameter not mentioned will be randomized

 // For INCR, beats can be defined to tell how much to

 // read, else it will be randomized

1. READ

• User can retrieve the data inside the testcase / sequence using the following
return variables:

• Note: to have valid HRDATA[i], HRESP[i] etc, drv_wait_output must be
LVM_ON.

106

foreach(HRDATA[i]) begin

 hresp = lvm_ahb_hresp_em '(HRESP [i]);

 hexokay = lvm_ahb_hexokay_em'(HEXOKAY[i]);

 `uvm_info(msg_tag, $sformatf("print_read_return [Index %2d] HRESP=%0s, HRDATA=32'h%0h,

 HEXOKAY=%0s", i, hresp.name, HRDATA[i], hexokay.name), UVM_DEBUG)

 end

2. WRITE

• UVC to send a write packet.

• When drv_wait_output == LVM_ON, write response will be returned as
arguments to the API, thus gating it until all the write response are received.

• drv_wait_output == LVM_OFF, no wait on response thus it is not captured in
the arguments.

107

2. WRITE
• Arguments accepted:

• HADDR
• HBURST
• HMASTLOCK
• HPROT
• HSIZE
• HNONSEC
• HEXCL
• HMASTER
• HWRITE
• HWDATA
• HSEL
• HAUSER
• HWUSER
• HRUSER
• beats

108

Outputs:
HRESP []
HEXOKAY[]

HWDATA = new[4];

HWDATA[0] = 32'h0000_1111; // User to mark the data based on alignment

HWDATA[1] = 32'h2222_0000;

HWDATA[2] = 32'h0000_3333;

HWDATA[3] = 32'h4444_0000;

m_ahb_env.write(.HADDR(32'h2000_0010),.HWDATA(HWDATA),.HSIZE(LVM_AHB_2B),

 .HMASTLOCK(LVM_AHB_M_UNLOCK),.HRESP(HRESP),.HEXOKAY(HEXOKAY));

// the parameter not mentioned will be randomized

3. S_READ
• It will launch bus size read for 1 beat, same like read, but hard-coded beat and simpler API

output

• Arguments accepted:
• HADDR
• HBURST
• HMASTLOCK
• HPROT
• HSIZE
• HNONSEC
• HEXCL
• HMASTER
• HWRITE
• HSEL
• HAUSER
• HWUSER
• HRUSER
• beats

109

Outputs:
hrdata,
hresp ,
hexokay m_ahb_env. s_read (

 .HADDR (32'h2000_0000),

 .hrdata (hrdata) ,

 .hresp (hresp),

 .hexokay(hexokay)

);

4. S_WRITE
• It will launch bus size write for 1 beat, same like write, but hard-coded beat and simpler API output

• Arguments accepted:
• HADDR
• HBURST
• HMASTLOCK
• HPROT
• HSIZE
• HNONSEC
• HEXCL
• HMASTER
• HWRITE
• hwdata
• HSEL
• HAUSER
• HWUSER
• HRUSER
• beats

110

Outputs:
hresp ,
hexokay

m_ahb_env.s_write (

 .HADDR (32'h2000_0000),

 .hwdata (32'h11111111),

 .hresp (hresp),

 .hexokay(hexokay)

);

WRITE_16, WRITE_8, READ_16,
READ_8

• It will launch bus size write / read for 1 beat, same like read / write, but

• hard-coded beat,

• fixed access size (HSIZE), where *_16 means hword, *_8 means byte, *_32 means word,
and also *_64, *_128, *_256, *_512, *_1024

• simpler hwdata entry (no need manual alignment, api will do the job for you)

• simpler API output

111

m_ahb_env.write_16(.HADDR(32'h2000_0006), .hwdata(32'h3333) , .hresp(hresp), .hexokay(hexokay));

 m_ahb_env. read_16(.HADDR(32'h2000_0004), .hrdata(hrdata) , .hresp(hresp), .hexokay(hexokay));

 `uvm_info(msg_tag, $sformatf("hrdata=32'h%0h hresp=2'h%0h, hexokay=32'h%0h", hrdata, hresp, hexokay), UVM_DEBUG)

 m_ahb_env.write_8 (.HADDR(32'h2000_000b), .hwdata(32'h44) , .hresp(hresp), .hexokay(hexokay));

 m_ahb_env. read_8 (.HADDR(32'h2000_0008), .hrdata(hrdata) , .hresp(hresp), .hexokay(hexokay));

 `uvm_info(msg_tag, $sformatf("hrdata=32'h%0h hresp=2'h%0h, hexokay=32'h%0h", hrdata, hresp, hexokay), UVM_DEBUG)

9. IDLE
• It will launch bus size read for 1 beat, same like read, but hard-coded htrans == IDLE

• Arguments accepted:
• HADDR
• HBURST
• HMASTLOCK
• HPROT
• HSIZE
• HNONSEC
• HEXCL
• HMASTER
• HWRITE
• HSEL
• HAUSER
• HWUSER
• HRUSER
• beats
• HWDATA[]

112

Outputs:
HRESP []
HEXOKAY[]

m_ahb_env.idle(

 .beats (1),

 .HRESP (HRESP),

 .HEXOKAY (HEXOKAY),

 .HMASTLOCK (LVM_AHB_M_UNLOCK)

);

SUMMARY: IMPACT OF DRV_WAIT_OUTPUT

API name drv_wait_output=LVM_ON drv_wait_output=LVM_OFF

read/s_read [WAIT] The read will be sent and gated until

the read data is returned, only then next API

is executed.

Output arguments like HRDATA, HRESP etc

can be used after the API.

[NO WAIT] The read will be sent. Without

waiting for HRDATA, HRESP etc, next line

after the API will get executed.

write/s_write [WAIT] The write will be sent and gated until

the write response is returned, only then next

API is executed.

Output arguments like HRESP etc can be used

after the API.

[NO WAIT] The write will be sent. Without

waiting for HRESP etc, next line after the

API will get executed.

113

QUICK NOTE: NO NEED TO MENTION
ALL ARGUMENTS

• User can choose to fix some variables in the API while leaving others to be
randomized. For example:

114

m_ahb_env.s_write (

 .HADDR (32'h2000_0000),

 .hwdata (32'h11111111),

 .hresp (hresp),

 .hexokay(hexokay)

);

Other variables like HMASTER, HPROT etc are fully

randomized based on protocol constraint.

API PART 2: PACKET
WAITING

1. wait_all_done

115

1. WAIT_ALL_DONE

• This API waits for all the AHB packet to be send out by driver and response to return.

• It can be used when drv_wait_output is LVM_OFF but user wishes to gate a point by
waiting for all the AHB packet to finish sending and all the response to return.

• This is useful when user wants to switch mode to drv_wait_output == LVM_ON

• Note: in drv_wait_output = LVM_ON mode, the wait will be done automatically in write
and read API.

116

 m_ahb_env.wait_all_done;

QUICK NOTE: END OF TEST CHECK

• AHB driver will wait for all the packets transmission to be complete.

• It gates the post_main_phase for this.

• This is to ensure all reads / writes are completed by slave.

• It can be turned OFF using the following command:

• Sample scoreboard (Ref: tb/example_ahb_user_sbd.sv) also has embedded checker
where it ensures total packets must not be 0.

117

m_ahb_env.cfg.end_of_test_check_en = 1'b0;

API PART 3: PRINTING
1. print_ahb

118

PRINT_AHB

• This API at seq item allows user to clearly print out all the AHB elements.

• Example usage:

• User will get this at log file:

• Ref: <lvm_ahb>/tb/example_ahb_user_sbd.sv

119

`uvm_info(msg_tag, $sformatf("Captured %0s transaction\n%s", captured_item.op.name, captured_item.print_ahb), UVM_MEDIUM)

RESET AWARE UVC

120

RESET AWARE UVC
• This UVC is reset aware.

• When HRESETn goes active, all the components will go to passive mode automatically.

• During this time, driver will not response to incoming sequence item.

121

Reset happens

Signals go idle

SEQUENCE ITEM &
SEQUENCE WRITING

122

SEQ ITEM VARIABLE NAMES

HADDR

HBURST

HMASTLOCK

HPROT

HSIZE

HNONSEC

HEXCL

HMASTER

HTRANS

HWRITE

123

• LVM AHB sequence item consists of standard AHB bus signals.

• Red colour font means they are array.

HSEL

HAUSER

HWUSER

HRUSER

HWDATA []

HRDATA []

HREADY

HRESP []

HEXOKAY[]

beats

RETRIEVING SEQ ITEM FROM ENV

• As shown below, this UVC provides a port at its env.

• User can retrieve the seq item as shown in tb/example_ahb_user_sbd.sv

124

LVM AHB

User scoreboard

• Unlike conventional UVCs , users need not code the UVM sequence manually when
using LVM AHB UVC.

• However, if the existing API cannot support what user wants, the user might need to
code the sequence.

• To best illustrate this, an example code has been added into the VIP package:

• Pls refer to tb/example_ahb_user_seq.sv

• Please take note that the debug signals are not meant to be used in sequence
writing.

• Recommendation: use API instead.

• If user has any situation that cannot be supported by current API, please email to
LVM

USER DEFINED UVM SEQUENCE

125

AHB TESTSUITES

126

AHB DEMO TESTCASES AND
TESTSUITES

• In this VIP, the self-test testbench and testcases are ready for the user to try on.

• The aim for demo testcases is to:

• get to know the UVC.

• know how to utilize the APIs.

• try to simulate and observe the waveforms.

• try to modify the testcases and start applying the API to create new stimulus.

• The AHB testsuite is designed to

• verify the DUT as slave

• User can easily add new testcases by adding into the <lvm_ahb>/tests/testlist.sv and
adding the runcmd into <lvm_ahb>/sim/makefile

127

DEMO TESTCASES
Testname Purpose

lvm_ahb_01_ral_access_test RAL access examples with drv_wait_output = LVM_ON and LVM_OFF.

lvm_ahb_02_single_accesses_test s_write, s_read, write_16, read_16, write_8, read_8 usage examples.

lvm_ahb_02a_ral_partial_access_test How to start the build in API to verify ral for partial access

lvm_ahb_02b_ral_access_cfg_test.sv RAL access examples with runtime configurable signal values like: HPROT,

HMASTER etc.

Also demonstrate predictor working for various packets.

lvm_ahb_03_basic_write_test.sv Demonstrates simple write API usage: User can provide all arguments or minimum

number of arguments.

lvm_ahb_04_basic_read_test.sv Demonstrates simple read API usage: User can provide all arguments or minimum

number of arguments.

lvm_ahb_05_more_write_test.sv More write examples

lvm_ahb_06_more_read_test.sv More read examples

lvm_ahb_07_locked_rw_test.sv AHB lock transaction demonstration

lvm_ahb_08_read_write_test.sv Mixed traffics

lvm_ahb_09_read_write_others_test.sv Mixed traffics

128

DEMO TESTCASES

Testname Purpose

lvm_ahb_10_rand_read_write_test.sv More random style read writes

lvm_ahb_11_rw_idle_test.sv Sending idle

lvm_ahb_20_user_seqs_test.sv Example for manual uvm sequences

lvm_ahb_30_no_component_test.sv Do not instantiate some components

lvm_ahb_31_mid_reset_test.sv Mid reset scenario

lvm_ahb_32_monitor_off_test.sv Turning OFF monitor

lvm_ahb_33_predictor_off_test.sv Turning OFF predictor

lvm_ahb_40_x_setup_hold_test.sv X injection tests

lvm_ahb_master_testsuites_test.sv AHB testsuite

129

TESTSUITES

• LVM prepared a lot of quality testsuites, that is specially designed to achieve high
quality coverage to verify user’s DUT

• The scenario can be seen at the log file, for example

• The runcmd is by providing the plusarg, like below:

130

[Scenario 3]===

 [Scenario 3] - 1 read or write to a target (if writable) then wait for all done, then move to next target

 [Scenario 3] - Repeat for all targets

 [Scenario 3] - Repeat above for n times

 [Scenario 3]

make run t=lvm_ahb_master_testsuites_test plusarg="+lvm_ahb_total_pkt=150 +lvm_ahb_scenario=1"

TESTSUITES

• Configurable memory range:

• For master, if the HADDR are within the ranges

• it will track the writes and update internal memory

• It will check the data for read is matching its internal memory

• For slave, if the HADDR are within the ranges

• It will store the data from the writes into internal memory

• It will use the data stored as HRDATA when it receives read packets

• Configurable memory testing range:

• The memory sometime is very large that not efficient to cover all addresses in 1 test

• Thus, user can define multiple smaller ranges of memory

131

TESTSUITES

• User add the info for “Full memory
range” via the add_ADDR_RANGE
api.

• add_ADDR_TEST_RANGE api is to
add info for partial memory under
test

• Detail on the usage is coded at
lvm’s base test

132

32’h2000_0000

32’h2001_FFFF

32’h2000_0800

32’h2000_08FF

Full memory range

(defined in

env.cfg.ADDR_RANGE)

Partial memory under test

(defined in

env.cfg.ADDR_TEST_RANGE)

32’h2000_1800

32’h2000_18FF

User can add multiple test

ranges within same memory

range

32’h2002_0000

32’h2002_FFFF
User can add multiple

memory ranges

32’h2003_0000

32’hFFFF_FFFF
User can define unused mem range, testsuite

will ensure bad response from the access

TESTSUITES
• User can configure ADDR RANGEs as such:

133

m_ahb_env.cfg.add_ADDR_RANGE(

 .start_addr(32'h8000_0000),

 .end_addr (32'h8000_0FFF),

 .read_only (1'b0)

);

Argument name Purpose

start_addr Out of bound start address

end_addr Out of bound end address

read_only Whether this memory block cannot be written

TESTSUITES
• User can configurable out of bound memory range using the following code:

134

// Example unused address ranges

 m_ahb_env.cfg.add_BAD_ADDR_RANGE(

 .start_addr(32'h8000_1000),

 .end_addr(32'hFFFF_FFFF),

 .expected_resp({LVM_AXI_SLVERR})

);

Argument name Purpose

start_addr memory block start address

end_addr memory block end address

expected_resp Expected response for access to these ranges

TESTSUITES
• User can configurable out of bound memory access to be limited to 1 beat (if needed)

using the following code:

135

// Example to constrain all bad packets are 1 beat access

m_ahb_env.cfg.bad_packet_in_1_beat = 1'b1;

STEP BY STEP INTEGRATION
GUIDE

136

DOWNLOADING THE LVM AHB VIP

1. Request a copy of the LVM AHB by emailing LVM and specify which EDA tool you are using
(Synopsys VCS, Questa sim, or Cadence xrun).

2. Unzip the package and copy to unix designated location, for example:

3. Now set the UNIX variable to point to this path.

4. For first sanity check, launch this cmd and make sure it is working, where you shall see a
passing status. This proves that the LVM AHB copy is correct.

137

/project/home/verification/lvm_ahb

setenv LVM_AHB_PATH /project/home/verification/lvm_ahb

cd $LVM_AHB_PATH/sim

make sim

mailto:lvm_enterprise@yahoo.com

ADDING FILELIST AND SWITCHES

1. Add LVM VIP filelist into top of your testbench compilation filelist, by referring to
<lvm_ahb>/sim/top.f

2. Now copy the compilation keys and runtime keys from <lvm_ahb>/sim/makefile to your
compile and runtime command, respectively.

138

// lvm class

$LVM_AHB_PATH/../lvm_class/lvm_class.f

// LVM_AHB UVC filelist

-f $LVM_AHB_PATH/src/lvm_ahb.f

...

+define+LVM_LICENSE_FOR_<given name> +define+LVM_LICENSE_SINCE_<date>

+LVM_SINCE_<date> +LVM_<name>_<date> +seed=<random seed>

Compile options

Runtime options

IMPORT PACKAGES
DEFINE SIGNAL WIDTH

3. Import the package in your test, virtual sequence package / module top. (Ref: <lvm_ahb>/tb/top.sv)

4. Now determine your signal widths for the AHB signals and add into the top of your base test, or your define file.
(Ref: <lvm_ahb>/tests/lvm_ahb_base_test.sv)

139

import uvm_pkg::*; // your uvm package import

 import lvm_pkg::*;

 // lvm_ahb UVC

 import lvm_ahb_pkg::*;

`define LVM_AHB_VALUES

#(.HADDR_WIDTH(`UVM_REG_ADDR_WIDTH),.HBURST_WIDTH(3),.HMASTLOCK_WIDTH(1),.HPROT_WIDTH(7),.HSIZE_WIDTH(3),.HNONSEC

_WIDTH(1),.HEXCL_WIDTH(1),.HMASTER_WIDTH(4),.HTRANS_WIDTH(2),.HWDATA_WIDTH(`UVM_REG_DATA_WIDTH),.HWRITE_WIDTH(1),

.HRDATA_WIDTH(`UVM_REG_DATA_WIDTH),.HREADY_WIDTH(1),.HRESP_WIDTH(1),.HEXOKAY_WIDTH(1),.HSEL_WIDTH(1),.HAUSER_WIDT

H(32),.HWUSER_WIDTH(32),.HRUSER_WIDTH(32))

DECLARATION AND CONSTRUCTION

5. Declaration and build_phase at base test (Ref: <lvm_ahb>/tests/lvm_ahb_base_test.sv)

140

lvm_ahb_env `LVM_AHB_VALUES m_ahb_env;

 uvm_status_e status; // UVM status

 uvm_reg_data_t myrdata; // Read Data

 // API outputs

 `LVM_AHB_API_OUTPUT

// At build phase, construct the lvm_ahb UVC

 function void build_phase (uvm_phase phase);

 super.build_phase(phase);

 m_ahb_env = lvm_ahb_env `LVM_AHB_VALUES::type_id::create("m_ahb_env", this);

 ...

 endfunction

CONNECTING & CONFIGURING THE
UVC

6. Connect phase at base test (Ref: <lvm_ahb>/tests/lvm_ahb_base_test.sv)

141

function void connect_phase (uvm_phase phase);

 super.connect_phase(phase);

 // Connect to your RAL's default map

 if(m_ahb_env.cfg.has_prd)

 m_ahb_env.prd.map = urm.default_map;

 if(m_ahb_env.cfg.has_adp)

 urm.default_map.set_sequencer(m_ahb_env.agt.sqr,

 m_ahb_env.adp);

 // Optional step to improve RAL predictor performance

 m_ahb_env.cfg.add_RAL_ADDR_RANGE (

 .start_addr(<your ral min addr>),

 .end_addr(<your ral max addr>),

 .expected_resp({LVM_AHB_OK}));

 if(m_ahb_env.cfg.has_prd)

 urm.default_map.set_auto_predict(0);

 else

 urm.default_map.set_auto_predict(1);

 // Connection to your SBD / Coverage

 m_ahb_env.port.connect(<your sbd export>);

 m_ahb_env.port.connect(<your cov export>);

 endfunction

WHAT YOU HAVE NOW

142

UVM BASE TEST

LVM AHB

RAL
User

scoreboard

OPTIONAL STEP

7. [Optional] In case you need to add lvm_ahb env handle at your virtual sequence, you can
repeat the declarations in step 5, inside your virtual sequence.

• After that, go to base test and add the connection:

143

function void connect_phase (uvm_phase phase);

 super.connect_phase(phase);

 <vseq>.AHB_env = m_ahb_env;

 endfunction

UVM BASE TEST

LVM AHB

base vseq

LVM AHB

RAL
User

scoreboard

CREATE WIRES, SUPPLY CLOCKS, INSTANTIATING
INTERFACE, SVA AND CONNECTIONS

8. Declare all AHB wires in module top, and supply clock and reset to the wires:

 (Ref: <lvm_ahb>/tb/top.sv)

144

// User defined interface signals

 wire [31:0] HADDR ;

 wire [2:0] HBURST ;

 wire [0:0] HMASTLOCK ;

 wire [6:0] HPROT ;

 ...

 // Supply clock and reset

 assign HCLK = <your clock supply>;

 assign HRESETn = <your AHB reset signal>;

CREATE WIRES, SUPPLY CLOCKS, INSTANTIATING
INTERFACE, SVA AND CONNECTIONS

9. Include the lvm_ahb_connection.sv (mostly need modifications)

145

// Instantiate the interface, set ConfigDB, connecting wire to interface

`include "lvm_ahb_connection.sv"

// Example Connections of wires to your DUT

// assuming DUT port list are the same as wire name, else use explicit

connection to replace ".*" below

<your RTL module> dut(.*);

TB

AHB interface

AHB protocol checker

DUT

CREATING YOUR FIRST TEST

10. Now create a new testcase and add the following API (Ref: <lvm_ahb>/tests/
lvm_ahb_03_basic_rw_test.sv)

146

// at main phase

 m_ahb_env.drv_wait_output(LVM_ON);

 m_ahb_env.read(

 .HADDR (32'h1000_008C),

 .HBURST (LVM_AHB_WRAP8),

 .HSIZE (LVM_AHB_2B),

 .HMASTLOCK (LVM_AHB_M_UNLOCK),

 .HRDATA (HRDATA),

 .HRESP (HRESP),

 .HEXOKAY (HEXOKAY)

);

m_ahb_env.write(

 .HADDR (32'h1000_00F8),

 .HBURST (LVM_AHB_INCR),

 .HSIZE (LVM_AHB_4B),

 .HMASTLOCK (LVM_AHB_M_UNLOCK),

 .HRESP (HRESP),

 .HEXOKAY (HEXOKAY)

);

INSTALLING LVM AHB AS
PASSIVE UVC

147

PASSIVE AHB UVC

• LVM AHB UVC can be installed as a passive UVC also.

• This is when user has existing AHB master UVC, and wishes to evaluate the LVM AHB
UVC.

• To enable this “mode”, which has been embedded in the self-test testbench, the user
just needs to add passive_ahb=on in the run command. For example:

148

make sim passive_ahb=on t=lvm_ahb_01_ral_access_test

EXAMPLE OF TWO LVM AHB IN THE
TESTBENCH

149

TB UVM BASE TEST

LVM AHB

LVM AHB interface

LVM AHB protocol

checker

UVM CHILD TESTS

(call AHB APIs: drive, wait, configure)

base vseq

LVM AHB

RAL

child vseq

(call AHB APIs :

drive, wait, configure)

User

scoreboard

LVM AHBLVM AHB
DUT

LVM AHB passive

interface

LVM AHB passive

protocol checker

LVM AHB

(passive)

INTEGRATION GUIDE

1. Follow steps 1 to 5 from previous guide.

2. Declaration and build_phase at base test (Ref: <lvm_ahb>/tests/lvm_ahb_base_test.sv)

150

lvm_ahb_env `LVM_AHB_VALUES m_lvm_ahb_passive;

// At build phase, construct the lvm_ahb UVC

 function void build_phase (uvm_phase phase);

 ...

 uvm_config_db#(uvm_active_passive_enum)::set(this, "*m_lvm_ahb_passive*", "is_active", UVM_PASSIVE);

 m_lvm_ahb_passive = lvm_ahb_env `LVM_AHB_VALUES::type_id::create("m_lvm_ahb_passive", this);

 // Turning off master env's monitor & predictor (if you are using LVM's AHB UVC)

 uvm_config_db#(bit)::set(this, "*m_ahb_env*", "has_prd", 1'b0);

 uvm_config_db#(bit)::set(this, "*m_ahb_env*", "has_mon", 1'b0);

 endfunction

CONNECTING THE PASSIVE UVC

3. Connect phase at base test (Ref: <lvm_ahb>/tests/lvm_ahb_base_test.sv)

151

function void connect_phase (uvm_phase phase);

 super.connect_phase(phase);

 // Connect to your RAL's default map

 if(m_lvm_ahb_passive.cfg.has_prd)

 m_lvm_ahb_passive.prd.map = urm.default_map;

 // Connection to your SBD / Coverage

 m_lvm_ahb_passive.port.connect(my_sbd.user_export);

 // Optional step to improve RAL predictor performance

 m_lvm_ahb_passive.cfg.add_RAL_ADDR_RANGE (

 .start_addr(<your ral min addr>),

 .end_addr(<your ral max addr>),

 .expected_resp({LVM_AHB_OK}));

 ...

CREATE WIRES, SUPPLY CLOCKS,
INSTANTIATING INTERFACE, SVA AND

CONNECTIONS
4. By reusing all AHB wires in module top, including the clock supply and reset, connect them

to AHB passive interface:

 (Ref: <lvm_ahb>/tb/top.sv)

152

// User defined interface signals

 wire [31:0] HADDR ;

 wire [2:0] HBURST ;

 wire [0:0] HMASTLOCK ;

 wire [6:0] HPROT ;

 ...

 // Supply clock and reset

 assign HCLK = <your clock supply>;

 assign HRESETn = <your AHB reset signal>;

CREATE WIRES, SUPPLY CLOCKS,
INSTANTIATING INTERFACE, SVA AND

CONNECTIONS
5. Include the lvm_ahb_connection2.sv (mostly need modifications)

153

// Instantiate the interface, set ConfigDB, connecting wire

to interface

`include "lvm_ahb_connection2.sv"

// Example Connections of wires to your DUT

// assuming DUT port list are the same as wire name, else use

explicit connection to replace ".*" below

<your RTL module> dut(.*);

TB

AHB interface

AHB protocol checker

DUT

AHB passive interface

AHB passive protocol

checker

PASSIVE UVC

• With this UVC the user will be able to:

• Dump AHB traffic into a file.

• Start checking the AHB protocol on the signals.

• Start writing the UVC's analysis TLM port.

154

TERMS AND CONDITIONS

IMPORTANT NOTICE

LVM VIP reserves the right to make changes without further notice to any product
or specifications herein. LVM VIP does not assume any responsibility for use of any its
products for any particular purpose, nor does LVM VIP assume any liability arising out of the
application or use of any its products.

155

	Introduction
	Slide 1
	Slide 2: introduction
	Slide 3: The LVM AHB
	Slide 4: Example lvm AHB INSTALLATION

	Strength
	Slide 5: StrengthS
	Slide 6: Why choosING LVM VIP?
	Slide 7: User friendly
	Slide 8: Integration & Configuration
	Slide 9: Driving Part
	Slide 10: Ease of driving stimulus
	Slide 11: Advanced tech with RAL
	Slide 12: Setup and Hold X injection
	Slide 13: Reusable Code
	Slide 14: Monitoring Part
	Slide 15: Simple seq item retrieval
	Slide 16: Checking Part
	Slide 17: Embedded ARM Protocol Checker
	Slide 18: Embedded memory checking
	Slide 19: Out of bound address checking
	Slide 20: Auto ensure slave completes all requests
	Slide 21: Debug Part
	Slide 22: Enum & DEBUG Signals
	Slide 23: Comprehensive Tracker
	Slide 24: End of test memory printer End of test scoreboard printer
	Slide 25: Testsuite
	Slide 26: The benefits from testsuite
	Slide 27: Performance Analyzer
	Slide 28: Performance Analyzer
	Slide 29: Partial register access verification
	Slide 30: Partial register access verification
	Slide 31: burst register access verification
	Slide 32: burst register access verification
	Slide 33: Strength Summary
	Slide 34: Strength Summary

	Convention
	Slide 35: Convention
	Slide 36: Enum type ready to be used
	Slide 37: Enum type ready to be used

	AHB UVC Components
	Slide 38: AHB UVC Components
	Slide 39: UVC hierarchy paths
	Slide 40: AHB UVC Components
	Slide 41: AHB UVC Components

	UVC Configuration
	Slide 42: UVC configuration
	Slide 43: Configurable UVC
	Slide 44: LVM powered API
	Slide 45: LVM powered API
	Slide 46: Protocol
	Slide 47: Clocking block configuration
	Slide 48: Clocking block configuration
	Slide 49: Driver wait style
	Slide 50: Pipelined Transaction drv_wait_output(LVM_Off)
	Slide 51: Wait for Response Transaction drv_wait_output(LVM_ON)
	Slide 52: care_boundary
	Slide 53: CHANCE_OF_BUSY & max_busy
	Slide 54: cancel_on_error
	Slide 55: LVM AHB Slave configuration
	Slide 56: LVM AHB SLAVE CONFIGURATION

	High Debugability
	Slide 57: High debug-ability
	Slide 58: High Debug-ability UVC
	Slide 59: Tracker log
	Slide 60: Tracker log
	Slide 61: Tracker log
	Slide 62: Read and write counter
	Slide 63: write counter
	Slide 64: Read counter
	Slide 65: Port write events
	Slide 66: Port write events
	Slide 67: Port write events

	Working With RAL
	Slide 68: Working with ral
	Slide 69
	Slide 70: RAL READ write – drv_wait_output = ON
	Slide 71: RAL READ write – drv_wait_output = OFF
	Slide 72: RAL ready AHB UVC
	Slide 73: Ral prediction
	Slide 74: Adp & prd On/off
	Slide 75: Addr and data width configuration
	Slide 76: Full reg write Access
	Slide 77: Full reg read Access
	Slide 78: Partial reg write access
	Slide 79: Partial reg write access
	Slide 80: Partial reg write access
	Slide 81: Partial register access verification
	Slide 82: Partial register access verification
	Slide 83: Partial register access verification
	Slide 84: Partial register access verification
	Slide 85: Partial register access verification
	Slide 86: burst register access verification
	Slide 87: burst register access verification
	Slide 88: burst register access verification
	Slide 89: burst register access verification
	Slide 90: burst register access verification
	Slide 91: Burst AHB PACket to RAL target

	Background AHB Read Data Check
	Slide 92: Background AHB Read Data Check
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98

	Setup and Hold time
	Slide 99: Setup and hold time
	Slide 100: background
	Slide 101: X injection
	Slide 102: Steps to enable X injection

	API part 1: Packet sending
	Slide 103: API part 1: Packet Sending
	Slide 104: 1. read
	Slide 105: 1. read
	Slide 106: 1. read
	Slide 107: 2. Write
	Slide 108: 2. Write
	Slide 109: 3. s_read
	Slide 110: 4. s_write
	Slide 111: write_16, write_8, read_16, read_8
	Slide 112: 9. idle
	Slide 113: Summary: impact of drv_wait_output
	Slide 114: Quick Note: no need to mention all arguments

	API part 2: Packet Waiting
	Slide 115: API part 2: Packet WAITING
	Slide 116: 1. wait_ALL_DONE
	Slide 117: Quick Note: end of test check

	API part 3: Printing
	Slide 118: API part 3: Printing
	Slide 119: print_ahb

	Reset Aware UVC
	Slide 120: Reset aware uvc
	Slide 121: Reset aware UVC

	Sequence Item & Sequence Writing
	Slide 122: Sequence item & sequence writing
	Slide 123: Seq Item variable names
	Slide 124: Retrieving seq item from env
	Slide 125

	AHB testsuites
	Slide 126: AHB testsuites
	Slide 127: AHB DEMO testcases and testsuites
	Slide 128: DEMO testcases
	Slide 129: DEMO testcases
	Slide 130: TESTSUITEs
	Slide 131: TESTSUITEs
	Slide 132: TESTSUITEs
	Slide 133: TESTSUITEs
	Slide 134: TESTSUITEs
	Slide 135: TESTSUITEs

	Step by Step Integration Guide
	Slide 136: Step by step integration guide
	Slide 137: Downloading the lvm AHB Vip
	Slide 138: Adding filelist and switches
	Slide 139: Import packages define signal width
	Slide 140: Declaration and construction
	Slide 141: Connecting & configuring the uvc
	Slide 142: What you have now
	Slide 143: Optional step
	Slide 144: Create wires, supply clocks, instantiating interface, sva and connections
	Slide 145: Create wires, supply clocks, instantiating interface, sva and connections
	Slide 146: Creating your first test

	Installing LVM AHB as passive UVC
	Slide 147: Installing lvm AHB as passive uvc
	Slide 148: Passive AHB uvc
	Slide 149: Example of TWO lvm AHB in the testbench
	Slide 150: Integration guide
	Slide 151: Connecting the PASSIVE uvc
	Slide 152: Create wires, supply clocks, instantiating interface, sva and connections
	Slide 153: Create wires, supply clocks, instantiating interface, sva and connections
	Slide 154: PASSIVE UVC

	Terms and Conditions
	Slide 155: Terms and Conditions

