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Introduction:  What are virtual sequencers and virtuals sequences and when should they be used? 
   
Tests that require coordinated generation of stimulus using multiple driving agents need to use virtual sequences. 
   
This paper will clarify important concepts and usage techniques related to virtual sequencers and virtual sequences 
that are not well documented in existing UVM reference materials. This paper will also detail the m_sequencer and 
p_sequencer handles and the macros and methods that are used with these handles. The objective of this paper is 
to simplify the understanding of virtual sequencers, virtual sequences and how they work. 
 
  
When do you need a virtual sequencer? 
 
Figure 1 shows when virtual sequencers are required. 
 

 
Figure	1	‐	When	is	a	virtual	sequencer	required?	

 
If you only have a single driving agent, you do not need a virtual sequencer. 
 
If you have multiple driving agents but no stimulus coordination is required, you do not need a virtual sequencer.  
 



If you have multiple driving agents and stimulus coordination IS required, you need a virtual sequencer.  
 
It should be noted that if a testbench with multiple agents and non-coordinated stimulus is ever extended in the fu-
ture to require coordinated stimulus, then the environment will require updates to include one or more virtual se-
quencers. Those updates, performed later in the projet, could be quite painful as opposed to building in a virtual se-
quencer from the beginning and taking advantage of the virtual sequencer when needed. Engineers might want to 
make a habit of adding the virtual sequencer in most of their UVM testbenches. 
  
Why "virtual" sequencer/sequence 
 
SystemVerilog has virtual classes, virtual methods and virtual interfaces and all three require the "virtual" keyword. 
 
UVM has virtual sequencers and virtual sequences but neither one requires the "virtual" keyword. There are no 
uvm_virtual_sequencer or uvm_virtual_sequence base classes in UVM. All sequencers and virtual se-
quencers are derivatives of the uvm_sequencer class and all sequences and virtual sequences are derivatives of the 
uvm_sequence class. 
 
So why are virtual sequencers and virtual sequences "virtual?" 
 
Three attributes of a virtual sequencer are: 

 It controls other sequencers. 
 It is not attached to a driver. 
 It does not process items itself. 

 
A virtual sequencer is not connected to a driver. Instead of executing indi-
vidual sequence items on a driver via a sequencer port, it executes sub-
sequences and sequence items on sequencers via  handles to subsequencer 
targets. The UVM User guide[3] sometimes refers to the subsequencers as 
"driver-sequencers." A virtual sequencer is "virtual" because typically an 
engineer is not really running sequences on this sequencer, the sequences 
are being run on the subsequencers via handles defined in the virtual se-
quencer. 
 
A virtual sequence can run multiple transaction types on multiple real se-
quencers. The virtual sequence is typically just coordinating execution of 
the other sequences on the appropriate subsequencers. 
 
3 virtual sequencer modes: 
 
The UVM User Guide describes three ways a user can use virtual sequences 
to interact with subsequencers: (1) "Business as usual" (also known as paral-
lel traffic generation), (2) Disable subsequencers, and (3) Use grab() and 
ungrab(). 
 
The UVM User Guide claims that "most users disable the subsequencers and invoke sequences only from the virtual 
sequence," but our experience and the experience of many verification colleagues is that the most popular virtual 
sequencer mode is parallel tragffic generation, also known as "business as usual." This is the mode that is described 
in this paper. 
 
 
  



How are virtual sequencers implemented? 
 
A virtual sequencer is little more than a component providing a locus and scope to configure virtual sequences and 
provide handles to the subsequencers that will be required by virtual sequences. 
 
The code for a virtual sequencer is rather simple. The subsequencer handles declared in the virtual sequencer will be 
specified, via the configuration database, after all components are built (after the build_phase()) and are typically 
set by the environment in the connect_phase().  
 
Consider the virtual sequencer code in Example 1. 
 

class vsequencer extends uvm_sequencer; 
  `uvm_component_utils(vsequencer) 
  tb_ahb_sequencer ahb_sqr; 
  tb_eth_sequencer eth_sqr; 
   
  function new(string name, uvm_component parent); 
    super.new(name, parent); 
  endfunction 
 
  function void end_of_elaboration_phase(uvm_phase phase); 
    super.end_of_elaboration_phase(phase); 
    if (!uvm_config_db#(tb_ahb_sequencer)::get(this, "ahb_sqr", "", ahb_sqr)) begin 
        `uvm_fatal("VSQR/CFG/NOAHB", "No ahb_sqr specified for this instance"); 
    end 
    if (!uvm_config_db#(tb_eth_sequencer)::get(this, "eth_sqr", "", eth_sqr)) begin 
        `uvm_fatal("VSQR/CFG/NOETH", "No eth_sqr specified for this instance"); 
    end 
  endfunction 
endclass 

Example	1	‐	Sample	virtual	sequencer	code	
 
Example 1 is a typical structure for a virtual sequencer. The user-selected name for this example is vsequencer. 
Virtual sequencers are extended from uvm_sequencer, NOT uvm_virtual_sequencer (which does not exist). 
Unlike normal sequencers, the virtual sequencer of Example 1 is not user-parameterized to a transaction type be-
cause this sequencer will be able to execute multiple transaction types. Extending a virtual sequencer from the 
uvm_sequencer base class without any parameters means that the virtual sequencer will use the default parameter-
ized values of uvm_sequence_item. 
 
The virtual sequencer declares subsequencer handles. In Example 1, the subsequencer handles are called ahb_sqr 
and eth_sqr respectively. These two subsequencer handles will be assigned from values specified in the configura-
tion database during the end_of_elaboration_phase(). 
  
Unlike Transaction Level Model (TLM) connections that are used to connect most components in a UVM testbench, 
the subsequencer handles are not set using a TLM connect() method, but are specified by the environment using 
the configuration database. It is then the job of the virtual sequencer to extract those handles from the configuration 
database and assign them to the two handles declared in the virtual sequencer. The actual subsequencers will be cre-
ated in the build_phase(). Therefore, their handles will only be available to be put in the configuration database 
by the environment in its connect_phase(). Thus, the virtual sequencer will have to retrieve them in the next 
phase: end_of_elaboration_phase(). 
 
Finally, the vsequencer example includes the typical new() constructor that is common to all UVM components. 
 
It can be seen from this example, that the vsequencer is just a container for the handles to subsequencers and other 
configuration parameters. The virtual sequences assume the virtual sequencer has been properly configured before 
the virtual sequences execute in the run_phase(). They can then access these configuration paratemers in the vir-
tual sequencer via their p_sequencer handle. 



 
Sequence Details 
 
Sequences are run on a sequencer and are parameterized to the transaction type that is processed by that sequencer. 
 
Sequences are started on a sequencer using the built-in sequence start() method or by using the `uvm_do() mac-
ros.  
 
Every sequence has a handle to the sequencer that is running that sequence. That handle is called the m_sequencer 
handle. 
 
What is the m_sequencer handle? 
 
All sequences are started on sequencers: tr_seq.start(env.vsqr). The `uvm_do macros also execute this 
command. After starting a sequence on a sequencer, the m_sequencer handle for the sequence is set to env.vsqr. 
The m_sequencer handle is just a handle in every sequence that points to the sequencer that is running that se-
quence and it was set when the start() method was passed the handle of the sequencer (env.vsqr in this case). 
 
Just like any other sequence, when a virtual sequence is started on a virtual sequencer, using either the start() 
method or the `uvm_do macros, the virtual sequence will automatically have an m_sequencer handle that correctly 
points to the virtual sequencer. 
 
What is the p_sequencer handle? 
 
Frequently asked questions include: 

 What is the p_sequencer? 
 How is the p_sequencer different from the m_sequencer? 

 
All sequences have an m_sequencer handle but sequences do not automatically have a p_sequencer handle. Fur-
thermore, the m_sequencer variable is an internal implementation variable that is poorly documented and should 
not be used directly by verification engineers. It is an artifact of the SystemVerilog language, which lacks C++'s 
concept of “friend” classes that this variable is public. Any variable or method with the “m_” prefix should similarly 
not be used directly. 
 
p_sequencer is not automatically declared and set, but can be declared and set by using the 
`uvm_declare_p_sequencer macro. As will be shown later in this paper, the `uvm_declare_p_sequencer 
macro and p_sequencer handle are user-conveniences. 
 
Technically, the p_sequencer handle is never required but when used with the `uvm_declare_p_sequencer 
macro, it is automatically (1) declared, (2) set and (3) checked when a virtual sequence is started, and properly 
points to the virtual sequencer that is running the virtual sequence. 
 
More about the p_sequencer handle and its usage is described below. 
  
What is the `uvm_declare_p_sequencer(SEQUENCER) macro? 
 
The `uvm_declare_p_sequencer macro code is defined in the src/macros/sequence_define.svh file and 
is rather simple code: 
 
  



1  `define uvm_declare_p_sequencer(SEQUENCER) \ 
2    SEQUENCER p_sequencer;\  
3    virtual function void m_set_p_sequencer();\ 
4      super.m_set_p_sequencer(); \ 
5      if( !$cast(p_sequencer, m_sequencer)) \ 
6          `uvm_fatal("DCLPSQ", \ 
7          $sformatf("%m %s Error casting p_sequencer, please verify that this 
7a         sequence/sequence item is intended to execute on this type of sequenc-
er", 
8          get_full_name())) \ 
9    endfunction 

Figure	2	‐	`uvm_declare_p_sequencer	macro	definition	
 
The `uvm_declare_p_sequencer(SEQUENCER) macro executes two useful steps: 
(1) The macro declares a p_sequencer handle of the SEQUENCER type. 
(2) The macro then $casts the m_sequencer handle to the p_sequencer handle and checks to make sure the 
sequencer executing this sequence is of the appropriate type. 
 
A closer look at this macro and what it does is instructive. This macro is typically placed in a sequence base class 
that will be extended to create all of the sequences that use the designated sequencer, virtual or not. 
 
On line 1, the user calls this macro and passes the type of the sequencer that will be used by the sequences. For vir-
tual sequences, this is the class name of the designated virtual sequencer they will execute on. 
 
On line 2, the designated sequencer is declared with the handle name p_sequencer. For the remainder of the code 
in this macro and everywhere else in the user-defined virtual sequence base and extended virtual sequence classes, 
the virtual sequencer will be referenced by the name p_sequencer. From this point forward, there is no need to 
reference the name of the virtual sequencer that is being used, the user can simply reference the p_sequencer (vir-
tual sequencer) handle. This is simply a convenience, not a requirement. 
 
On line 3 is the start of a virtual void function declaration that continues through line 9. The void function is 
called m_set_p_sequencer and this function is called whenever a sequence start() method is called on one of 
the virtual sequences or when a `uvm_do_on() macro is used to start a virtual sequence. 
 
Line 4 ensures that if the virtual sequence is an extension of another virtual sequence, the base virtual sequence will 
also execute its own m_set_p_sequencer method . 
 
Line 5 casts the internal m_sequencer handle, which should be the handle of the virtual sequencer to the local 
p_sequencer handle declared on line 2. The if-test checks to see if the $cast operation failed (!$cast(...)) 
and if the $cast did fail, the fatal message on lines 6-8 will terminate the UVM simulation and report a consistent 
message that there was a problem casting to the specified virtual sequencer type, i.e. the sequence is executing on a 
sequencer of the wrong type. The if-test, $cast operation and corresponding consistent error message are also 
shown in Figure 3. 
 

5      if( !$cast(p_sequencer, m_sequencer)) \ 
6        `uvm_fatal("DCLPSQ", \ 
7        $sformatf("%m %s Error casting p_sequencer, please verify that this 
7a       sequence/sequence item is intended to execute on this type of sequencer", 
8        get_full_name())) \ 

(NOTE: the $sformatf() command is one long string on one line of code, lines 7 & 7a,  in the macro). 

Figure	3	‐	`uvm_declare_p_sequencer:	casts	m_sequencer	to	p_sequencer	
 
 
  



Example virtual sequencer testbench 
 
Trying to describe virtual sequencer testbench construction and operation without a block diagram requires a great 
deal of concentration on the part of the reader, so example files to run virtual sequences on the virtual sequencer 
testbench of Figure 4 will be described in this paper. Any files required to run this simulation that are not described 
in the body of this paper have been added to Appendix 2 at the end of this paper. 
 

 
Figure	4	‐	Example	virtual	sequencer	/	sequence	block	diagram	

 
The virtual sequencer for this testbench was shown in Example 1. All other testbench files will be described in the 
remainder of this paper. 
 
Virtual sequence base classes. 
 
All virtual sequences need access to the subsequencer handles defined in the virtual sequencer. To gain access to the 
subsequencer handles, virtual sequences need to use the `uvm_declare_p_sequencer macro to declare and set 
the p_sequencer variable so the subsequencer handles are readily accessible. 
 
Since every virtual sequence needs to execute these steps, it is recommended to put this code into a virtual sequence 
base class (vseq_base) and then create all virtual sequences by extending the vseq_base class. 
 
  



Example vseq_base 
 
For the virtual sequencer shown in Example 1, we can use the vseq_base definition shown in Example 2. 
 

class vseq_base extends uvm_sequence; 
  `uvm_object_utils(vseq_base) 
  `uvm_declare_p_sequencer(vsequencer) 
 
  function new(string name="vseq_base"); 
    super.new(name); 
  endfunction 
 
  tb_ahb_sequencer ahb_sqr; 
  tb_eth_sequencer eth_sqr; 
 
  virtual task body(); 
    ahb_sqr = p_sequencer.ahb_sqr; 
    eth_sqr = p_sequencer.eth_sqr; 
  endtask 
endclass 

Example	2	‐	Virtual	sequence	base	class		example	called	vseq_base	
 
The vseq_base class uses the `uvm_declare_p_sequencer(vsequencer) macro to declare a p_sequencer 
handle of the vsequencer type. The vseq_base then declares ahb_sqr and eth_sqr handles of the same types 
that were declared in the virtual sequencer shown in Example 1. The vseq_base then copies the virtual sequencer 
(p_sequencer) ahb_sqr and eth_sqr handles to the local ahb_sqr and eth_sqr handles. The vseq_base class 
used the p_sequencer handle (which should have been properly assigned by the `uvm_declare_p_sequencer 
macro) to copy the handles from the virtual sequencer to this virtual sequence base class. Using the 
`uvm_declare_p_sequencer macro, it was not necessary for the vseq_base class to check the type of the vse-
quencer class since the macro setup a void function to perform that check. 
 
Note that the vseq_base class assumes that the handles were already set in the virtual sequencer. It is the job of the 
enviroinment to ensure that the subsequencer handles are properly set. 
 
Creating virtual sequences 
 
Once the virtual sequence base class has been created, it is possible to create virtual sequences that are an extension 
of the virtual sequence base class. Every virtual sequence that is extended from the virtual base class inherits the 
subsequencer handles of the correct type, and already properly assigned. 
 
Consider the two virtual sequence examples shown in Example 3 and Example 4. These sequences are examples of 
virtual sequences that are extensions of the base virtual sequence shown in Example 2. 
 
There are two accepted methods for executing sequences in UVM: (1) use the `uvm_do macros, which are generally 
considered to be the easiest to use but may also be less simulation efficient (because the subsequences are always 
allocated and randomized before being executed) and more difficult to understand if the user ever expands the 
`uvm_do macro code, and (2) use explicit allocation, and direct assignments or calls to randomize() before using 
the start() method to execute the sequences on the chosen subsequencer, which is generally considered to require 
more user-coding effort but that are straightforward and allow the creation and execution of more directed sequenc-
es. 
 
The Example 3 vitual sequence uses the `uvm_do macros to run a virtual sequence to randomly generate pseudo-
AHB packets followed by two sequences of pseudo-Ethernet packtes and concludes with another sequence of pseu-
do-AHB packets. The code for the pseudo-ethernet and AHB transactions, along with the Ethernet and AHB se-
quences, and the test that runs v_seq1 will be shown later. 
 



class v_seq1 extends vseq_base; 
  `uvm_object_utils(v_seq1) 
 
  function new(string name="v_seq1"); 
    super.new(name); 
  endfunction 
 
  virtual task body(); 
    ahb_seq1 ahb_seq; 
    eth_seq1 eth_pkts; 
    //--------------------------------------------------- 
    super.body(); 
    `uvm_info("v_seq1", "Executing sequence", UVM_HIGH) 
    `uvm_do_on(ahb_seq,  ahb_sqr) 
    `uvm_do_on(eth_pkts, eth_sqr) 
    `uvm_do_on(eth_pkts, eth_sqr) 
    `uvm_do_on(ahb_seq,  ahb_sqr) 
    `uvm_info("v_seq1", "Sequence complete", UVM_HIGH)    
  endtask 
endclass 

Example	3	‐	v_seq1	‐	extended	from	vseq_base	‐	uses	`uvm_do_on()	macros	
 
The Example 4 vitual sequence uses calls to the randomize() and start() methods to run a virtual sequence to 
randomly generate pseudo-AHB packets followed by two sequences of pseudo-Ethernet packtes and concludes with 
another sequence of pseudo-AHB packets. The code for the pseudo-ethernet and AHB packets, along with the 
Ethernet and AHB sequences, and the test that runs v_seq2 will be shown later. 
 

class v_seq2 extends vseq_base; 
  `uvm_object_utils(v_seq2) 
 
  function new(string name="v_seq2"); 
    super.new(name); 
  endfunction 
 
  virtual task body(); 
    ahb_seq1 ahb_seq = ahb_seq1::type_id::create("ahb_seq"); 
    eth_seq1 eth_seq = eth_seq1::type_id::create("eth_seq"); 
    //--------------------------------------------------- 
    super.body(); 
    `uvm_info("v_seq2", "Executing sequence", UVM_HIGH) 
    if(!ahb_seq.randomize()) `uvm_error("RAND","FAILED"); 
    ahb_seq.start(ahb_sqr); 
    if(!eth_seq.randomize()) `uvm_error("RAND","FAILED"); 
    eth_seq.start(eth_sqr); 
    if(!eth_seq.randomize()) `uvm_error("RAND","FAILED"); 
    eth_seq.start(eth_sqr); 
    if(!ahb_seq.randomize()) `uvm_error("RAND","FAILED"); 
    ahb_seq.start(ahb_sqr); 
    `uvm_info("v_seq2", "Sequence complete", UVM_HIGH)    
  endtask 
endclass 

Example	4	‐	v_seq2	‐	extended	from	vseq_base	‐	uses	sequence.randomize()	and	sequence.start()	methods	
 
Calling sequences from virtual sequences 
 
One important feature of virtual sequences is that they can run exsiting sequences without modification. The user 
can create a library of sequences that are used to test individual subblocks and then use the same sequences in a co-
ordinated virtual sequence to test multiple subblocks using the original subblock sequence libraries. There is no need 
to re-code or modify the subblock sequences. 
 



Consider the pseudo AHB packet code shown Example 5. This is a "pseudo-AHB packet" because it only contains 
two non-standard AHB fields and an example DUT will recognize when these fields have been sent to the DUT and 
print that information to the screen for examination. 
 

class ahb_pkt extends uvm_sequence_item; 
  `uvm_object_utils(ahb_pkt) 
  rand bit [31:0] addr; 
  rand bit [63:0] data; 
 
  function new(string name="ahb_pkt"); 
    super.new(name); 
  endfunction 
 
  virtual function string convert2string(); 
    return $sformatf("addr=%8h, data=%16h", addr, data); 
  endfunction 
endclass 

Example	5	‐	ahb_pkt.sv	‐	pseudo	AHB	packet	code	
 
Consider the AHB sequence code shown Example 6. This simple AHB sequence randomly generates 2-5 AHB 
packets. The virtual sequences in Example 3 and Example 4 send this randomly generated set of AHB packets to the 
ahb_sqr handle declared in the vsequencer component. 
 

class ahb_seq1 extends uvm_sequence #(ahb_pkt); 
  `uvm_object_utils(ahb_seq1); 
 
  rand int cnt; 
  constraint c1 {cnt inside {[2:5]};} 
 
  function new(string name = "ahb_seq1"); 
    super.new(name); 
  endfunction 
 
  virtual task body(); 
    ahb_pkt ahb_pkt1; 
    `uvm_info("AHBcnt", $sformatf("** Loop cnt=%0d **", cnt), UVM_MEDIUM) 
    repeat(cnt) `uvm_do(ahb_pkt1) 
  endtask 
endclass 

Example	6	‐	ahb_seq1.sv	‐	AHB	sequence	code	called	by	virtual	sequences	
 
Consider the pseudo Ethernet packet code shown Example 7. This is a "pseudo-Ethernet packet" because it only 
contains two non-standard Ethernet fields and an example DUT will recognize when these fields have been sent to 
the DUT and print that information to the screen for examination. 
 

class eth_pkt extends uvm_sequence_item; 
  `uvm_object_utils(eth_pkt) 
  rand bit [47:0] src; 
  rand bit [47:0] dst; 
 
  function new(string name="eth_pkt"); 
    super.new(name); 
  endfunction 
 
  function string convert2string(); 
    return $sformatf("src=%12h, dst=%12h", src, dst); 
  endfunction 
endclass 

Example	7	‐	eth_pkt.sv	‐	pseudo	Ethernet	packet	code	
 



Consider the Ethernet sequence code shown Example 8. This simple Ethernet sequence randomly generates 2-4 
Ethernet packets. The virtual sequences in Example 3 and Example 4 send this randomly generated set of Ethernet 
packets to the eth_sqr handle declared in the vsequencer component. 
 

class eth_seq1 extends uvm_sequence #(eth_pkt); 
  `uvm_object_utils(eth_seq1); 
 
  rand int cnt; 
  constraint c1 {cnt inside {[2:4]};} 
 
  function new(string name = "eth_seq1"); 
    super.new(name); 
  endfunction 
 
  virtual task body(); 
    eth_pkt eth_pkt1 = eth_pkt::type_id::create("eth_pkt1"); 
    `uvm_info("ETHcnt", $sformatf("** Loop cnt=%0d **", cnt), UVM_MEDIUM) 
    repeat(cnt) begin 
      start_item(eth_pkt1); 
      if(!eth_pkt1.randomize()) `uvm_error("RAND", "FAILED") 
      finish_item(eth_pkt1); 
    end 
  endtask 
endclass 

Example	8	‐	eth_seq1.sv	‐	Ethernet	sequence	code	called	by	virtual	sequences	
 
Starting virtual sequences 
 
In general, virtual sequences are started from a test using the sequence start() method. The `uvm_do_on macro 
cannot be called from a test component. The `uvm_do_on macro is only called from derivatives of sequences. This 
was a bit tricky to determine but even if a `uvm_do_on is called from a test on a valid virtual sequencer handle, the 
`uvm_do_on macro calls methods that are defined in the uvm_sequence_base class located in the 
uvm/src/seq/uvm_sequence_base.svh file. The required methods are create_item(), start_item() and 
finish_item() and none of these methods are available in the uvm_test base class or any other 
uvm_component class or derivative. 
 
It is a good idea to create a test_base class with common declarations and methods that will be used by every 
other test in the verification suite. The test_base class shown in Example 9, declares the environment handle and 
creates the environment in the build_phase(). These actions will not need to be repeated in tests that extend this 
test_base class. This test_base also includes a start_of_simulation_phase() to print the testbench struc-
ture and factory contents before the simulation executes in the run_phase(). It is useful to print the testbench 
structure and factory contents in the start_of_simulation_phase() because troubles most often appear in the 
run_phase() so these pre-run printouts can help diagnose if any components were incorrectly constructed or if 
some of the testbench classes were omitted from the factory. 
 
  



`timescale 1ns/1ns 
class test_base extends uvm_test; 
  `uvm_component_utils(test_base) 
 
  env e; 
   
  function new(string name, uvm_component parent); 
    super.new(name, parent); 
  endfunction 
 
  function void build_phase(uvm_phase phase); 
    super.build_phase(phase); 
    e = env::type_id::create("e", this); 
  endfunction 
 
  function void start_of_simulation_phase(uvm_phase phase); 
    super.start_of_simulation_phase(phase); 
    if (uvm_report_enabled(UVM_HIGH)) begin 
      this.print(); 
      factory.print(); 
    end 
  endfunction 
endclass 

Example	9	‐	test_base.sv	‐	declares	and	builds	the	environment	and	prints	the	testbench	structure	
 
Once a test_base class is coded, each of the tests can extend the test_base to create the individual tests. Exam-
ple 10 shows the test1 class definition that is extended from the test_base class. The test1 example defines the 
run_phase() for this test, which declares the first virtual sequence ( v_seq1 ) handle vseq and creates the vseq 
object. The test then calls the raise_objection() method, prints a message, calls the start() method on the 
vseq sequence and passes the environment-virtual sequencer path ( e.v_sqr ) to the start() method. Once the 
virtual sequence has completed, the test prints one more message and then calls the drop_objection() method 
and finishs. 
 

`timescale 1ns/1ns 
class test1 extends test_base; 
  `uvm_component_utils(test1) 
 
  function new(string name, uvm_component parent); 
    super.new(name, parent); 
  endfunction 
 
  task run_phase(uvm_phase phase); 
    v_seq1 vseq = v_seq1::type_id::create("vseq"); 
    uvm_test_done.raise_objection(this); 
    `uvm_info("test1 run", "Starting test", UVM_MEDIUM) 
    vseq.start(e.v_sqr); 
    `uvm_info("test1 run", "Ending test", UVM_MEDIUM) 
    uvm_test_done.drop_objection(this); 
  endtask 
endclass 

Example	10	‐	test1.sv	‐	declares	a	v_seq1	vseq	handle	and	calls	vseq.start(e.v_sqr)	
 
The test2 code in Example 11 does the same thing as the test1 code of Example 10 except that the test2 code 
declares the vseq handle to be the second virtual sequence type, v_seq2. 
 
  



`timescale 1ns/1ns 
class test2 extends test_base; 
  `uvm_component_utils(test2) 
   
  function new(string name, uvm_component parent); 
    super.new(name, parent); 
  endfunction 
 
  task run_phase(uvm_phase phase); 
    v_seq2 vseq = v_seq2::type_id::create("vseq"); 
    uvm_test_done.raise_objection(this); 
    `uvm_info("test2 run", "Starting test", UVM_MEDIUM) 
    vseq.start(e.v_sqr); 
    `uvm_info("test2 run", "Ending test", UVM_MEDIUM) 
    uvm_test_done.drop_objection(this); 
  endtask 
endclass 

Example	11	‐	test2.sv	‐	declares	a	v_seq2	vseq	handle	and	calls	vseq.start(e.v_sqr)	
 
The environment sets the handles in the virtual sequencer 
 
The environment code shown in Example 12 is pretty typical environment code with the exceptions that it declares a 
virtual sequencer handle (vsequencer v_sqr), builds the virtual sequencer, and stores the Ethernet (eth_agnt) 
and AHB (ahb_agnt) sequencer handles (sqr and sqr) in the configuration database . As was discussed in the 
section "How are virtual sequencers implemented?" the virtual sequencer handles are stored in the configuration 
database by the environment in the connect_phase() for retrieval by the virtual sequencer in the 
end_of_elaboration() phase as opposed to using TLM connections that connect most testbench components. 
 

class env extends uvm_env; 
  `uvm_component_utils(env) 
 
  tb_eth_agent   eth_agnt; 
  tb_ahb_agent   ahb_agnt; 
  vsequencer        v_sqr; 
 
  function new(string name, uvm_component parent); 
    super.new(name, parent); 
  endfunction 
 
  function void build_phase(uvm_phase phase); 
    super.build_phase(phase); 
    eth_agnt  =  tb_eth_agent::type_id::create("eth_agnt", this); 
    ahb_agnt  =  tb_ahb_agent::type_id::create("ahb_agnt", this); 
    v_sqr     =    vsequencer::type_id::create("v_sqr"   , this); 
  endfunction 
 
  function void connect_phase(uvm_phase phase); 
    super.connect_phase(phase); 
    uvm_config_db#(tb_ahb_sequencer)::set(this,"*","ahb_sqr",ahb_agnt.sqr); 
    uvm_config_db#(tb_eth_sequencer)::set(this,"*","eth_sqr",eth_agnt.sqr); 
  endfunction 
endclass 

Example	12	‐	env.sv	‐	Environment	with	virtual	sequencer	
 
  



m_sequencer handle creation - details 
  
For those readers who want to know the details about how the m_sequencer handle is created inside of UVM, see 
Appendix 1. 
 
Summary 
 
This paper describes the necessary steps to create a working virtual sequencer environment and explains the purpose 
of m_sequencer and p_sequencer handles and the `uvm_declare_p_sequencer macro. These are topics that 
are often confusing to new and experienced UVM verification engineers. 
 
This paper also includes all the code necessary to test the example described in this paper.  
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 m_sequencer	handle	creation	‐	details	Appendix	1
  
If you trust that the m_sequencer handle is properly created in the UVM Base Class Library (BCL) and if you don't 
care how the m_sequencer handle is created, then you do not need to read this section. This section is included for 
those who wish to understand the details of how UVM creates the m_sequencer handle.  
 
Finding the correct UVM base class routines to create the m_sequencer handle is a bit tricky. Assuming the use of 
a sequence called tr_seq, that is started on the e (environment) agnt1 (agent) sqr (sequencer), here is how the 
m_sequencer handle is created: 
 
(1) All sequences are started on sequencers: tr_seq.start(e.agnt1.sqr); 
 
(2) uvm_sequence inherits the start() method from the uvm_sequence_base class. 
 
(3) The inherited start() task is defined as shown in Figure 5. 
 

  virtual task start (uvm_sequencer_base sequencer, 
                      uvm_sequence_base parent_sequence = null, 
                      int this_priority = -1, 
                      bit call_pre_post = 1); 
    set_item_context(parent_sequence, sequencer); 

Figure	5	‐	start()	task	method	definition	
 
Typically only the sequencer handle is passed to the start() method and then uvm_sequence_base calls 
set_item_context(null, e.agnt1.sqr); 
 
(4) The set_item_context() method is defined in the uvm_sequence_item class, which is inherited by the 
uvm_sequence_base and uvm_sequence classes. 
 
(5) The set_item_context() method calls the set_sequencer(e.agnt1.sqr) method. 
 
(6) The set_sequencer() method is defined in the uvm_sequence_item class (inherited by 
uvm_sequence_base and uvm_sequence). 
 
(7) The set_sequencer() method sets the m_sequencer handle, declared to be a protected 
uvm_sequencer_base handle in the uvm_sequence_item class. 
 

protected  uvm_sequencer_base m_sequencer; 
… 
virtual function void set_sequencer(uvm_sequencer_base sequencer); 
  m_sequencer = sequencer; 
  m_set_p_sequencer(); 
endfunction 

Figure	6	‐	protected	uvm_sequencer_base	m_sequencer	declaration	and	set_sequencer()	method	
 
To summarize, the tr_seq.start() method passes a sequencer handle to the set_item_context() method, 
which passes the handle to the set_sequencer() method, which sets the m_sequencer handle. The 
m_sequencer handle is a handle to the sequencer that is running this sequence ( tr_seq in this example). The 
m_sequencer handle can be retrieved by calling the get_sequencer() method. 

 
 



 UVM	virtual	sequencer	/sequence	example	code	Appendix	2
  
The code that corresponds to the virtual sequencer testbench shown in Figure 4 is included in this appendix. Each of 
the files for this example are listed in alphabetical order in the appendix subsections. 

 ahb_if.sv	Appendix	2.1
 

interface ahb_if; 
  logic [31:0] ahb_addr; 
  logic [63:0] ahb_data; 
endinterface 

Example	13	‐	ahb_if.sv	code	

 ahb_pkt.sv	Appendix	2.2
 
This code is shown in Example 5 - ahb_pkt.sv - pseudo AHB packet code 

 ahb_seq1.sv	Appendix	2.3
 
This code is shown in Example 6 - ahb_seq1.sv - AHB sequence code called by virtual sequences 

 dut.sv	Appendix	2.4
 

module dut ( 
  input logic [31:0] ahb_addr, 
  input logic [63:0] ahb_data, 
  input logic [47:0] eth_src, 
  input logic [47:0] eth_dst ); 
   
  import uvm_pkg::*; 
  `include "uvm_macros.svh" 
 
  always @* begin 
    `uvm_info("DUT AHB",  $sformatf("ahb_addr=%8h       ahb_data=%16h", 
                                     ahb_addr, ahb_data), UVM_MEDIUM); 
  end 
 
  always @* begin 
    `uvm_info("DUT ETH",  $sformatf("eth_src =%12h   eth_dst =%12h", 
                                     eth_src, eth_dst), UVM_MEDIUM); 
  end 
endmodule 

Example	14	‐	dut.sv	code	

 env.sv	Appendix	2.5
 
This code is shown in Example 12 - env.sv - Environment with virtual sequencer 

 eth_if.sv	Appendix	2.6
 

interface eth_if; 
  logic [47:0] eth_src; 
  logic [47:0] eth_dst; 
endinterface 

Example	15	‐	eth_if.sv	



 eth_pkt.sv	Appendix	2.7
 
This code is shown in Example 7 - eth_pkt.sv - pseudo Ethernet packet code 

 eth_seq1.sv	Appendix	2.8
 
This code is shown in Example 8 - eth_seq1.sv - Ethernet sequence code called by virtual sequences 

 run.f	Appendix	2.9
 

tb_pkg.sv 
top.sv 
dut.sv 
ahb_if.sv 
eth_if.sv 

Example	16	‐	run.f	code	
 

 tb_ahb_agent.sv	Appendix	2.10
 

class tb_ahb_agent extends uvm_agent; 
  `uvm_component_utils(tb_ahb_agent) 
 
  virtual ahb_if vif; 
 
  tb_ahb_driver    drv; 
  tb_ahb_sequencer sqr; 
  
  function new(string name, uvm_component parent); 
    super.new(name, parent); 
  endfunction 
 
  virtual function void build_phase(uvm_phase phase); 
    super.build_phase(phase); 
    // Instantiate driver and sequencer for AHB agent 
    drv =    tb_ahb_driver::type_id::create("drv", this); 
    sqr = tb_ahb_sequencer::type_id::create("sqr", this); 
    get_vif(); 
  endfunction 
 
  virtual function void connect_phase(uvm_phase phase); 
    super.connect_phase(phase); 
    drv.seq_item_port.connect(sqr.seq_item_export); 
    drv.vif = vif; 
  endfunction 
 
  function void get_vif; 
    if(!uvm_config_db#(virtual ahb_if)::get(this,"","ahb_vif",vif)) 
        `uvm_fatal("NOVIF",{"virtual interface must be set for:", 
                      get_full_name(),".vif"}) 
  endfunction 
endclass 

Example	17	‐	tb_ahb_agent.sv	code	
 



 tb_ahb_driver.sv	Appendix	2.11
 

class tb_ahb_driver extends uvm_driver #(ahb_pkt); 
  `uvm_component_utils(tb_ahb_driver) 
 
  virtual ahb_if vif; 
   
  function new(string name, uvm_component parent); 
    super.new(name, parent); 
  endfunction 
 
  task run_phase(uvm_phase phase); 
    ahb_pkt apkt; 
    forever begin 
      seq_item_port.get_next_item(apkt);  
      drive_item(apkt); 
      seq_item_port.item_done(); 
    end  
  endtask 
   
  task drive_item(ahb_pkt tr); 
    `uvm_info("ahb_driver-run", "Driving AHB transaction...", UVM_HIGH) 
    #134; 
    vif.ahb_addr= tr.addr; 
    vif.ahb_data= tr.data; 
    `uvm_info("ahb_driver-run", "Finished AHB transaction...", UVM_HIGH) 
  endtask 
endclass 

Example	18	‐	tb_ahb_driver.sv	code	
 

 tb_ahb_sequencer.sv	Appendix	2.12
 

class tb_ahb_sequencer extends uvm_sequencer #(ahb_pkt); 
  `uvm_component_utils(tb_ahb_sequencer) 
   
  function new(string name, uvm_component parent); 
    super.new(name, parent); 
  endfunction 
endclass  

Example	19	‐	tb_ahb_sequencer.sv	code	
 



 tb_eth_agent.sv	Appendix	2.13
 

class tb_eth_agent extends uvm_agent; 
  `uvm_component_utils(tb_eth_agent) 
 
  virtual eth_if vif; 
 
  tb_eth_driver    drv; 
  tb_eth_sequencer sqr; 
  
  function new(string name, uvm_component parent); 
    super.new(name, parent); 
  endfunction 
 
  function void build_phase(uvm_phase phase); 
    super.build_phase(phase); 
    // Instantiate driver and sequencer for ethernet agent 
    drv =    tb_eth_driver::type_id::create("drv", this); 
    sqr = tb_eth_sequencer::type_id::create("sqr", this); 
    get_vif(); 
  endfunction 
 
  function void connect_phase(uvm_phase phase); 
    super.connect_phase(phase); 
    drv.seq_item_port.connect(sqr.seq_item_export); 
    drv.vif = vif; 
  endfunction 
 
  function void get_vif; 
    if(!uvm_config_db#(virtual eth_if)::get(this,"","eth_vif",vif)) 
        `uvm_fatal("NOVIF",{"virtual interface must be set for:", 
                          get_full_name(),".vif"}) 
  endfunction 
endclass 

Example	20	‐	tb_eth_agent.sv	code	
 



 tb_eth_driver.sv	Appendix	2.14
 

class tb_eth_driver extends uvm_driver #(eth_pkt); 
  `uvm_component_utils(tb_eth_driver) 
 
  virtual eth_if vif; 
   
  function new(string name, uvm_component parent); 
    super.new(name, parent); 
  endfunction 
 
  task run_phase(uvm_phase phase); 
    eth_pkt epkt; 
    forever begin 
      seq_item_port.get_next_item(epkt);  
      drive_item(epkt); 
      seq_item_port.item_done(); 
    end  
  endtask 
   
  task drive_item(eth_pkt tr); 
    `uvm_info("eth_driver-run", "Driving ETH transaction...", UVM_HIGH) 
    #90; 
    vif.eth_src = tr.src; 
    vif.eth_dst = tr.dst; 
    `uvm_info("eth_driver-run", "Finished ETH transaction...", UVM_HIGH) 
  endtask 
endclass 

Example	21	‐	tb_eth_driver.sv	code	
 

 tb_eth_sequencer.sv	Appendix	2.15
 

class tb_eth_sequencer extends uvm_sequencer #(eth_pkt); 
  `uvm_component_utils(tb_eth_sequencer) 
   
  function new(string name, uvm_component parent); 
    super.new(name, parent); 
  endfunction 
endclass  

Example	22	‐	tb_eth_sequencer.sv	code	
 



 tb_pkg.sv	Appendix	2.16
 

package tb_pkg; 
  import uvm_pkg::*; 
  `include "uvm_macros.svh" 
 
  `include "eth_pkt.sv" 
  `include "ahb_pkt.sv" 
  `include "ahb_transaction.sv" 
 
  `include "eth_seq1.sv" 
  `include "ahb_seq1.sv" 
 
  `include "tb_eth_driver.sv" 
  `include "tb_eth_sequencer.sv" 
  `include "tb_eth_agent.sv" 
 
  `include "tb_ahb_driver.sv" 
  `include "tb_ahb_sequencer.sv" 
  `include "tb_ahb_agent.sv" 
 
  `include "vsequencer.sv" 
 
  `include "vseq_base.sv" 
  `include "v_seq1.sv" 
  `include "v_seq2.sv" 
 
  `include "env.sv" 
 
  `include "test_base.sv" 
  `include "test1.sv" 
  `include "test2.sv" 
endpackage 

Example	23	‐	tb_pkg.sv	code	
 

 test1.sv	Appendix	2.17
 
This code is shown in Example 10 - test1.sv - declares a v_seq1 vseq handle and calls vseq.start(e.v_sqr) 

 test2.sv	Appendix	2.18
 
This code is shown in Example 11 - test2.sv - declares a v_seq2 vseq handle and calls vseq.start(e.v_sqr) 

 test_base.sv	Appendix	2.19
 
This code is shown in Example 9 - test_base.sv - declares and builds the environment and prints the testbench struc-
ture 



 top.sv	Appendix	2.20
 

`timescale 1ns/1ns 
`include "uvm_macros.svh" 
 
// Example of virtual sequences controlling two sub-sequencers...  
// one for Ethernet and one for AHB 
module top; 
  import uvm_pkg::*; 
  import  tb_pkg::*; 
 
  dut    dut (.ahb_addr(ahb_if.ahb_addr), .ahb_data(ahb_if.ahb_data),  
              .eth_src (eth_if.eth_src),  .eth_dst (eth_if.eth_dst)); 
 
  ahb_if ahb_if (); 
  eth_if eth_if (); 
 
  initial begin 
    uvm_config_db#(virtual ahb_if)::set(null, "*", "ahb_vif", ahb_if); 
    uvm_config_db#(virtual eth_if)::set(null, "*", "eth_vif", eth_if); 
    run_test(); 
  end 
endmodule 

Example	24	‐	top.sv	code	
 

 v_seq1.sv	Appendix	2.21
 
This code is shown in Example 3 - v_seq1 - extended from vseq_base - uses `uvm_do_on() macros 

 v_seq2.sv	Appendix	2.22
 
This code is shown in Example 4 - v_seq2 - extended from vseq_base - uses sequence.randomize() and se-
quence.start() methods 

 vseq_base.sv	Appendix	2.23
 
This code is shown in Example 2 - Virtual sequence base class  example called vseq_base 

 vsequencer.sv	Appendix	2.24
 
This code is shown in Example 1 - Sample virtual sequencer code 


