Math 18 (7:30 AM) 13 March 2020 Read 9, 1-9.3 Differential equations What is a differential equation? An algebraic equation variable X. $u_n K_{aoora} \quad n_{uonber} \rightarrow X^2 + 6 = 31$ a_{number} a subution to the algebraic equation is a number we can assign to the that makes the equation trac X=r 9+6=31 V $\chi = -5$ $(-5)^{2} + 6 = 3(\sqrt{})^{2}$ In a differential equation we have a variable, X (sometimer t) that represents an independent variable, and another variable that represents an unknown function of X. Our equation can include $X_1 y_1 y' = \frac{dy}{dx}$, $y'' = \frac{dy}{dx}$, ... A solution to the equation is a function fCX/such that when we substitute y = fCX it Maker the equation true.

In a differential equation we have a Variable, X (sometimer t) that represents an independent variable, and another Variable y that represents an unknown function of X-our equation Can include $X_1 y, y = \frac{dy}{dx_1}$ $y'' = \frac{dy}{dx_1}$. A solution to the equation is a function fEX/ such that when we substitute y = F(X) it Maker the equation true. y' = 2xSolutions $y = \chi^{2}$ $\frac{d}{dy}(\chi^{2}) = 2\pi$ $y = \chi^{2} + [7]$ $\frac{d}{dy}(\chi^{-1}) = (\chi^{-1}(7)) = 2\chi\sqrt{2}$ General solution: y=x+c Cc any coastail $y' = f(x) \xrightarrow{solution} y = \int f(x) dx + c$ $\frac{1}{2} = -i \left[\frac{y'}{y'} = \frac{x + y}{x + y} \right] = \frac{1}{(-x - 1)^2} = \frac{x + (-x - 1)^2}{x + (-x - 1)^2}$ y = -x - i $-1 = \chi - 1 - 1$ $-1 = -1 \sqrt{2}$

g = 2× g = 3 General solution y(0)=3 Given a differential equation $y = \chi^{L} + C$ $y = \chi^{L} + C$ y'= X+Y $y = -X - 1 \quad is \quad q$ $\int y = -X - 1 \quad is \quad q$ $\int so \left[a + i \right] \quad be caus;$ $\left[-X - 1 \right] = X + \left(-X - 1 \right)$ $-1 = -\left(V \right)$ Algebroic equation $\chi^2 + 6 = 3($ 7=5 is a solution 5²+6=3(J $y = \chi + y$ General solution $y = -\chi - l + Ce$ check x=-5 is a solution → (-5)²+ 6--3 / equation y = X+y check: $(-\chi - 1 + ce^{\chi}) = \chi + (-\chi - 1 + ce^{\chi})$ - $1 + ce^{\chi} = -1 + ce^{\chi} \sqrt{2}$

fifterential equation y = y A solution $y = e^{\chi}$ General solution arbitrary $y = C e^{x}$ $\int Ce^{x} = Ce^{x}$ $\int X$ y' = y