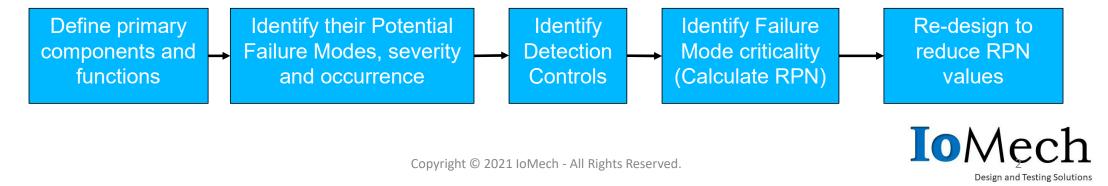
FAD-FMEA


Functional Analysis Diagrams- assisted FMEA processes

What is FMEA?

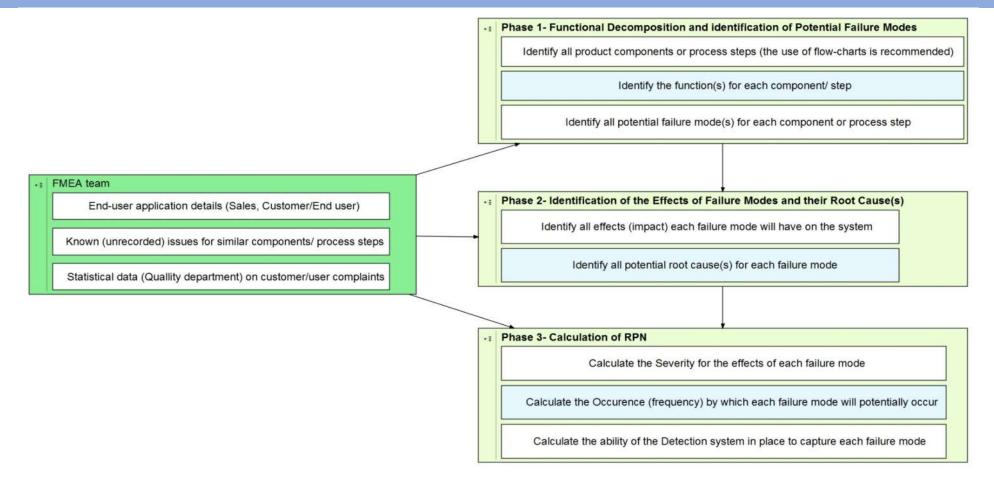
Failure Mode and Effects Analysis (FMEA) is a systematic, cross-disciplinary process, aiming to identify and address any potential failure modes (ways in which the product or process can fail to deliver its intended functions) within a product design or process

Based on the *Systems' Engineering* approach, FMEA involves the *Functional Decomposition* of a product or process in order to identify the ways in which a system can fail and evaluate the criticality of these failures. FMEA can be conducted at high level (e.g., the product) or lower levels (e.g., a sub-system). The FMEA process steps are as follows:

Why conducting FMEA?

- Initially developed for the Defence and Aerospace industries in the 1950s, FMEA processes are nowadays included in standard quality processes such as the Advanced Product Quality Planning (APQP) and the Production Part Approval Process (PPAP)
- FMEA can be conducted independently or as part of APQP/PPAP during product/process design or redesign processes
- FMEA processes can reduce the Time to Market and improve product quality when conducted early in the design process

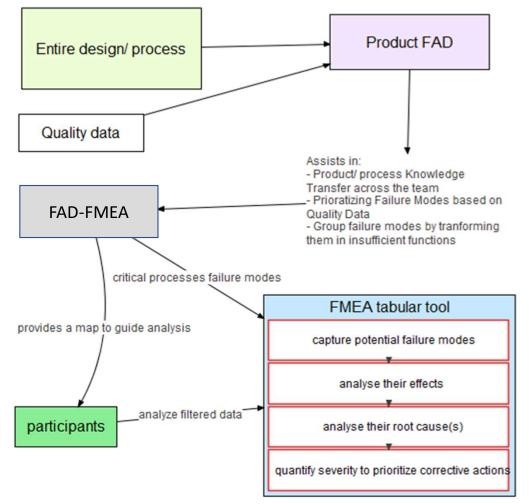
Who is involved with FMEA?


FMEA processes require the input of all actors involved with the product. An example of these actors can be:

- Market Research or Customer representative
- Quality Assurance
- Design Engineering (Mechanical/ Electrical/ Software)
- Production Engineering
- Service/ maintenance
- Logistics

The FMEA team should be diverse enough and include all product stakeholders, while small enough to minimise disruption.

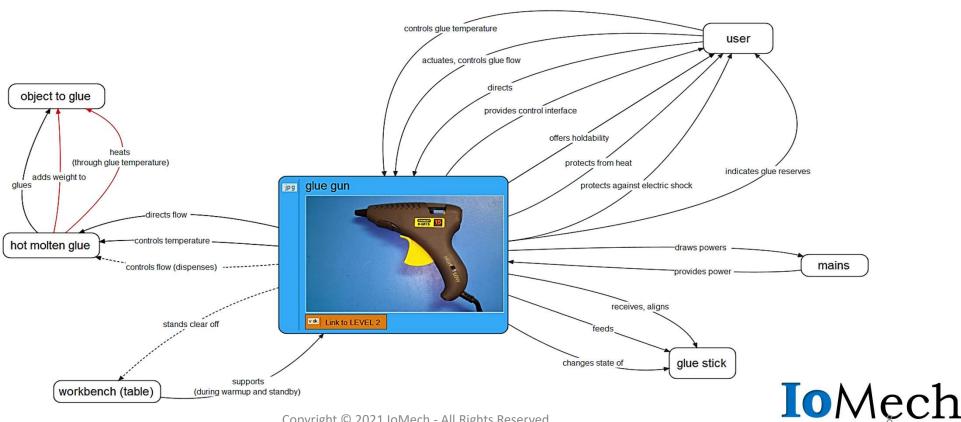
FMEA: How is it done?



FMEA: How is it normally done?

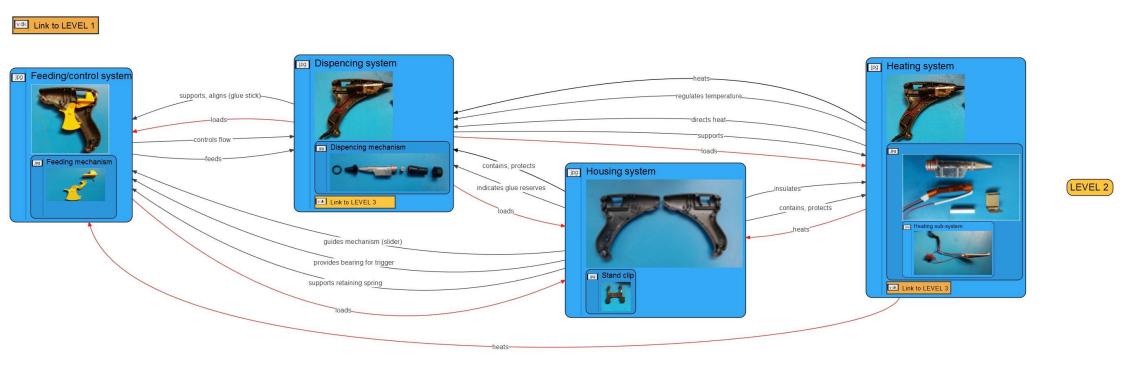
						Current Design					
Component/ Process Step	Function/ Requirement	Potential Failure Mode	Potential Effect(s) of Failure	Severity	Potential Cause(s) of Failure	Controls Prevention	Occurence	Controls Detection	Detection	RPN	Recommended Action
O-ring housing (piston)	provides sealing faces	leak	oil out of the spring and force loss	8	surface finish, debris		3	surface finish testing/ visual	4	96	Review surface inspection procedure
	controls squeeze		oil out of the spring and force loss	8	dimensions, concentricity		2	dim. Inspection	2	32	No action required
	allows safe assembly	leak	oil out of the spring and force loss	8	burrs, sharp edges		3	visual	2	48	No action required
O-ring groove (rod)	provides sealing faces		oil out of the spring and force loss	8	surface finish, debris		2	surface finish testing/ visual	2	32	No action required
	controls squeeze	leak	oil out of the spring and force loss	8	dimensions, concentricity	design, manufacturing	2	dim. Inspection	2	32	No action required
O-ring	seals	leak	oil out of the spring and force loss	8	seal out of spec or defecti <i>v</i> e	and inspection processes	1	visual	8	64	No action required
spool stem	provides sealing faces		oil out of the spring and force loss	8	suface finish		3	surface finish testing	2	48	No action required
	controls squeeze	leak	oil out of the spring and force loss	8	dimensions, concentricity		3	dim. Inspection	2	48	No action required

What is FAD-FMEA?


FAD-FMEA was developed to optimise the recourse-efficiency of the FMEA process, and in particular, its initial phase

The FAD-FMEA process involves the development of FAD models of the system in liaison with the FMEA team, before the FMEA sessions

The FAD models provide an intuitive communication platform, assisting the team members to contribute


Develop a FAD model of the product at "Level 1", showing its functional interactions with its environment LEVEL 1

Design and Testing Solutions

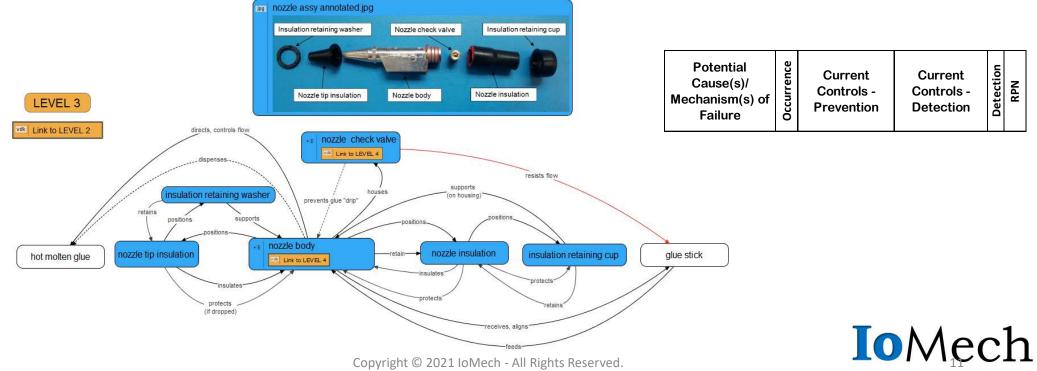
Copyright © 2021 IoMech - All Rights Reserved.

Develop a FAD model of the product at "Level 2", showing the primary sub-systems and their functional interactions

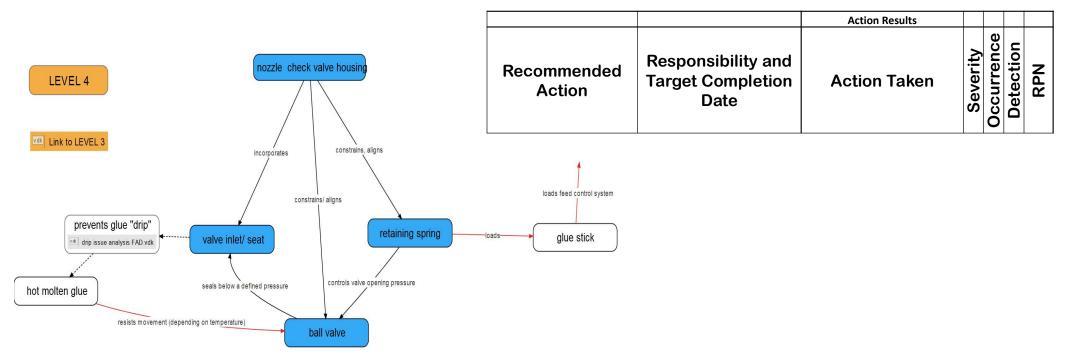
Design and Testing Solutions

IoMech

Use the FAD models to populate the FMEA sheet at sub-system level with potential failure modes, effects and severity. Market Research/ customer representatives should be present at this stage.


Component/sub- system	Function/ Requirement	Potential Failure Mode	Potential Effect(s) of Failure	Severity
	control hot glue	excessive glue flow	damage object to glue	8
Dispensing sub- system	flow	Low glue flow	prolong process	-
	direct hot glue	miss glue target	damage object to glue	8
	melts glue (changes state)	glue is solid- no flow	cannot glue object	2
Heating sub sustan		glue is not hot	weak bonding	2
Heating sub-system	regulates hot glue temperature	enough	overload/damage feed system	9
		glue is too hot	damage object to glue	80
	houses/ protects components	Insecure components	limited service life	9
Housing sub- system	insulates heat	heat is transferred to user's hands	minor health hazard	00
	insulates mains	fails to insulate mains	major health hazard	9
Feed/control sub-	interfaces with user	no response on user's input	weak bonding	2
system	displace glue stick	fails to displace glue stick	cannot glue object	2

Populate the potential causes, occurrence, prevention/detection controls and detection to calculate the Risk Priority Number (RPN) for each failure mode.


Quality Assurance and Engineering representatives should be present at this stage.

FAD models at lower levels can greatly assist identifying potential causes as well as determining the recommended actions

Design and Testing Solutions

The recommended actions, completion date and responsivity are populated for failure modes with high RPN values*. The RPN values are re-calculated after the actions are complete. Functional models at lower levels can significantly assist with the investigation and re-design

* There is no universally accepted threshold for RPN. However, values above 100 or the highest three are normally actioned

Resources

Severity Rating Scale

Occurrence Rating Scale

Detection Rating Scale

Rating	Description	Definition (Severity of Effect)	Rating	Description	Potential Failure Rate	Rating	Description	Definition	
10	Dangerously high	Failure could injure the customer or an employee.	10	Very High: Failure is al- most inevitable.	More than one occurrence per day or a probability of more than three occurrences in 10 events ($C_{pk} < 0.33$).	10	Absolute Uncertainty	The product is not inspected or the defect caused by failure is not detectable.	
9	Extremely high	Failure would create noncompliance with fed- eral regulations.	9	High: Failures occur almost as often as not.	One occurrence every three to four days or a probability of three occurrences in 10 events (Cpk $\approx .0.23$).	9	Very Remote	Product is sampled, inspected, and released based on Acceptable Quality Level (AQL) sampling plans.	
8	Very high	Failure renders the unit inoperable or unfit for use.	8	High: Re- peated failures.	One occurrence per week or a probability of 5 occurrences in 100 events ($C_{pk} \approx$	8	Remote	Product is accepted based on no defectives in a sample.	
7	High	Failure causes a high degree of customer dis- satisfaction.			0.67). One occurrence every month or one occur-	7	Very Low	Product is 100% manually inspected in the process.	
6	Moderate	Failure results in a subsystem or partial mal- function of the product.	7	High: Failures occur often.	rence in 100 events ($C_{pk} \approx 0.83$).	6	Low	Product is 100% manually inspected using go/no-go or other mistake-proofing gages.	
5	Low	Failure creates enough of a performance loss to cause the customer to complain.	6	Moderately High: Frequent failures.	One occurrence every three months or three occurrences in 1,000 events (C $_{pk} \approx$ 1.00).			Some Statistical Process Control (SPC) is used	
4	Very Low	Failure can be overcome with modifications to the customer's process or product, but there is	5	Moderate: Oc- casional fail- ures.	One occurrence every six months to one year or five occurrences in 10,000 events ($C_{pk} \approx 1.17$).	5	Moderate	in process and product is final inspected off- line.	
	,	minor performance loss.				4	Moderately High	SPC is used and there is immediate reaction to out-of-control conditions.	
3	Minor	Failure would create a minor nuisance to the customer, but the customer can overcome it without performance loss.	4	Moderately Low: Infre- quent failures.	One occurrence per year or six occurrences in 100,000 events (C $_{pk} \approx$ 1.33).	3	High	An effective SPC program is in place with process capabilities (C_{pk}) greater than 1.33.	
2	Very Minor Failure may not be readily apparent to the cus- tomer, but would have minor effects on the			Low: Relatively	One occurrence every one to three years or	2	Very High	All product is 100% automatically inspected.	
2	Very Minor	customer's process or product.	3	few failures.	six occurrences in ten million events (C $_{\rm pk}$ \approx 1.67).		Almost	The defect is obvious or there is 100% auto- matic inspection with regular calibration and	
1	None	Failure would not be noticeable to the customer and would not affect the customer's process or product.	2	Low: Failures are few and far between.	One occurrence every three to five years or 2 occurrences in one billion events ($C_{pk} \approx 2.00$).	1	Certain	preventive maintenance of the inspection equipment.	
		Frederic	1	Remote: Fail- ure is unlikely.	2.00). One occurrence in greater than five years or less than two occurrences in one billion events ($C_{pk} > 2.00$).			IoMech Design and Testing Solutions	

Resources

- MIL-STD. MIL-STD- 1629A- Procedures for performing a Failure Mode, Effects and Criticality Analysis. Washington, DC: Department of Defense, United States of America; 1980.
- Tague NR. *The quality toolbox*: Milwakee: ASQ Quality Press.; 2005.
- Michalakoudis I, Childs PR, Aurisicchio M, Pollpeter N, Sambell N, editors. Using Functional Analysis Diagrams As a Design Tool. ASME
 2014 International Mechanical Engineering Congress & Exposition; 2014; Montreal, Canada: ASME.
- Michalakoudis, I., Childs, P., Aurisicchio, M. & Harding, J. (2016) Using functional analysis diagrams to improve product reliability and cost. Advances In Mechanical Engineering, 8(12), 1-11.
- asq.org. Failure Mode and Effects Analysis: asq.org; 2016 [Available from: <u>http://asq.org/learn-about-quality/process-analysis-tools/overview/fmea.html</u>.
- Kmenta S, Finch P, Ishii K. Advanced failure modes and effects analysis of complex processes. ASME Design Engineering Technical Conference, Design for Manufacturing Conference: ASME; 1999.

IOMech Design and Testing Solutions