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Cmp	instruction	in	8086	syntax

8086	cmp	instruction.		8086	cmp.		Cmp	instruction.		

The	cmp	(compare)	instruction	is	identical	to	the	sub	(subtract	without	borrow)	instruction	with	one	important	difference	-	it	does	not	store	the	difference	back	into	the	destination	operand.	The	syntax	of	a	subtract	instruction	is:	sub	dest,	src	dest	=	dest	-	src	and	set	flags	The	generic	form	of	the	instruction	is:	cmp	dest,	src	perform	dest	-	src	and	set	flags	so	dest	is	a	bit	of	a	misnomer	in	this	case,	since	nothing	is	stored.	The	carry	flag	C	is	set	after	a	cmp	operation	if	subtracting	src	from	dest	requires	a	borrow.	This	occurs	only	when	dest	is	less	than	src	where
dest	and	src	are	both	unsigned	values.	For	signed	operands,	the	C	flag	has	no	meaning.	The	various	forms	are	(in	each	case,	the	first	op	is	dest,	the	second	is	src):	cmp	reg,	reg	cmp	reg,	mem	cmp	mem,	reg	cmp	reg,	immediate	data	cmp	mem,	immediate	data	cmp	eax/ax/al,	immediate	data	To	be	complete,	here	is	the	rundown	on	the	other	flags:	The	zero	flag	Z	is	set	if	and	only	if	dest	=	src.	The	sign	S	and	overflow	O	flags	are	only	vald	if	the	operands	are	considered	signed	(i.e.,	just	the	opposite	of	the	C	flag).	For	signed	comparisons,	the	S	(sign)	and	O
(overflow)	flags,	taken	together,	have	the	following	meaning:	If	((S=0)	and	(O=1))	or	((S=1)	and	(O=0))	then	dest	<	src	If	((S=0)	and	(O=0))	or	((S=1)	and	(O=1))	then	dest	>=	src	Family	of	backward-compatible	assembly	languages	For	a	specific	list	of	x86	assembly	language	instructions,	see	x86	instruction	listings.	This	article	needs	additional	citations	for	verification.	Please	help	improve	this	article	by	adding	citations	to	reliable	sources.	Unsourced	material	may	be	challenged	and	removed.Find	sources:	"X86	assembly	language"	–	news	·	newspapers	·
books	·	scholar	·	JSTOR	(March	2020)	(Learn	how	and	when	to	remove	this	template	message)	x86	assembly	language	is	the	name	for	the	family	of	assembly	languages	which	provide	some	level	of	backward	compatibility	with	CPUs	back	to	the	Intel	8008	microprocessor,	which	was	launched	in	April	1972.[1][2]	It	is	used	to	produce	object	code	for	the	x86	class	of	processors.	Regarded	as	a	programming	language,	assembly	is	machine-specific	and	low-level.	Like	all	assembly	languages,	x86	assembly	uses	mnemonics	to	represent	fundamental	CPU	instructions,
or	machine	code.[3]	Assembly	languages	are	most	often	used	for	detailed	and	time-critical	applications	such	as	small	real-time	embedded	systems,	operating-system	kernels,	and	device	drivers,	but	can	also	be	used	for	other	applications.	A	compiler	will	sometimes	produce	assembly	code	as	an	intermediate	step	when	translating	a	high-level	program	into	machine	code.	Keyword	Reserved	keywords	of	x86	assembly	language[4][5]
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Mnemonics	and	opcodes	Further	information:	x86	instruction	listings	Each	x86	assembly	instruction	is	represented	by	a	mnemonic	which,	often	combined	with	one	or	more	operands,	translates	to	one	or	more	bytes	called	an	opcode;	the	NOP	instruction	translates	to	0x90,	for	instance,	and	the	HLT	instruction	translates	to	0xF4.[3]	There	are	potential	opcodes	with	no	documented	mnemonic	which	different	processors	may	interpret	differently,	making	a	program	using	them	behave	inconsistently	or	even	generate	an	exception	on	some	processors.	best	survival
strategy	games	android	These	opcodes	often	turn	up	in	code	writing	competitions	as	a	way	to	make	the	code	smaller,	faster,	more	elegant	or	just	show	off	the	author's	prowess.	Syntax	x86	assembly	language	has	two	main	syntax	branches:	Intel	syntax	and	AT&T	syntax.[6]	Intel	syntax	is	dominant	in	the	DOS	and	Windows	world,	and	AT&T	syntax	is	dominant	in	the	Unix	world,	since	Unix	was	created	at	AT&T	Bell	Labs.[7]	Here	is	a	summary	of	the	main	differences	between	Intel	syntax	and	AT&T	syntax:	AT&T	Intel	Parameter	order	movl	$5,	%eax	Source
before	the	destination.	mov	eax,	5	Destination	before	source.	
Parameter	size	addl	$0x24,	%esp	movslq	%ecx,	%rax	paddd	%xmm1,	%xmm2	Mnemonics	are	suffixed	with	a	letter	indicating	the	size	of	the	operands:	q	for	qword,	l	for	long	(dword),	w	for	word,	and	b	for	byte.[6]	add	esp,	24h	movsxd	rax,	ecx	paddd	xmm2,	xmm1	Derived	from	the	name	of	the	register	that	is	used	(e.g.	rax,	eax,	ax,	al	imply	q,	l,	w,	b,	respectively).	posozokemukexiwedakari.pdf	Width-based	names	may	still	appear	in	instructions	when	they	define	a	different	operation.	MOVXSD	refers	to	sign	extension	with	dword	input,	unlike	MOVXS.	SIMD
registers	have	width-named	instructions	that	determine	how	to	split	up	the	register.	AT&T	tends	to	keep	the	names	unchanged,	so	PADDD	is	not	renamed	to	"paddl".	Sigils	Immediate	values	prefixed	with	a	"$",	registers	prefixed	with	a	"%".[6]	The	assembler	automatically	detects	the	type	of	symbols;	i.e.,	whether	they	are	registers,	constants	or	something	else.	Effective	addresses	movl	offset(%ebx,%ecx,4),	%eax	General	syntax	of	DISP(BASE,INDEX,SCALE).	mov	eax,	[ebx	+	ecx*4	+	offset]	Arithmetic	expressions	in	square	brackets;	additionally,	size	keywords
like	byte,	word,	or	dword	have	to	be	used	if	the	size	cannot	be	determined	from	the	operands.[6]	Many	x86	assemblers	use	Intel	syntax,	including	FASM,	MASM,	NASM,	TASM,	and	YASM.	GAS,	which	originally	used	AT&T	syntax,	has	supported	both	syntaxes	since	version	2.10	via	the	.intel_syntax	directive.[6][8][9]	A	quirk	in	the	AT&T	syntax	for	x86	is	that	x87	operands	are	reversed,	an	inherited	bug	from	the	original	AT&T	assembler.[10]	The	AT&T	syntax	is	nearly	universal	to	all	other	architectures	(retaining	the	same	mov	order);	it	was	originally	a	syntax
for	PDP-11	assembly.	The	Intel	syntax	is	specific	to	the	x86	architecture,	and	is	the	one	used	in	the	x86	platform's	documentation.	The	Intel	8080,	which	predates	the	x86,	also	uses	the	"destination-first"	order	for	mov.[11]	Registers	Further	information:	X86	architecture	§	x86	registers	x86	processors	have	a	collection	of	registers	available	to	be	used	as	stores	for	binary	data.	Collectively	the	data	and	address	registers	are	called	the	general	registers.	77271061860.pdf	Each	register	has	a	special	purpose	in	addition	to	what	they	can	all	do:	[3]	AX
multiply/divide,	string	load	&	store	BX	index	register	for	MOVE	CX	count	for	string	operations	&	shifts	DX	port	address	for	IN	and	OUT	SP	points	to	top	of	the	stack	BP	points	to	base	of	the	stack	frame	SI	points	to	a	source	in	stream	operations	DI	points	to	a	destination	in	stream	operations	Along	with	the	general	registers	there	are	additionally	the:	IP	instruction	pointer	FLAGS	segment	registers	(CS,	DS,	ES,	FS,	GS,	SS)	which	determine	where	a	64k	segment	starts	(no	FS	&	GS	in	80286	&	earlier)	extra	extension	registers	(MMX,	3DNow!,	SSE,	etc.)	(Pentium
&	later	only).	The	IP	register	points	to	the	memory	offset	of	the	next	instruction	in	the	code	segment	(it	points	to	the	first	byte	of	the	instruction).	

The	IP	register	cannot	be	accessed	by	the	programmer	directly.	The	x86	registers	can	be	used	by	using	the	MOV	instructions.	For	example,	in	Intel	syntax:	mov	ax,	1234h	;	copies	the	value	1234hex	(4660d)	into	register	AX	mov	bx,	ax	;	copies	the	value	of	the	AX	register	into	the	BX	register	Segmented	addressing	The	x86	architecture	in	real	and	virtual	8086	mode	uses	a	process	known	as	segmentation	to	address	memory,	not	the	flat	memory	model	used	in	many	other	environments.	Segmentation	involves	composing	a	memory	address	from	two	parts,	a
segment	and	an	offset;	the	segment	points	to	the	beginning	of	a	64	KiB	(64×210)	group	of	addresses	and	the	offset	determines	how	far	from	this	beginning	address	the	desired	address	is.	
In	segmented	addressing,	two	registers	are	required	for	a	complete	memory	address.	One	to	hold	the	segment,	the	other	to	hold	the	offset.	7530618213.pdf	In	order	to	translate	back	into	a	flat	address,	the	segment	value	is	shifted	four	bits	left	(equivalent	to	multiplication	by	24	or	16)	then	added	to	the	offset	to	form	the	full	address,	which	allows	breaking	the	64k	barrier	through	clever	choice	of	addresses,	though	it	makes	programming	considerably	more	complex.	In	real	mode/protected	only,	for	example,	if	DS	contains	the	hexadecimal	number	0xDEAD	and
DX	contains	the	number	0xCAFE	they	would	together	point	to	the	memory	address	0xDEAD	*	0x10	+	0xCAFE	=	0xEB5CE.	Therefore,	the	CPU	can	address	up	to	1,048,576	bytes	(1	MB)	in	real	mode.	By	combining	segment	and	offset	values	we	find	a	20-bit	address.	The	original	IBM	PC	restricted	programs	to	640	KB	but	an	expanded	memory	specification	was	used	to	implement	a	bank	switching	scheme	that	fell	out	of	use	when	later	operating	systems,	such	as	Windows,	used	the	larger	address	ranges	of	newer	processors	and	implemented	their	own	virtual
memory	schemes.	Protected	mode,	starting	with	the	Intel	80286,	was	utilized	by	OS/2.	Several	shortcomings,	such	as	the	inability	to	access	the	BIOS	and	the	inability	to	switch	back	to	real	mode	without	resetting	the	processor,	prevented	widespread	usage.[12]	The	80286	was	also	still	limited	to	addressing	memory	in	16-bit	segments,	meaning	only	216	bytes	(64	kilobytes)	could	be	accessed	at	a	time.	To	access	the	extended	functionality	of	the	80286,	the	operating	system	would	set	the	processor	into	protected	mode,	enabling	24-bit	addressing	and	thus	224
bytes	of	memory	(16	megabytes).	

In	protected	mode,	the	segment	selector	can	be	broken	down	into	three	parts:	a	13-bit	index,	a	Table	Indicator	bit	that	determines	whether	the	entry	is	in	the	GDT	or	LDT	and	a	2-bit	Requested	Privilege	Level;	see	x86	memory	segmentation.	When	referring	to	an	address	with	a	segment	and	an	offset	the	notation	of	segment:offset	is	used,	so	in	the	above	example	the	flat	address	0xEB5CE	can	be	written	as	0xDEAD:0xCAFE	or	as	a	segment	and	offset	register	pair;	DS:DX.	There	are	some	special	combinations	of	segment	registers	and	general	registers	that
point	to	important	addresses:	CS:IP	(CS	is	Code	Segment,	IP	is	Instruction	Pointer)	points	to	the	address	where	the	processor	will	fetch	the	next	byte	of	code.	SS:SP	(SS	is	Stack	Segment,	SP	is	Stack	Pointer)	points	to	the	address	of	the	top	of	the	stack,	i.e.	the	most	recently	pushed	byte.	DS:SI	(DS	is	Data	Segment,	SI	is	Source	Index)	is	often	used	to	point	to	string	data	that	is	about	to	be	copied	to	ES:DI.	ES:DI	(ES	is	Extra	Segment,	DI	is	Destination	Index)	is	typically	used	to	point	to	the	destination	for	a	string	copy,	as	mentioned	above.	gleason	map	high
resolution	download	The	Intel	80386	featured	three	operating	modes:	real	mode,	protected	mode	and	virtual	mode.	The	protected	mode	which	debuted	in	the	80286	was	extended	to	allow	the	80386	to	address	up	to	4	GB	of	memory,	the	all	new	virtual	8086	mode	(VM86)	made	it	possible	to	run	one	or	more	real	mode	programs	in	a	protected	environment	which	largely	emulated	real	mode,	though	some	programs	were	not	compatible	(typically	as	a	result	of	memory	addressing	tricks	or	using	unspecified	op-codes).	The	32-bit	flat	memory	model	of	the	80386's
extended	protected	mode	may	be	the	most	important	feature	change	for	the	x86	processor	family	until	AMD	released	x86-64	in	2003,	as	it	helped	drive	large	scale	adoption	of	Windows	3.1	(which	relied	on	protected	mode)	since	Windows	could	now	run	many	applications	at	once,	including	DOS	applications,	by	using	virtual	memory	and	simple	multitasking.	Execution	modes	Further	information:	X86	architecture	The	x86	processors	support	five	modes	of	operation	for	x86	code,	Real	Mode,	Protected	Mode,	Long	Mode,	Virtual	86	Mode,	and	System
Management	Mode,	in	which	some	instructions	are	available	and	others	are	not.	A	16-bit	subset	of	instructions	is	available	on	the	16-bit	x86	processors,	which	are	the	8086,	8088,	80186,	80188,	and	80286.	These	instructions	are	available	in	real	mode	on	all	x86	processors,	and	in	16-bit	protected	mode	(80286	onwards),	additional	instructions	relating	to	protected	mode	are	available.	On	the	80386	and	later,	32-bit	instructions	(including	later	extensions)	are	also	available	in	all	modes,	including	real	mode;	on	these	CPUs,	V86	mode	and	32-bit	protected	mode
are	added,	with	additional	instructions	provided	in	these	modes	to	manage	their	features.	SMM,	with	some	of	its	own	special	instructions,	is	available	on	some	Intel	i386SL,	i486	and	later	CPUs.	Finally,	in	long	mode	(AMD	Opteron	onwards),	64-bit	instructions,	and	more	registers,	are	also	available.	bapunenomedaxefonezowa.pdf	
The	instruction	set	is	similar	in	each	mode	but	memory	addressing	and	word	size	vary,	requiring	different	programming	strategies.	The	modes	in	which	x86	code	can	be	executed	in	are:	Real	mode	(16-bit)	20-bit	segmented	memory	address	space	(meaning	that	only	1	MB	of	memory	can	be	addressed—actually,	slightly	more),	direct	software	access	to	peripheral	hardware,	and	no	concept	of	memory	protection	or	multitasking	at	the	hardware	level.	Computers	that	use	BIOS	start	up	in	this	mode.	Protected	mode	(16-bit	and	32-bit)	Expands	addressable	physical
memory	to	16	MB	and	addressable	virtual	memory	to	1	GB.	Provides	privilege	levels	and	protected	memory,	which	prevents	programs	from	corrupting	one	another.	
16-bit	protected	mode	(used	during	the	end	of	the	DOS	era)	used	a	complex,	multi-segmented	memory	model.	32-bit	protected	mode	uses	a	simple,	flat	memory	model.	Long	mode	(64-bit)	Mostly	an	extension	of	the	32-bit	(protected	mode)	instruction	set,	but	unlike	the	16–to–32-bit	transition,	many	instructions	were	dropped	in	the	64-bit	mode.	Pioneered	by	AMD.	Virtual	8086	mode	(16-bit)	A	special	hybrid	operating	mode	that	allows	real	mode	programs	and	operating	systems	to	run	while	under	the	control	of	a	protected	mode	supervisor	operating	system
System	Management	Mode	(16-bit)	Handles	system-wide	functions	like	power	management,	system	hardware	control,	and	proprietary	OEM	designed	code.	It	is	intended	for	use	only	by	system	firmware.	All	normal	execution,	including	the	operating	system,	is	suspended.	An	alternate	software	system	(which	usually	resides	in	the	computer's	firmware,	or	a	hardware-assisted	debugger)	is	then	executed	with	high	privileges.	

Switching	modes	The	processor	runs	in	real	mode	immediately	after	power	on,	so	an	operating	system	kernel,	or	other	program,	must	explicitly	switch	to	another	mode	if	it	wishes	to	run	in	anything	but	real	mode.	Switching	modes	is	accomplished	by	modifying	certain	bits	of	the	processor's	control	registers	after	some	preparation,	and	some	additional	setup	may	be	required	after	the	switch.	Examples	With	a	computer	running	legacy	BIOS,	the	BIOS	and	the	boot	loader	is	running	in	Real	mode,	then	the	64-bit	operating	system	kernel	checks	and	switches	the
CPU	into	Long	mode	and	then	starts	new	kernel-mode	threads	running	64-bit	code.	With	a	computer	running	UEFI,	the	UEFI	firmware	(except	CSM	and	legacy	Option	ROM),	the	UEFI	boot	loader	and	the	UEFI	operating	system	kernel	is	all	running	in	Long	mode.	Instruction	types	In	general,	the	features	of	the	modern	x86	instruction	set	are:	A	compact	encoding	Variable	length	and	alignment	independent	(encoded	as	little	endian,	as	is	all	data	in	the	x86	architecture)	Mainly	one-address	and	two-address	instructions,	that	is	to	say,	the	first	operand	is	also	the
destination.	Memory	operands	as	both	source	and	destination	are	supported	(frequently	used	to	read/write	stack	elements	addressed	using	small	immediate	offsets).	

Both	general	and	implicit	register	usage;	although	all	seven	(counting	ebp)	general	registers	in	32-bit	mode,	and	all	fifteen	(counting	rbp)	general	registers	in	64-bit	mode,	can	be	freely	used	as	accumulators	or	for	addressing,	most	of	them	are	also	implicitly	used	by	certain	(more	or	less)	special	instructions;	affected	registers	must	therefore	be	temporarily	preserved	(normally	stacked),	if	active	during	such	instruction	sequences.	Produces	conditional	flags	implicitly	through	most	integer	ALU	instructions.	Supports	various	addressing	modes	including
immediate,	offset,	and	scaled	index	but	not	PC-relative,	except	jumps	(introduced	as	an	improvement	in	the	x86-64	architecture).	Includes	floating	point	to	a	stack	of	registers.	Contains	special	support	for	atomic	read-modify-write	instructions	(xchg,	cmpxchg/cmpxchg8b,	xadd,	and	integer	instructions	which	combine	with	the	lock	prefix)	SIMD	instructions	(instructions	which	perform	parallel	simultaneous	single	instructions	on	many	operands	encoded	in	adjacent	cells	of	wider	registers).	Stack	instructions	The	x86	architecture	has	hardware	support	for	an
execution	stack	mechanism.	Instructions	such	as	push,	pop,	call	and	ret	are	used	with	the	properly	set	up	stack	to	pass	parameters,	to	allocate	space	for	local	data,	and	to	save	and	restore	call-return	points.	The	ret	size	instruction	is	very	useful	for	implementing	space	efficient	(and	fast)	calling	conventions	where	the	callee	is	responsible	for	reclaiming	stack	space	occupied	by	parameters.	When	setting	up	a	stack	frame	to	hold	local	data	of	a	recursive	procedure	there	are	several	choices;	the	high	level	enter	instruction	(introduced	with	the	80186)	takes	a
procedure-nesting-depth	argument	as	well	as	a	local	size	argument,	and	may	be	faster	than	more	explicit	manipulation	of	the	registers	(such	as	push	bp	;	mov	bp,	sp	;	sub	sp,	size).	
Whether	it	is	faster	or	slower	depends	on	the	particular	x86-processor	implementation	as	well	as	the	calling	convention	used	by	the	compiler,	programmer	or	particular	program	code;	most	x86	code	is	intended	to	run	on	x86-processors	from	several	manufacturers	and	on	different	technological	generations	of	processors,	which	implies	highly	varying	microarchitectures	and	microcode	solutions	as	well	as	varying	gate-	and	transistor-level	design	choices.	The	full	range	of	addressing	modes	(including	immediate	and	base+offset)	even	for	instructions	such	as
push	and	pop,	makes	direct	usage	of	the	stack	for	integer,	floating	point	and	address	data	simple,	as	well	as	keeping	the	ABI	specifications	and	mechanisms	relatively	simple	compared	to	some	RISC	architectures	(require	more	explicit	call	stack	details).	Integer	ALU	instructions	x86	assembly	has	the	standard	mathematical	operations,	add,	sub,	mul,	with	idiv;	the	logical	operators	and,	or,	xor,	neg;	bitshift	arithmetic	and	logical,	sal/sar,	shl/shr;	rotate	with	and	without	carry,	rcl/rcr,	rol/ror,	a	complement	of	BCD	arithmetic	instructions,	aaa,	aad,	daa	and	others.
Floating-point	instructions	x86	assembly	language	includes	instructions	for	a	stack-based	floating-point	unit	(FPU).	The	FPU	was	an	optional	separate	coprocessor	for	the	8086	through	the	80386,	it	was	an	on-chip	option	for	the	80486	series,	and	it	is	a	standard	feature	in	every	Intel	x86	CPU	since	the	80486,	starting	with	the	Pentium.	The	FPU	instructions	include	addition,	subtraction,	negation,	multiplication,	division,	remainder,	square	roots,	integer	truncation,	fraction	truncation,	and	scale	by	power	of	two.	The	operations	also	include	conversion
instructions,	which	can	load	or	store	a	value	from	memory	in	any	of	the	following	formats:	binary-coded	decimal,	32-bit	integer,	64-bit	integer,	32-bit	floating-point,	64-bit	floating-point	or	80-bit	floating-point	(upon	loading,	the	value	is	converted	to	the	currently	used	floating-point	mode).	x86	also	includes	a	number	of	transcendental	functions,	including	sine,	cosine,	tangent,	arctangent,	exponentiation	with	the	base	2	and	logarithms	to	bases	2,	10,	or	e.	The	stack	register	to	stack	register	format	of	the	instructions	is	usually	fop	st,	st(n)	or	fop	st(n),	st,	where	st
is	equivalent	to	st(0),	and	st(n)	is	one	of	the	8	stack	registers	(st(0),	st(1),	...,	st(7)).	Like	the	integers,	the	first	operand	is	both	the	first	source	operand	and	the	destination	operand.	
fsubr	and	fdivr	should	be	singled	out	as	first	swapping	the	source	operands	before	performing	the	subtraction	or	division.	The	addition,	subtraction,	multiplication,	division,	store	and	comparison	instructions	include	instruction	modes	that	pop	the	top	of	the	stack	after	their	operation	is	complete.	So,	for	example,	faddp	st(1),	st	performs	the	calculation	st(1)	=	st(1)	+	st(0),	then	removes	st(0)	from	the	top	of	stack,	thus	making	what	was	the	result	in	st(1)	the	top	of	the	stack	in	st(0).	SIMD	instructions	Modern	x86	CPUs	contain	SIMD	instructions,	which	largely
perform	the	same	operation	in	parallel	on	many	values	encoded	in	a	wide	SIMD	register.	zepefurino.pdf	Various	instruction	technologies	support	different	operations	on	different	register	sets,	but	taken	as	complete	whole	(from	MMX	to	SSE4.2)	they	include	general	computations	on	integer	or	floating-point	arithmetic	(addition,	subtraction,	multiplication,	shift,	minimization,	maximization,	comparison,	division	or	square	root).	So	for	example,	paddw	mm0,	mm1	performs	4	parallel	16-bit	(indicated	by	the	w)	integer	adds	(indicated	by	the	padd)	of	mm0	values	to
mm1	and	stores	the	result	in	mm0.	Streaming	SIMD	Extensions	or	SSE	also	includes	a	floating-point	mode	in	which	only	the	very	first	value	of	the	registers	is	actually	modified	(expanded	in	SSE2).	Some	other	unusual	instructions	have	been	added	including	a	sum	of	absolute	differences	(used	for	motion	estimation	in	video	compression,	such	as	is	done	in	MPEG)	and	a	16-bit	multiply	accumulation	instruction	(useful	for	software-based	alpha-blending	and	digital	filtering).	SSE	(since	SSE3)	and	3DNow!	extensions	include	addition	and	subtraction	instructions
for	treating	paired	floating-point	values	like	complex	numbers.	These	instruction	sets	also	include	numerous	fixed	sub-word	instructions	for	shuffling,	inserting	and	extracting	the	values	around	within	the	registers.	In	addition	there	are	instructions	for	moving	data	between	the	integer	registers	and	XMM	(used	in	SSE)/FPU	(used	in	MMX)	registers.	Memory	instructions	The	x86	processor	also	includes	complex	addressing	modes	for	addressing	memory	with	an	immediate	offset,	a	register,	a	register	with	an	offset,	a	scaled	register	with	or	without	an	offset,	and
a	register	with	an	optional	offset	and	another	scaled	register.	So	for	example,	one	can	encode	mov	eax,	[Table	+	ebx	+	esi*4]	as	a	single	instruction	which	loads	32	bits	of	data	from	the	address	computed	as	(Table	+	ebx	+	esi	*	4)	offset	from	the	ds	selector,	and	stores	it	to	the	eax	register.	In	general	x86	processors	can	load	and	use	memory	matched	to	the	size	of	any	register	it	is	operating	on.	(The	SIMD	instructions	also	include	half-load	instructions.)	Most	2-operand	x86	instructions,	including	integer	ALU	instructions,	use	a	standard	"addressing	mode	byte"
[13]	often	called	the	MOD-REG-R/M	byte.[14][15][16]	Many	32-bit	x86	instructions	also	have	a	SIB	addressing	mode	byte	that	follows	the	MOD-REG-R/M	byte.[17][18][19][20][21]	In	principle,	because	the	instruction	opcode	is	separate	from	the	addressing	mode	byte,	those	instructions	are	orthogonal	because	any	of	those	opcodes	can	be	mixed-and-matched	with	any	addressing	mode.	However,	the	x86	instruction	set	is	generally	considered	non-orthogonal	because	many	other	opcodes	have	some	fixed	addressing	mode	(they	have	no	addressing	mode	byte),
and	every	register	is	special.[21][22]	The	x86	instruction	set	includes	string	load,	store,	move,	scan	and	compare	instructions	(lods,	stos,	movs,	scas	and	cmps)	which	perform	each	operation	to	a	specified	size	(b	for	8-bit	byte,	w	for	16-bit	word,	d	for	32-bit	double	word)	then	increments/decrements	(depending	on	DF,	direction	flag)	the	implicit	address	register	(si	for	lods,	di	for	stos	and	scas,	and	both	for	movs	and	cmps).	For	the	load,	store	and	scan	operations,	the	implicit	target/source/comparison	register	is	in	the	al,	ax	or	eax	register	(depending	on	size).
The	implicit	segment	registers	used	are	ds	for	si	and	es	for	di.	The	cx	or	ecx	register	is	used	as	a	decrementing	counter,	and	the	operation	stops	when	the	counter	reaches	zero	or	(for	scans	and	comparisons)	when	inequality	is	detected.	The	stack	is	implemented	with	an	implicitly	decrementing	(push)	and	incrementing	(pop)	stack	pointer.	190508383.pdf	

In	16-bit	mode,	this	implicit	stack	pointer	is	addressed	as	SS:[SP],	in	32-bit	mode	it	is	SS:[ESP],	and	in	64-bit	mode	it	is	[RSP].	
The	stack	pointer	actually	points	to	the	last	value	that	was	stored,	under	the	assumption	that	its	size	will	match	the	operating	mode	of	the	processor	(i.e.,	16,	32,	or	64	bits)	to	match	the	default	width	of	the	push/pop/call/ret	instructions.	Also	included	are	the	instructions	enter	and	leave	which	reserve	and	remove	data	from	the	top	of	the	stack	while	setting	up	a	stack	frame	pointer	in	bp/ebp/rbp.	However,	direct	setting,	or	addition	and	subtraction	to	the	sp/esp/rsp	register	is	also	supported,	so	the	enter/leave	instructions	are	generally	unnecessary.	This	code	in
the	beginning	of	a	function:	push	ebp	;	save	calling	function's	stack	frame	(ebp)	mov	ebp,	esp	;	make	a	new	stack	frame	on	top	of	our	caller's	stack	sub	esp,	4	;	allocate	4	bytes	of	stack	space	for	this	function's	local	variables	...is	functionally	equivalent	to	just:	enter	4,	0	Other	instructions	for	manipulating	the	stack	include	pushf/popf	for	storing	and	retrieving	the	(E)FLAGS	register.	minecraft	bedwars	cheats	The	pusha/popa	instructions	will	store	and	retrieve	the	entire	integer	register	state	to	and	from	the	stack.	Values	for	a	SIMD	load	or	store	are	assumed	to
be	packed	in	adjacent	positions	for	the	SIMD	register	and	will	align	them	in	sequential	little-endian	order.	Some	SSE	load	and	store	instructions	require	16-byte	alignment	to	function	properly.	The	SIMD	instruction	sets	also	include	"prefetch"	instructions	which	perform	the	load	but	do	not	target	any	register,	used	for	cache	loading.	The	SSE	instruction	sets	also	include	non-temporal	store	instructions	which	will	perform	stores	straight	to	memory	without	performing	a	cache	allocate	if	the	destination	is	not	already	cached	(otherwise	it	will	behave	like	a	regular
store.)	Most	generic	integer	and	floating-point	(but	no	SIMD)	instructions	can	use	one	parameter	as	a	complex	address	as	the	second	source	parameter.	Integer	instructions	can	also	accept	one	memory	parameter	as	a	destination	operand.	Program	flow	The	x86	assembly	has	an	unconditional	jump	operation,	jmp,	which	can	take	an	immediate	address,	a	register	or	an	indirect	address	as	a	parameter	(note	that	most	RISC	processors	only	support	a	link	register	or	short	immediate	displacement	for	jumping).	Also	supported	are	several	conditional	jumps,
including	jz	(jump	on	zero),	jnz	(jump	on	non-zero),	jg	(jump	on	greater	than,	signed),	jl	(jump	on	less	than,	signed),	ja	(jump	on	above/greater	than,	unsigned),	jb	(jump	on	below/less	than,	unsigned).	These	conditional	operations	are	based	on	the	state	of	specific	bits	in	the	(E)FLAGS	register.	Many	arithmetic	and	logic	operations	set,	clear	or	complement	these	flags	depending	on	their	result.	The	comparison	cmp	(compare)	and	test	instructions	set	the	flags	as	if	they	had	performed	a	subtraction	or	a	bitwise	AND	operation,	respectively,	without	altering	the
values	of	the	operands.	There	are	also	instructions	such	as	clc	(clear	carry	flag)	and	cmc	(complement	carry	flag)	which	work	on	the	flags	directly.	Floating	point	comparisons	are	performed	via	fcom	or	ficom	instructions	which	eventually	have	to	be	converted	to	integer	flags.	Each	jump	operation	has	three	different	forms,	depending	on	the	size	of	the	operand.	A	short	jump	uses	an	8-bit	signed	operand,	which	is	a	relative	offset	from	the	current	instruction.	A	near	jump	is	similar	to	a	short	jump	but	uses	a	16-bit	signed	operand	(in	real	or	protected	mode)	or	a
32-bit	signed	operand	(in	32-bit	protected	mode	only).	sabc	2	tv	guide	today	A	far	jump	is	one	that	uses	the	full	segment	base:offset	value	as	an	absolute	address.	There	are	also	indirect	and	indexed	forms	of	each	of	these.	In	addition	to	the	simple	jump	operations,	there	are	the	call	(call	a	subroutine)	and	ret	(return	from	subroutine)	instructions.	Before	transferring	control	to	the	subroutine,	call	pushes	the	segment	offset	address	of	the	instruction	following	the	call	onto	the	stack;	ret	pops	this	value	off	the	stack,	and	jumps	to	it,	effectively	returning	the	flow	of
control	to	that	part	of	the	program.	In	the	case	of	a	far	call,	the	segment	base	is	pushed	following	the	offset;	far	ret	pops	the	offset	and	then	the	segment	base	to	return.	There	are	also	two	similar	instructions,	int	(interrupt),	which	saves	the	current	(E)FLAGS	register	value	on	the	stack,	then	performs	a	far	call,	except	that	instead	of	an	address,	it	uses	an	interrupt	vector,	an	index	into	a	table	of	interrupt	handler	addresses.	Typically,	the	interrupt	handler	saves	all	other	CPU	registers	it	uses,	unless	they	are	used	to	return	the	result	of	an	operation	to	the
calling	program	(in	software	called	interrupts).	The	matching	return	from	interrupt	instruction	is	iret,	which	restores	the	flags	after	returning.	Soft	Interrupts	of	the	type	described	above	are	used	by	some	operating	systems	for	system	calls,	and	can	also	be	used	in	debugging	hard	interrupt	handlers.	Hard	interrupts	are	triggered	by	external	hardware	events,	and	must	preserve	all	register	values	as	the	state	of	the	currently	executing	program	is	unknown.	susovuvevarepivulono.pdf	In	Protected	Mode,	interrupts	may	be	set	up	by	the	OS	to	trigger	a	task	switch,
which	will	automatically	save	all	registers	of	the	active	task.	Examples	This	article	possibly	contains	original	research.	Please	improve	it	by	verifying	the	claims	made	and	adding	inline	citations.	Statements	consisting	only	of	original	research	should	be	removed.	(March	2013)	(Learn	how	and	when	to	remove	this	template	message)	The	following	examples	use	the	so-called	Intel	flavor.	There	is	an	alternative	AT&T	flavor	where	source	and	destination	are	swapped,	among	other	differences.[23]	"Hello	world!"	program	for	DOS	in	MASM	style	assembly	Using
interrupt	21h	for	output	–	other	samples	use	libc's	printf	to	print	to	stdout.[24]	.model	small	.stack	100h	.data	msg	db	'Hello	world!$'	.code	start:	mov	ah,	09h	;	Display	the	message	lea	dx,	msg	int	21h	mov	ax,	4C00h	;	Terminate	the	executable	int	21h	end	start	"Hello	world!"	program	for	Windows	in	MASM	style	assembly	;	requires	/coff	switch	on	6.15	and	earlier	versions	.386	.model	small,c	.stack	1000h	.data	msg	db	"Hello	world!",0	.code	includelib	libcmt.lib	includelib	libvcruntime.lib	includelib	libucrt.lib	includelib	legacy_stdio_definitions.lib	extrn
printf:near	extrn	exit:near	public	main	main	proc	push	offset	msg	call	printf	push	0	call	exit	main	endp	end	"Hello	world!"	program	for	Windows	in	NASM	style	assembly	;	Image	base	=	0x00400000	%define	RVA(x)	(x-0x00400000)	section	.text	push	dword	hello	call	dword	[printf]	push	byte	+0	call	dword	[exit]	ret	section	.data	hello	db	"Hello	world!"	section	.idata	dd	RVA(msvcrt_LookupTable)	dd	-1	dd	0	dd	RVA(msvcrt_string)	dd	RVA(msvcrt_imports)	times	5	dd	0	;	ends	the	descriptor	table	msvcrt_string	dd	"msvcrt.dll",	0	msvcrt_LookupTable:	dd
RVA(msvcrt_printf)	dd	RVA(msvcrt_exit)	dd	0	msvcrt_imports:	printf	dd	RVA(msvcrt_printf)	exit	dd	RVA(msvcrt_exit)	dd	0	msvcrt_printf:	dw	1	dw	"printf",	0	msvcrt_exit:	dw	2	dw	"exit",	0	dd	0	156549646549874	"Hello	world!"	program	for	Linux	in	NASM	style	assembly	;	;	This	program	runs	in	32-bit	protected	mode.	;	build:	nasm	-f	elf	-F	stabs	name.asm	;	link:	ld	-o	name	name.o	;	;	In	64-bit	long	mode	you	can	use	64-bit	registers	(e.g.	rax	instead	of	eax,	rbx	instead	of	ebx,	etc.)	;	Also	change	"-f	elf	"	for	"-f	elf64"	in	build	command.	;	section	.data	;	section	for
initialized	data	str:	db	'Hello	world!',	0Ah	;	message	string	with	new-line	char	at	the	end	(10	decimal)	str_len:	equ	$	-	str	;	calcs	length	of	string	(bytes)	by	subtracting	the	str's	start	address	;	from	this	address	($	symbol)	section	.text	;	this	is	the	code	section	global	_start	;	_start	is	the	entry	point	and	needs	global	scope	to	be	'seen'	by	the	;	linker	--equivalent	to	main()	in	C/C++	_start:	;	definition	of	_start	procedure	begins	here	mov	eax,	4	;	specify	the	sys_write	function	code	(from	OS	vector	table)	mov	ebx,	1	;	specify	file	descriptor	stdout	--in	gnu/linux,
everything's	treated	as	a	file,	;	even	hardware	devices	mov	ecx,	str	;	move	start	_address_	of	string	message	to	ecx	register	mov	edx,	str_len	;	move	length	of	message	(in	bytes)	int	80h	;	interrupt	kernel	to	perform	the	system	call	we	just	set	up	-	;	in	gnu/linux	services	are	requested	through	the	kernel	mov	eax,	1	;	specify	sys_exit	function	code	(from	OS	vector	table)	mov	ebx,	0	;	specify	return	code	for	OS	(zero	tells	OS	everything	went	fine)	int	80h	;	interrupt	kernel	to	perform	system	call	(to	exit)	"Hello	world!"	program	for	Linux	in	NASM	style	assembly	using
the	C	standard	library	;	;	This	program	runs	in	32-bit	protected	mode.	satisfactory	console	commands	give	item	;	gcc	links	the	standard-C	library	by	default	;	build:	nasm	-f	elf	-F	stabs	name.asm	;	link:	gcc	-o	name	name.o	;	;	In	64-bit	long	mode	you	can	use	64-bit	registers	(e.g.	rax	instead	of	eax,	rbx	instead	of	ebx,	etc..)	;	Also	change	"-f	elf	"	for	"-f	elf64"	in	build	command.	;	global	main	;main	must	be	defined	as	it	being	compiled	against	the	C-Standard	Library	extern	printf	;declares	use	of	external	symbol	as	printf	is	declared	in	a	different	object-module.
;Linker	resolves	this	symbol	later.	
segment	.data	;section	for	initialized	data	string	db	'Hello	world!',	0Ah,	0h	;message	string	with	new-line	char	(10	decimal)	and	the	NULL	terminator	;string	now	refers	to	the	starting	address	at	which	'Hello,	World'	is	stored.	segment	.text	main:	push	string	;push	the	address	of	first	character	of	string	onto	stack.	shel	silverstein	the	giving	tree	pdf	This	will	be	argument	to	printf	call	printf	;calls	printf	add	esp,	4	;advances	stack-pointer	by	4	flushing	out	the	pushed	string	argument	ret	;return	"Hello	world!"	program	for	64-bit	mode	Linux	in	NASM	style	assembly
;	build:	nasm	-f	elf64	-F	dwarf	hello.asm	;	link:	ld	-o	hello	hello.o	DEFAULT	REL	;	use	RIP-relative	addressing	modes	by	default,	so	[foo]	=	[rel	foo]	SECTION	.rodata	;	read-only	data	can	go	in	the	.rodata	section	on	GNU/Linux,	like	.rdata	on	Windows	Hello:	db	"Hello	world!",10	;	10	=	``.	len_Hello:	equ	$-Hello	;	get	NASM	to	calculate	the	length	as	an	assemble-time	constant	;;	write()	takes	a	length	so	a	0-terminated	C-style	string	isn't	needed.	It	would	be	for	puts	SECTION	.text	global	_start	_start:	mov	eax,	1	;	__NR_write	syscall	number	from	Linux
asm/unistd_64.h	(x86_64)	mov	edi,	1	;	int	fd	=	STDOUT_FILENO	lea	rsi,	[rel	Hello]	;	x86-64	uses	RIP-relative	LEA	to	put	static	addresses	into	regs	mov	rdx,	len_Hello	;	size_t	count	=	len_Hello	syscall	;	write(1,	Hello,	len_Hello);	call	into	the	kernel	to	actually	do	the	system	call	;;	return	value	in	RAX.	RCX	and	R11	are	also	overwritten	by	syscall	mov	eax,	60	;	__NR_exit	call	number	(x86_64)	xor	edi,	edi	;	status	=	0	(exit	normally)	syscall	;	_exit(0)	Running	it	under	strace	verifies	that	no	extra	system	calls	are	made	in	the	process.	The	printf	version	would	make
many	more	system	calls	to	initialize	libc	and	do	dynamic	linking.	But	this	is	a	static	executable	because	we	linked	using	ld	without	-pie	or	any	shared	libraries;	the	only	instructions	that	run	in	user-space	are	the	ones	you	provide.	$	strace	./hello	>	/dev/null	#	without	a	redirect,	your	program's	stdout	is	mixed	strace's	logging	on	stderr.	Which	is	normally	fine	execve("./hello",	["./hello"],	0x7ffc8b0b3570	/*	51	vars	*/)	=	0	write(1,	"Hello	world!",	13)	=	13	exit(0)	=	?	+++	exited	with	0	+++	Using	the	flags	register	Flags	are	heavily	used	for	comparisons	in	the	x86
architecture.	When	a	comparison	is	made	between	two	data,	the	CPU	sets	the	relevant	flag	or	flags.	Following	this,	conditional	jump	instructions	can	be	used	to	check	the	flags	and	branch	to	code	that	should	run,	e.g.:	cmp	eax,	ebx	jne	do_something	;	...	do_something:	;	do	something	here	Flags	are	also	used	in	the	x86	architecture	to	turn	on	and	off	certain	features	or	execution	modes.	vocational	education	journal	pdf	For	example,	to	disable	all	maskable	interrupts,	you	can	use	the	instruction:	cli	The	flags	register	can	also	be	directly	accessed.	The	low	8	bits
of	the	flag	register	can	be	loaded	into	ah	using	the	lahf	instruction.	The	entire	flags	register	can	also	be	moved	on	and	off	the	stack	using	the	instructions	pushf,	popf,	int	(including	into)	and	iret.	Using	the	instruction	pointer	register	The	instruction	pointer	is	called	ip	in	16-bit	mode,	eip	in	32-bit	mode,	and	rip	in	64-bit	mode.	The	instruction	pointer	register	points	to	the	memory	address	which	the	processor	will	next	attempt	to	execute;	it	cannot	be	directly	accessed	in	16-bit	or	32-bit	mode,	but	a	sequence	like	the	following	can	be	written	to	put	the	address	of
next_line	into	eax:	call	next_line	next_line:	pop	eax	This	sequence	of	instructions	generates	position-independent	code	because	call	takes	an	instruction-pointer-relative	immediate	operand	describing	the	offset	in	bytes	of	the	target	instruction	from	the	next	instruction	(in	this	case	0).	31395004859.pdf	Writing	to	the	instruction	pointer	is	simple	—	a	jmp	instruction	sets	the	instruction	pointer	to	the	target	address,	so,	for	example,	a	sequence	like	the	following	will	put	the	contents	of	eax	into	eip:	jmp	eax	In	64-bit	mode,	instructions	can	reference	data	relative	to
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