
1

Version 1.06 (Dec 2025)

LVM RAL PREDICTOR

2

Overview

Overview About LVM RAL Predictor

Before AND After of RAL Predictor

LVM RAL Predictor Verbosity Control

Benefits from the Log

RAL Printing

Steps to Integrate LVM RAL Predictor

Example LVM RAL Predictor INSTALLATION

Terms and Conditions

About LVM VIP

3

About LVM RAL Predictor

4

Before AND After of RAL Predictor

BEFORE UVM RAL Predictor original print

[LVM_PRED_WRITE] Observed WRITE tourm.control_8: value='h2c252101 : updated value = 'h2c252101

[LVM_PRED_READ] Observed READ transaction to register urm.control_0_00: value='h5cd4b34b

Write

Read

5

AFTER LVM RAL Predictor

Read

[LVM_PRED_READ] 4) Observed READ from urm.control_0_00 : was 'hdc6d0012 updated='h87fe7761

[LVM_PRED_READ]

[LVM_PRED_READ] urm.control_0_00.read (status, reg_data);

[LVM_PRED_READ]

[LVM_PRED_READ] FIRMWARE_READ(0x8000006c);

[LVM_PRED_READ]

[LVM_PRED_READ] ADDR VECTOR FIELD_PATH ACCESS RESET BEFORE MIRRORED VOLATILE

[LVM_PRED_READ] 32'h10000000 [31:24] urm.control_0_00.B3 RW 8'h0 8'hdc 8'h87 0 <------

[LVM_PRED_READ] 32'h10000000 [23:16] urm.control_0_00.B2 RW 8'h0 8'h6d 8'hfe 0 <------

[LVM_PRED_READ] 32'h10000000 [15: 8] urm.control_0_00.B1 RW 8'h0 8'h0 8'h77 0 <------

[LVM_PRED_READ] 32'h10000000 [7: 0] urm.control_0_00.B0 RW 8'h0 8'h12 8'h61 0 <------

[LVM_PRED_READ]

before != updated if the read transaction is not

launched from register model

UVM code

Address for the register

Original mirrored value before the transaction

New Mirrored Value after the transaction

Arrow to highlight fields that get changed in this transaction

Total prediction number (example above is no. 4)

Before AND After of RAL Predictor

6

[LVM_PRED_WRITE] 8) Observed WRITE to urm.control_0_18 : was 'hd641b62d incoming='h9ff8 (byte_en='h3) updated='hd6419ff8

[LVM_PRED_WRITE]

[LVM_PRED_WRITE] urm.control_0_18.B1 .set(8'h9f); // before= 8'hb6

[LVM_PRED_WRITE] urm.control_0_18.B0 .set(8'hf8); // before= 8'h2d

[LVM_PRED_WRITE] urm.control_0_18.update(status);

[LVM_PRED_WRITE]

[LVM_PRED_WRITE] FIRMWARE_WRITE(0x10000018, 0xd6419ff8);

[LVM_PRED_WRITE]

[LVM_PRED_WRITE] ADDR VECTOR FIELD_PATH ACCESS RESET BEFORE MIRRORED VOLATILE

[LVM_PRED_WRITE] 32'h10000018 [31:24] urm.control_0_18.B3 RW 8'h0 8'hd6 8'hd6 0

[LVM_PRED_WRITE] 32'h10000018 [23:16] urm.control_0_18.B2 RW 8'h0 8'h41 8'h41 0

[LVM_PRED_WRITE] 32'h10000018 [15: 8] urm.control_0_18.B1 RW 8'h0 8'hb6 8'h9f 0 <------

[LVM_PRED_WRITE] 32'h10000018 [7: 0] urm.control_0_18.B0 RW 8'h0 8'h2d 8'hf8 0 <------

[LVM_PRED_WRITE]

LVM RAL Predictor

Write

Before AND After of RAL Predictor

Final updated value

UVM code

Address for the register

Original value before the transaction

New Mirrored Value after the transaction

Arrow to highlight fields that get changed in this transaction

Total prediction number (example above is no 8)

AFTER

7

LVM RAL Predictor Verbosity Control

User may configure the verbosity of the print out, where

[LVM_PRED_READ] 8) Observed READ from urm.control_0_00 : was 'hdc6d0012 updated='h87fe7761

[LVM_PRED_READ]

[LVM_PRED_READ] urm.control_0_00.read (status, reg_data);

[LVM_PRED_READ]

[LVM_PRED_READ] FIRMWARE_READ(0x8000006c);

[LVM_PRED_READ]

[LVM_PRED_READ] ADDR VECTOR FIELD_PATH ACCESS RESET BEFORE MIRRORED VOLATILE

[LVM_PRED_READ] 32'h10000000 [31:24] urm.control_0_00.B3 RW 8'h0 8'hdc 8'h87 0 <------

[LVM_PRED_READ] 32'h10000000 [23:16] urm.control_0_00.B2 RW 8'h0 8'h6d 8'hfe 0 <------

[LVM_PRED_READ] 32'h10000000 [15: 8] urm.control_0_00.B1 RW 8'h0 8'h0 8'h77 0 <------

[LVM_PRED_READ] 32'h10000000 [7: 0] urm.control_0_00.B0 RW 8'h0 8'h12 8'h61 0 <------

[LVM_PRED_READ]

Controlled by
`LVM_PRD_SUMMARY_VERBOSITY

Controlled by
`LVM_PRD_DETAIL_VERBOSITY

+define+LVM_PRD_SUMMARY_VERBOSITY=UVM_HIGH

+define+LVM_PRD_DETAIL_VERBOSITY=UVM_HIGH

8

LVM RAL Predictor Verbosity Control

Meanwhile, the RAL code and FIRMWARE code can be turned OFF totally as well

[LVM_PRED_READ] 8) Observed READ from urm.control_0_00 : was 'hdc6d0012 updated='h87fe7761

[LVM_PRED_READ]

[LVM_PRED_READ] urm.control_0_00.read (status, reg_data);

[LVM_PRED_READ]

[LVM_PRED_READ] FIRMWARE_READ(0x8000006c);

[LVM_PRED_READ]

[LVM_PRED_READ] ADDR VECTOR FIELD_PATH ACCESS RESET BEFORE MIRRORED VOLATILE

[LVM_PRED_READ] 32'h10000000 [31:24] urm.control_0_00.B3 RW 8'h0 8'hdc 8'h87 0 <------

[LVM_PRED_READ] 32'h10000000 [23:16] urm.control_0_00.B2 RW 8'h0 8'h6d 8'hfe 0 <------

[LVM_PRED_READ] 32'h10000000 [15: 8] urm.control_0_00.B1 RW 8'h0 8'h0 8'h77 0 <------

[LVM_PRED_READ] 32'h10000000 [7: 0] urm.control_0_00.B0 RW 8'h0 8'h12 8'h61 0 <------

[LVM_PRED_READ]

Can be turned OFF by +define+LVM_PRD_RAL_CODE=0

Can be turned OFF by +define+LVM_PRD_FIRMWARE=0

9

LVM RAL Predictor Verbosity Control

Now as default, when the read is reading the same value like previously mirrored value, then the
print is simplified to:

User can always revert to full print using:

<path to prd>.unchanged_no_print = 1’b0; // 0 means switch off the trim mode.

[LVM_PRED_READ] 322) Observed READ from urm_top.l_urm[4].control_0c : value='hcda52b76 <Unchanged>

10

Benefits from the Log

1. Quick grep of field writing history

This grep cmd can quickly let you know the last written field value over time

grep urm.control_4.B3_2 <your log file> | grep '<-----'

UVM_INFO @ 3070.000 ns: uvm_test_top.m_ahb_env.prd [LVM_PRED_WRITE] 32'h1000005c [31:16] urm.control_4.B3_2 RW 16'h0 16'h0 16'hd2d0 0 <------

UVM_INFO @ 31690.000 ns: uvm_test_top.m_ahb_env.prd [LVM_PRED_WRITE] 32'h1000005c [31:16] urm.control_4.B3_2 RW 16'h0 16'hd2d0 16'h5555 0 <------

UVM_INFO @ 32330.000 ns: uvm_test_top.m_ahb_env.prd [LVM_PRED_WRITE] 32'h1000005c [31:16] urm.control_4.B3_2 RW 16'h0 16'h5555 16'h1111 0 <------

UVM_INFO @ 33710.000 ns: uvm_test_top.m_ahb_env.prd [LVM_PRED_WRITE] 32'h1000005c [31:16] urm.control_4.B3_2 RW 16'h0 16'h1111 16'h5555 0 <------

UVM_INFO @ 37290.000 ns: uvm_test_top.m_ahb_env.prd [LVM_PRED_WRITE] 32'h1000005c [31:16] urm.control_4.B3_2 RW 16'h0 16'h5555 16'h8888 0 <------

UVM_INFO @ 109590.000 ns: uvm_test_top.m_ahb_env.prd [LVM_PRED_WRITE] 32'h1000005c [31:16] urm.control_4.B3_2 RW 16'h0 16'h8888 16'h4444 0 <------

UVM_INFO @ 109950.000 ns: uvm_test_top.m_ahb_env.prd [LVM_PRED_WRITE] 32'h1000005c [31:16] urm.control_4.B3_2 RW 16'h0 16'h4444 16'h6666 0 <------

11

Benefits from the Log

2. Upgrade your code to register model style:

By referring to each PREDICTOR activity, the code here can be directly used:

[LVM_PRED_WRITE]

[LVM_PRED_WRITE] 88) Observed WRITE to urm.control_0_00 : was 'h136111ad incoming='h37 (byte_en='h1) updated='h13611137

[LVM_PRED_WRITE]

[LVM_PRED_WRITE] urm.control_0_00.B0 .set(8'h37); // before= 8'had

[LVM_PRED_WRITE] urm.control_0_00.update(status);

[LVM_PRED_WRITE]

[LVM_PRED_READ]

[LVM_PRED_READ] Observed READ from urm.control_0_00 : was 'h13611137 updated='h13611137

[LVM_PRED_READ]

[LVM_PRED_READ] urm.control_0_00.read (status, reg_data);

12

Benefits from the Log

3. Look out for code that is applicable for C for firmware:

By referring to each "FIRMWARE_READ" or “FIRMWARE_WRITE” code can be modified and

used:

[LVM_PRED_READ] FIRMWARE_READ(0x8000001c);

[LVM_PRED_READ] FIRMWARE_READ(0x8000001c);

[LVM_PRED_READ] FIRMWARE_READ(0x8000001c);

[LVM_PRED_READ] FIRMWARE_READ(0x8000001c);

[LVM_PRED_WRITE] FIRMWARE_WRITE(0x8000002c, 0xfd61cc47);

[LVM_PRED_WRITE] FIRMWARE_WRITE(0x8000002c, 0xfd61cc47);

[LVM_PRED_WRITE] FIRMWARE_WRITE(0x8000002c, 0xfd61cc47);

13

RAL Printing

1. LVM encapsulates the API as well:

2. User just need to

<predictor path>.map_print(.my_map(urm_top.default_map));

Ral’s map

14

Steps to Integrate LVM RAL Predictor

Scenario 1: If you are already using LVM VIPs, no action is needed.

Scenario 2: Else if you already instantiating the uvm_reg_predictor in your UVC

Step 1: Look for class that instantiate the uvm_reg_predictor, change it to lvm_prd

typedef uvm_reg_predictor#(<your seq item class>) <Your PRD type name>; // before

typedef lvm_prd #(<your seq item class>) <Your PRD type name>; // after

package <your package>;

 ...

 `include "lvm_prd.svp"

 `include "<your class that instantiate uvm_reg_predictor>"

 ...

endpackage

Step 2: Look for package that include the class at step above and add lvm_prd.svp into your

uvc package in the step above, for example:

15

Steps to Integrate LVM RAL Predictor

Scenario 3: Else if you have register model in your TB, have ral adaptor but not using
predictor yet

Step 1: Look for package that include the class at step before.

Step 2: Add lvm_prd.svp into your uvc package in the step above, for example:

package <your package>;

 …

 `include "lvm_prd.svp"

 `include "<your class that instantiate uvm_reg_adaptor>"

 …

endpackage

16

Steps to Integrate LVM RAL Predictor

Scenario 3: Else if you have register model in your TB, have ral adaptor but not using
predictor yet

Step 3: Look for a class that suitable to instantiate the predictor lvm_prd, add the following
codes at respective UVM phases

typedef lvm_prd#(<your seq item class>) <Your PRD type name>;

<Your PRD type name> prd; // UVC reg predictor

 virtual function void build_phase(uvm_phase phase);

 super.build_phase(phase);

 prd = <Your PRD type name>::type_id::create("prd", this);

 ...

 endfunction

 virtual function void connect_phase(uvm_phase phase);

 super.connect_phase(phase);

prd.adapter = <your ral adaptor>;

 prd.map = <your ral>.default_map;

 <your UVC monitor port>.connect(prd.bus_in);

 ...

endfunction

Pls use the seq item type matching your monitor

Monitor with seq item type matching your lvm_prd’s seq item type

17

Example LVM RAL Predictor INSTALLATION

UVM BASE TEST

LVM PRD

RAL

Your UVC

Monitor

18

Terms and Conditions

IMPORTANT NOTICE

LVM reserves the right to make changes without further notice to
any product or specifications herein.

LVM does not assume any responsibility for use of any its
products for any particular purpose, nor does LVM assume any
liability arising out of the application or use of any its products.

19

About LVM VIP

1. At LVM, our mission is to enhance the performance and efficiency
of design verification work in the industry by providing ultra-high-
quality, low-cost VIPs. We offer a range of AMBA VIPs and serial
VIPs, including:

 AXI4 / AXI4-LITE, AHB, APB, TCM, USART, JTAG, AXI Stream

2. To learn more about our services, please contact us at

 developer@lvmvip.com.

3. You can also visit our LinkedIn page at
https://www.linkedin.com/in/lvm-vip-3444b21b5/

https://www.linkedin.com/in/lvm-vip-3444b21b5/
https://www.linkedin.com/in/lvm-vip-3444b21b5/
https://www.linkedin.com/in/lvm-vip-3444b21b5/
https://www.linkedin.com/in/lvm-vip-3444b21b5/
https://www.linkedin.com/in/lvm-vip-3444b21b5/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

