PROGRESSIVE CAVITY PUMPS 'SAC' INDUSTRIAL & CHEMICAL SERIES ## **INDUSTRIES** Sewage • Effluent & Water Sugar, Distillery & Brewery Paper, Pulp & Cellulose Ceramics & Refractories Bulk Explosives & Emulsions Chemicals • Construction Canning • Cosmetic & Toiletries Edible Oil • Engineering Fertilizer • Marine Mining Man made Fibre Oil & Gas Paint & Varnish • Printing Ink Palm Oil • Soap & Detergent Ship Building Industries Starch Factories Cattle Feed Abattoir & Meat Processing Dye Stuff & Intermediates # **FLUIDS HANDLED** Digested Sewage Sludge De-Watered Effluent Sludge Industrial Effluents • Fuel Oil Sludge Poly Electrolytes • Flocculants Molasses • Magma • Massecuite Spent Wash • Sulphited Sugar Syrup Paper Pulp upto 20% consistency Alum • Latex • Coating Slurry • Ferrite Slurry Glue • Sodium Silicate • Black Liquor Ceramic & Clay Slurry • Casein Slurry Maize Slurry • Soap Stock • Lime Slurry Ammonium Nitrate Solution • Resins Edible Oil • Gum Sludge • Cake Mix Acrylic Emulsion • Aluminium Hydroxide Gel Bentonite Slurry • Chemical Slurry Detergent Slurry • Epoxy Mix • Grout Mix Electroplating Solutions • Yeast • Instant Tea Lube Oil • Petroleum Jelly • Rice Bran Oil Tribasic Lead Sulphate • Varnish • Viscose ## **MATERIAL OPTIONS** ## HOUSING PARTS Cast Iron, Cast Steel, CF8, CF8M, CF8ML, Alloy20, Hastelloy. ## **ROTOR & SHAFT** Ni-Cr, Nitrided Steel, Tool Steel, AISI410, AISI304, AISI316, Hardened & Hard Chrome Plated. ## STATOR NR, IIR, NBR, HNBR, EPDM, CR, CSM, Q, CFM, FKM in black, white, food grade, abrasion resistant & high temperature resistant variants. ## SHAFT SEALING A vide variety of gland packed & mechanical seal options with API plan. ### PRINCIPLE The main components which characterise the pump are a metallic single helical rotary part ROTOR and fixed double helical resilient polymer part STATOR in which the rotor turns and thereby a complex progressive sealing line (cspl) is maintained. Whilst the rotor rotates inside the stator, the cavities formed between them progresses from suction to discharge end, gently carrying the media. #### APPLICATIONS Transfer, Fiter & Meter of fixed or variable flow rates. #### DISPLACEMENT OF CONVEYING SPACES at different rotor settings #### DISTINCTIVE DESIGN FEATURES POSITIVE DISPLACEMENT Progressing cavities deliver a uniform, metered and non-pulsating flow. The head developed is independent, and flow rate proportionate to the rotational SELF PRIMING Canwork on snore i.e., handles high percentage of air with liquid and do not require foot valves. NON CLOGGING Canhandle solids in suspension or media containing high percentage of solids. LOW INTERNAL VELOCITY Minimum degradation of shear-sensitive media and can handle highly viscous pseudo-plastic materials. LOW NPSH REQUIREMENT Sucion lift capability up to 9.5 MWC and effective even in high vacuum REVERSIBLE Sucion and Delivery ends can be interchanged by merely changing the direction of rotation of the pump. ### **DRIVE ARRANGEMENTS** #### DIRECT DRIVE Electric Motor, Geared Motor, Gear Box, Mechanical Speed Variator, Eddy Current DC Drive, Hydraulic, Pneumatic, Petrol & Diesel Engines. #### **PULLEY & V-BELT DRIVE** Overhead & 'L' Type For accurate and variable flow rates, AC Variable Frequency Drives can be used. #### UNIVERSAL JOINT Cardan Joht employs two sets of perpendicular pins, each providing greater freedom of angular movement which facilitates smoother transmission of angular loads. This joint is acknowledged to be far superior than other conventional joints. ### COMPLEX SEALING PROGRESSIVE LINE The Stator forms the heart of the pump and its function depends on the complex progressive sealing line. The stators are manufactured in our state of art most modern polymerstop. The stator cores are manufactured precisely on CNC machine canters which is achieved with the empirical and theoretical understanding of the fluid dynamics, an expertise which has been mastered over 3 decades. ### OPTIONAL PROTECTION DEVICES INTEGRAL SAFETY RELIEF VALVE Used for plant safety wherever the possibility of the pump running against a closed valve or in-line blockade exists. #### DRY RUNNING PROTECTION Inexpensive options for dry run protection can be snorer by pass, level switch or pressure switch but more reliable option is the TSE unit. The temperature between the rotor and the stator is permanently sensed thermoelectrically via a temperature sensor integrated in the stator and compared with the limit value set at the TSE control unit. When the pump runs dry, the temperature will rise due to the increased friction between the rotor and the stator. When the set limit value has been reached, the TSE control unit switches off the pump drive and triggers a fault message to trip the motor. # **BARESHAFT PUMP DIMENSIONS** | PUMP | | BASIC | | | | | | DIMENSIONS | | | | | | | | FLANGE DIMENSIONS | | | | | | | SHAFT EXTN. | | | | Wt. | | | | |--|--|------------|------------|-----|-----|--|--|------------|------|-----|-----|----|----|-----|-----|-------------------|--|-----|-----|------------|-----|----------|-------------|-----------------|----|----|-----|-----|-----|--| | SIZE | L | В | Н | A1 | A2 | А3 | A4 | A5 | A6 | В1 | В2 | С | E | Н1 | K | S1 | Х | SD | D1 | D2 | D3 | Т | G | Z-S2 | d | | | L1 | L2 | Kg. | | 01561
01562
02081
02082 | 571
649
599
703 | 150 | 170 | 80 | 107 | 348
426
376
480 | | 36 | 225 | 50 | 78 | 8 | 15 | 90 | 45 | 10 | 229
307
257
361 | 40 | 88 | 110 | 150 | 18 | 3 | 4-ø18 | 14 | 16 | 5 | 20 | 28 | 13
14
14
15 | | 01564
02084
03121
03122 | 1154
1260
996
1152 | 165 | 200 | 107 | 177 | 830
936
672
828 | 372
478 | 40 | 435 | 70 | 110 | 10 | 20 | 100 | 50 | 12 | 685
791
527
683 | 50 | 102 | 125 | 165 | 20 | 3 | 4-ø18 | 22 | 25 | 6 | 40 | 54 | 38
40
34
44 | | 03124
04161
04162 | 1476
1065
1273 | 185 | 244 | 115 | 150 | 1169
758
966 | 699
496 | 42 | 625 | 78 | 118 | 12 | 20 | 112 | 60 | 12 | 1014
603
811 | 65 | 122 | 145 | 185 | 20 | 3 | 4-ø18 | 28 | 31 | 8 | 40 | 52 | 75
58
73 | | 04164
05201
05202 | 1951
1459
1809 | 200 | 277 | 154 | 178 | 1574
1082
1432 | 932
440
790 | 45 | 825 | 92 | 134 | 12 | 25 | 132 | 70 | 16 | 1412
920
1270 | 80 | 138 | 160 | 200 | 22 | 3 | 8-ø18 | 32 | 35 | 10 | 60 | 77 | 111
95
108 | | 05381
06241
06242
07281
07282 | 1775
1700
2012
1775
2185 | 220 | 320 | 165 | 228 | 1333
1258
1570
1333
1743 | 494
419
731
494
904 | 49 | 800 | 110 | 152 | 14 | 25 | 160 | 75 | 18 | 1159
1084
1396
1159
1569 | 100 | 158 | 180 | 220 | 24 | 3 | 8-ø18 | 38 | 40 | 10 | 60 | 80 | 160
156
177
175
208 | | 07284
08321
08322
09361
09362
09881 | 2986
1776
2182
1990
2566
2214 | 250 | 345 | 187 | 270 | 2464
1254
1660
1468
2044
1692 | 1703
493
899
707
1283
931 | 65 | 1575 | 130 | 175 | 16 | 25 | 160 | 75 | 18 | 2256
1046
1452
1260
1836
1484 | 125 | 188 | 210 | 250 | 26 | 3 | 8-ø18 | 48 | 52 | 14 | 80 | 100 | 240
170
195
182
222
300 | | 09882
10401
10402
13521
13522 | 2994
2290
2810
2541
3277 | 290
340 | 390
400 | 247 | 352 | 2472
1637
2157
1875
2611 | 1711
685
1205
923
1659 | 54
67 | 1475 | 150 | 210 | 24 | 30 | 200 | 100 | 20 | 2264
1343
1863
1594
2330 | | | 240
295 | | 26
30 | 3 | 8-ø22
12-ø22 | 60 | 66 | 18 | 100 | 133 | 350
505
560
625
700 | ## NOTES:- - 1. ALL DIMENSIONS ARE IN m.m. AND FOR GUIDANCE ONLY, EXCEPT WHERE OTHERWISE STATED. 2. SHAFT DIAMETERS ARE TO BS 4506:1970 AND KEYWAYS TO BS 4235:1982 PART I AND ISO R773. 3. FLANGES ARE IDENTICAL AND TO BS 4504:1969. (ISO/DIN/ANSI/IS FLANGES OPTIONAL) 4. FOR FULL CERTIFIED DRAWINGS REFER TO ROTOMAC, KANPUR (INDIA)