LVM BIT BASHING

;L About LVM Bit Bashing

WHAT IS BIT BASHING FROM LVM
« Enhanced version of UVM Bit Bashing with added a lot of features

» Coded to be robust, and loaded with easy debug-ability and user-friendly
features

* Already built in for AXI / AHB / APB VIP!

OBJECTIVES OF LVM Bit Bashing
« To help user run bit bashing verification that can cater with special
design on register.

;L Control Total Iteration

UVM
« Bashing every bit by writing 1 and 0

LVM
 Controllable number of iteration

// Total iteration for the bit bashing per register
"LVM__ITERATION (m_apb_env.ral_bit bash, 12)

;L Skipping Mechanism

UvM
« Can do reg / field skipping using resource DB and also set_compare API
LVM
« Other than these 2, can skip based on keyword / exact path
//
// SKipping API
//
// Example of skipping reg/field per keyword / exact path
// "LVM__SKIP_FULLPATH(<seq instance name>, "<exact fullpath>" ,0)

"LVM__ SKIP FULLPATH(m_apb_env.ral_bit_bash, "urm.control 6 6C.B1",0)

// "LVM__SKIP_FULLPATH(<seq instance name>, "<regular expression pattern>",6 1)
"LVM__ SKIP FULLPATH(m_apb_env.ral bit_bash, "control 8.b", 1)

Bit Bashing Reorder API

UVM
* Only can do in order

LVM
 Various API to control the sequence of execution of bit bashing

// Fashion 1: To shuffle the queue
// This allows the bit bashing done in random order
"LVM__ SHUFFLE_MODE_ON(m_apb_env.ral_bit bash)

;L Bit Bashing Reorder API

// Fashion 2: To constrain 2 registers order among the queue

// This controls the bit bashing done order for 2 registers

// This example says that control 4 will be done first, then only go to control_2
// Pls take note that this macro turn on the SHUFFLE mode above

"LVM__A FIRST B _LATER(m_apb_env.ral_bit_bash, urm.control_4, urm.control_2)
Register 4 Register 3 Register 6
Register 6 Register 6 Register 3
Register 3 Register 4 Register 4
Register 1 Register 2 Register 1
Register 5 Register 5 Register 5
Register 2 Register 1 Register 2

Bit Bashing Reorder API

User can define as many as the “constraint” involving 2 registers, for example

Register 4 > Register 2 &&
Regqister 6 > Register 1

The outcomes can be in any form with the sequences constraint satisfied.

Register 4 Register 4 Register 6
Register 6 Register 6 Register 4
Register 3 Register 2 Register 2
Register 1 Register 1 Register 1
Register 5 Register 5 Register 5
Register 2 Register 3 Register 3

;L Bit Bashing Reorder API

// Fashion 3: To fix more than 2 registers sequence order
// Control more than 2 registers in sequencing of bit bash
// Lower number comes first
"LVM__N_SEQUENCING(m_apb_env.ral bit_bash,urm.control_3,1)
"LVM__N_SEQUENCING(m_apb_env.ral bit_bash,urm.control_1, 2)
"LVM__N_SEQUENCING(m_apb_env.ral_bit_bash,urm.control_4, 3)
"LVM__N_SEQUENCING(m_apb_env.ral bit_bash,urm.control_8,64)

Suitable if there are larger order to be constrained, for example the sequence must be
register 3 > 1 2 4-> 8. User can define unlimited times of this order relationship.

Register 5 Register 3 Register 3
Register 3 Register 2 Register 7
Register 2 Register 5 Register 2
Register 1 Register 1 Register 1
Register 7 Register 6 Register 6
Register 4 Register 7 Register 4
Register 6 Register 4 Register 5
Register 8 Register 8 Register 8

;L Bit Bashing Reorder API

// User to specify among the registers, which shall be done first before the rest.

// User can define to any number of preference. Can be used together with 1 out of the 3 fashions above.
// urm.control 7 will be executed first, directly followed by urm.control_6
"LVM__TOP_SEQUENCING(m_apb_env.ral_bit_bash,urm.control_7)
"LVM___TOP_SEQUENCING(m_apb_env.ral_bit_bash, urm.control 6)

Register 7

Register 6

Register 2

Register 3

Register 1

Register 4

;L Bit Bashing Reorder API

// User to specify among the registers, which shall be done last after the rest.

// User can define to any number of preference. Can be used together with 1 out of the 3 fashions above.

// After the rest of the registers, urm.control_2 will be executed, directly followed by urm.control_1 before test ends
"LVM__BOTTOM_SEQUENCING(m_apb_env.ral_bit_bash,urm.control_4)

"LVM__BOTTOM SEQUENCING(m_apb_env.ral_bit_bash,urm.control_5)

Register 7

Register 6

Register 1

Register 2

Register 4

Register 5

10

;L Bit Bashing Delay Injection API

//

// Write -> delay -> read check -> Write -> delay

//

// It will wait for the interval before executing the register read to check the value,

// as some design will take some times for the write to take effect.

// Note: This impacts all registers. To control the waiting time for 1 or more registers specifically, please refer to "LVM__REG_WAIT
// “LVM__ WAITING TIME(<seq instance name>,<integer>,"<unit>")

// e.g

"LVM WAITING TIME(m_apb _env.ral bit bash,100,"ns")

Register A Write

Delay

Register B Write

Delay

11

;L Bit Bashing Delay Injection API

//

// Write -> read check -> delay -> Write -> read check -> delay -

//

// After the register operation (for example, a write followed by a read in bit bashing),

// it will wait for the interval before executing the operation for next register or next iteration for the same register.
// This is suitable for case where the bus needs to slow down.

// LVM__TIME_INTERVAL(<seq instance name>,<integer>,"<unit>")

/7 e.g

TLVM___TIME_INTERVAL(m_apb_env.ral_bit_bash, 100, "ns")

Register A Write

Delay

Register B Write

Delay

;L Bit Bashing Delay Injection API

//

// Write -> delay -> read check (for specific register only)

//

// Similar to waiting time, but this is per register: After the register write, it will wait for the interval before
// executing the register read to check the value, as some design will take some times for write value to take effect.
// This value will be used and overwrite the value from "LVM__WAITING TIME if the register in "LVM__REG_WAIT is seen.
// “LVM__REG_WAIT(<register full path>,<integer>, "<unit>")

// Tfor this register control 4, after writing, wait 1us, then only read

"LVM_ REG WAIT(urm.control 4, 1,"us")

Register A Write

Delay

Register B Write

;L Bit Bashing Special Fields with ACCESS control

//

// Special Relationship between 1 field/register to another

//

// User to specify a relationship between field A and B, where:

// When field A is X, B is RW/RO/etc

// During the bit bashing testing, programming testing, the relationship will be considered

// so that the sequence is able to predict
//

the best on the outcome.

// "LVM__WHEN_A_IS X B BECOME_Y(<seq instance name>,<fullpath to fieldA>,<X>,<fullpath to fieldB>,<access>)

//

// Example below shows

// When urm.control_2.sam@_lock is 0, then
// When urm.control_2.sam@_lock is 1, then
"LVM__WHEN_A IS X B BECOME_Y(urm.control 2.
"LVM__WHEN_A IS X B BECOME_Y(urm.control 2.

urm.control_0O.sample 0 is RW
urm.control_0O.sample 0 is RO
sam0@_lock, 1'b0, urm.control_0.sample_0, RW)
sam@_lock, 1'b1, urm.control_0.sample_0, RO)

14

I Bit Bashing Special Fields with Set, Clear & Toggle effect

// If you have such design, where 1 register has 4 control registers, where

// 1. Normal RW register

// Write value will take effect as it 1is

// 2. Set register

// Writing 1 to any position will set the corresponding bit at Normal RW register above
// For example, writing 1 to bit 31 will set bit[31]

// 3. Clear register

// Writing 1 to any position will clear the corresponding bit at Normal RW register above
// For example, writing 1 to bit 31 will clear bit[31]

// 4. Toggle register

// Writing 1 to any position will toggle the corresponding bit at Normal RW register above
// For example, writing 1 to bit 31 will toggle bit[31]

//

// Example below shows:

// urm.control_3_set 1is the “set” register for urm.control_3

// urm.control 3 clr is the “clear” register for urm.control 3
// urm.control_3_tgl is the “toggle” register for urm.control_3
"LVM___MAIN_SET_CLR_TGL(urm.control_3,urm.control_3_set,urm.control_3_clr,urm.control 3 tgl)

Master Register (RW)
Write: Value will be taken effect

Set Register Clear Register Toggle Register
Write: Value of 1 will set the Write: Value of 1 will clear the Write: Value of 1 will toggle the
corresponding bit at master corresponding bit at master corresponding bit at master
register register register

15

<)

;L Bit Bashing Value Control

// During the bit bashing testing, the randomized value written to the field will not hit the value specified.

// "LVM__A_AVOID_X(<seq instance name>,<fullpath to fieldA>,6<X>)

// buring bit bashing, this value 2'b11 will be avoided while randomizing value to register urm.control 2.protect
TLVM__A AVOID X(m_apb_env.ral_bit_bash,urm.control_2.protect,2'b11)

// buring the bit bashing testing, the value written to the field will be constrained to the specified value,
// while the other fields within the same register will get randomized

// "LVM__A_MUST_BE_X(<seq instance name>,<fullpath to fieldA>, <X>)

// buring bit bashing, this value will be used on the field for all the iterations in the bit bash

TLVM__A MUST_BE_X(m_apb_env.ral_bit_bash,urm.control_2.protect,2'bo1)

16

;L About LVM VIP

1. At LVM, our mission is to enhance the performance and efficiency
of design verification work in the industry by providing ultra-high-

qguality, low-cost VIPs. We offer a range of AMBA VIPs and serial
VIPs, including:

AX14 / AX14-LITE, AHB, APB, TCM, USART, JTAG, AXI Stream

2. To learn more about our services, please contact us at
developer@lvmvip.com.

3. You can also visit our LinkedIn page at
https://www.linkedin.com/in/Ilvm-vip-3444b21b5/

17

https://www.linkedin.com/in/lvm-vip-3444b21b5/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

