
Using UVM Virtual Sequencers & Virtual Sequences

Clifford E. Cummings
Sunburst Design, Inc.

1639 E 1320 S
Provo, UT 84606

cliffc@sunburst-design.com

Janick Bergeron
Synopsys Inc

2025 NW Cornelius Pass Road
Hillsboro, OR

Janick.Bergeron@synopsys.com

Introduction: What are virtual sequencers and virtuals sequences and when should they be used?

Tests that require coordinated generation of stimulus using multiple driving agents need to use virtual sequences.

This paper will clarify important concepts and usage techniques related to virtual sequencers and virtual sequences
that are not well documented in existing UVM reference materials. This paper will also detail the m_sequencer and
p_sequencer handles and the macros and methods that are used with these handles. The objective of this paper is
to simplify the understanding of virtual sequencers, virtual sequences and how they work.

When do you need a virtual sequencer?

Figure 1 shows when virtual sequencers are required.

Figure	1	‐	When	is	a	virtual	sequencer	required?	

If you only have a single driving agent, you do not need a virtual sequencer.

If you have multiple driving agents but no stimulus coordination is required, you do not need a virtual sequencer.

If you have multiple driving agents and stimulus coordination IS required, you need a virtual sequencer.

It should be noted that if a testbench with multiple agents and non-coordinated stimulus is ever extended in the fu-
ture to require coordinated stimulus, then the environment will require updates to include one or more virtual se-
quencers. Those updates, performed later in the projet, could be quite painful as opposed to building in a virtual se-
quencer from the beginning and taking advantage of the virtual sequencer when needed. Engineers might want to
make a habit of adding the virtual sequencer in most of their UVM testbenches.

Why "virtual" sequencer/sequence

SystemVerilog has virtual classes, virtual methods and virtual interfaces and all three require the "virtual" keyword.

UVM has virtual sequencers and virtual sequences but neither one requires the "virtual" keyword. There are no
uvm_virtual_sequencer or uvm_virtual_sequence base classes in UVM. All sequencers and virtual se-
quencers are derivatives of the uvm_sequencer class and all sequences and virtual sequences are derivatives of the
uvm_sequence class.

So why are virtual sequencers and virtual sequences "virtual?"

Three attributes of a virtual sequencer are:

 It controls other sequencers.
 It is not attached to a driver.
 It does not process items itself.

A virtual sequencer is not connected to a driver. Instead of executing indi-
vidual sequence items on a driver via a sequencer port, it executes sub-
sequences and sequence items on sequencers via handles to subsequencer
targets. The UVM User guide[3] sometimes refers to the subsequencers as
"driver-sequencers." A virtual sequencer is "virtual" because typically an
engineer is not really running sequences on this sequencer, the sequences
are being run on the subsequencers via handles defined in the virtual se-
quencer.

A virtual sequence can run multiple transaction types on multiple real se-
quencers. The virtual sequence is typically just coordinating execution of
the other sequences on the appropriate subsequencers.

3 virtual sequencer modes:

The UVM User Guide describes three ways a user can use virtual sequences
to interact with subsequencers: (1) "Business as usual" (also known as paral-
lel traffic generation), (2) Disable subsequencers, and (3) Use grab() and
ungrab().

The UVM User Guide claims that "most users disable the subsequencers and invoke sequences only from the virtual
sequence," but our experience and the experience of many verification colleagues is that the most popular virtual
sequencer mode is parallel tragffic generation, also known as "business as usual." This is the mode that is described
in this paper.

How are virtual sequencers implemented?

A virtual sequencer is little more than a component providing a locus and scope to configure virtual sequences and
provide handles to the subsequencers that will be required by virtual sequences.

The code for a virtual sequencer is rather simple. The subsequencer handles declared in the virtual sequencer will be
specified, via the configuration database, after all components are built (after the build_phase()) and are typically
set by the environment in the connect_phase().

Consider the virtual sequencer code in Example 1.

class vsequencer extends uvm_sequencer;
 `uvm_component_utils(vsequencer)
 tb_ahb_sequencer ahb_sqr;
 tb_eth_sequencer eth_sqr;

 function new(string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 function void end_of_elaboration_phase(uvm_phase phase);
 super.end_of_elaboration_phase(phase);
 if (!uvm_config_db#(tb_ahb_sequencer)::get(this, "ahb_sqr", "", ahb_sqr)) begin
 `uvm_fatal("VSQR/CFG/NOAHB", "No ahb_sqr specified for this instance");
 end
 if (!uvm_config_db#(tb_eth_sequencer)::get(this, "eth_sqr", "", eth_sqr)) begin
 `uvm_fatal("VSQR/CFG/NOETH", "No eth_sqr specified for this instance");
 end
 endfunction
endclass

Example	1	‐	Sample	virtual	sequencer	code	

Example 1 is a typical structure for a virtual sequencer. The user-selected name for this example is vsequencer.
Virtual sequencers are extended from uvm_sequencer, NOT uvm_virtual_sequencer (which does not exist).
Unlike normal sequencers, the virtual sequencer of Example 1 is not user-parameterized to a transaction type be-
cause this sequencer will be able to execute multiple transaction types. Extending a virtual sequencer from the
uvm_sequencer base class without any parameters means that the virtual sequencer will use the default parameter-
ized values of uvm_sequence_item.

The virtual sequencer declares subsequencer handles. In Example 1, the subsequencer handles are called ahb_sqr
and eth_sqr respectively. These two subsequencer handles will be assigned from values specified in the configura-
tion database during the end_of_elaboration_phase().

Unlike Transaction Level Model (TLM) connections that are used to connect most components in a UVM testbench,
the subsequencer handles are not set using a TLM connect() method, but are specified by the environment using
the configuration database. It is then the job of the virtual sequencer to extract those handles from the configuration
database and assign them to the two handles declared in the virtual sequencer. The actual subsequencers will be cre-
ated in the build_phase(). Therefore, their handles will only be available to be put in the configuration database
by the environment in its connect_phase(). Thus, the virtual sequencer will have to retrieve them in the next
phase: end_of_elaboration_phase().

Finally, the vsequencer example includes the typical new() constructor that is common to all UVM components.

It can be seen from this example, that the vsequencer is just a container for the handles to subsequencers and other
configuration parameters. The virtual sequences assume the virtual sequencer has been properly configured before
the virtual sequences execute in the run_phase(). They can then access these configuration paratemers in the vir-
tual sequencer via their p_sequencer handle.

Sequence Details

Sequences are run on a sequencer and are parameterized to the transaction type that is processed by that sequencer.

Sequences are started on a sequencer using the built-in sequence start() method or by using the `uvm_do() mac-
ros.

Every sequence has a handle to the sequencer that is running that sequence. That handle is called the m_sequencer
handle.

What is the m_sequencer handle?

All sequences are started on sequencers: tr_seq.start(env.vsqr). The `uvm_do macros also execute this
command. After starting a sequence on a sequencer, the m_sequencer handle for the sequence is set to env.vsqr.
The m_sequencer handle is just a handle in every sequence that points to the sequencer that is running that se-
quence and it was set when the start() method was passed the handle of the sequencer (env.vsqr in this case).

Just like any other sequence, when a virtual sequence is started on a virtual sequencer, using either the start()
method or the `uvm_do macros, the virtual sequence will automatically have an m_sequencer handle that correctly
points to the virtual sequencer.

What is the p_sequencer handle?

Frequently asked questions include:

 What is the p_sequencer?
 How is the p_sequencer different from the m_sequencer?

All sequences have an m_sequencer handle but sequences do not automatically have a p_sequencer handle. Fur-
thermore, the m_sequencer variable is an internal implementation variable that is poorly documented and should
not be used directly by verification engineers. It is an artifact of the SystemVerilog language, which lacks C++'s
concept of “friend” classes that this variable is public. Any variable or method with the “m_” prefix should similarly
not be used directly.

p_sequencer is not automatically declared and set, but can be declared and set by using the
`uvm_declare_p_sequencer macro. As will be shown later in this paper, the `uvm_declare_p_sequencer
macro and p_sequencer handle are user-conveniences.

Technically, the p_sequencer handle is never required but when used with the `uvm_declare_p_sequencer
macro, it is automatically (1) declared, (2) set and (3) checked when a virtual sequence is started, and properly
points to the virtual sequencer that is running the virtual sequence.

More about the p_sequencer handle and its usage is described below.

What is the `uvm_declare_p_sequencer(SEQUENCER) macro?

The `uvm_declare_p_sequencer macro code is defined in the src/macros/sequence_define.svh file and
is rather simple code:

1 `define uvm_declare_p_sequencer(SEQUENCER) \
2 SEQUENCER p_sequencer;\
3 virtual function void m_set_p_sequencer();\
4 super.m_set_p_sequencer(); \
5 if(!$cast(p_sequencer, m_sequencer)) \
6 `uvm_fatal("DCLPSQ", \
7 $sformatf("%m %s Error casting p_sequencer, please verify that this
7a sequence/sequence item is intended to execute on this type of sequenc-
er",
8 get_full_name())) \
9 endfunction

Figure	2	‐	`uvm_declare_p_sequencer	macro	definition	

The `uvm_declare_p_sequencer(SEQUENCER) macro executes two useful steps:
(1) The macro declares a p_sequencer handle of the SEQUENCER type.
(2) The macro then $casts the m_sequencer handle to the p_sequencer handle and checks to make sure the
sequencer executing this sequence is of the appropriate type.

A closer look at this macro and what it does is instructive. This macro is typically placed in a sequence base class
that will be extended to create all of the sequences that use the designated sequencer, virtual or not.

On line 1, the user calls this macro and passes the type of the sequencer that will be used by the sequences. For vir-
tual sequences, this is the class name of the designated virtual sequencer they will execute on.

On line 2, the designated sequencer is declared with the handle name p_sequencer. For the remainder of the code
in this macro and everywhere else in the user-defined virtual sequence base and extended virtual sequence classes,
the virtual sequencer will be referenced by the name p_sequencer. From this point forward, there is no need to
reference the name of the virtual sequencer that is being used, the user can simply reference the p_sequencer (vir-
tual sequencer) handle. This is simply a convenience, not a requirement.

On line 3 is the start of a virtual void function declaration that continues through line 9. The void function is
called m_set_p_sequencer and this function is called whenever a sequence start() method is called on one of
the virtual sequences or when a `uvm_do_on() macro is used to start a virtual sequence.

Line 4 ensures that if the virtual sequence is an extension of another virtual sequence, the base virtual sequence will
also execute its own m_set_p_sequencer method .

Line 5 casts the internal m_sequencer handle, which should be the handle of the virtual sequencer to the local
p_sequencer handle declared on line 2. The if-test checks to see if the $cast operation failed (!$cast(...))
and if the $cast did fail, the fatal message on lines 6-8 will terminate the UVM simulation and report a consistent
message that there was a problem casting to the specified virtual sequencer type, i.e. the sequence is executing on a
sequencer of the wrong type. The if-test, $cast operation and corresponding consistent error message are also
shown in Figure 3.

5 if(!$cast(p_sequencer, m_sequencer)) \
6 `uvm_fatal("DCLPSQ", \
7 $sformatf("%m %s Error casting p_sequencer, please verify that this
7a sequence/sequence item is intended to execute on this type of sequencer",
8 get_full_name())) \

(NOTE: the $sformatf() command is one long string on one line of code, lines 7 & 7a, in the macro).

Figure	3	‐	`uvm_declare_p_sequencer:	casts	m_sequencer	to	p_sequencer	

Example virtual sequencer testbench

Trying to describe virtual sequencer testbench construction and operation without a block diagram requires a great
deal of concentration on the part of the reader, so example files to run virtual sequences on the virtual sequencer
testbench of Figure 4 will be described in this paper. Any files required to run this simulation that are not described
in the body of this paper have been added to Appendix 2 at the end of this paper.

Figure	4	‐	Example	virtual	sequencer	/	sequence	block	diagram	

The virtual sequencer for this testbench was shown in Example 1. All other testbench files will be described in the
remainder of this paper.

Virtual sequence base classes.

All virtual sequences need access to the subsequencer handles defined in the virtual sequencer. To gain access to the
subsequencer handles, virtual sequences need to use the `uvm_declare_p_sequencer macro to declare and set
the p_sequencer variable so the subsequencer handles are readily accessible.

Since every virtual sequence needs to execute these steps, it is recommended to put this code into a virtual sequence
base class (vseq_base) and then create all virtual sequences by extending the vseq_base class.

Example vseq_base

For the virtual sequencer shown in Example 1, we can use the vseq_base definition shown in Example 2.

class vseq_base extends uvm_sequence;
 `uvm_object_utils(vseq_base)
 `uvm_declare_p_sequencer(vsequencer)

 function new(string name="vseq_base");
 super.new(name);
 endfunction

 tb_ahb_sequencer ahb_sqr;
 tb_eth_sequencer eth_sqr;

 virtual task body();
 ahb_sqr = p_sequencer.ahb_sqr;
 eth_sqr = p_sequencer.eth_sqr;
 endtask
endclass

Example	2	‐	Virtual	sequence	base	class		example	called	vseq_base	

The vseq_base class uses the `uvm_declare_p_sequencer(vsequencer) macro to declare a p_sequencer
handle of the vsequencer type. The vseq_base then declares ahb_sqr and eth_sqr handles of the same types
that were declared in the virtual sequencer shown in Example 1. The vseq_base then copies the virtual sequencer
(p_sequencer) ahb_sqr and eth_sqr handles to the local ahb_sqr and eth_sqr handles. The vseq_base class
used the p_sequencer handle (which should have been properly assigned by the `uvm_declare_p_sequencer
macro) to copy the handles from the virtual sequencer to this virtual sequence base class. Using the
`uvm_declare_p_sequencer macro, it was not necessary for the vseq_base class to check the type of the vse-
quencer class since the macro setup a void function to perform that check.

Note that the vseq_base class assumes that the handles were already set in the virtual sequencer. It is the job of the
enviroinment to ensure that the subsequencer handles are properly set.

Creating virtual sequences

Once the virtual sequence base class has been created, it is possible to create virtual sequences that are an extension
of the virtual sequence base class. Every virtual sequence that is extended from the virtual base class inherits the
subsequencer handles of the correct type, and already properly assigned.

Consider the two virtual sequence examples shown in Example 3 and Example 4. These sequences are examples of
virtual sequences that are extensions of the base virtual sequence shown in Example 2.

There are two accepted methods for executing sequences in UVM: (1) use the `uvm_do macros, which are generally
considered to be the easiest to use but may also be less simulation efficient (because the subsequences are always
allocated and randomized before being executed) and more difficult to understand if the user ever expands the
`uvm_do macro code, and (2) use explicit allocation, and direct assignments or calls to randomize() before using
the start() method to execute the sequences on the chosen subsequencer, which is generally considered to require
more user-coding effort but that are straightforward and allow the creation and execution of more directed sequenc-
es.

The Example 3 vitual sequence uses the `uvm_do macros to run a virtual sequence to randomly generate pseudo-
AHB packets followed by two sequences of pseudo-Ethernet packtes and concludes with another sequence of pseu-
do-AHB packets. The code for the pseudo-ethernet and AHB transactions, along with the Ethernet and AHB se-
quences, and the test that runs v_seq1 will be shown later.

class v_seq1 extends vseq_base;
 `uvm_object_utils(v_seq1)

 function new(string name="v_seq1");
 super.new(name);
 endfunction

 virtual task body();
 ahb_seq1 ahb_seq;
 eth_seq1 eth_pkts;
 //---
 super.body();
 `uvm_info("v_seq1", "Executing sequence", UVM_HIGH)
 `uvm_do_on(ahb_seq, ahb_sqr)
 `uvm_do_on(eth_pkts, eth_sqr)
 `uvm_do_on(eth_pkts, eth_sqr)
 `uvm_do_on(ahb_seq, ahb_sqr)
 `uvm_info("v_seq1", "Sequence complete", UVM_HIGH)
 endtask
endclass

Example	3	‐	v_seq1	‐	extended	from	vseq_base	‐	uses	`uvm_do_on()	macros	

The Example 4 vitual sequence uses calls to the randomize() and start() methods to run a virtual sequence to
randomly generate pseudo-AHB packets followed by two sequences of pseudo-Ethernet packtes and concludes with
another sequence of pseudo-AHB packets. The code for the pseudo-ethernet and AHB packets, along with the
Ethernet and AHB sequences, and the test that runs v_seq2 will be shown later.

class v_seq2 extends vseq_base;
 `uvm_object_utils(v_seq2)

 function new(string name="v_seq2");
 super.new(name);
 endfunction

 virtual task body();
 ahb_seq1 ahb_seq = ahb_seq1::type_id::create("ahb_seq");
 eth_seq1 eth_seq = eth_seq1::type_id::create("eth_seq");
 //---
 super.body();
 `uvm_info("v_seq2", "Executing sequence", UVM_HIGH)
 if(!ahb_seq.randomize()) `uvm_error("RAND","FAILED");
 ahb_seq.start(ahb_sqr);
 if(!eth_seq.randomize()) `uvm_error("RAND","FAILED");
 eth_seq.start(eth_sqr);
 if(!eth_seq.randomize()) `uvm_error("RAND","FAILED");
 eth_seq.start(eth_sqr);
 if(!ahb_seq.randomize()) `uvm_error("RAND","FAILED");
 ahb_seq.start(ahb_sqr);
 `uvm_info("v_seq2", "Sequence complete", UVM_HIGH)
 endtask
endclass

Example	4	‐	v_seq2	‐	extended	from	vseq_base	‐	uses	sequence.randomize()	and	sequence.start()	methods	

Calling sequences from virtual sequences

One important feature of virtual sequences is that they can run exsiting sequences without modification. The user
can create a library of sequences that are used to test individual subblocks and then use the same sequences in a co-
ordinated virtual sequence to test multiple subblocks using the original subblock sequence libraries. There is no need
to re-code or modify the subblock sequences.

Consider the pseudo AHB packet code shown Example 5. This is a "pseudo-AHB packet" because it only contains
two non-standard AHB fields and an example DUT will recognize when these fields have been sent to the DUT and
print that information to the screen for examination.

class ahb_pkt extends uvm_sequence_item;
 `uvm_object_utils(ahb_pkt)
 rand bit [31:0] addr;
 rand bit [63:0] data;

 function new(string name="ahb_pkt");
 super.new(name);
 endfunction

 virtual function string convert2string();
 return $sformatf("addr=%8h, data=%16h", addr, data);
 endfunction
endclass

Example	5	‐	ahb_pkt.sv	‐	pseudo	AHB	packet	code	

Consider the AHB sequence code shown Example 6. This simple AHB sequence randomly generates 2-5 AHB
packets. The virtual sequences in Example 3 and Example 4 send this randomly generated set of AHB packets to the
ahb_sqr handle declared in the vsequencer component.

class ahb_seq1 extends uvm_sequence #(ahb_pkt);
 `uvm_object_utils(ahb_seq1);

 rand int cnt;
 constraint c1 {cnt inside {[2:5]};}

 function new(string name = "ahb_seq1");
 super.new(name);
 endfunction

 virtual task body();
 ahb_pkt ahb_pkt1;
 `uvm_info("AHBcnt", $sformatf("** Loop cnt=%0d **", cnt), UVM_MEDIUM)
 repeat(cnt) `uvm_do(ahb_pkt1)
 endtask
endclass

Example	6	‐	ahb_seq1.sv	‐	AHB	sequence	code	called	by	virtual	sequences	

Consider the pseudo Ethernet packet code shown Example 7. This is a "pseudo-Ethernet packet" because it only
contains two non-standard Ethernet fields and an example DUT will recognize when these fields have been sent to
the DUT and print that information to the screen for examination.

class eth_pkt extends uvm_sequence_item;
 `uvm_object_utils(eth_pkt)
 rand bit [47:0] src;
 rand bit [47:0] dst;

 function new(string name="eth_pkt");
 super.new(name);
 endfunction

 function string convert2string();
 return $sformatf("src=%12h, dst=%12h", src, dst);
 endfunction
endclass

Example	7	‐	eth_pkt.sv	‐	pseudo	Ethernet	packet	code	

Consider the Ethernet sequence code shown Example 8. This simple Ethernet sequence randomly generates 2-4
Ethernet packets. The virtual sequences in Example 3 and Example 4 send this randomly generated set of Ethernet
packets to the eth_sqr handle declared in the vsequencer component.

class eth_seq1 extends uvm_sequence #(eth_pkt);
 `uvm_object_utils(eth_seq1);

 rand int cnt;
 constraint c1 {cnt inside {[2:4]};}

 function new(string name = "eth_seq1");
 super.new(name);
 endfunction

 virtual task body();
 eth_pkt eth_pkt1 = eth_pkt::type_id::create("eth_pkt1");
 `uvm_info("ETHcnt", $sformatf("** Loop cnt=%0d **", cnt), UVM_MEDIUM)
 repeat(cnt) begin
 start_item(eth_pkt1);
 if(!eth_pkt1.randomize()) `uvm_error("RAND", "FAILED")
 finish_item(eth_pkt1);
 end
 endtask
endclass

Example	8	‐	eth_seq1.sv	‐	Ethernet	sequence	code	called	by	virtual	sequences	

Starting virtual sequences

In general, virtual sequences are started from a test using the sequence start() method. The `uvm_do_on macro
cannot be called from a test component. The `uvm_do_on macro is only called from derivatives of sequences. This
was a bit tricky to determine but even if a `uvm_do_on is called from a test on a valid virtual sequencer handle, the
`uvm_do_on macro calls methods that are defined in the uvm_sequence_base class located in the
uvm/src/seq/uvm_sequence_base.svh file. The required methods are create_item(), start_item() and
finish_item() and none of these methods are available in the uvm_test base class or any other
uvm_component class or derivative.

It is a good idea to create a test_base class with common declarations and methods that will be used by every
other test in the verification suite. The test_base class shown in Example 9, declares the environment handle and
creates the environment in the build_phase(). These actions will not need to be repeated in tests that extend this
test_base class. This test_base also includes a start_of_simulation_phase() to print the testbench struc-
ture and factory contents before the simulation executes in the run_phase(). It is useful to print the testbench
structure and factory contents in the start_of_simulation_phase() because troubles most often appear in the
run_phase() so these pre-run printouts can help diagnose if any components were incorrectly constructed or if
some of the testbench classes were omitted from the factory.

`timescale 1ns/1ns
class test_base extends uvm_test;
 `uvm_component_utils(test_base)

 env e;

 function new(string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 e = env::type_id::create("e", this);
 endfunction

 function void start_of_simulation_phase(uvm_phase phase);
 super.start_of_simulation_phase(phase);
 if (uvm_report_enabled(UVM_HIGH)) begin
 this.print();
 factory.print();
 end
 endfunction
endclass

Example	9	‐	test_base.sv	‐	declares	and	builds	the	environment	and	prints	the	testbench	structure	

Once a test_base class is coded, each of the tests can extend the test_base to create the individual tests. Exam-
ple 10 shows the test1 class definition that is extended from the test_base class. The test1 example defines the
run_phase() for this test, which declares the first virtual sequence (v_seq1) handle vseq and creates the vseq
object. The test then calls the raise_objection() method, prints a message, calls the start() method on the
vseq sequence and passes the environment-virtual sequencer path (e.v_sqr) to the start() method. Once the
virtual sequence has completed, the test prints one more message and then calls the drop_objection() method
and finishs.

`timescale 1ns/1ns
class test1 extends test_base;
 `uvm_component_utils(test1)

 function new(string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 task run_phase(uvm_phase phase);
 v_seq1 vseq = v_seq1::type_id::create("vseq");
 uvm_test_done.raise_objection(this);
 `uvm_info("test1 run", "Starting test", UVM_MEDIUM)
 vseq.start(e.v_sqr);
 `uvm_info("test1 run", "Ending test", UVM_MEDIUM)
 uvm_test_done.drop_objection(this);
 endtask
endclass

Example	10	‐	test1.sv	‐	declares	a	v_seq1	vseq	handle	and	calls	vseq.start(e.v_sqr)	

The test2 code in Example 11 does the same thing as the test1 code of Example 10 except that the test2 code
declares the vseq handle to be the second virtual sequence type, v_seq2.

`timescale 1ns/1ns
class test2 extends test_base;
 `uvm_component_utils(test2)

 function new(string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 task run_phase(uvm_phase phase);
 v_seq2 vseq = v_seq2::type_id::create("vseq");
 uvm_test_done.raise_objection(this);
 `uvm_info("test2 run", "Starting test", UVM_MEDIUM)
 vseq.start(e.v_sqr);
 `uvm_info("test2 run", "Ending test", UVM_MEDIUM)
 uvm_test_done.drop_objection(this);
 endtask
endclass

Example	11	‐	test2.sv	‐	declares	a	v_seq2	vseq	handle	and	calls	vseq.start(e.v_sqr)	

The environment sets the handles in the virtual sequencer

The environment code shown in Example 12 is pretty typical environment code with the exceptions that it declares a
virtual sequencer handle (vsequencer v_sqr), builds the virtual sequencer, and stores the Ethernet (eth_agnt)
and AHB (ahb_agnt) sequencer handles (sqr and sqr) in the configuration database . As was discussed in the
section "How are virtual sequencers implemented?" the virtual sequencer handles are stored in the configuration
database by the environment in the connect_phase() for retrieval by the virtual sequencer in the
end_of_elaboration() phase as opposed to using TLM connections that connect most testbench components.

class env extends uvm_env;
 `uvm_component_utils(env)

 tb_eth_agent eth_agnt;
 tb_ahb_agent ahb_agnt;
 vsequencer v_sqr;

 function new(string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 eth_agnt = tb_eth_agent::type_id::create("eth_agnt", this);
 ahb_agnt = tb_ahb_agent::type_id::create("ahb_agnt", this);
 v_sqr = vsequencer::type_id::create("v_sqr" , this);
 endfunction

 function void connect_phase(uvm_phase phase);
 super.connect_phase(phase);
 uvm_config_db#(tb_ahb_sequencer)::set(this,"*","ahb_sqr",ahb_agnt.sqr);
 uvm_config_db#(tb_eth_sequencer)::set(this,"*","eth_sqr",eth_agnt.sqr);
 endfunction
endclass

Example	12	‐	env.sv	‐	Environment	with	virtual	sequencer	

m_sequencer handle creation - details

For those readers who want to know the details about how the m_sequencer handle is created inside of UVM, see
Appendix 1.

Summary

This paper describes the necessary steps to create a working virtual sequencer environment and explains the purpose
of m_sequencer and p_sequencer handles and the `uvm_declare_p_sequencer macro. These are topics that
are often confusing to new and experienced UVM verification engineers.

This paper also includes all the code necessary to test the example described in this paper.

Acknowledgements

The authors would like to thank the following colleagues: JL Gray who helped Cliff put together the first version of
the Virtual Sequence / Sequencer example shown in this paper many years ago. Mark Litterick of Verilab for help-
ing to refine some of the techniques used in this example especially related to the use of the p_sequencer handle
and `uvm_declare_p_sequencer macro. Heath Chambers who has helped correct these materials for use in
UVM training. Multiple Verilab engineers who responded to Cliff's survey years ago regarding their preferred virtu-
al sequencer usage mode. Logie Ramachandran for providing valuable feedback and suggestions for this paper.

References:

[1] "IEEE	Standard	For	SystemVerilog	‐	Unified	Hardware	Design,	Specification	and	Verification	Language,"	
IEEE	Computer	Society	and	the	IEEE	Standards	Association	Corporate	Advisory	Group,	IEEE,	New	York,	
NY,	IEEE	Std	1800™‐2012	

[2] Universal	Verification	Methodology	(UVM)	1.2	Class	Reference,	June	2014,	Accellera	

[3] Universal	Verification	Methodology	(UVM)	1.1	User's	Guide,	May	2011,	Accellera	

 m_sequencer	handle	creation	‐	details	Appendix	1

If you trust that the m_sequencer handle is properly created in the UVM Base Class Library (BCL) and if you don't
care how the m_sequencer handle is created, then you do not need to read this section. This section is included for
those who wish to understand the details of how UVM creates the m_sequencer handle.

Finding the correct UVM base class routines to create the m_sequencer handle is a bit tricky. Assuming the use of
a sequence called tr_seq, that is started on the e (environment) agnt1 (agent) sqr (sequencer), here is how the
m_sequencer handle is created:

(1) All sequences are started on sequencers: tr_seq.start(e.agnt1.sqr);

(2) uvm_sequence inherits the start() method from the uvm_sequence_base class.

(3) The inherited start() task is defined as shown in Figure 5.

 virtual task start (uvm_sequencer_base sequencer,
 uvm_sequence_base parent_sequence = null,
 int this_priority = -1,
 bit call_pre_post = 1);
 set_item_context(parent_sequence, sequencer);

Figure	5	‐	start()	task	method	definition	

Typically only the sequencer handle is passed to the start() method and then uvm_sequence_base calls
set_item_context(null, e.agnt1.sqr);

(4) The set_item_context() method is defined in the uvm_sequence_item class, which is inherited by the
uvm_sequence_base and uvm_sequence classes.

(5) The set_item_context() method calls the set_sequencer(e.agnt1.sqr) method.

(6) The set_sequencer() method is defined in the uvm_sequence_item class (inherited by
uvm_sequence_base and uvm_sequence).

(7) The set_sequencer() method sets the m_sequencer handle, declared to be a protected
uvm_sequencer_base handle in the uvm_sequence_item class.

protected uvm_sequencer_base m_sequencer;
…
virtual function void set_sequencer(uvm_sequencer_base sequencer);
 m_sequencer = sequencer;
 m_set_p_sequencer();
endfunction

Figure	6	‐	protected	uvm_sequencer_base	m_sequencer	declaration	and	set_sequencer()	method	

To summarize, the tr_seq.start() method passes a sequencer handle to the set_item_context() method,
which passes the handle to the set_sequencer() method, which sets the m_sequencer handle. The
m_sequencer handle is a handle to the sequencer that is running this sequence (tr_seq in this example). The
m_sequencer handle can be retrieved by calling the get_sequencer() method.

 UVM	virtual	sequencer	/sequence	example	code	Appendix	2

The code that corresponds to the virtual sequencer testbench shown in Figure 4 is included in this appendix. Each of
the files for this example are listed in alphabetical order in the appendix subsections.

 ahb_if.sv	Appendix	2.1

interface ahb_if;
 logic [31:0] ahb_addr;
 logic [63:0] ahb_data;
endinterface

Example	13	‐	ahb_if.sv	code	

 ahb_pkt.sv	Appendix	2.2

This code is shown in Example 5 - ahb_pkt.sv - pseudo AHB packet code

 ahb_seq1.sv	Appendix	2.3

This code is shown in Example 6 - ahb_seq1.sv - AHB sequence code called by virtual sequences

 dut.sv	Appendix	2.4

module dut (
 input logic [31:0] ahb_addr,
 input logic [63:0] ahb_data,
 input logic [47:0] eth_src,
 input logic [47:0] eth_dst);

 import uvm_pkg::*;
 `include "uvm_macros.svh"

 always @* begin
 `uvm_info("DUT AHB", $sformatf("ahb_addr=%8h ahb_data=%16h",
 ahb_addr, ahb_data), UVM_MEDIUM);
 end

 always @* begin
 `uvm_info("DUT ETH", $sformatf("eth_src =%12h eth_dst =%12h",
 eth_src, eth_dst), UVM_MEDIUM);
 end
endmodule

Example	14	‐	dut.sv	code	

 env.sv	Appendix	2.5

This code is shown in Example 12 - env.sv - Environment with virtual sequencer

 eth_if.sv	Appendix	2.6

interface eth_if;
 logic [47:0] eth_src;
 logic [47:0] eth_dst;
endinterface

Example	15	‐	eth_if.sv	

 eth_pkt.sv	Appendix	2.7

This code is shown in Example 7 - eth_pkt.sv - pseudo Ethernet packet code

 eth_seq1.sv	Appendix	2.8

This code is shown in Example 8 - eth_seq1.sv - Ethernet sequence code called by virtual sequences

 run.f	Appendix	2.9

tb_pkg.sv
top.sv
dut.sv
ahb_if.sv
eth_if.sv

Example	16	‐	run.f	code	

 tb_ahb_agent.sv	Appendix	2.10

class tb_ahb_agent extends uvm_agent;
 `uvm_component_utils(tb_ahb_agent)

 virtual ahb_if vif;

 tb_ahb_driver drv;
 tb_ahb_sequencer sqr;

 function new(string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 virtual function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 // Instantiate driver and sequencer for AHB agent
 drv = tb_ahb_driver::type_id::create("drv", this);
 sqr = tb_ahb_sequencer::type_id::create("sqr", this);
 get_vif();
 endfunction

 virtual function void connect_phase(uvm_phase phase);
 super.connect_phase(phase);
 drv.seq_item_port.connect(sqr.seq_item_export);
 drv.vif = vif;
 endfunction

 function void get_vif;
 if(!uvm_config_db#(virtual ahb_if)::get(this,"","ahb_vif",vif))
 `uvm_fatal("NOVIF",{"virtual interface must be set for:",
 get_full_name(),".vif"})
 endfunction
endclass

Example	17	‐	tb_ahb_agent.sv	code	

 tb_ahb_driver.sv	Appendix	2.11

class tb_ahb_driver extends uvm_driver #(ahb_pkt);
 `uvm_component_utils(tb_ahb_driver)

 virtual ahb_if vif;

 function new(string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 task run_phase(uvm_phase phase);
 ahb_pkt apkt;
 forever begin
 seq_item_port.get_next_item(apkt);
 drive_item(apkt);
 seq_item_port.item_done();
 end
 endtask

 task drive_item(ahb_pkt tr);
 `uvm_info("ahb_driver-run", "Driving AHB transaction...", UVM_HIGH)
 #134;
 vif.ahb_addr= tr.addr;
 vif.ahb_data= tr.data;
 `uvm_info("ahb_driver-run", "Finished AHB transaction...", UVM_HIGH)
 endtask
endclass

Example	18	‐	tb_ahb_driver.sv	code	

 tb_ahb_sequencer.sv	Appendix	2.12

class tb_ahb_sequencer extends uvm_sequencer #(ahb_pkt);
 `uvm_component_utils(tb_ahb_sequencer)

 function new(string name, uvm_component parent);
 super.new(name, parent);
 endfunction
endclass

Example	19	‐	tb_ahb_sequencer.sv	code	

 tb_eth_agent.sv	Appendix	2.13

class tb_eth_agent extends uvm_agent;
 `uvm_component_utils(tb_eth_agent)

 virtual eth_if vif;

 tb_eth_driver drv;
 tb_eth_sequencer sqr;

 function new(string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 // Instantiate driver and sequencer for ethernet agent
 drv = tb_eth_driver::type_id::create("drv", this);
 sqr = tb_eth_sequencer::type_id::create("sqr", this);
 get_vif();
 endfunction

 function void connect_phase(uvm_phase phase);
 super.connect_phase(phase);
 drv.seq_item_port.connect(sqr.seq_item_export);
 drv.vif = vif;
 endfunction

 function void get_vif;
 if(!uvm_config_db#(virtual eth_if)::get(this,"","eth_vif",vif))
 `uvm_fatal("NOVIF",{"virtual interface must be set for:",
 get_full_name(),".vif"})
 endfunction
endclass

Example	20	‐	tb_eth_agent.sv	code	

 tb_eth_driver.sv	Appendix	2.14

class tb_eth_driver extends uvm_driver #(eth_pkt);
 `uvm_component_utils(tb_eth_driver)

 virtual eth_if vif;

 function new(string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 task run_phase(uvm_phase phase);
 eth_pkt epkt;
 forever begin
 seq_item_port.get_next_item(epkt);
 drive_item(epkt);
 seq_item_port.item_done();
 end
 endtask

 task drive_item(eth_pkt tr);
 `uvm_info("eth_driver-run", "Driving ETH transaction...", UVM_HIGH)
 #90;
 vif.eth_src = tr.src;
 vif.eth_dst = tr.dst;
 `uvm_info("eth_driver-run", "Finished ETH transaction...", UVM_HIGH)
 endtask
endclass

Example	21	‐	tb_eth_driver.sv	code	

 tb_eth_sequencer.sv	Appendix	2.15

class tb_eth_sequencer extends uvm_sequencer #(eth_pkt);
 `uvm_component_utils(tb_eth_sequencer)

 function new(string name, uvm_component parent);
 super.new(name, parent);
 endfunction
endclass

Example	22	‐	tb_eth_sequencer.sv	code	

 tb_pkg.sv	Appendix	2.16

package tb_pkg;
 import uvm_pkg::*;
 `include "uvm_macros.svh"

 `include "eth_pkt.sv"
 `include "ahb_pkt.sv"
 `include "ahb_transaction.sv"

 `include "eth_seq1.sv"
 `include "ahb_seq1.sv"

 `include "tb_eth_driver.sv"
 `include "tb_eth_sequencer.sv"
 `include "tb_eth_agent.sv"

 `include "tb_ahb_driver.sv"
 `include "tb_ahb_sequencer.sv"
 `include "tb_ahb_agent.sv"

 `include "vsequencer.sv"

 `include "vseq_base.sv"
 `include "v_seq1.sv"
 `include "v_seq2.sv"

 `include "env.sv"

 `include "test_base.sv"
 `include "test1.sv"
 `include "test2.sv"
endpackage

Example	23	‐	tb_pkg.sv	code	

 test1.sv	Appendix	2.17

This code is shown in Example 10 - test1.sv - declares a v_seq1 vseq handle and calls vseq.start(e.v_sqr)

 test2.sv	Appendix	2.18

This code is shown in Example 11 - test2.sv - declares a v_seq2 vseq handle and calls vseq.start(e.v_sqr)

 test_base.sv	Appendix	2.19

This code is shown in Example 9 - test_base.sv - declares and builds the environment and prints the testbench struc-
ture

 top.sv	Appendix	2.20

`timescale 1ns/1ns
`include "uvm_macros.svh"

// Example of virtual sequences controlling two sub-sequencers...
// one for Ethernet and one for AHB
module top;
 import uvm_pkg::*;
 import tb_pkg::*;

 dut dut (.ahb_addr(ahb_if.ahb_addr), .ahb_data(ahb_if.ahb_data),
 .eth_src (eth_if.eth_src), .eth_dst (eth_if.eth_dst));

 ahb_if ahb_if ();
 eth_if eth_if ();

 initial begin
 uvm_config_db#(virtual ahb_if)::set(null, "*", "ahb_vif", ahb_if);
 uvm_config_db#(virtual eth_if)::set(null, "*", "eth_vif", eth_if);
 run_test();
 end
endmodule

Example	24	‐	top.sv	code	

 v_seq1.sv	Appendix	2.21

This code is shown in Example 3 - v_seq1 - extended from vseq_base - uses `uvm_do_on() macros

 v_seq2.sv	Appendix	2.22

This code is shown in Example 4 - v_seq2 - extended from vseq_base - uses sequence.randomize() and se-
quence.start() methods

 vseq_base.sv	Appendix	2.23

This code is shown in Example 2 - Virtual sequence base class example called vseq_base

 vsequencer.sv	Appendix	2.24

This code is shown in Example 1 - Sample virtual sequencer code

