
L
Accelerate Your Verification with LVM Verification IP

1

TRY GO THRU THE QUESTIONNAIRES

2

WHY IS IT IMPORTANT TO HAVE A
GOOD QUALITY PROTOCOL VIP?

• To have best silicon health!

• you need a thoroughly randomization capable VIP

• you need a detailed and strict checker with the VIP

• The whole point of design verification is to catch RTL bug

3

WHY IS IT IMPORTANT TO HAVE A
GOOD QUALITY PROTOCOL VIP?

• To save time!

• Time is the key to win in a fast pace company

• Is your VIP require a lot of time on the following item?

• Integrating, instantiating

• Installing with RAL where you need to code adaptor or predictor

• Create your own scoreboard to check response / data

• Create a lot of uvm sequence to drive stimulus

• Besides, you want a CPU efficient VIP!

• Our VIP has unlimited license thus can achieve fast check out.

4

WHY IS IT IMPORTANT TO HAVE A
GOOD QUALITY PROTOCOL VIP?

• To save money!

• Our VIP is having most reasonable price in the industry with the great quality / price

• To have minimal code while using the VIP

• Using our VIP will help “clean up” your testbench! Our VIP can absorb a lot of
codes!

• Always remember, the lesser the code, the better your testbench

• To have junior engineer can verify the RTL right away!

• Junior DV or even designer who is not UVM-experienced, can use VIP to do all kinds
of stimulus

5

HOW LONG DO YOU SPEND TO
INTEGRATE A VIP THEN SEND THE FIRST

PACKET?

• Have you wonder that this job can be done by a junior engineer with very
less uvm knowledge?

• Our senior engineer clients use <4 hours in average

• Our junior engineer clients use 1 day max.

• Our VIP is designed to be “UVM-blind” that designer / junior DV also can do
the job!

6

UNLIMITED LICENSES?
UNLIMITED INSTANCES?

• Is your VIP limit your regression where only n number of instances * number of
parallel run are allowed at 1 time?

• Our VIP does not do that! We provide the unlimited instances and also
unlimited parallel run with 1 license purchase!

7

IS YOUR VIP READY FOR SOC
MEMORY VERIFICATION?

• Our VIP are specialized to verify sram / rom in your SOC.

• Embedded checker for data and response are ready inside VIP. Most
importantly, they can be fully configured:

• Ignore certain memory range

• Customized expected response checker, for example, write will have error
response, read ok response.

8

HOW DO YOU VERIFY THE CORRECTNESS OF
DATA AND RESPONSES DURING A CPU

INSTRUCTION FETCH?

• Your SoC has one or more CPUs that boot firmware from SRAM/ROM.

• When the CPU begins fetching instructions after booting, a mid-reset, or
waking from sleep or deep sleep, can you ensure that every single read
data is free from corruption and with the correct response?

9

HOW DO YOU VERIFY YOUR ROM?

• Can your VIP verify ROM automatically?

• Your ROM is read-only thus designed to be hresp=1 / bresp=SLVERR when write

• Write data shall not have effect

• Read back to ensure all data is untouched.

• b2b random write / read towards ROM are having the correct response and
data from slave

10

HOW DO YOU VERIFY YOUR
INTERCONNECT?

• Can your VIP verify AHB / AXI interconnect automatically?

• Range A to B will be having HRESP=0 or BRESP/RRESP=OK

• Range B+1 to C will be having HRESP=1 or BRESP/RRESP = SLVERR or DECERR and
return data all 0 or all 1?

• Have you exercised parallel traffic that fully stress your interconnect?

• Can your VIP tells you which slave is having data corruption easily?

11

MULTI-MASTER SOC: SUSPICIOUS
PACKET CHECK AVAILABLE?

• In your system, says that you have a module that has 3 masters interfaces.

• In this test, expected to have traffic on master 0 and master 1 only.

• Due to a bug in the module, master 2 is running and do some illegal
accesses.

• Can your VIP catch this bug?

12

HAVE YOU EXERCISED RANDOM
PACKETS – VALID AND INVALID

ADDRESSES

• Have you covered a scenario where you put an access of invalid memory
region in between the good packets, where the bad packets are
responded with bad hresp while good one are correct with data and hresp?

• Have you cover all the packet types, wrap, incr, single randomly, for good
and bad memory region , with full blast of random packet?

13

CPU MEMORY ACCESS PATTERNS
COVERAGE CAN BE FULFILLED?

• Have you covered some CPUs memory access patterns, where it may read
and write same or adjacent address in pipeline mode?

14

IS YOUR VIP COMES WITH RAL
READY?

• Yes for LVM VIP!

• You do not need to code any predictor or adapter.

• You just need to connect the RAL via register block or register map, our VIP
will do the rest!

15

CAN YOUR VIP PRINT RAL MAP
AND DETAILED REGISTER ACCESS?

• Can your VIP print out whole ral map?

• Can your VIP do predictions which clearly show which field are changed
(and which fields are not) per every register write packet.

16

IS YOUR VIP READY FOR REGISTER
PARTIAL OR BURST PROGRAMMING?

• UVM bit bash helps verifying register access in 32 bits, and single packet.

• Says that your register map support 8 bits and 16 bits access, with the field access
varies from RW, RO, W1C, WO etc, have you assured that these scenarios are
covered at your tests with correct data returned?
• partial write followed by full read

• Full write followed by partial read

• Partial write followed by partial read.

• What about burst programming of these registers?
• Write burst has effect data written, while burst read return correct data.

• While burst access can be 8 / 16 / 32 bits

• Our VIP does all in <5 lines of code

17

CAN YOUR VIP SUPPORT REGISTER
ALIASING CHECK AND RESERVED

CHECK?

• When you have a register of a slave range from 400h to 7ffh, while used
registers are just valid from 400 to 4ffh, have you confirmed that writing
register 500, or 600, or 700 won't impact your original register at 400h?

• For the above, can you confirm that 500h till 7ffh is ready only and
return 0 every time?

• Our VIP does this in <5 lines of code.

18

CAN YOU CONTROL SETUP AND
HOLD TIME OF YOUR VIP?

• Can your VIP control the setup and hold time with 2 lines of code?

19

CAN YOU CONVENIENTLY TURN
OFF A CHECKER?

• While it is confirmed / justified, you may sometimes want to turn OFF the our
strict checker for a small window of time within the simulation, or the whole
test.

• Our error messages are embedded with codes to turn OFF, so that you can
basically do it without referring the VIP manual.

20

CAN YOUR VIP CHECK WHETHER
THE CLOCK SUPPLY HAS A GLITCH?

• It can be turned OFF/ON on the fly like entering clk gating, or before PLL clk
stabilized.

21

IS YOUR VIP CONTAIN ARM SVA
CHECKER?

• Is your AMBA VIPs activating the arm sva checker?

• Can it be easily disabled?

• Is it being flagged as uvm error?

22

IS YOUR VIP CAN EASILY MIX
DIFFERENT PACKET SENDING STYLES IN

SINGLE TEST?
• Can your VIP configured to be waiting data before proceeding and then

configured to be pipeline, easily in single test?

• How many lines of code to do that?

23

IS YOUR AHB VIP GOT THESE
FEATURES?

• Can your VIP allow you easily

• cancel on error

• cancel on not ready

• Busy injection?

• How many lines of code to make it happen?

• Do you have a testsuite that exercise all the above randomly?

24

DO YOU HAVE JTAG VIP WITH
OPENOCD EQUIPPED?

• We can run openocd to your DUT via our JTAG VIP in EDA simulation.

• First in the industry!

• It also provides user friendly printing for activities done by openocd,
including the DMI register access activity, for RISC V Debug Module.

25

IS YOUR VIP “EDUCATIONAL”?

• Have you wondered that before using the VIP, you need to fully understand
the protocol first?

• Do you know that LVM VIP let you learn the data byte lane concept easily
just by reading the traffic log files?

• Do you know the interface signal help you translate the signals to let you
visualize the packet?

26

VALUABLE SELF VERIFICATION
TESTBENCH FROM YOUR VIP?

• Is your VIP comes with copy-paste ready sample testbench codes?

• Is the TB built with rough structure? Or demonstrate not only how to integrate
and use the VIP, but also showing some useful code on

• Makefile

• systematic filelist

• Ral example code and ral usage

• Uvm testbench simple but robust structure

• etc

27

DO YOUR VIP PROVIDE YOU A VALUABLE
SELF VERIFICATION TESTBENCH?

• Is your VIP comes with sample codes that showcase on how to use the VIP to
send write or read?

• Is the TB dump waveform to help you see the traffic?

• Is the sample testbench able to do uvm randomization?

• Do you know it has sample uvm scoreboard that fetch seq item from VIP
monitor, with all connections in place?

28

CAN YOU RETRIEVE SEQ ITEM
FROM VIP MONITOR EASILY?

• Is your VIP monitor gives you seq item per traffic captured on bus?

• Do you know how is your seq item looked like? Is there a sample code to
show that?

29

FROM WHICH VENDOR CAN YOU FIND
A FREE REINDENTATION SCRIPT

ATTACHED?
• Do you know that a well indented code for testbench can improve read-

ability of the code thus improve efficiency.

• What VIP vendor can provide a free code reindentation / alignment script
as a free tool?

30

IS YOUR VIP VENDOR GIVES YOU FREE
EVALUATION PERIOD UP TO 3

MONTHS?
• Sometime you just want to have a feel and experience on using our VIP, and

yes, it is totally free of charge!

31

INTRODUCTION TO LVM VIP

32

LVM VIP - OVERVIEW

• Currently having multiple customers, tape out >4 SOC chips

• Current products:

• AMBA

• AXI

• AXI Stream

• AHB

• APB

• TCM

• JTAG – first JTAG VIP in the industry with openOCD

• USART

33

INTRODUCTION
• Our VIP are SV UVM compatible.

• It is robust, reusable, measurable, systematic and efficient, with easy debug-ability
and user-friendly features.

• Support for multiple EDA platforms

• Support Custom Solutions: Ability to provide tailored solutions

• Objectives:

• To simplify complex SoC/ASIC design verifications.

• To create various stimulus with ease (minimal codes).

• To shorten the time to bring up UVM testbench with RAL.

• To provide high quality industry standard protocol checkers.

• To create an ideal platform for new UVM users.

• To provide a low cost solution for verification in the industry.

34

COMPARISON WITH THE TOP VENDORS

35

LVM VERSUS OTHERS
No Criteria

L
Others

1 Price Cheap Expensive

2 License Unlimited instances, unlimited

parallel run

Limited, may need to query when parallel

jobs are run. Extra cost for extra license.

3 Speed of compilation, simulation Faster (30s) Slower (55s)

4 Customer Service Fast Slow

5 Useful Tracker Helpful for debug NA

6 Memory Tracker Available NA

7 Ease of sending packet Very easy as it is API based, can

copy paste from example code

Troublesome, not much example code,

need to use UVM sequence

8 RAL readiness (predictor, adaptor) Already embedded Need to install and embed by user.

9 RAL content printing Ready No such API

10 AHB/AXI Burst programming register API Available No such API

11 AHB/AXI Partial programming register API Same as above No such API

12 LVM Bit bashing Advanced RAL bit bashing No such API

13 Auto Data Check (Data and Response

signal)

Yes No such API

36

LVM VERSUS OTHERS
No Criteria

L
Others

14 Speed from integrating to sending first

packet

Fast, even junior engineer (1 year

experience) can do it

Slow, need more senior engineer to do

the job

15 RAL full register printing facility Clear No such API

16 ROM (AXI / AHB / APB) verification Auto verify ROM in the chip,

where write has no effect, and if

response is expected error, VIP

will auto check

No such API

17 Unused register map range verification Yes No such API

18 Register aliasing check Yes No such API

37

LVM VERSUS OTHERS
No Criteria

L
Others

19 Embedded

HRESP/BRESP/RRESP check

Ready, user configures and it will be

activated

No such facility.

20 AHB Busy stimulus, AHB

Cancel when not ready /

Cancel on error

Can be easily enabled via

plusarg/cfg

New sequence to code

21 Performance Clear and simple score, retrievable “

22 Testsuite ready Ready to be run, fully focus on data

integrity (very useful for SRAM / ROM

verification in bus), total test=82 for

AHB, 80 for AXI

No such facility or need to pay extra to get it

23 AHB HREADYIN checker Yes No

24 Character printer facility Yes No

25 Signal skew insertion Ready No

26 Self Verification TB learning

values

The example TB of the VIP is built with

high quality, which can demo

Makefile, RAL, module vs class world,

as a mini UVM testbench.

Not much value, in fact, confusing new UVM

users

38

STRENGTHS

39

USER FRIENDLY
Integration and Configuration

INTEGRATION & CONFIGURATION
• Very easy to integrate, simpler than other vendors

• All steps are demonstrated in the self verification testbench.

• Can configure different protocol per instance

• Can configure different signal width per instance

• Easily can on-off components on the fly.

• Just need to instantiate the UVC, no need to do anything on cfg class,
sequence, sequencer, adaptor, predictor etc

LVM VIP Your UVM TB

DRIVING PART

ADVANCED TECH WITH RAL

• Predictor and Adaptor are built in, connections syntax is ready.

• Support partial and full register access (individual accessible modes) for
driving

• 8b accesses

• 16b accesses

• 32b accesses

• Predictor works for burst packets, and partial accesses packets

 LVM VIP
RAL

adaptor

predictor

EASE OF DRIVING STIMULUS
• All fully pipelined.

• API based.

• Various API to do more stimulus style

• Ease of driving AW and W sequences

• AW first

• W first

• Parallel

• Parallel AW and AR, busiest traffic

• Wait and driving capabilities.

• Ready signals, power signals driving.

• Most API can be done in 1 line of code.

• Full examples at self verification uvm tests.

AW1[AW]

[W] W1

AW1[AW]

[W] W1

AW1[AW]

[W] W1

SETUP AND HOLD X INJECTION

• Already supported X injection for window outside setup and hold time.

• Can be easily configured and can be turned OFF too.

REUSABLE CODE

• As stimulus mostly done using UVC's API, the code is very reuse friendly,
where just the UVC handle is needed.

m_axi_env.drv_wait_output(LVM_ON);

m_axi_env.s_write(.AWADDR(32'h2000_0000),.wdata(32'h1111_2222),.BID(BID),.BRESP(BRESP));

`uvm_info(msg_tag, $sformatf("BID=%0h BRESP=%0h", BID, BRESP), UVM_DEBUG)

m_axi_env.s_read (.ARADDR(32'h2000_0000),.rdata(rdata) ,.RID(RID),.rresp(rresp));

`uvm_info(msg_tag, $sformatf("RID=4'h%0h, RRESP=2'h%0h, RDATA=32'h%0h", RID, rresp, rdata), UVM_DEBUG)

SIMPLE SEQ ITEM RETRIEVAL

• Full code for seq item retrieval for all info needed is already part of example
user scoreboard

• Already can be used for various high level scoreboard.

MONITORING PART

COMPREHENSIVE TRACKER

• Full info for each packet in the AXI bus can be observed via tracker.

• Make the debug handy

END OF TEST MEMORY PRINTER
END OF TEST SCOREBOARD PRINTER

• It prints all memory contents exercised in the test to ease the debug of the
AXI traffic impacts in the test.

• Also print total read and total write, ensure test is not empty.

CHECKING PART

EMBEDDED ARM PROTOCOL
CHECKER

• Already integrated SVA from ARM for AXI4 protocol checker.

• Enhanced to become UVM_ERROR when assertions fail.

LVM AXI

ARM AXI4 protocol checker

embedded (uvm)

EMBEDDED MEMORY CHECKING

• Built in memory verification scoreboard, where

• all writes within memory range (configurable) will be keep tracked as new data
(fulfil the conditions)

• All reads within memory range (configurable) will check data matching
expectation (per last written data)

LVM AXI
memory

DUT

OUT OF BOUND ADDRESS
CHECKING

• Built in out of bound address verification scoreboard, where

• all writes outside valid address range will get BRESP=DECERR/SLVERR (user
configurable)

• All reads outside valid address range will get RRESP=DECERR/SLVERR (user
configurable)

LVM AXI
Bad ranges

DUT

AUTO ENSURE SLAVE COMPLETES
ALL REQUESTS

• At the end of test, UVC will ensure slave does not missed out any read /
write.

LVM AXI

DUT

Total request ==

total responses

POWERFUL TOOL TO VERIFY DATA
PATH IN SOC• Says that you have 4

masters and 5 target
memories

• Applying LVM testsuite can
let you confirm:

• All valid paths are
correct

• All invalid paths are
returned with error
responses
(configurable)

• All random packet are
exercised / covered in
pipeline with all data are
checked.

• Testsuite that launched
in parallel will ensure
your system can handle
busiest traffic

56

CPU 1

AXI / AHB Interconnect

CPU 2 Master 1 Master 2

ROM SRAM 1 SRAM 2 SRAM 3 DDR

LVM LVM LVM LVM LVM LVM

DEBUG PART

ENUM & DEBUG SIGNALS
• awburst, awsize, bresp, and more

58

corresponding WDATA’s addr

（UVC active mode）

In non AXI3, this WID helps user to

find its AW （UVC active mode）

Effective data （UVC

active mode）

AWSIZE enum

AWBURST enum

corresponding AWADDR

BRESP enum

AWPROT enum

AWLOCK enum

AWCACHE enum

ENUM & DEBUG SIGNALS
• arburst, arsize, rresp and more

59

ARBURST enum

ARSIZE enum

corresponding

RDATA’s ARADDR

Corresponding

ARSIZE

RRESP enum

ARLOCK enum

ARPROT enum

ARCACHE enum

TESTSUITE

THE BENEFITS FROM TESTSUITE

• Can verify various aspects, for example:
• Verify data path of every master to all possible slaves in an SOC

• Verify the data integrity, with full blast of randomized AXI packets

• Verify the response of every packet to meet expected value.

• Verify the every channel outstanding depth.

• Verify all types of BREADY, RREADY conditions (for stressing
slaves/interconnect)

61

PERFORMANCE ANALYZER

PERFORMANCE ANALYZER

• Performance per AXI channels

63

PARTIAL REGISTER ACCESS VERIFICATION

PARTIAL REGISTER ACCESS VERIFICATION

• Can verify register partial access
• Full access is fully verified at uvm’s bit bashing sequence

• LVM adds the coverage for partial accesses

65

BYTE 3 BYTE 2 BYTE 1 BYTE 0Register

HWORD 1 HWORD 0Register

BURST REGISTER ACCESS VERIFICATION

BURST REGISTER ACCESS VERIFICATION

• Can verify register burst access
• Single beat full access is fully verified at uvm’s bit bashing sequence

• LVM adds the coverage for burst accesses

• This enable the bus read / write more than 1 registers in burst modes, where randomized
burst size will be covered as well.

• Example like below, where there are 4 burst packets (in 4 different colors) in 1B to
program all the 6 x 32bits registers.

67

BYTE 3 BYTE 2 BYTE 1 BYTE 0Register 0

BYTE 3 BYTE 2 BYTE 1 BYTE 0Register 1

BYTE 3 BYTE 2 BYTE 1 BYTE 0Register 2

BYTE 3 BYTE 2 BYTE 1 BYTE 0Register 3

BYTE 3 BYTE 2 BYTE 1 BYTE 0Register 4

BYTE 3 BYTE 2 BYTE 1 BYTE 0Register 5

WHY CHOOSING LVM VIP?

68

Strengths

Robust
Highly

configurable.

Parameterized

signal width per

instance.

User friendly
Minimum lines of code to

send packet.
Friendly for new UVM

engineers.
API based UVC.

Reusable
Codes on lvm VIP is highly

reusable.

Ease of

Integration
RAL-ready with adaptor and

predictor.

Minimum steps to integrate.

High

debug-

ability
Useful tracker log, interface

signals.

Strong & Strict

Checker
Industry standard checker

embedded.

Support X injection at Read and

Write DATA for inactive lanes.

Embedded memory checker, RAL

access OK checker

Reset aware
Support reset events.

Light weight
CPU efficient UVC.

Setup and

Hold X

injection

Inject X outside setup and

hold window.

Ready

testsuite
Provided multiple useful tests to

verify AXI slaves DUT

Performance

Analyzer
Performance analyser for each

channel

Register

Partial

Access
Embedded register partial

access where user just

need 2 lines of codes to

start it

Register

Burst

Access
Embedded register burst

access where user just

need ~4 lines of codes

to start it

THANK YOU !!

• Thank you for your time!
• Let our VIPs talk for themselves.
• LVM will provide free consultation on VIP
installation and usage model.
• LVM can provide free 1 month evaluation with no
obligations

69

L

	Introduction
	Slide 1
	Slide 2: Try go thru the questionnaires
	Slide 3: Why is it important to have a good quality protocol VIP?
	Slide 4: Why is it important to have a good quality protocol VIP?
	Slide 5: Why is it important to have a good quality protocol VIP?
	Slide 6: How Long do you spend to integrate a VIP then send the first packet?
	Slide 7: Unlimited licenses? unlimited instances?
	Slide 8: Is your VIP ready for Soc memory verification?
	Slide 9: How do you verify the correctness of data and responses during a CPU instruction fetch?
	Slide 10: How do you verify your rom?
	Slide 11: How do you verify your interconnect?
	Slide 12: Multi-master soc: suspicious packet check available?
	Slide 13: Have you exercised Random packets – valid and invalid addresses
	Slide 14: CPU memory access patterns coverage can be fulfilled?
	Slide 15: Is your VIP comes with ral ready?
	Slide 16: Can your VIP Print ral map and detailed register access?
	Slide 17: Is your VIP ready for Register partial or burst programming?
	Slide 18: Can your VIP support Register aliasing check and reserved check?
	Slide 19: Can you control Setup and hold time of your VIP?
	Slide 20: Can you conveniently turn off a checker?
	Slide 21: Can your VIP check whether the clock supply has a glitch?
	Slide 22: Is your VIP contain ARM sva checker?
	Slide 23: Is your VIP can easily Mix Different packet sending styles in single test?
	Slide 24: Is your ahb VIP got these features?
	Slide 25: Do you have jtag vip with OPENOCD equipped?
	Slide 26: Is your VIP “educational”?
	Slide 27: Valuable self verification testbench from your VIP?
	Slide 28: Do your VIP provide you a Valuable self verification testbench?
	Slide 29: Can you retrieve Seq item from VIP monitor easily?
	Slide 30: From which vendor can you find a FREE reindentation script attached?
	Slide 31: Is your VIP vendor gives you free evaluation period up to 3 months?
	Slide 32: Introduction to lvm VIP
	Slide 33: LVM VIP - Overview
	Slide 34: introduction
	Slide 35: Comparison with the top vendors
	Slide 36: LVM versus Others
	Slide 37: LVM versus Others
	Slide 38: LVM versus Others
	Slide 39: StrengthS
	Slide 40: User friendly
	Slide 41: Integration & Configuration
	Slide 42: Driving Part
	Slide 43: Advanced tech with RAL
	Slide 44: Ease of driving stimulus
	Slide 45: Setup and Hold X injection
	Slide 46: Reusable Code
	Slide 47: Simple seq item retrieval
	Slide 48: Monitoring Part
	Slide 49: Comprehensive Tracker
	Slide 50: End of test memory printer End of test scoreboard printer
	Slide 51: Checking Part
	Slide 52: Embedded ARM Protocol Checker
	Slide 53: Embedded memory checking
	Slide 54: Out of bound address checking
	Slide 55: Auto ensure slave completes all requests
	Slide 56: Powerful tool to verify data path in SOC
	Slide 57: Debug Part
	Slide 58: Enum & DEBUG Signals
	Slide 59: Enum & DEBUG Signals
	Slide 60: Testsuite
	Slide 61: The benefits from testsuite
	Slide 62: Performance Analyzer
	Slide 63: Performance Analyzer
	Slide 64: Partial register access verification
	Slide 65: Partial register access verification
	Slide 66: burst register access verification
	Slide 67: burst register access verification
	Slide 68: Why choosING LVM VIP?
	Slide 69: Thank you !!

