LVM RAL PREDICTOR

Version 1.06 (Dec 2025)

;L Overview

Overview

About LVM RAL Predictor

Before AND After of RAL Predictor

LVM RAL Predictor Verbosity Control
Benefits from the Log

RAL Printing

Steps to Integrate LVM RAL Predictor
Example LVM RAL Predictor INSTALLATION
Terms and Conditions

About LVM VIP

3| About LVM RAL Predictor

WHAT IS RAL PREDICTOR FROM LVM

« Enhanced version of UVM RAL predictor

« Coded to be robust, and loaded with easy debug-ability and user-friendly
features

* Itis free!

OBJECTIVES OF LVM RAL PREDICTOR

« To help user see the effect of bus transaction towards RAL in best detail

* To help user to migrate from hard-coded RAL programming to UVM
register model write and read style

« To ease the firmware coding with info like address and data

;L Before AND After of RAL Predictor

:13:0J):{ UVM RAL Predictor original print
Read

[LVM PRED READ] Observed READ transaction to register urm.control 0 00: value='h5cd4b34b

Write

[LVM PRED WRITE] Observed WRITE tourm.control 8: value='h2e¢252101 : updated value = 'h2c252101

';L Before AND After of RAL Predictor

/\\=1j4:8 LVM RAL Predictor
Read

7
[LVM PRED READ] Observed READ from urm.control 0 00 gas 'hdc6d0012 updated='h87fe7761
[LVM_PRED READ @}
[LVM PRED READ] urm.control 0 00.read (status, reg data);
[LVM PRED READ]
[LVM PRED READ] FIRMWARE READ (0x8000006c) ;
[LVM PRED READ]
[LVM PRED READ] ADDR VECTOR FIELD PATH ACCESS RESET BEFORE MIRRORED VOLATILE
[LVM_PRED READ] 32'h10000000 | [31:24] urm.control 0 00.B3 RW 8'h0 8 'hdc 8'h87
[LVM_PRED READ] 32'h10000000 | [23:16] urm.control 0 00.B2 RW 8'ho 8'hé6d 8'hfe
[LVM PRED READ] 32'h10000000 [15: 8] wurm.control 0 00.B1 RW 8'h0 8'hO0 8'h77
[LVM_PRED READ] 32'h10000000) [7: 0] urm.control 0 00.BO RW 8'ho 8'h12 8'h6l
[LVM PRED READ]
@ before != updated if the read transaction is not O Original mirrored value before the transaction

launched from register model _ .
© New Mirrored Value after the transaction

© UVM code

@ Arrow to highlight fields that get changed in this transaction

© Address for the register o _
O Total prediction number (example above is no. 4)

<)

';L Before AND After of RAL Predictor

/AN B 38 LVM RAL Predictor

Write

7
[LVM_PRED_WRITE]Observed WRITE to urm.control 0 18 : was 'hd641b62d incoming='h9ff8 (byte en='h3) | updated='hd6419££8 b
[LVM_PRED WRITE]
[LVM PRED WRITE] urm.control 0 18.B1 .set(8'h9f); // before= 8'hb6
[LVM PRED WRITE] urm.control 0 18.B0 .set(8'hf8); // before= 8'h2d
[LVM PRED WRITE] urm.control 0 18.update (status);
[LVM_PRED WRITE]
[LVM_PRED WRITE] FIRMWARE WRITE (0x10000018, 0xd6419££8);
[LVM_PRED WRITE]
[LVM_PRED WRITE] ADDR VECTOR FIELD PATH ACCESS RESET BEFORE MIRRORED VOLATILE
[LVM PRED WRITE] 32'h10000018 | [31:24] urm.control 0 18.B3 RW 8'h0 8'hd6 8'hd6 0
[LVM PRED WRITE] 32'h10000018 | [23:16] urm.control 0 18.B2 RW 8'h0 8'h4l 8'h4l 0
[LVM PRED WRITE] 32'h10000018 | [15: 8] wurm.control 0 18.B1 RW 8'h0 8'hb6 8'hof 0
[LVM PRED WRITE] 32'h10000018) [7: 0] urm.control 0 18.BO RW 8'h0 8'h2d 8'hf8 0
[LVM_PRED WRITE]
© rinal updated value O Original value before the transaction
© UVM code © New Mirrored Value after the transaction
© Address for the register @ Arrow to highlight fields that get changed in this transaction

@ Total prediction number (example above is no 8)

3 LVM RAL Predictor Verbosity Control

User may configure the verbosity of the print out, where

Controlled by

'LVM_PRD_SUMMARY_VERBOSITY

LVM_PRED READ
LVM PRED READ
LVM_PRED READ
LVM PRED READ
LVM PRED READ

8) Observed READ from urm.control 0 00 : was 'hdc6d0012 updated='h87fe7761
urm.control 0 00.read (status, reg data);

FIRMWARE READ (0x8000006¢) ;

LVM PRED READ

LVM PRED READ ADDR VECTOR FIELD PATH ACCESS RESET BEFORE MIRRORED VOLATILE
LVM_PRED READ 32'h10000000 [31:24] wurm.control 0 00.B3 RW 8'ho 8'hdc 8'h87 0 <———---
LVM PRED READ 32'h10000000 [23:16] urm.control 0 00.B2 RW 8'ho 8'h6d 8'hfe 0 <———---
LVM_PRED READ 32'h10000000 [15: 8] wurm.control 0 00.B1 RW 8'ho 8'ho 8'h77 0 <———---
LVM PRED READ 32'h10000000 [7: 0] wurm.control 0 00.BO RW 8'ho 8'h12 8'h61 0 <———---

L T e T e T e e T e T e T e B e T e T s B s |

]
]
]
]
]
]
]
]
]
]
]
]

LVM PRED READ

Controlled by

'LVM_PRD_DETAIL_VERBOSITY

+define+LVM PRD SUMMARY VERBOSITY=UVM HIGH
+define+LVM PRD DETAIL VERBOSITY=UVM HIGH

3 LVM RAL Predictor Verbosity Control

Meanwhile, the RAL code and FIRMWARE code can be turned OFF totally as well

LVM_PRED READ
LVM PRED READ
LVM_PRED READ
LVM PRED READ
LVM_PRED READ
LVM PRED READ
LVM PRED READ
LVM PRED READ
LVM_PRED READ
LVM PRED READ
LVM PRED READ
LVM PRED READ

L T e T e T e e T e T e T e B e T e T s B s |

8) Observed READ from urm.control 0 00

. was

Can be turned OFF by +define+LVM_PRD_RAL_CODE=0

'hdcé

urm.control 0 00.read

(status, reg data);

FIRMWARE READ (0x8000006¢) ;

ADDR

32'h10000000
32'h10000000
32'h10000000

]
]
]
]
]
]
]
]
]
]
1 32'h10000000
]

VECTOR
[31:24]
23:16]

[
[
[

15:
7

8]
0]

FIELD PATH

urm.
urm.
urm.
urm.

control 0 00.
control 0 00.
control 0 00.
control 0 00.

B3
B2
Bl
BO

apdated="h87fe7761

Can be turned OFF by +define+LVM_PRD_FIRMWARE=0

ACCESS

RW
RW
RW
RW

RESET

8'h0
8'h0
8'h0
8'h0

BEFORE
8 'hdc
8'hed
8'h0
8'hl2

MIRRORED

8'h87
8'hfe
8'h77
8'hol

VOLATILE

3 LVM RAL Predictor Verbosity Control

Now as default, when the read is reading the same value like previously mirrored value, then the
print is simplified to:

[LVM PRED READ] 322) Observed READ from urm top.l urm[4].control Oc : value='hcda52b76 <Unchanged>

User can always revert to full print using:

<path to prd>.unchanged_no_print = 1'b0; // 0 means switch off the trim mode.

3 Benefits from the Log

1. Quick grep of field writing history
This grep cmd can quickly let you know the last written field value over time

grep urm.control 4.B3 2 <your log file> | grep '<----- '

UVM _INFO @ 3070.000 ns: uvm test top.m ahb env.prd [LVM PRED WRITE] 32'h1000005¢c [31:16] wurm.control 4.B3 2 RW 16'h0 16'h0 16'hd2d0 0 <Lo=====
UVM INFO @ 31690.000 ns: uvm test top.m ahb env.prd [LVM PRED WRITE] 32'h1000005¢c [31:16] urm.control 4.B3 2 RW 16'h0 16'hd2d0 16'h5555 0 <Ks=====
UVM INFO @ 32330.000 ns: uvm test top.m ahb env.prd [LVM PRED WRITE] 32'h1000005¢c [31:16] wurm.control 4.B3 2 RW 16'h0 16'h5555 16'h1111 0 <Lo=====
UVM INFO @ 33710.000 ns: uvm test top.m ahb env.prd [LVM PRED WRITE] 32'h1000005¢c [31:16] wurm.control 4.B3 2 RW 16'h0 16'h1111 16'h5555 0 <Ks=====
UVM INFO @ 37290.000 ns: uvm test top.m ahb env.prd [LVM PRED WRITE] 32'h1000005¢c [31:16] wurm.control 4.B3 2 RW 16'h0 16'h5555 16'h8888 0 <Lo=====
UVM INFO @ 109590.000 ns: uvm test top.m ahb env.prd [LVM PRED WRITE] 32'h1000005¢c [31:16] wurm.control 4.B3 2 RW 16'h0 16'h8888 16'h4444 0 <======
UVM INFO @ 109950.000 ns: uvm test top.m ahb env.prd [LVM PRED WRITE] 32'h1000005¢c [31:16] wurm.control 4.B3 2 RW 16'h0 16'h4444 16'h6666 0 <L======

3 Benefits from the Log

2. Upgrade your code to register model style:
By referring to each PREDICTOR activity, the code can be directly used:

[LVM PRED WRITE]
[LVM PRED WRITE] 88) Observed WRITE to urm.control 0 00 : was 'hl36lllad incoming='h37 (byte en='hl) updated='h13611137
[LVM PRED WRITE]
[]
[]

urm.control 0 00.B0 .set(8'h37 W/ / before= 8'had
urm.control 0 00.update (status);

LVM_PRED WRITE
LVM_PRED WRITE

[LVM_PRED WRITE]

LVM_PRED READ
LVM_PRED READ
LVM_PRED READ
LVM_PRED READ

[
[Observed READ from urm.control 0 00 : was 'h13611137 updated='h13611137
[
[

urm.control 0 00.read (status, reg data);

3 Benefits from the Log

3. Look out for code that is applicable for C for firmware:
By referring to each "FIRMWARE_READ" or “FIRMWARE_WRITE" code can be modified and
used:

FIRMWARE READ (0x8000001c) ;
FIRMWARE READ (0x8000001c) ;
FIRMWARE READ (0x8000001c) ;
FIRMWARE READ (0x8000001c) ;
FIRMWARE WRITE (0x8000002¢c, Oxfdeélcc4d7);
FIRMWARE WRITE (0x8000002c, Oxfdélcc4d7);
FIRMWARE WRITE (0x8000002c, Oxfdé6lcc4d7);

[LVM_PRED READ
[LVM PRED READ
[LVM PRED READ
[LVM PRED READ
[LVM PRED WRITE
[LVM PRED WRITE
[LVM PRED WRITE

[T W T N S|

;L RAL Printing

1. LVM encapsulates the API as well:

[LVM_MAP_ PRINT]
[LVM_MAP_ PRINT]
[LVM_MAP_PRINT]
[LVM_MAP_PRINT]
[LVM_MAP_PRINT]
[LVM_MAP_PRINT]
[LVM_MAP_ PRINT | — o o oo o o oo e o
]
]
]
]
]
|
]

Total registers <env>.cfg.rseq.size = 160

First register address <env>.cfg.rseq.min_ addr 32'h10000800
register address <env>.cfg.rseq.max_addr = 32'h10000a7c
register array <env>.cfg.rseq.regs

[LVM_MAP_ PRINT ACCESS RESET BEFORE MIRRORED
[LVM_MAP_ PRINT 32'h10000800 z urm_top.l .control 0_00. RW 8'ho0 8'ho0 8'ho0

[LVM_MAP_ PRINT 32'h10000800 z urm_top.l .control 0_00. RW 8'ho 8'ho0 8'hoO

[LVM MAP PRINT
[LVM_MAP PRINT
[LVM_MAP PRINT
[LVM MAP PRINT

32'h10000800 z urm_top. -control 0_00.
32'h10000800 z urm top.l .control 0 00.

Addr=32'h10000804 Desired=32"'h0 Mirrored=32'ho0 Reset=32"'ho0

2. User just need to

Ral’s map

<predictor path>.map print(.my map (urm top.default map));

§ Steps to Integrate LVM RAL Predictor

Scenario 1: If you are already using LVM VIPs, no action is needed.

Scenario 2: Else if you already instantiating the uvm_reg_predictor in your UVC

Step 1: Look for class that instantiate the uvm_reg_predictor, change it to lvm_prd

typedef uvm reg predictor# (<your seq item class>) <Your PRD type name>; // before
typedef lvm prd # (<your seqg item class>) <Your PRD type name>; // after

Step 2: Look for package that include the class at step above and add Ivm_prd.svp into your
uvc package in the step above, for example:
package <your package>;

"include "lvm prd.svp"
"include "<your class that instantiate uvm reg predictor>"

endpackage

§ Steps to Integrate LVM RAL Predictor

Scenario 3: Else if you have register model in your TB, have ral adaptor but not using
predictor yet

Step 1: Look for package that include the class at step before.

Step 2: Add lvm_prd.svp into your uvc package in the step above, for example:

package <your package>;

"include "lvm prd.svp"
"include "<your class that instantiate uvm reg adaptor>"

endpackage

§ Steps to Integrate LVM RAL Predictor

Scenario 3: Else if you have register model in your TB, have ral adaptor but not using

predictor yet
Step 3: Look for a class that suitable to instantiate the predictor lvm_prd, add the following
codes at respective UVM phases Pls use the seq item type matching your monitor

<Your PRD type name>;

typedef lvm prd# (<your seq item class>)
prd; // UVC reg predictor

<Your PRD type name>

virtual function void build phase (uvmm _phase phase);

super.build phase (phase);
prd = <Your PRD type name>::type id::create("prd",

this) ;

endfunction

virtual function voilid connect phase (uvin phase phase);
super.connect phase (phase);
prd.adapter = <your ral adaptor>;
prd.map = <your ral>.default map;
<your UVC monitor port>.connect (prd.bus in);

endfunction Monitor with seq item type matching your lvm_prd’s seq item type

;L Example LVM RAL Predictor INSTALLATION

UVM BASE TEST

— N
N A
RAL

~_

Your UVC J

Monitor :
“

';L Terms and Conditions

IMPORTANT NOTICE

LVM reserves the right to make changes without further notice to
any product or specifications herein.

VM does not assume any responsibility for use of any its

oroducts for any particular purpose, nor does LVM assume any
lability arising out of the application or use of any its products.

;L About LVM VIP

1. At LVM, our mission is to enhance the performance and efficiency
of design verification work in the industry by providing ultra-high-

qguality, low-cost VIPs. We offer a range of AMBA VIPs and serial
VIPs, including:

AX14 / AX14-LITE, AHB, APB, TCM, USART, JTAG, AXI Stream

2. To learn more about our services, please contact us at
developer@lvmvip.com.

3. You can also visit our LinkedIn page at
https://www.linkedin.com/in/Ilvm-vip-3444b21b5/

19

https://www.linkedin.com/in/lvm-vip-3444b21b5/
https://www.linkedin.com/in/lvm-vip-3444b21b5/
https://www.linkedin.com/in/lvm-vip-3444b21b5/
https://www.linkedin.com/in/lvm-vip-3444b21b5/
https://www.linkedin.com/in/lvm-vip-3444b21b5/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

