Math 1B (8:30 AM)

20 March 2020

(3) Suppose we wait for a bus, and we let X be the random variable

X = The time it takes (in minutes) for the bus to arrive

Suppose that the PDF (probability distribution function) for X is given by

where k is a constant.

- (a) Find the value k must have for f(x) to be a well defined PDF.
- (b) Find the probability a bus arrives in 10 minutes or less.
- (c) Find the average (mean) amount of time we expect to have to wait for the bus.

$$= \int_{-\infty}^{\infty} f(x) dx = \lim_{N \to \infty} \int_{0}^{\infty} k e^{-x/0} dx = \lim_{N \to \infty} \int_{0}^{\infty} k(x) dx = \lim_{N$$

(b) Find the probability a bus arrives in 10 minutes or less.

$$P(X = 10) = \int_{-\infty}^{10} f(x) dx = \int_{0}^{10} \frac{1}{10} e^{-\frac{2}{50}} dx$$

$$= \int_{-\infty}^{-10} \frac{1}{10} e^{-\frac{2}{50}} dx$$

$$= \int_{0}^{-10} \frac{1}{10} e^{-\frac{2}{50}} dx$$

(c) Find the average (mean) amount of time we expect to have to wait for the bus.

$$\int_{-\infty}^{\infty} \frac{1}{x} \int_{-\infty}^{\infty} \frac{1}{x} \int_{-\infty}^{\infty}$$

What is the median time, m, for the busto Qv r ; Jp $f(X \leq m) = 0.5$ d s same m70 $\int_{\infty}^{\infty} f(x) dx = 0.5$ $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\frac{2}{10}} dx = 0.5$ $\begin{bmatrix} -\gamma_0 \\ -e \end{bmatrix}_0^m = 0.5$ $-\frac{m}{10} + 1 = 0.5$ $e^{-m/0} = 0.5$ $\frac{-m}{10} = \ln 0.5 \\
m = -\ln \ln 0.5 = \ln 2 \approx 6.9$