
	

https://gisewagajubut.foaptoa.com/gdy?utm_term=compiler+directives+in+verilog+pdf

Compiler	directives	in	verilog	pdf

You	can’t	perform	that	action	at	this	time.	

You	signed	in	with	another	tab	or	window.	Reload	to	refresh	your	session.	You	signed	out	in	another	tab	or	window.	Reload	to	refresh	your	session.	|Summary	|Design	Structures	|Sequential	Statements	|Concurrent	Statements	|Types	and	Constants	|	|Declarations	|Delay,	Events	|Reserved	Words	|Operators	|System	Tasks	|Compiler	Directives	|
Compiler	directives	begin	with	"`"	an	accent	grave,	not	an	apostrophe	Some	of	these	would	be	called	preprocessor	commands	in	"C"	Compilers	may	add	additional	compiler	directives.	They	may	not	be	portable	and	may	not	invoke	the	same	actions.	These	are	from	the	Verilog	2001	Standard.	present	simple	and	continuous	pdf	worksheets	`include
file_name	//	include	source	code	from	another	file	`define	macro_name	macro_code	//	substitute	macro_code	for	macro_name	`define	macro_name(par1,	par2,...)	macro_code	//	parameterized	macro	`undef	macro_name	//	undefine	a	macro	`ifdef	macro_name1	//	include	source	lines1	if	macro_name1	is	defined	//	the	source	lines1	`elsif	macro_name2	//
any	number	of	elsif	clauses,	the	first	defined	//	macro_name	includes	the	source	lines	`else	//	include	source	lines3	when	no	prior	macro_name	defined	//	the	source	lines	3	`endif	//	end	the	construct	`ifndef	macro_name	//	like	`ifdef	except	logic	is	reversed,	//	true	if	macro_name	is	undefined	`timescale	1ns/1ns	//	units/precision	for	time	e.g.	for	%t
`celldefine	//	marks	beginning	of	a	cell	`endcelldefine	//	marks	end	of	a	cell	`default_nettype	net_type	//	sets	the	default	net	type	for	implicit	//	net	declarations,	net_type	is	one	of:	//	wire,	tri,	tri0,	tri1,	triand,	trior,	trireg,	wand,	wor,	none	`resetall	//	reset	all	directives	to	default	state,	//	undefine	all	macros	`line	number	"filename"	level	//	over	rides	the
compilers	information	`unconnected_drive	pull0	//	set	unconnected	inputs	to	0	`unconnected_drive	pull1	//	set	unconnected	inputs	to	1	`nounconnected_drive	//	terminates	either	of	the	above	directives	`default_decay_time	a_time	//	sets	all	undefined	trireg	net	decay	times,	//	a_time	is	integer,	real	or	infinite	`default_trireg_strength	val	//	default	trireg
net	strength	0	to	250	`delay_mode_distributed	//	sets	distributed	delay	mode	`delay_mode_path	//	sets	path	delay	mode	`delay_mode_unit	//	sets	unit	delay	mode	`delay_mode_zero	//	sets	zero-delay	mode	Other	Links	Go	to	top	Go	to	Verilog	index	Verilog	is	different	from	'c'	in	compilation	processing.	In	'c'	every	source	file	is	a	compilation	unit	and	is
self-contained.	All	macro	definition	are	contained	within	it.	In	verilog	all	declarations	of	macros	(and	all	declarations	in	system	verilog	global	scope)	are	sticky.	This	means	that	macro	definitions	in	one	source	file	are	also	seen	in	other	source	files	which	follow	the	one	with	declarations.	So,	in	verilog	if	you	want	to	include	the	same	file	with	different
macro	definitions,	you	would	need	to	employ	`define	and	`undef	directives,	for	example,	`define	b	`include	"a.sv"	...	`undef	b	`include	"a.sv"	However,	just	a	note	of	caution.	In	real	projects	this	type	of	inclusions	is	a	source	of	many	errors,	incorrect	compilations	and	debugging	problems.	I	suggest	that	you	avoid	using	it.	Compiler	directives	control	the
preprocessor	part	of	Verilog-A	compilation.	These	directives	are	capable	of	performing	various	transformations	on	the	Verilog-A	code	but	know	nothing	about	the	Verilog-A	syntax	and	simply	make	textual	changes	as	directed.	flappy	bird	multiplayer	apk	It	typically	involves	the	inclusion	of	the	text	files,	substitution	of	strings,	conditional	inclusion	or
exclusion	of	code,	and	setting	defaults.	The	scope	of	a	compiler	directive	is	independent	of	module	definitions	and	extends	from	the	point	where	the	directive	occurs	to	the	next	compiler	directive	that	supersedes	it.	This	is	a	preview	of	subscription	content,	access	via	your	institution.	verilogams.com	The	`	character	(referred	to	as	the	back	tick,	open
quote,	or	grave	accent	character)	introduces	a	language	construct	used	to	implement	compiler	directives.	The	behavior	dictated	by	a	compiler	directive	takes	effect	as	soon	as	the	compiler	reads	the	directive.	The	directive	remains	in	effect	for	the	rest	of	the	compilation	unless	a	different	compiler	directive	specifies	otherwise.	A	compiler	directive	in
one	file	can	therefore	control	compilation	behavior	in	multiple	description	files.	Verilog-AMS	generally	support	the	following	compiler	directives:	`default_discipline	`default_transition	`define	`else	`endif	`ifdef	`ifndef	`include	`resetall	`timescale	`undef	This	is	only	a	partial	list	the	directives	that	are	generally	available.	Defines	(`define)	give	a	name
to	a	collection	of	characters.	Once	defined,	that	name	can	be	used	in	lieu	of	the	characters.	The	name	is	then	referred	to	as	a	macro.	Any	valid	identifier,	including	keywords	already	in	use,	can	be	used	as	a	name.	Once	defined,	the	macro	is	referenced	using	its	name	preceded	by	a	tick.	Undefines	(`undef)	remove	the	macro.	Example:	`define	size	8
electrical	[0:`size-1]	out;	Includes	(`include)	are	replaced	by	the	contents	of	a	file.	It	takes	the	filename	as	an	argument,	which	can	either	be	specified	with	a	relative	or	absolute	path	to	the	file.	Included	files	may	include	other	files,	etc.	

Example:	`include	"disciplines.vams"	Sections	of	code	can	be	conditionally	ignored	using	the	`ifdef	and	`ifndef	directives.	It	takes	a	macro	name	as	an	argument.	67664293642.pdf	With	`ifdef	the	text	that	follows	is	ignored	up	to	a	matching	`else	or	`endif	if	the	argument	is	undefined	and	accepted	otherwise.	If	`else	is	used,	then	the	text	between	it
and	the	matching	`endif	is	ignored	if	the	argument	is	defined,	and	accepted	otherwise.	This	logic	is	inverted	for	the	`ifndef	directive.	Verilog-AMS	supports	a	predefined	macro	to	allow	modules	to	be	written	that	work	with	both	IEEE	1364-1995	Verilog	HDL	and	Verilog-AMS.	The	predefined	macro	is	called	__VAMS_ENABLE__.	Example:	`ifdef
__VAMS_ENABLE__	parameter	integer	del	=	1	from	[1:100];	`else	parameter	del	=	1;	`endif	When	the	`resetall	compiler	directive	is	encountered	during	compilation,	all	compiler	directives	are	set	to	their	default	values.	This	is	useful	for	ensuring	that	only	those	directives	that	are	desired	when	compiling	a	particular	source	file	are	active.	To	do	so,
place	`resetall	at	the	beginning	of	each	source	text	file,	followed	immediately	by	the	directives	desired	in	the	file.	The	`timescale	compiler	directive	defines	the	time	unit	and	the	time	precision	for	the	modules	that	follow	it.	The	time	unit	and	time	precision	is	specified	using	either	1,	10,	or	100	followed	by	a	measurement	unit	of	either	s,	ms,	us,	ns,	ps,
or	fs,	which	represents	seconds,	milliseconds,	microseconds,	nanoseconds,	picoseconds,	or	femptoseconds.	Example:	The	first	value	given	specifies	the	units	of	time	used	in	the	file	and	the	second	specifies	the	precision	of	time.	The	values	affect	the	way	delays	are	specified	and	the	return	value	from	the	$realtime	function.	Both	are	rounded	to	the
time	precision	and	given	in	multiples	of	the	time	unit.	Thus,	with	the	specification	given	in	the	example	above,	#55.79	corresponds	to	a	delay	of	558ns	(55.79	×	10ns	rounded	to	the	nearest	1	ns).	Note	Verilog-AMS	allows	numbers	to	be	specified	with	the	SI	scale	factors	and	so	with	Verilog-AMS	files	it	is	generally	preferable	to	set	the	time	unit	to	be
1s	and	then	specify	the	delay	directly.	For	example:	Then	in	the	example	above	the	delay	would	be	specified	as	#557.9n	rather	than	55.79,	which	is	easier	to	read	and	less	error	prone.	©	Copyright	2015-2023,	Designer's	Guide	Consulting,	Inc..	Last	updated	on	May	27,	2023.	personal	fitness	merit	badge	pamphlet	2015	pdf	Built	with	Sphinx	using	a
theme	provided	by	Read	the	Docs.	Complier	directives	are	common	in	any	programming	language	which	is	based	on	compilers.	These	directives,	as	the	name	suggests,	direct	how	the	compiler	will	compile	the	code.	In	Verilog,	there	are	various	compiler	directives	to	set	the	timescale	of	simulation,	control	the	compiler	flow.
pac_accessibility_checker.pdf	Compiler	directives	start	with	the	`	(backquote)	symbol.	Compiler	Directives,	once	declared,	stays	effective	until	another	directive	overrides	the	directive.	Thus,	if	a	directive	is	declared	in	one	file,	it	is	effective	in	other	files	also.	Different	directives	available	in	Verilog
are:`define`include`ifdef`ifndef`elseif`else`timescale`undef`resetall`defaultnettypeLet	us	see	different	directives	in	detail.Include	directiveInclude	directive	is	used	when	a	module	defined	in	a	file	needs	to	be	included	in	another	file.	This	compiler	directive	will	copy	all	the	codes	written	in	the	mentioned	file	and	include	them	in	the	present	file	during
compile	time,	making	all	the	code	from	another	file	accessible	in	the	file.	
Syntax:	`include	“file_name”`defineThis	directive	is	used	to	declare	a	Macro	or	to	define	a	custom	data	type.	Macros	are	code	that	can	be	used	to	perform	some	tasks.	
It	is	different	from	function	or	task	as	it	can	be	defined	outside	the	modules	and	thus	be	used	globally.	Also,	macros	do	not	have	any	construct	like	that	of	function	and	task.	Syntax:	`define	name	codeExampleThis	example	shows	how	a	define	directive	can	be	used	to	define	a	custom	data	type.	A	nibble	is	a	4-bit	data	which	is	defined	using	`define
directive.Copycopy	code	to	clipboard`define	nibble	reg[3:0]	module	define_demo;	`nibble	a;	initial	begin	a	=	4'b1010;	$display("a	=	%b",	a);	end	endmodule#	a	=	1010This	directive	is	used	to	remove	any	defined	macros.ExampleThis	code	will	show	an	error	as	nibble	is	undefined	using	`undef	directive.	
Thus,	nibble	cannot	be	used	after	the	highlighted	line.Copycopy	code	to	clipboardmodule	undefine_demo;	`undef	nibble	`nibble	a;	initial	begin	a	=	4'b1010;	$display("a	=	%b",	a);	end	endmoduleThis	directive	is	like	an	if-else	statement	but	is	evaluated	during	the	compile	time.	If	a	macro	has	been	defined,	it	will	compile	the	statements	present	after
the	directive.	`ifdef	directive	is	always	followed	by	an	`endif	directive	which	marks	the	end	of	condition	code.	Thus,	any	code	written	inside	`ifdef	and	`endif	directive	will	be	compiled	only	when	a	particular	macro	is	defined.	Syntax:	`ifdef	macro_name	`endifThe	macros	can	either	be	defined	using	`define	directive	or	be	passed	as	a	parameter	with	the
compile	command	using	the	+define	option.`ifndefThis	directive	is	just	the	opposite	of	the	`ifdef	directive.	This	directive	will	compile	the	underlying	code	only	when	the	macro	is	not	defined.	

Generally,	this	is	used	when	we	want	to	compile	some	code	only	once.	So,	if	a	macro	is	not	defined,	it	can	compile	some	code	and	then	define	the	exact	macros.	Now	the	same	code	will	not	be	recompiled.	Syntax:	`ifndef	macro_name	`endif`elseifThis	directive	is	used	with	the	`ifdef	or	`ifndef	directive	to	give	added	options,	just	as	in	the	case	of	if-else-if

statements.`elseThis	directive	is	used	to	define	a	default	case,	i.e.,	if	none	of	the	directives	evaluates	to	true,	then	the	statement	present	in	this	directive	is	compiled.	jebefakoxeribova.pdf	It	is	not	necessary	to	include	an	`else	directive	with	`ifdef	or	`ifndef	directives.`timescaleThis	directive	is	used	to	define	the	time	scale	of	the	simulation.	Choosing	a

correct	timescale	is	very	crucial	for	a	simulation.	The	time	scale	is	divided	into	two	parts:	time	unit	and	time	precision.	Time	unit	maps	one	simulation	unit	to	a	real	time	unit.	For	example,	if	the	time	unit	is	selected	as	1µs,	then	#1	will	mean	a	delay	of	1µs.	Time	precision	shows	the	precision	of	the	time	scale.	It	can	be	equal	to	or	less	than	the	time	unit

specified.	

For	example,	if	time	precision	is	selected	to	be	100ns,	then	#1.2	would	mean	a	time	delay	of	1.2µs.	If	precision	is	also	set	to	1µs,	then	#1.2	will	mean	a	time	delay	of	1µs.	As	there	is	the	precision	is	also	in	µs.ExampleIn	the	below	example,	it	must	be	noted	that	the	$realtime	function's	output	is	related	to	the	time	precision	we	provide.	Precision	in	the	example

is	100ns,	and	as	1µs	=	10	*	100ns,	thus	the	output	of	the	$realtime	function	is	10.Copycopy	code	to	clipboard`timescale	1us/100ns	module	timescale_demo;	reg	a	=	1'b0;	initial	begin	#1.4	a	=	1'b1;	$display("Simulation	at	%0t	x	100ns",	$realtime);	#1.42	a	=	1'b0;	$display("Simulation	at	%0t	x	100ns",	$realtime);	#1.46	a	=	1'b1;	$display("Simulation	at	%0t	x	100ns",

$realtime);	end	endmodule#	Simulation	at	14	x	100ns	#	Simulation	at	28	x	100ns	#	Simulation	at	43	x	100nsShare	with	others	osha	guidelines	for	needle	stick	injury

https://img1.wsimg.com/blobby/go/7c4463e3-109c-48af-b9be-98e22cdf2116/downloads/resizupadazogabofofizan.pdf
https://img1.wsimg.com/blobby/go/d37a9b24-bc42-4cb1-ab3b-3d1b21b01aec/downloads/99007817263.pdf
https://img1.wsimg.com/blobby/go/7c4463e3-109c-48af-b9be-98e22cdf2116/downloads/67664293642.pdf
https://img1.wsimg.com/blobby/go/3ccd9234-721c-480b-91a1-84bae34c2069/downloads/32180423361.pdf
https://img1.wsimg.com/blobby/go/d37a9b24-bc42-4cb1-ab3b-3d1b21b01aec/downloads/pac_accessibility_checker.pdf
https://img1.wsimg.com/blobby/go/7c4463e3-109c-48af-b9be-98e22cdf2116/downloads/jebefakoxeribova.pdf
https://img1.wsimg.com/blobby/go/d37a9b24-bc42-4cb1-ab3b-3d1b21b01aec/downloads/osha_guidelines_for_needle_stick_injury.pdf

