(1) Consider the function graphed below.

- (a) Evaluate $\int_{-4}^{6} f(x) dx$
- (b) Evaluate $\int_{6}^{-4} f(x) dx$
- (c) Write a left Riemann sum with n=5 subdivisions for $\int_{-4}^{6} f(x) dx$
- (d) Wrie a Riemann sum using midpoints with n=5 subdivisions for $\int_{-4}^{6} f(x) \ dx$ subdivisions.
- (2) Consider the integral

$$\int_{-2}^{2} \frac{1}{1+x^2} \, dx$$

- (a) Write out the Riemann sum with n = 8 subdissions using left sample points for the above integral. You do not need to evaluate or simplify the sum. Lethis sum greater than or less than the integral?
- (b) Write out the Riemann sum with n=8 subdissions using right sample points for the above integral. You do not need to evaluate or simplify the sum. Is this sum greater than or less than the integral?
- (c) Write out the Riemann sum with n=8 subdissions using midpoint sample points for the above integral. You do not need to evaluate or simplify the sum.
- (d) Write out the limit definiion for the above integral. You may use left or right hand sums, whichever you like.

1

(a) Evaluate
$$\int_{-4}^{6} f(x) dx$$
 $4 + 4 + 2 - \frac{1}{4} - [$

(b) Evaluate
$$\int_{6}^{-4} f(x) dx$$

(c) Write a left Riemann sum with n = 5 subdivisions for $\int_{-4}^{6} f(x) dx$

$$\Delta \chi = \frac{6}{5} = 2$$

$$\left(0 + \left(1 + 2 + 2 + 0\right) \right) = 10$$

$$-4 - 2 - 10$$

$$\left(-4 - 2 - 10\right) = 10$$

$$\left(-4 - 11\right) = 10$$

$$(0+1+2+2+0)2=10$$

$$(\pm + 1 \pm + 2 + 1 - 1)2 = 8$$

(2) Consider the integral

$$\int_{-2}^{2} \frac{1}{1+x^2} \, dx$$

(a) Write out the Riemann sum with n=8 subdissions using left sample points for the above integral. You do not need to evaluate or simplify the sum. Is this sum greater than or less than the integral?

$$\left(\frac{1}{1 + \left(-2\right)^2} + \frac{1}{1 + \left(-\frac{1}{1}\right)^2} + \frac{1}{1 + \left(-\frac{1}{1}\right)$$

integral. You do not need to evaluate or simplify the sum. Is this sum greater than or less than the integral?

$$\left(\frac{1}{1+(-1)^{2}} + \frac{1}{1+(-1)^{2}} + \frac{1}{1+(-$$

(c) Write out the Riemann sum with n = 8 subdissions using midpoint sample points for the above integral. You do not need to evaluate or simplify the sum.

$$\left(\frac{1}{1+(-1.75)^2+\frac{1}{1+(-1.25)^2+\frac{1+(-1.25)^2+\frac{1+($$

(d) Write out the limit definition for the above inte whichever you like.

$$\Delta \chi = \frac{2 - (-1)}{N} = \frac{4}{h}$$

$$\chi_k = -2 + k\Delta \chi = \frac{-2 + kT}{2}$$

(3) A bicycle travels along a straight road. Let

p(t) =The position of the bicycle (in feet) at time t (in seconds)

v(t) = The velocity of the bicycle (in feet/sec) at time t (in seconds)

- (a) Suppose $\int_{30}^{60} v(t) dt = 400$. What does this mean? Give a complete sentence using units as appropriate.
- (b) Suppose p(20) = 200. What does this mean? Give a complete sentence using units as appropriate.
- (c) Suppose p(40) p(10) = 300. What does this mean? Give a complete sentence using units as appropriate.
- (d) Write an expression using the function p(t) (and no other variables) that represents the displacement of the bike from t = 20 seconds to t = 30 seconds.
- (e) Write an expression using the function v(t) (and no other variables) that represents the displacement of the bike from t = 20 seconds to t = 30 seconds.
- (4) Water flows into a pool. We have

f(t) = The rate at which water flows into the pool (in gallons/minute) at time t (in minutes)

A table of values for f(t) is given below:

t	0	2	4	6	8	10	12	14	16
f(t)	0.5	1	2	3.5	4.5	5	5.5	6.5	7

Write a Riemann sum with n=6 subdivisions using left sample points estimating the amount of water that flowed into the pool from t=2 minutes to t=14 minutes. You do not need to evaluate or simplify your sum.

(5) Suppose

$$f(t) =$$
The rate the temperature is increasing (in°F/hour) at time t

Where t here represents the number of hours after midnight. So for example, f(8) = 1.2 means that at 8:00 AM, the temperature is increasing at a rate of 1.2 °F/hour. What does

$$\int_{0}^{10} f(t) dt$$

represent? Answer in english, giving units as appropriate.

(3) A bicycle travels along a straight road. Let

p(t) =The position of the bicycle (in feet) at time t (in seconds)

v(t) = The velocity of the bicycle (in feet/sec) at time t (in seconds)

(a) Suppose $\int_{30}^{60} v(t) dt = 400$. What does this mean? Give a complete sentence using units as

The displacement of the bicycle from 30 seconds to 60 seconds is 400ff

(b) Suppose p(20) = 200. What does this mean? Give a complete sentence using units as appro-The position of the bicycle at 20 seconds is 2001t.

(c) Suppose p(40) - p(10) = 300. What does this mean? Give a complete sentence using units as

the displacement of the bicycle from 10 seconds to to se condition f(t) (and no other variables) that represents the dis-

placement of the bike from t=20 seconds to t=30 seconds.

(e) Write an expression using the function v(t) (and no other variables) that represents the displacement of the bike from t=20 seconds to t=30 seconds.

(4) Water flows into a pool. We have

f(t) = The rate at which water flows into the pool (in gallons/minute) at time t (in minutes)

A table of values for f(t) is given below:

4	t 0 (2) (4) (6) (8) (10) (12) 14 16								
ι	U	(4)	$\binom{4}{2}$	(0)	(<u>)</u>	(19)	14)	14	10
f(t)	0.5	1	2	3.5	4.5	5	5.5	6.5	7

Write a Riemann sum with n = 6 subdivisions using left sample points estimating the amount of water that flowed into the pool from t=2 minutes to t=14 minutes. You do not need to evaluate or simplify your sum. $\Delta t = \frac{14-2}{4} = 2$

$$(1+2+3.5+4.5+5+5.5)\cdot 2$$

(5) Suppose

f(t) =The rate the temperature is increasing (in F/hour) at time t

Where t here represents the number of hours after midnight. So for example, f(8) = 1.2 means that at 8:00 AM, the temperature is increasing at a rate of 1.2 $^{\circ}F$ /hour. What does

$$\int_{6}^{10} f(t) dt$$

represent? Answer in english, giving units as appropriate.

The net amount the temperature in creased in of from 6:00 AM to 10:00 AM