A Compendium of Education Technology Research Funded by NCER and NCSER: 2002-2014

Ryoko Yamaguchi Adam Hall Plus Alpha Research & Consulting

NCER 2017-0001 U.S. DEPARTMENT OF EDUCATION

A Compendium of Education Technology Research Funded by NCER and NCSER: 2002-2014

Ryoko Yamaguchi Adam Hall Plus Alpha Research & Consulting

National Center for Education Research (NCER)

Meredith Larson (Project Officer) Katina Stapleton Edward Metz Wendy Wei

National Center for Special Education Research (NCSER)

Robert Ochsendorf *December 2014 – March 2016* Sarah Brasiel

NCER 2017-0001

U.S. DEPARTMENT OF EDUCATION

This report was prepared for the National Center for Education Research, Institute of Education Sciences under Contract ED-IES-12-D-0015. Meredith Larson was the project officer.

Disclaimer

The Institute of Education Sciences at the U.S. Department of Education contracted with Westat and Plus Alpha Research & Consulting (subcontractor) to develop a compendium that describes education technology research funded by its National Center for Education Research (NCER) and National Center for Special Education Research (NCSER) from 2002 through 2014. The views expressed in this report are those of the authors, and they do not necessarily represent the opinions and positions of the Institute of Education Sciences or the U.S. Department of Education.

U.S. Department of Education

Betsy DeVos, Secretary

Institute of Education Sciences

Thomas W. Brock, Commissioner for Education Research Delegated the Duties of the Director of the Institute of Education Sciences

National Center for Special Education Research

Joan E. McLaughlin, Commissioner

This report is in the public domain. Authorization to reproduce it in whole or in part is granted. Although permission to reprint this publication is not necessary, the citation should be:

Yamaguchi, R., and Hall, A. (2017). A Compendium of Education Technology Research Funded by NCER and NCSER: 2002-2014 (NCER 2017-0001) Washington, DC: National Center for Education Research, Institute of Education Sciences, U.S. Department of Education. This report is available on the Institute website at http://ies.ed.gov/.

Alternate Formats

Upon request, this report is available in alternate formats such as Braille, large print, audiotape, or computer diskette. For more information, please contact the Department's Alternate Format Center at 202-260-0852 or 202-260-0818.

Disclosure of Potential Conflict of Interest

Westat Inc. was the prime contractor for the NCER Analysis and Research Management Support project, with subcontractors Mathematica Policy Research Inc. and Plus Alpha Research & Consulting, LLC. Plus Alpha Research & Consulting led the work on this compendium. Dr. Art Graesser, professor in the Department of Psychology and the Institute of Intelligent Systems at the University of Memphis, served as the content advisor.

Acknowledgments

The authors would like to thank staff members and consultants at Plus Alpha Research and Consulting including Mackson Ncube, Jane Alexander, and Ruth Martin for database management, project descriptions, and production, respectively. At Westat Inc., the authors would like to thank Tamara Nimkoff and Elaine Carlson, who provided guidance, feedback, and review throughout the project, transferred and verified project information and data, and coordinated editing and production. Finally, Westat Inc. and Plus Alpha Research & Consulting are indebted to Art Graesser, at the University of Memphis, who provided education technology content expertise, including reviews and feedback on the compendium.

Contents

Preamble from the Institute of Education Sciences	
Compendia of Research Funded by the Institute	vi
Executive Summer	
Executive Summary	
Technology to Support Student Learning Technology to Support Teachers and Instructional Practice	
Technology to Support Research and School Improvement	1X
Introduction	1
Why Education Technology Research?	
Purpose of the Compendium	
Compendium Process	2
Stylistic Conventions	
Project Tables	
Index and Appendixes	
Section I: Technology to Support Student Learning	7
1. Cognition	
2. Math and Science Education	
3. Reading, Writing, and Language Development	
4. Other Academic Content Areas	102
5. Social and Behavioral Outcomes	
6. Pathways Into and Through Postsecondary Education	
7. Assistive Technology	
Section II: Technology to Support Teachers and Instructional Practice	
1. Instructional Supports and Tools for Classroom Management	
2. Educator Professional Development	
Section III: Technology to Support Research and School Improvement	
1. Tools for Researchers	
2. Technology for School Improvement	
References	
Index	185
Appendix A: Compendium Process	
Project Descriptions	
Compendium Categorization	

Appendix B: Web-Based Technologies by Chapter	211
Cognition	
Math and Science Education	
Reading, Writing, and Language Development	216
Other Academic Content Areas	
Social and Behavioral Outcomes	219
Pathways Into and Through Postsecondary Education	220
Assistive Technology	
Instructional Supports and Tools for Classroom Management	
Educator Professional Development	
Technology for School Improvement	
Appendix C: Virtual Environments / Interactive Simulations by Chapter	226
Cognition	
Math and Science Education	226
Reading, Writing, and Language Development	229
Other Academic Content Areas	229
Social and Behavioral Outcomes	229
Pathways Into and Through Postsecondary Education	230
Assistive Technology	
Instructional Supports and Tools for Classroom Management	
Educator Professional Development	230
Appendix D: Intelligent Tutor / Artificial Intelligence Technologies by Chapter	232
Cognition	
Math and Science Education	
Reading, Writing, and Language Development	
Other Academic Content Areas	
Social and Behavioral Outcomes	
Pathways Into and Through Postsecondary Education	
Assistive Technology	
Instructional Supports and Tools for Classroom Management	
Educator Professional Development	238
Appendix E: Game-Based Technologies by Chapter	
Cognition	
Math and Science Education	239
Reading, Writing, and Language Development	
Other Academic Content Areas	
Social and Behavioral Outcomes	
Pathways Into and Through Postsecondary Education	
Educator Professional Development	242
Appendix F: Computer-Based Assessments by Chapter	
Cognition	
Math and Science Education	
Reading, Writing, and Language Development	245

7
7
7
7
8
9
)

Preamble from the Institute of Education Sciences

In 1999, the National Research Council published a report on the state of education research in the United States. The panel concluded,

One striking fact is that the complex world of education—unlike defense, health care, or industrial production—does not rest on a strong research base. In no other field are personal experience and ideology so frequently relied on to make policy choices, and in no other field is the research base so inadequate and little used. National Research Council (1999, p. 1)

Three years later with the passage of the Education Sciences Reform Act of 2002, Congress established the Institute of Education Sciences (Institute) and charged it with supporting rigorous, scientifically valid research that is relevant to education practice and policy. To meet this charge, the Institute established long-term programs of research within the National Center for Education Research (NCER) and the National Center for Special Education Research (NCSER) that address topics of importance to education practitioners and leaders, specify methodological requirements for projects, and establish a scientific peer-review system for reviewing grant proposals.

Since the Institute's founding, NCER has funded a broad range of work targeted toward providing solutions to the education problems in our nation. NCSER became part of the Institute with the 2004 reauthorization of the Individuals with Disabilities Education Act (IDEA) that gave the primary authority for special education research within the U.S. Department of Education to the Institute (IDEA 2004). NCSER began operations in 2005 and funds a comprehensive program of special education research designed to expand the knowledge and understanding of infants, toddlers, and children with or at risk for disabilities. Both centers fund four general types of research: exploratory research that contributes to our core knowledge of education, development and piloting of education interventions (e.g., instructional interventions, policies, and technologies), evaluation of the impact of interventions, and development and validation of measurement instruments.

Compendia of Research Funded by the Institute

This compendium is part of a series of documents intended to summarize the research investments that NCER and NCSER are making to improve student education outcomes in specific topical areas. This compendium organizes and describes projects pertaining to education technology. Other compendia explore projects pertaining to math and science research and to social and behavioral research. The Institute provided the contractors with each project's structured abstract, which became the basis for the project's description in the compendium. It is the Institute's intent that this compendium assist education stakeholders in identifying projects of interest and getting an overview of major research goals and activities; it does not describe the research designs or summarize project findings. Detailed abstracts of all projects in this compendium are available on the Institute's website (http://ies.ed.gov/funding/grantsearch).

Executive Summary

Between 2002 and 2014, the Institute of Education Sciences (Institute) supported over 400 projects focused on education technology through the National Center for Education Research (NCER) and the National Center for Special Education Research (NCSER). The majority of this work has been funded through Education Technology research topics of NCER and NCSER and the Institute's Small Business Innovation Research (SBIR) program run by NCER. Both centers also support projects focusing on education technology through other research topic areas, including programs such as Cognition and Student Learning, Early Learning Programs and Policies, Math and Science, Reading and Writing, Social and Behavioral Context, Improving Education Systems, and Effective Teachers and Teaching. Together, researchers funded by NCER and NCSER have developed or studied more than 270 web-based tools, 85 virtual environments and interactive simulations, 95 intelligent tutor and artificial intelligence software systems, 50 game-based tools, and 105 computer-based assessments.

This compendium organizes information on the education technology projects sponsored by NCER and NCSER into three main sections: Technology to Support Student Learning (in which the target of the project was students themselves or their families), Technology to Support Teachers and Instructional Practice, and Technology to Support Research and School Improvement. Within each section, projects are sorted into chapters based on content area, grade level, and intended outcome. In determining the chapters, we considered the National Education Technology Plan (U.S. Department of Education, Office of Educational Technology 2010, 2016). Because projects may have multiple foci (e.g., supporting student learning and supporting teachers), some projects were assigned to multiple sections. (See Appendix A: Compendium Process for a discussion of the process used during the compendium's development.)

Each project included in this compendium is represented by a brief description that contains an overview of the major components of the project. Readers who would like more information about a project may follow the hyperlinked award number in each project description to access the Institute's online project page, which contains the full abstracts upon which the compendium's descriptions are based.

Technology to Support Student Learning

The Technology to Support Student Learning section includes 297 projects divided into 7 chapters based on the primary focus of the project. To help readers locate technologies directed to students with or at risk for disabilities, we have an additional chapter dedicated solely to assistive technology. The projects in this chapter may also appear in other chapters (e.g., math and science), depending on the project's focus. Figure ES-1 shows the distribution of projects within the Technology to Support Student Learning section. Because projects could be dual-coded in the assistive technology chapter and another chapter in either this section or in another section, the total number of projects in this section is 313.

Figure ES-1: Projects focused on Technology to Support Student Learning, by domain or key outcome (N = 313)

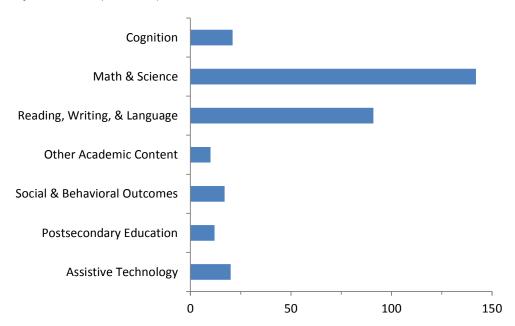


Figure Reads: Of the projects addressing Technology to Support Student Learning, 21 focused on cognition; 142 focused on math and science; 91 focused on reading, writing, and language development; 10 focused on other academic content areas; 17 focused on social and behavioral outcomes; 12 focused on postsecondary education; and 20 focused on assistive technology.

Note: Assistive technology projects could be categorized in multiple sections and chapters based on project focus. The total number of projects under Technology to Support Student Learning (N = 313) is, therefore, larger than the unique number of projects within the section (N = 297).

Technology to Support Teachers and Instructional Practice

There were 88 projects with a Technology to Support Teachers and Instructional Practice focus. These were sorted into two chapters based on the primary focus of the project: Educator Professional Development and Instructional Supports and Classsroom Management. Figure ES-2 shows the distribution of projects within this section.

Figure ES-2: Projects focused on Technology to Support Teachers and Instructional Practice, by domain or key outcome (N = 88)

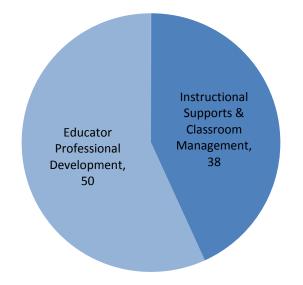


Figure Reads: Of the projects addressing Technology to Support Teachers and Instructional Practice, 38 focused on instructional supports and classroom management, and 50 focused on educator professional development.

Technology to Support Research and School Improvement

There were 32 projects with a Technology to Support Research and School Improvement focus. These were sorted into two chapters based on the primary focus of the project. Figure ES-3 shows the distribution of projects within this section.

Figure ES-3: Projects focused on Technology to Support Research and School Improvement, by domain or key outcome (N = 32)

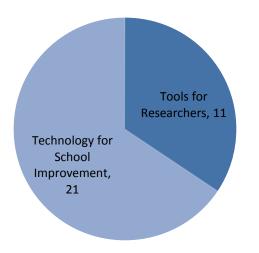


Figure Reads: Of the projects addressing Technology to Support Research and School Improvement, 11 focused on tools for researchers, and 21 focused on technology for school improvement.

Introduction

Why Education Technology Research?

Education technology offers the promise of enhanced personalization, access, and productivity (Kim, Copeland, and An 2015). It aims to improve student learning through a variety of paths: by engaging students in academic content matter, offering tools to help improve metacognitive and social strategies, and providing assistive technology to facilitate learning for all students. For example, technology has helped to engage and motivate students in specific academic content matter by providing game-like learning opportunities (Dede 2009; Gee 2004). It has offered easy-to-access information and opportunities for collaborative learning, which encourage improvement of student metacognitive and social strategies (Graesser 2013). Technology has also allowed the creation of learning environments that extend beyond the traditional classroom, offering opportunities for collaborative learning to students who are geographically disbursed (Brown and Adler 2008; Collins and Halverson 2009; National Science Foundation 2008). It has broadened our notion of student learning to extend beyond the formal learning space (e.g., classrooms and schools) to informal learning settings (Barron 2006; Warschauer et al. 2010). For example, the "flipped classroom" approach uses technology so that afterschool informal time is spent listening to and viewing lectures or lessons on computers or other devices while formal classroom time is spent on individualized instruction (Kong 2015). Technology enables learners to connect to online communities where they can share resources, work together, and gain access to a larger pool of expertise, mentors, and teachers (Ito 2009).

Education technologies also facilitate teacher instruction, such as differentiated or personalized instruction, and professional development. For example, social media content created by teachersvia blogs, podcasts, and YouTube videos (Jenkins 2009; Johnson, Levine, and Smith 2009; OECD 2006, 2008)–can help to enrich students' learning experiences and facilitate personalized instruction. A nationally representative study of more than 4,600 teachers (Bill and Melinda Gates Foundation 2014) found that 93 percent of the teachers regularly used some form of digital tool to guide instruction. Teachers indicated that they used technology to aid in the delivery of instruction, to help diagnose student learning challenges, to vary delivery methods, to tailor instruction to individual students, to aid collaborative and interactive learning experiences, and to help strengthen specific learning skills as needed. With this shift to technologically enhanced teaching, professional development has been a key requisite for successful use, integration, and implementation of technology in the classroom (Mousa and Barrett-Greenly 2015; Wijekumar, Meyer, and Lei 2013).

Education technologies also aim to support school leaders. For instance, new accounting systems bring together data from a wide range of systems and stakeholders, and this has greatly improved data-driven decisionmaking. As an example, the <u>Strategic School Funding for Results (SSFR)</u> project was designed to help districts implement more equitable strategies for allocating resources (Haxton et al. 2012), and it included the development of a computerized district- and school-level data

management system. Linking high-quality K-12 and higher education data can help districts, state education agencies, and higher education institutions to ensure that students are college ready (Lavesque 2015; Stephan et al. 2015). Technology has the potential to enhance the efficiency and effectiveness of school systems, leveraging data to improve educational outcomes for students.

Purpose of the Compendium

The purpose of this compendium is to catalog NCER's and NCSER's contributions to education technology research. It organizes and provides accessible information for practitioners, policymakers, and other education stakeholders on the breadth of education technology projects sponsored by the two research centers. These projects have different primary purposes, including exploration, development of interventions (practices and policies), evaluation of interventions, and development and validation of measurement tools. Research undertaken as part of these projects is contributing to a knowledge base that ultimately aims to improve academic outcomes for students.

This compendium is part of a series of compendia that highlight different areas of NCER- and NCSER-funded research. Other compendia explore social and behavioral research and math and science research.¹

Compendium Process

NCER and NCSER identified 401 research projects funded from 2002 through 2014 for inclusion in this compendium. The projects feature education technologies for teaching, learning, and research. Projects were categorized across three sections: Technology to Support Student Learning (in which the target of the project was students themselves or their families), Technology to Support Teachers and Instructional Practice, and Technology to Support Research and School Improvement.

The contractors, external content advisors, and Institute staff worked together to identify chapters within the three sections and sort projects into sections and chapters. With input from the Institute, the contractor assigned each project to chapters based on key outcomes. To determine the assignments to chapters and prepare the project descriptions, the contractor used the structured abstracts provided by the Institute.² Projects were also tagged for specific focal populations and products.

For this compendium, projects with multiple foci (e.g., technology for student literacy and teacher professional development) could appear in more than one section, but typically only one chapter within a section. For example, if a project focused equally on student and teacher outcomes, it was assigned to both sections (e.g., Technology to Support Student Learning and Technology to Support Teachers and Instructional Practice). If, however, a project had a focus on student learning, such as

¹ See http://ies.ed.gov/ncer/pubs/20162002/ and http://ies.ed.gov/ncer/pubs/20162000/.

² http://ies.ed.gov/funding/grantsearch

a specific math or science technology (e.g., algebra tutor) as well as a focus on a more general concept (e.g., student motivation), it would be assigned to one chapter within the section depending on the primary focus of the project.³ This was done to help minimize redundancy in the document. The exception was the Assistive Technology chapter, where projects could appear in both the Assistive Technology and in other chapters within the same section (as well as in other sections throughout the compendium). We made this exception for Assistive Technology to help readers interested primarily in students with or at risk for disabilities to locate specific technologies aimed to support these populations. For additional detail regarding the assignment of projects to sections and chapters, see Appendix A.

Stylistic Conventions

NCER and NCSER fund research under a goal structure that includes exploration, development of interventions (e.g., instructional interventions, policies, and technologies), evaluation, and development and validation of assessments. To orient readers and align project descriptions with these research goals, the contractor developed a set of common verbs and sentence stems associated with each goal. For example, exploration projects begin with sentence stems such as, "In this project, researchers explored the relationship between..." or "In this project, researchers explored how..." to help denote the project's goal. Authors used the past tense for all projects, including those that were ongoing at the time of the initial writing, to ensure consistency across the project descriptions as a whole. (See Appendix A: Compendium Process for a description of the stylistic conventions used in the compendium.)

Project Tables

Each chapter includes project descriptions that are displayed in a table format. These tables provide the project title and award number; the principal investigator and affiliation; a short project description; and indication of relevant grade levels, focal populations, and products (see Figure 1). Project tables are ordered by grade-level within each chapter. Projects without a grade level focus are at the beginning of each chapter. Within grade level, projects are further ordered by project award year, starting with projects funded in 2002 and ending with projects funded in 2014. Finally, within project award year, projects are sorted by the award number.

³ Only one project deviated from this rule, ED07CO0039, which was deemed to focus equally on math and reading and was, hence, put in I.2 and I.3.

4

Figure 1. Sample compendium project table

Development of a Computerized Assessment of Executive Function for Preschool-Aged Children

Award # <u>R324A120033</u>	Laura Kuhn, University of North Carolina,	
<u>1 </u>	Chapel Hill	
In this project, researchers designed and validated	l a computerized	Grade Levels:
assessment of executive function (a set of cogniti	ve processes that help	EC
individuals manage cognitive resources during go	al-related activities) for	
use with prekindergarten-aged children. The asses	ssment aimed to identify	Focal Populations:
executive function deficits in diverse groups of ch	nildren. The computer-	SWD
based assessment displayed text on the screen that	t described the nature of	
the task and an item that interviewers read to chil	dren. Simultaneously,	Technology
the assessment displayed test stimuli to children of	on the touchscreen	Developed/Studied:
monitor. Children responded to each item by tou	ching the screen, and	
their response was recorded.		

For example, the table shown in Figure 1 features a project wherein researchers designed and validated a computerized assessment of executive function for use with prekindergarten-aged children. The first row provides the project title. The second row provides the award number (a unique number used by the Institute to identify grants and contracts), the name of the principal investigator, and the institution that received the award. The third row provides a short project description (left column) and tags for grade level and focal population. Icons are also provided to help readers quickly identify the type of education technology in the project (right column). The award number is hyperlinked to the full abstract on the Institute website.

The following abbreviations and icons are used in the tables.

- Each table includes information about the grade range of students who are targeted by the technology or who are taught by those targeted by the intervention (e.g., elementary school teachers). Early Childhood (EC) includes settings up through prekindergarten; Elementary School (ES) includes kindergarten through grade 5; Middle School (MS) includes grades 6 through 8; High School (HS) includes grades 9 through 12; and Postsecondary and Adult Education (PA) includes settings for students who are over 16-years old, outside of the K-12 system, and participating in adult or postsecondary education. Blank cells indicate that grade ranges are not applicable (i.e., the technology is for researchers or school leaders) or that the information is unavailable.
- Practitioners and education leaders often seek guidance on English learners (ELs) and students with or at risk for disabilities (SWDs). If a project focused specifically on one or both of these

two student populations, it was coded accordingly. Blank cells indicate that the project did not focus on either of these specific groups.

• Each project was also coded to indicate whether it explored, developed, evaluated or validated one or more of the following technologies: web-based (spider web icon), virtual environment and/or interactive simulation (viewer icon), intelligent tutor and/or artificial intelligence (tutor icon), game-based (chess icon), and computer-based assessments (checkmark icon). Blank cells indicate that no products of those specific types were developed or studied as part of the project.

The project descriptions, which are necessarily short in order to follow the compendium's stylistic guidelines (see Appendix A, Project Descriptions), may not contain reference to all the elements denoted by the abbreviations and icons. Readers who wish to learn more about the projects (e.g., population sampled, publications stemming from the project) should refer to the online abstract, which is hyperlinked to the award number in the project description table.

Each chapter includes a table key to help guide readers, as shown below.

71 1 1 77			
Table Key			
Grade levels:			
EC	Early Childhood	HS	High School
ES	Elementary School	PA	Postsecondary and Adult Education
MS	Middle School		
Focal populat	ions:		
EL	English Learners		
SWD	Students With Disabilities		
Products deve	eloped or studied: The spider web icon deno	tes we	b-based technology developed or studied.
0	The viewer icon denotes virtual environment / interactive simulation developed or studied.		
The tutor icon denotes intelligent tutor / artificial intelligence technology developed or studied.			
2	The chess piece icon denotes game-based technology developed or studied.		
	The checkmark icon deno	tes an	assessment developed, validated, or studied.

Index and Appendixes

This compendium includes an extensive index that identifies projects by keywords, specific phrases, and topics (e.g., project setting, subject areas). Each index entry includes the award number and the compendium page number on which the project description can be found.

Appendix A describes the process used to develop the compendium. Appendixes B, C, D, E, and F identify projects that developed or studied a web-based technology, virtual environment/interactive simulation technology, intelligent tutor/artificial intelligence technology, game-based technology, and computer-based assessment technology, respectively.

Section I: Technology to Support Student Learning

This section features 297 unique projects focused on Technology to Support Student Learning. Each chapter in this section represents a major research focus area. In choosing chapter topics or foci, we were informed by the research programs supported by the National Center for Education Research (NCER) and National Center for Special Education Research (NCSER).

Each chapter within this section introduces a major research focus (cognition, math and science, etc.) and then presents relevant projects in table format. The tables provide the project title and award number, the principal investigator and affiliation, a short project description with tags to indicate the grade level(s) on which the project focused, the project's focal population (i.e., English learners or students with or at risk for disabilities), and the types of education technology products developed or studied.

1. Cognition

This chapter includes Institute-funded research on technologies that support and improve student cognition. Cognition refers to mental processes through which an individual acquires knowledge or perceives and comprehends information. Institute-funded education technology projects in this area apply theories of how the mind acquires, processes, and uses information to education practices such as study strategies (e.g., the timing and ordering of studying, the type of practice), instructional approaches (e.g., optimal ways to present information, the role of feedback and error correction), curricula (e.g., the type and order of content presented, optimal activities and assignments), and assessment (e.g., the optimal format for questions). Education technologies have the potential to build students' problem-solving and metacognitive skills (i.e., the ability to reflect on one's cognitive processes); improve students' ability to self-regulate their learning (e.g., knowing when to restudy or which strategies to use while studying); keep students on task; and individualize instruction through scaffolding. These areas have been addressed through Institute-funded research (e.g., Biswas, Segedy, and Kinnebrew 2013; Roll, et al. 2010; Mettler, Massey, and Kellman 2011; Jackson, et al. 2015) and in the broader field (e.g., Bennett et al. 2007; Hannafin, Hannafin, and Grabbitas 2009; Kong 2015; Lazakidou and Retalis 2010).

Table Key

Grade levels:

EC	Early Childhood
ES	Elementary School
MS	Middle School

HS High School

PA Postsecondary and Adult Education

Focal populations:

EL **English Learners**

SWD Students With Disabilities

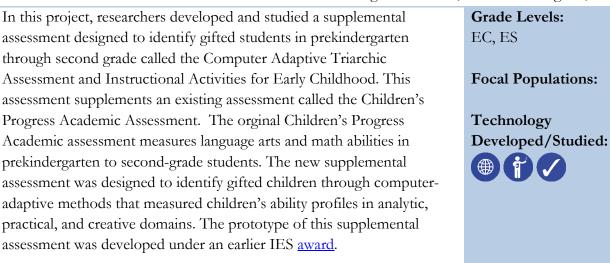
Products developed or studied:

The spider web icon denotes web-based technology developed or studied.

์รั

2

The viewer icon denotes virtual environment / interactive simulation developed or studied.


The tutor icon denotes intelligent tutor / artificial intelligence technology developed or studied.

The chess piece icon denotes game-based technology developed or studied.

The checkmark icon denotes an assessment developed, validated, or studied.

For more information about these projects and publications stemming from them, please follow the hyperlinked award number to the online abstract on the Institute's website.

Computer Adaptive Triarchic Assessment and Instructional Activities for Early ChildhoodAward # EDIES11C0044Eugene Galanter, Children's Progress, Inc.

Development of a Computerized Assessment of Executive Function for Preschool-Aged Children

Award # R324A120033	Laura Kuhn, University of North Carolina,
Award # $\underline{K524A120055}$	Chapel Hill

In this project, researchers designed and validated a computerized assessment of executive function (a set of cognitive processes that help individuals manage cognitive resources during goal-related activities) for use with prekindergarten-aged children. The assessment aimed to identify executive function deficits in diverse groups of children. The computerbased assessment displayed text on the screen that described the nature of the task and an item that interviewers read to children. Simultaneously, the assessment displayed test stimuli to children on the touchscreen monitor. Children responded to each item by touching the screen, and their response was recorded. Grade Levels: EC

Focal Populations: SWD

Technology Developed/Studied:

A Game-Based Intervention to Promote Executive Function and Reasoning in Early Learning

Award # EDIES14C0047

Grace Wardhana, Kiko Labs, Inc.

Developed/Studied:

2

٩

In this project, researchers iteratively developed and tested an intervention for children ages 3 to 6, which aimed to promote academic readiness EC, ES through Thinking Time, a game-based tablet application . Children completed self-guided and adaptive activities focused on working memory, attention, impulse control, and flexibility. Focal Populations: Technology

A Randomized Trial of Two Promising Interventions for Students with Attention ProblemsAward # R305H050036David Rabiner, Duke University

	5
In this project, researchers evaluated the impact of two interventions for	Grade Levels:
second-grade students with attention problems: computerized attention	ES
training and computer-assisted instruction. The interventions aimed to	
help students whose academic achievement was significantly impaired by	Focal Populations:
inattentive behavior in the classroom, even if the inattentive behavior was	SWD
not severe enough to warrant a formal diagnosis of attention deficit	
hyperactivity disorder (ADHD). The computerized attention training	Technology
software used for this project was Captain's Log, which was designed to	Developed/Studied:
train multiple components of attention. The computer-assisted instruction	
software used was Destination Reading and Math by Riverdeep.	

A Learning by Teaching Approach to Help Students Develop Self-Regulatory Skills in Middle School Science Classrooms

Award # <u>R305H060089</u>	Gautam Biswas, Vanderh	oilt University
In this project, researchers iteratively developed a	nd studied Teachable	Grade Levels:
Agents (TAs), a software intervention for middle	school students to	ES
develop their metacognition (i.e., their awareness	of their cognitive	
processes) and ability to learn through a learn-by-	teaching approach. TAs	Focal Populations:
were interactive computer-based learning environ	ments in which 5 th -grade	
students taught virtual students, called agents, how	w to understand various	Technology
concepts. Students used three primary componen	ts to teach the agents:	Developed/Studied:
teaching an agent using a concept map, asking the	eir own questions to see	98
how much the agent understood, and quizzing the	e agent with a provided	•••
test to see how well it did on questions the studen	it may not have	
considered.		

The Effect of Metacognition on Children's Control of their Study and of their Cognitive Processes

Award # <u>R305H060161</u>	Janet Metcalfe, Columbia	a University
In this project, researchers iteratively developed a	and studied a series of	Grade Levels:
instructional strategies within a computerized gar	ne-based system called	ES
Dragon Master. The system was designed to imp	rove third- and fifth-	
graders' ability to assess their own knowledge and	d to then use those self-	Focal Populations:
assessments to more effectively allocate and orga	nize study time. The	
team also examined whether the benefits of these	e strategies varied with	Technology
the student's grade-level.		Developed/Studied:
		2

Harnessing Retrieval Practice to Enhance Learning in Diverse Domains

Award # <u>R305B070537</u>	Harold E. Pashler, Unive Diego	ersity of California, San
In this project, researchers iteratively developed an	nd studied two	Grade Levels:
interventions for elementary school, high school,	and college students that	ES, HS, PA
aimed to improve students' learning of social stud	ies and geography	
through memory retrieval practice. The two softw	are systems were	Focal Populations:
Hierarchical Retrieval Practice, which helped stud	ents review written	
information, and Visuospatial Retrieval Practice, v	vhich helped students	Technology
review visual information. As part of the project, s	students interacted with	Developed/Studied:
these systems through the Internet and worked th	rough a social studies	
study session that reviewed only material the student had not yet learned.		
Elementary school students also participated in a	summer enrichment	
program and explored and used computerized geo	ography-learning	
exercises to help them learn visual-spatial informa	tion.	

An Efficacy Study of Two Computer-Based Attention Training Systems in Schools

Award # <u>R305A090100</u>	Naomi Steiner, Tufts Un Center	iversity, Tufts Medical
In this project, researchers evaluated the impact	of two computer-based	Grade Levels:
attention training systems with second- and four	th-grade students	ES
diagnosed with attention deficit hyperactivity dis	order (ADHD). The	
interventions aimed to train children with ADH	D to focus on a task. One	Focal Populations:
intervention used Electroencephalography biofe	edback, and the other	SWD
intervention used a standard computer game for	mat for cognitive	
retraining.		Technology
-		Developed/Studied:
		2

Training Working Memory and Executive Control in Attention Deficit/Hyperactivity Disordered Children

Award # <u>R324A090164</u>	Priti Shah, University of	Michigan
In this project, researchers iteratively develope	d and studied an	Grade Levels:
intervention for elementary-age children with	attention deficit	ES
hyperactivity disorder (ADHD) that aimed to	enhance students' learning	
and academic outcomes through improving we	orking memory. As part of	Focal Populations:
the project, researchers collected data on feature	res of the computer game	SWD
that led to greater student engagement and mo	ptivation in order to	
optimize the game in improving working mem	ory skills.	Technology
		Developed/Studied:
		2

Grade Levels:

Focal Populations:

Developed/Studied:

ES, MS, HS

Technology

Grade Levels:

Technology

Focal Populations:

Developed/Studied:

MS

SWD

Virtual Reality Applications for the Study of Attention and Learning in Children with Autism and ADHD

Award # <u>R324A120168</u>

Peter Mundy, University of California, Davis

In this project, researchers explored the relationships between student learning, academic achievement, and social outcomes for children in elementarty through high school with autism spectrum disorders (ASD). Students received an intervention designed to increase social attention skills via six 90-minute practice sessions over the course of 4 weeks. The intervention consisted of virtual reality-based "games" that provided opportunities to learn skills such as interpreting facial expressions and attending to peers and adults (e.g., teachers, parents) in order to improve students' social skills and increase their social engagement. The final analysis also explored whether the presence of attention deficit hyperactivity disorder (ADHD) in students with ASD may interact with the components of the intervention.

Study Enhancement Based on Principles of Cognitive Science

Junet Netoure, Columbia Chivelong	Award # <u>R305H030175</u>	Janet Metcalfe, Columbia University
-----------------------------------	----------------------------	-------------------------------------

In this project, researchers evaluated the impact of an intervention for sixth- and seventh-grade students at high risk for academic failure. The intervention aimed to improve students' memory and vocabulary through a computer-based study program. The computer program supported students' acquisition of science, social science, and advanced English vocabulary terms.

Supporting Efficient and Durable Student Learning

Award # <u>R305H050038</u>	John Dunlosky, Kent Sta	ate University
In this project, researchers iteratively developed	and studied a new	Grade Levels:
method of computer-assisted learning and study	called retrieval-feedback-	MS, PA
monitoring. Retrieval-feedback-monitoring was	designed to support	
students' long-term learning and retention of ke	y concepts in academic	Focal Populations:
content areas. The project team completed labor	catory research to	
optimize the process then implemented it with u	indergraduate psychology	Technology
students and middle school science students.		Developed/Studied:

Creating Scalable Interventions for Enhancing Student Learning and Performance

Award # <u>R305A090324</u>

Joshua Aronson, New York University

Grade Levels:

Technology

Focal Populations:

Developed/Studied:

MS, HS

In this project, researchers iteratively developed and studied two computer-based interventions for eighth- and ninth-grade students to teach theories of intelligence that may support academic achievement (e.g., that people get smarter through intellectual effort not just because they're born intelligent). The interventions used engaging fiction in the form of an illustrated electronic book with a narrative message about the malleability of intelligence and interactive media through a virtual environment that contained the same message. The researchers posited that modifying students' attitudes about their intelligence would increase students' engagement and learning.

Growth Mindset Learning Platform for Educators and Students: Supporting Academic Motivation and Achievement through an Integrated Online Platform

Award # <u>EDIES10C0022</u>	Lisa Sorich Blackwell, M	indset Works, LLC
In this project, researchers iteratively developed a	and studied a	Grade Levels:
commercially viable Growth Mindset Learning P	latform (GMLP) based	MS, HS
on an existing program, called Brainology. The C	GMLP was a social-	
behavioral intervention designed to strengthen students' ability to succeed		Focal Populations:
in school and life by teaching students how the brain learns and changes		
with effort and how to use effective study skills to increase learning.		Technology
GMLP professional development applications addressed how to apply		Developed/Studied:
instructional supports to develop and sustain a growth mindset (i.e., the		
belief that one can improve his or her intelligence through effort and		
practice) in students in secondary school settings		

Improving Academic Achievement by Teaching Growth Mindsets about Emotion

Award # <u>R305A120671</u>	James Gross, Stanford U	niversity
In this project, researchers iteratively developed an	d studied computer	Grade Levels:
modules designed to teach sixth- and seventh-grad	e students an emotional	MS
growth mindset (i.e., the belief that one can control	ol his or her emotions	
through effort and practice) with the goal of impro	oving students'	Focal Populations:
academic performance. The intervention consisted	of modules that teach	
students that emotions can be regulated and how t	o regulate them	Technology
effectively.		Developed/Studied:

Comprehension SEEDING: Comprehension through Self-Explanation, Enhanced **Discussion and Inquiry Generation**

Award #	R305A120808
---------	-------------

Rodney Nielsen, Boulder Language Technologies, Inc.

In this project, researchers iteratively developed and studied a computer-	Grade Levels:
based system and instructional method for sixth-grade students called	MS
Comprehension SEEDING: Comprehension through Self-Explanation,	
Enhanced Discussion and Inquiry Generation. The intervention aimed to	Focal Populations:
engage all students in self-explanation of science concepts through three	
primary components: (1) inquiry generation, in which the teacher poses	Technology
deep questions to students; (2) self-explanation, in which students submit	Developed/Studied:
their constructed responses via tablet computers; and (3) enhanced	
discussion, in which the computer system displays an answer prototypical	
of the group for the teacher and students to discuss.	

The Neural Markers of Effective Learning

Award # R305H030016

John Anderson, Carnegie Mellon University

In this project, researchers iteratively developed and studied an algebra unit focused on conceptually challenging word problems and added it to the ninth-grade algebra cognitive tutor program. The intervention aimed to improve the computer-based algebra tutor using both behavioral and brain imaging techniques. The researchers also examined various markers of successful learning in college students, using brain-imaging techniques to observe the learners' brain activity when insight and deep understanding were achieved and to observe the brain activity of high school students as they solved problems with the algebra computer tutor.

310	wienon University
	Grade Levels:
	HS, PA
	Focal Populations:
	Technology
	Developed/Studied:

Computer-Enhanced Automated Lecture (CEAL)

Award # ED06P00896 William Marshak, Syntronics, Inc. In this project, researchers iteratively developed and studied a prototype of the Computer-Enhanced Automated Lecture (CEAL) for secondary and postsecondary students, which aimed to increase student engagement and subject knowledge through a web-based, open-source tool that administered lectures online, allowed student control of pace and content, facilitated note-taking, assessed student comprehension, and tracked student interaction.

Focal Populations: Technology **Developed/Studied:**

Grade Levels:

HS, PA

Electronic Performance Support Systems (EPSS) as Assistive Technologies to Improve Outcomes for Secondary Students

Award # <u>R324B070176</u>

Gail Fitzgerald, University of Missouri, Columbia

HS

SWD

 (

Grade Levels:

Technology

Focal Populations:

Developed/Studied:

In this project, researchers iteratively developed and studied the Strategy Tools Support System (STSS) for high schoolstudents with disabilities in general education settings. STSS aimed to help secondary students with learning disabilities or emotional disturbances improve their ability to learn on their own in general education classes. Researchers designed computerized support tools resembling graphic organizers to provide support for student behavior in the following areas: getting organized, learning new information, demonstrating learning, working on projects, solving personal problems, and planning for the future.

The Impact of Theories of Intelligence on Self-Regulated Learning Strategies and Performance Improvement

Award #	R305A130699
---------	-------------

Joyce Ehrlinger, Washington State University

The Efficacy of Personal Response Systems (Clickers) as Learning Tools: A Multidisciplinary, Large-Scale, Empirical Evaluation

Award # <u>R305A100625</u>	Amy Shapiro, University	of Massachusetts,
Dartmouth		
In this project, researchers evaluated the impact of an intervention for		Grade Levels:
college students, which aimed to improve their ability to answer factual		РА
and conceptual exam questions through using a personal response system		
(PRS, also known as "clickers") that allowed instructors to present		Focal Populations:
multiple-choice questions to students. As part of the intervention,		
instructors used instructional PowerPoint presentations developed by the		Technology
research team in which the researchers embedded	ed PRS questions. Lecture	Developed/Studied:
materials required students to respond using clickers for some material.		

2. Math and Science Education

This chapter describes Institute-funded research on technologies that support math and science education, such as game-based math activities, on-line or distance education coures in math and science, and virtual science labs. Researchers have been working to develop and test the efficacy and effectivenss of technology to support the learning of mathematical and scientific concepts and skills, and some studies show evidence of enhanced learning through technology (e.g., Schenke, Rutherford, and Farkas 2014). A recent meta-analysis of education technology applications designed to support math instruction found an overall positive effect, but results varied considerably across interventions (Cheung and Slavin 2013).

Table Key				
Grade levels:				
EC	Early Childhood	HS	High School	
ES	Elementary School	PA	Postsecondary and Adult Education	
MS	Middle School			
Focal populations:				
EL	English Learners			
SWD	Students With Disabilities			
Products developed or studied: The spider web icon denotes web-based technology developed or studied.				
The viewer icon denotes virtual environment / interactive simulation developed or studied.				
Ť	The tutor icon denotes intelligent tutor / artificial intelligence technology developed or studied.			
2	The chess piece icon denotes game-based technology developed or studied.			
	The checkmark icon den	otes an	assessment developed, validated, or studied.	

For more information about these projects and publications stemming from them, please follow the hyperlinked award number to the online abstract on the Institute's website.

A Longitudinal Study of the Effects of a Pre-Kindergarten Mathematics Curriculum on Low-Income Children's Mathematical Knowledge

Award # <u>R305J020026</u>	Prentice Starkey, Univers Berkeley	ity of California,
In this project, the researchers evaluated the Pre- curriculum supplemented with the DLM Early (software. The Pre-K Mathematics curriculum co (1) small-group mathematics activities with cond by teachers and children in prekindergarten mat in-home activities for parents and prekindergart DLM Early Childhood Express Math software a spatial, numeric, and quantitative ideas and skills program in which children use pattern blocks an puzzles and received individualized prekinderga instruction.	Childhood Express Math onsisted of materials for crete manipulatives for use hematics activities and (2) en-age children. The addressed geometric, s using a computer-based ad tangrams to complete	Grade Levels: EC Focal Populations: Technology Developed/Studied:

Developing an Intervention to Foster Early Number Sense and Skill

Award # <u>R305K050082</u>	Arthur Baroody, University of Illinois, Urbana- Champaign	
In this project, researchers iteratively developed a	and studied three	Grade Levels:
instructional approaches (indirect, semi-direct, an	d direct) to help	EC, ES
prekindergarten through first-grade students at ri	sk for developing	
difficulties learning mathematics to become fluen	t in basic addition and	Focal Populations:
subtraction facts. The approaches were integrated	l into computer-based	
games. The indirect approach was based on the a	ssumptions that	Technology
computational fluency stems from number sense	and that instruction	Developed/Studied:
should focus on constructing an explicit understanding of big ideas and		
discovering relations among basic facts. The semi-direct approach		
involved teaching reasoning strategies, such as the decomposition-to-ten		
strategy. The direct approach entailed extensive fact drills.		

Scaling Up TRIAD: Teaching Early Mathematics for Understanding with Trajectories and Technologies

Award # <u>R305K050157</u>

Douglas Clements, State University of New York (SUNY), Buffalo

× //	
In this project, researchers evaluated the impact of the Technology-	Grade Levels:
enhanced, Research-based, Instruction, Assessment, and professional	EC
Development (TRIAD) mathematics intervention implemented at scale in	
diverse geographical areas with diverse prekindergarten populations.	Focal Populations:
Researchers posited that the TRIAD intervention would increase math	
achievement in young children, especially those at risk, by improving the	Technology
implementation of the Building Blocks math curriculum, which included	Developed/Studied:
the DLM Early Childhood Math Software program. TRIAD not only	
included this curriculum but also provided professional development	
through distance education, a website that supported teaching based on	
learning trajectories, and classroom coaching.	

Scaling Up the Implementation of a Pre-Kindergarten Mathematics Curriculum in Public Preschool Programs

Award # R305K050186 Prentice Starke	Prentice Starkey, University of California,	
Berkeley	Berkeley	
In this project, researchers evaluated the impact of a prekinderga	rten Grade Levels:	
mathematics curriculum supplemented with the DLM Early Child	dhood EC	
Math Software program across two types of public prekindergart	en	
programs serving low-income children (Head Start and state-fund	ded Focal Populations:	
prekindergartens). The intervention aimed to improve children's	school	
readiness and subsequent achievement in math through a classroo	om Technology	
component (small-group math activities, math software, and a ma	ath Developed/Studied:	
learning center), a home component (math activities and material	ls for	
families), and a professional development package for teachers the	nat	
included a train-the-trainer model and distance education tools.		

Early Childhood Assessment and Intervention to Improve Grade School Students' Math and Reading

Award # <u>ED07CO0039</u>

Christopher Camacho, Children's Progress, Inc.

Grade Levels:

Technology

Ť

Focal Populations:

Developed/Studied:

EC, ES

`

In this project, researchers iteratively developed and studied a dynamic, web-delivered assessment tool to help teachers and parents identify deficits in prekindergarten through third-grade students' early literacy and math skills. The assessment was designed so that children could independently complete assessments and instruction on their classroom or home computer. The tool then provided teacher and parent reports and web-report videos that gave information on students' learning.

Closing the SES Related Gap in Young Children's Mathematical Knowledge

Award # <u>R305A080697</u> Prentice Starkey, UniversityBerkeley		ity of California,
In this project, researchers evaluated the impact	of a prekindergarten	Grade Levels:
math curriculum for 3- and 4-year-olds on children's mathematical		EC
knowledge. The curriculum, Pre-K Mathematics,	includes seven units:	
Number Sense and Enumeration, Arithmetic Reasoning, Spatial Sense and		Focal Populations:
Geometric Reasoning, Pattern Sense and Pattern Construction,		
Measurement and Data Representation, and Log	ical Relations. The	Technology
intervention aimed to close the socioeconomic gap in early mathematical		Developed/Studied:
knowledge through teacher-guided small group activities and a software		
component, the DLM Math Software, that accommodated children's		
individual learning styles.		

Increasing the Efficacy of an Early Mathematics Curriculum with Scaffolding Designed to Promote Self-Regulation

Award # <u>R305A080700</u>	Douglas Clements, State University of New York (SUNY), Buffalo	
In this project, researchers evaluated the impact of an intervention that		Grade Levels:
combined a software-based mathematics curriculum with one component		EC
of a social behavioral intervention. The two interventions included		
Building Blocks, an early childhood mathematic	s curriculum, and the	Focal Populations:
Scaffolding Self-Regulation component of Tools of the Mind, an		
intervention with specific pedagogical strategies to improve young		Technology
children's self-regulation competencies and acad	emic achievement.	Developed/Studied:

c . . .

Lens on Science: Development and Validation of a Computer-Administered, Adaptive, IRT-Based Science Assessment for Preschool Children 1 # D 205 A 000502

Award # <u>R305A090502</u>	Daryl Greenfield, Univer	sity of Miami
In this project, researchers iteratively designed an	id validated Lens on	Grade Levels:
Science, a computer-adaptive test of prekinderga	rteners' science	EC
knowledge. The researchers aimed to create an ap	ppropriate, reliable, and	
valid direct assessment of children's science know	vledge and process skills.	Focal Populations:
The test assessed three broad science content are	as (life science,	
earth/space science, and physical/energy science) and science processing	Technology
skills (observing, describing, comparing, question	ing, predicting,	Developed/Studied:
experimenting, reflecting, and cooperating).		

Building Math Readiness in Young Deaf/Hard-of-Hearing Children: Parents as Partners Award # R324A090145 Karen Kritzer, Kent State University

Awald # <u>R5244070145</u> Ratch Rhtzer, Reft e	tate Oniversity
In this project, researchers iteratively developed and studied an online	Grade Levels:
program to help parents of prekindergarten children ages 3 to 5 with	EC
hearing impairments increase their child's readiness for school	
mathematics. The intervention was based on natural, daily activities and	Focal Populations:
aimed to increase parents' awareness of their role in mediating their child	l's SWD
learning. The researchers investigated whether involvement in the	
program influenced parent behavior in their interactions with their	Technology
children, the degree to which this affected children's understanding of	Developed/Studied:
fundamental mathematics concepts, and the extent to which the mode o	f
the intervention (in-person vs. online) was related to that change.	

Mathemantics Preschool \rightarrow 3: Development and Evaluation of Mathematics Software for Children from Preschool to Grade 3 . . . T · · · /T · 1

Award # <u>R305A100267</u> Herbert Ginsburg, Colur College	nbia University, Teachers
In this project, researchers iteratively developed and studied a software	Grade Levels:
system, MathemAntics, for prekindergarten through third-grade students.	EC, ES
MathemAntics aimed to provide mathematics instruction to children in an	
enjoyable, yet challenging, virtual world. It had three major components:	Focal Populations:
(1) a special world of "posichicks" and "negacylces" (representing positive	
and negative numbers); (2) mathematical tools, such as boxes for grouping	Technology
numbers, number lines, virtual manipulatives; and (3) formal mathematical	Developed/Studied:
symbols, such as standard algorithms. Graphical tools allowed students to	
operate virtual objects in ways not possible with physical manipulatives,	
and an avatar provided instruction, feedback, and support.	

Enfoque en Ciencia: Extending the Cultural and Linguistic Validity of a Computer Adaptive Assessment of Science Readiness for Use with Young Latino Children

Award # <u>R305A130612</u>Daryl Greenfield, University of Miami

In this project, researchers designed and validated Enfoque en Ciencia, an	Grade Levels:
assessment for Latino prekindergarten children. This assessment was to	EC
be the Spanish version of the Lens on Science assesment, which was	
developed to assess three science domains (life science, earth/space	Focal Populations:
science, and physical/energy science) and science processing skills	EL
(observing, describing, comparing, questioning, predicting, experimenting,	
reflecting, and cooperating). Students took the test on a touchscreen	Technology
computer.	Developed/Studied:
-	

Spatial Training in Preschool: Identifying the Malleable Factors

Award # R305A140385Roberta Golinko	off, University of Delaware
In this project, researchers explored the relationships between factor	ors Grade Levels:
related to prekindergarten children's spatial skills and how knowled	ge of EC
spatial reasoning related to early mathematics skills to identify pote	ntially
promising instructional practices. As part of the project, researcher	s Focal Populations:
developed a software application to deliver instruction to children t	hrough
an electronic delivery device such as a tablet computer.	Technology
	Developed/Studied:

Grounded and Transferable Knowledge of Complex Systems Using Computer SimulationsAward # R305H050116Robert Goldstone, Indiana University

In this project, researchers iteratively developed and studied interactive Gracomputer simulations that provide perceptual support to students as they master abstract scientific principles. The final product was to also include a full curricula for teaching complex systems (complex, adaptive systems such as the biosphere and ecosystem) to support K-12 and college Students.

Grade Levels: ES, MS, HS, PA

Focal Populations:

Technology Developed/Studied:

Thatural Math. All Emplitically Delived Softw	are for maintennatics Eur	
Award # <u>ED06PO0921</u>	Dmitri Droujkov, Natura	al Math
In this project, researchers iteratively developed	a prototype of the	Grade Levels:
Natural Math software for elementary school stu	idents, which used	ES
metaphors to show how mathematical principals	manifest in the real	
world. The software included activities to help st	rudents learn	Focal Populations:
multiplication and related concepts and included	two modules called	
Natural Math Grids and Natural Math Mirrors.	The prototype also	Technology
included a web-based student collaboration feature	ire.	Developed/Studied:

Natural Math: An Empirically Derived Software for Mathematics Education

Training in Experimental Design: Developing Scalable and Adaptive Computer-based Science Instruction

Award # <u>R305H060034</u>	David Klahr, Carnegie M	Iellon University
In this project, researchers iteratively developed a	nd studied a computer-	Grade Levels:
based intelligent tutoring system to improve elem	entary and middle	ES, MS
school students' learning of scientific thinking. The	ne intervention included	
computerized instructional modules with simulati	ons, tracking of	Focal Populations:
students' performance, and adaptive algorithms the	hat provided feedback	
based on students' current actions and knowledge	e. Students who did not	Technology
reach mastery in a particular module received one	e-on-one instruction.	Developed/Studied:

Integrating Conceptual Foundations in Mathematics through the Application of Principles of Perceptual Learning

Award #	R305H060070
---------	-------------

Philip Kellman, University of California, Los Angeles

Grade Levels:

Technology

Focal Populations:

Developed/Studied:

ES, MS

In this project, researchers iteratively developed and studied computerbased learning modules for students in the third through eighth grades. These modules were to be used with other modes of instruction, leading to an intervention designed to help students develop an integrated mathematical knowledge base in which measurement and fractions were meaningfully connected to each other and to core concepts of multiplication, division, ratio, and proportion. The intervention included six units of computer-based instructional materials that combined perceptual learning modules (i.e., units that aim to develop students' ability to recognize and use structure, patterns, and relationships by having them interact with information), computer-adaptive diagnostic assessments, benchmark lessons and investigations, and resources for teachers.

Getting Fractions Right with Technology-Mediated Peer-Assisted Learning (TechPALS) Award # R305K060011

Jeremy Roschelle, SRI International

In this project, researchers iteratively developed and studied TechPALS,	Grade Levels:
an intervention developed to improve mathematics achievement in	ES
elementary school students. The intervention used handheld computers to	
teach fractions in the context of peer-assisted learning. In TechPALS, a	Focal Populations:
set of four mathematics-related activities covered a range of important	
concepts and skills related to rational numbers and fractions. The	Technology
TechPALS software was driven by a database of mathematics tasks, each	Developed/Studied:
of which drew on and targeted well-known difficulties in learning	
fractions.	

Evaluation of the First in Math Online Mathematics Program in New York City: A Randomized Control Trial

Award # <u>R305B070048</u> John Flaherty, W	/estEd
In this project, researchers evaluated the impact of the First in Math	Grade Levels:
online mathematics program on fourth- and fifth-grade student	ES
achievement. The First in Math® program was designed to be an o	nline
version of the 24®Game, in which players used various numbers an	nd Focal Populations:
mathematical operations to reach a solution equaling 24. The study	
examined individual- and classroom-level conditions that influenced	d First Technology
in Math program use, the impact of First in Math on mathematics	Developed/Studied:
performance, and variation in impact across classrooms with high a	nd low
support of technology integration.	

mCLASS®:Math: Development and Analysis of an Integrated Screening, Progress Monitoring, and Cognitive Assessment System for K-3 Mathematics

8, 8 1		
Award # <u>R305B070325</u>	0	nbia University, Teachers
	College	
In this project, researchers designed and validated	l a comprehensive	Grade Levels:
handheld computer assessment system (mCLASS	®:Math), which aimed	ES
to help kindergarten through third-grade teachers	monitor student	
progress in mathematics and develop an understa	nding of cognitive	Focal Populations:
processes that impede student performance. The	system guided teachers	
in conducting the assessment and recording the r	esults. The assessment	Technology
included screening and progress monitoring meas	sures and diagnostic	Developed/Studied:
cognitive interviews. Once the collected data wer	e uploaded to an online	
server, the system prepared reports for teachers a	nd for administrators.	
The system also provided information about info	rmal strategies and	
concepts that teachers could use to improve stud	ent mathematics	
performance.		
-		

Improving Science Learning through Tutorial Dialogs

Wayne Ward, Boulder Language Technologies, Inc.

In this project, researchers iteratively developed and studied an intelligent	Grade Levels:
tutoring system that used a diaolog-questioning approach called	ES
Questioning the Author (QtA) and explored whether it could improve the	
effectiveness of the Full Option Science System (FOSS) curriculum, a	Focal Populations:
structured science curriculum that helps many, but not all, students. The	
QtA approach aimed to help students dig more deeply into texts and to	Technology
engage in dialogue with others (e.g., classmates) by pretending to ask the	Developed/Studied:
author questions. Using this approach, the system was designed to help	<pre></pre>
elementary science students learn and integrate new concepts with what	
they already know.	

The Universally Designed Science Notebook: An Intervention to Support Science Learning for Students with Disabilities

Award # <u>R324A070130</u>

Gabrielle Rappolt-Schlichtmann, CAST, Inc.

	, ,	,
In this project, researchers iteratively developed and studied a u	iniversally Grade Le	vels:
designed, web-based science notebook that was to be integrated	d into two ES	
units (magnetism and electricity) of an existing curriculum, Full	Option	
Science System (FOSS). The notebook aimed to improve the sc	cience Focal Pop	pulations:
achievement of fourth- and fifth-grade students with high-incid	lence SWD	
disabilities (such as attention deficit hyperactivity disorder (AD)	HD) and	
emotional disturbances) as well as general education students. T	To support Technolo	ogy
classroom use of the notebook, researchers also developed a ter	acher Develope	ed/Studied:
training module and a teacher guide.		

Fostering Fluency with Basic Addition and Subtraction

Award # <u>R305A080479</u>	Arthur Baroody, Univers Champaign	ity of Illinois, Urbana-
In this project, researchers evaluated the impact	10	Grade Levels:
game-based activities on how quickly and accur	1	ES
mathematical learning difficulties and at risk for		
perform single-digit, basic addition and subtrac	tion. The intervention	Focal Populations:
aimed to enhance speed and accuracy through f	our features: unstructured	SWD
discovery learning, structured discovery learning	g, structured discovery	
learning plus active modeling reasoning strategi	es, and structured	Technology
discovery learning plus active modeling and dec	composition training.	Developed/Studied:

Grade Levels:

Focal Populations:

Developed/Studied:

ES, MS, HS

Technology

Teaching Every Student: Using Intelligent Tutoring and Universal Design to Customize the Mathematics Curriculum

Award # <u>R305A080664</u>

Beverly Woolf, University of Massachusetts, Amherst

In this project, researchers iteratively developed and studied two webbased mathematics intelligent tutoring systems for elementary, middle, and high school math students: Wayang Outpost and 4mality. Researchers aimed to increase student engagement and create a supportive and fruitful learning environment through the enhancement of three components: affect-detection software that estimated the emotional state of the user to determine the appropriate difficulty level for math problems, a suite of interventions to re-engage disengaged students, and assessment tools that informed teachers about each student's progress and affect.

Math Monster Mystery: A Formative Assessment in Game Format for Grade 4 MathematicsAward # EDIES09C0015Robert Brown, Triad Digital Media

In this project, researchers iteratively developed and studied an online	Grade Levels:
math computer game, Math Monster Mystery (M3), to serve as a	ES
formative assessment tool to measure fourth graders' mathematical	
understanding and to provide immediate feedback on instructional	Focal Populations:
practice. Researchers developed the M3 game using narratives, graphics,	
and mathematical concepts aligned with the National Council of	Technology
Mathematics Teachers' standards.	Developed/Studied:

Refining and Validating the NimblePad		
Award # EDIES09C0056Thomas Hoffman, Nimble Assessments		le Assessments
In this project, researchers iteratively developed a	nd studied NimblePad,	Grade Levels:
an intervention for kindergarten to 12th-grade stu	idents as well as students	ES, MS, HS
with visual impairements that aimed to improve of	computer-based	
evaluations. NimblePad was designed to be a period	pheral device that would	Focal Populations:
allow students to write open-ended answers and n	nake drawings that could	SWD

substitute multiple-choice or typed responses and used math content as a starting point for the design. The device consisted of a pressure-pad, stylus pencil, display screen, and casing for blind and visually impaired students to place tactile overlays onto the touch sensitive screen.

Technology Developed/Studied:

An Empirical Approach to Developing Web-based Math Learning Games to Improve Elementary School Student Outcomes

Grade Levels:

Technology

Focal Populations:

Developed/Studied:

Ť (2)

ES

Award # EDIES10P0104 Snehal Patel, Sokikom In this project, researchers iteratively developed and studied web-based math learning games. Researchers developed a series of web-based math learning games that incorporated research-based pedagogy; communal learning; and adaptive, standards-based content. The games were designed to supplement elementary students' existing in-class curricular materials and addressed topics such as fractions, place value and estimation, numeric operations, algebra functions and operations, measurement geometry, and statistics data analysis and probability.

Spatial Temporal Mathematics at Scale: An Innovative and Fully Developed Paradigm to Boost Math Achievement Among All Learners

Award # <u>R305A090527</u> Michael Martin	nez, University of California, Irvine
In this project, researchers evaluated the impact of a computer ga	ame- Grade Levels:
based intervention called Spatial-Temporal Math®. In Spatial-Te	emporal ES
Math®, elementary school students experienced math concepts a	and
solved mathematics problems through representations that did no	ot rely Focal Populations:
heavily on language or symbols. Instead, the goal was to assess th	ne precise EL
benefits of approaching math through spatial temporal reasoning	g. The
project studied program effects on K-5 schools that served a dive	erse Technology
demographic, including economically disadvantaged students and	d English Developed/Studied:
learners.	2

An Online Intelligent Tutoring System to Advance Learning in Math Games

Award # EDIES09C0009	Snehal Patel, Sokikom	
In this project, researchers iteratively dev	veloped and studied a functioning	Grade Levels:
prototype of Franchine, a learning game	. Researchers developed the web-	ES
based, single-player fraction learning gan	ne for elementary school students.	
The researchers produced an intelligent	tutoring system that was	Focal Populations:
integrated within the existing game and	was intended to provide the	
individualized instructional support requ	ired to improve student math	Technology
outcomes.		Developed/Studied:

Fablab Construction Station: Engaging Teacher and Students in Technology, Engineering, and Math

Award # EDIES10P0102

Gary Goldberger, Fablevision, Inc.

In this project, researchers iteratively developed and studied a prototype	Grade Levels:
of FabLab Construction Station, a computer program designed to support	ES
second-grade teachers and students. FabLab allowed students to design	
two-dimensional and three-dimensional geometric shapes, bulletin boards,	Focal Populations:
paper airplanes, pop-ups, and other materials. Researchers aligned the	
final product to outcomes in math and engineering and intended for the	Technology
product to support the acquisition of knowledge in topics including	Developed/Studied:
shapes, geometry, pre-algebra, and measurement.	Θ

Developing and Evaluating a Technology-Based Fractions Intervention Program for Low-Achieving and At-risk Students

Award # <u>R305A100110</u> Ted Hasselbring, Vande	erbilt University
In this project, researchers iteratively developed and studied an intelligent	Grade Levels:
tutoring system, called the Helping At-Risk and Low-Achieving Students	ES, MS
in Fractions (HALF), for fifth- and sixth-grade students. The HALF	
system aimed to promote understanding of fractions by presenting	Focal Populations:
learning problems in conjunction with virtual manipulatives and videos	
designed to link to-be-learned concepts within already-familiar topics.	Technology
Researchers also created a professional development webinar to increase	Developed/Studied:
teachers' familiarity with and understanding of the software.	

Promoting Transfer of the Control of Variables Strategy in Elementary and Middle School Children via Contextual Framing and Abstraction

Award # <u>R305A100404</u>	David Klahr, Carnegie Mellon University		
In this project, researchers iteratively developed	and studied Training in	Grade Levels:	
Experimental Design 2 (TED2), a web-based co	omputer tutor for	ES, MS	
elementary and middle school students developed	ed to support their		
conceptual understanding and procedural skills	in designing and	Focal Populations:	
interpreting scientific experiments. The research	ners conducted studies to		
explore the effects on student learning of varying	g instructional methods	Technology	
used by the online tutor.		Developed/Studied:	

Habitat Tracker: Learning about Scientific Inquiry through Digital Journaling at Wildlife Centers

Award # <u>R305A100782</u>

Paul Marty, Florida State University

Grade Levels:

Technology

Focal Populations:

Developed/Studied:

ES

In this project, researchers iteratively developed and studied the Habitat Tracker Digital Journal and the Habitat Tracker Community Website, which aimed to foster fourth- and fifth-grade students' understanding of scientific inquiry and the nature of science through student-led data collection and analysis, before, during, and after visits to a local wildlife center. The journal was an application for a handheld device through which students recorded observations, answered questions, and accessed multimedia content. The website was an interactive forum where students could read and edit their digital journal entries and contribute data about natural habitats they observed.

Project NumberShire: A Game-Based Integrated Learning and Assessment System to **Target Whole Number Concepts** 1 4 EDIE011C002

Award # EDIES11C0026	Marshall Gause, Thought	t Cycle, Inc.
In this project, researchers iteratively developed an	nd studied	Grade Levels:
NumberShire, a web-based mathematics game. Th	ES	
integrate a learning and assessment gaming system	to assess and teach	
whole number concepts to first-grade students with	th or at risk for	Focal Populations:
mathematics disabilities. NumberShire included na	arrative-based mini-	SWD
games in which students built an idyllic fairytale vi	llage by applying math	
concepts. Tasks included setting goals, advancing	to more challenging	Technology
levels, and engaging in competition.		Developed/Studied:

KinderTEK: Teaching Early Knowledge of Whole Number Concepts through Technology Award # R324A110286

Mari Strand Cary, University of Oregon

In this project, researchers iteratively developed and studied KinderTEK,	Grade Levels:
an iPad-based mathematics intervention for at-risk kindergarten students	ES
to improve their whole number understanding. The KinderTEK	
intervention was based on three components: critical content pertaining	Focal Populations:
to whole number concepts (counting and cardinality, operations and	SWD
algebraic thinking, and number and operations in base 10); research-based	
instructional design and delivery features (e.g., explicit instruction,	Technology
scaffolding, visual representation, practice); and research-based	Developed/Studied:
technological design and delivery features.	

Combining Advantages of Collaborative and Individual Learning with an Intelligent Tutoring System for Fractions

Award # <u>R305A120734</u> Vincent Aleven, Carnegie Mellon University

In this project, researchers iteratively adapted and tested the Cognitive Tutor® to create an intelligent tutoring system for fourth- and fifth-grade students studying fractions. The existing Cognitive Tutor® was a web-based intelligent tutoring system that covered a comprehensive set of topics in fractions learning. The adapted version integrated components that would allow for student collaboration and independent learning.

ES Focal Populations: Technology Developed/Studied:

Grade Levels:

Development of a Game-based Integrated Learning and Assessment System to Target Whole Number Concepts (Project NumberShire)

A	ward 7	¥ <u>R324</u> /	<u>A120071</u>						Ha	ınk Fien , Univ	versity of Oregon	
-	1.		1	•	•	1 1	1	1	1	1' 1	0 1 T	

In this project, researchers iteratively developed and studied	Grade Levels:
NumberShire-K, an intervention for first-grade students at risk for math	ES
disabilities, to help students learn and apply the mathematical concepts	
and skills of whole numbers. NumberShire-K was an internet-based,	Focal Populations:
educational video game with research-based instructional design and	SWD
delivery features that included scaffolded explicit instruction,	
opportunities for practice to improve fluency, goal setting, performance	Technology
monitoring, and gaming elements to promote student motivation and	Developed/Studied:
engagement.	

Web Fluid Math

Award # EDIES13C0032	Donald Carney, FluidMa	th
In this project, researchers iteratively developed an	nd studied a prototype	Grade Levels:
of WebFluidMath, a software program to support	fifth-grade students	ES
who were learning basic algebra principles. To use	the WebFluidMath	
program, students wrote math expressions and ma	de drawings on the	Focal Populations:
screen of a tablet computer. The software recogniz	zed the handwritten	
math formulae and generated solutions in the form	n of algebraic	Technology
expressions, computations, graphs, and dynamic as	nimations.	Developed/Studied:

Science4Us: Game-Based K-2 STEM Education for Teachers and Students

Award # EDIES13C0033 Catherine Christopher, Vkidz, Inc.

In this project, researchers iteratively developed and studied a prototype	Grade Levels:
of Science4Us, a web-based gaming intervention for students in	ES
kindergarten through second grade. The games were designed to help	
them learn standard-based concepts in science, technology, engineering,	Focal Populations:
and math. They were to include engaging and interactive simulations,	
investigations, stories and videos, as well as individual pages that allowed	Technology
students to access their own set of digital scientific tools such as a	Developed/Studied:
notebook, a glossary, and animations.	

Transmedia: Augmented Reality Game for Essential Transfer of ScienceAward # EDIES13C0037Victoria Van Voorhis, Second Avenue Software

In this project, researchers developed a prototype of a web-based game	Grade Levels:
designed to teach fourth- through sixth-grade science concepts. The	ES, MS
intervention used the illustrations of chemical elements and science terms	
created by Simon Basher in his three books, The Periodic Table: Elements with	Focal Populations:
Style!, Chemistry: Getting a Big Reaction!, and Physics: Why Matter Matters! The	
game also included curriculum support materials.	Technology
	Developed/Studied:

Teachley: Math Facts - Design and Development of Intervention Software Promoting Single-Digit Operational Fluency Award # EDIES13C0044 Kara Carpenter Teachley Inc

Award # EDIESI3C0044	Kara Carpenter, Teac	chiey, mc.
In this project, researchers iteratively developed and stu	died MathFacts, a	Grade Levels:
web-based game to support elementary students with m	ath learning I	ES
difficulties. The prototype of MathFacts was developed	under a previous	
IES award. MathFacts was an application for touchscre	en tablets that	Focal Populations:
encouraged single-digit operational fluency, conceptual	understanding, S	SWD
strategy awareness, and self-understanding. In the game	, students learned	
content through mini-lessons, solved with problems in	practice and speed	Technology
rounds, and received formative feedback on their perfo	rmance on built-in	Developed/Studied:
assessments. Researchers also developed a teacher man	agement system to	•
support professional development and produce reports	to guide	
instruction.		

Grade Levels:

Technology

Focal Populations:

Developed/Studied:

ES

SWD

NumberShire II: Development of a Second Grade Game-Based Integrated Learning System to Target Whole Numbers and Operations in Base Ten and Operations and Algebraic Thinking

Award # EDIES13C0045Marshall Gause, Thought Cycle, Inc.

In this project, researchers iteratively developed and studied NumberShire II, an integrated mathematics learning and assessment gaming system to foster the pre-algebraic thinking of second-grade students with or at risk for disabilities. The prototype of NumberShire II was developed under a previous IES <u>award</u>. The web-based game provided explicit, systematic, and frequent instruction, differential learning pathways, goal setting, and formative assessment-based performance monitoring.

Award # <u>R305A130206</u>

My Science Tutor: Improving Science Learning through Tutorial Dialogs (MyST)

Wayne Ward, Boulder Language Technologies,

Inc.	
In this project, researchers evaluated the impact of a computer-based	Grade Levels:
intelligent tutoring system called My Science Tutor (MyST) for third-	ES
through fifth-grade students. MyST was a supplement for the Full Option	
Science System (FOSS) curriculum, a non-textbook-based science	Focal Populations:
curriculum focused on allowing students the opportunity to actively	
construct ideas through inquiry, experimentation, and analysis.	Technology
Researchers evaluated the project by randomly assigning students to the	Developed/Studied:
one-on-one MyST tutoring or the control conditions (small-group human	<pre></pre>
tutoring or business as usual) and measuring student science outcomes.	

Use of Machine Learning to Adaptively Select Activity Types and Enhance Student Learning with an Intelligent Tutoring System

Award # <u>R305A130215</u> Emma Brunskill, Carnegie Mellon University

Grade Levels:

Technology

Ť

Focal Populations:

Developed/Studied:

ES

Efficacy of an Integrated Digital Elementary School Mathematics Curriculum Award # R305A130400 Ieremy Roschelle, SRI International

6:
J •
ations:
Studied:

S3: A Game-based 3rd Grade Math Curriculum

Award # EDIES14C0025Snehal Patel, Sokikom	
In this project, researchers iteratively adapted and tested S3, an	Grade Levels:
intervention for third-grade teachers to enable them to use a digital	ES
dashboard to integrate supplemental math games within their instructional	
practice and the mathematics curriculum. The dashboard supported	Focal Populations:
classroom implementation of 25 math topics aligned to third-grade	
Common Core Mathematics Standards and supported formative	Technology
assessment whereby teachers provided targeted group and individualized	Developed/Studied:
support to students based on results and feedback from gameplay. The	
development work also included enhancements to existing games.	

Introducing Desirable Difficulties for Educational Applications in Science		
Award # <u>R305H020113</u> Robert Bjork, Unive		of California, Los
Awalu # $\underline{K50511020115}$	Award # <u>KS05H020115</u> Angeles	
In this project, researchers explored wheth	er interventions that appear to	Grade Levels:
make learning more difficult and slow the	rate of learning can be effective	MS, PA
in enhancing long-term retention of inform	nation. The researchers aimed	
to determine whether these "desirable diffi	culties" could be generalized to	Focal Populations:
realistic educational materials and contexts	involving middle school and	
college students using the Web-based Inqu	iry Science Environment	Technology
program.		Developed/Studied:

Introducing Desirable Difficulties for Educational Applications in Science

Using Web-Based Cognitive Assessment Systems for Predicting Student Performance on State Exams

Award # <u>R305K030140</u>	Kenneth R. Koedinger, (University	Carnegie Mellon
In this project, researchers iteratively developed	ed and studied a web-based	Grade Levels:
cognitive assessment system. Researchers inte	grated assistance and	MS
assessment by using a web-based system, ASS	ISTments, which offered	
instruction to middle school students while pr	oviding a detailed evaluation	Focal Populations:
of their abilities to the teacher. When students	s worked on the website, the	
system "learned" about the students' abilities a	and provided teachers with	Technology
predictions of how the students would do on	a standardized mathematics	Developed/Studied:
test. Teachers then used the system's detailed	feedback to tailor their	
instruction to focus on the particular difficulti	es identified by the system.	

Advancing the Math Skills of Low-Achieving Adolescents in Technology-Rich Learning Environments

Award # <u>R305H040032</u> Br	ian Bottge, University	of Wisconsin, Madison
In this project, researchers iteratively developed and	studied Enhanced	Grade Levels:
Anchored Instruction (EAI), a math intervention for	average and low-	MS, HS
achieving middle and high school students. EAI focu	used on improving	
students' problem-solving and basic skills (e.g., comp	outation of whole	Focal Populations:
numbers and fractions) and aimed to help them under	erstand the	SWD
importance and benefits of learning math. EAI used	a mix of video-based	
problems delivered on CD-ROMs and hands-on pro	jects (e.g., building	Technology
skateboard ramps, compost bins, or hovercrafts). Stu	dents defined and	Developed/Studied:
understood the EAI problem, located the relevant pi	eces of information	
for solving it, and then integrated this information in	to a logical solution.	

Dynamically Modifying the Learning Trajectories of Novices with Pedagogical Agents Award # R305H050052

Carole Beal, University of Southern California

Grade Levels:

Technology

(#

Focal Populations:

Developed/Studied:

MS, HS

In this project, researchers iteratively adapted and tested the IMMEX (Interactive Multi-Media Exercises) program for middle and high school chemistry students to help them revise their chemistry problem solving strategies. IMMEX was designed to be a web-based problem-solving simulation program through which students could learn to frame a problem from a scenario, judge what information was relevant, plan a strategy, gather information, and reach a decision to demonstrate understanding. The researchers modified the intervention to integrate a pedagogical model into the system that provided neutral feedback (general encouragement) or individualized feedback that explicitly addressed how the student was approaching the problem.

An Implementation of Vicarious Learning with Deep-Level Reasoning Questions in Middle School and High School Classrooms

Award #	<u>R305H050169</u>

Barry Gholson, University of Memphis

In this project, researchers iteratively developed and studied AutoTutor, Grade Levels: an intelligent tutoring system for middle and high school students to MS, HS support computer literacy and knowledge of Newtonian physics. The researchers compared different versions of AutoTutor to examine how **Focal Populations:** best to support students' learning of course content. Deep-level reasoning questions were embedded in the intelligent tutoring system. The tutor Technology Developed/Studied: served as a conversational partner with the learner and encouraged students to provide answers to questions until they mastered each concept. The researchers also developed guidelines for teachers to support the use of AutoTutor during classroom instruction.

Classroom Connectivity in Promoting Mathematics and Science Achievement

Award #	<u>R305K050045</u>
---------	--------------------

Douglas Owens, Ohio State University

	J
In this project, researchers evaluated the impact of connected classroo	m Grade Levels:
technology with interactive pedagogy and professional development of	n MS, HS
the mathematics and science achievement of students in grades 7 through	ugh
10. The connected classroom approach aimed to provide teachers with	Focal Populations:
immediate information that they could use to adjust instruction. This	
information included displays of student work that were instantly	Technology
aggregated and available on the teacher's computer as soon as student	Developed/Studied:
work was submitted. The intervention consisted of six parts: provision	of
connected classroom technology (TI-Navigator), professional	
development, teacher experiential learning in their own classrooms, on	line
web-based training, online discussion forum for the teacher communit	ty,
and follow-up professional development at an annual conference.	

AnimalWatch: An Intelligent Tutoring System for Grade 6 Mathematics

In this project, researchers iteratively developed and studied	Grade Levels:
AnimalWatch, a supplemental mathematics intelligent tutoring software	MS
for sixth-grade students. The software aimed to improve mathematics skill	
and achievement, particularly for students from groups that have been	Focal Populations:
traditionally under-represented in science and engineering fields. The	EL
AnimalWatch software integrated mathematics problem solving and	
multimedia instruction with information about environmental science and	Technology
endangered species. When students logged on to AnimalWatch, they	Developed/Studied:
adopted the role of a wildlife biologist charged with learning about and	Θ
monitoring a particular endangered species.	UU

Cinematic Sciences: An Online Simulation Platform with Real Physics and Behavioral Programming for Physical Sciences

Daniel Savage, Whimsica Toys

Grade Levels:

Technology

Focal Populations:

Developed/Studied:

MS

SWD

In this project, researchers iteratively developed and studied Cinematic Sciences, a web-based, multimedia simulation platform designed to facilitate eighth-grade student learning in the physical sciences through game-based approaches. Researchers designed Cinematic Sciences to include 20 simulations aligned with the National Physical Sciences Standards as well as a web-based tool for teachers and students to create their own simulations.

Videogame-Based Inquiry Learning Module for Science Literacy

Award # <u>ED06PO0899</u>	Jeremiah Dibley, South I Technology	Dakota Health
In this project, researchers iteratively dev	veloped a prototype of Creature	Grade Levels:
Control: Earth Day, a web-based video g	game designed to teach middle	MS
school science concepts that align with t	he National Science Education	
Standards. In Creature Control: Earth D	ay, earth science concepts were	Focal Populations:
embedded into a virtual world where stu	idents learned about an ecosystem	
and how it could be disrupted by human	impact.	Technology
		Developed/Studied:

Venture Map Award # ED06PO0931

Barry Minott, MW Productions, Inc.

In this project, researchers iteratively developed a software-based	Grade Levels:
prototype of a new formative assessment feature for VentureMap, a	MS, HS
project-based curriculum that teaches middle and high school students	
algebra concepts by having them manage a fictional music company.	Focal Populations:
VentureMap was a tool that had students apply algebra principles to keep	
their company functioning by having them track sales, cost, and profit	Technology
data, come up with production plans to increase profits, and design 2- and	Developed/Studied:
3-dimensional marketing and packaging materials.	

Technology Enhanced Science Education in Middle School

Award # <u>ED07CO0037</u>

Peter Solomon, Advanced Fuel Research, Inc.

In this project, researchers iteratively developed and studied web-	Grade Levels:
delivered science units focused on force and motion, position, energy, and	MS
gravity. These units were designed to replace or supplement middle	
school physical science curricula. Each unit included daily activity outlines,	Focal Populations:
computer simulations with worksheets, instructions for hands-on	
experiments with worksheets, teacher instructions for each activity,	Technology
animated tutorials, concept organizers, and paper-based pre- and post-	Developed/Studied:
tests. Researchers also developed a web-based teacher professional	
development course.	

The Tactus Immersive Learning Environment (TILE) for Enhancing Learning in High School Science Classrooms

Award # <u>ED07CO0038</u>	Kevin Chugh, Tactus Te	chnologies, Inc.
In this project, researchers iteratively developed	and studied a virtual	Grade Levels:
reality simulation platform. The project team dev	veloped the Tactus	MS, HS
Immersive Learning Environment (TILE) to fac	ilitate student learning of	
core National Science Education Standards. Res	earchers intended TILE	Focal Populations:
for use as a supplement to middle and high scho	ol science curricula, for	
primary instruction of concepts, for review of co	oncepts, or for individual	Technology
or small-group practice.		Developed/Studied:

Effectiveness of Cognitive Tutor® Algebra One Implemented at Scale		
Award # <u>R305A070185</u> John Pane, RAND Corp	ooration	
In this project, researchers evaluated the impact of the Cognitive Tutor®	Grade Levels:	
Algebra I curriculum on middle school students' mathematics	MS	
achievement when the curriculum was implemented at-scale. Cognitive		
Tutor® aimed to promote students' understanding of algebraic concepts	Focal Populations:	
and principles, problem-solving skills, and mastery of higher order		
mathematical concepts. A central component of the Cognitive Tutor®	Technology	
was an automated computer-based tutor that provided individualized	Developed/Studied:	
instruction to address students' specific needs. The individualization was	P	
built into the software and was facilitated by detailed computational	U	
models of student thinking in algebra.		

Making Longitudinal Web-Based Assessments Give Cognitively Diagnostic Reports to Teachers, Parents, and Students While Employing Mastery Learning

Award # <u>R305A070440</u>

Neil T. Heffernan, Worcester Polytechnic Institute

Grade Levels:

Technology

Focal Populations:

Developed/Studied:

MS

In this project, researchers iteratively developed and studied the ASSISTments system, a computer-based assessment and tutoring system developed to track and support mastery learning in mathematics among sixth- and seventh-grade students. The system provided tutoring on the mathematics questions that students got wrong. Teachers also received instantaneous feedback on their students' progress, and parents received weekly reports detailing what their children learned as well as what specific skills were a struggle for students.

Bridging the Bridge to Algebra: Measuring and Optimizing the Influence of Prerequisite Skills on a Pre-Algebra Curriculum

Award # <u>R305B070487</u> Philip Pavlik, Carnegie	Mellon University
In this project, researchers iteratively developed and studied an intelligent	Grade Levels:
computer tutor for middle school students to help them learn pre-algebra	MS
skills. The researchers designed the computer tutor to deliver practice	
sessions that targeted discrete prerequisite math skills. The system used a	Focal Populations:
personalized model of each student's learning to determine when and how	7
much practice was needed for each prerequisite skill while avoiding	Technology
unnecessary review of skills the student had already mastered.	Developed/Studied:

Principled Science Assessment Designs for Students with DisabilitiesAward # R324A070035Geneva Haertel, SRI InternationalIn this project, researchers designed and validated a web-based universal
test design paired with an approach termed "evidence-centered design" to
develop or redesign test items that can more accurately evaluate the
knowledge and skills of all students on statewide assessments. Specifically,
the researchers aimed to evaluate the validity of inferences from existing
state science assessments for students with and without disabilities,Focal Populations:

redesign assessment items, study the validity of inferences generated from the redesigned items, and develop research-based guidelines. The study focused on middle school science, but researchers also planned to apply the approach to other topics and age ranges.

Technology Developed/Studied:

The Digital Earth Explorations Project to Enrich the Middle School Sciences

Award # EI	<u>D08CO0050</u>
------------	------------------

George Newman, One Planet Education Network

In this project, researchers iteratively developed and studied a three-	Grade Levels:
dimensional (3D), web-based, virtual reality game. The game was designed	MS
to act as a supplement to middle school life science, social studies, and	
persuasive writing curricula. The project team aligned the game to	Focal Populations:
standards in the life sciences. In the game, students perform inquiry-based	
activities or quests to understand and solve problems that arise. Each	Technology
adventure was designed to connect to specific academic standards and	Developed/Studied:
disciplinary content to help students better understand and value cultural	
and natural heritage.	

Bringing Cognitive Tutors to the Internet: A Website that Helps Middle-School Students Learn Math

Award # <u>R305A080093</u>	Vincent Aleven, Carnegie	e Mellon University
In this project, researchers iteratively developed an	d studied a website for	Grade Levels:
students in grades 6 through 8 where they could pr	actice and develop	MS
their mathematics skills with artificial-intelligent so	ftware called Cognitive	
Tutor®. These tutors were designed to increase stu	idents' math	Focal Populations:
achievement by providing step-by-step instruction	in the areas of numbers	
and operations, algebra, data analysis, geometry, an	d ratios and	Technology
proportional reasoning. The website also included	support materials such	Developed/Studied:
as interactive worksheets and quizzes and automate	ed reporting of student	
progress and performance for tutors, teachers, and	parents.	

Advancing Ecosystems Science Education via Situated Collaborative learning in Multi-User Virtual Environments

Award # <u>R305A080141</u>	Christopher Dede, Harva	ard University
In this project, researchers iteratively developed a	and studied a multi-user,	Grade Levels:
virtual environment ecosystem science curriculur	n for sixth- and seventh-	MS
grade students in which students use graphical re	presentations (avatars) to	
interact with other students and with computer-b	based agents to facilitate	Focal Populations:
collaborative learning. The EcoMuve curriculum	aimed to offer	
opportunities for student learning, engagement, a	and assessment through	Technology
illustrating the situated geospatial relationships in	an ecosystem; providing	Developed/Studied:
interactive, immersive depictions of plant and an	imal behavior; and	
generating student performance data. The interve	ention also included a	
workshop for teachers, a guide and curricular ma	terials, and paper-based	
assessment instruments.		

Multilevel Assessments of Science Standards (MASS)		
Award # <u>R305A080225</u> Edys Queller	nalz, WestEd	
In this project, researchers designed and validated technology-e	nhanced Grade Levels:	
formative assessments to test eighth-grade students' science lea	rning. The MS	
Multilevel Assessment of Science Standards (MASS) project ain	ned to	
bring best formative assessment practices into classrooms to tra	ansform Focal Populations:	
what, how, when, and where science learning was assessed. MA	SS	
featured simulation-based tasks with immediate, individualized	feedback Technology	
and a hint system. It also gathered, documented, and promoted	students' Developed/Studied:	
learning of connected science knowledge and extended inquiry	not	
measured by large-scale tests.		

Closing the Achievement Gap in Middle School Mathematics Utilizing Stanford University's Education Program for Gifted Youth Differentiated Mathematics Program

Award # <u>R305A080464</u> Patrick Suppes, Stanford	University
In this project, researchers evaluated the impact of Stanford University's	Grade Levels:
Education Program for Gifted Youth (EPGY) intervention on middle	MS
school students' mathematics performance. Researchers aimed to	
determine the degree to which EPGY improved mathematics	Focal Populations:
performance in middle schools with large percentages of minority	EL
students, English learners, and low-income students. The EPGY	
intervention was a computer-based program that was self-paced,	Technology
individualized, and designed to detect and address gaps in student	Developed/Studied:
preparation. In addition, the EPGY interventionprovided information on	
student progress ranging from summaries of performance measures to	
detailed reports showing student learning trends, areas of strengths and	
weaknesses, and forecasts of end-of-year performance.	

Scaffolding Students' Use of Multiple Representations for Science Learning

Award # <u>R305A080507</u>	Sadhana Puntambekar, U Madison	University of Wisconsin,
In this project, researchers iteratively developed a	and studied an approach	Grade Levels:
to science instruction that used multiple modaliti	es—text, hands-on	MS, PA
experimentation, and interactive computer simula	ations—based on the	
Concept Mapped Project-based Activity Scaffold	ing System (CoMPASS).	Focal Populations:
The intervention incorporated learner support be	oth by the teacher and the	
computer. The researchers hypothesized that a ca	areful integration of	Technology
multiple modalities within an instructional unit an	nd a design that	Developed/Studied:
supported learning between modalities would lea	d to a deeper conceptual	0
understanding and improved student outcomes. I	Researchers tested the	•
intervention with a racially and socioeconomically	y diverse group of middle	
school students, pre-service teachers, and college	students.	

Virtual Performance Assessments for Measuring Student Achievement in ScienceAward # R305A080514Christopher Dede, Harvard University

In this project, researchers validated the use of computer-based virtual	Grade Levels:
performance assessments to assess middle school students' science inquiry	MS
skills in a standardized test setting. Researchers designed three single-user	
immersive three-dimensional (3D) environments to assess sixth- and	Focal Populations:
seventh-grade students' science inquiry process learning in the context of	
life science. In the 3D environments, students took on the identity of a	Technology
virtual persona that could move around, interact with the environment,	Developed/Studied:
and complete a science inquiry problem.	

SimScientists: Interactive Simulation-Based Science Learning Environments

Edys Quellmalz, WestEd

In this project, researchers iteratively developed and studied SimScientists, a web-based simulation program to enrich science learning and assessment. SimScientists was developed for middle-school science students to promote complex science learning, particularly for underperforming students. SimScientists supplemented and extended existing middle school science instructional materials and presented students with problems to be solved by using science inquiry processes. The intervention also included embedded formative assessments, reflection activities, and teacher professional development.

Award # <u>R305A080614</u>

Grade Levels: MS

Focal Populations:

Technology Developed/Studied: 44

Expanding the Science and Literacy Curricular Space: The GlobalEd 2 Project Award # <u>R305A080622</u>

Scott Brown, University of Connecticut

In this project, researchers iteratively developed and studied GlobalEd 2,	Grade Levels:
an intervention for eighth-grade students that built upon the	MS
interdisciplinary nature of social studies to facilitate students' abilities to	
write sophisticated persuasive text and understand important scientific	Focal Populations:
principles. The intervention was a communication-intensive, technology-	
based instructional environment in which classrooms were assigned to	Technology
represent particular countries in an online simulation-based scenario, and	Developed/Studied:
students worked collaboratively to resolve real-world international	
problems through scientific arguments in oral and written presentations.	

National Research & Development Center on Instructional Technology: Center for Advanced Technology in Schools

Award # <u>R305C080015</u>	Eva Baker, University of	California, Los Angeles
In this project, researchers evaluated the impact of	of an online computer	Grade Levels:
game designed to challenge and motivate pre-alge	bra students, particularly	MS, HS
underperforming students, to participate and succ	eed in math. The	
researchers aimed to improve middle and high scl	hool students' learning	Focal Populations:
of critically important math concepts such as pre-	algebra and algebra. To	
succeed in the game, students used math skills to	maneuver through levels	Technology
that varied in difficulty via an embedded self-asse	ssment component.	Developed/Studied:

National Research & Development Center on Instructional Technology: Possible Worlds

Award $\#R_{305}C080022$	Cornelia Brunner, Education Development Center, Inc.	
In this project, researchers iteratively developed an	nd studied Possible	Grade Levels:
Worlds, a portable multimedia-enhanced curriculu	m developed to support	MS
science and literacy learning among seventh-grade	students. Possible	
Worlds used the Nintendo Dual-Screen portable gaming environment and		Focal Populations:
included three integrated supports: a motivating story context that		
unfolded over time in which students had a competitive role and were		Technology
challenged to act as scientists, communication capa	acities between teacher	Developed/Studied:
and multi-player students to enhance classroom problem solving and		
teamwork and colloboration, and mini-games that built specific science		
knowledge and concrete literacy skills. As part of this project, the		
researchers created professional development materials and evaluated the		
impact of Possible Worlds on students' science and reading outcomes.		

ASSISTment Meets Science Learning (AMSL) Award # R305A090170 Janice Gobert, Worcester Polytechnic Institute In this project, researchers iteratively developed and studied a computer-Grade Levels: based intelligent tutoring system, ASSISTments, which aimed to tutor MS middle school students in science inquiry and process skills. Materials in the modules addressed the following science strands: earth in the solar **Focal Populations:** system, classification of organisms, structures and functions of cells, and systems of living things. The modules used microworlds to tutor students Technology **Developed/Studied:** on science process skills needed to conduct inquiry. In the microworld, students were presented with a scenario and then asked to make predictions and answer questions about that scenario. The ASSISTments tutoring system provided support and feedback to students.

Efficacy Study of AnimalWatch: An Intelligent Tutoring System for Pre-Algebra

Award # R305A090197

Steve Schneider, WestEd

In this project, researchers evaluated the impact of the AnimalWatch	Grade Levels:
System on students in pre-algebra. AnimalWatch System was an online	MS
computer-based intelligent tutor developed to build students' proficiency	
with pre-algebra mathematics operations with a specific focus on word	Focal Populations:
problems and basic skills. The system provided students with	
individualized guided practice, immediate feedback to support self-	Technology
correction and transfer, and opportunities to practice computational	Developed/Studied:
fluency.	

Systems and Cycles: Using Structure-Behavior-Function Thinking as a Conceptual Tool for Understanding Complex Natural Systems in Middle School Science

Award # <u>R305A090210</u> Cindy Hmelo-Silver, Rutgers University Grade Levels: In this project, researchers iteratively developed and studied three middle MS school science units on ecosystems, using structure-behavior-function thinking as a conceptual tool for promoting students' understanding of ecosystems. Structure-behavior-function models of systems explicitly **Focal Populations:** represent the configuration of components and connections (structure), the visible output (functions), and the internal causal processes Technology **Developed/Studied:** (behaviors) of the system. For each of three curriculum units on aquarium, local, and distal aquatic systems, researchers developed a suite 0 of tools including a structure-behavior-function modeling environment, hypermedia, computer simulations, and a notebook for students to record observations and information gathered during physical data collection.

Adapterrex: Exploring the Learning Benefits of Erroneous Examples and their Dynamic Adaptations within the Context of Middle School Mathematics

Award # <u>R305A090460</u>	Bruce McLaren, Carnegi	e Mellon University
In this project, researchers iteratively developed a	and studied AdaptErrEx,	Grade Levels:
an intelligent tutoring system for middle school r	nath students to help	MS
students learn decimals. The system presented st	udents with worked	
examples of problems in which each step of a pr	oblem solution path was	Focal Populations:
presented for the students, along with feedback a	nd instruction. The	
intervention presented students with examples th	at contained errors and	Technology
instructed them to find the error with help from	the tutoring system.	Developed/Studied:
		<pre></pre>

Learning by Teaching Synthetic Student: Using SimStudent to Study the Effect of Tutor Learning

Award # <u>R305A090519</u>	Noboru Matsuda, Carne	gie Mellon University
In this project, researchers iteratively developed	and studied SimStudent,	Grade Levels:
an intelligent tutoring system for eighth- and nin	th-grade Algebra I	MS, HS
students to help them master algebra concepts re	elated to solving linear	
equations. The tutoring system enabled students	to improve their	Focal Populations:
understanding of algebraic concepts, remediate t	heir own misconceptions,	
and strengthen their problem-solving ability and	procedural knowledge of	Technology
solving linear equations.		Developed/Studied:
		$\Theta \mathbf{f}$

Applications of Intelligent Tutoring Systems (ITS) to Improve the Skill Levels of Students with Deficiencies in Mathematics

Award # <u>R305A090528</u>	Xiangen Hu, University	of Memphis
In this project, researchers evaluated the impact	of using the Assessment	Grade Levels:
and Learning in Knowledge Spaces (ALEKS) sys	stem for use in after-	MS
school settings to improve the mathematical skill	s of struggling sixth-	
grade students. ALEKS, a web-based artificial in	telligence assessment and	Focal Populations:
learning system, used adaptive questioning to qui	ckly and accurately	
determine what a student did and did not know.		Technology
		Developed/Studied:

Evaluating the Efficacy of Enhanced Anchored Instruction for Middle School Students with Learning Disabilities in Math

Award # <u>R324A090179</u>	Brian Bottge, University of Kentucky	
In this project, researchers evaluated the impact o	f Enhanced Anchored	Grade Levels:
Instruction (EAI), a mathematics pedagogical app	roach, on the math	MS
performance of middle school students with learn	ing disabilities. EAI was	
to help develop students' math skills, such as prob	olem solving, by	Focal Populations:
providing them with additional opportunities to p	ractice their skills as	SWD
they solved new but analogous math problems. The	ne intervention	
integrated video-based problems, hands-on project	ts, and explicit	Technology
instructional units.		Developed/Studied:

The Math Learning Companion: An Individualized Intervention for Students with Math Learning Disabilities

Lindy Crawford, Texas Christian University

	2
In this project, researchers iteratively developed and studied the Math	Grade Levels:
Learning Companion, a web-based mathematics intervention for sixth-	MS
grade students struggling with mathematics. The intervention aimed to	
improve student outcomes through four primary components: a	Focal Populations:
supplemental sixth-grade mathematics curriculum with 48 standards-	SWD
aligned multimedia lessons and additional self-paced content; support	
tools, including accommodations for students and reports for teachers;	Technology
diagnostic math probes and assessments, as well as a progress monitoring	Developed/Studied:
system, designed to measure student growth; and an adaptive engine to	
capture student-program interactions, establish learner profiles and	
trajectories, and provide feedback to match student needs.	

Game-Based Interactive Life Science for Students with Learning Disabilities

Award # EDIES10C0023	Dan White, Filament Ga	mes
In this project, researchers iteratively developed ar	nd studied life science	Grade Levels:
computer-based games. Researchers created these	games using universal	MS
design principles to facilitate deeper conceptual un	derstanding of the	
scientific inquiry process among middle school stu	dents—especially	Focal Populations:
among struggling learners (e.g., English learners, th	nose with reading	SWD, EL
deficiencies, and those with learning disabilities). T	The games provided	
tutorials and scaffolding where necessary to suppo	rt student learning on	Technology
topics including cells, heredity, evolution, bacteria,	plants, and the human	Developed/Studied:
body.		

Perceptual and Adaptive Learning Technologies: Developing Products to Improve Algebra Learning

Award # EDIES10C0024

Philip Kellman, Insight Learning Technology, Inc.

In this project, researchers iteratively developed and studied a web-based system of perceptual learning modules to support middle school students' learning of algebra and provide assessment information for teachers. The modules used adaptive learning technologies to expose students to different examples; help them notice similarities and differences across problems; and increase their ability to quickly and accurately manipulate algebraic expressions and equations, recognize patterns and map functions, and understand linear forms and relations. The final product was also to include a teacher handbook.

MS Focal Populations:

Grade Levels:

Technology Developed/Studied:

Planet First Energy World (PFEW)

Award # EDIES10P0103

George Newman, One Planet Education Network

In this project, researchers iteratively developed and studied a functioning	Grade Levels:
prototype of a three-dimensional (3D) virtual environment. The prototype	MS
of the Planet First Energy Worlds included a 3D virtual environment to	
teach energy-related topics that addressed sixth-grade mathematics and	Focal Populations:
science standards. The intervention used inquiry scenarios and disciplinary	
content to address different situations using a video game format	Technology
immersed in 3D technology. The intervention included teacher	Developed/Studied:
professional development and support.	

A Theory-Driven Search for the Optimal Conditions of Instructional Guidance in Algebra Tutor

Award # <u>R305A100109</u>	John Anderson, Carnegie	e Mellon University
In this project, researchers explored the cognitive	processes of seventh-	Grade Levels:
through ninth-grade students as they solved algeb	ora problems in the	MS, HS
context of the Carnegie Learning Algebra Tutor s	oftware. The researchers	
used computer simulations of individual students	(called "synthetic	Focal Populations:
student models") to find the optimal conditions of	of instructional guidance	
a student needs to receive to master an algebra pr	oblem.	Technology
		Developed/Studied:

An Adaptive Testing System for Diagnosing Sources of Mathematics Difficulties

	Susan Embretson, Georg	Susan Embretson, Georgia Institute of		
Award # <u>R305A100234</u>	Technology	-		
In this project, researchers designed and va	alidated an online formative	Grade Levels:		
assessment system to diagnose the sources	of middle school students'	MS		
mathematics deficits and to provide inform	nation to teachers to guide			
instruction. The assessment system was to	mirror math content addressed	Focal Populations:		
in state standards-based assessments and to consist of seven components:				
a diagnostic system, item bank, diagnostic	item response theory model	Technology		
calibrations, adaptive item selection modul	les, an interactive online test	Developed/Studied:		
delivery module, a score report module, an	d a validity module.			

STEM Solar Explorations Award # EDIES11C0022

Award # EDIES11C0022	David Marley, Diversifie	d Construction, Inc.
In this project, researchers iteratively developed a	nd studied the STEM	Grade Levels:
Solar Explorations platform, a multidisciplinary v	irtual laboratory for	MS
middle school students. The laboratory focused of	on solar energy fields and	
was developed to help students apply learning in	the area of energy	Focal Populations:
science. The researchers designed curricular mate	rials, multi-media video	
clips, lesson plans, student activities, assessments,	, and a back-end system	Technology
to house data generated by the activities.		Developed/Studied:

Haptic Immersion Platform to Improve STEM Learning for the Visually Impaired

Award # EDIES11C0028	Marjorie Darrah, Inform Corporation	ation Research
In this project, researchers iteratively developed	and studied Interactive	Grade Levels:
Touch Science, an integrated software and hardware	vare assistive technology	MS
platform. The product included a set of 20 appli	cations that addressed	
standards-relevant content and aimed to support	t science, technology,	Focal Populations:
engineering, and mathematics (STEM) learning a	among middle school	SWD
students with (or without) visual impairments. T	he product also provided	
real-time tactile, visual, and audio feedback.		Technology
		Developed/Studied:

Award # <u>R305A110782</u>

Voyage to Galapagos: Development of a Differentiated Assistance Model in an Inquiry Learning Environment

Award # <u>R305A110021</u>	Daniel Brenner, WestEd	
In this project, researchers evaluated the impact of	f combining	Grade Levels:
SimScientists, a web-based simulations program to	o enrich science learning	MS, HS
and assessment, with Voyage to Galapagos (VTG), an inquiry-driven	
instructional module that provided middle and his	gh school biology	Focal Populations:
students opportunities to simulate science field we	ork in the Galapagos.	
Researchers created three versions of the VTG m	odule, with each one	Technology
providing different types of assistance (e.g., feedb	ack after completing a	Developed/Studied:
level or feedback while working on a problem) wi	thin the SimScientists'	
web-based platform. Researchers then explored h	ow students learn when	
receiving tutoring at different points in the simula	tion process and when	
the tutoring that they receive is contingent on the	ir ability level.	

Learning the Visual Structure of Algebra Through Dynamic Interactions with Notation Award # <u>R305A110060</u>

Dav	vid L	andy	, Universit	ty of R	ichn	nond	
				-		_	

In this project, researchers iteratively developed and studied Pushing	Grade Levels:
Symbols, an intervention for middle, high school, and remedial college	MS, HS, PA
students designed to enhance students' understanding of algebraic	
notations. The intervention used a set of verbal, physical, and computer-	Focal Populations:
based visualizations to allow students to interact physically and	
dynamically with expression elements.	Technology
	Developed/Studied:
	0

Explanation and Prediction Increasing Gains and Metacognition (EPIGAME)

Douglas Clark, Vanderbilt University

	•
In this project, researchers iteratively developed and studied a game	Grade Levels:
environment designed to support middle school students' understanding	MS
of formal physics concepts. The environment integrated prediction and	
explanation into a digital game, Cup Racer. By playing the game and using	Focal Populations:
their predictions and explanations, students were to translate their	
intuitive understandings into explicit core concepts of Newtonian	Technology
mechanics. The final product was to include computer adaptive	Developed/Studied:
assessments along with Cup Racer.	000

An Examination of the Qualities of Interactive Science Learning Environments That Promote Optimal Motivation and Learning

Award # <u>R305A110810</u> Steven McGee, The Learning Partnership

In this project, researchers explored the relationship between the	Grade Levels:
strategies for increasing learning and the strategies for increasing interest	MS
and motivation in science that underlie Journey to El Yunque, a web-	
based ecology curriculum for middle school students. The researchers	Focal Populations:
posited that variables that promote interest may be detrimental to learning	
whereas variables that advance learning may be detrimental to interest.	Technology
	Developed/Studied:

Expanding Audio Access to Mathematics Expressions by Students with Visual Impairments via MathML

Award # <u>R324A110355</u> Lois Fr	Frankel, Educational Testing Service (ETS)
In this project, researchers iteratively developed and studi	died a Grade Levels:
standardized synthetic, speech-rendering tool for math in	nstruction, test MS, HS
preparation, and testing for students in grades 8 through	11 with visual
impairments. The tool used ClearSpeak, a mathematical n	markup language Focal Populations:
that can be integrated with existing screen reader software	re used by the SWD
visually impaired community. ClearSpeak translated math	h expressions into
descriptions that students with visual impairments could l	better Technology
comprehend. The tool consisted of four components: stat	andardized Developed/Studied :
synthesized speech for rendering mathematical content (C	(ClearSpeak),
navigation tools for students, ClearSpeak integration capa	ability with
Microsoft Word, and customizable authoring tools for tea	eachers.

Possible Worlds: Explorer Series

Award # EDIES12C0040Tobi	Saulnier, 1st Playab	le Productions
In this project, researchers iteratively developed and stud	lied Possible	Grade Levels:
Worlds, a prototype platform to host web-based interact	ive games. The	MS
project team developed the platform to help middle sche	ool students	
overcome scientific misconceptions. The researchers con-	nverted and	Focal Populations:
enhanced games and materials for topics such as genetic	s, photosynthesis,	
electricity, and energy so that they could be used on tabl	et-based devices	Technology
with touch-screen capabilities to enable more in-depth a	nd interactive	Developed/Studied:
gameplay.		

52

An Efficacy Study of Online Mathematics Homework Support: An Evaluation of the ASSISTments Formative Assessment and Tutoring Platform

Award # <u>R305A120125</u> Jeremy Roschelle, SRI International

In this project, researchers evaluated the impact of ASSISTments, an online formative assessment and mathematics tutoring platform for middle school students, focusing on its relative effectiveness with English learners and students with disabilities. ASSISTments allowed teachers to assign customized online homework to their students and then receive reports on each student's progress. Using ASSISTments, students would complete their homework on laptop computers and receive immediate feedback on their answers, individualized tutoring, hint messages on difficult problems, mastery problem sets that adjusted to knowledge level, and automatic reassessment of a subset of skills to help improve their retention of previously mastered skills.

SimSelf: A Simulation Environment Designed to Model and Scaffold Learners' Self-Regulation Skills to Optimize Complex Science Learning

Award # <u>R305A120186</u>	Gautam Biswas, Vanderbilt University	
In this project, researchers iteratively devel	oped and studied SimSelf, a Grade Level	s:

In this project, researchers iteratively developed and studied SimSelf, a computer-based learning environment for seventh- and eighth-grade students. SimSelf aimed to strengthen students' cognitive, metacognitive, motivational, and self-regulated learning processes to enhance students' ability to solve complex science problems. SimSelf had a suite of adaptive pedagogical agents (animated characters used in online learning) and services that monitored and provided supports to build student self-regulated learning skills and knowledge of science content necessary to engage in learning tasks or to solve complex science problems.

Perceptual Learning Technology in Mathematics Education: Efficacy and Replication

Award # <u>R305A120288</u>	Philip Kellman, Universi	ty of California, Los
Awaru # <u>K505A120286</u>	Angeles	
In this project, researchers evaluated the impact	of a web-based	Grade Levels:
intervention on sixth-grade math students. The	intervention consisted of	MS
six units of instructional materials that combined	d perceptual learning	
modules (i.e., units that aim to develop students	' ability to recognize and	Focal Populations:
use structure, patterns, and relationships by have	ng them interact with	
information), computer-adaptive diagnostic asse	ssments, benchmark	Technology
lessons and investigations, and resources for tea	chers.	Developed/Studied:

Grade Levels: MS

Focal Populations: SWD, EL

Technology Developed/Studied:

Focal Populations:

Developed/Studied:

Technology

MS

SimScientists Assessment System	
Award # <u>R305A120390</u> Edys Quellmal	lz, WestEd
In this project, researchers designed and validated a set of middle	e school Grade Levels:
computer simulation-based assessments for the life science strand	d of the MS
SimScientists Assessment System. SimScientist was developed to	be a
web-based simulations program to enrich science learning and as	sessment. Focal Populations:
The researchers aimed to measure complex learning through simu	ulation-
based assessments that encompassed three units taught in middle	school: Technology
cells, human body systems, and ecosystems.	Developed/Studied:

The Development of an Intelligent Pedagogical Agent for Physical Science Inquiry Driven by Educational Data Mining

Award # <u>R305A120778</u>	Janice Gobert, Worcester	r Polytechnic Institute
In this project, researchers iteratively developed as	nd studied an online	Grade Levels:
pedagogical agent (an animated character), designed	ed to assist middle	MS
school students in new physical science topics. Re	esearchers integrated the	
pedagogical agent into 12 previously developed pl	nysical science	Focal Populations:
microworlds (small scale interactive simulations),	in which students	
conducted scientific inquiry by generating hypothe	eses, collecting data to	Technology
test their hypotheses, interpreting the data, warrar	nting claims, and	Developed/Studied:
communicating findings. The pedagogical agent g	uided students through	
each step of the inquiry process and provided real	-time scaffolding	
through validated assessments.		

AnimalWatch-VI Suite: A Comprehensive Program to Increase Access to Mathematics for Students with Visual Impairments

Award # <u>R324A120006</u> C:	arole Beal, University o	f Arizona
In this project, researchers iteratively developed and	studied Animal Suite-	Grade Levels:
VI, an intervention for middle and high school students with visual		MS, HS
impairments to help them master core algebra-readir	ness mathematics	
skills to succeed in high school and beyond. The inte	ervention was a set of	Focal Populations:
14 web-delivered, accessible instructional modules co	overing computation,	SWD
fractions, and variables and expressions. Each modu	le included word	
problems and instructional scaffolding accessible via	self-voicing software,	Technology
accompanied by braille and tactile graphics. The rese	archers also	Developed/Studied:
developed training materials for teachers.		

Award # EDIES13C0043

SciSkillQuest: A Standards-Based Game to Develop Students' Scientific Skills, Academic Mindsets, and Learning Strategies in Science

Award # EDIES13C0028 Lisa Sorich Blackwell, Mindset Works, LLC

In this project, researchers iteratively developed and studied SciSkillQuest, Grade Levels: an intervention for sixth- through eighth-grade students. SciSkillQuest MS was a web-based multiplayer game that aimed to teach students key scientific inquiry skills, along with the academic mindsets (beliefs students **Focal Populations:** have about learning that can influence their behaviors) and learning strategies that facilitated engagement and effective science learning. The Technology game included different paths to a solution, role-playing elements, **Developed/Studied:** immersive narratives, challenge-based progressions, and peer collaboration to engage players. Embedded in-game characters introduced and reinforced the message of growth mindset (i.e., the belief that ability and skill are developed through effort and learning).

Empires: The First Socially-Networked Story-Based Math Game

Scott Laidlaw, Imagine Education

In this project, researchers iteratively developed and studied Empires, a	Grade Levels:
web-based game for seventh-grade students to engage and motivate them	MS
in mathematics learning. The prototype of this game was developed under	
a previous IES <u>award</u> . The game included a narrative-based story that	Focal Populations:
applied learning of content and skills aligned to the Common Core State	
Standards in mathematics. As students played the game, they engaged in	Technology
math-focused activities, such as taxing citizens to learn ratios and	Developed/Studied:
proportions, allocating resources to learn percentages, and measuring the	
distance and time to a neighboring empire by applying the principles of	
the Pythagorean Theorem.	

Connecting Mathematical Ideas through Animated Multimodal Instruction

Award # <u>R305A130016</u>	Martha W. Alibali, Unive Madison	ersity of Wisconsin,
In this project, researchers explored how to me	st effectively link ideas in	Grade Levels:
algebra instruction using Gesturing Avatar for I	Learning and Education	MS
(GALE) with middle school students. The rese	archers used GALE, a	
software-based system with a human-like avata	r teacher, to determine	Focal Populations:
how different gestures and ways of communication	ting about connections	
among ideas foster student learning in mathem	atics.	Technology
		Developed/Studied:
		Θ

SimScientists Model Progressions	
Award # <u>R305A130160</u> Edys Quellmalz, WestEd	1
In this project, researchers iteratively developed and studied additional life	Grade Levels:
science instructional suites for SimScientists, a web-based simulations	MS
program to enrich science learning and assessment for middle school	
students. Researchers also developed and validated the learning	Focal Populations:
progressions, trajectories, and connections between multiple life science	EL
systems advocated in the Next Generation Science Standards and	
professional development that included a summer workshop and	Technology
webinars. For this study, researchers focused on outcomes of students	Developed/Studied:
from a range of socioeconomic levels as well as disadvantaged students	
and English learners.	

GlobalEd 2

Award # <u>R305A130195</u>	Scott Brown, University	of Connecticut
In this project, researbers evaluated the impact o	f GlobalEd 2 (GE2), a	Grade Levels:
set of online problem-based learning simulations	for middle school	MS
students. GE2 focused on the multidisciplinary n	ature of social studies as	
an expanded curricular space for students to learn	n and apply scientific	Focal Populations:
literacies and concepts in an international contex	t. The researchers	
evaluated eighth-grade students' STEM (science,	technology, engineering,	Technology
and math) literacies, knowledge, and attitudes to	determine whether	Developed/Studied:
results varied across diverse groups from both ur	ban and suburban	
environments.		

Happy Atoms

Award # EDIES14C0041	
----------------------	--

Jesse Schell, Schell Games

In this project, researchers iteratively developed and studied a tablet-based	Grade Levels:
intervention for middle school science students to teach molecular	MS
composition. The intervention, Happy Atoms, was an interactive	
simulation that used physical manipulation of balls with embedded	Focal Populations:
magnets that linked wirelessly to the tablet. The product recognized	
whether or not a student-created molecule existed and explained to	Technology
students whether their created molecules were possible. The application	Developed/Studied:
also included teacher resources with instructional videos and curriculum	
suggestions that explained how to integrate the product into classroom	
practice.	

55

Engaging Students in STEM: International Social Collaborative Exchange Network for Education: iSCENE

Award # EDIES14C0052

Andri Loannidou, ActiveEd Joint Venture

In this project, researchers iteratively developed and studied a prototype
of iSCENE, a virtual learning website for middle school students.Grade Levels:
MSiSCENE aimed to improve student engagement and motivation in STEM
(science, techonlogy, engineering, and mathematics) using project-based
cooperative learning, data exchange, resource sharing, and real-time
communication in a science classroom setting.Focal Populations:
Technology
Developed/Studied:

Technology-interactive Classroom-embedded Modules for Measuring Challenging Math and Science Skills of ELs

Award # <u>R305A140117</u>	Rebecca Kopriva, Unive	rsity of Wisconsin,
Award # <u>R505A140117</u>	Madison	
In this project, researchers iteratively desig	ned and validated a computer-	Grade Levels:
based assessment for English learners (EL	s) in middle school. It aimed to	MS
enhance students' math and science achiev	vement through formative	
assessments that provided immediate feed	back to students and teachers	Focal Populations:
and produced specific, individualized, data	-driven guidance targeted to	EL
improving instruction for ELs.		
		Technology
		Developed/Studied:
		90

Integrated Software for Artificial Intelligence Tutoring and Assessment in ScienceAward # R305K040008Benny Johnson, Quantum Simulations, Inc.

	,
In this project, researchers iteratively developed and studied an online	Grade Levels:
tutoring and assessment system for high school chemistry students called	HS
Quantum Chemistry Tutors. The system aimed to improve student	
learning and achievement by providing detailed comments to students if	Focal Populations:
they made mistakes while trying to solve chemistry problems and by	
generating reports for teachers and students that analyzed student learning	Technology
as reflected by their performance on a given set of chemistry problems.	Developed/Studied:

Molecules and Minds: Optimizing Simulations for Chemistry Education

|--|

Jan Plass, New York University

In this project, researchers iteratively developed and studied instructional	Grade Levels:
computer simulations and curriculum for high school students to improve	HS
their learning and achievement in chemistry. The computer simulations	
imitated real-world chemistry processes (e.g., gas laws and the kinetic	Focal Populations:
theory of heat) and were based on three principles of learning: active	
engagement of the learner, optimization of visual cognitive load, and	Technology
consideration of the impact of learner characteristics (e.g., prior	Developed/Studied:
knowledge, spatial ability, and metacognitive skills) on the learning	0
process.	•

V-Frog: Applying Virtual Surgery Principles to Dissection Simulation

Kevin Chugh, Tactus Technologies, Inc.

In this project, researchers iteratively developed and studied V-Frog, a	Grade Levels:
virtual reality frog dissection software to serve as a substitute for or	HS
supplement to physical dissection in high school level biology. V-Frog	
was to be a three-dimensional environment in which students could	Focal Populations:
engage in normal dissection actions (e.g., cutting with a scalpel, tugging	
with tweezers, and probing with a blunt probe), as well as actions that are	Technology
not possible in physical dissection, such as endoscopy or watching a	Developed/Studied:
beating heart.	Θ

Virtual Physics Laboratory Award # ED06PO0909

Award # <u>R305S050019</u>

Jeanne Finstein, Polyhedron Learning Media, Inc.

In this project, researchers iteratively developed and studied an	Grade Levels:
intervention for college students and advanced placement (AP) high	HS, PA
school students that aimed to increase their physics knowledge through	
online laboratory experiments that had animations, brief video clips,	Focal Populations:
simulated laboratory equipment, and data collection tools.	
	Technology
	Developed/Studied:

Award # ED06PO0912Hsinchao Liao, Creava, IIn this project, researchers iteratively developed a prototype of MathGrade LeveMessenger, an online mathematics communication tool that combinedHSinstant messaging and texting technologies with the ability to write andFocal Popuedit formulas. Math Messenger was designed for use in online high schoolFocal Popumathematics courses to facilitate collaboration on mathematical problemsHours	
Messenger, an online mathematics communication tool that combined HS instant messaging and texting technologies with the ability to write and edit formulas. Math Messenger was designed for use in online high school mathematics courses to facilitate collaboration on mathematical problems	
instant messaging and texting technologies with the ability to write and edit formulas. Math Messenger was designed for use in online high school mathematics courses to facilitate collaboration on mathematical problems	els:
edit formulas. Math Messenger was designed for use in online high school mathematics courses to facilitate collaboration on mathematical problems	
mathematics courses to facilitate collaboration on mathematical problems	
1	ulations:
and to allow users to visualize graphical problems. Technolog	,y
Developed	/Studied:

Fathom Dynamic Data Software Award # ED06PO0930

Award # ED06PO0930William Finzer, KCP Teo	chnologies
In this project, researchers iteratively developed a prototype of Fathom	Grade Levels:
Dynamic Data Software, an interactive tool and web-based curriculum	HS
focused on data analysis and statistics. Fathom Dynamic Data Software	
aimed to provide high school students with a background in data	Focal Populations:
gathering, exploration, and analysis. The software was designed to be	
paired with Fathom Surveys, a product that streamlines the data collection	Technology
process within the classroom. In addition to data analysis, the software	Developed/Studied:
was designed to allow students to gain experience with survey design and survey ethics.	

Intelligent Molecular Model Kit and Software Suite for Improving High School Chemistry Instruction and Student Achievement

Award # <u>ED07CO0044</u>	Keith Donaldson, MolyS	Sym, Inc.
In this project, researchers iteratively developed	and studied MolySym, an	Grade Levels:
intelligent molecular modeling kit and software	suite for advanced	HS
placement high school chemistry classes. MolyS	ym allowed for real-time	
communication between student-built hand-hele	d physical models and	Focal Populations:
virtual software models that helped users to view	v changes in properties as	
they manipulated the molecular model in their h	ands.	Technology
		Developed/Studied:

58

Grade Levels:

Technology

Ť

Focal Populations:

Developed/Studied:

HS

Integrated Software for Artificial Intelligence Tutoring and Assessment in Science

Award # <u>R305A070067</u>

Benny Johnson, Quantum Simulations, Inc.

In this project, researchers iteratively developed and studied three new units for Quantum Chemistry Tutors, an internet-based tutoring and assessment system for high school chemistry developed under a pervious IES <u>award</u>. The system aimed to improve student learning and achievement in chemistry by providing feedback to students while they tried to solve chemistry problems. In addition, the system generated reports for teachers and students that analyzed student learning and performance.

Democratizing Access to Core Mathematics Grades 9-12

Award # <u>R305B070430</u>	Stephen Hegedus, Univer Dartmouth	rsity of Massachusetts,
In this project, researchers iteratively developed as	nd studied SimCalc	Grade Levels:
Connected Math Worlds. The Math Worlds currie	culum was developed	HS
both to deepen high school students' understandi	ng of core concepts	
within first- and second-year algebra and to conne	ect and sustain the	Focal Populations:
development of their mathematical understanding	across higher	
mathematics classes. SimCalc Connected Math W	orlds included	Technology
curriculum materials and software supported thro	ugh a wireless network.	Developed/Studied:
The software allowed teachers and students to have	ve simultaneous access	
to student solutions, thus enabling teachers to pro-	ovide immediate	
feedback to students as they solved algebraic prob	olems.	

Online Learning System to Advance Teaching of Hyper Molecular Modeling

Award # ED08CO0044 Keith Donaldson, MolySym, Inc. In this project, researchers iteratively developed and studied a teaching Grade Levels: and training interface for the MolySym Hypermodeling System. This HS system incorportated electronics and robotics technologies into ball-andstick models to communicate in real-time with a software simulation **Focal Populations:** system to improve students' understanding of important chemical principles relating to three dimensional molecular structures. To help Technology **Developed/Studied:** deploy this tool in classrooms, researchers developed a teaching and training interface for MolySym, called the Online Learning System which included a report and assessment system for collecting data and measuring learning with hypermodels and simulations.

Electronic Chemistry Laboratory Workbook (ECLW)		
Award # ED08CO0051Christina Gilpin, Select-O-Sep, LLC		
In this project, researchers iteratively developed and studied a simulation-	Grade Levels:	
based chemistry laboratory tool for high school students, Electronic	HS	
Chemistry Laboratory Workbook (ECLW). The prototype of ECLW was		
developed under an earlier IES <u>award</u> . Researchers developed ECLW, a	Focal Populations:	
hardware interface with tactile controls used to carry out experimental		
computer simulations, to offer a realistic hands-on feeling for simulated	Technology	
lab experiments. It incorporated systematic and random errors, as well as	Developed/Studied:	
visual and tactile feedback.		

A Randomized Controlled Study of the Effects of Intelligent Online Chemistry Tutors in Urban California School Districts

Award # <u>R305A080063</u>	Steve Schneider, WestEd	
In this project, researchers evaluated the impact of	of Quantum Chemistry	Grade Levels:
Tutors, a internet-based tutoring and assessment	system, on high school	HS
chemistry students' performance. Researchers air	ned to understand not	
only the efficacy of the intervention but also the	general effects of	Focal Populations:
intelligent tutoring software on student learning	when used in conjunction	
with a range of commercially available science cu	rricula. Quantum	Technology
Chemistry Tutors provided individual tutoring to	high school students to	Developed/Studied:
support student thinking and performance throu	gh adaptive questioning,	
modeling, illustration, and explanation of issues v	within the context of the	
student's work.		
with a range of commercially available science cu Chemistry Tutors provided individual tutoring to support student thinking and performance throu modeling, illustration, and explanation of issues v	rricula. Quantum high school students to gh adaptive questioning,	0,

Guru: A Computer Tutor that Models Expert Human Tutors

Award # <u>R305A080594</u>	Andrew Olney, Universit	ty of Memphis
In this project, researchers iteratively developed a	ind studied Guru, a	Grade Levels:
computer-based intelligent tutoring system for hi	gh school students to	HS
promote educational attainment by targeting biol-	ogy content that students	
must master in order to graduate. Students intera	cted with the Guru	Focal Populations:
animated agent by having a conversation with the	e tutor. During the	
course of the conversation, Guru and the student	worked through biology	Technology
topics and problems through a multimedia panel	that presented movies,	Developed/Studied:
interactive diagrams, and other instructional med	ia.	

Agile Mind Visualizations to Increase High School Biology Learning		
Award # EDIES09C0017Linda Ch	haput, Agile Mind, Inc.	
In this project, researchers iteratively developed and studied	d interactive, Grade Levels:	
animated visualizations of key science concepts to increase	student HS	
engagement in learning. The project team designed several	visualizations	
and then embedded them within Agile Minds' existing onlir	ne high school Focal Populations:	
biology course services. The product also included online, r	real-time	
teacher support to enable successful integration of the techn	nology within Technology	
classroom practice.	Developed/Studied:	

Testing the Effectiveness of CALM for High School Chemistry Students

Award # <u>R305A090195</u> Jonathan Plucker, India:	<u>Jonathan Plucker, Indiana University</u>	
In this project, researchers evaluated the impact of the Computer Assisted	Grade Levels:	
Learning Method (CALM), a chemistry program, on high school students'	HS	
science achievement. CALM consisted of two components: the CALM		
online learning tool and the CALM teacher professional development	Focal Populations:	
workshop. The CALM online learning tool allowed students to practice		
solving chemistry problems on topics such as balancing chemical	Technology	
reactions and kinetics. Teachers received a professional development	Developed/Studied:	
workshop to learn about the underlying philosophy of CALM and the		
mechanics of its use.		

Promoting Robust Understanding of Genetics with a Cognitive Tutor that Integrates Conceptual Learning with Problem Solving

Award # <u>R305A090549</u> Albert Corbett, Carnegie	Mellon University
In this project, researchers iteratively developed and studied new modules	Grade Levels:
for the Carnegie Mellon Genetics Cognitive Tutor® (GCT), an intelligent	HS
tutoring system for learning genetics. The new GCT modules used	
problem solving to help high school students understand genetics	Focal Populations:
processes more fully and to help students learn how to form hypotheses	
based on observations. Researchers integrated the new GCT modules	Technology
with existing GCT modules to form a new Conceptually Grounded	Developed/Studied:
Genetics Problem Solving environment.	

Embedded Assessments Using the ChemCollective Virtual Lab		
Award # <u>R305A100069</u>	Jodi Davenport, WestEd	
In this project, researchers iteratively developed	and studied new activities	Grade Levels:
with embedded assessments for the previously d	eveloped ChemCollective	HS
Virtual Lab. The components developed in this	project consisted of two	
online modules with ChemCollective Virtual Lab	activities and embedded	Focal Populations:
assessments focused on stoichiometry and therm	nochemistry in which	EL
students received authentic chemistry investigati	ons and personalized	
coaching. ChemCollective Virtual Lab also provi	ded teachers with	Technology
formative assessment information about individu	al students that they	Developed/Studied:
could use to monitor student progress and guide	instruction.	

Improving Students' Skill at Solving Equations through Better Encoding of Algebraic Concepts

Award # <u>R305A100074</u> Julie Booth, Tem	ple University
In this project, researchers iteratively developed and studied the Alg	gebra I Grade Levels:
Cognitive Tutor®, a computer program for Algebra I high school	HS
students to help them overcome misconceptions in algebra through	the
use of incorrect examples and self-explanation exercises. The interv	ention Focal Populations:
provided high school students with different types of self-explanation	on
exercises: typical self-explanation (designed to help them discover as	nd Technology
strengthen correct strategies) and corrective self-explanation (design	ned to Developed/Studied:
help them understand why ineffective strategies were incorrect).	

Improving a Natural-Language Tutoring System that Engages Students in Deep Reasoning **Dialogues about Physics**

Award # <u>R305A100163</u>	Sandra Katz, University of	of Pittsburgh
In this project, researchers iteratively refined and	tested Andes, an	Grade Levels:
intelligent, web-based tutoring system for physics.	Andes was developed	HS
to help students reason deeply about and reflect o	n physics problems.	
This project focused on refining the dialog capabi	lities of Andes using	Focal Populations:
natural-language processing so that the system cou	uld integrate the	
student's words into its reponse while also determ	ining whether the	Technology
student was missing important concepts or overge	eneralizing by analyzing	Developed/Studied:
the level of abstraction in the student's response.		

Grade Levels:

Technology

(†) 🗸

Focal Populations:

Developed/Studied:

HS

DeepTutor: An Intelligent Tutoring System Based on Deep Language and Discourse Processing and Advanced Tutoring Strategies

Award # R305A100875

Vasile Rus, University of Memphis

In this project, researchers iteratively developed and studied DeepTutor, an intelligent, dialog-based tutoring system for high school students. DeepTutor aimed to improve students' outcomes in physics relative to a tutoring system called AutoTutor, an alternative, interactive automated tutoring software program. DeepTutor focused on accurate assessment, clear communication, and advanced tutoring and instructional strategies to improve tutoring quality and learning.

The Connected Chemistry Curriculum Award # <u>R305A100992</u>

Mike Stieff, University of Illinois, Chicago

In this project, researchers iteratively developed and studied Connected Grade Levels: Chemistry, a curriculum for high school chemistry students meant to HS improve their understanding of and achievement in science through computer-based activities. The curriculum used computer-based **Focal Populations:** visualization tools to link the sub micro-level reactions students saw to their everyday experience at the macro-level. Each curriculum unit Technology consisted of three modules: (1) laboratory/demonstration, in which **Developed/Studied:** students performed an experiment; (2) simulation, in which students (\mathbf{e}) explored a simulation; and (3) discussion, in which the teacher led students through a synthesis of their observations.

Virtual Labs for High School Physics

Award # EDIES11C0029

Jeanne Finstein, Polyhedron Learning Media, Inc.

	e ·
In this project, researchers iteratively developed and studied a virtual	Grade Levels:
physics lab. The prototype of this product was developed under an earlier	HS
IES <u>award</u> . Researchers developed a set of cost-effective and	
maintenance-free web-based virtual labs on topics such as displacement,	Focal Populations:
velocity, acceleration of gravity, kinematics, and Newton's second law that	
could fully replace or supplement hands-on labs in a typical high school	Technology
physics course. The online virtual physics labs were designed to be used	Developed/Studied:
when equipment was not available or as a supplement before or after	
using real equipment. Researchers also developed supporting professional	
development materials.	

Assessing the Efficacy of Online Credit Recovery in Algebra I for At-Risk Ninth Graders

Award # <u>R305A110149</u>

Jessica Heppen, American Institutes for Research

In this project, researchers evaluated the impact of offering an online	Grade Levels:
Algebra I course for first-time ninth graders who failed the second	HS
semester of Algebra I. Researchers aimed to produce rigorous evidence	
about credit recovery programs by conducting three studies: the first study	Focal Populations:
compared the impacts of the online course to a traditional in-class	
summer course; the second study examined whether students in schools	Technology
offering the summer Algebra recovery course showed improved outcomes	Developed/Studied:
compared to students in schools that did not offer the course; and the	
third study compared how students who succeeded in their credit	
recovery course did versus ninth-grade students who passed Algebra I.	

Cyber-enabled Tangible Molecular Models for High School

Award # <u>R305A120047</u> Jodi Davenport, WestE	E
In this project, researchers iteratively developed and studied cyber-enabled	Grade Levels:
tangible molecular models and companion activities for high school	HS
biology students. The intervention aimed to enhance the instruction of	
core concepts of molecular biology taught in high school (protein	Focal Populations:
structure, enzymes, DNA, and viruses) through physical, flexible models	
of molecules. As users manipulated the models in front of a computer's	Technology
webcam, the software tracked the motion of the physics models in real-	Developed/Studied:
time. Researchers posited that the physical manipulation could promote	Θ
students' understanding of how proteins interact and illustrate how	•
secondary and tertiary structures emerge during the movement.	

Exploring Studies to Derive Policies for Adaptive Natural-language Tutoring in Physics Award # <u>R305A130441</u>

Sandra Katz, University of Pittsburgh

In this project, researchers explored how different approaches to	Grade Levels:
designing intelligent tutoring systmes correlate with improvements in	HS
student outcomes in physics. Rimac, the intervention used to identify	
malleable factors of intelligent tutoring systems, targeted high school	Focal Populations:
physics students in urban, suburban, and parochial school districts. The	
researchers aimed to identify effective malleable factors to inform the	Technology
development of a future intelligent tutoring systems intervention and,	Developed/Studied:
more broadly, to inform one-on-one tutoring and classroom instructional	<pre></pre>
practices.	

Grade Levels:

Technology

Focal Populations:

Developed/Studied:

2

HS

(∰)

Eco: An Online Virtual World for Secondary School Environmental Literacy and Collaborative Problem Solving

Award # EDIES14C0044

John Krajewski, Strange Loop Games

In this project, researchers iteratively developed and studied an intervention for high school students called Eco that aimed to improve environmental literacy. It used a multi-player game-based application in which students participated in a virtual online environment featuring a simulated ecosystem of plants and animals. Students measured, modeled, and analyzed the game's underlying ecosystem and proposed plans to classmates as part of group decisionmaking.

Efficacy of ALEKS for Improving Student Algebra Achievement

Award # <u>R305A140221</u>	John Pane, RAND Corp	oration
In this project, researchers evaluated the impact	of ALEKS (Assessment	Grade Levels:
and Learning in Knowledge Spaces), an interven	tion for Algebra 1	HS
students that aimed to improve students' mather	natics outcomes through	
a web-based intelligent tutoring system. ALEKS	assessed individual	Focal Populations:
student knowledge, provided individualized math	nematics instruction	EL
based on the data gathered from assessments and	d learning, and reassessed	
students periodically to ensure learning and mast	ery. It also generated	Technology
reports for teachers to inform instructional decis	ions.	Developed/Studied:

A Virtual Launchpad for Learning at Higher Speeds

Award # ED06PO0900

Phillip L. Senger, Current Conceptions, Inc.

In this project, researchers iteratively developed a prototype of Virtual	Grade Levels:
Learning LaunchPad, a virtual learning platform designed to enable	РА
college students to learn health-related biological information at a faster	
rate than students who view traditional video lectures on the same subject	Focal Populations:
matter. Virtual Learning LaunchPad combined non-traditional	
instructional delivery methods, such as the use of three-dimensonal	Technology
anatomical reconstructions, step-by-step animations, streaming-	Developed/Studied:
animations, voice-overs, and instant replay of important components. The	
first topic covered by the prototype was reproductive science.	

Virtual Physics Laboratory

Award # <u>ED07C00040</u>

Jeanne Finstein, Polyhedron Learning Media, Inc.

In this project, researchers iteratively developed and studied Virtual	Grade Levels:
Physics Laboratory. The prototype of this product was developed under a	РА
previous IES award. Researchers developed a set of web-based virtual labs	
on topics such as vector addition of forces, uniform motion, kinematics,	Focal Populations:
Newton's Second Law, and conservation of energy. These labs were	
intended to either fully replace or serve as a supplement to hands-on labs	Technology
in a typical introductory college physics course.	Developed/Studied:

Acquiring Research Investigative and Evaluative Skills (ARIES) for Scientific Inquiry

Award # $\underline{R305B070349}$	Keith Millis, Northern II	linois University
In this project, researchers iteratively developed as	nd studied ARIES	Grade Levels:
(Acquiring Research Investigative and Evaluative	Skills), an interactive	РА
intelligent tutor for college students designed to te	each students scientific	
inquiry skills. Students read an online text describi	ng and explaining key	Focal Populations:
concepts in scientific inquiry. To promote deep le	arning, students taught	
an animated "other-agent" (a learner like the stude	ent) while the "guide-	Technology
agent" (the tutor) looked on and made suggestion	s, using the AutoTutor	Developed/Studied:
software, which mimics the dialog moves between	human tutors and	
students. To motivate students, the system incorp	orated game elements	
and granted points for correct answers. Later, stud	lents applied the learned	
concepts to problems that required the critical eva	luation of studies and	
causal claims.		

Higher Learning @ Higher Speeds in Biosciences Using Time Compressed Animated Delivery (TCAD)

Award # <u>ED008CO0050</u>	Phillip L Senger, Current	t Conceptions, Inc.
In this project, researchers iteratively developed a	and studied the Time	Grade Levels:
Compressed Animated Delivery (TCAD) system	consisting of short (10	РА
to 15 minutes) animated units to teach the repro-	ductive sciences. The	
content was designed to be delivered in approxim	nately half the time	Focal Populations:
required by traditional lecture methods. The TCA	AD was designed to	
educate college students about core biologic prin	ciples with a focus on	Technology
how these principles affect personal reproductive	e health.	Developed/Studied:

Math Education for Adult Learners and College Remediation Using Artificial Intelligence

Award #	EDIES11C0041

Benny Johnson, Quantum Simulations, Inc.

PA

Grade Levels:

Technology

Focal Populations:

Developed/Studied:

Ť 🗸

In this project, researchers iteratively developed and studied Quantum Tutors, a web-based artificial intelligence tutor. The prototype of this tutor was developed under a previous IES <u>award</u>. The project aimed to extend artificial intelligence methodologies to an on-demand tutor focused on developmental mathematics for adult learners and underprepared college students requiring remediation. The project team programmed the web-based artificial intelligence tutor with an automated assessment feature to check responses and offer immediate tutoring on any mistakes.

Using Computer-Assisted Instruction to Accelerate Students through Developmental Math: An Impact Study of Modularization and Compression

Award # <u>R305A130125</u> Max	ry Visher, MDRC
In this project, researchers evaluated the impact of a c	computer-assisted Grade Levels:
developmental math curriculum and placement policie	es for Texas PA
community college students in need of remediation. T	The developmental
math curriculum studied in this project divided the ma	ath content intoFocal Populations:
discrete modules that were presented on computers, a	llowing students to
learn at their own pace. The placement policy included	d using students' Technology
scores on placement exams to determine whether they	y could enter directly Developed/Studied :
into credit-bearing courses, be encouraged to take a de	evelopmental math
course or, if the student scored particularly low, take n	
courses.	

Khan Academy Resources for Maximizing Mathematics Achievement: A Postsecondary Mathematics Efficacy Study

Award # <u>R305A140340</u>	Steve Schneider, WestEI)
In this project, researchers evaluated the impact of	of an intervention for	Grade Levels:
college students designed to increase students' su	ccess in developmental	PA
math courses. Teachers in these courses used Kh	an Academy (an online	
environment that included instructional videos, a	daptive problem sets,	Focal Populations:
and tools) to individualize coaching and assignme	ents to students. Students	
used Khan Academy for computer-assisted instru	action and to access	Technology
resources at home to study new material.		Developed/Studied:

Bootstrapping Achievement and Motivation in STEM: An Integrated Cognitive-Motivational Intervention to Improve Biology Grades

Award # <u>R305A140602</u>Jennifer Cromley, Temple University

In this project, researchers iteratively developed and studied an online	Grade Levels:
curriculum delivered via Blackboard designed to aid the teaching of	РА
introductory biology at postsecondary institutions. The curriculum was	
designed to incorporate different approaches that addressed students'	Focal Populations:
motivational needs as well as their content-knowledge needs. Such	•
strategies included relevance writing tasks, in which students write a series	Technology
of letters to themselves regarding the relevance of the biology course for	Developed/Studied:
their learning, major, career, and life goals; brief weekly multimedia videos	
intended to prime prior knowledge; and videotaped worked examples of	
short, medium-difficulty problems.	
,	

3. Reading, Writing, and Language Development

This chapter includes Institute-funded research on technologies that support and improve reading, writing, and language development. A wide range of educational technologies have been developed and studied to promote reading and writing skills, such as game-based literacy programs for struggling readers and English learners, intelligent tutoring systems to promote writing skills, and mobile technologies for greater access to reading materials. For example, Institute-funded projects include an interactive singing software program for struggling readers (Biggs et al. 2008); "wiki writers," a program that connects students and teachers across communities (Andres and Claggett 2011); and a game-based mobile application to learn vocabulary (Sandberg, Maris, and Hoogendoorn 2014).

Table Ver			
Table Key			
Grade levels:			
EC	Early Childhood	HS	High School
ES	Elementary School	PA	Postsecondary and Adult Education
MS	Middle School		
Focal populat	ions:		
EL	English Learners		
SWD	Students With Disabilitie	es	
Products deve	eloped or studied:		
	The spider web icon den	otes w e	eb-based technology developed or studied.
	The sphere web foot den		o one contrology developed of stational
Θ	The viewer icon denotes	virtual	environment / interactive simulation developed or
•	studied.	viitua	environment y interactive simulation developed of
	studicu.		
	The tutor icon denotes i	ntellige	ent tutor / artificial intelligence technology
	developed or studied.	U	6
	developed of studied.		
2	The chess piece icon der	notes g a	ame-based technology developed or studied.
	L	0	
	The checkmark icon den	otes an	assessment developed, validated, or studied.
			1 , , ,

For more information about these projects and publications stemming from them, please follow the hyperlinked award number to the online abstract on the Institute's website.

70

A Longitudinal Study of the Effectiveness of a Pre-K Multisensory Literacy Curriculum

Award # <u>R305[030037</u> Anne Cunningham, Univ		versity of California,
	Berkeley	
In this project, researchers evaluated the impact	ct of the Ready, Set, Leap!	Grade Levels:
(RSL) literacy curriculum for at-risk prekinders	garten children. The RSL	EC
intervention aimed to develop children's literacy skills by combining		
research-based instructional approaches with multisensory technology		Focal Populations:
using LeapFrog products. The technology was	designed to provide center-	
based activities that integrated the senses of to	uch, sight, and sound to	Technology
encourage student engagement and that provid	led individualized student	Developed/Studied:
feedback and support throughout the learning	process.	

Project PREPARE: Teaching Service Words to Deaf Children

Award # <u>R305S050034</u>	Susan Watkins, Hope, In	С.
In this project, researchers iteratively developed a	nd studied an	Grade Levels:
intervention for prekindergarten- through first-gra	ade deaf students that	EC, ES
aimed to improve students' knowledge of service	words through a CD-	
ROM-based series of animations, games, and eval	uations. Students	Focal Populations:
participated in 13 units organized around a theme	and word category,	SWD
including prepositions, conjunctions, articles, adv	erbs, adjectives, and	
pronouns. The series was provided in American S	Sign Language, Spoken	Technology
English, and Manually Coded English (English th	at is signed).	Developed/Studied:
		2

Early Childhood Assessment and Intervention to Improve Grade School Students' Math and Reading

Award #	ED07CO0039
---------	------------

Christopher Camacho, Children's Progress, Inc.

In this project, researchers iteratively developed and studied a dynamic, web-delivered assessment tool to help teachers and parents identify deficits in prekindergarten through third-grade students' early literacy and math skills. The assessment was designed so that children could independently complete assessments and instruction on their classroom or home computer. The tool then provided teacher and parent reports and web-report videos that gave information on students' learning.

Grade Levels: EC, ES

Focal Populations:

Technology Developed/Studied:

Parent-implemented Language Intervention for Young Children with Developmental Disabilities

Award # <u>R324A070122</u>	MaryAnn Romski, Georg	gia State University
In this project, researchers iteratively developed a	ind studied an	Grade Levels:
intervention for children with developmental disa	bilities designed to	EC, ES
increase their language proficiency through a pare	ent-implemented	
language intervention. As part of the project, pare	ents used a speech-	Focal Populations:
generating device to provide communication input	it to the child, and the	SWD
child used the device to produce communication.	As part of the project,	
the researchers compared the effects of two inter	ventions: one with	Technology
language production only and one with both lang	uage comprehension and	Developed/Studied:
production.		

Using Educational Television to Enhance Young Children's Language and Vocabulary Skills

Award # <u>R305A080476</u>	Beth Phillips, Florida State University	
In this project, researchers iteratively developed and studied an		Grade Levels:
intervention for lowincome, at-risk prekindergarten children. It aimed to		EC
enhance and accelerate their vocabulary and language acquisition through		
vocabulary instruction, videos, vocabulary activitie	es, and shared story	Focal Populations:
time. As part of the project, children viewed video segments from		
television programs including Sesame Street, Martha Speaks, and Between		Technology
the Lions.		Developed/Studied:

The World of Words: An Embedded Multimedia Vocabulary Intervention for Economically Disadvantaged Pre-K Children

Award # <u>R305A090013</u> Susan Neuman, Unit	Susan Neuman, University of Michigan	
In this project, researchers iteratively designed and tested World of	Grade Levels:	
Words, a supplementary vocabulary curriculum for prekindergarten	EC	
children from low-income families to address the gap in vocabulary		
knowledge between children from economically disadvantaged	Focal Populations:	
backgrounds and their middle-class peers. The curriculum taught word		
meanings through an embedded multimedia framework. As part of the	Technology	
intervention, students engaged with video, information books, picture	Developed/Studied:	
cards, and take-home books.		

Assessing Reading for Understanding: A Theory-based, Developmental Approach

Award # <u>R305F100005</u>

John Sabatini, Educational Testing Service

In this project, a part of the Reading for Understanding Research Gra	rade Levels:
Initiative, researchers developled and validated two computer-based EC	C, ES, MS, HS
reading assessments for use with students in prekindergarten through high	
school. One assessment, the Florida Reading Assessment (FRA), was Fo	ocal Populations:
designed to be a computer-adaptive assessment to provide diagnostic	
information on skills that support reading comprehension. The second Te	echnology
assessment, the Global, Integrated, Sceniaro-Based Assessments (GISA), De	eveloped/Studied:
was designed to be a scenario-based assessment to provide information	
about reading comprehension and performance moderators (e.g.,	
students' background knowledge and motivation). The GISA scenarios	
included authentic tasks (such as reviewing websites) and having students	
work with computer-generated avatars to simulate peer activities.	

Examining Effective Intervention Targets, Longitudinal Intensity, and Scaling Factors for Pre-K to 5th Grade Student Comprehension

Award # <u>R305F100027</u> Christopher Lonigan, Fl	orida State University
In this project, a part of the Reading for Understanding Research	Grade Levels:
Initiative, researchers iteratively developed and studied reading	EC, ES
interventions for students and instructional intervention for teachers. The	
reading interventions included various materials aimed to improve	Focal Populations:
students' word knowledge, comprehension, and persistence. One	
intervention, WKe-Book, leveraged an electronic book with a choose-	Technology
your-own-adverture format to engage students while collecting	Developed/Studied:
information about student interaction with the material (e.g., how quickly	
they read, whether they answered questions correctly). The intervention	
for teachers included CTT (Comprehension Tools for Teachers), a web-	
based instructional support suite of tools and professional development	
materials to help them identify children with or at risk for developing	
reading difficulties. CTT focused on helping teachers assist students	
improve their reading comprehension skills and was developed to be a	
multi-component instructional strategy that identified the causes of	
students' problems and helped teachers deploy, monitor, and adapt	
instructional strategies for identified students.	

SmartSign: Learning Sign Language via Mobile Phone		
Award # <u>R324A100080</u> That	l Starner, Georgia Ir	stitute of Technology
In this project, researchers iteratively developed and stu	idied an	Grade Levels:
intervention for hearing parents of deaf children called	SmartSign that	EC, ES
aimed to improve deaf children's language developmen	t and educational	
outcomes by helping parents learn sign language. As pa	rt of the project,	Focal Populations:
parents viewed video on mobile phones to learn sign la	nguage. The	SWD
mobile phone program also delivered tips on grammar	and culture,	
parent-deaf child interaction, and included local deaf ex	rents to introduce	Technology
parents to deaf adults and other parents of deaf childre	n.	Developed/Studied:

Assessing ASL Knowledge and its Relationship to Reading English in Deaf Children

Award # <u>R324A100176</u>	Robert Hoffmeister, Boston University	
In this project, researchers designed and validated	a video-based	Grade Levels:
assessment to be used by educators of deaf studen	ts (from	EC, ES, MS, HS
prekindergarten to high school) to determine which	h students were on a	
normal language development path and which wer	e above or below the	Focal Populations:
expected ability level. The instrument, called the American Sign Language		SWD
Assessment Instrument (ASLAI), consisted of a battery of computer-		
based assessments that measured students' knowledge of synonyms,		Technology
antonyms, plurals, complex sentences, rare vocabulary, and narrative		Developed/Studied:
comprehension in sign language. The instrument was also developed to		
help educators identify deaf students who may have a language problem		
affecting their ability to learn to read.		

Using Developmental Science to Create a Computerized Preschool Language AssessmentAward # R305A110284Roberta Golinkoff, University of Delaware

	•
In this project, researchers designed and validated a computer-based	Grade Levels:
language assessment for prekindergarten children intended to help	EC
teachers and providers become sensitized to children's language	
knowledge and to understand the importance of language growth. The	Focal Populations:
computer-based language assessment automatically derived individual and	EL
group language profiles in vocabulary and word learning strategies,	
grammar, and the use of syntax in comprehension.	Technology
	Developed/Studied:

Development of the School Readiness Curriculum Based Measurement System

Award # <u>R305A110549</u>	Jason Anthony, Universit Health Science Center	ty of Texas, Houston,
In this project, researchers designed and validated	the	Grade Levels:
School Readiness Curriculum Based Measuremen	t System (SR-CBMS),	EC
an assessment for prekindergarten children who were dual language		
learners. It was designed to identify children's strengths and weaknesses in		Focal Populations:
English and Spanish, monitor students' learning, and inform instruction		EL
through a curriculum-based school readiness measure addressing language		
and literacy skills. Researchers used a software program to administer the		Technology
test items to students.		Developed/Studied:

A Parent-Directed Multimedia Early Intervention Tool to Improve Outcomes in Underserved Children who are Deaf or Hard of Hearing

Award # <u>R324A110122</u> Dana Suskind, University of Chicage		of Chicago
In this project, researchers iteratively developed and	studied Project	Grade Levels:
ASPIRE (Achieving Superior Parental Involvement f	for Rehabilitative	EC
Excellence), a provider-guided, multimedia interventi	ion directed at	
parents of 12- to 36-month-old children who were de	eaf or hard of hearing	Focal Populations:
and of low socio-economic status. It aimed to impro-	ve the children's	SWD
educational success by enhancing parents' ability to support their		
children's listening and language development. Project ASPIRE was		Technology
designed for early interventionists to use with parents. Parents would		Developed/Studied:
work through multimedia modules that incorporated animation and		
videos, learn how to transmit language and literacy knowledge and skills,		
and receive feedback about the child's language environment and		
development via a language processor worn by the cl	hild.	

The Effects of Online Decision Making Support for Home Visitors Using an RTI Approach to Promote the Language Development of At-risk Infants and Toddlers

Award # R324A120365Jay Buzhardt, University	of Kansas
In this project, researchers evaluated the impact of MOD: Making Online	Grade Levels:
Decisions, a web-based system to support people who make home visits	EC
to families with children who may have disabilities related to language and	
early communication skills. The system helped home visitors identify	Focal Populations:
children at risk for early language delay and to design, deliver, and	SWD
maintain a parent-implemented intervention for promoting their child's	
early language development, using a response to intervention (RTI)	Technology
approach.	Developed/Studied:

Enhancing Augmentative and Alternative Communication Rates in pre-K Through 6 Award # EDIES14C0043 Benjamin Grimley, Speak Agent

Awaru # $\underline{\text{EDIES14C0045}}$	Denjanni Ginney, spear	Agent
In this project, researchers iteratively developed	and studied an	Grade Levels:
intervention for prekindergarten- through sixth	-grade students with	EC, ES, MS
special communication needs. The intervention	aimed to improve student	
outcomes by using artificial intelligence software	on touch-screen mobile	Focal Populations:
devices. The product adapted prompts and cues	to the needs of individual	SWD
students.		
		Technology
		Developed/Studied:

Individual Growth and Development Indicators: Automated Applications for Performance Evaluation of Early Literacy (IGDI-APEL)

Award # <u>R305A140065</u> Alisha Wackerle-Holle		n, University of
Awalu $\pi \underline{K505A140005}$	Minnesota	
In this project, researchers iteratively developed a	and studied a tablet-based	Grade Levels:
application (app) for prekindergarten children called the Individual		EC
Growth and Development Indicators: Automated Applications for		
Performance Evaluation of Early Literacy (IGDI-APEL) that aimed to		Focal Populations:
improve children's literacy outcomes. The app w	as based on existing	SWD

paper-and-pencil materials that included assessments for screening and identification of student needs. The final product was to include digital assessments as well as instructional components that, combined, could monitor students' progress in mastering components of early literacy and provide instructional suggestions to teachers.

Coh-Metrix: Automated Cohesion and Coherence Scores to Predict Text Readability and Facilitate Comprehension

	, 1
In this project, researchers iteratively developed and studied Coh-Metrix	Grade Levels:
and Coh-GIT, tools for writers, editors, and educators to help them	ES, PA
estimate the appropriateness of a text for their audience and to pinpoint	
specific problems with the text (e.g., constructions that might be difficult	Focal Populations:
for readers). Writers could also use the tools to help them write more	
readable texts that both supported and challenged readers. The tools were	Technology
developed for use by grade school and postsecondary students.	Developed/Studied:

Reading to Learn: Investigating General and Domain Specific Supports in a Technology-Rich Environment with Diverse Readers Learning from Informational Text

Award # <u>R305G020041</u>	Bridget Dalton, CAST, Is	nc.
In this project, researchers iteratively developed a	nd studied an	Grade Levels:
intervention for fourth-grade students that aimed	to accelerate struggling	ES
readers' reading comprehension through a comp	iter-based instructional	
learning environment. The learning environment	included features such as	Focal Populations:
text-to-speech decoding with synchronized highly	ghting of text and an	
embedded system of prompts, hints, and modelin	ng.	Technology
		Developed/Studied:

Reader-Specific Lexical Practice for Improved Reading Comprehension

Award # <u>R305G030123</u>

James Callan, Carnegie Mellon University

	J	
In this project, researchers iteratively developed	and tested a web-based	Grade Levels:
search engine and intelligent tutoring system for university students and		ES, MS, PA
students in third- through sixth-grade that aimed	to improve their reading	
comprehension and vocabulary growth. The stud	lents were to use the	Focal Populations:
search engine to select passages on the Internet of	on topics of interest that	
also met specific standards of reading difficulty.	As students used the	Technology
search engine, it analyzed their behavior and dev		Developed/Studied:
individual student's level of acquisition and fluer	cy for each word,	
producing an individualized framework for selec	ting reading materials that	
strengthened that student's reading comprehensi	on. The intelligent	
tutoring system, called REAP, provided reader-s	pecific lexical practice for	
improved reading comphrension by selecting au	hentic reading materials	
from the Internet that were matched to students	'needs.	
National Research Center on Rural Education	on Support	
	Thomas W. Farmer, Uni	versity of North
Award # <u>R305A040056</u>	Carolina, Chapel Hill	
In this project, researchers evaluated the impact	of multiple interventions	Grade Levels:
across multiple grades (kindergarten through hig	h school) to determine	ES, MS, HS
their effects on improving education in rural sett	ings. One of the projects	
led by the National Research Center on Rural Ed		Focal Populations:
developed a video distance professional develop		
for K-1 teachers and another studied the impact		Technology
for online advanced placement (AP) courses on		Developed/Studied:

Improving Reading Comprehension for Struggling Readers: Understanding the Roles of Vocabulary Development, Guided Strategy Use, and Spanish Language Supports in a **Digital Reading Environment**

Award # <u>R305G050029</u>	Bridget Dalton, CAST, In	nc.
In this project, researchers iteratively developed an	nd studied an	Grade Levels:
intervention for fifth-grade students who were stru	uggling readers,	ES
including English learners. It aimed to improve stu	idents' reading	
comprehension through a digital reading environn	nent called Universal	Focal Populations:
Learning Edition (ULE). ULE embedded vocabul	ary and reading strategy	EL
instruction in interactive, scaffolded, digital version	ns of narrative and	
informational texts.		Technology
		Developed/Studied:

Assessing Readers Struggling to Comprehend Multiple Sources of Information Award # <u>R305G050091</u>

Kimberly Lawless, University of Illinois, Chicago

	, , , ,
In this project, researchers designed and validated a taxonomy of third-	Grade Levels:
through fifth-grade elementary school science and social studies reading	ES
comprehension strategies and skills central to multiple text	
comprehension. They used the taxonmy to develop a set of computer-	Focal Populations:
based assessments and indicators that differentiate among levels of	
proficiency and that would provide information for instructional	Technology
decisionmaking.	Developed/Studied:

An Independently Usable Multimedia Software System in Listening Comprehension and Auditory Repetition Priming for Intellectually Disabled Non-Readers

Award # <u>R305S050010</u>	Steven Stock, AbleLink	Technologies
In this project, researchers iteratively developed	and studied an intelligent	Grade Levels:
tutor software for K-12 students with intellectu	al disabilities that aimed to	ES, MS, HS
improve their independent functioning by impr	oving their auditory recall	
skills. The software used a computer-generated	avatar to deliver	Focal Populations:
personalized tutorials with auditory repetition p	riming and assessments.	SWD
Students learned on their own and at their own	pace, thus enabling more	
efficient use of teacher time for overall class ins	truction. The intervention	Technology
was also to include a web-based infrastructure f	or teachers to track	Developed/Studied:
progress.		

Using Television to Expand the Vocabulary of Beginning Readers		
Award # <u>R3058050042</u>	Daniel Shanahan, Sirius '	Thinking, Ltd.
In this project, researchers iteratively developed	and studied an	Grade Levels:
intervention for kindergarten and first-grade chi	ldren aimed to promote	ES
children's vocabulary development and later rea	ding ability through	
educational television. As part of the project, res	searchers embedded	Focal Populations:
vocabulary-building video segments in a popula	children's educational	
television series called Between the Lions. Resea	rchers also developed a	Technology
computer-based version of the videos accompan	nied by interactive	Developed/Studied:
electronic storybooks and a linked animated dic	tionary.	

Dynamic Offset of Text Highlighting to Build Reading Fluency

Award # ED06PO0904 Robe	ert Berdan, Readingv	vare
In this project, researchers iteratively adapted and tested		Grade Levels:
that provided audio-voiceovers for highlighted text in c	rder to improve	ES
students' oral reading fluency.		Equal Dopulational
		Focal Populations:
		Technology
		Developed/Studied:

The Between the Lions Digital Den		
Award # <u>ED06PO0911</u>	Daniel Shanahan, Sirius	Thinking, Ltd.
In this project, researchers iteratively develope	ed and studied the Between	Grade Levels:
the Lions Digital Den, an intervention for kine	dergarten and first-grade	ES
English- and Spanish-speaking students aimed	to improve students'	
literacy through computer-based software that	had word games, songs,	Focal Populations:
music videos, interactive stories, and an audio	/visual dictionary.	EL
		Technology
		Developed/Studied:

National Accessible Reading Assessment Projects: Research and Development for Students with Visual Impairments

Award # <u>R324A060034</u>	Cara Cahal an Laitusis, Educational '	Testing Service
In this project, researchers designed and validated computer-based assessments of reading proficiency. The goals of the project were two- fold. First, the researchers examined the psychometric properties of state tests administered to students with visual impairments. Second, they tested an accessible assessment of reading and an assessment of technology-assisted reading.		Grade Levels: ES, MS, HS Focal Populations: SWD
		Technology Developed/Studied:

Project ILIAD: Independent Lexical Instruction and Development

Award # <u>R324L060023</u>	Howard Goldstein, Florida State University	
In this project, researchers iteratively developed a	nd studied Project	Grade Levels:
ILIAD, an intervention for kindergarten through	third-grade students	ES
designed to prevent delays in reading, language, as	nd academic	
development through automated supplemental vo	ocabulary instruction.	Focal Populations:
Children listened to stories and engaged in choral	reading at "listening	SWD
centers," which were equipped with a CD player a	and headphones. They	
also independently completed vocabulary or phor	nics worksheets and	Technology
participated in teacher-led question-and-answer re-	eview sessions.	Developed/Studied:

4KW: A Multimedia System for Ensuring that Grade School Students Know the Meaning of the 4,000 Most Frequently Used English Words

Award # ED07CO0043 Gregory Sales, Seward In	Gregory Sales, Seward Incorporated	
In this project, researchers iteratively developed and studied 4KW, an	Grade Levels:	
intervention for first- through fourth-grade students with small	ES	
vocabularies relative to their peers. It aimed to teach the meanings of the		
4,000 most frequently used English words. As part of the project, an	Focal Populations:	
individualized web-based system assessed students and placed them in		
one of 10 steps (simpler to more complex words) based on their assessed	Technology	
vocabulary knowledge and provided instruction with the goal of mastering	Developed/Studied:	
all 10 steps. An automated speech component recorded students'		
pronunciations, judged the accuracy of each student's pronunciation, and		
provided students with feedback.		

Early ICARE: Early Independent Comprehensive Adaptive Reading Evaluation Award # <u>R305A070231</u>

Barbara Wise, University of Colorado, Boulder

In this project, researchers designed and validated Early ICARE: Early	Grade Levels:
Independent Comprehensive Adaptive Reading Evaluation, a computer-	ES
delivered reading assessment for native English speakers and English	
learners in grades K to 2 to identify their reading weakness. The	Focal Populations:
assessment provided early screening, profiling, and dynamic periodic	
assessment of problems underlying poor reading comprehension in young	Technology
children.	Developed/Studied:

Explicit Comprehension Instruction in an Automated Reading Tutor that ListensAward # R305B070458Jack Mostow, Carnegie Mellon University

In this project, researchers iteratively developed and studied an automated	Grade Levels:
reading tutor that taught reading comprehension strategies to students in	ES
grades 1 through 3 to improve their comprehension of narrative and	
informational text. The reading tutor provided students with an explicit	Focal Populations:
description of a reading strategy, modeled how to use the strategy by	
displaying a written text and giving auditory instructions, provided	Technology
practice opportunities, and monitored students' verbal responses.	Developed/Studied:
	A

CopyCat: Learning through Signing

Thad Starner, Georgia Institute of Technology

In this project, researchers iteratively developed and studied CopyCat, an	Grade Levels:
interactive educational game to enhance the expressive language, receptive	ES, MS
language, working memory, and language processing skills of deaf and	
signing children of hearing parents. CopyCat was designed as a computer	Focal Populations:
game for children to provide language models using gesture recognition	SWD
technology to respond to children's signing. It progressively increased the	
difficulty of the signing tasks and provided corrective feedback.	Technology
	Developed/Studied:
	60

Efficacy and Replication Research on the Intelligent Tutoring System for the Structure Strategy--Rural and Suburban Schools Grades 4, 5, 7, and 8

Award # <u>R305A080133</u> Kay Wijekumar, Pennsylvania State University

Grade Levels:

Technology

Ť

Focal Populations:

Developed/Studied:

ES, MS

In this project, researchers evaluated the impact of a web-based, intelligent tutoring system for elementary and middle school students designed to improve their reading comprehension of informational texts. The web-based intelligent tutor, the Intelligent Tutoring System for the Structure Strategy (ITSS), taught students how to use the structure strategy, (a method that helps readers to focus on the text organization and to organize their reading accordingly) and provided them with feedback as they used the strategy.

Developing Vocabulary in an Automated Reading Tutor

	0	
Award # <u>R305A080157</u>	Jack Mostow, Carnegie N	Mellon University
In this project, researchers iteratively developed	and studied an	Grade Levels:
intervention for children in grades 2 and 3 that	aimed to improve their	ES
vocabularies through individual, automated tuto	oring. Children engaged	
with a computerized reading tutor that provided	l vocabulary instruction,	Focal Populations:
used speech recognition to listen to children rea	d aloud, and responded	
with spoken and graphical assistance.		Technology
		Developed/Studied:
		(f)

Efficacy of Earobics Step I in English Language Learners and Low SES Minority Children

Award # <u>R305A080196</u>	196Jason Anthony, University ofHealth Science Center	
In this project, researchers evaluated the impact of	of Earobics Step I, a	Grade Levels:
computer-based literacy tutoring program to improve the literacy skills of		ES
low-income minority children and low-income English learners ages 4 to		
7. The program delivered colorful, interactive games with instructional		Focal Populations:
feedback to teach phonological awareness, phonological short-term		EL
memory, sound discrimination, and letter-sound correspondence.		
		Technology
		Developed/Studied:
		2

Accelerating Fluency Development in an Automated Reading Tutor		
Award # <u>R305A080628</u> Jack Mostow, Ca	rnegie Mellon University	
In this project, researchers iteratively designed and tested an interve	ntion Grade Levels:	
for second- and third-grade students aimed to improve students' rea	iding ES	
fluency through assessing their progress, adjusting the difficulty of t	he	
content according to their ability, and providing practice at intervals	. As Focal Populations:	
part of the project, students engaged with a computerized reading to	itor	
that "listened" to them read aloud and provided auditory and graph	ical Technology	
feedback based on effective human interventions.	Developed/Studied:	
	Ť	

Word-Learning Strategies: A Program for Upper Elementary Readers		
Award # EDIES09C0013Gregory Sales, Seward I	ncorporated	
In this project, researchers iteratively developed and studied Word-	Grade Levels:	
Learning Strategies, an intervention for fourth- and fifth-grade students	ES	
designed to increase their vocabulary knowledge through online tutorials,		
student activity books, and evaluations. The online tutorials focused on	Focal Populations:	
context, word parts, glossaries, and dictionary use.	EL	
	Technology	
	Developed/Studied:	

Formative Assessment and Instrumentation Procedures for Reading		
Award # <u>R324A090038</u>	Theodore Christ, University of Minnesota	
In this project, researchers designed and validated	l the Formative	Grade Levels:
Assessment and Instrumentation Procedures for Reading, a progress		ES
monitoring measure for first- through fifth-grade students. The		
assessment was designed to help teachers identify students at risk for		Focal Populations:
reading difficulty by determining students' growth in rate of reading and		SWD
comprehension skills. The Formative Assessmen	t and Instrumentation	

Procedures for Reading also included online materials to help teachers

interpret and use student data resulting from the assessments.

Technology
Developed/Studied:

Developing a More Effective Speech Therapy Distance Learning Web-Based Product and Service

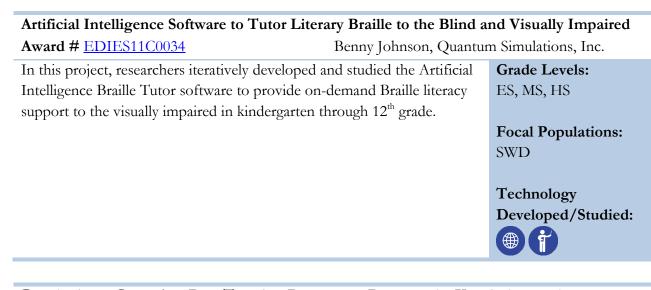
Award # EDIES10P0011

84

Jack Lynch, Presence Telecare, LLC

In this project, researchers iteratively developed and studied Presence Telecare, an intervention for students with speech or language delays and disorders. It aimed to improve accessibility to speech language support services through web-based video conferencing integrated with therapy and management tools that allowed remote data collection and communication with the student and their family.

Go Talk Phonics: Phonics for Individuals with Disabilities


Award # EDIES11C0027 Carol Stanger, The Attainment Company, Inc. In this project, researchers iteratively developed and studied Go Talk Grade Levels: Phonics, a web-based phonics curriculum for low- and non-verbal ES, MS, HS students to help them communicate in academic and non-academic settings more fluidly. Go Talk Phonics aimed to improve their word **Focal Populations:** SWD learning, comprehension, and overall literacy. Animated voices modeled explicit phonics instruction for commonly used letter sounds and words. Pre-programmed modules supported students in manipulating phonemic Technology elements. Go Talk Phonics also included a phonics curriculum and a **Developed/Studied:** professional development guide with an assessment rubric to facilitate teacher usage.

MyASL Quizmaker

Award # <u>EDIES11C0032</u>	Corrine Vinopol, Institut Research and Training, In	
In this project, researchers iteratively developed	and studied an	Grade Levels:
intervention for students with hearing impairments called My ASL		ES, HS
Quizmaker. It aimed to improve measures of students' vocabulary		
knowledge and reading comprehension through web-based assessments		Focal Populations:
that provided automatic American Sign Language graphic and video		SWD
translations for students; enabled teachers to create customized tests,		
exams, and quizzes that were automatically scored; and provided teacher		Technology
reports with grades and corrected quizzes.		Developed/Studied:

Grade Levels: ES, MS Focal Populations: SWD

Technology Developed/Studied:

Developing a Cross-Age Peer Tutoring Program to Promote the Vocabulary and Comprehension of English Learners Award # <u>R305A110142</u> Rebecca Silverman, University of Maryland,

College Park

In this project, researchers iteratively developed and studied an	Grade Levels:
intervention for English learners (ELs) in kindergarten and fourth grade	ES
to support their vocabulary and comprehension development. The	
intervention used cross-age peer tutoring, in which older and younger	Focal Populations:
children worked together. Teachers received a study group guide with	EL
information on vocabulary, comprehension, accommodations for ELs	
and engaged in cooperative learning that included a DVD with examples	Technology
and tips for program implementation.	Developed/Studied:

Burst: Reading Efficacy Study		
Award # <u>R305A120811</u> Brian	n Rowan, University	of Michigan
In this project, researchers evaluated the impact of Bur	st Reading, a	Grade Levels:
software-based intervention for kindergarten through the	hird-grade teachers	ES
to improve students' literacy skills by repeatedly assessing	ng and scoring	
students' reading ability and providing teachers with alig	gned instructional	Focal Populations:
content. Teachers used handheld devices to administer	reading	
assessments individually to students. The resulting form	native assessment	Technology
data allowed teachers to make data-driven, in-the-mom	ent instructional	Developed/Studied:
decisions at both the individual and classroom levels.		

Research on and with Novel Educational Technologies for Comprehension		
Award # <u>R305G020027</u>	Thomas Landauer, University of Colorado, Boulder	
In this project, researchers developed and stud	died computer-based	Grade Levels:
instructional activities for middle school, high school, and college students to help them acquire larger vocabularies to support high-level		MS, HS, PA
comprehension.		Focal Populations:
		Technology
		Developed/Studied:

P NI C 1 **T**

Computer Based Assessment System for Reading (CBAS-R): Skills Analysis and Progress Monitoring

Award # <u>R305A120086</u> Theodore Christ, U	Theodore Christ, University of Minnesota	
In this project, researchers further designed and validated an existing	Grade Levels:	
computer-based reading assessment for kindergarten through fifth-gra	de ES	
students. The existing assessment, the Computer-Based Assessment		
System for Reading (CBAS-R), was designed to monitor student progr	ess, Focal Populations:	
evaluate their strengths and weaknesses in reading, and gauge the effect	cts	
of instruction. The revisions to CBAS-R focused on assessing both bro	oad Technology	
and component reading skills such as concepts of print, phonological	Developed/Studied:	
skills, fluency, phonics, vocabulary, and comprehension and generated		
assessment score reports for teachers.		

Improving Reading Comprehension of Middle Grades English Language Learners by Combining Structure Strategy with Web-Based Adaptive Tutoring for EL Learners (SWELL)

Award # R305A120593Kausalai Wijekumar, F University	ennsylvania State
In this project, researchers iteratively adapted and tested an existing web-	Grade Levels:
based intelligent tutoring system for fourth- through sixth-grade Spanish-	ES, MS
speaking English learners. The existing system, the Intelligent Tutoring	
using Structure Strategy (ITSS), was designed to teach students explicit	Focal Populations:
strategies for using knowledge of the structure of informational text to	EL
improve understanding. The revised system aimed to support Spanish-	
speaking English learners by providing additional materials in Spanish or	Technology
in simplified versions of the English materials depending on students'	Developed/Studied:
English proficiency; as students' English proficiency improved, it	
removed these supports.	

Grade Levels:

Technology

Focal Populations:

Developed/Studied:

Reducing Special Education/Reading Risk for Urban Learners through an Oral Reading Fluency Intervention

Award # <u>R324A120103</u>

Gwendolyn Cartledge, Ohio State University

ES

SWD

In this project, researchers iteratively developed and studied an intervention for urban first- and second-grade students with disabilities that aimed to increase their oral reading fluency through a computerbased program. The program was to deliver individualized instruction through voice-activated software and guided students through reading passages by modeling and correcting oral reading and by administering pre- and post-lesson assessments. The program included culturally relevant passages that reflected the interests and backgrounds of students from urban settings.

Readorium Rising Reader: Smart Nonfiction Comprehension Software for Students in Grades 3-5

Award # <u>EDIES13C0030</u>	Harriet Isecke, Mtelegen	ce Corporation
In this project, researchers iteratively developed an	d studied a prototype	Grade Levels:
of Readorium Rising Reader, a web-based game fo	r third- through fifth-	ES
grade students to strengthen their reading compreh	nension of non-fiction	
science text by teaching strategies to construct mea	ning and decipher new	Focal Populations:
content vocabulary.		
		Technology
		Developed/Studied:

World Explorador	
Award # EDIES13C0040Lynn Krause, CurriculaW	Vorks
In this project, researchers iteratively developed and studied a prototype	Grade Levels:
of World Explorador, an intervention for English learners to promote	ES
their basic English language and literacy skills through a game-based,	
mobile application with interactive activities that students used to practice	Focal Populations:
specific skills.	EL
	Technology
	Developed/Studied:

Development of a Web-Based Writing Partner (Strategic Writing Assisted by Intelligent Tutoring for Fifth-Grade Youth (SWAY)) to Improve Writing Persuasive Essays for 5th Grade Students

Award # <u>R305A130705</u> Kausalai Wijekumar, Texas A & M University In this project, researchers iteratively developed and studied Strategic Grade Levels: Writing Assisted by intelligent tutoring for fifth-grade Youth (SWAY), an ES intervention for fifth-grade students to help them write logical, compelling, and coherent persuasive essays. SWAY was designed to be an **Focal Populations:** intelligent web-based tutor and writing tool for learning content material. The web-based tutor provided students with modeling, practice, Technology assessment, and feedback in the content areas of science and social **Developed/Studied:** studies. The intervention included a teacher implementation package with instructions, lesson plans, suggestions for coordinating peer feedback, and suggestions for integrating lessons into the curriculum.

BLOOM: Facilitating Language and Literacy Outcomes of English Language Learners

Award # R305A130460Carla Jackson, Florida St	ate University
In this project, researchers iteratively developed and studied an	Grade Levels:
intervention for English learners in kindergarten and first grade. The	ES
intervention, Bridging for Language Outcomes in the Classroom	
(BLOOM), was designed to enhance students' reading comprehension	Focal Populations:
and academic achievement by linking their knowledge of Spanish to new	EL
words in English. As part of the project, students read e-books that	
provided vocabulary instruction including preview and review, repeated	Technology
Spanish expansions, and leveraged students' knowledge of phonemics in	Developed/Studied:
both languages.	

Commercializing the Effective K-3 Assessment to Instruction (A2i) Intervention to Reduce Cost and to Scale Access to the Benefit of More Students

Award # EDIES14C0026Jay Connor, Learning Or	vations
In this project, researchers iteratively adapted and tested an intervention	Grade Levels:
for kindergarten- through third-grade students. The existing intervention,	ES
Assessment-to-instruction (A2i) was a tool to support individualized	
literacy instruction across school districts. During this project, the	Focal Populations:
researchers created a more cost-efficient, scalable version of the tool that	
reduced researcher support and local district adaptation costs.	Technology
	Developed/Studied:

Technology-Enhanced Tutoring: Linking School and Home to Help Struggling ReadersAward # EDIES14C0046Christopher Cerf, Sirius Thinking, Ltd.

	0,
In this project, researchers iteratively developed and studied a prototype	Grade Levels:
of Lightning Squad: Powered-Up Reading with Teams, an intervention for	ES
first- to third-grade students that provided additional reading support	
through a web-based tutoring tool used by paraprofessionals. The tutoring	Focal Populations:
tool supplemented the Success for All whole-school reading program with	
video segments and gaming content. The product included teacher	Technology
resources and curriculum suggestions to facilitate classroom integration.	Developed/Studied:
	()

Teaching the Vocabulary of Comprehension: A Technology-Enhanced System to Enhance At-Risk Third Graders' Acquisition and Application of Essential Vocabulary

Award # <u>R305A140090</u> Deborah C. Simme	ons, Texas A&M University
In this project, researchers iteratively developed and studied a comput	cer- Grade Levels:
based learning system for at-risk third-grade students to build their	ES
knowledge and application of vocabulary associated with narrative and	1
informational text, text structure, and text processing. The software, c	alled Focal Populations:
the Integrated Vocabulary of Comprehension System, was to provide	
students with individual instruction and practice along with immediate	Technology
feedback to support students as they applied reading comprehension	Developed/Studied:
strategies.	

Multiple-choice Online Cloze Comprehension Assessment (MOCCA): Refining and Validating a Measure of Individual Differences in Reading Comprehension Processes During Reading

Award # <u>R305A140185</u>	Gina Biancarosa, Univer	sity of Oregon
In this project, researchers further designed and	validated an existing	Grade Levels:
assessment, the Multiple-choice Online Cloze C	omprehension	ES
Assessment (MOCCA). MOOCA was a paper-a	ind-pencil assessment to	
diagnose specific types of poor comprehension	with third- through fifth-	Focal Populations:
grade students. Researchers increased the numb	er of test items, validated	
them, and designed a computer-based version o	f the assessment.	Technology
		Developed/Studied:

Measuring Oral Reading Fluency: Computerized Oral Reading Evaluation (CORE) Award # <u>R305A140203</u>

Joseph Nese, University of Oregon

In this project, researchers designed and validated Computerized Oral	Grade Levels:
Reading Evaluation (CORE), an assessment for second- through fourth-	ES
grade students. CORE was designed to assess students' oral reading	
fluency through a computerized assessment that used speech recognition	Focal Populations:
technology. Students logged into the assessment system and read passages	
aloud using headphones with a noise-cancelling microphone attached.	Technology
The assessment system scored each word for response accuracy and	Developed/Studied:
response time.	

English Learner Vocabulary Acquisition (ELVA): Promoting the Vocabulary and Language Proficiency of Spanish Speaking English Learners in Second Grade

Award # <u>R305A140471</u> Doris Luft de Baker, Sou University		thern Methodist
In this project, researchers iteratively developed	and studied English	Grade Levels:
Learner Vocabulary Acquisition (ELVA), an inte	elligent tutoring system	ES
for Spanish-speaking English learners (ELs) to in	mprove their vocabulary	
knowledge, text comprehension, and English lar	nguage proficiency. The	Focal Populations:
tutor read books aloud that contained target voc	abulary words and then	EL
engaged EL students in a dialogue around the co	ontent of the book.	
Students worked through activities designed to f	acilitate deep learning of	Technology
the target words, their associated concepts, and	linguistic meaning with	Developed/Studied:
the tutor's guidance.	- 0	

Intelligent Tutoring Using the Structure Strategy to Improve Reading Comprehension of Middle School Students

Award # <u>R305G030072</u>	Bonnie Meyer, Pennsylva	ania State University
In this project, researchers iteratively developed	and studied a web-based	Grade Levels:
intelligent tutor for middle school students that	aimed to teach struggling	MS
readers how to use the structure of the text to he	elp them understand what	
they are reading. The web-based tutor taught stu	dents to recognize	Focal Populations:
common organizational structures used in expos	itory texts and how to use	
those structures to help them identify the main i	deas in expository texts.	Technology
		Developed/Studied:
		()

Assessment of Comprehension Skills in Older Struggling Readers		
Award # <u>R305G050083</u> Glo	ria Waters, Boston University	
In this project, researchers designed and validated a co-	mprehensive, Grade Levels:	
computerized language assessment battery for middle a	and high school MS, HS	
teachers to help their students become better readers.	Teachers used the	
assessment to identify comprehension skills that partic	rular students Focal Populations:	
lacked, to target deficiencies in focused remediation, ar	nd to assess	
whether the subcomponents of reading were becoming	g more accurate, Technology	
efficient, and automatic with instruction.	Developed/Studied	1:

Developing Internet Comprehension Strategies among Adolescent Students At Risk to Become Dropouts

Award # <u>R305G050154</u>	Donald Leu, University of Connecticut	
In this project, researchers iteratively developed a	nd tested Internet	Grade Levels:
Reciprocal Teaching (IRT), an intervention for po	oor, minority youth that	MS
aimed to help them acquire online reading compr	ehension skills and	
enhance their academic achievement through an a	adapted version of	Focal Populations:
reciprocal teaching (i.e., when students lead small	group reading sessions	
after watching a teacher model the behavior and w	while getting support	Technology
from the teacher). The adaptations researchers wi	th IRT made to	Developed/Studied:
traditional reciprocal teaching included specific in	struction about unique	
strategies used to locate, evaluate, synthesize, and	communicate	
information on the Internet.		

Rocket Reader: A Simplified PDA-based Portable Reading System for Enabling Access toAudio Books and Electronic Documents for Individuals with Intellectual DisabilitiesAward # R3058050070Daniel Davies, AbleLink Technologies

Awaru # $\underline{N3033030070}$	Daniel Davies, Adielink	Technologies
In this project, researchers iteratively adapted an	d tested Rocket Reader, a	Grade Levels:
desktop and palmtop software platform for blind	d or visually impaired	MS
middle school students. Rocket Reader was desig	aned to help students	

middle sensor students. Rocket Reader was designed to help students	
access electronic materials in a variety of formats, including audio books,	Focal Populations:
text documents, and documents, more easily.	SWD
	Tachnology

Developed/Studied:

Explicit Scaffolding for Word Learning in Context through Multimedia Word Annotation

Award # <u>R305A080596</u>Judith Scott, University of California, Santa Cruz

	,
In this project, researchers iteratively designed and tested an intelligent	Grade Levels:
computer system for middle school students who struggled with reading.	MS
It was designed to improve students' word learning by determining which	
words were likely unknown to the reader and automatically generating	Focal Populations:
appropriate pictures, pronunciation keys, and dictionary entries.	EL
	Technology
	Developed/Studied:

Capitalizing on Social Networking: Social Networking Practices to Increase Adolescent Literacy Engagement and Achievement

Award # EDIES09C0018Dave Miller, Knowled	dge Athletes
In this project, researchers iteratively developed and studied a	Grade Levels:
commercially viable social media web application. The application aimed	MS, HS
to enable teachers to lead online classroom dialogs and to increase stude	nt
engagement through an integrated set of digital technologies. Researcher	rs Focal Populations:
gathered feedback from grade 8 and 11 language arts classroom students	3
and teachers to assess how the technology altered students' work,	Technology
engagement, and self-confidence in literacy and writing. The team also	Developed/Studied:
developed an online resource to train and support teachers using the	
product.	

The ESTRELLAS Project: Electronic Supported Text Research for English Language Learner Academic Success

Award # <u>R305A090227</u>	Lynne Anderson-Inman,	University of Oregon
In this project, researchers iteratively designed ar	nd tested the	Grade Levels:
ESTRELLAS Electronic Reading System for Ex	pository Text, an	MS
intervention for Spanish-speaking middle school	students to improve their	
reading competency in English. As part of the pr	oject, students engaged	Focal Populations:
with an electronic reading system that facilitated	students' progress	EL
through electronic texts, fostered motivation for	reading, scaffolded key	
concepts within the texts, and provided English	definitions, Spanish	Technology
translations, and enhanced illustrations.		Developed/Studied:

William Cope, University of Illinois, Urbana-

The Assess-as-You-Go Writing Assistant: A Student Work Environment that Brings **Together Formative and Summative Assessment**

Award #	<u>R305A090394</u>
---------	--------------------

Champaign

In this project, researchers iteratively designed and tested the Assess-As-Grade Levels: You-Go Writing Assistant, an intervention for eighth-grade students to MS improve their writing performance and writing assessments by providing constant feedback and formative assessments. The Writing Assistant used **Focal Populations:** a combination of tagging, social networking, and natural language processing technologies. As part of the intervention, students participated Technology in a web-based learning environment where they created written texts and **Developed/Studied:** received ongoing feedback from a computerized writing assistant as well as from teachers, peers, and experts using social networking and tagging technology.

STEPS to Literacy: An Integrated Digital Writing Space for English Language Learners

JoAnne Kleifgen, Columbia University, Teachers

Award # <u>R305A090476</u>	JoAnne Kleifgen, Columbia University, Teachers	
Awald # <u>K50571070470</u>	College	
In this project, researchers iteratively designed an	d tested STEPS to	Grade Levels:
Literacy, an intervention for Latino English learn	ers in middle school to	MS
support academic writing in English through writ	ing tools, multimodal	
resources, and writing activities. As part of the in	tervention, students	Focal Populations:
accessed web-based writing instruction that guide	d them in an exploration	EL
of the world through the lenses of science, technological	ology, and social studies.	
		Technology
		Developed/Studied:

Assessing Online Reading Comprehension: The ORCA Project

Award # <u>R305A090608</u>	Donald Leu, University of Connecticut	
In this project, researchers designed and validate	d assessments of online	Grade Levels:
reading comprehension for seventh-grade students. As part of the		MS
intervention, researchers created the Online Read	ding Comprehension	
Assessment (ORCA), which allowed teachers an	d administrators to assess	Focal Populations:
whether students were acquiring the skills necess	sary for online reading	
comprehension.		Technology
		Developed/Studied:

Assessment of Comprehension in Older Struggling Readers		
Award # R305A100261Gloria Waters, Boston U	niversity	
In this project, researchers further designed and validated an assessment	Grade Levels:	
for middle and high school students to improve their literacy skills. This	MS, HS	
project expanded a test battery originally developed for high school		
students to include middle school students. The revised battery integrated	Focal Populations:	
more items and was intended to measure middle through high school		
students' ability to process written and spoken language.	Technology	
	Developed/Studied:	

Reading for Understanding Across Grades 6 through 12: Evidence-Based Argumentation for Disciplinary Learning

Award # <u>R305F100007</u>	Susan Goldman, University of Illinois, Urbana- Champaign	
In this project, a part of the Reading for Unc	lerstanding Research	Grade Levels:
Initiative, researchers iteratively developed and studied an intervention for		MS, HS
middle and high school students to enhance students' reading		
comprehension through a model that captured complex critical analysis		Focal Populations:
processes while attending to the psychologic	al and social challenges of	
adolescence. As part of the project, students	used SenseMaker, a software	Technology
tool that provided workspaces for individul of	or colloborative work.	Developed/Studied:
SenseMaker was developed to help students	interpret tasks, activate prior	
knowledge, and construct knowledge to facil	itate evidence-based	
argumentation.		

Understanding Malleable Cognitive Processes and Integrated Comprehension Interventions for Grades 7–12

Award # <u>R305F100013</u>	Sharon Vaughn, University of Texas, Austin	
In this project, a part of the Reading for Understanding Research		Grade Levels:
Initiative, researchers explored motivation and engagement for reading,		MS, HS
cognitive processing, and reading comprehension	with students with and	
without reading comprehension difficulties. The researchers used the		Focal Populations:
results from this work to develop and test Compr	ehension Circuit	
Training (CCT), a new intervention designed to leverage motivation and		Technology
improve the comprehension skills of struggling readers. CCT was		Developed/Studied:
delivered via iPad to students and included activit	ies for both narrative	
and expository text.		

Project SAIL: Strategies for Academic Internet Learning Award # <u>R324A100322</u>

Lynne Anderson-Inman, University of Oregon

In this project, researchers iteratively developed and studied an	Grade Levels:
intervention for middle and high school students with learning disabilities	MS, HS
to improve their online reading skills. The intervention included online	
interactive teaching modules that illustrated step-by-step strategies	Focal Populations:
students could use when reading and learning online.	SWD
	Technology
	Developed/Studied:

u-learn.net: An Anywhere/Anytime Formative Assessment and Learning Feedback Environment

Award # EDIES11C0019	Bill Cope, Common Gro	und Publishing, LLC
In this project, researchers iteratively developed	l and studied Scholar, an	Grade Levels:
intervention to improve student writing perform	mance and the usefulness	MS, HS
of writing assessments. Scholar was designed to	be an online tool that had	
a wide range of multimodal texts such as scient	ific reports, writing in	Focal Populations:
language arts, history essays, and social studies	projects. It gave learners	
constant feedback in the form of on-demand for	ormative assessment.	Technology
		Developed/Studied:

Readorium Software for Improved Reading Comprehension of Non-fiction Science TextAward # EDIES11C0042Harriet Isicke, Mtelegence Corporation

In this project, researchers iteratively developed and studied Readorium, a	Grade Levels:
web-based software to support struggling middle school readers'	MS
understanding of nonfiction science texts. The prototype of this software	
was developed under an earlier IES <u>award</u> . Readorium was designed to	Focal Populations:
supplement middle school science curricula and included an in-take	
assessment, game-like components, and an avatar that explained all	Technology
functions and guided student learning.	Developed/Studied:

Creating Compositions Using a Technology-based Writing Tool: Supporting Students with Universal Design for Learning

Award # <u>R305A110333</u> Tracey Hall	, CAST, Inc.
In this project, researchers iteratively designed and tested Com	position Grade Levels:
Builder, a web-based writing environment for middle school st	cudents that MS
aimed to improve students' persuasive and expository writing	
competence. Composition Builder provided an interactive wor	kspace that Focal Populations:
integrated writing instruction strategies with embedded writing	tools and
supports, such as concept mapping for planning, virtual writin	g strategy Technology
coaches, and opportunities for teacher and peer feedback.	Developed/Studied:

Infowriter: A Student Feedback and Formative Assessment Environment for Writing Information and Explanatory Texts

Award # EDIES13C0039	Bill Cope, Common Gro	ound Publishing, LLC
In this project, researchers iteratively developed	and tested InfoWriter, an	Grade Levels:
intervention for middle and high school student	s to improve their writing	MS, HS
of informational and explanatory texts. InfoWrit	er included a web-based	
concept mapping tool and writing environment	that teachers could use to	Focal Populations:
supplement traditional writing assignments and	to provide feedback to	
students.		Technology
		Developed/Studied:

Comprehensive Research-based Computer Assessment and Accommodation System for ELL Students

Award # <u>R305A130223</u> Jamal	Abedi, University	of California, Davis
In this project, researchers designed and validated a com	puter-based math	Grade Levels:
assessment and language-accommodation system for En	glish learners in	MS
middle school. The assessment was designed to help gat	her evidence of	
math knowledge for English learners who may underper	form due to	Focal Populations:
language barriers, not lack of math skills. The accommodations tested in		EL
the research project included (1) linguistically modified w	version of the	
math test, (2) bilingual versions of the test (native langua	ge assessment),	Technology
(3) English glossary, (4) bilingual glossary, and (5) read-a	loud test items.	Developed/Studied:

Access: Language Arts Award # EDIES14C0018

Carol Stanger, The Attainment Company, Inc.

In this project, researchers iteratively developed and studied Access:	Grade Levels:
Language Arts II, a tablet-based software for middle school students with	MS
severe intellectual disabilities and autism. Access: Language Arts II was	
designed to improve students' language arts skills by having them listen to	Focal Populations:
nonfiction stories read aloud while reading along with individual words	SWD
highlighted on the tablet. Stories included symbol supports, vocabulary	
instruction with in-text definitions, and comprehension questions.	Technology
Adaptive instruction and tablet data feedback were incorporated to	Developed/Studied:
provide individualized instruction with emphasis on vocabulary,	
communication, comprehension, critical thinking, research, and writing.	

The Iowa Assessment of Skills and Knowledge for Automatic Word Recognition and Decoding (iASK)

Award # EDIES14C0042	Carolyn Brown, Foundat	ions in Learning
In this project, researchers iteratively developed	and studied iASK, a web-	Grade Levels:
based assessment program for middle school stu	dents with poor reading	MS
skills. iAsk was designed to assess decoding, flue	ncy, and word	
recognition and generate formative assessment p	profiles of individual	Focal Populations:
students for teachers to provide targeted instruct	tion.	
		Technology
		Developed/Studied:

Automated, Personalized Formative Feedback for Student Writing with the LightSide Revision Assistant

Award # EDIES14C0045	Elijah Mayfield, Lightsido	e Labs, Inc.
In this project, researchers iteratively developed and	d studied a prototype	Grade Levels:
of LightSide Revision Assistant, a web-based writin	g program for students	MS
in sixth through eighth grade. Students wrote essay	s in the program and	
received instant and automatic feedback, including	in-line comments, as	Focal Populations:
part of an automated essay scoring system.		
		Technology
		Developed/Studied:

Improving Students' Comprehension and Construction of Arguments		
Award # <u>R305H020039</u> M. Anne Britt, North	ern Illinois University	
In this project, researchers iteratively developed and studied a simple we		
based tutoring system for 12 th -grade students that aimed to teach them t) HS	
better comprehend and produce written arguments.		
	Focal Populations:	
	Technology	
	Developed/Studied:	

iSTART: Interactive Strategy Trainer for Active Reading and ThinkingAward # R305G040046Danielle McNamara, University of Memphis

In this project, researchers iteratively adapted and tested an automated	Grade Levels:
reading strategy called iSTART. iSTART was developed to improve high	HS
school students' ability to understand and learn from complex written	
material by teaching them self-explanation and reading strategies such as	Focal Populations:
monitoring comprehension, making bridging inferences, and using prior	
knowledge and logic to understand the text and by having them interact	Technology
with pedagogical agents (animated characters used in online learning) to	Developed/Studied:
increased their active processing and participation as the system evaluated	
their self-explanations and provided feedback.	

Creating a Usable Environment to Teach Argument Comprehension and Production SkillsAward # R305H050133M. Anne Britt, Northern Illinois University

In this project, researchers iteratively developed and studied computer-	Grade Levels:
based instructional modules for high school and college students that	HS, PA
aimed to increase their ability to comprehend and write arguments. The	
modules were available online as stand-alone lessons and as a course	Focal Populations:
presented in the context of a simple role-playing game.	
	Technology
	Developed/Studied:

Grade Levels:

Technology

Ť

Focal Populations:

Developed/Studied:

HS

The Writing Pal: An Intelligent Tutoring System that Provides Interactive Writing Strategy Training

Award # <u>R305A080589</u>

Danielle McNamara, University of Memphis

In this project, researchers iteratively designed and tested The Writing Pal, an intervention for high school students to improve their writing ability through writing strategy instruction and writing skill development. The Writing Pal was designed to include a computer-based intelligent tutor that led students through lessons about prewriting (free-writing and essay planning), drafting (generating an introduction and conclusion), and reviewing (evaluating how well the essay meets the assignment's requirements) and then through the writing of complete compositions.

Project LIBERATE (Literacy Instruction Based on Evidence through Research for Adjudicated Teens to Excel)

Award # <u>R324A080006</u>	David Houchins, Georgi	a State University
In this project, researchers designed and validate	d a reading intervention	Grade Levels:
for incarcerated students with or at risk for disab	ilities residing in a	HS
juvenile justice facility. The final intervention inc	orporated the Scholastic	
READ 180 program with other supplemental co	mputer-based literacy	Focal Populations:
programs and teacher-delivered lessons. The fina	l computer software	SWD
assessed each student's skills and progress to deli	ver the right level of	
assistance and used audiobooks to target compre	hension and independent	Technology
reading.		Developed/Studied:

Intelligent Scaffolding for Peer Reviews of Writing

Award # <u>R305A120370</u>

Diane Litman, University of Pittsburgh

In this project, researchers iteratively adapted and tested Scaffolded	Grade Levels:
Writing and Rewriting in the Disciplines (SWoRD), a software-based	HS, PA
writing intervention for high school through college students. SWoRD	
was designed to improve students' writing by providing them with a	Focal Populations:
platform to write compositions and reports and by facilitating the logistics	
of conducting peer review and making revisions to student work. The tool	Technology
distributed student essays to reviewers, recorded their feedback, and	Developed/Studied:
returned it to the appropriate authors, who used this information to revise	ſ
their work.	

Exploration of Automated Writing Strategy Instruction for Adolescent Writings Using the Writing Pal

Award # <u>R305A120707</u>

Danielle McNamara, Arizona State University

HS

Grade Levels:

Technology

Î

Focal Populations:

Developed/Studied:

2

In this project, researchers explored how components of a writing
intervention were related to high school students' writing strategy
acquisition and writing proficiency. The Writing Pal intervention used
education technology to deliver writing strategy instruction, game-based
writing practice, essay writing practice, and formative feedback to
students. Researchers tested the effects of various formats or features of
the intervention, including whether animated video lessons were more
effective than illustrated instructional texts.

Exploring the Educational Game Landscape through Focused Studies and Ecological Interventions

Award # <u>R305A130124</u>	Danielle McNamara, Ari	zona State University
In this project, researchers explored how individu	ual differences among	Grade Levels:
high school students (e.g., motivation, engagement	nt, persistence, prior	HS
knowledge) interacted with educational game des	igns. The researchers	
intended to use this information to improve the o	design of learning	Focal Populations:
environments so that they maintain the attention	of struggling students as	
they learned and mastered comprehension skills.	Researchers used	Technology
components of Interactive Strategy Training for .	Active Reading and	Developed/Studied:
Thinking-Motivationally Enhanced (iSTART-ME	E), an existing game-	
based intelligent tutoring system, to explore a ran	ige of potentially	
malleable factors that could be used to improve s	student outcomes. The	
intelligent tutoring system was comprised of a sur-	ite of educational games	
and game elements that were designed to improv	re students'	
comprehension skills and motivation to practice.		

Developing an Online Tutor to Accelerate High School Vocabulary Learning		
Award # <u>R305A130467</u>	Suzanne Adlof, Universit	y of South Carolina
In this project, researchers iteratively develop	ed and studied	Grade Levels:
DictionarySquared, a web-based vocabulary t	utor for high school students	HS
to improve their vocabulary skill. DictionaryS	equared was designed to	
adapt to student knowledge, present new wor	ds in contexts that were	Focal Populations:
rated as helpful and authentic, encourage acti	ve processing and student	
engagement, and assess student learning with	reliable pre- and post-tests.	Technology
		Developed/Studied:

Assessing Reading Comprehension with Verbal Protocols and Latent Semantic AnalysisAward # R305G040055Joseph Magliano, Northern Illinois University

In this project, researchers iteratively designed and validated an automated	Grade Levels:
on-line reading strategy assessment tool called the Reading Strategy	РА
Assessment Tool (R-SAT) for use with college freshman and	
sophomores. The online reading assessment assessed the level of	Focal Populations:
coherence and reading strategies students employed and measured	
students' comprehension during reading. It was to be integrated into an	Technology
existing reading software, iSTART.	Developed/Studied:

Center for the Study of Adult Literacy (CSAL): Developing Instructional Approaches Suited to the Cognitive and Motivational Needs of Struggling Adults

Award # <u>R305C120001</u>	Daphne Greenberg, Geo	rgia State University
In this project, researchers explored the underlyin	g cognitive and	Grade Levels:
motivational processes that help or hurt struggling adult readers improve		РА
their literacy skills, and they used this information	to guide the	
development of a reading intervention for use with	h adult struggling	Focal Populations:
readers. The intervention included a teacher-led c	omponent with	
classroom activities along with a web-based anima	ated tutor component,	Technology
called AutoTutor, that focused on reading comphrension skills.		Developed/Studied:

4. Other Academic Content Areas

This chapter includes Institute-funded research on technologies that support and improve student learning in academic content areas other than math and science or reading, writing, and language development. For example, technology has enhanced instruction in civics, social studies, geography, and history through access to primary data sources, publication and presentation software, virtual field trips, and online assessments (Taylor and Duran 2006).

Table Key			
Grade levels:			
EC	Early Childhood	HS	High School
ES	Elementary School	PA	Postsecondary and Adult Education
MS	Middle School		
Focal populati	ons:		
EL	English Learners		
SWD	Students With Disabilitie	S	
Products deve	loped or studied:		
	The spider web icon denotes web-based technology developed or studied.		
The viewer icon denotes virtual environment / interactive simulation developed or			
studied.			
The tutor icon denotes intelligent tutor / artificial intelligence technology			
developed or studied.			
2	The chess piece icon den	otes ga	me-based technology developed or studied.
	The checkmark icon den	otes an	assessment developed, validated, or studied.

For more information about these projects and publications stemming from them, please follow the hyperlinked award number to the online abstract on the Institute's website.

Give Me 5 for Children	
Award # ED06PO0906Dee Peterson, Interactive	Training Technologies
In this project, researchers iteratively developed and studied a web-based training program focused on influencing healthy food choices for students ages five to eight and their families. It aimed to improve nutrition and prevent childhood obesity and accompanying chronic diseases.	Grade Levels: ES Focal Populations: EL Technology Developed/Studied:

A National PBS Television & Interactive New Technology Program for Children 7-11Award # ED06PO0936Natasha Rogoff, Kids Cook

In this project, researchers iteratively developed and studied a prototype	Grade Levels:
of KidsCOOK, an intervention for students ages 7 to 10 that aimed to	ES
stem childhood obesity and connected chronic diseases through a web-	
based video, podcasts, and game-based tools that focused on nutrition,	Focal Populations:
health, obesity and cooking education.	
	Technology
	Developed/Studied:

OPEN's Virtual National Parks 3D Learning Environment for Science and Social Studies: Low-Cost and Easy to Implement Curriculums

Award # EDIES10C0020	George Newman, One P Network	lanet Education
In this project, researchers iteratively developed	and studied a virtual	Grade Levels:
learning environment for science and social studies. The project team		MS
developed a three-dimensional (3D) virtual repl	ica of Machu Picchu	
national park and the ancient Incan ruins in Per	u. The online environment	Focal Populations:
was designed for classroom use and was intended	ed to foster engagement in	
learning and enhance gains in a set of multidisci	plinary student outcomes.	Technology
		Developed/Studied:

Online Socratic Learning for Enhanced Critical Thinking		
Award # EDIES10P0101Scott Breach	ewster, Triad Digital Media	
In this project, researchers iteratively developed and studied	d a prototype Grade Levels:	
of Online Socratic Learning for Enhanced Critical Thinking	g, an ES	
intervention for fifth-grade social studies students to increa	se their critical	
thinking and argument skills. Online Socratic Learning for l	Enhanced Focal Populations:	
Critical Thinking was designed to be a web-based software	that posed a	
hypothetical situation through a case study, asked students	to create an Technology	
argument to support the position, and then automatically pre-	proposed a Developed/Studied:	
counter-argument.		

Mission US: An Interactive Solution for Middle School History LearningAward #EDIES13C0027David Langendoen, Electric Funstuff

	0 ,	
In this project, researchers iteratively developed and s	studied Mission US, Grade Leve	els:
an intervention for fifth- through eighth-graders to in	hcrease their ES, MS	
knowledge of American history and the Great Depres	ssion. The	
intervention used game-based technology with a table	et application that Focal Popu	lations:
contained story-based missions, writing tools, interact	tive maps, and tips	
and hints to increase students' subject knowledge. Th	ne final product was Technology	у
to include additional updates to existing story-based n	missions and in-game Developed,	/Studied:
assessment opportunities.		

Integrated System for Teaching and Assessing Online Information Research		
Award # EDIES13C0035Kirill Kiryev, Instagrok	Inc.	
In this project, researchers iteratively developed and studied a prototype	Grade Levels:	
of a web-based tool to guide social studies and science students in grades	ES, MS, HS	
4 through 12 through conducting research on the Internet.		
	Focal Populations:	
	Technology	
	Developed/Studied:	

GoGames Civics: Meeting Common Core Standards with Tablet-Enhanced Multiplayer Role Play Games

Award # EDIES13C0042Beth Quinn, Filam	Beth Quinn, Filament Games	
In this project, researchers iteratively developed and studied GoGame	es Grade Levels:	
Civics, a game-based tablet application to improve middle school	MS	
students' civics subject matter knowledge. The prototype of this softw	vare	
was developed under an earlier IES award. GoGames Civics allowed	Focal Populations:	
students to roll play traditional civics through activities such as mock	trials	
and congressional hearings. The tool provided students with new soci	al Technology	
identities and facilitated interactions, teamwork, collaboration, and	Developed/Studied:	
discussion.		

Youth Map: A Software Based Program to Increase Service-Learning Quality

Award # <u>ED07CO0046</u>	Lewis Friedland, Community Knowledgebase, LLC
In this project, researchers iteratively developed	and studied the impact of
Youth Map, an intervention to improve high sch	ool service-learning
curricula. Youth Map used a web-based geograp	nic mapping software to
help students create network maps that visually of	lepicted, organized, and
analyzed data. Youth Map also included a Geogr	aphic Information
Systems (GIS) module, a teacher training guide a	nd online support
materials, and ecology and government modules	to be taught in 2 to 3
weeks.	

School Views (VIEWS): Volunteer, Internship, and Employment Web SolutionsAward # EDIES10P0110James Hohorst, Student Employment Software

In this project, researchers iteratively developed and studied a prototype	Grade Levels:
of Volunteer, Employment, and Internship Web Solutions (VIEWS), an	HS
intervention to provide students with information about employment,	
volunteer, and internship opportunities through a web-based service.	Focal Populations:
	Technology
	Developed/Studied:

The American War: Featuring Valley Sim Award # <u>EDIES12C0034</u>

Christian Speilvogel, Flip Learning

Grade Levels:
РА
Focal Populations:
Technology
Developed/Studied:

5. Social and Behavioral Outcomes

This chapter includes Institute-funded research on technologies that support and improve student social skills and behavioral outcomes, such as interactive social tutoring systems, a student selfmanagement system, and virtual learning environments that support social competence. A sizable body of research supports the importance of social and behavioral skills as predictors of academic achievement. A recent meta-analysis also showed that social-behavioral interventions can be effective in promoting academic outcomes in addition to the targeted social skills and behavioral outcomes (Durlak et al. 2011). Other research has focused on developing and studying technology-based tools and interventions to help students develop social competence and social skills to support success in school (Louys et al. 2009). Through computer-mediated communication, students are provided social supports (Eden and Heiman 2011) and social cues (Han and Johnson 2012) that support social bonding, collaboration, and student engagement (Han and Johnson 2012; Henrie, Halverson, and Graham 2015).

Table Key			
Grade levels:			
EC	Early Childhood	HS	High School
ES	Elementary School	PA	Postsecondary and Adult Education
MS	Middle School		
Focal populat	ions:		
EL	English Learners		
SWD	Students With Disabilitie	S	
Products deve () () () () () () () () () ()			e b-based technology developed or studied. environment / interactive simulation developed or
Ť	The tutor icon denotes ir developed or studied.	ntellige	ent tutor / artificial intelligence technology
2	The chess piece icon den	otes ga	me-based technology developed or studied.
	The checkmark icon den	otes an	assessment developed, validated, or studied.

For more information about these projects and publications stemming from them, please follow the hyperlinked award number to the online abstract on the Institute's website.

Early Intervention for Young Children with ADHD: Developing Strategies to Enhance Parent Engagement

Award #	<u>R324A120284</u>
---------	--------------------

George DuPaul, Lehigh University

In this project, researchers iteratively developed and studied a parent education program for parents with children ages 3 to 6 withattention deficit hyperactivity disorder (ADHD). The intervention aimed to increase parent engagement by targeting areas that are specifically problematic for young children with symptoms of ADHD: poor parent-child interactions, difficulty with pre-academic skills, and a high injury rate. The intervention was first implemented through weekly in-person sessions and then converted to a web-based format that maintained elements of the face-toface program but enhanced parent engagement through multimedia and interactive activities.

ctions, SWD ention **Technology** acce-to- **Developed/Studied:** and

Grade Levels:

Focal Populations:

EC, ES

Dynamic Narrative Generation Software to Improve Social and Behavioral School Readiness Skills Needed for the Successful Transition to Grade School

Award # <u>EDIES13C0034</u>	Melissa DeRosier, 3-C Institute for Social	
Award # EDIESISC0034	Development	
In this project, researchers iteratively developed	and studied a prototype	Grade Levels:
of a web-based intervention for prekindergarten	and kindergarten	EC, ES
students. The intervention aimed to prepare stud	lents for the transition	
into grade school. The software supported stude	ents as they created stories	Focal Populations:
using a step-by-step, scripted, interactive proces	s. The stories focused on	
skills that were related to school readiness, such	as self-regulation, positive	Technology
behaviors with peers, positive classroom behavior	ors, and emerging	Developed/Studied:
independence.		

Digitizing the K-8 Portion of the Positive Action Program for Web-Delivery

Award # <u>ED06PO0910</u>	Carol Allred, Positive Ac	ction, Inc.
In this project, researchers iteratively developed	and studied a prototype	Grade Levels:
of a web-based platform for implementing Posit	ive Action, a K–12	ES, MS, HS
program to promote students' character develop	ment, academic	
achievement, and social-emotional skills and to r	educe disruptive and	Focal Populations:
problem behavior.		
		Technology
		Developed/Studied:

Development of an Intervention to Enhance the Social Competencies of Children with Asperger's/High Functioning Autism Spectrum Disorders

Award # <u>R324A080136</u>

Martin Volker, State University of New York (SUNY), Buffalo

In this project, researchers iteratively adapted and tested a summer	Grade Levels:
intervention for students with high-functioning autism spectrum disorders	ES, MS
(ASD) for use in a school-based setting via computer-aided delivery. The	
original intervention was developed to address children's cognitive,	Focal Populations:
communicative, social, and behavioral needs through instruction in four	SWD
core components: intensive social skills instruction, face and emotion	
recognition, interest expansion, and interpretation of non-literal language	Technology
and idioms. The resulting school-based intervention also included parent	Developed/Studied:
training and school-based consultation.	

Social Tele-Coaching in Classroom Settings Award # <u>R324A090322</u> Earle Knowlton, University of Kansas In this project, researchers iteratively developed and studied Social Tele-Grade Levels: Coaching, a remote-delivery, social skills coaching intervention for rural ES, MS, HS elementary and secondary students with disabilities. The intervention added direct, daily behavioral coaching to a social skills training program. **Focal Populations:** The coaching was provided via wireless and video conferencing SWD technologies (e.g., bug in the ear) from remote observation sites to students in general education classroom settings and in common-access Technology settings such as the cafeteria, library, or playground. The intervention **Developed/Studied:** provided students with a social skills coach while they interacted with students and adults in naturalistic settings so that students could learn how to generalize their social skills knowledge.

scoring algorithm and data tracker to assess performance.

A Computer-based Social Intervention for Students with High Functioning ASD: Using **Technology to Improve Special Education**

Award # $EDIES11C0033$	Janey McMillan, 3-C Inst Development	itute for Social
In this project, researchers iteratively developed ar	nd piloted Social Story	Grade Levels:
Theatre, a web-based intervention designed for stu	idents with high	ES
functioning autism spectrum disorder (HF-ASD).	The intervention	
engaged third- through fifth-grade special education	on students with	Focal Populations:
animated depictions of social situations and expec-	tations. The product	SWD
aimed to facilitate improved social functioning in s	students with HF-ASD	
by allowing them to practice social skills. The proc	luct also provided	Technology
teachers with student progress reports and include	d a performance	Developed/Studied:

An Interactive Social Tutoring System to Improve and Measure Social Goals for Students Related to Academic and Other School-related Outcomes

Award # EDIES11C0039	Melissa DeRosier, 3-C Institute for Social	
Award # EDIESTIC0039	Development	
In this project, researchers developed and studie	ed Zoo U, a web-based	Grade Levels:
learning tool through which fourth- and fifth-gr	ade students engaged	ES
animated life-like characters to solve tailored so	cial problems. The	
prototype of Zoo U was developed under an ea	rlier IES <u>award</u> . Zoo U	Focal Populations:
targeted core social skills through six units: coop	peration, communication,	
emotion regulation, empathy, impulse control, a	and initiation of play.	Technology
Researchers also developed an online profession	nal development and	Developed/Studied:
implementation tool for teachers.		

Interactive Social Tutoring System for Social Skills Training with Elementary Students

Award #	R305A110583

Melissa DeRosier, Center for Research in Emotional and Social Health, Inc. (CRESH)

In this project, researchers iteratively developed and studied a computerbased interactive social tutoring system (ISTS) for elementary students experiencing social-behavioral problems at school. The ISTS system facitilated students engagment in tailored, interactive exercises to learn and practice social skills that parallel those taught through an existing evidence-based small group social skills training intervention (S.S.GRIN). The ISTS software tracked students' work and provided school personnel with the ability to document students' progress toward measureable social goals.

Technology **Developed/Studied:**

Focal Populations:

Grade Levels:

ES

())))//

Student Self-Management System (SSMS): Reducing Problem Behavior in Upper Elementary Classrooms by Transferring Externally Applied Teacher Controls to Internally **Applied Student Controls** . .. **л** ·

Award # <u>R324A110074</u>	Brion Marquez, IRIS Me	dia, Inc.
In this project, researchers iteratively developed and	d studied the Student	Grade Levels:
Self-Management System (SSMS) for students with	or at risk for	ES, MS
disabilities who exhibit problem behavior. SSMS w	as a self-management	
intervention for students in grades 3 through 6 that	t aimed to reduce	Focal Populations:
problem behaviors by providing student learning m	naterials that	SWD
demonstrated the steps of student self-managemen	t, providing an online	
screening and progress monitoring tool that allowe	d teachers to identify	Technology
and monitor students needing additional supports,	and providing behavior	Developed/Studied:
specialists with professional development training a	esources and out-of-	
class supports for use with identified students. The	intervention included	
an online platform to support training (video, mult	imedia, and interactive	
applications) and assessment.		

PEAT Communication Scheduler for Autism

Award # EDIES12C0047	Richard Levinson, Atten Inc.	tion Control Systems,
In this project, researchers iteratively developed	a prototype of Planning	Grade Levels:
and Execution Assistant and Trainer (PEAT), a s	software application (app)	ES
for mobile devices. PEAT was designed to help	non-verbal students with	Focal Populations:
autism spectrum disorder achieve greater indepe	ndence and self-efficacy.	SWD
Students carried a mobile phone at all times to a	ccess the PEAT app,	Technology
which provided activity cues and support.		Developed/Studied:

Hall of Heroes: An Interactive Social Tutoring System to Improve and Measure Social Goals for Students in Preparation for Transition to Middle School

Award # EDIES13C0041Melissa DeRosier, 3-C In Development	nstitute for Social
In this project, researchers iteratively developed and studied Hall of	Grade Levels:
Heroes, a web-based social learning game for fifth graders that aimed to	ES
prepare them socially and academically for a successful transition to	
middle school and foster subsequent academic success. The prototype of	Focal Populations:
the product was developed under an earlier IES award. In Hall of Heroes,	
students interacted with animated life-like characters to solve social	Technology
problems and build social skills to use in challenging situations.	Developed/Studied:
Instructional content focused on six core social skill units: cooperation,	
communication, emotion regulation, empathy, impulse control, and social	
initiation.	

Efficacy of a Comprehensive School-Based Intervention for Children with High-Functioning Autism Spectrum Disorders (HFASDs)

In this project, researchers evalu	1 1 1 2 1 1	
	lated the impact of a comprehensive	Grade Levels:
school-based intervention (CSB	I) on the outcomes of children with high-	ES
functioning autism spectrum dis	orders (ASD). The CSBI was developed	
to increase peer interactions and	l improve social-communicative	Focal Populations:
understanding, social skills, and	academic achievement as well as reduce	SWD
ASD symptoms. The CSBI cons	sisted of five components: social skills	
groups for students with social i	mpairments; individual daily notes to	Technology
prompt, practice, and reinforce	newly learned skills; interactive software	Developed/Studied:
designed to teach recognition of	emotions; therapeutic activities to	
practice social skills; and parent	training.	U
understanding, social skills, and ASD symptoms. The CSBI cons groups for students with social i prompt, practice, and reinforce designed to teach recognition of	academic achievement as well as reduce sisted of five components: social skills mpairments; individual daily notes to newly learned skills; interactive software emotions; therapeutic activities to	SWD Technology

Developing a 3D-based Virtual Learning Environment for Use in Schools to Enhance the Social Competence of Youth with Autism Spectrum Disorder

Award # R324A090197James Laffey, University of Missouri, Columbia

In this project, researchers iteratively developed and studied iSocial, a social-behavioral intervention delivered in a 3D-based virtual learning environment for middle school students with high functioning autism. iSocial aimed to improve the social behavior of youth with autism by addressing deficits in three areas that comprise social competence: emotion recognition, theory of mind, and executive functioning (a set of cognitive processes that help individuals manage cognitive resources during goal-related activities). The curriculum taught students to recognize facial expressions, share ideas, take turns in conversations, recognize feelings and emotions of self and others, and problem solve.

My Personal Academic Plan Award # EDIES10P0106

Jennifer Lytle Begonia, ScholarCentric

In this project, researchers iteratively developed and studied a prototype of My Academic Plan, a web-based social-behavioral formative assessment intervention for middle school students. The intervention provided individualized tutorials that students could use during class and included teacher professional development and support.

Transition Success Assessment

Award # <u>R324A100246</u>

James Martin, University of Oklahoma

In this project, researchers designed and validated Transition Assessment Goal Generator (TAGG), a web-based assessment tool for middle and high school students with disabilities, their parents, and teachers to use while developing Individualized Education Programs. Grade Levels: MS HS

Focal Populations: SWD

Assessing Self-Determination in the Era of Evidence-Based Practices: The Development and Validation of Student and Adult Measures of Self-Determination

Award # <u>R324A130065</u> Michael Wehmeyer, University of Kansas

In this project, researchers designed and validated an assessment for students aged 13 to 22 years with and without disabilities that aimed to measure students' self-determination skills in four domains: autonomy, self-regulation, psychological empowerment, and self-realization. As part of the project, students engaged with a computer adaptive test format to measure their self-determination. The study included students from several different disability categories (learning disabilities, intellectual disability, autism, speech/language disability, and other disabilities), as well as students without disabilities.

Grade Levels: MS, HS, PA

Focal Populations: SWD

Technology Developed/Studied:

iSKILLS : The Audio/Video Guidance Repository for Life Skills Award # R324A100094 Kevin Avres University of Georgia

Awaru # $\underline{K324A100094}$	Kevin Ayres, University	of Georgia
In this project, researchers iteratively developed an	d studied iSKILLS, a	Grade Levels:
video repository of life skills lessons designed to be	e delivered to	HS
individuals via handheld electronic devices. iSKILI	LS aimed to support	
with intellectual disabilities and autism to help ther	n acquire and maintain	Focal Populations:
the life skills necessary for successful post-school t	ransitions. The full	SWD
program also included direct instruction and self-in	nstruction across several	
domains including independent living, employmen	t, leisure, community	Technology
involvement, and community navigation.		Developed/Studied:

6. Pathways Into and Through Postsecondary Education

This chapter includes Institute-funded research on technologies aiming to support students as they transition into or progress through postsecondary education, including projects seeking to increase college enrollment and improve transition outcomes for students with or at risk for disabilities. Transitioning into postsecondary education and progressing through the postsecondary pipeline can be difficult. Navigating complex admissions systems, meeting crucial deadlines, and managing competing demands while enrolled in college can lead to stress and undermine students' motivation to persist. Researchers seeking to address these challenges are studying technology to assist students, their families, and their academic advisors.

Table Key			
Grade levels:			
EC	Early Childhood	HS	High School
ES	Elementary School	PA	Postsecondary and Adult Education
MS	Middle School		
Focal populati	ions:		
EL	English Learners		
SWD	Students With Disabiliti	es	
Products deve	loped or studied: The spider web icon der	notes we	b-based technology developed or studied.
The viewer icon denotes virtual environment / interactive simulation developed or studied.			
The tutor icon denotes intelligent tutor / artificial intelligence technology developed or studied.			
2	The chess piece icon denotes game-based technology developed or studied.		
	The checkmark icon der	notes an	assessment developed, validated, or studied.

For more information about these projects and publications stemming from them, please follow the hyperlinked award number to the online abstract on the Institute's website.

Strategizing for College: A Game-based Approach to Increasing College Access

Award # <u>R305A110288</u>	William Tierney, Universit California	
In this project, researchers iteratively designed an	d tested an intervention	Grade Levels:
for students from low-income backgrounds to ed	ucate them on how to	MS, HS
apply and gain acceptance to college though a card game. The full		
intervention included mentoring and support from teachers as well as an		Focal Populations:
online version of the card game that students could play on Facebook. In		
the game, students guided a character through class and activity selection,		Technology
time management challenges, putting together ap	plication materials, and	Developed/Studied:
acquiring the financial resources to afford college	and its related costs.	

Using High School Transcript Data to Improve Student Access to Four-Year Colleges Award # R305A080263 Karen Levesque, MPR Associates, Inc.

In this project, researchers iteratively developed and studied anGrade Levels:intervention for high school students, counselors, and schoolHSadministrators to improve students' academic preparedness for college. ItIteration
administrators to improve students' academic preparedness for college. It
included data tools and outreach services to support counselors and Focal Populations:
administrators in using data for college advising and school-level planning.
As part of the project, students, counselors, and school administrators Technology
engaged with a web-based transcript analysis tool that provided Developed/Studied:
information to improve students' course taking and college planning.

Transition Outcomes for Special Education Secondary Students: Project Choices Dennis Campbell, University of South Alabama Award # <u>R324A090307</u>

-	•
In this project, researchers iteratively developed and studied Choices, an	Grade Levels:
online intervention for high school students with disabilities. Choices was	HS
designed to assist them and their parents in developing valid transitional	
and educational plans. It included a database of student and family	Focal Populations:
information, community supports and services, and curriculum guides.	SWD
	Technology
	Developed/Studied:

Factors Associated with the High School Preparation and Post-High School Outcomes of Youth with Disabilities: Secondary Analysis of Data from the National Longitudinal Transition Study-2

Award # <u>R324A100025</u>

Lynn Newman, SRI International

In this project, researchers explored the relationship between school-	Grade Levels:
based interventions and academic, social-behavioral, vocational, and	HS
functional outcomes that students with disabilities experienced during and	
after high school. Researchers aimed to identify school-based instructional	Focal Populations:
programs including technology-based aids and settings, learning supports,	SWD
supplemental and related services, and accommodations that could	
improve the high school and post-high school outcomes (e.g., academic	Technology
achievement, graduation, postsecondary enrollment, employment) of	Developed/Studied:
students with disabilities using data from the National Longitudinal	
Transition Study-2. The study focused on students served under three	
special education categories: learning disabilities, emotional disturbance,	
and mental retardation.	

Promoting College Enrollment among Disadvantaged Students: A Randomized Controlled Trial of Two Low-Cost Interventions

Award # <u>R305A110809</u> Tiffani Chin, EdBoost F	Education Corporation
In this project, researchers evaluated the impact of interventions for	Grade Levels:
academically eligible, disadvantaged high school students (e.g., low-	HS
income and first-generation) that aimed to increase students' college	
access: V-SOURCE (Virtual Student Outreach for College Enrollment)	Focal Populations:
and Milestones, a less intensive variant of V-SOURCE. Students who	
participated in V-SOURCE interacted with a team of college student	Technology
advisers through virtual technologies (e.g., phone, text, email, MySpace,	Developed/Studied:
Facebook, instant message, and Skype). Milestones focused on getting	
students to complete key college-application milestones using automated	
reminders and incentives.	

of-Hearing Students (Secondary Analysis	of NLTS2 Data)	
Award # <u>R324A120188</u>	Lynn Newman, SRI Inte	rnational
In this project, researchers explored the relation	ionships between school-	Grade Levels:
based interventions and outcomes experience	ed by deaf or hard-of-hearing	HS
students during and after high school. Resear	chers aimed to identify	
promising programs, policies, technology aid	s, and interventions that	Focal Populations:
could improve transition outcomes (e.g., acad	lemic achievement,	SWD
graduation, postsecondary enrollment, employ	yment) for these students	
using the National Longitudinal Transition S	tudy-2 dataset.	Technology
		Developed/Studied:

Factors Associated with High School and Post-High School Outcomes for Deaf and Hard-

Dynamic E-Learning to Improve Postsecondary Transition Outcomes for Secondary Students with High Functioning Autism

Award #	EDIES13C0026
---------	--------------

Debra Childress, 3-C Institute for Social Development

1	
In this project, researchers iteratively developed and studied a self-paced,	Grade Levels:
adaptive, education software for high school students with high-	HS
functioning autism spectrum disorders. The intervention aimed to meet	
the learning styles and social-emotional needs of students to enable them	Focal Populations:
to pursue educational or employment activities following high school.	SWD
Through the self-paced online interactive course that also measured	
progress, students learned about the transition to college and specific	Technology
resilience strategies for coping with the transition. The software provided	Developed/Studied:
individualized instruction that adjusted to the skill level of the user,	
personalized feedback on performance, and hints for students who	
struggled.	

Digital Messaging to Improve College Enrollment and Success Award # R 305 A 140121Chris A. H

Award # <u>R305A140121</u> 0	Chris Avery, Harvard Uni	iversity
In this project, researchers evaluated the impact of high-quality college-		Grade Levels:
going information and informational counseling for high school students		HS
from low-income families to increase college access	. As part of the	
intervention, students received text messages with reminders and links to		Focal Populations:
register for college entrance exams, apply for financial aid, and complete		
pre-matriculation tasks, as well as offers to receive phone-based		Technology
counseling.		Developed/Studied:

Dual-Credit Courses and the Road to College: Experimental Evidence from Tennessee			
Award # <u>R305H140028</u>	Susan Dynarski, Univers	ity of Michigan	
In this project, researchers evaluated the impact of	of a dual-credit Advanced	Grade Levels:	
Algebra and Trigonometry course for 11th- and 12	2 th -grade students. In	HS	
these courses, enrolled students would take a cen	trally graded,		
standardized, computer-based, end-of-course exa	m for free. If they	Focal Populations:	
passed, they would receive course credit at any pu	ablic college in		
Tennessee.		Technology	
		Developed/Studied:	

Developing a Program of Postsecondary Academic Instruction over the Corrections Learning Network

Award # <u>R305B070077</u>	Stephen Steurer, Correctional Education		
Real of the real o	Association (CEA)		
In this project, researchers iteratively developed	and studied an	Grade Levels:	
intervention for adult prisoners. The intervention, called the Corrections		РА	
Learning Network, was a satellite-based distance learning initiative that			
provided postsecondary education programming adapted from the		Focal Populations:	
Milwaukee Area Technical College's College of			
curriculum offered students opportunities to earn credits and general		Technology	
education certificates that would lead to earning an Associate of Arts		Developed/Studied:	
degree.			

The Relationship of the Expanded Core Curriculum to Transition Outcomes for Students with Visual Impairments

Award # <u>R324A090288</u>	Kay Ferrell, University of	f Northern Colorado
In this project, researchers used data from the National Longitudinal		Grade Levels:
Transition Study-2 to explore the relationship betw	een the Expanded	РА
Core Curriculum (ECC) and post-school outcomes	for students with	
visual impairments in general and special education	settings. ECC aimed	Focal Populations:
to improve students' academic and post-school outcomes through units		SWD
that covered compensatory and functional skills, or	ientation and mobility,	
social skills, independent living skills, leisure and re	creation skills, career	Technology
and vocational skills, technology-based aids, sensor	y efficiency, and self-	Developed/Studied:
determination.		

Evaluating the Success of Undergraduates in the U-Pace Intervention to Improve Academic Achievement for All Postsecondary Education Students

Award # <u>R305A110112</u>

Diane Reddy, University of Wisconsin, Milwaukee

In this project, researchers evaluated the impact of U-PACE, an intervention for undergraduate students to improve their achievement in introductory psychology, sociology, and political science courses and to increase their retention. In U-PACE, students moved at their own pace through online learning modules to cover text chapters taught in a conventional class and had to demonstrate mastery of the material in a module before moving to the next one. Instructors monitored student activity and sent electronic messages identifying the concepts students needed to learn to pass a quiz. Grade Levels: PA

Focal Populations:

Technology Developed/Studied:

7. Assistive Technology

This chapter includes Institute-funded research focused on assistive technology (AT) to support students with disabilities. AT is any item, piece of equipment, service, or product system that is used to increase, maintain, or improve the functional capabilities of individuals with disabilities (IDEA, 2004). There are two categories of AT: devices and services. When developing individual education programs (IEPs) for students with disabilities, IEP teams may recommend the use of AT devices. In the past, many professionals thought of AT as exclusively useful for individuals with severe disabilities or sensory impairments. However, that is no longer the case as AT devices are increasingly being developed to support a wide range of students. For example, these devices can include hand-held technologies for speech development in students with autism. There are also many types of AT services, such as training or technical assistance for a student with a disability or for professionals providing education or rehabilitation services to students with a disability.

Table Key			
Grade levels:			
EC	Early Childhood	HS	High School
ES	Elementary School	PA	Postsecondary and Adult Education
MS	Middle School		
Focal populat	ions:		
EL	English Learners		
SWD	Students With Disabilitie	S	
 The spider web icon denotes web-based technology developed or studied. The viewer icon denotes virtual environment / interactive simulation developed or studied. 			
The tutor icon denotes intelligent tutor / artificial intelligence technology developed or studied.			
2	The chess piece icon denotes game-based technology developed or studied.		
	The checkmark icon den	otes an	assessment developed, validated, or studied.

For more information about these projects and publications stemming from them, please follow the hyperlinked award number to the online abstract on the Institute's website.

Development of an IFSP Form and Process to Maximize Learning Opportunities for Young Children with Disabilities

Award # <u>R324B070033</u>

M. Jeanne Wilcox, Arizona State University

Grade Levels:

Technology

Focal Populations:

Developed/Studied:

EC

SWD

In this project, researchers iteratively developed and studied a system to help service providers develop and increase the use of adaptations for infants and toddlers with disabilities. This system included a form to help create individualized family service plans (IFSPs) and a web-based performance system for providers to use to collect and analyze data. Service providers also received training and ongoing support and mentoring from research staff.

Assessing ASL Knowledge and its Relationship to Reading English in Deaf Children Award # <u>R324A100176</u> Robert Hoffmeister, Boston University

	<i>,</i>
In this project, researchers designed and validated a video-based	Grade Levels:
assessment to be used by educators of deaf students (from	EC, ES, MS, HS
prekindergarten to high school) to determine which students were on a	
normal language development path and which were above or below the	Focal Populations:
expected ability level. The instrument, called the American Sign Language	SWD
Assessment Instrument (ASLAI), consisted of a battery of computer-	
based assessments that measured students' knowledge of synonyms,	Technology
antonyms, plurals, complex sentences, rare vocabulary, and narrative	Developed/Studied:
comprehension in sign language.	

Charlie of Hard of Hard of Hearing			
Award # <u>R324A110122</u>	Dana Suskind, University	of Chicago	
In this project, researchers iteratively developed an	d studied Project	Grade Levels:	
ASPIRE (Achieving Superior Parental Involvemen	t for Rehabilitative	EC	
Excellence), a provider-guided, multimedia interven	ntion directed at		
parents of 12- to 36-month-old children who were	deaf or hard of hearing	Focal Populations:	
and of low socio-economic status. It aimed to impr	rove the children's	SWD	
educational success by enhancing parents' ability to	support their		
children's listening and language development. Pro	ject ASPIRE was	Technology	
designed for early interventionists to use with parent	nts. Parents would	Developed/Studied:	
work through multimedia modules that incorporated animation and			
videos, learn how to transmit language and literacy knowledge and skills,			
and receive feedback about the child's language en	vironment and		
development via a language processor worn by the	child.		

A Parent-Directed Multimedia Early Intervention Tool to Improve Outcomes in Underserved Children who are Deaf or Hard of Hearing

Enhancing Augmentative and Alternative Communication Rates in pre-K Through 6Award # EDIES14C0043Benjamin Grimley, Speak Agent

	0
In this project, researchers iteratively developed and studied an	Grade Levels:
intervention for prekindergarten- through sixth-grade students with	EC, ES, MS
special communication needs. The intervention aimed to improve student	
outcomes by using artificial intelligence software on touch-screen mobile	Focal Populations:
devices. The product adapted prompts and cues to the needs of individual	SWD
students.	
	Technology
	Developed/Studied:

National Accessible Reading Assessment Projects: Research and Development for Students with Visual Impairments

Award # <u>R324A060034</u>	Cara Cahalan Laitusis, Eo Service	lucational Testing
In this project, researchers designed and validated computer-based assessments of reading proficiency. The goals of the project were two- fold. First, the researchers examined the psychometric properties of state tests administered to students with visual impairments. Second, they tested an accessible assessment of reading and an assessment of technology-assisted reading.		Grade Levels: ES, MS, HS Focal Populations: SWD
		Technology Developed/Studied:

The Universal Assessment System (UAS) Award # <u>ED08CO0056</u>

Michael Russell, Nimble Assessments

In this project, researchers iteratively developed and studied an	Grade Levels:
intervention to provide access to tests for K-12 students with hearing or	ES, MS, HS
visual impairments. The Universal Assessment System used signing for	
students with hearing impairments and electronic Braille displays with	Focal Populations:
embedded writing supports for students with visual impairments.	SWD
Educational tests were delivered via the Internet or a local CD, and the	
intervention could enable up to 20 different accessibility and	Technology
accommodation tools based on a student's need. The use of these tools	Developed/Studied:
was monitored during testing.	

Using the International Classification of Function-Children & Youth to Guide **Communication Instruction for Augmentative and Alternative Communication Users**

Award # <u>R324A090028</u>

Charity Rowland, Oregon Health and Science University

Oniversity	
In this project, researchers designed and validated a diagnostic framework	Grade Levels:
for elementary, middle, and high school special educators and speech-	ES, MS, HS
language pathologists who work with students that use assistive	
technologies to communicate. The framework, called the Augmentative	Focal Populations:
and Alternative Communication—International Classification of	SWD
Function, aimed to assess the educational and developmental needs of	SWD
students who rely on non-speech behaviors and devices to communicate.	
The framework was also designed to help educators and support staff	Technology
develop more effective Individualized Education Program goals and	Developed/Studied:
targets.	

MyASL Quizmaker

Corrine Vinopol, Institute for Disabilities Research and Training, Inc.

Grade Levels In this project, researchers iteratively developed and studied MyASL Quizmaker, web-based assessment tool for students who are deaf or har of hearing and use American Sign Language (ASL). The tool was designed to provide automatic ASL graphic and video translations of English for students; enable teachers to create customized tests, exams, and quizzes that were automatically scored; and provide teacher reports with grades and corrected quizzes.

	Glade Levels.
rd	ES, HS
ed	
	Focal Populations:
	SWD
	Technology
	Developed/Studied:

(

Artificial Intelligence Software to Tutor Literary Braille to the Blind and Visually Impaired Benny Johnson, Quantum Simulations, Inc. Award # EDIES11C0034

In this project, researchers iteratively developed and studied the Artificial	Grade Levels:
Intelligence Braille Tutor software to provide on-demand Braille literacy	ES, MS, HS
support to the visually impaired in kindergarten through 12 th grade.	
	Focal Populations:
	SWD
	Technology
	Developed/Studied:

iPrompt to Improve Teaching Students with ASD		
Award # EDIES11C0040Robert Tedesco	o, HandHold Adaptive, LLC	
In this project, researchers iteratively developed and studied iPron	npt, a Grade Levels:	
software application (app) for mobile phones and tablet computer	es to ES, HS	
help teachers assist students with autism spectrum disorder (ASD)	in their	
daily activities. The prototype of this app was developed through a	an Focal Populations:	
earlier IES <u>award</u> . The app used pictures and other visual stimuli t	o aid SWD	
students with ASD and their teachers with tasks such as setting		
expectations, transitioning between activities, increasing attention,	and Technology	
developing social skills.	Developed/Studied:	

Award # EDIES12C0047Richard Levinson, AttenInc.		tion Control Systems,
In this project, researchers iteratively developed	a prototype of Planning	Grade Levels:
and Execution Assistant and Trainer (PEAT), a s	oftware application (app)	ES
for mobile devices. PEAT was designed to help t	non-verbal students with	
autism spectrum disorder achieve greater indepen	ndence and self-efficacy.	Focal Populations:
Students carried a mobile phone at all times to ac	ccess the PEAT app,	SWD
which provided activity cues and support.		
		Technology
		Developed/Studied:

Rocket Reader: A Simplified PDA-based Portable Reading System for Enabling Access to
Audio Books and Electronic Documents for Individuals with Intellectual Disabilities

Award # <u>R305S050070</u>	Daniel Davies, AbleLink	Technologies
In this project, researchers iteratively adapted and	l tested Rocket Reader, a	Grade Levels:
desktop and palmtop software platform for blind	or visually impaired	MS
middle school students. Rocket Reader was desig	ned to help students	
access electronic materials in a variety of formats,	including audio books,	Focal Populations:
text documents, and documents, more easily.		SWD
		Technology
		Developed/Studied:

Haptic Immersion Platform to Improve STEM Learning for the Vis	ually Impaired
Award # EDIES11C0028 Marjorie Darrah, Inform	nation Research
Corporation	
In this project, researchers iteratively developed and studied Interactive	Grade Levels:
Touch Science, an integrated software and hardware assistive technology	MS
platform. The product included a set of 20 applications that addressed	
standards-relevant content and aimed to support STEM (science,	Focal Populations:
technology, engineering, and mathematics) learning among middle school	SWD
students with (or without) visual impairments. The product also provided	
real-time tactile, visual, and audio feedback.	Technology
	Developed/Studied:

Development of Computer-based Testing Accommodations for Students with Visual Disabilities

Award # <u>R324A110088</u>	Cara Cahalan Laitusis, Ec Service	ducational Testing
In this project, researchers refined and vali	dated NimbleTools, an existing	Grade Levels:
computer-based testing platform for studen	nts who were blind or had low	MS, HS
vision. The final form of NimbleTools was	designed to increase	
accessibility of state assessments for childre	en with disabilities by providing	Focal Populations:
students with adaptations to improve testin	g accommodations.	SWD
		Technology
		Developed/Studied:

Expanding Audio Access to Mathematics Expressions by Students with Visual Impairments via MathML

Award # <u>R324A110355</u>Lois Frankel, Educational Testing Service (ETS)

In this project, researchers iteratively developed and studied a	Grade Levels:
standardized synthetic, speech-rendering tool for math instruction, test	MS, HS
preparation, and testing for students in grades 8 through 11 with visual	
impairments. The tool used ClearSpeak, a mathematical markup language	Focal Populations:
that can be integrated with existing screen reader software used by the	SWD
visually impaired community. ClearSpeak translated math expressions into	
descriptions that students with visual impairments could better	Technology
comprehend. The tool consisted of four components: standardized	Developed/Studied:
synthesized speech for rendering mathematical content (ClearSpeak),	
navigation tools for students, ClearSpeak integration capability with	
Microsoft Word, and customizable authoring tools for teachers.	

AnimalWatch-VI Suite: A Comprehensive Program to Increase Access to Mathematics for Students with Visual Impairments

Award # <u>R324A120006</u> Carole Beal, University of Arizona		f Arizona
In this project, researchers iteratively developed and	studied Animal Suite-	Grade Levels:
VI, an intervention for middle and high school stude	ents with visual	MS, HS
impairments to help them master core algebra-reading	ness mathematics	
skills to succeed in high school and beyond. The inte	ervention was a set of	Focal Populations:
14 web-delivered, accessible instructional modules of	overing computation,	SWD
fractions, and variables and expressions. Each modu	le included word	
problems and instructional scaffolding accessible via	self-voicing software,	Technology
accompanied by braille and tactile graphics. The rese	earchers also	Developed/Studied:
developed training materials for teachers.		

Electronic Performance Support Systems (EPSS) as Assistive Technologies to Improve **Outcomes for Secondary Students**

Award # <u>R324B070176</u>

Gail Fitzgerald, University of Missouri, Columbia

In this project, researchers iteratively developed and studied the Strategy	Grade Levels:
Tools Support System (STSS) for high school students with disabilities in	HS
general education settings. The intervention aimed to help secondary	
students with learning disabilities or emotional disturbances improve their	Focal Populations:
ability to learn on their own in the context of general education classes.	SWD
Researchers designed computerized support tools resembling graphic	
organizers to provide support to student behavior in the following areas:	Technology
getting organized, learning new information, demonstrating learning,	Developed/Studied:
working on projects, solving personal problems, and planning for the	
future.	

Factors Associated with the High School Preparation and Post-High School Outcomes of Youth with Disabilities: Secondary Analysis of Data from the National Longitudinal **Transition Study-2**

Award # <u>R324A100025</u> Lynn Newman, SRI Interna		rnational
In this project, researchers explored the relationship b	etween school-	Grade Levels:
based interventions and academic, social-behavioral, w	ocational, and	HS
functional outcomes that students with disabilities exp	perienced during and	
after high school. Researchers aimed to identify school	ol-based instructional	Focal Populations:
programs including technology-based aids and setting	s, learning supports,	SWD
supplemental and related services, and accommodatio	ns that could	
improve the high school and post-high school outcomes (e.g., academic		Technology
achievement, graduation, postsecondary enrollment, employment) of		Developed/Studied:
students with disabilities using data from the National	Longitudinal	
Transition Study-2. The study focused on students served under three		
special education categories: learning disabilities, emotional disturbance,		
and mental retardation.		

of-Hearing Students (Secondary Analysis of NLTS2 Data)	
Award # <u>R324A120188</u> Lynn Newm	nan, SRI International
In this project, researchers explored the relationships between s	school- Grade Levels:
based interventions and outcomes experienced by deaf or hard-	l-of-hearing HS, PA
students during and after high school. Researchers aimed to ide	entify
promising programs, policies, technology aids, and intervention	ns that Focal Populations:
could improve transition outcomes (e.g., academic achievement	nt, SWD
graduation, postsecondary enrollment, employment) for these s	students
using the National Longitudinal Transition Study-2 dataset.	Technology
	Developed/Studied:

Factors Associated with High School and Post-High School Outcomes for Deaf and Hard-

The Relationship of the Expanded Core Curriculum to Transition Outcomes for Students with Visual Impairments

Award # <u>R324A090288</u> Kay Ferrell, University or	Kay Ferrell, University of Northern Colorado	
In this project, researchers used data from the National Longitudinal	Grade Levels:	
Transition Study-2 to explore the relationship between the Expanded	РА	
Core Curriculum (ECC) and post-school outcomes for students with		
visual impairments in general and special education settings. ECC aimed	Focal Populations:	
to improve students' academic and post-school outcomes through units	SWD	
that covered compensatory and functional skills, orientation and mobility,		
social skills, independent living skills, leisure and recreation skills, career	Technology	
and vocational skills, technology-based aids, sensory efficiency, and self-	Developed/Studied:	
determination.		

Section II: Technology to Support Teachers and Instructional Practice

This section features 88 projects focused on Technology to Support Teachers and Instructional Practice. The two chapters in this section focus on (1) Instructional Supports and Tools for Classroom Management and (2) Educator Professional Development. These foci were informed by the National Education Technology Plan (U.S. Department of Education, Office of Educational Technology 2010, 2016) and research topics supported by the National Center for Education Research and National Center for Special Education Research.

Each chapter presents relevant projects in table format. The tables provide the project title and award number; the principal investigator and affiliation; a short project description with tags to indicate the grade level(s) on which the project focused;⁴ the project's focal population, i.e., English learners or students with or at risk for disabilities; and the types of education technology products developed or studied through the project.

⁴ Blank grade levels indicate either that grade ranges are not applicable (i.e., the technology is for researchers or school leaders) or that the information is unavailable.

1. Instructional Supports and Tools for Classroom Management

This chapter focuses on Institute-funded research focused on technologies aimed to support teachers' instructional and classroom practices, including behavior management systems, formative assessment systems, assessments to diagnose student misconceptions of concepts, and tools for increasing student engagement. Broadly, these tools support teachers' ability to manage the learning environment, including both the physical and inter-personal environment and the cognitive environment (e.g., pace and sequencing of learning). Effective classroom management is fundamental to creating a successful learning environment (Jones and Jones 2015; Levin and Nolan 2013), yet continues to be one of the most challenging aspects of the teaching profession (Dreikurs, Grunwald, and Pepper 2013; Evertson and Weinstein 2013). Education technology may provide support to teachers for their instructional and classroom management practices by increasing their efficiency, thereby allowing teachers to allocate more time to teaching (Kim, Copeland, and An 2015).

Table Key		
Grade levels:		
EC Early Childhood HS High School		
ES Elementary School PA Postsecondary and Adult Education		
MS Middle School		
Focal populations:		
EL English Learners		
SWD Students With Disabilities		
Products developed or studied:		
The spider web icon denotes web-based technology developed or studied.		
The spider web icon denotes web-based technology developed of studied.		
The viewer icon denotes virtual environment / interactive simulation developed or		
studied.		
The tutor icon denotes intelligent tutor / artificial intelligence technology		
developed or studied.		
The chess piece icon denotes game-based technology developed or studied.		
The cliess piece icon denotes game-based technology developed of studied.		
The checkmonk icon denotes an accomment developed validated exacts is d		
The checkmark icon denotes an assessment developed, validated, or studied.		

For more information about these projects and publications stemming from them, please follow the hyperlinked award number to the online abstract on the Institute's website.

The Virtual STAR Classroom Simulator			
Award # ED06PO0908Christopher Staple	Christopher Stapleton, Simoysis		
In this project, researchers iteratively developed a prototype of Virtua	al Grade Levels:		
STAR Classroom Simulator, a tool designed to help new teachers in u	urban		
classrooms improve their classroom management skills. The tool reco	orded Focal Populations:		
real-world interactions in urban classrooms and translated these beha	viors		
in to virtual training sessions. The training sessions aimed to prepare	Technology		
teachers for the physical, emotional, and social interactions urban	Developed/Studied:		
instructors typically face.			

Data-Management Program

Award # ED06PO0922

Janet Johnson, Edstar, Inc

In this project, researchers iteratively developed and studied a prototype of an intervention that aimed to increase student success by helping teachers to use quantitative data in teaching and behavior management. Researchers conducted workshops that included prototypes of software and modules used to target students for intervention, standardized data-keeping so records of services could be combined and used for comparisons, monitored progress toward goals, and communicated successful practices.

Development of a Process Methodology to Determine the Cost of Ownership of Instructional Resources in Relation to the Benefits of Improved Student Performance Award # ED06P00927

Donald Beers, Progress Education Inc

Grade Levels:

Technology

Focal Populations:

Developed/Studied:

In this project, researchers iteratively developed and studied a prototype	Grade Levels:
of a software-based intervention for teachers that aimed to increase	
student success by helping teachers to use quantitative data in	Focal Populations:
instructional decisions. Researchers conducted workshops to show	
teachers how to target students for intervention, standardize data-keeping	Technology
so records of services could be combined and used for comparisons,	Developed/Studied:
monitor progress toward goals, and communicate using data on successful	
practices.	

Socrative Learning Network		
Award # EDIES14C0048Zach Wagner, Socrative		
In this project, researchers iteratively developed and studied a prototype	Grade Levels:	
of the Socrative Learning Network, an intervention for teachers to		
improve instructional practice. The Socrative Learning Network was to be	Focal Populations:	
a website that allowed registered teachers to share information and to help		
teachers in creating, sharing, searching, and filtering assessments by	Technology	
content, grade, or user, with a mechanism for commenting on and editing	Developed/Studied:	
questions.		

Development of an IFSP Form and Process to Maximize Learning Opportunities for Young Children with Disabilities

Award # <u>R324B070033</u>	M. Jeanne Wilcox, Arizor	na State University
In this project, researchers iteratively developed	and studied a system to	Grade Levels:
help service providers develop and increase the	use of adaptations for	EC
infants and toddlers with disabilities. This system	n included a form to help	
create individualized family service plans (IFSPs)	and a web-based	Focal Populations:
performance system for providers to use to colle	ect and analyze data.	SWD
Service providers also received training and onge	oing support and	
mentoring from research staff.		Technology
		Developed/Studied:

The Social Shape Up System		
Award # EDIES11C0043	Lynn Singletary, Teaching Research Institute, LLC	
In this project, researchers iteratively develope		Grade Levels:
Up System, a commercially viable product into	ended to support PK-8	EC, ES, MS
teachers in managing their classrooms and mo	nitoring classroom	
behaviors. The prototype for this product was developed under an earlier		Focal Populations:
IES <u>award</u> . Social Shape Up included strategie	s for teachers to shape	
student behavior; a web-based database to sto	re, manage, and report	Technology
student behavior; and a handheld device to fac	cilitate data collection.	Developed/Studied:

134

Coh-Metrix: Automated Cohesion and Coherence Scores to Predict Text Readability and Facilitate Comprehension

Award # <u>R305G020018</u>

Award # ED06PO0910

Danielle McNamara, University of Memphis

Grade Levels:

Technology

Focal Populations:

Developed/Studied:

ES, PA

In this project, researchers iteratively developed and studied Coh-Metrix			
and Coh-GIT, tools for writers, editors, and educators to help them			
estimate the appropriateness of a text for their audience and to pinpoint			
specific problems with the text (e.g., constructions that might be difficult			
for readers). Writers could also use the tools to help them write more			
readable texts that both supported and challenged readers. The tools were			
developed for use by grade school and postsecondary students.			

Scaling Up an Assessment-Driven Intervention Using the Internet and Hand-held Computers

Award # <u>R305W020001</u> Ba	arbara Foorman, Florid	a State University
In this project, researchers iteratively developed and	studied an	Grade Levels:
intervention for kindergarten through second-grade	teachers to help	ES
teachers translate assessment results into instruction	through web-based	
mentoring. As part of the project, teachers performe	d the assessments on	Focal Populations:
a handheld computer, which guided the teacher in ac	curate administration	
procedures, calculated screening and diagnostic resul	ts in real time, and	Technology
uploaded data to web-accessible databases. The databases	bases underlay an	Developed/Studied:
online professional development website that related	assessment results to	
intervention activities.		

Digitizing the K-8 Portion of the Positive Action Program for Web-Delivery

Carol Allred, Positive Action, Inc.

In this project, researchers iteratively developed and studied a functioning	Grade Levels:
prototype of a web-based platform to help teachers implement Positive	ES, MS, HS
Action, a K–12 program to promote students' character development,	
academic achievement, and social-emotional skills and to reduce	Focal Populations:
disruptive and problem behavior.	
	Technology
	Developed/Studied:

The eServe Initiative: An Empirically Supported, Web-based Educational Decision Making Product

1100000		
Award # <u>ED06PO0918</u>	Rob Harsh, Software Ou	tfitters, Inc.
In this project, researchers iteratively developed a	and studied an	Grade Levels:
intervention for kindergarten through 12th-grade	teachers and	ES, MS, HS
administrators that aimed to reduce exclusionary	disciplinary referrals that	
often result in students with significant behavior	problems losing access	Focal Populations:
to classroom instruction, resulting in a higher rish	t for academic failure.	
The intervention assisted educators to identify ap	propriate individualized	Technology
and group instructional and behavioral intervention	ons for students using a	Developed/Studied:
web-based tool that managed student data, recog	nized patterns,	
established pre-defined decision-making rules, se	nt notifications, and	

provided best-practice behavioral management strategies to teachers.

Child-Instruction Interactions in Reading: Examining Causal Effects of Individualized Instruction in Second and Third Grade

Award # <u>R305B070074</u>

Carol M. Connor, Florida State University

	2
In this project, researchers evaluated the impact of Assessment-to-	Grade Levels:
instruction (A2i), a web-based software designed to use algorithms to help	ES
second- and third-grade teachers create individualized literacy instruction	
for their students. The software computed recommended amounts and	Focal Populations:
types of instruction for each child in the classroom and provided	
organization and planning supports to increase teachers' efforts to	Technology
individualize literacy instruction.	Developed/Studied:

Using the International Classification of Function-Children & Youth to Guide Communication Instruction for Augmentative and Alternative Communication Users Charity Rowland, Oregon Health and Science

Award # R324A090028		Il i l'altit allu Sciclice
Award # $\underline{K524A090028}$	University	
In this project, researchers designed and validated	a diagnostic framework	Grade Levels:
for elementary, middle, and high school special ec	lucators and speech-	ES, MS, HS
language pathologists who work with students that	it use assistive	
technologies to communicate. The framework, ca	lled the Augmentative	Focal Populations:
and Alternative Communication-International O	Classification of Function	SWD
aimed to assess the educational and developmenta	al needs of students who	
rely on non-speech behaviors and devices to com	municate. The	Technology
framework was also designed to help educators an	nd support staff develop	Developed/Studied:
more effective Individualized Education Program	goals and targets.	

Making Room for Student Thinking: Using Automated Feedback, Video-Based Professional Development, and Evidence-Based Practice Recommendations to Improve Mathematical Discussions

Award # <u>R305A100178</u>	rard # <u>R305A100178</u> Kevin Miller, University of Michigan	
In this project, researchers iteratively developed and studied methods to		Grade Levels:
help teachers monitor and improve classroom dis	cussions on	ES
mathematics. The researchers conducted small-sc	ale studies testing some	
of the underlying assumptions of the intervention	to be developed,	Focal Populations:
adapted an automated technique for giving teacher	ers daily feedback on the	
extent of classroom talk, and used video-based or	line professional	Technology
development to provide teachers with methods for	or leading mathematical	Developed/Studied:
discussions. The researchers targeted experienced and beginning		
elementary teachers and fifth- and sixth-grade stu	dents to measure	
changes in the distribution and quality of classroo	m discussion.	

Reliability and Validity Evidence for Progress Measures in Reading

Award # <u>R324A100014</u>	Gerald Tindal, University	y of Oregon
In this project, researchers validated of	easyCBM, a free online curriculum-	Grade Levels:
based benchmark and progress monit	toring assessment system for	ES
elementary teachers, reading specialis	ts, and interventionists that	
documents early literacy acquisition.		Focal Populations:
		SWD

Technology Developed/Studied:

iPrompt to Improve Teaching Students with ASI	iPrompt to Improve Teaching Students with ASD			
Award # EDIES11C0040 Ro	obert Tedesco, HandH	old Adaptive, LLC		
In this project, researchers iteratively developed and	studied iPrompt, a	Grade Levels:		
software application (app) for mobile phones and tak	olet computers to	ES, HS		
help teachers assist students with autism spectrum di	sorder (ASD) in their			
daily activities. The prototype of this app was develop	ped through an	Focal Populations:		
earlier IES <u>award</u> . The app used pictures and other v	isual stimuli to aid	SWD		
students with ASD and their teachers with tasks such	n as setting			
expectations, transitioning between activities, increas	ing attention, and	Technology		
developing social skills.		Developed/Studied:		

LLC
Grade Levels:
ES
Focal Populations:
Technology
Developed/Studied:

Virtual Research Assistant for Teachers	
Award # EDIES13C0036Benjamin Glazer, Edu	vant
In this project, researchers iteratively developed and studied a prototype	Grade Levels:
of the Virtual Research Assistant, an intervention for teachers to help	ES, MS, HS
them track student progress and intervene through a web-based data	
dashboard that analyzed student reports and class-level data, mined data,	Focal Populations:
and conducted predictive analyses.	
	Technology
	Developed/Studied:

Project Hi-Fi: Promoting High Fidelity of Screening and Progress Monitoring Assessments Award # EDIES13C0038 Stephen Fickas, Life Technologies

Hwald $\#$ <u>EDTESTSCOOSO</u>	Stephen Fiekas, Ene Fee	linologies
In this project, researchers iteratively developed a	nd studied a prototype	Grade Levels:
of an intervention for fifth- and sixth-grade teach	ers to improve their	ES, MS
ability to assess special education students' readin	g fluency through tablet-	
based software that replaced paper tests. The soft	ware provided scoring	Focal Populations:
and tracking assessments with a stop watch to tin	ne questions, uploaded	SWD
evaluation data directly to a database, and include	d audio playback	
capability and verified scores or recommended ch	anges.	Technology
		Developed/Studied:

Handheld Technology for Speech Development in Students with Autism Spectrum Disorders

Award # EDIES13C0046	Robert Tedesco, HandHold Adaptive, LLC

In this project, researchers iteratively developed and studied	Grade Levels:
SpeechPrompts, an application for Apple iOS devices for use by special	ES, MS, HS
education professionals and other caregivers working with kindergarten	
through 12th-grade students who exhibit prosodic speech challenges,	Focal Populations:
including students with autism spectrum disorders and specific speech	SWD
language disorders, hearing impairments, or intellectual disabilities.	
SpeechPrompts included features, assessment capabities, and therapeutic	Technology
exercises to help educators guide students' improvements in their	Developed/Studied:
prosodic voice quality, thereby strengthening their communication and	
social skills and capacity for integration in academic, recreational,	
vocational and community settings.	

The Classroom Check-up: Supporting Elementary Teachers in Classroom Management Using a Web-based Coaching System

Wendy Reinke, Universit	y of Missouri, Columbia
and studied a web-based	Grade Levels:
tablished consultation	ES
o support their use of	
CCU delivered	Focal Populations:
onsibility for	
decisionmaking, and supported self-efficacy by identifying existing	
strengths and past successes in order to engage teachers in the change	
endly videos and	
eachers in an online	
	and studied a web-based stablished consultation o support their use of CCU delivered onsibility for lentifying existing

Making Individualized Literacy Instruction Available to All Teachers: Adapting the Assessment to Instruction (A2i) Software for Multiple Real-World Contexts

Award # <u>R305A130517</u>	Carol Connor, Arizona S	tate University
In this project, researchers iteratively developed a	and studied Assessment	Grade Levels:
to Instruction (A2i), an intervention for first- thr	ough third-grade teachers	ES
designed to improve students' literacy outcomes	through a web-based	
program that supported teachers' efforts to provide more effective and		Focal Populations:
individualized literacy instruction. The computer program linked student		
assessment results to recommendations for instructional strategies and		Technology
activities, provided classroom organization and lesson planning tools, and		Developed/Studied:
online professional development, including video	os of expert teachers.	

Decision Rule Research Project: Curriculum-Based Measurement in Reading		
Award # <u>R324A130161</u>	Theodore Christ, Univer	sity of Minnesota
In this project, researchers designed and validate	d a set of guidelines for	Grade Levels:
teachers in grade K through 6 of students with o	r at risk for having a	ES, MS
disability. The guidelines provided teachers with	decision rules for	
interpreting curriculum-based measurement scor	es to make instructional	Focal Populations:
and placement decisions based on the data. As p	art of the project,	SWD
teachers engaged with a web-based program that	enabled them to enter	
and interpret student reading data.		Technology
		Developed/Studied:

Zaption Mobile: Develop and Testi	ing a Mobile App for Video Learni	ng
Award # EDIES14C0049	Chris Walsh, Zaption	C
In this project, researchers iteratively of a mobile platform for Zaption, an is	ntervention for teachers designed to	Grade Levels: ES,MS, HS
enhance the incorporation of video me designed to allow teachers to add anno clips that aligned to topics, and enhance	otations to videos, make short video	Focal Populations:
and assessments that appeared at the t	op of each video.	Technology Developed/Studied:

The eSparkBeat: A Pulse on the Modern Classroom		
Award # EDIES14C0050Maya Letter	opuch, eSpark, Inc.	
In this project, researchers iteratively developed and studied	ed a prototype Grade Levels:	
of eSparkBeat, a dynamic dashboard to support teachers' u	use of eSpark, a ES, MS	
website that provides teachers curated playlists of tablet-base	ased apps,	
videos, and assessments tailored to students' individualized	d learning needs. Focal Populations:	
	Technology	
	Developed/Studied	

Grade Levels:

Technology

Focal Populations:

Developed/Studied:

MS, HS

Bridging the Gap: Applying Algebra Cognition Research to Develop and Validate Diagnostic Classroom Algebra Testlet

Michael Russell, Boston College

In this project, researchers designed and validated a set of computerbased algebra short tests—or testlets—for eighth- and ninth-grade algebra students. These testlets were to provide information about students' misconceptions of specific algebraic concepts to enable teachers to use that information to guide their instruction. Researchers instructed teachers on how to use the testlets and examined whether teachers could use them to identify students' misconceptions and to respond appropriately.

The Diagnostic Geometry Assessment Project

Award # <u>R305A080231</u>	Michael Russell, Boston	College
In this project, researchers designed and validated a	a computer-delivered	Grade Levels:
diagnostic formative assessment of geometric conc	eptions in the middle	MS
grades and developed instructional resources mean	t to assist teachers in	
addressing flawed or underdeveloped conceptions	identified by the	Focal Populations:
assessment. The assessment targeted sources of dif	ficulties and	
misconceptions in middle school geometry, specific	cally properties of	Technology
shapes, transformations, and measurement.		Developed/Studied:

Scaffolding Students' Use of Multiple Representations for Science Learning

Award # <u>R305A080507</u>	Sadhana Puntambekar, University of Wisconsin,	
1	Madison	
In this project, researchers iteratively developed a	nd studied an approach	Grade Levels:
to science instruction that used multiple modalitie	es—text, hands-on	MS, PA
experimentation, and interactive computer simula	tions—based on the	
Concept Mapped Project-based Activity Scaffoldi	ng System (CoMPASS).	Focal Populations:
The intervention incorporated learner support bo	th by the teacher and the	
computer. The researchers hypothesized that a careful integration of		Technology
multiple modalities within an instructional unit and the design of		Developed/Studied:
scaffolding that supported learning between modalities would lead to a		0
deeper conceptual understanding and improved student outcomes.		•
Researchers tested the intervention on a racially and socioeconomically		
diverse group of middle school students, pre-service teachers, and college		
students.		

Online Application to Support Inquiry-based Science Teaching		
Award # EDIES09C0014Robbin Chapman, G8	four Consulting	
In this project, researchers iteratively developed and studied Online	Grade Levels:	
Application to Support Inquiry-based Science (OASIS), an online	MS	
application developed to facilitate teachers' inquiry-based teaching		
strategies in their classrooms. The OASIS website was developed to help	Focal Populations:	
teachers integrate social networking, media-rich videos, activities,		
materials, and sensors into teaching middle school science concepts.	Technology	
	Developed/Studied:	

The Learning Element: A Lesson Planning and Curriculum Documentation Tool for Teachers

ward # <u>EDIES10C0018</u> Bill Cope, Common Ground Publishing, LLC		und Publishing, LLC
In this project, researchers iteratively developed a	and studied Learning	Grade Levels:
Element 3.0, an online tool for teachers that help	os with teacher	MS
colloboration, lesson planning, and lesson impler	nentation. Learning	
Element 3.0 was designed to support multimoda	l text delivery (text,	Focal Populations:
image, video, audio) and to be used across multip	ole content areas; it	
included three online spaces: (1) a teacher resour	ce space in which lesson	Technology
planning occurs, (2) a learner resource space in which this plan is		Developed/Studied:
translated into student-accessible text for indepen	ndent or semi-	
independent learning, and (3) a learner workbool	x space in which students	
undertake the activities in the learner resource sp	ace.	

Eliciting Mathematics Misconceptions (EM2): A Cognitive Diagnostic Assessment System

Award # <u>R305A110306</u>	Pamela Buffington, Education Development	
Awaru # <u>K505A110500</u>	Center, Inc.	
In this project, researchers designed and validate	d the Eliciting	Grade Levels:
Mathematics Misconceptions Project, a cognitive	e diagnostic assessment	MS
system to help teachers of middle school students quickly and effectively		
diagnose commonly held student misconceptions and overgeneralizations		Focal Populations:
in the areas of fractions, decimals, and operations with fractions and		
decimals. The researchers developed and refined three valid and reliable		Technology
sets of short, highly focused diagnostic measurement tools.		Developed/Studied:

Grade Levels:

SWD, EL

Technology

Focal Populations:

Developed/Studied:

MS

An Efficacy Study of Online Mathematics Homework Support: An Evaluation of the ASSISTments Formative Assessment and Tutoring Platform

Award # <u>R305A120125</u> Jeremy Roschelle, SRI International

In this project, researchers evaluated the impact of ASSISTments, an online formative assessment and mathematics tutoring platform for middle school students, focusing on its relative effectiveness with English learners and students with disabilities. ASSISTments allowed teachers to assign customized online homework to their students and then receive reports on each student's progress. Using ASSISTments, students would complete their homework on laptop computers and receive immediate feedback on their answers, individualized tutoring, hint messages on difficult problems, mastery problem sets that adjusted to knowledge level, and automatic reassessment of a subset of skills to help improve their retention of previously mastered skills.

Innovative Computer-Based Formative Assessment via a Development, Delivery, Scoring, and Report-Generative System

Award # <u>R305A120217</u>

Mark Wilson, University of California, Berkeley

In this project, researchers designed and validated a computerized	Grade Levels:
formative assessment system to be used in conjunction with the Assessing	MS
Data Modeling and Statistical Reasoning (ADM) middle school	
curriculum. ADM was designed to teach statistics and modeling but	Focal Populations:
lacked easy-to-use, computerized formative assessments that teachers	
could leverage to improve their instruction. The researchers aimed to	Technology
address this by developing such assessments, focusing on six constructs	Developed/Studied:
from ADM. The assessments were to be computerized modifications of	
existing paper-and-pencil tasks, along with new computer-based	
assessment tasks (e.g., card-sort problems, interactive graph problems).	

Automating the Measurement and Assessment of Classroom Discourse

Award # <u>R305A130030</u>	Martin Nystrand, Univer Madison	sity of Wisconsin,
In this project, researchers iteratively designed an	d validated an automated	Grade Levels:
version of the Classroom Language Assessment System (CLASS), an		MS
assessment that codes classroom interactions bet	ween a teacher and his or	

assessment that codes classroom interactions between a teacher and his or	
her students and that has been used to identify instructional strategies that	Focal Populations:
promote reading achievement. The program recorded classroom	
discussions and analyzed their content for discourse characteristics in	Technology
order to provide feedback and guidance to teachers that could inform	Developed/Studied:
their instruction, particularly in reading and literature classes.	

Expanding Supports for Data-Driven Language Instruction

ns:
died:

Linguistically-Informed Activity Generation Technology to Support English Learner Content Learning

Award # <u>R305A140472</u> Jill Burstein, Educational Testing Service		
In this project, researchers iteratively developed and studie	ied the Language Grade Levels:	
Muse Activity Palette, an intervention that supports middl	lle school MS	
teachers in the creation of text-based content and language	ge learning	
activities to improve English learners' (ELs) language and	d comprehension Focal Population	ns:
skills through a technology-rich instructional program. Tea	eachers used the EL	
web-based program to create content and language learning	ng activities.	
Teachers uploaded text that the program analyzed and use	ed to generate Technology	
appropriate instructional activities and recommendations.	. The program Developed/Stud	ied:
also took teachers through a structured interview and offe	ered guidance	
about selecting and developing activities appropriate for E	ELs.	

Grade Levels:

Technology

◟◍▮

Focal Populations:

Developed/Studied:

Ť

HS

Online Learning System to Advance Teaching of Hyper Molecular ModelingAward # ED08CO0044Keith Donaldson, MolySym, Inc.

In this project, researchers iteratively developed and studied a teaching and training interface for the MolySym Hypermodeling System. The incorporation of electronics and robotics technologies into ball-and-stick models to communicate in real-time with a software simulation system to improve students' understanding of important chemical principles related to three dimensional molecular structures. To help deploy this tool in classrooms, researchers developed a teaching and training interface for MolySym, called the Online Learning System, which included a report and assessment system for collecting data and measuring learning with hypermodels and simulations.

Agent and Library Augmented Shared Knowledge Areas (ALASKA)

Award # <u>R305A080667</u>	<u>7</u> Eric Hamilton, Pepperdine University	
In this project, researchers iteratively developed a	and studied ALASKA	Grade Levels:
(Agent and Library Augmented Shared Knowledge	ge Areas), an	HS
instructional support platform for teachers of Alg	gebra I. ALASKA	
integrated four technologies: collaborative works	paces, digital libraries,	Focal Populations:
pedagogical agents (an animated character used in	n online learning), and	
tablet computers. While using the program, teach	ners first assigned	Technology
classwork that students completed with the assist	ance of automated tutors	Developed/Studied:
that supported learning and supplied information. The students also used		
ALASKA to communicate with teachers or peers	s, and teachers used it to	
view students' work. ALASKA also included a te	acher professional	
development component and curriculum custom	ization.	

Algebra Screening and Progress Monitoring

Award # <u>R324A110262</u>	Anne Foegen, Iowa State	e University
In this project, researchers designed and validated	d an online progress	Grade Levels:
monitoring assessment system to enable teachers	of high school students	HS
with disabilities to better monitor students' learning	ng in algebra. The	
assessment system included six progress monitor	ing measures with three	Focal Populations:
measures focusing on traditional algebra instruction	on (e.g., symbolic	SWD
manipulation) and three reformist measures targe	eting conceptual	
understanding and problem solving.		Technology
		Developed/Studied:

2. Educator Professional Development

This chapter includes Institute-funded research focused on technologies to deliver professional development to educators and on solutions to a wide range of challenges facing educators. Professional development that targets educators (e.g., administrators, teachers, related services personnel, and other instructional personnel) and teaching candidates is widely recognized as a crucial component of improving student achievement (Avalos 2011). Institute-funded projects captured in this chapter include those that focused on technologies to help teachers adapt materials for English learner (EL) students, organize instructional environments, and improve their own content learning.

Table Key			
Grade levels:			
EC	Early Childhood	HS	High School
ES	Elementary School	PA	Postsecondary and Adult Education
MS	Middle School		
Focal populati	ions:		
EL	English Learners		
SWD	Students With Disabilitie	es	
Products developed or studied:			
	The spider web icon denotes web-based technology developed or studied.		
Θ	The viewer icon denotes	virtual	environment / interactive simulation developed or
-	studied.		
The tutor icon denotes intelligent tutor / artificial intelligence technology			
	developed or studied.		
2	The chess piece icon denotes game-based technology developed or studied.		
	The checkmark icon den	otes an	assessment developed, validated, or studied.

For more information about these projects and publications stemming from them, please follow the hyperlinked award number to the online abstract on the Institute's website.

Technology Consulting Services	
Award # ED06PO0923Dan Friendrich, Frontier Solutions	
In this project, researchers iteratively developed and studied a prototype	Grade Levels:
of the Education Security Practices Survey (ESPS), tool for teachers,	
administrators, and technology coordinators that aimed to educate them	Focal Populations:
on the balance between classroom technology needs and system security	
through training modules and a survey tool that addressed practices and	Technology
perceptions on topics established by the National Telecommunications	Developed/Studied:
and Information Administration.	
From Assessment to Action	
Award # ED06PO0933Tara Madhyastha, Facet 1	Innovation
In this project, researchers iteratively developed and studied a prototype	Grade Levels:
of a professional development intervention for teachers that aimed to	
train them in diagnostic assessment through an online diagnostic	Focal Populations:
assessment system that administrators used to evaluate educational and	
professional development efforts. This tool addressed the educational	Technology
data management tools that support No Child Left Behind Act standards.	Developed/Studied:

Modeling and Developing Situation Awareness in Teachers

Award # <u>R305U070007</u> K	evin Miller, University of Mic	chigan
In this project, researchers iteratively developed and studied an		le Levels:
intervention for prospective and novice teachers des	igned to enhance	
their ability to monitor students' attention and engage	gement using the skills Foca	al Populations:
that experienced teachers use. As part of the project,	, teachers watched	
teacher-perspective classroom video vignettes in sma	all groups and Tech	nnology
discussed what they observed. Teachers also took inc	dividual assessments Deve	eloped/Studied:
in which they watched video vignettes on the Tobii o	eye-tracker while	
researchers assessed teachers' scanning patterns.		

A Technology-rich Teacher Professional Development Intervention that Supports Contentbased Curriculum Development for English Language Learners

Award # <u>R305A100105</u>Jill Burstein, Educational Testing Service

Grade Levels:
Focal Populations:
EL
Technology
Developed/Studied:

Professional Development in Early Reading (Classroom Links to Early Literacy)

Award # <u>R305M040167</u>	Douglas Powell, Purdue	University
In this project, researchers iteratively developed a	nd studied two variants	Grade Levels:
of a professional development program for prekin	ndergarten teachers in	EC
rural areas designed to improve literacy outcomes	for children from	
economically disadvantaged families. One variant	of the program was on-	Focal Populations:
site classroom visits from an expert coach with in	nmediate feedback	
designed to improve teachers' early reading instru	ctional practices. In the	Technology
second variant, teachers participated in remote co	aching using digital	Developed/Studied:
video to record themselves while engaged in activ	ities that supported early	
reading and writing development. Coaches viewed	d the videos and	
provided feedback to teachers via the program's v	vebsite.	

Examining the Efficacy of Two Models of Preschool Professional Development in Language and Literacy

	cy Clark-Chiarelli, Education Development ter, Inc.
In this project, researchers evaluated the impact of two	approaches to Grade Levels:
implementing the Literacy Environment Enrichment Pr	rogram (LEEP), a EC
professional development intervention for prekindergan	rten teachers
designed to enhance children's literacy development. The	he first approach Focal Populations:
was a traditional face-to-face version of LEEP. The sec	cond approach was
a technology enhanced, distance-learning form of the particular	rofessional Technology
development called Technology-Enhanced LEEP (T-LI	EEP). Teachers Developed/Studied :
received the T-LEEP professional development via inte	eractive television,
web-based instruction, and face-to-face interaction.	

National Center for Research on Early Childhood Education		
Award # <u>R305A060021</u> Robert C.	. Pianta, University of Virginia	
In this project, researchers evaluated the impact of an in-serv	vice Grade Levels:	
professional development program for early childhood teach	hers that EC	
aimed to improve their ability to implement curricula, interact	ct with	
children, and promote children's social and academic develo	pment. The Focal Populations:	
intervention was delivered as a course followed by in-service	e consultation	
using the MyTeachingPartner software-based consultation m	nodel. Technology	
	Developed/Studied:	

Classroom Links to Vocabulary and Phonological Sensitivity Skills

Award # <u>R305B070605</u> Douglas Powell, Purdue	University
In this project, researchers iteratively developed and studied professional	Grade Levels:
development for prekindergarten teachers designed to improve children's	EC
early literacy outcomes. The professional development leveraged coaching	
and case-based hypermedia modules that targeted vocabulary	Focal Populations:
development, phonological sensitivity, use of classroom materials, and	
literacy practices. As part of the coaching, teachers viewed video clips of	Technology
research-based practices and received accompanying text that highlighted	Developed/Studied:
key elements of the practice and related research. Teachers also submitted	
videotapes of their instruction that coaches critiqued.	

Impact of Professional Development on Preschool Teachers' Use of Embedded-Instruction **Practices**

Award # <u>R324A070008</u> Patricia Snyde	er, Universi	ty of Florida
In this project, researchers iteratively developed and studied a pr	ofessional	Grade Levels:
development intervention for teachers of preschoolers with disa	bilities	EC
called Tools for Teachers. As part of the project, researchers con	npared	
the effects of two different ways of implementing Tools for Tear	chers. In	Focal Populations:
both versions, teachers received a toolkit (including a CD and w	eb-based	SWD
materials) and in-person workshops. However, in one version te	achers	
also received additional on-site expert coaching, and in the other	version,	Technology
teachers participated in web-based self-coaching instead.		Developed/Studied:

Development of an Online Course to Improve Teachers' Use of Effective Teacher-Child Interactions during Delivery of Early Literacy and Language Instruction

Award # <u>R305A100154</u> Bridget Hamre, University of Virginia

In this project, researchers iteratively developed and studied an online	Grade Levels:
professional development course for early childhood teachers to enhance	EC
their ability to support children's early literacy and language development.	
The online course format included lecture, presentation of video	Focal Populations:
examples, online assignments requiring teachers to analyze video	
examples, reading materials, writing assignments, and classroom-based	Technology
assignments.	Developed/Studied:

Using Validated Measures of Children's Engagement with Teachers, Peers, and Tasks to Guide Teachers' Response Toward Children with Emotional and Behavioral Challenges Award # R305A120323 Iason Downer, University of Virginia

Jason Downer, Oniversit	ty of virginia
In this project, researchers iteratively developed and studied a set of	Grade Levels:
professional development resources designed to help prekindergarten	EC
teachers more easily identify and understand children's engagement in the	
classroom and to more efficiently choose appropriate strategies to	Focal Populations:
increase children's self-regulation skills. The project team developed a	
teacher consultation model, Learning to Objectively Observe Kids, which	Technology
intended to improve early childhood teachers' observational skills,	Developed/Studied:
increase their understanding of the interdependence between children's	
behavioral strengths and challenges and the resources available to teachers	
in the classroom, and help them use the information to meet the needs of	
young children who display challenging behaviors. An assessment	
reporting system and online video-based course were developed as part of	
the model.	

Supporting Young Children's School Readiness and Reduced Challenging Behaviors: An Online Course to Enhance Toddler Teacher-Child Interactions

Award # <u>R324A130249</u>Jennifer LoCasale-Crouch, University of Virginia

In this project, researchers iteratively developed and studied an online	Grade Levels:
course for teachers of toddlers that aimed to improve the quality of their	EC
interactions with children as a mechanism to support their school	
readiness and reduce challenging behaviors. The course content focused	Focal Populations:
on children's development of relational, regulatory, and language skills	SWD
and addressed three major areas: children's development of the target	
skills, universal and classroom-wide practices that support development of	Technology
the skills, and targeted strategies to promote development of the skills to	Developed/Studied:
support children displaying challenging classroom behaviors.	

Scalable Approaches for Preparing Early Childhood Teachers: Identifying Costs and Effectiveness of Evidence Based Approaches to Coaching

Award # <u>R305A140378</u>	Susan H. Landry, UniversityControl	
In this project, researchers evaluated the impact of	of a web-based teacher	Grade Levels:
professional development course and in-person or remote coaching		EC
support for child care teachers to help them impr	rove children's school	
readiness. The course presented content through expert commentary and		Focal Populations:
video examples of quality instructional practices and teacher-child		EL
interactions. Teachers received coaching either in person or remotely to		
implement the language and literacy instructional practices and		Technology
responsiveness strategies that the professional de	velopment course	Developed/Studied:
presented.		

Internet Implementation of Empirically-Supported Interventions that can be Remotely Delivered in Authentic Preschool Programs for Mothers and Teachers: Evaluation of Direct Child and Teacher Outcomes

Award # <u>R305A140386</u>	Susan H. Landry, University of Texas, Houston, Health Science Center	
In this project, researchers evaluated the impact	of a web-based	Grade Levels:
professional development program for prekinder	garten teachers and	EC
training and support for parents that aimed to he	elp them improve	
children's school readiness The professional development program,		Focal Populations:
eTEEM (The Early Education Model), used video examples, web-based		EL
coaching, online coursework, and web-based progress monitoring to		
support teachers' instructional practices. The part	ent training intervention,	Technology
ePALs, (Play and Learning Strategies) provided web-based coaching and		Developed/Studied:
incorporated video examples of the target behaviors. Parents uploaded		
videotaped interactions with their children and c	ritiqued the videotapes	
with their coach.		

Scaling-up Effective Intervention for Preventing Reading Difficulties in Young ChildrenAward # R305W030257Patricia Mathes, Southern Methodist University

	•
In this project, researchers evaluated the impact of two interventions for	Grade Levels:
first-grade teachers, Proactive Reading and Responsive Reading, that	ES
aimed to enhance children's reading achievement. As part of this project,	
researchers studied the impact of different professional development	Focal Populations:
coaching approaches including on-site training, online training, and	
business-as-usual.	Technology
	Developed/Studied:

National Research Center on Rural Education Support		
Award # <u>R305A040056</u>	Thomas W. Farmer, University of North	
Award # <u>K30371040030</u>	Carolina, Chapel Hill	
In this project, researchers evaluated the impact of multiple interventions		Grade Levels:
across multiple grades (kindergarten through hig	across multiple grades (kindergarten through high school) to determine	
their effects on improving education in rural settings. One of the projects		
led by the National Research Center on Rural Education (NRCRES)		Focal Populations:
developed a video distance professional development system on writing		
for K-1 teachers and another studied the impact of in-school facilitators		Technology
for online advanced placement (AP) courses on student achievement.		Developed/Studied:

Child Instruction Interactions in Early Reading: Examining Causal Effects of Individualized Instruction

Award # <u>R305H040013</u>	Carol M. Connor, Florida	a State University
In this project, researchers iteratively developed a	and studied a professional	Grade Levels:
development intervention for first-grade teacher	s. The intervention	ES
included technology support tools that enabled t	eachers to provide	
effective individualized reading instruction. As pa	art of the professional	Focal Populations:
development, teachers learned how to access sof	tware and web-based	
materials that analyzed student assessment data a	nd produced	Technology
recommendations for individualized instruction.		Developed/Studied:

Can Literacy Professional Development be Improved with Web-based Collaborative learning Tools: A Randomized Field Trial

Award # <u>R305M040086</u> Anthony Bryk, Univ	ersity of Chicago
In this project, researchers evaluated the impact of Literacy Collaborati	ve, Grade Levels:
an onsite coaching professional development intervention for	ES
kindergarten through third- grade teachers designed to improve teacher	rs'
literacy instruction and student outcomes. As part of the professional	Focal Populations:
development, teachers also engaged with the Literacy Coaching toolkit,	a
supplemental web-based collaborative learning environment.	Technology
	Developed/Studied:

Teaching Teachers to Teach Critical Reading Strategies (CREST) through an Intensive Professional Development Model

Award # <u>R305M050021</u>	Misty W. Sailors, Univers Antonio	sity of Texas, San
In this project, researchers iteratively developed	ed and studied a professional	Grade Levels:
development model that taught strategic readi	ing behaviors to elementary	ES, MS
and middle school teachers to help improve the	heir students' reading	
achievement. As part of the project, teachers	created online Webquests to	Focal Populations:
support strategy instruction.		
		Technology
		Developed/Studied:

Evolving Inquiry: An Experimental Test of a Science Instruction Model for Teachers in Rural, Culturally Diverse Schools

Award # <u>R305M050109</u>	Elizabeth Doll, University of Nebraska, Lincoln
----------------------------	---

In this project, researchers iteratively developed and studied a technology-	Grade Levels:
supported professional development program for rural fifth- through	ES, MS
eighth-grade science teachers. The program aimed to improve their	
knowledge and application of biological sciences content and inquiry-	Focal Populations:
based science pedagogy. Teachers participated in a three-phase	
professional development sequence that was delivered through a	Technology
combination of education technology, local and project-wide learning	Developed/Studied:
communities, and traditional face-to-face instruction.	

Enhancing the Quality of Expository Text Instruction through Content and Case-Situated Professional Development

Award # <u>R305M050121</u>	Deborah C. Simmons, T	exas A&M University
In this project, researchers iteratively developed and studied a content-		Grade Levels:
and case-situated professional development mod	el for fourth-grade social	ES
studies teachers. The model linked evidence-base	ed practices with the	
experiences of teachers and provided teachers wi	th an on-demand and	Focal Populations:
video-supported, virtual mentoring and coaching	system.	
		Technology
		Developed/Studied:

Teaching Reading Comprehension Strategies		
Award # <u>R305S050072</u> Gro	Gregory Sales, Seward Incorporated	
In this project, researchers iteratively developed and s	tudied a professional	Grade Levels:
development intervention for fourth- through fifth-gr	ade teachers	ES
designed to improve their reading comprehension inst	truction through a	
DVD video clip series in which teachers modeled inst	ructional techniques	Focal Populations:
that researchers identified as critical for reading comp	rehension.	
		Technology
		Developed/Studied:

Embedded Classroom Multimedia: Improving Implementation Quality and Student Achievement in a Cooperative Writing Program

Award # <u>R305M050086</u>	Nancy A. Madden, Succ	ess for All Foundation
In this project, researchers iteratively developed and studied Writing		Grade Levels:
Wings, a professional development intervention for fourth- and fifth-		ES
grade teachers to help them transfer effective w	riting methods learned	
during a professional development workshop to	the classroom. The	Focal Populations:
intervention used multimedia content, classroom instruction, teacher		
learning communities, manuals and materials, cooperative learning, and		Technology
metacognitive writing strategies.		Developed/Studied:

Design of an Online Professional Development Resource for Mainstream Teachers of English Language Learners Award # ED06P00902 Paul Hopstock Development Associates

In this project, researchers iteratively developed and studied an online professional development intervention for teachers of English learners (ELs). The intervention provided core concepts and strategies related to EL instruction through self-contained and easily accessed and navigated instruction designed for use on an ongoing, as-needed basis.Grade Levels: ES, MS, HSFocal Populations: ELEL
(ELs). The intervention provided core concepts and strategies related to EL instruction through self-contained and easily accessed and navigated instruction designed for use on an ongoing, as-needed basis. Focal Populations: EL Technology
EL instruction through self-contained and easily accessed and navigated instruction designed for use on an ongoing, as-needed basis. EL Technology
instruction designed for use on an ongoing, as-needed basis. EL Technology
Technology
Developed/Studied:

Study of Services to Support Developing an Effective School Plan: An Activity-Based GuideAward # ED06PO0914Beverly Farr, Rockman et al.

In this project, researchers iteratively developed and studied a prototype	Grade Levels:
of a software-based intervention for teachers and administrators.	ES, MS, HS
Researchers aimed to identify an ideal model for school improvement	
support to scale-up professional development for data-driven	Focal Populations:
decisionmaking.	
	Technology
	Developed/Studied:

Using Video Clips of Classroom Instruction as Item Prompts to Measure Teacher Knowledge of Teaching Mathematics: Instrument Development and Validation

Award # <u>R305M060057</u> Nicole Kersting, Uni	versity of Arizona
In this project, researchers designed and validated a prototype of a vide	o- Grade Levels:
analysis assessment of teacher knowledge for three pre-algebra topic are	eas ES, MS
(fractions, ratio and proportion, and equations) that could inform future	e
professional development. Each video-analysis assessment (administere	d Focal Populations:
online) consisted of a set of video clips and an analysis task. Teachers	
analyzed each clip and recorded their responses in text fields.	Technology
	Developed/Studied:

Developing a Web-based Classroom Observation System (COS) to Support Increased Teacher Quality

Award # <u>ED07CO0045</u>	Shawn Edmondson, Spe LLC	ctrum Education Group,
In this project, researchers iteratively developed	and studied	Grade Levels:
Individualized Remote Information System (IRIS), a small, affordable		ES, MS, HS
video camera and web-based software system. IRIS allowed for the		
remote classroom observation of teachers. This	cool aimed to enhance	Focal Populations:
teachers' ability to teach by means of remote observers who provided		
feedback in real-time during a teacher's lesson as	well as follow-up	Technology
coaching.		Developed/Studied:

Development of an Interactive, Multimedia Assessment of Teachers' Knowledge of Early Reading

Award # <u>R305A080295</u>

Joanne F. Carlisle, University of Michigan

Grade Levels:

Technology

Focal Populations:

Developed/Studied:

ES

(ش)

In this project, researchers designed and validated Enacted Knowledge in Reading Lessons (EKRL), an assessments for first- through third-grade teachers to measure how effectively they used their pedagogical content knowledge in teaching reading and analyzing reading lessons. The team also designed a multimedia, interactive system, Case Studies in Reading Lessons (CSRL) to embed EKRL in. CSRL was intended for use in professional development in reading instruction.

Online Teacher Training: Promoting Student Social Competence to Improve Academic and Behavioral Outcomes in Grades K-3

Award # <u>R324A080150</u>	Brion Marquez, IRIS Me	dia, Inc.
In this project, researchers iteratively developed and studied the Student		Grade Levels:
Social Competence Program, a professional develop	pment intervention for	ES
elementary school teachers that aimed to provide te	eachers with	
instructional approaches for promoting children's s	ocial competence and	Focal Populations:
academic outcomes. The intervention was an internet-based, interactive		SWD
program that consisted of an overview of a response to intervention		
instructional (RTI) framework for teaching behavior, a how-to guide for		Technology
implementing a preventive classwide behavior program with the goal of		Developed/Studied:
enhancing academic performance, and methods for establishing intensive		
group interventions for students who do not respond to the classwide		
behavior program.		

Establishing Positive Behavior Supports in Elementary School Instructional Settings Award # <u>R305A090107</u> Brion Marquez, IRIS Media, Inc.

In this project, researchers iteratively developed and studied an online	Grade Levels:
professional development program for elementary school staff to teach	ES
them how to apply Positive Behavior Supports in a wide variety of	
elementary school settings. The program aimed to enhance teachers'	Focal Populations:
effective classroom management through three modules: understanding	
and using positive behavior support principles and practices,	Technology
implementing preventive behavioral approaches, and responding	Developed/Studied:
effectively to and correcting minor problem behaviors that interfere with	
instruction.	

INSPIRE: Urban Teaching Fellows Program Award # <u>R305A090145</u> Carla Johnson, University of Cincinnati In this project, researchers iteratively developed and studied a whole-Grade Levels: school, sustained, collaborative, and technology-enhanced science ES, MS professional development program for elementary and middle school teachers (grades 4 through 6). The intervention aimed to improve teacher **Focal Populations:** attitudes toward teaching science, content knowledge, and strategies to EL teach science as well as student interest in science and student science content knowledge. The modified program incorporated the following Technology elements: school-level leadership-building activities and the establishment **Developed/Studied:** of professional learning communities, a specific focus on elementary school science teachers, the use of technology to bring more resources into the classroom and to streamline the intervention, and teacher participation in two graduate-level science courses in physics and biodiversity.

Professional Development that is Systemic, Focused on Teacher Growth, Incorporates Coaching, Collaboration, Cohorts, and Increased Knowledge to Create Student Success

Award # <u>R324A090283</u> Maura Lina	s, University of Kansas
In this project, researchers iteratively developed and studied S'	TICKS Grade Levels:
(Systemic, focused on Teacher growth, Incorporates Coaching	ES, MS
collaboration, cohorts, and increased Knowledge to create Stu	dent
success), a professional development curriculum for kindergar	ten through Focal Populations:
eighth-grade teachers that aimed to promote student success b	by SWD
improving teacher practice in general instructional and classroo	om
management practices. The professional development curricul	um Technology
included web-based units, a coach's manual and training progr	ram, Developed/Studied:
collaborative session activities and materials, a web-based evaluation	uation
system, and a teacher-identified needs assessment.	

Developing and Evaluating a Technology-Based Fractions Intervention Program for Low-Achieving and At-risk Students

Award # <u>R305A100110</u>

Ted Hasselbring, Vanderbilt University

Grade Levels:

Technology

(😔

Focal Populations:

Developed/Studied:

ES, MS

T

In this project, researchers iteratively developed and studied an intelligent tutoring system, called the Helping At-Risk and Low-Achieving Students in Fractions (HALF), for fifth- and sixth-grade students. The HALF system aimed to promote understanding of fractions by presenting learning problems in conjunction with virtual manipulatives and videos designed to link to-be-learned concepts within already-familiar topics. Researchers also created a professional development webinar to increase teachers' familiarity with and understanding of the software.

The Targeted Reading Intervention: A Web-Based Professional Development Program Targeting K-1 Classroom Teachers and their Struggling Readers

Award # <u>R305A100654</u>	Lynne Vernon-Feagans,	University of North
Award # <u>K505A100054</u>	Carolina, Chapel Hill	
In this project, researchers evaluated the impact	of the Targeted Reading	Grade Levels:
Intervention (TRI) professional development pro-	Intervention (TRI) professional development program, an intervention	
for kindergarten and first-grade teachers that aimed to increase reading		
gains for struggling readers . As part of the proj	ect, a TRI consultant, via a	Focal Populations:
laptop and webcam, supported diagnostically-driven instruction by the		
teacher in one-on-one sessions in the classroom.		Technology
		Developed/Studied:

Prime Online: Teacher Pedagogical Content Knowledge and Research-based Practice in Inclusive Elementary Mathematics Classrooms

Award # <u>R324A100196</u> Cynthia Griffin, Universit		ty of Flo r ida
In this project, researchers iteratively developed and	d studied Prime	Grade Levels:
Online, an online professional development interve	ention for in-service	ES
regular and special education third- through fifth-gr	ade math teachers.	
The intervention aimed to improve teachers' content and pedagogical		Focal Populations:
knowledge through modules that addressed four elements: mathematics		SWD
content, pedagogical content knowledge for teaching elementary		
mathematics grounded in explicit strategy instruction emphasizing self-		Technology
regulated learning, the needs of students with learning disabilities included		Developed/Studied:
in general education math classrooms, and the use of	of progress monitoring	
assessments.		

Using Data to Foster the School Success of Students with Disabilities		
Award # <u>R324A110131</u>	Elizabeth Doll, Universit	ty of Nebraska, Lincoln
In this project, researchers iteratively devel	oped and studied NU Data, a	Grade Levels:
professional development intervention to help special education teams		ES, MS, HS
(grades kindergarten through 12 th) use data-based decisionmaking to		
improve academic outcomes for students v	vith disabilities. As part of NU	Focal Populations:
Data, the teams would receive manuals and ongoing coaching and would		SWD
work in peer networks. Nu Data also inclu	ded a manual of intervention	
procedures and online resource materials in	ncluding podcasted lectures,	Technology
video clips, case examples, and coaching ca	ises.	Developed/Studied:

Early Truancy Prevention Project

Award # <u>R305A120526</u> Philip Cook	, Duke University
In this project, researchers developed a truancy prevention pro-	gram for Grade Levels:
use by elementary school teachers. The program included teach	her home- ES
visiting, monitoring of attendance patterns through an electron	ic
attendance information system that teachers could access on th	neir mobile Focal Populations:
phones, and professional development to help teachers identify	y and
address specific causes of absenteeism. The intervention also ai	imed to Technology
build collaborative relationships between parents and teachers a	and to Developed/Studied:
promote positive teacher-child relationships.	

Implementing the Common Core State Standards for Students with Disabilities: Research and Development of Web-based Supports for IEP Team Decision

Award # <u>R324A120081</u>	James Shriner, University Champaign	of Illinois, Urbana-
In this project, researchers iteratively developed a	and studied	Grade Levels:
Individualized Education Program (IEP) Quality	-Core (IEPQ-Core), a	ES, MS
tutorial program for IEP teams to assist them in	writing quality IEPs with	
measurable annual goals linked to the Common Core State Standards. The		Focal Populations:
prototype of this product was developed under an earlier IES <u>award</u> .		SWD
Teachers of elementary and middle school studes	nts accessed IEPQ-Core	
via a web-based program that provided guidance	on writing IEP annual	Technology
goals in social, emotional, and behavioral areas; r	elated services; and	Developed/Studied:
academic content areas.		

Award # <u>R305K050045</u>	Douglas Owens, Ohio St	ate University
In this project, researchers evaluated the	e impact of connected classroom	Grade Levels:
technology with interactive pedagogy an	d professional development on	MS, HS
the mathematics and science achievement	nt of students in grades 7 through	
10. The connected classroom approach a	aimed to provide teachers with	Focal Populations:
immediate information that they could u	ise to adjust instruction. This	
information included displays of student	work that were instantly	Technology
aggregated and available on the teacher's	s computer as soon as student	Developed/Studied:
work was submitted. The intervention co	onsisted of six parts: provision of	
connected classroom technology (TI-Na	vigator), professional	
development, teacher experiential learnin	ng in their own classrooms, online	
web-based training, online discussion for	rum for the teacher community,	
and follow-up professional development	t at an annual conference.	

IEP Quality Improvement: Research and Development of Web-based Decision Support

Award # <u>R324J060002</u>

James Shriner, University of Illinois, Urbana-Champaign

Champaign	
In this project, researchers iteratively developed and studied an	Grade Levels:
intervention for sixth-grade teachers designed to help individual education	MS
program (IEP) teams write better quality IEPs to support higher	
standards-based achievement in reading. The project focussed on teachers	Focal Populations:
of students with reading difficulties (many of whom likely also had	SWD
specific learning disabilities and/or emotional disturbances). As part of	
the project, teachers engaged with a web-based IEP tutorial that guided	Technology
them through a decision-making process that connected all portions of	Developed/Studied:
the IEP and provided multiple examples of evidence-based program	
options.	

Award # <u>R305A080078</u>	Robert Potter, University	of South Florida
In this project, researchers iteratively deve	loped and studied a professional	Grade Levels:
development program, Leadership for Inte	egrated Middle School Science	MS
(LIMSS). LIMSS aimed to develop teacher	leadership in middle schools	
and teachers' ability to deliver student-cen	tered, engaging science	Focal Populations:
instruction. Major themes of the professio	nal development included	
developing teacher leadership skills, enhan	icing teacher understanding of	Technology
how students learn, and helping teachers u	inderstand how science	Developed/Studied
processes can be incorporated across all co	ontent areas of science	
instruction. The program includes 2-week	summer institutes, job-	
embedded school-year activities and web-s	supported professional	
development.	11 1	

An On-Line Professional Development Program for FluidMath

Award # EDIES09C0012 Donald Carney, Fluidity Software, Inc.	
In this project, researchers iteratively developed and studied an online	Grade Levels:
professional development platform for the FluidMath software.	MS, HS
Researchers designed FluidMath to recognize handwritten math formulas	
and sketches drawn on the screen of a pen-enabled computer. In this	Focal Populations:
project, researchers aimed to create a platform for training teachers to	
integrate FluidMath into basic algebra practice. The project also examined	Technology
teacher use of the technology and its promise in increasing student	Developed/Studied:
understanding of algebra.	

Accessible Professional Development for Teaching Aquatic Science Inquiry

Award # <u>R305A100091</u>	Kanesa Duncan, Univers	ity of Hawaii
In this project, researchers iteratively developed a	and studied a professional	Grade Levels:
deveolpment intervention to help middle and high school science teachers		MS, HS
improve their content knowledge, teaching metae	cogntion (i.e., their ability	
to reflect on their own teaching) self-efficacy, and ability to lead classroom		Focal Populations:
discussions. The professional development inclu-	ded four modules	
covering different domains of science, each of w	hich included in-person	Technology
trainings and video-based online learning suppor	t.	Developed/Studied:

Developing Guidelines for Optimizing Levels of Students' Overt Engagement ActivitiesAward # R305A110090Michelene Chi, Arizona State University

	•
In this project, researchers iteratively developed and studied a web-based	Grade Levels:
professional development module for middle school, high school, and	MS, HS, PA
community college teachers to help them learn how to modify activities to	
optimize student engagement. The intervention explained and	Focal Populations:
demonstrated various active learning behaviors and described to teachers	
the characteristics of activities associated with different levels of student	Technology
engagement. The module gave teachers examples of recommended	Developed/Studied:
practical procedures that could be adopted to enrich their classroom and	
homework activities.	

Strengthening School Leaders' Instructional Leadership Practice through Developing Teachers' Abilities to Integrate Technology in Support of Student Learning

Award # R305A110913Sara Dexter, University of	of Virginia
In this project, researchers iteratively developed and studied CANLEAD	Grade Levels:
(Cognitive Assistance Network, Learning Environment, and Database), a	MS
year-long leadership professional development institute and web-based	
learning environment for middle school leadership teams (groups that	Focal Populations:
incude principals, teacher-leaders, and technology speciailists).	
CANLEAD aimed to train leadership teams to recognize what strong	Technology
instruction in math and science looked like when it integrated technology	Developed/Studied:
and to carry out the instructional leadership practices needed to foster	
integration of technology into math and science instruction. CANLEAD's	
online learning environment included curricula, math and science	
technology resources, planning tools, video-conferencing, and social	
networking tools.	

Effect of the SUN Teacher Workshop on Student Achievement

Award # <u>R305B070443</u> Ann Batiza, Milwaukee	e School of Engineering
In this project, researchers iteratively developed and studied Students	Grade Levels:
Understanding eNergy, an in-service training workshop for high school	HS
teachers that aimed to help teachers build a deeper understanding of	
potentially difficult concepts, like energy transfer in biological systems an	d Focal Populations:
the impact of these processes on the flow of matter and energy in biology	7.
In the workshop, high school teachers learned to use interactive physical	Technology
models that provided multisensory experiences. In addition to the physica	al Developed/Studied:
models, teachers were provided with interactive and hyperlinked	
computer visualizations, animations, pen and paper exercises, schematics	
and other materials to help them teach high school biology.	

Growth Mindset Learning Platform for Educators and Students: Supporting Academic Motivation and Achievement through an Integrated Online Platform

Award # <u>EDIES10C0022</u>	Lisa Sorich Blackwell, Mindset Works, LLC	
In this project, researchers iteratively developed and studied the Growth		Grade Levels:
Mindset Learning Platform (GMLP), which was de	eveloped to support an	MS, HS
existing program, called Brainology. Brainology wa	s a social-behavioral	
software program designed to strengthen students'	ability to succeed in	Focal Populations:
school and life by teaching students how the brain	learns and changes	
with effort and how to use effective study skills to increase learning.		Technology
GMLP professional development applications addressed how to apply		Developed/Studied:
instructional supports to develop and sustain a growth mindset (i.e., the		
belief that one can improve his or her intelligence through effort and		
practice).		

Increasing Adolescent Engagement, Motivation, and Achievement: Efficacy of a Web-Based, Teacher Professional Development Model

Award # <u>R305A100367</u>	Joseph Allen, University	of Virginia
In this project, researchers evaluated the impact of	of My Teaching Partner-	Grade Levels:
Secondary (MTP-S) on teacher-student interaction	ons as they relate to	HS
improving student behavioral and achievement o	utcomes. MTP-S was a	
web-based system of professional development f	or high school teachers	Focal Populations:
designed to help them understand the developme	ental needs of adolescent	
students. MTP-S aimed to change the quality of t	eacher-student	Technology
interactions in ways that enhanced student engag	ement and motivation,	Developed/Studied:
reduced problematic behaviors, and increased stu	ident achievement.	

Enhancing Knowledge Related to Research-Based Early Literacy Instruction among Pre-Service Teachers

Award # <u>R305W060024</u>	Donna Scanlon, State Ur	niversity of New York
Awald # <u>K505w000024</u>	(SUNY), Albany	
In this project, researchers designed and te	sted a set of multimedia	Grade Levels:
training materials that could be used in pre-	-service teaching methods	РА
courses. The materials were to focus on teaching methods for language		
arts courses, and they aimed to increase pro	e-service teachers' exposure to	Focal Populations:
and understanding of scientifically-based re-	eading instruction.	
		Technology
		Developed/Studied:

PlatinuMath: An Online Formative Assessment Math Game for Preservice Elementary Teachers

Award # EDIES11C0045	Scott Brewster, Triad Di	gital Media
In this project, researchers iteratively developed	l and studied PlatinuMath,	Grade Levels:
a web-based mathematics game for pre-service teachers. The intervention		РА
aimed to strengthen and measure pre-service te	achers' knowledge of	
mathematics and provide college instructors with accurate assessments of		Focal Populations:
their students' mathematical understanding. Pla	tinuMath included a series	
of narrative-based mini-games that covered 24 standards-relevant topics		Technology
and supplemented any pre-service curriculum or training course.		Developed/Studied:

Section III: Technology to Support Research and School Improvement

This section features 32 projects focused on Technology to Support Research and School Improvement. It is organized into two chapters: one on Tools for Researchers and one on Technology for School Improvement. Chapter topics were informed by work supported by the National Center for Education Research and National Center for Special Education Research.

Each chapter presents relevant projects in table format. The tables provide the project title and award number; the principal investigator and affiliation; a short project description with tags to indicate the grade level(s) on which the project focused;⁵ the project's focal population, i.e., English learners or students with or at risk for disabilities; and the types of education technology products developed or studied through the project.

⁵ Blank grade levels indicate that grade ranges are not applicable (i.e., the technology is for researchers or school leaders) or that the information is unavailable.

1. Tools for Researchers

This chapter includes Institute-funded projects offering specialized tools, methods, and technology solutions designed to help researchers. For example, technologies may be designed to help researchers better estimate the size of achievement gaps, more effectively use student data from multiple sources, and better analyze extant data to gain deeper insights into educational systems and practices.

Table Key				
Grade levels:				
EC	Early Childhood	HS	High School	
ES	Elementary School	РА	Postsecondary and Adult Education	
MS	Middle School			
Focal populat				
EL	English Learners			
SWD	Students With Disabilitie	2S		
Products developed or studied:				
	loped of studied.			
	The spider web icon denotes web-based technology developed or studied.			
Α				
The viewer icon denotes virtual environment / interactive simulation developed or				
	studied.			
The tutor icon denotes intelligent tutor / artificial intelligence technology				
developed or studied.				
	The chess piece icon denotes game-based technology developed or studied.			
	The checkmark icon denotes an assessment developed, validated, or studied.			

For more information about these projects and publications stemming from them, please follow the hyperlinked award number to the online abstract on the Institute's website.

Practical Solutions for Missing Data and Imputation			
Award # <u>R305D090006</u>	Andrew Gelman, Colum	bia University	
In this project, researchers developed methods for	or multiple imputation of	Grade Levels:	
missing data to inform better missing data models and algorithms and to			
increase computational efficiency in education research studies. As part of		Focal Populations:	
the project, researchers developed software to help users identify potential			
problems at the outset, choose the right model and accommodate		Technology	
complications, and implement other missing data	strategies to allow for	Developed/Studied:	
comparisons.			

Development of Accessible Methodologies and Software in Hierarchical Models with **Missing Data**

Award # <u>R305D090022</u>	Stephen Raudenbush, National Opinion Research Center (NORC)	
In this project, researchers developed methods for handling missing data		Grade Levels:
in analyses of multilevel data and hierarchical models. In particular, the		
researchers developed new analysis methods and software to estimate		Focal Populations:
models and impute missing data and conducted trainings to help others		
use the methods and software.		Technology
		Developed/Studied:

Cross-Classified Structural Equations Model: Development of an OpenMX Module and its Application to Multiyear Assessment and Intervention Data in Literacy Research

Award # <u>R305D090024</u> Paras Mehta, University	Paras Mehta, University of Houston	
In this project, researchers developed a software library for fitting cross	SS- Grade Levels:	
classified structural equations models (CC-SEM). This software was to)	
help education researchers accurately model longitudinal, nested stude	ent Focal Populations:	
data that was partially cross-classified due to dispersion of students fro	om	
the same classroom to different classrooms. As part of the project,	Technology	
researchers documented the software library as well as the CC-SEM	Developed/Studied:	
modeling framework and developed a user-friendly manual for the CC	C-	
SEM software.		

Generalized Dimensionality Assessment for Multidimensional Psychometric Models		
Award # <u>R305D100021</u> Roy Levy, Arizona State	University	
In this project, researchers developed new statistical methods designed to	Grade Levels:	
help education researchers conduct dimensionality analysis for		
multidimensional item response theory (IRT) models. These procedures	Focal Populations:	
would allow education researchers to detect when two or more variables		
may be related to the same observable variable. As part of the project, the	Technology	
researchers developed and distributed software to conduct such analyses	Developed/Studied:	
using the free statistical software package, R.		

Software to Compute Effect Sizes for Cluster-Randomized Trials

Award # EDIES11C0037	Michael Borenstein, Biostatistical Programming Associates, Inc.	
In this project, researchers developed software t	that computed the	Grade Levels:
standard mean difference (symbolizd by d) and	its standard error for	
cluster-randomized trials (including 2-level and 3-level designs). The		Focal Populations:
program enabled researchers to identify the desi		
enter the data correctly, and provided annotation to help with choosing		Technology
the appropriate reference group. The program also carried out complex		Developed/Studied:
calculations without the user having to know th	e formulas.	

Bayesian Inference for Experimental and Observational Studies in Education			
Award # <u>R305D110001</u> David Kaplan, University	sity of Wisconsin, Madison		
In this project, researchers developed best practice guidance in Bayesian	Grade Levels:		
statistical modeling and open-source software to carry out this work. Th	2		
guidance and software was to help education researchers conduct analys	es Focal Populations:		
of three common experimental designs: randomized experimental, quasi	-		
experimental/observational, and longitudinal.	Technology		
	Developed/Studied:		

Increased Accuracy in the Detection of Differential Item Functioning through Multilevel Analysis

Award # <u>R305D110014</u>	Brian French, Washingto	on State University
In this project, researchers developed methods for	Grade Levels:	
item functioning (DIF) when analyzig multilevel	data. In addition to	
developing these methods, the researchers develo	Focal Populations:	
common statistical analysis programs, R and SAS	, so that education	
research could conduct the DIF analyses.	Technology	
		Developed/Studied:

Addressing Practical Problems in Achievement Gap Estimation: Nonparametric Methods for Censored Data

Award # <u>R305D110018</u>	Sean Reardon, Stanford	University
In this project, researchers developed methods to measure achievement		Grade Levels:
gaps (i.e., differences in group achievement and	inequities in educational	
advantages and opportunities). As part of the project, researchers		Focal Populations:
developed a set of practical guidelines for measured	ring achievement gaps	
based on categorical proficiency data along with free software to enable		Technology
researchers and stakeholders to estimate these g	aps.	Developed/Studied:

Psychometric Models for 21st Century Educational Survey Assessments			
Award # <u>R305D110027</u> Matthias Von Davier, Educational Testing Servic			
In this project, researchers developed methods to conduct statistical	Grade Levels:		
analysis of data from large-scale survey assessments including the National			
Assessment of Educational Progress (NAEP), Trends in Mathematics and	Focal Populations:		
Science Study (TIMSS), Progress in International Reading Literacy Study			
(PIRLS), and the Programme for International Student Achievement	Technology		
(PISA). The researchers also developed software for education researchers	Developed/Studied:		
to use while estimating different models.			

Weighting Methods for Mediation Analysis in Experimental and Quasi-Experimental Multilevel Data

Award # <u>R305D120020</u>	Guanglei Hong, Nationa Center (NORC)	l Opinion Research
In this project, researchers developed propensity-scored-based weighting		Grade Levels:
methods for revealing the mediation mechanisms in multi-level education		
settings. The researchers used a combination of theory, simulation studies,		Focal Populations:
and secondary data analyses to develop and to te	est the weighting methods	
and to compare their methods with others (e.g., path analysis and the		Technology
instrument variable method). The researchers also developed software to		Developed/Studied:
help education researchers to implement the we	ghting procedures.	

Accessible Methodology and User-Friendly Software for Multivariate Hierarchical Models Given Incomplete Data

Award # <u>R305D130033</u> Yongyun Shin, Virginia C University	Commonwealth
;	
In this project, researchers developed methods and software to analyze	Grade Levels:
multivariate hierarchical models with missing binary and ordinal data. The	
software required users to know and to input only the model they	Focal Populations:
intended to analyze; the software automated the remainder of the analysis	
steps.	Technology
	Developed/Studied:

2. Technology for School Improvement

This chapter includes Institute-funded research focused on technologies designed to improve databased decisionmaking, aid student matriculation planning, and enhance school resource management. Technology may enhance school improvement efforts, particulary in the area of datause (U.S. Department of Education, Office of Educational Technology 2010, 2016). For example, school improvement efforts specifically target the operation and management of schools to improve student achievement (Herman et al. 2008). Huberman and Miles (2013) contend that school improvement is not an exact science but rather a process of matching assessed needs with appropriate solutions that take into account the political, social, and educational environments of the communities in which they are found. Effective, lasting school improvement requires a myriad of considerations, strategies, partners, and approaches to a wide range of underlying problems (Perlman and Redding 2011).

Table Key			
Grade levels:			
EC	Early Childhood	HS	High School
ES	Elementary School	РА	Postsecondary and Adult Education
MS	Middle School		
Focal populat	ions:		
EL	English Learners		
SWD	Students With Disabilit	ies	
Products developed or studied: Image: the spider web icon denotes web-based technology developed or studied. Image: the spider web icon denotes virtual environment / interactive simulation developed or studied.			
The tutor icon denotes intelligent tutor / artificial intelligence technology developed or studied.			
2	The chess piece icon denotes game-based technology developed or studied.		
	The checkmark icon de	notes an	assessment developed, validated, or studied.

For more information about these projects and publications stemming from them, please follow the hyperlinked award number to the online abstract on the Institute's website.

Award # <u>R305E050089</u> William Hartman, Pennsylvania State University
Award # <u>K505E050067</u> william Hattinan, Fellisylvania State University
In this project, researchers iteratively designed and validated a cost- Grade Levels:
accounting system to help school and district administrators make
resource allocation decisions that are tied to student-level learning Focal Populations:
outcomes. The system provided detailed cost information related to how
resource decisions were made for students, and collected, organized, and Technology
reported multiple levels of expenditure data. With these data, Developed/Studied:
administrators who tested the system were able to make changes to
resource allocations in ways that had the potential to improve student
outcomes.

School Forward Tracker: An Online Tool to Help Schools Implement and Monitor Action Plans for School Improvement

Award # <u>R305S050040</u>	Scott Burg, Rockman et	al.
In this project, researchers iteratively developed	and studied the School	Grade Levels:
Forward Tracker, a web-based platform to help	school and district	
administrators formulate, implement, and evaluated	te the school	Focal Populations:
improvement process. School Forward Tracker'	s platform was designed	
to help administrators store, maintain, and use s	chool improvement plan	Technology
data, and it included a dashboard with tools for	budget planning and	Developed/Studied:
allocation, monitoring of implementation, evaluation	ation of results, and	
reporting.		

Education Scorecard	
Award # ED06PO0916Keith Morical, ROI.co	om, Inc.
In this project, researchers iteratively developed and studied a prototype	Grade Levels:
of an intervention that aimed to enhance schools' ability to support	
educational excellence through an integrated electronic "Educational	Focal Populations:
Scorecard" that assisted schools with education data management.	
	Technology
	Developed/Studied:

Student Outcomes Analysis Reporting (SOAR) Server		
Award # <u>ED06PO0917</u>	Jason Davidson, Tracen	Technologies, Inc.
In this project, researchers iteratively developed a	prototype of Student	Grade Levels:
Outcomes Analysis Reporting (SOAR), a web-bas	sed data storage and	
reporting server. SOAR aimed to integrate existin	g student data into a	Focal Populations:
program that would both store information and p	provide template reports	
to schools for student progress monitoring. SOA	R was to provide more	Technology
accurate trends and patterns regarding students' a	cademic and behavioral	Developed/Studied:
outcomes.		

Technology Consulting Services

Award # ED06PO0923Dan Friendrich, Frontier SolutionsIn this project, researchers iteratively developed and studied a prototype
of the Education Security Practices Survey (ESPS), tool for teachers,
administrators, and technology coordinators that aimed to educate them
on the balance between classroom technology needs and system security
through training modules and a survey tool that addressed practices and
perceptions on topics established by the National Telecommunications
and Information AdministrationGrade Levels:
Focal Populations:
Developed/Studied:

Data Services Model to Support Effective Management, Analysis, and Use of Data

Award # ED06PO0925Martha Williams, Center :Management		for Resource
In this project, researchers iteratively developed	d and studied a prototype	Grade Levels:
of a software-based intervention for school add	ninistrators that aimed to	
improve compliance with No Child Left Behind equity, continuous		Focal Populations:
improvement, and accountability standards thr	ough a data services	
software system that supported data managem	ent, integration,	Technology
disaggregation, and analysis functions that did	not require technical	Developed/Studied:
personnel support.		

Education Data Management System		
Award # <u>ED06PO0928</u>	Madhu Nair, Ansya Ente	rprise Solutions
In this project, researchers developed technology t	to improve schools'	Grade Levels:
ability to make data driven decisions. The goal was	s to help schools collect	
the most relevant data and match individual studen	nt records in order to	Focal Populations:
improve the overall efficacy and effectiveness of the	ne school and	
educational system.		Technology
		Developed/Studied:

Prototype Software Application		
Award # <u>ED06PO0929</u>	Robert Cheetham, Aven	cia Inc
In this project, researchers iteratively developed of a software tool that managed educational data	1 71	Grade Levels:
administrators' ability for data tracking and analy	vsis.	Focal Populations:
		Technology Developed/Studied:

Consulting Framework
Award # <u>ED06PO0934</u>

Patrick Haggood, Mateo Software Consulting

In this project, researchers iteratively developed and studied a prototype	Grade Levels:
of software to help schools and districts reduce professional development	
costs, accelerate technology implementation, and capture student	Focal Populations:
achievement data. The software was an an open-source aggregator that	
linked existing learning management data into forms already familiar to	Technology
practitioners (e.g., teachers and administrators).	Developed/Studied:

Research on Education Data Management to Assist in the Acquisition or Re-Purposing of Testing, Environment, and Resources Databases to Assist Educators in Meeting the **Requirements of NCLB**

Award # <u>ED06PO0935</u>	Robert Tennyson, CYBE	ER Learning Corporation
In this project, researchers iteratively developed a	nd studied a prototype	Grade Levels:
of a software-based intervention for practitioners	(e.g., principals and	
other administrators) that aimed to provide reada	ble and interpretable	Focal Populations:
evaluation results and identify their causal factors.	The intervention	
included a database that described lessons learned	from existing case	Technology
studies focused on testing, environment, and reso	urces. The database also	Developed/Studied:
allowed cross-comparison of student improvement	nt through each factor.	

Development of Fiscal Management Tools for Charter Schools

Award # <u>ED06PO0959</u>	Cathi Vogel, Vogel & As	ssociates
In this project, researchers iteratively developed and studied a prototype		Grade Levels:
of an intervention that aimed to prevent chart	er school closures. The	
intervention was a series of software tools that	t used a business	Focal Populations:
management approach and that were tailored	to address working capital	
and cash flow management, budgeting and lor	ng-range financial planning,	Technology
and additional administrative services outsour	cing products.	Developed/Studied:

MeasureResults: A Web-based Tool to Support School Administrators in Conducting Analyses

mpirical Education, Inc.
ponent Grade Levels:
e Focal Populations:
web-
d Technology
Developed/Studied:

Strategic School Funding for Results Project, Phase II		
Award # <u>R305A100630</u>	Jay Chambers, American	Institutes for Research
In this project, researchers iteratively developed	and studied Strategic	Grade Levels:
School Funding for Results (SSFR), an intervent	ion for school district	
leadership to help them make resource managem	nent decisions.	Focal Populations:
Researchers aimed to make SSFR a needs-based	funding model with	
policies and tools for addressing decisionmaking	and accountability	Technology
regarding how funds were used. It included a res	ource allocation formula,	Developed/Studied:
computerized district and school level data mana	gement systems, and	
fidelity of implementation measures.		

TEIDS Plus: Integrating Quality Assurance and Data-based Decision Making to Enhance IFSP Quality, Implementation, and Child and Family Outcomes

Award # <u>R324B070003</u>	Robin McWilliam, Siskin	Children's Institute
In this project, researchers iteratively developed an	d studied Tennessee	Grade Levels:
Early Intervention Data System Plus, a web-based	quality assurance	EC
system for early intervention service coordinators.	The system aimed to	
improve the outcomes of infants and toddlers with	n disabilities and their	Focal Populations:
families by helping interventionists develop and im-	plement quality	SWD
individualized family service plans (IFSPs). Using t	he system, service	
coordinators would engage with a web-based series	s of prompts or guiding	Technology
questions about the IFSP process as they proceeded	ed through various	Developed/Studied:
stages of IFSP development with each child and fa	mily. In addition to	
these guiding questions, service coordinators acces	sed links to additional	
resources like presentations, video clips, procedura	l guidelines.	

The eServe Initiative: An Empirically Supported, Web-based Educational Decision Making Product

Award # <u>ED06PO0918</u>	Rob Harsh, Software Ou	tfitters, Inc.
In this project, researchers iteratively developed a	nd studied a prototype	Grade Levels:
of eServe, an intervention for kindergarten throug	h 12th-grade teachers	ES, MS, HS
and administrators that aimed to reduce exclusion	ary disciplinary referrals.	
The intervention assisted teachers and principals t	o identify appropriate	Focal Populations:
individualized and group instructional and behavior	oral interventions for	
students. eServe was designed to be a web-based t	ool that managed	Technology
student data, recognized patterns, established pre-	defined decisionmaking	Developed/Studied:
rules, sent notifications, and provided best-practic	e behavioral	
management strategies.		

Study of Services to Support Developing an Effective School	ol Plan: An Activity-Based Guide
Award # ED06PO0914Beverly Farr,	Rockman et al.
In this project, researchers iteratively developed and studied a pr	rototype Grade Levels:
of a software-based intervention for teachers and administrators	ES, MS, HS
Researchers aimed to identify an ideal model for school improve	ement
support to scale-up professional development for data-driven	Focal Populations:
decisionmaking.	

Technology

Developed/Studied:

Study of Educational Improvement Planning System Feasibility for Promoting Effective School Improvement and Planning

Award # <u>ED06PO0915</u>	Terri Akey, Rockman et	al.
In this project, researchers iteratively develop	ped and studied a prototype	Grade Levels:
of an intervention for researchers and admir	histrators that aimed to	ES, MS, HS
support school improvement planning throu	igh an online tool paired with	
on-site technical assistance that developed m	neasurable, actionable	Focal Populations:
improvement plans, and collected data.		
		Technology
		Developed/Studied:

Strategies for Providing Evidence-Based Learning Opportunities	
Award # ED06PO0924Charles Cowen, Analytic	Force
In this project, researchers developed and studied a prototype of a	Grade Levels:
software dashboard to help educators leverage their data and experience	ES, MS, HS
to develop actionable plans for students kindergarten to 12th-grade. The	
software was to synthesize student assessment data, as well as student,	Focal Populations:
teacher, principal and school characteristics in order to determine	
student's performance levels and strengths and weaknesses and to	Technology
recommend learning or teaching strategies while also predicting student	Developed/Studied:
performance under different personalized learning regimens.	

A Proposal to Measure the Impact of Indiana's System of Diagnostic Assessments on Student Achievement Outcomes

Award # <u>R305E090005</u>

Shazia Miller, Learning Point Associates

Grade Levels:

Technology

Focal Populations:

Developed/Studied:

ES, MS

()

In this project, researchers evaluated the impact of Indiana's statewide, computer-based, diagnostic assessment intervention on changes in math teachers' instructional behaviors and on K-8 student performance on state accountability math tests. The assessment intervention used different assessments based on the students' grades. For K-2 students, it used mCLASS®:Reading and mCLASS®:Math. For grades 3–8 students, it used a system called Acuity from CTB/McGraw-Hill. All the assessments were online, and teachers, adminstrators, and staff from the Indiana Department of Education could review data. The researchers aimed to provide evidence regarding the value of using interim assessments to monitor student progress in order to guide instruction and increase student achievement.

Differentiated Placement Quality Control Model

Award # ED06PO0913

Marilyn Ryll, Ryll International

In this project, researchers developed a prototype of a tool that would	Grade Levels:
help improve differentiated placement proceedures for English language	HS
learners (ELLs). As part of the project, they explored the relationship	
between the ELL placement practices of representative high schools and	Focal Populations:
resulting classroom compositons, instructional practices and curricula, and	EL
students outcomes.	
	Technology
	Developed/Studied:

Using High School Transcript Data to Improve Student Access to Four-Year Colleges Award # <u>R305A080263</u> Karen Levesque, MPR Associates, Inc.

	,
In this project, researchers iteratively refined and tested Transcript	Grade Levels:
Evaluation Service (TES), an intervention that provides data tools to	HS
students, counselors, and school administrators and outreach services to	
counselors and administrators to help with college advising and school-	Focal Populations:
level planning. The research team aimed to develop new components for	
TES by optimizing the transcript analysis procedures, refining student	Technology
reports by translating them into Spanish and adding more financial aid-	Developed/Studied:
related information, and developing a web-based transcript analysis tool	
for the school databases.	

- Aleven, V., Beal, C.R., and Graesser, A.C. (2013). Introduction to the Special Issue on Advanced Learning Technologies. *Journal of Educational Psychology*, *105*(4): 929-931.
- Andes, L., and Claggett, E. (2011). Wiki Writers: Students and Teachers Making Connections Across Communities. *The Reading Teacher, 64*(5): 345-350.
- Avalos, B. (2011). Teacher Professional Development in Teaching and Teacher Education Over Ten Years. *Teaching and Teacher Education*, 27(1): 10-20.
- Barron, B. (2006). Interest and Self-Sustained Learning as Catalysts of Development: A Learning Ecology Perspective. *Human Development*, 49(4): 153–224.
- Bassett, M.J., and Frost, B. (2010). Smart Math: Removing Roadblocks to College Success. Community College Journal of Research and Practice, 34: 869-873.
- Bennett, R.E., Persky, H., Weiss, A., and Jenkins, F. (2007). Problem Solving in Technology Rich Environments: A Report From the NAEP Technology-Based Assessment Project, Research and Development Series (NCES 2007-466). Washington, DC: U.S. Department of Education, National Center for Education Statistics.
- Biggs, M.C., Homan, S.P., Dedrick, R., and Rasinski, T. (2008). Using an Interactive Singing Software Program: A Comparative Study of Struggling Middle School Readers. *Reading Psychology*, 29: 195-213.
- Bill and Melinda Gates Foundation (2014). Teachers Know Best: What Educators Want From Digital Instruction Tools. Retrieved July 11, 2016, from http://k12education.gatesfoundation.org/learning/teachers-know-best-making-data-work/.
- Biswas, G., Segedy, J.R., and Kinnebrew, J.S. (2013). Smart Open-Ended Learning Environments That Support Learners' Cognitive and Metacognitive Processes. In A. Holzinger, and G. Pasi (Eds.), Human-Computer Interaction and Knowledge Discovery in Complex, Unstructured, Big Data: Vol. 7947. Lecture Notes in Computer Science (pp. 303-310). Springer-Verlag Berlin Heidelberg.
- Brown, J.S., and Adler, R.P. (2008). Minds on Fire: Open Education, the Long Tail, and Learning 2.0. *Educause Review*: 17–32.
- Cheung, A.C., and Slavin, R.E. (2013). The Effectiveness of Educational Technology Applications for Enhancing Mathematics Achievement in K-12 Classrooms: A Meta-Analysis. *Educational Research Review*, 9: 88-113.
- Collins, A., and Halverson, R. (2009). Rethinking Education in the Age of Technology: The Digital Revolution and Schooling in America. New York: Teachers College Press.
- Campuzano, L., Dynarski, M., Agodini, R., and Rall, K. (2009). Effectiveness of Reading and Mathematics Software Products: Findings From Two Student Cohorts (NCEE 2009-4041). Washington, DC: National Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of Education.
- Craig, S.D., Hu, X., Graesser, A.C., Bargagliotti, A.E., Sterbinsky, A., Cheney, K.R., and Okwumabua, T. (2013). The Impact of a Technology-Based Mathematics After-School

Program Using ALEKS on Student's Knowledge and Behaviors. *Computers and Education*, 68: 495-504.

- Dean, C.B., Hubbell, ER., Pitler, H., and Stone, B. (2012). *Classroom Instruction That Works: Research-Based Strategies for Increasing Student Achievement*. Alexandria, VA: ASCD.
- Dede, C. (2009). Immersive Interfaces for Engagement and Learning. Science, 323: 66-69.
- Denison, D.V., Hartman, W.T., Stiefel, L., and Deegan, M.M. (2011). A Model for School-Level Resource Reporting. *Public Performance and Management Review*, *35*(1): 29-53.
- Doering, A., and Veletsianos, D.A. (2007). An Investigation of the Use of Real-Time, Authentic Geospatial Data in the K-12 Classroom. *Journal of Geography*, *106*(6), 217-225.
- Dreikurs, R., Grunwald, B.B., and Pepper, F.C. (2013). *Maintaining Sanity in the Classroom: Classroom Management Techniques*. New York: Taylor and Francis.
- Durlak, J.A., Weissberg, R.P., Dymnicki, A.B., Taylor, R.D., and Schellinger, K.B. (2011). The Impact of Enhancing Students' Social and Emotional Learning: A Meta-Analysis of School-Based Universal Interventions. *Child Development*, 82(1): 405-432.
- Eden, S. and Heiman, T. (2011). Computer Mediated Communication: Social Support for Students With and Without Learning Disabilities. *Educational Technology and Society*, 14(2): 89-97.
- Evertson, C.M., and Weinstein, C.S. (Eds.). (2013). Handbook of Classroom Management: Research, Practice, and Contemporary Issues. Mahwah, NJ: Routledge.
- Favier, T.T. and van der Schee, J.A. (2014). The Effects of Geography Lessons With Geospatial Technologies on the Development of High School Students' Relational Thinking. *Computers* and Education, 76: 225-236.
- Garet, M.S., Porter, A.C., Desimone, L., Birman, B.F., and Yoon, K.S. (2001). What Makes Professional Development Effective! Results From a National Sample of Teachers. *American Educational Research Journal*, 38(4): 915-945.
- Gee, J.P. (2004). Situated Language and Learning. New York: Routledge.
- Gomez, L.M., Sherin, M.G., Griesdorn, J., and Finn, L. (2008). Creating Social Relationships: The Role of Technology in Preservice Teacher Preparation. *Journal of Teacher Education*, *59*(2): 117-131.
- Graesser, A.C., McNamara, D.S., and VanLehn, K. (2005). Scaffolding Deep Comprehension Strategies Through Point and Query, AutoTutor, and iSTART. *Educational Psychologist*, 40(4): 225-234.
- Graesser, A.C., and McNamara, D.S. (2010). Self-Regulated Learning in Learning Environments With Pedagogical Agents That Interact in Natural Language. *Educational Psychologist*, 45(4): 234-244.
- Graesser, A.C. (2011). Learning, Thinking, and Emoting With Discourse Technologies. *American Psychologist*, *66*(8): 746-757.
- Graesser, A.C. (2013). Evolution of Advanced Learning Technologies in the 21st Century. *Theory Into Practice*, *52*(93): 93-101.
- Han, H., and Johnson, S.D. (2012). Relationship Between Students' Emotional Intelligence, Social Bond, and Interactions in Online Learning. *Educational Technology and Society*, 15(1): 78-89.
- Hannafin, M., Hannafin, K., and Gabbitas, B. (2009). Re-Examining Cognition During Student-Centered, Web-Based Learning. *Education Technology Research and Development*, 57(6): 767-785.

- Haxton, C.L., Chambers, J.G., Manship, K., Cruz, L., and O'Neil, C. (2012). Perspectives of Central Office Staff, Principals, Teachers, and School Site Councils on Resource Allocation and SSFR Implementation in 2010–11 (Twin Rivers Unified School District). Washington, DC: American Institutes for Research.
- Henrie, C.R., Halverson, L.R., and Graham, C.R. (2015). Measuring Student Engagement in Technology-Mediated Learning: A Review. *Computers and Education*, *90*: 36-53.
- Herman, R., Dawson, P., Dee, T., Greene, J., Maynard, R., Redding, S., and Darwin, M. (2008). *Turning Around Chronically Low-Performing Schools: A Practice Guide* (NCEE #2008-4020).
 Washington, DC: National Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of Education.
- Huberman, A.M., and Miles, M.B. (2013). *Innovation Up Close: How School Improvement Works*. New York: Springer Science and Business Media.
- Institute of Education Sciences, U.S. Department of Education. (2008). *Rigor and Relevance Redux: Director's Biennial Report to Congress* (IES 2009-6010). Washington, DC.
- Ito, M. (2009). Hanging Out, Messing Around, and Geeking Out: Kids Living and Learning With New Media. Cambridge, MA: MIT Press.
- Jackson, T.G., Boonthum-Denecke, C., and McNamara, D.S. (2015). Natural Language Processing and Game-Based Practice in iSTART. *Journal of Interactive Learning Research*, 26: 189-208.
- Jenkins, H. (2009). Confronting the Challenges of Participatory Culture: Media Education for the 21st Century. Cambridge, MA: MIT Press.
- Jensen, B., Sonnemann, J., Roberts-Hull, K., and Hunter, A. (2016). *Beyond PD: Teacher Professional Learning in High-Performing Systems*. Washington, DC: National Center on Education and the Economy.
- Johnson, L., Levine, A., and Smith, R. (2009). *The 2009 Horizon Report*. Austin, TX: The New Media Consortium.
- Jones, V., and Jones, L. (2015). Comprehensive Classroom Management: Creating Communities of Support and Solving Problems. Upper Saddle River, NJ: Pearson.
- Kaiser Family Foundation (2009). Generation M2: Media in the Lives of 8- to 18-Year-Olds. Retrieved July 11, 2016, from http://kff.org/other/poll-finding/report-generation-m2-media-in-the-lives/.
- Kay, R.J. (2006). Evaluating Strategies Used to Incorporate Technology Into Preservice Education: A Review of the Literature. Journal of Research on Technology in Education, 38(4): 383-408.
- Kim, J.J.H., Copeland, R., and An, C. (2015). Technology Innovations in K-12 Education. Boston: Harvard Business School Publishing.
- Kim, S., and Chang, M. (2010). Computer Games for Math Achievement of Diverse Students. *Educational Technology and Society*, 13(3): 224-232.
- Kong, S.C. (2015). An Experience of a Three-Year Study on the Development of Critical Thinking Skills in Flipped Secondary Classrooms With Pedagogical and Technological Support. *Computers and Education*, 89: 16-31.
- Lavesque, K. (2013). Developing High-Quality Data to Improve College Readiness and Success: Lessons From a Three-State Pilot. Berkeley, CA: MPR Associates, Inc.

- Lazakidou, G., and Retalis, S. (2010). Using Computer Supported Collaborative learning Strategies for Helping Students Acquire Self-Regulated Problem-Solving Skills in Mathematics. *Computers and Education*, 54: 3-13.
- Leu, D.J., Kinzer, C.K., Coiro, J.L., and Cammack, D.W. (2004). Toward a Theory of New Literacies Emerging From the Internet and Other Information and Communication Technologies. In *Theoretical Models and Processes of Reading* (5th ed.), pp. 1570–1613. Newark, DE: International Reading Association.
- Levin, J., and Nolan, J.F. (2013). *Principles of Classroom Management: A Professional Decision-Making Model*. Upper Saddle River, NJ: Pearson Higher Ed.
- Looi, C.K., Chen, W., and Ng, F.K. (2010). Collaborative Activities Enabled by Group Scribbles: An Exploratory Study of Learning Effectiveness. *Computers and Education*, *54*(1): 14-26.
- Louys, A., Hernandez-Leo, D., Schoonenboom, J., Lemmers, R., and Perez-Sanagustin, M. (2009). Self-Development of Competence for Social Inclusion Using the TENCompetence Infrastructure. *Educational Technology and Society*, 12(3): 70-81.
- Lyons, C.D., and Tredwell, C.T. (2015). Steps to Implementing Technology in Inclusive Early Childhood Programs. *Computers in the Schools*, *32*(2): 152-166.
- Mason, R. (2006). Learning Technologies for Adult Continuing Education. *Studies in Continuing Education, 28*(2): 121-133.
- Means, B. (2010). Technology and Education Change: Focus on Student Learning. *Journal for Research on Technology Education*, 42(3): 285-307.
- Mettler, E., Massey, C., and Kellman, P.J. (2011) Improving Adaptive Learning Technology Through the Use of Response Times. In L. Carlson, C. Holscher, and T. Shipley (Eds.), *Proceedings of the 33rd Annual Conference of the Cognitive Science Society* (pp. 2532-2537). Boston: Cognitive Science Society.
- Mousa, C., and Barrett-Greenly, T. (2015). Bridging the App Gap: An Examination of a Professional Development Initiative on Mobile Learning in Urban Schools. *Computers and Education*, 88: 1-14.
- National Science Foundation (2008a). Beyond Being There: A Blueprint for Advancing the Design, Development, and Evaluation of Virtual Organizations. Final Report From Workshops on Building Virtual Organizations. Arlington, VA: NSF.
- National Science Foundation (2008b). Fostering Learning in the Networked World: The Cyberlearning Opportunity and Challenge. Report of the NSF Task Force on Cyberlearning. Arlington, VA: NSF.
- OECD (Organization for Economic Co-Operation and Development) (2006). New Millennium Learners in Higher Education: Evidence and Policy Implications. Paris: Centre for Educational Research and Innovation.
- OECD (Organization for Economic Co-Operation and Development) (2008). 21st Century Learning: Research, Innovation and Policy Directions From Recent OECD Analyses. Paris: Centre for Educational Research and Innovation.
- Parette, H.P., Peterson-Karlan, G.R., Wojcik, B.W., and Bardi, N. (2007). Monitor That Progress! Interpreting Data Trends for Assistive Technology Decision Making. *Teaching Exceptional Children*, 40(1): 22-29.

- Perlman, C.L., and Redding, S. (2011). *Handbook on Effective Implementation of School Improvement Grants*. Academic Development Institute. Retrieved July 11, 2016, from <u>http://www.centerii.org/handbook/</u>.
- Rice, K.L. (2006). A Comprehensive Look at Distance Education in the K-12 Context. *Journal of Research on Technology in Education*, 38(4): 425-448.
- Roll, I., Aleven, V., McLaren, B.M., and Koedinger, K.R. (2010). Improving Students' Helpseeking Skills Using Metacognitive Feedback in an Intelligent Tutoring System. *Learning and Instruction.* doi:10.1016/j.learninstruc.2010.07.004
- Sandberg, J., Maris, M., and Hoogendoorn, P. (2014). The Added Value of a Gaming Context and Intelligent Adaptation for a Mobile Learning Application for Vocabulary Learning. *Computers* and Education, 76: 119-130.
- Schenke, K., Rutherford, T., and Farkas, G. (2014). Alignment of Game Design Features and State Mathematics Standards: Do Results Reflect Intentions? *Computers and Education*, 76: 215-224.
- Stephan, J.L., Davis, E., Lindsay, J., and Miller, S. (2015). Who Will Succeed and Who Will Struggle? Predicting Early College Success With Indiana's Student Information System (REL 2015–078).
 Washington, DC: U.S. Department of Education, Institute of Education Sciences, National Center for Education Evaluation and Regional Assistance, Regional Educational Laboratory Midwest.
- Taylor, J.A., and Duran, M. (2006). Teaching Social Studies With Technology: New Research on Collaborative Approaches. *The History Teacher*, 40: 1, 9-25.
- Trilling, B., and Fadel, C. (2009). 21st Century Skills: Learning for Life in Our Times. San Francisco: Jossey-Bass.
- U.S. Department of Education, Office of Educational Technology (2010). *Transforming American Education: Learning Powered by Technology*. Washington, D.C.: U.S. Department of Education.
- U.S. Department of Education, Office of Educational Technology (2016). *Future Ready Learning: Reimagining the Role of Technology in Education.* Washington, D.C.
- Warschauer, M., and Matuchniak, T. (2010). New Technology and Digital Worlds: Analyzing Evidence of Equity, Access, Use, and Outcomes. *Review of Research in Education, 34*: 179-225.
- Wejekumar, K., Meyer, B.J.F., and Lei, P. (2013). High-Fidelity Implementation of Web-Based Intelligent Tutoring System Improves Fourth and Fifth Graders Content Area Reading Comprehension. *Computers and Education*, 68: 366-379.

Index

24® Game
R305B07004825
4KW
ED07CO0043
4mality
R305A08066427
Access
Language Arts II
EDIES14C0018
Acquiring Research Investigative and
Evaluative Skills (ARIES)
R305B070349
Acuity
R305E090005179
AdaptErrEx
R305A090460
administrator
ED06PO0914156, 178
ED06PO0915178
ED06PO0916173
ED06PO0917174
ED06PO0918136, 177
ED06PO0923147, 174
ED06PO0924178
ED06PO0925174
ED06PO0928175
ED06PO0929175
ED06PO0933147
ED06PO0934175
ED06PO0935176
ED06PO0959176
ED08CO0055176
R305A080263116, 179
R305A090107157
R305A090145158
R305A09060893
R305A100630177
R305A110913163
R305A120526160
R305A130375139
R305A130517139
R305E050089173
R305S050040173
R324A090307116
R324A090322109

R324A100025117, 129
R324A110074111
R324A120188118
R324J060002161
adult education
R305C120001 101
Advanced Placement (AP)
ED06PO090957
ED07CO004458
R305A04005677, 153
Agent and Library Augmented Shared
Knowledge Areas (ALASKA)
R305A080667145
Agile Mind
EDIES09C001761
American Sign Language Assessment
Instrument (ASLAI)
R324A10017673, 122
Andes
R305A10016362
AnimalWatch
R305A09019745
R305K05008637
R324A12000653, 128
Artificial Intelligence Braille Tutor
EDIES11C0034 85, 125
Assess-As-You-Go Writing Assistant
R305A09039493
Assessing Data Modeling and Statistical
Reasoning (ADM)
R305A120217143
Assessment and Learning in Knowledge
Spaces (ALEKS)
R305A09052846
R305A14022165
Assessment-to-instruction (A2i)
EDIES14C002688
R305A130517139
R305B070074136
ASSISTments
R305A07044040
R305A09017045
R305A120125
R305K03014035

attention deficit hyperactivity disorder
(ADHD)
R305A09010012
R305H05003610
R324A07013026
R324A09016412
R324A12016813
R324A120284108
Augmentative and Alternative
CommunicationInternational
Classification of Function
R324A090028125, 136
autism spectrum disorders (ASD)
EDIES11C0033110
EDIES11C0040126, 137
EDIES12C0047111, 126
EDIES13C0026
EDIES13C0046139
EDIES14C0018
EDIES14C004375, 123
R324A080136
R324A090197113
R324A100094114
R324A12016813
R324A130065114
R324A130216112
AutoTutor
R305A100875
R305B070349
R305C120001101
R305H050169
Between the Lions
ED06PO0911
R305A08047671
R305S050042
Brainology
EDIES10C002214, 164
Bridge to Algebra tutor
R305B070487
Building Blocks R305A08070020
R305K050157
Burst Reading
R305A120811
CANLEAD (Cognitive Assistance Network,
Learning Environment, and Database) R305A110913163
KJUJA110913103

Captain's Log
R305H05003610
Carnegie Learning Algebra Tutor
R305A10010948
Carnegie Mellon Genetics Cognitive Tutor ®
(GCT)
R305Á09054961
Case Studies in Reading Lessons (CSRL)
R305A080295
ChemCollective Virtual Lab
R305A10006962
Children's Progress Academic Assessment
(CPAA) EDIES11C00449
Choices
R324A090307
Cinematic Sciences
ED06C00039
Classroom Check-up (CCU)
R305A130375139
Classroom Language Assessment System
(CLASS)
R305A130030144
ClearSpeak
R324A110355
Cognitive Tutor®
R305A08009341
R305A12073431
Cognitive Tutor® Algebra I
R305A07018539
R305A10007462
Coh-GIT
R305G020018
Coh-Metrix
R305G020018
collaborative learning
ED06PO0912
EDIES10C0018
EDIES1020010
EDIES10F0104
EDIES13C0042
EDIES14C0048
EDIES14C0052
R305A08014141
R305A080667
R305A090145
R305A100782
R305A12073431

Index 187

R305C080022
R305F100007
R305M040086153
College of the Air
R305B070077119
Common Core State Standards (CCSS)
EDIES13C0043
R305A130223
R324A120081
Composition Builder (CB)
R305A110333
Comprehension Tools for Teachers (CTT)
R305F100027
Computer Adaptive Triarchic Assessment and
Instructional Activities for Early Childhood
EDIES11C0044
Computer Assisted Learning Method (CALM)
R305A09019561
computer literacy
R305H050169
Computer-Based Assessment System for
Reading (CBAS-R)
R305A12008686
Computer-Enhanced Automated Lecture
(CEAL)
ED06PO089615
Computerized Oral Reading Evaluation
(CORE)
R305A14020390
Concept Mapped Project-based Activity
Scaffolding System (CoMPASS)
R305A080507
Connected Chemistry
R305A10099263
CopyCat
R324A070196
corrections/adult or juvenile justice
R305B070077119
R324A080006
Critical Reading Strategies (CREST)
R305M050021154
critical thinking
EDIES10P0101
EDIES14C0018
Cup Racer
R305A110782
DeepTutor
R305A100875
NJUJ11000/J03

Destination Reading and Math	
R305H050036	10
developmental delay	
R324A070122	71
R324L060023	80
DictionarySquared	
R305A130467	101
distance education	
R305A0400567	7 153
R305B070077	
R305K050157	
	19
Dragon Master	
R305H060161	11
dropout prevention (K-12)	
R305G050154	91
early childhood learning	
ED07CO0039	
EDIES11C0043	134
EDIES11C0044	9
EDIES13C0034	108
EDIES14C0043	75, 123
EDIES14C0047	
R305A060021	
R305A080476	
R305A080697	
R305A080700	
R305A090013	
R305A090502	
R305A100154	
R305A100267	
R305A110284	
R305A110549	
R305A120323	
R305A130612	22
R305A140065	76
R305A140378	151
R305A140385	22
R305A140386	
R305B070605	
R305F100005	
R305F100027	
R305J020026	
R305J020020	
5	
R305K050082	
R305K050157	
R305K050186	
R305M040167	
R305M050026	148

R305S05003470
R324A070008149
R324A07012271
R324A09014521
R324A10008073
R324A10017673, 122
R324A11012274, 123
R324A120033
R324A120284
R324A12036575
R324A130249
R324B070033177, 122, 134
Early ICARE
R305A070231
Early Truancy Prevention Project
R305A120526160
Earobics Step 1
R305A08019682
easyCBM
R324A100014137
Eco
EDIES14C004465
EcoMUVE
R305A08014141
Education Security Practices Survey (ESPS)
ED06PO0923147, 174
ED06PO0923147, 174
ED06PO0923
ED06PO0923147, 174 Electronic Chemistry Laboratory Workbook (ECLW)
ED06PO0923

Enfoque en Ciencia	
R305A130612	22
engagement	
ED06PO0896	
EDIES09C0017	61
EDIES09C0018	92
EDIES10C0020	
EDIES13C0028	
EDIES14C0052	
R305A080141	
R305A080664	
R305A090324	
R305A100367	
R305A110090	
R305A120323	
R305A130124	
R305F100013	
R305K050140	
R305U070007	
R324A090164	
R324A120071	
R324A120168	13
engineering	20
EDIES10P0102	
EDIES11C0028	
EDIES13C0033	32
English language learners	
ED06PO0902	
ED06PO0906	
ED06PO0911	
ED06PO0913	
EDIES09C0013	
EDIES10C0023	
EDIES13C0040	
EDIES14C0051	
R305A080196	
R305A080464	42
R305A080596	92
R305A090145	158
R305A090227	92
R305A090476	93
R305A090527	
R305A100069	62
R305A100105	
R305A110142	85
R305A110284	
R305A110549	
R305A120125	

	86
R305A130160	55
R305A130223	96
R305A130460	88
R305A130612	22
R305A140117	56
R305A140221	65
R305A140378	151
R305A140386	
R305A140471	
R305A140472	
R305G050029	
R305K050086	
English Learner Vocabulary Acquisition	
(ELVA)	
R305A140471	90
Enhanced Anchored Instruction (EAI)	
R305H040032	
R324A090179	
ePALS	
R305A140386	152
EPGY program (Stanford University's	
Education Program for Gifted Youth)	
R305A080464	
eSparkBeat	
EDIES14C0050	140
ESTRELLAS Electronic Reading System 1	
ESTRELLAS Electronic Reading System to Expository Text	
Expository Text	for
Expository Text R305A090227	for
Expository Text R305A090227 eTEEM	for 92
Expository Text R305A090227 eTEEM R305A140386	for 92
Expository Text R305A090227 eTEEM R305A140386 executive function	for 92 .152
Expository Text R305A090227 eTEEM R305A140386 executive function R324A090197	for 92 . 152 . 113
Expository Text R305A090227 eTEEM R305A140386 executive function R324A090197 R324A120033	for 92 . 152 . 113
Expository Text R305A090227 eTEEM R305A140386 executive function R324A090197 R324A120033 Expanded Core Curriculum (ECC)	for 92 .152 .113 9
Expository Text R305A090227 eTEEM R305A140386 executive function R324A090197 R324A120033 Expanded Core Curriculum (ECC) R324A090288119,	for 92 .152 .113 9
Expository Text R305A090227 eTEEM R305A140386 executive function R324A090197 R324A120033 Expanded Core Curriculum (ECC) R324A090288 FabLab Construction Station	for 92 .152 .113 9 130
Expository Text R305A090227 eTEEM R305A140386 executive function R324A090197 R324A120033 Expanded Core Curriculum (ECC) R324A090288119, FabLab Construction Station EDIES10P0102	for 92 .152 .113 9 130
Expository Text R305A090227 eTEEM R305A140386 executive function R324A090197 R324A120033 Expanded Core Curriculum (ECC) R324A090288119, FabLab Construction Station EDIES10P0102 financial support	for 92 .152 .113 9 130 29
Expository Text R305A090227 eTEEM R305A140386 executive function R324A090197 R324A120033 Expanded Core Curriculum (ECC) R324A090288119, FabLab Construction Station EDIES10P0102 financial support R305A080263	for 92 1152 113 9 130 29 179
Expository Text R305A090227 eTEEM R305A140386 executive function R324A090197 R324A120033 Expanded Core Curriculum (ECC) R324A090288119, FabLab Construction Station EDIES10P0102 financial support R305A080263 R305A110288	for 92 1152 113 130 9 130 29 179 116
Expository Text R305A090227 eTEEM R305A140386 executive function R324A090197 R324A120033 Expanded Core Curriculum (ECC) R324A090288119, FabLab Construction Station EDIES10P0102 financial support R305A080263 R305A110288 R305A110288 R305A110809	for 92 152 113 9 130 29 179 116 117
Expository Text R305A090227 eTEEM R305A140386 executive function R324A090197 R324A120033 Expanded Core Curriculum (ECC) R324A090288 FabLab Construction Station EDIES10P0102 financial support R305A080263 R305A110288 R305A110809 R305A140121	for 92 152 113 9 130 29 179 116 117
Expository Text R305A090227 eTEEM R305A140386 executive function R324A090197 R324A120033 Expanded Core Curriculum (ECC) R324A090288119, FabLab Construction Station EDIES10P0102 financial support R305A080263 R305A110288 R305A110809 R305A140121 First 4,000 Words (4KW)	for 92 1152 113 130 9 130 29 179 116 117 118
Expository Text R305A090227 eTEEM R305A140386 executive function R324A090197 R324A120033 Expanded Core Curriculum (ECC) R324A090288119, FabLab Construction Station EDIES10P0102 financial support R305A080263 R305A110288 R305A110288 R305A110288 R305A140121 First 4,000 Words (4KW) ED07CO0043	for 92 1152 113 130 9 130 29 179 116 117 118
Expository Text R305A090227 eTEEM R305A140386 executive function R324A090197 R324A120033 Expanded Core Curriculum (ECC) R324A090288119, FabLab Construction Station EDIES10P0102 financial support R305A080263 R305A110288 R305A110809 R305A140121 First 4,000 Words (4KW)	for 152 113 9 130 29 179 116 117 118 80

FluidMath/ WebFluidMath
EDIES09C0012162
EDIES13C003231
Formative Assessment and Instrumentation
Procedures for Reading
R324A09003883
formative assessments
EDIES06PO0931
EDIES09C001527
EDIES10P0106113
EDIES11C001995
EDIES11C0045
EDIES13C003996
EDIES13C0045
EDIES14C0025
EDIES14C004297
R305A08022542
R305A080231
R305A08061443
R305A09039493
R305A100069
R305A10023449
R305A120125
R305A120217
R305A120811
R305A140117
R324A09003883
Frachine
EDIES09C000928
Fractions Tutor
R305A130215
Full Option Science System (FOSS)
R305A130206
R305B07043426
R324A07013026
GALE (Gesturing Avatar for Learning and
Education)
R305A13001654
gifted and talented
EDIES11C00449
R305A08046442
Give Me 5 For Children
ED06PO0906
Global, Integrated, Sceniaro-Based
Assessments (GISA)
R305F10000572
GlobalEd 2
R305A08062244
11.50.3/11000044

GlobalEd 2 (GE2)
R305A13019555
Go Talk Phonics
EDIES11C002784
GoGames Civics
EDIES13C0042105
Growth Mindset Learning Platform (GMLP)
EDIES10C002214, 164
Guru
R305A080594
Habitat Tracker
R305A100782
Hall Of Heroes
EDIES13C0041112
Happy Atoms EDIES14C004155
Head Start R305K05018619
hearing impairments / deafness ED08CO0056124
EDI8CO0030
EDIES13C0046139
R305S05003470
R324A070196
R324A090145
R324A10008073
R324A10017673, 122
R324A11012274, 123
R324A120188118, 130
Helping At-Risk and Low-Achieving Students
in Fractions (HALF)
R305A10011029, 159
Hierarchical Retrieval Practice
R305B07053711
IEPQ-Core
R324A120081160
IMMEX (Interactive Multi-Media Exercises)
R305H050052
individualized family service plans
R324A12036575
R324B070003177
R324B070033122, 134
Individualized Remote Information System
(IRIS)
ED07CO0045156
InfoWriter
EDIES13C003996

intellectual disability
ED08CO0056
EDIES13C0046 139
EDIES14C001897
EDIES14C004375, 123
R305S05001078
R324A07003540
R324A07013026
R324A100025117, 129
R324A100094114
R324A130065 114
Intelligent Tutoring using Structure Strategy (ITSS)
R305A12059386
interactive social tutoring system (ISTS)
R305A110583110
Interactive Strategy Training for Active
Reading and Thinking-Motivationally
Enhanced (iSTART-ME)
R305A130124100
Interactive Touch Science
EDIES11C0028
Internet Reciprocal Teaching (IRT)
R305G05015491
iPrompt
EDIES11C0040 126, 137
iSCENE
EDIES14C005256
iSKILLS
R324A100094 114
iSTART
R305G040046
R305G040055 101
Journey to El Yunque
R305A11081051
Khan Academy R305A14034067
K305A140540
ED06PO0936 103
KinderTEK
R324A110286
language processing R305A09039493
R305A100163
R303A100103
Leadership for Integrated Middle-School
Science (LIMSS)
R305A080078
102

learning disability	
EDIES10C0023	47
EDIES11C0026	30
EDIES11C0027	84
EDIES13C0044	32
R305H040032	
R305M0501211	
R324A070035	
R324A070130	
R324A090179	
R324A090340	
R324A100025117, 1	
R324A1001961	
R324A100322	
R324A110286	
R324A110280 R324A120071	
R324A120103	
R324A1300651	
R324B07017616, 1	
R324J0600021	
R324L060023	80
Learning to Objectively Observe Kids	
(LOOK)	
R305A1203231	50
Lens on Science	
R305A090502	
R305A130612	22
LightSide Revision Assistant	
EDIES14C0045	97
Lingo Jingo	
EDIES14C00511	44
Literacy Coaching toolkit (LCtk)	
R305M0400861	53
Literacy Collaborative (LC)	
R305M0400861	53
Literacy Environment Enrichment Program	L
(LEEP)	
R305M0500261	48
math	
ED06PO0912	58
ED06PO0921	
ED06PO0930	
ED06PO0931	
EDIES09C0009	
EDIES09C00091	
EDIES09C00121 EDIES09C0015	
EDIES10C0024	
EDIES10P0102	29

EDIES10P0104	
EDIES11C0026	
EDIES11C0028	49, 127
EDIES11C0041	
EDIES11C0044	9
EDIES13C0032	
EDIES13C0033	
EDIES13C0043	
EDIES13C0044	
EDIES13C0045	
EDIES14C0025	
R305A070185	
R305A080093	
R305A080231	
R305A080479	
R305A080667	
R305A080697	
R305A080700	
R305A090100	
R305A090197	
R305A090460	
R305A090519	
R305A090527	
R305A100074	
R305A100109	
R 305 A 100110	29 159
R305A100110 R305A100234	· ·
R305A100234	
R305A100234 R305A100267	49 21
R305A100234 R305A100267 R305A110060	49 21 50
R305A100234 R305A100267 R305A110060 R305A110149	49 21 50 64
R305A100234 R305A100267 R305A110060 R305A110149 R305A110306	49 50 64 142
R305A100234 R305A100267 R305A110060 R305A110149 R305A110306 R305A120217	49 21 64 142 143
R305A100234 R305A100267 R305A110060 R305A110149 R305A110306 R305A120217 R305A120288	
R305A100234 R305A100267 R305A110060 R305A110149 R305A110306 R305A120217 R305A120288 R305A120288 R305A120526	
R305A100234 R305A100267 R305A110060 R305A110149 R305A110306 R305A120217 R305A120288 R305A120526 R305A120526 R305A120734	
R305A100234 R305A100267 R305A110060 R305A110149 R305A110306 R305A120217. R305A120288 R305A120526 R305A120734 R305A130016	
R305A100234 R305A100267 R305A110060 R305A110149 R305A110306 R305A120217 R305A120288 R305A120526 R305A120734 R305A130016 R305A130195	
R305A100234 R305A100267 R305A110060 R305A110149 R305A110306 R305A120217 R305A120288 R305A120526 R305A120734 R305A130016 R305A130195 R305A130215	
R305A100234 R305A100267 R305A110060 R305A110149 R305A110306 R305A120217 R305A120288 R305A120526 R305A120734 R305A130016 R305A130195	
R305A100234 R305A100267 R305A110060 R305A110149 R305A110306 R305A120217 R305A120288 R305A120526 R305A120734 R305A130016 R305A130215 R305A130400 R305A130612	
R305A100234 R305A100267 R305A110060 R305A110149 R305A110306 R305A120217 R305A120288 R305A120526 R305A120734 R305A120734 R305A130016 R305A130195 R305A130215 R305A130400	
R305A100234 R305A100267 R305A110060 R305A110149 R305A110306 R305A120217 R305A120288 R305A120526 R305A120734 R305A130016 R305A130215 R305A130400 R305A130612 R305A140221	
R305A100234 R305A100267 R305A110060 R305A110149 R305A110306 R305A120217 R305A120288 R305A120526 R305A120734 R305A130016 R305A130195 R305A130400 R305A130612 R305A140221 R305A140340	$\begin{array}{c}49\\50\\64\\142\\143\\52\\160\\31\\54\\55\\34\\55\\34\\67\\67\\67\\25\end{array}$
R305A100234 R305A100267 R305A110060 R305A110149 R305A110306 R305A120217 R305A120288 R305A120526 R305A120734 R305A130016 R305A130215 R305A130400 R305A130612 R305A140340 R305A140340	$\begin{array}{c}49\\21\\50\\64\\142\\143\\52\\160\\160\\31\\55\\34\\34\\22\\65\\67\\25\\59\end{array}$
R305A100234 R305A100267 R305A110060 R305A110149 R305A110306 R305A120217 R305A120288 R305A120526 R305A120734 R305A130016 R305A130215 R305A130400 R305A130612 R305A140340 R305A140340 R305B070048 R305B070430	$\begin{array}{c}49\\21\\50\\64\\142\\143\\52\\160\\31\\54\\34\\55\\34\\65\\67\\65\\67\\59\\40\end{array}$
R305A100234 R305A100267 R305A110060 R305A110149 R305A110306 R305A120217 R305A120288 R305A120526 R305A120734 R305A130016 R305A130215 R305A130400 R305A130400 R305A130412 R305A130400 R305A130400 R305A130412 R305A130400 R305A130412 R305A130412 R305A130412 R305A130412 R305A130412 R305A130412 R305A130412 R305A140221 R305B070048 R305B070487	$\begin{array}{c}49\\21\\64\\142\\143\\52\\160\\31\\54\\55\\34\\22\\65\\67\\67\\65\\67\\59\\40\\44\\21\\40\\44\\44\\44\\40\\44\\40\\44\\40\\44\\40\\4$
R305A100234 R305A100267 R305A110060 R305A110149 R305A110306 R305A120217 R305A120288 R305A120526 R305A120734 R305A130016 R305A130215 R305A130400 R305A130401 R305A1304021 R305A140324 R305A140340 R305A140340 R305A140340 R305A140340 R305B070488 R305B070487 R305B070487	$\begin{array}{c}49\\21\\50\\64\\142\\143\\52\\160\\160\\31\\55\\34\\22\\65\\67\\25\\65\\67\\25\\40\\44\\15\end{array}$

R305H040099	141
R305H060070	
R305H140028	
R305K050045	
R305K050082	,
R305K050086	
R305K050157	
R305K060011	
R305M060057	
R324A090145	
R324A090179	
R324A100196	
R324A110262	
R324A110286	
R324A110355	
R324A120006	,
R324A120071	,
math difficulties	
EDIES11C0026	30
EDIES13C0044	
EDIES13C0045	
R305A090528	
R305A100074	
R305A100234	
R305A130125	
R305C080015	
R305H040032	
R305H040099	
R305K050082	
R305K060011	
R324A090179	
R324A090179 R324A090340	
R324A110286	
R324A110280 R324A120071	
Math Learning Companion	
R324A090340	17
Math Messenger	EO
ED06PO0912	
Math Monster Mystery (M3) EDIES09C0015	27
MathemAntics	
R305A100267	01
MathFacts	20
EDIES13C0044	
mCLASS® Math	25
R305B070325	
R305E090005	1/9

mCLASS® Reading
R305E090005179
MeasureResults
ED08CO0055176
memory
EDIES14C004710
R305A08019682
R305B07053711
R305H03017513
R324A07019681
R324A09016412
mentoring/ coaching
ED07CO0045156
EDIES09C0014142
R305A100654159
R305A110288
R305A110809
R305A130375
R305A140340
R305A140378
R305A140386
R305B070605149
R305K05015719
R305M040086 153
R305M040167
R305M050121
R305W020001
R305W030257
R324A070008
R324A090283
R324A090322
R324A110131
R324B070033
mindset
EDIES10C0022 14, 164
EDIES10C0022
R305A09032414
R305A12067114
mobile/ tablet technology
ED06PO0904
EDIES11C0028
EDIES11C0028
EDIES11C0040
EDIES12C0047 111, 120 EDIES13C0027 104
EDIES13C0027
EDIES13C0032
EDIES13C0038
EDIES13C0042105

EDIES13C0044	
EDIES13C0046	
EDIES14C0018	
EDIES14C0041	
EDIES14C0043	75, 123
EDIES14C0047	
EDIES14C0049	
EDIES14C0050	
R305A100782	
R305A120526	
R305A120808	
R305A120811	
R305A140065	
R305A140121	
R305A140385	
R305F100013	
R305K060011	
R305S050070	
R324A090322	· ·
R324A100080	
R324A100094	
R324A100094 R324A110286	
MOD: Making Online Decisions R324A120365	75
MolySym Hypermodeling System	
ED09CO0044	EO 14E
ED08CO0044	59, 145
motivation	,
motivation EDIES14C0052	
motivation EDIES14C0052 R305A090145	
motivation EDIES14C0052 R305A090145 R305A090227	
motivation EDIES14C0052 R305A090145 R305A090227 R305A100367	
motivation EDIES14C0052 R305A090145 R305A090227 R305A100367 R305A110810	
motivation EDIES14C0052 R305A090145 R305A090227 R305A100367 R305A110810 R305A120186	
motivation EDIES14C0052 R305A090145 R305A090227 R305A100367 R305A110810 R305A120186 R305A120186 R305A130124	
motivation EDIES14C0052 R305A090145 R305A090227 R305A100367 R305A110810 R305A120186 R305A120186 R305A130124 R305A140602	
motivation EDIES14C0052 R305A090145 R305A100367 R305A110810 R305A120186 R305A120186 R305A130124 R305A140602 R305C120001	
motivation EDIES14C0052 R305A090145 R305A090227 R305A100367 R305A110810 R305A120186 R305A120186 R305A130124 R305A140602 R305C120001 R305F100005	
motivation EDIES14C0052 R305A090145 R305A090227 R305A100367 R305A110810 R305A120186 R305A120186 R305A130124 R305A140602 R305F100005 R305F100005 R305F100013	
motivation EDIES14C0052 R305A090145 R305A100367 R305A110810 R305A120186 R305A120186 R305A130124 R305A140602. R305C120001 R305F100005 R305F100013 R305F100013 R324A090164	
motivation EDIES14C0052 R305A090145 R305A100367 R305A110810 R305A120186 R305A120186 R305A130124 R305A140602 R305C120001 R305F100005 R305F100013 R324A090164 R324A120071	
motivation EDIES14C0052 R305A090145 R305A090227 R305A100367 R305A110810 R305A120186 R305A120186 R305A130124 R305A140602 R305C120001 R305F100005 R305F100013 R324A090164 R324A120071 Multilevel Assessment of Science Stat	
motivation EDIES14C0052 R305A090145 R305A090227 R305A100367 R305A110810 R305A120186 R305A120186 R305A130124 R305A140602 R305F100005 R305F100005 R305F100013 R324A090164 R324A120071 Multilevel Assessment of Science Stat (MASS)	
motivation EDIES14C0052 R305A090145 R305A090227 R305A100367 R305A110810 R305A120186 R305A120186 R305A130124 R305A140602 R305C120001 R305F100005 R305F100013 R324A090164 R324A120071 Multilevel Assessment of Science Stat (MASS) R305A080225	
motivation EDIES14C0052 R305A090145 R305A090227 R305A100367 R305A110810 R305A120186 R305A120186 R305A130124 R305A140602 R305C120001 R305F100005 R305F100013 R324A090164 R324A120071 Multilevel Assessment of Science Star (MASS) R305A080225 Multiple-choice Online Cloze Compr	
motivation EDIES14C0052 R305A090145 R305A090227 R305A100367 R305A110810 R305A120186 R305A120186 R305A130124 R305A140602 R305C120001 R305F100005 R305F100013 R324A090164 R324A120071 Multilevel Assessment of Science Stat (MASS) R305A080225 Multiple-choice Online Cloze Compr Assessment (MOCCA)	
motivation EDIES14C0052 R305A090145 R305A090227 R305A100367 R305A110810 R305A120186 R305A120186 R305A130124 R305A140602 R305C120001 R305F100005 R305F100013 R324A090164 R324A120071 Multilevel Assessment of Science Stat (MASS) R305A080225 Multiple-choice Online Cloze Compr Assessment (MOCCA) R305A140185	
motivation EDIES14C0052 R305A090145 R305A090227 R305A100367 R305A110810 R305A120186 R305A120186 R305A130124 R305A140602 R305C120001 R305F100005 R305F100013 R324A090164 R324A120071 Multilevel Assessment of Science Stat (MASS) R305A080225 Multiple-choice Online Cloze Compr Assessment (MOCCA)	
motivation EDIES14C0052 R305A090145 R305A090227 R305A100367 R305A110810 R305A120186 R305A120186 R305A130124 R305A140602 R305C120001 R305F100005 R305F100013 R324A090164 R324A120071 Multilevel Assessment of Science Stat (MASS) R305A080225 Multiple-choice Online Cloze Compr Assessment (MOCCA) R305A140185	

My Science Tutor (MyST)
R305A13020633
My Teaching Partner (MTP)
R305A100367164
myASL Quizmaker
EDIES11C0032
MyEdna
EDIES12C0035 138
NimblePad
EDIES09C005627
NimbleTools
R324A110088127
NU Data
R324A110131
NumberShire
EDIES11C0026
NumberShire II
EDIES13C0045
NumberShire-K
R324A12007131
Online Application to Support Inquiry-based
Science (OASIS)
EDIES09C0014 142
Online Reading Comprehension Assessment
(ORCA) R305A09060893
(ORCA)
(ORCA) R305A09060893
(ORCA) R305A09060893 Online Socratic Learning for Enhanced
(ORCA) R305A09060893 Online Socratic Learning for Enhanced Critical Thinking EDIES10P0101104
(ORCA) R305A090608
(ORCA) R305A09060893 Online Socratic Learning for Enhanced Critical Thinking EDIES10P0101104
(ORCA) R305A09060893 Online Socratic Learning for Enhanced Critical Thinking EDIES10P0101104 parent/ family ED06PO0906103
(ORCA) R305A090608
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
(ORCA) R305A090608
(ORCA) R305A090608

R324A120284	108
R324A120365	75
R324A130216	112
R324B070033122, 13	
Pathfinder	.,
R305A110288	116
perceptual learning modules	
EDIES10C0024	18
R305A120288	
R305H060070	
personal response system	16
R305A100625	10
Planet First Energy World (PFEW)	40
EDIES10P0103	
Planning Execution Assistant and Traine	:r
(PEAT)	
EDIES12C004711	1, 126
PlatinuMath	
EDIES11C0045	165
Plato Learning Environment	
R305A130699	16
Positive Action	
ED06PO091010	8,135
Positive Behavior Supports (PBS)	
R305A090107	157
Possible Worlds	
EDIES12C0040	51
R305C080022	
postsecondary	
ED008CO0050	66
ED06PO0896	
ED06PO0900	
ED06PO0909	
ED07CO0040	
EDIF7CC0040	
EDIES11C0045	
EDIES11C0045	
R305A0805074	
R305A100105	
R305A100163	
R305A100625	
R305A110060	
R305A110090	
R305A110112	
R305A120370	
R305A130125	
R305A140340	67
R305A140602	68

R305B070077		119
R305B070349		
R305B070537		
R305G020018		
R305G020027		
R305G030123		
R305G040055		
R305H020113		
R305H030016		
R305H050038		
R305H050116		
R305H050133		
R305W060024		
R324A090288		
R324A120188	,	
R324A130065		
Presence Telecare		114
EDIES10P0011		Q /
pre-service training	•••••	04
ED06PO0908		122
EDIES11C0045		
R305A080507		
R305U070007		
R305W060024	•••••	105
Prime Online		150
R324A100196	•••••	159
Proactive Reading		450
R305W030257	•••••	152
professional development		
ED06PO0902		
ED06PO0908		
ED06PO0914		
ED06PO0922		
ED06PO0923		
ED06PO0927		
ED06PO0933		
ED06PO0934		
ED06PO0959		
ED07CO0037		
ED07CO0045		
ED08CO0044	59,	145
ED08CO0055		
EDIES09C0012		
EDIES09C0014		142
EDIES10C0018	•••••	142
EDIES10C0020		
EDIES10C0022	14,	164
EDIES10P0101		104

EDIES10P0103		48
EDIES10P0106		113
EDIES11C0026		30
EDIES11C0027		84
EDIES11C0029		
EDIES11C0039		110
EDIES11C0040	.126,	137
EDIES11C0045		
EDIES12C0035		
EDIES13C0026		118
EDIES13C0044		
EDIES13C0045		
EDIES14C0025		
EDIES14C0026		
EDIES14C0049		
R305A040056		
R305A060021		
R305A080078		
R305A080141		
R305A080295		
R305A080476		
R305A080614		
R305A080622		
R305A080667		
R305A090107		
R305A090145		
R305A090195		
R305A090394		
R305A100091		
R305A100105		
R305A100110		
R305A100154		
R305A100178		
R305A100367		
R305A100630		
R305A100654		
R305A100782		
R305A100992		
R305A110090		
R305A110050		
R305A110142		
R305A110288		
R305A110555		
R305A110913		
R305A120125		
R305A120125		
R305A120526		
R305A120808	•••••	15

R305A120811	
R305A130016	
R305A130030	
R305A130160	
R305A130400	
R305A130517	
R305A140340	
R305A140378	
R305A140386	
R305A140472	144
R305B070048	
R305B070074	
R305B070443	
R305B070605	149
R305C080015	44
R305C080022	44
R305F100007	94
R305F100013	94
R305F100027	72
R305H040013	153
R305J030037	70
R305K050045	37, 161
R305K050157	
R305K050186	
R305M040086	
R305M040167	
R305M050021	
R305M050026	
R305M050086	
R305M050109	
R305M050121	
R305S050072	
R305U070007	
R305W020001	
R305W030257	
R324A070008	
R324A080150	
R324A090283 R324A100196	
R324A1100190	
R324A110074	
R324A110131	
R324A120000	
R324A130249	
R324B0700331	
progress monitoring	, 1
R324A110262	145

 Project ASPIRE (Achieving Superior I Involvement for Rehabilitative Exco R324A110122 Project ILIAD (Independent Lexical Instruction and Development) 	ellence)
R324L060023	80
Pushing Symbols	
R305A110060	50
Quantum Chemistry Tutors	
R305A070067	50
R305A080063	
Quantum Chemistry Tutors	
R305K040008	56
Question the Author (QTA) R305B070434	26
reading ED06PO0904	70
ED06PO0904	
ED00F00911	
ED07CO0039	
ED07CO0043	
EDIES09C0013	
EDIES09C0013 EDIES09C0018	
EDIES09C0018	
EDIES10C0013	
EDIES10C0025	
EDIES11C0027	
EDIES11C0032	,
EDIES11C0054	
EDIES11C0042	
EDIES13C0030	
EDIES13C0038	
EDIES13C0038 EDIES13C0040	
EDIES13C0038 EDIES13C0040 EDIES14C0018	
EDIES13C0038 EDIES13C0040 EDIES14C0018 EDIES14C0026	
EDIES13C0038 EDIES13C0040 EDIES14C0018 EDIES14C0026 EDIES14C0042	
EDIES13C0038 EDIES13C0040 EDIES14C0018 EDIES14C0026 EDIES14C0042 EDIES14C0046	
EDIES13C0038 EDIES13C0040 EDIES14C0018 EDIES14C0026 EDIES14C0042 EDIES14C0046 R305A040056	
EDIES13C0038 EDIES13C0040 EDIES14C0018 EDIES14C0026 EDIES14C0042 EDIES14C0046 R305A040056 R305A060021	87 138 97 88 97 89 153 149
EDIES13C0038 EDIES13C0040 EDIES14C0018 EDIES14C0026 EDIES14C0042 EDIES14C0046 R305A040056 R305A060021 R305A070231	87 87 97 88 97 89 153 149 81
EDIES13C0038 EDIES13C0040 EDIES14C0018 EDIES14C0026 EDIES14C0042 EDIES14C0046 R305A040056 R305A060021 R305A070231 R305A080133	87 87 97 88 97 89 153 149 81 81
EDIES13C0038 EDIES13C0040 EDIES14C0018 EDIES14C0026 EDIES14C0042 EDIES14C0046 R305A040056 R305A060021 R305A060021 R305A080133 R305A080157	87 138 97 88 97 89 153 149 81 82 82 82
EDIES13C0038 EDIES13C0040 EDIES14C0018 EDIES14C0026 EDIES14C0042 EDIES14C0046 R305A040056 R305A060021 R305A060021 R305A080133 R305A080157 R305A080196	87 138 97 88 97 88 97
EDIES13C0038 EDIES13C0040 EDIES14C0018 EDIES14C0026 EDIES14C0042 EDIES14C0046 R305A040056 R305A060021 R305A060021 R305A080133 R305A080157 R305A080196 R305A080295	87 138 97 87 97 88 97
EDIES13C0038 EDIES13C0040 EDIES14C0018 EDIES14C0026 EDIES14C0042 EDIES14C0046 R305A040056 R305A060021. R305A060021. R305A080133 R305A080157 R305A080157. R305A080196 R305A080295 R305A080476	87 138 97 88 97 88 97 82 153 149 81 82 82 82 82
EDIES13C0038 EDIES13C0040 EDIES14C0018 EDIES14C0026 EDIES14C0042 EDIES14C0046 R305A040056 R305A060021 R305A060021 R305A080133 R305A080133 R305A080157 R305A080196 R305A080295 R305A080476 R305A080596	87 138 87 97 88 97 88 97 153 149 153 149 82 82 157 71 92
EDIES13C0038 EDIES13C0040 EDIES14C0018 EDIES14C0026 EDIES14C0042 EDIES14C0046 R305A040056 R305A060021. R305A060021. R305A080133 R305A080157 R305A080157. R305A080196 R305A080295 R305A080476	87 138 97 87 97 88 97 81 149 81 82 82 82 82 71 71 71 92 83

R305A090100	12
R305A090227	92
R305A090528	46
R305A090608	93
R305A100105	
R305A100154	
R305A100261	
R305A100267	
R305A100654	
R305A110142	
R305A110142	
R305A110549	
R305A110810	
R305A120086	
R305A120080	
R305A120288	
R305A120593	
R305A120707	
R305A120811	
R305A130030	
R305A130124	
R305A130223	
R305A130460	
R305A130467	
R305A130517	
R305A140065	
R305A140090	
R305A140117	
R305A140185	
R305A140203	
R305A140386	
R305A140471	
R305A140472	
R305B070074	136
R305B070434	
R305B070458	
R305B070605	
R305C080022	44
R305C120001	-
R305E090005	
R305F100005	72
R305F100007	94
R305F100013	
R305F100027	72
R305G020018	76
R305G020027	
R305G020041	
R305G030072	

R305G030123	77
R305G040046	
R305G040055	
R305G050029	
R305G050083	
R305G050091	
R305G050154	
R305H020113	
R305H030175	13
R305H040013	
R305H050036	
R305H050133	
R305H060089	
R305J030037	
R305M040086	
R305M040167	
R305M050021	154
R305M050026	148
R305S050010	
R305S050034	
R305S050042	
R305S050070	.91, 126
R305S050072	
R305W020001	
R305W030257	
R305W060024	
R324A060034	
R324A070035	
R324A070122	
R324A080006	
R324A090038	
R324A090164	
R324A100014	
R324A100176	
R324A100322	
R324A110088	
R324A120081	
R324A120103	
R324A120168	
R324A120284	
R324A130161	
R324J060002	
R324L060023	
Reading Strategy Assessment Tool (R-	
R305G040055	
reading tutor	00
R305A080157 R305A080628	
K 2U2 A U8U0 Z8	83

R305B07045881
Readorium
EDIES11C004295
EDIES13C003087
Ready, Set, Leap! (RSL)
R305J03003770
Reasoning Mind (RM)
R305A130400
remediation
EDIES11C004167
R305A11006050
R305A13012567
R305A14034067
R305G05008391
response to intervention (RtI)/ multi-tiered
support
R324A080150
R324A12036575
Responsive Reading
R305W030257
retrieval-monitoring-feedback (RMF)
technique
R305H05003813
Rimac
R305A13044164
rural
R305A04005677, 153
R305A08013382
R305M040167 148
R305M050109 154
R324A090322109
R324A1200339
Scaffolded Writing and Rewriting in the
Disciplines (SWoRD)
R305A12037099
Scaffolding Self-Regulation
R305A08070020
Scholar
EDIES11C001995
Scholastic READ 180
R324A08000699
school readiness
ED07CO0039
EDIES13C0034108
R305A060021149
R305A08047671
R305A08069720
R305A08070020

R305A090013		71
R305A090502		21
R305A100154		.150
R305A100654		.159
R305A110284		73
R305A110549		74
R305A120323		.150
R305A130612		22
R305A140065		76
R305A140378		.151
R305A140385		22
R305A140386		.152
R305M040167		.148
R305S050034		70
R305W030257		.152
R324A090145		21
R324A120033		9
R324A120284		.108
R324A120365		
R324A130249		.151
R324B070003		.177
School Readiness Curriculum Based		
Measurement System (SR-CBMS)		
R305A110549		74
science		
ED008CO0050		66
ED06C00039		38
ED06PO0899		38
ED06PO0900		65
ED06PO0909		57
ED06PO0912		58
ED06PO0933		.147
ED07CO0037		39
ED07CO0038		39
ED07CO0040		66
ED07CO0044		58
ED07CO0046		.105
ED08CO0044	59,	145
ED08CO0050		41
ED08CO0051		60
EDIES09C0017		61
EDIES10C0020		
EDIES10C0023		
EDIES10P0103		
EDIES11C0019		95
EDIES11C0022		
EDIES11C0028		
EDIES11C0029	,	
		-

EDIES12C0040	51
EDIES13C0033	32
EDIES13C0035	104
EDIES13C0037	32
EDIES14C0041	55
EDIES14C0044	
R305A070067	
R305A080063	
R305A080078	
R305A080141	
R305A080514	
R305A080594	
R305A080614	
R305A080622	
R305A090145	
R305A090170	
R305A090195	
R305A090210	
R305A090476	
R305A090502	
R305A090549	
R305A090608	
R305A100069	
R305A100091	
R305A100163	
R305A100404	
R305A100625	
R305A100875	
R305A100992	
R305A110021	
R305A110782	
R305A110810	
R305A120047	
R305A120390	
R305A120778	
R305A130160	
R305A130195	
R305A130206	
R305A130441	
R305A130612	
R305A130705	
R305A140602	
R305B070349	
R305B070434	
R305B070443	
R305C080022	
R305G050022	
R305H020113	
100011000110	

R305H030175	13
R305H050038	13
R305H050052	36
R305H050116	22
R305H050169	36
R305H060034	23
R305H060089	10
R305K040008	56
R305K050140	57
R305M0501091	54
R305S050019	57
R324A070130	26
Science4Us	
EDIES13C0033	32
scientific inquiry/ literacy	
ED08CO0050	41
EDIES09C00141	
EDIES10C0023	
EDIES10P0103	48
EDIES12C0040	51
EDIES13C0028	
EDIES14C0044	65
R305A080225	42
R305A080507	43
R305A080514	43
R305A080614	43
R305A080622	44
R305A090170	45
R305A090210	45
R305A090502	21
R305A090549	61
R305A100163	62
R305A100404	29
R305A100782	30
R305A110021	50
R305A120186	52
R305A120778	53
R305A120808	15
R305A130160	55
R305A130195	55
R305A130206	33
R305A130612	22
R305B070349	66
R305H020113	35
R305H050052	36
R305H060034	23
R305M0501091	54

SciSkillQuest
EDIES13C002854
self-efficacy
EDIES12C0047 111, 126
R305A100091
R305A130375139
self-regulation
EDIES13C0034108
R305A08070020
R305A120323
R305A13069916
R324A130065114
SenseMaker
R305F10000794
SimCalc Connected Math Worlds
R305B070430
SimScientists
R305A08061443
R305A11002150
R305A12039053
R305A13016055
SimStudent
R305A09051946
SmartSign
R324A10008073
social media
ED06PO091258
EDIES09C0014 142
EDIES09C001892
EDIES10C002214, 164
EDIES13C004354
R305A100782
R305A110288
R305A110809117
social problem solving
EDIES11C0033
EDIES11C0039110
EDIES13C0041 112
R324A090197113
R324B07017616, 129
Social Shape Up System
EDIES11C0043
social skills training intervention (S.S.GRIN)
R305A110583
social studies
ED07CO0046105
ED08CO005041
EDIES10C0020103

EDIES10P0101	
EDIES11C0019	
EDIES13C0035	
EDIES13C0042	
R305A080622	
R305A090476	
R305A130195	55
R305A130705	
R305B070537	
R305G050091	78
R305M050121	154
Social Tele-Coaching (SOTELCO)	
R324A090322	
social-behavioral	
ED06PO0910	108, 135
ED06PO0918	
EDIES10C0020	
EDIES10P0106	
EDIES11C0033	
EDIES11C0039	
EDIES11C0040	
EDIES11C0043	· · ·
EDIES12C0047	
EDIES13C0026	
EDIES13C0034	
EDIES13C0041	
EDIES13C0043	
EDIES13C0046	
R305A080700	
R305A110583	
R305A120323	
R324A080006	
R324A080136	
R324A080150	
R324A090197	
R324A090288	
R324A090322	· · ·
R324A100025	
R324A100094	,
R324A100246	
R324A110074	
R324A120033	
R324A120168	
R324A120284	
R324A130065	
R324A130216	
R324A130249	
R324B070003	

spatial ability
R305A08069720
R305A09052728
R305B07053711
R305J02002618
R305K05014057
Spatial-Temporal (ST) Math®
R305A09052728
speech or language impairment
ED08CO0056124
EDIES10P001184
EDIES11C002784
EDIES12C0047111, 126
EDIES13C0046 139
R324A07012271
R324A090028125, 136
R324A12036575
speech recognition
ED07CO004380
R305A08015782
R305A08062883
R305A130030144
R305A14020390
R305B07045881
SpeechPrompts
EDIES13C0046 139
standards
standards ED06C00039
standards
standards ED06C00039
standards ED06C00039 38 ED06PO0899 38 ED06PO0925 174 ED06PO0933 147 ED07CO0038 39 ED08CO0050 41 ED1ES09C0015 27 ED1ES10P0103 48 ED1ES10P0104 28 ED1ES11C0028 49, 127 ED1ES13C0043 54 ED1ES14C0025 34 R305A100234 49 R305A130160 55 R324A090340 47
standards ED06C00039 38 ED06PO0899 38 ED06PO0925 174 ED06PO0933 147 ED07CO0038 39 ED08CO0050 41 ED1ES09C0015 27 ED1ES10P0103 48 ED1ES10P0104 28 ED1ES11C0028 49, 127 ED1ES13C0043 54 ED1ES14C0025 34 R305A100234 49 R324A090340 47 R324A120081 160
standards ED06C00039 38 ED06PO0899 38 ED06PO0925 174 ED06PO0933 147 ED07CO0038 39 ED08CO0050 41 ED1ES09C0015 27 ED1ES10P0103 48 ED1ES10P0104 28 ED1ES11C0028 49, 127 ED1ES13C0043 54 ED1ES14C0025 34 R305A100234 49 R324A090340 47 R324A120081 160
standards ED06C00039 38 ED06PO0899 38 ED06PO0925 174 ED06PO0933 147 ED07CO0038 39 ED08CO0050 41 ED1ES09C0015 27 ED1ES10P0103 48 ED1ES10P0104 28 ED1ES11C0028 49, 127 ED1ES13C0043 54 ED1ES14C0025 34 R305A100234 49 R305A130160 55 R324A090340 47 R324A120081 160 statistics ED1ES11C0037
standards ED06C00039 38 ED06PO0899 38 ED06PO0925 174 ED06PO0933 147 ED07CO0038 39 ED08CO0050 41 ED1ES09C0015 27 ED1ES10P0103 48 ED1ES10P0104 28 ED1ES11C0028 49, 127 ED1ES13C0043 54 ED1ES14C0025 34 R305A100234 49 R324A090340 47 R324A120081 160

R305D090024168
R305D100021169
R305D110001169
R305D110014170
R305D110018170
R305D110027170
R305D120020171
R305D130033171
STEM Solar Explorations
EDIES11C0022
STEPS to Literacy
R305A090476
STICKS
R324A090283158
Strategic School Funding for Results (SSFR)
R305A100630177
Strategic Writing Assisted by intelligent
tutoring for 5th grade Youth (SWAY)
R305A130705
Strategy Tools Support System (STSS)
R324B07017616, 129
Student Self-Management System (SSMS)
R324A110074111
Student Social Competence Program
R324A080150157
Students Understanding eNergy (SUN)
R305B070443164
suburban
R305A080133
R305A13019555
R305A13044164
Tactus Immersive Learning Environment
(TILE)
ED07CO0038
Targeted Reading Intervention (TRI)
R305A100654159
Teachable Agents Project
R305H06008910
Technology-Enhanced LEEP (T-LEEP)
R305M050026148
TechPALS
R305K06001124
Tennessee Early Intervention Data System
Plus
R324B070003177
Text Adaptor 3.0
R305A100105

The American War - Featuring Valley Sim
EDIES12C0034 106
The Learning Element 3.0
EDIES10C0018 142
The Writing Pal
R305A080589
R305A120707
Thinking Time
EDIES14C004710
Time Compressed Animated Delivery
(TCAD)
ED008CO005066
Tools for Teachers
R324A070008149
Tools of the Mind
R305A08070020
Training in Experimental Design
R305A10040429
Transition Assessment Goal Generator
(TAGG)
R324A100246 113
transition planning for students with
disabilities
EDIES13C0026
R324A090288
R324A090307
R324A100025117, 129
R324A100094114 R324A100246113
R324A100240
R324A120188
transition to college or career
EDIES10P0105105
R305A080263116, 179
R305A110288
R305A110809
R305A140121
R305H140028
TRIAD (Technology-enhanced, Research-
based Instruction, Assessment, and
professional Development)
EDIES11C0045
R305K05015719
Universal Assessment System (UAS)
ED08CO0056
Universal Learning Edition (ULE)
R305G050029

U-PACE
R305A110112120
urban
ED06PO0908133
R305A13019555
R324A12010387
VentureMap
ED06PO0931
V-Frog
R305S05001957
Virtual Physics Laboratory
ED06PO0909
ED07CO0040
Virtual Research Assistant
EDIES13C0036138
Virtual STAR Classroom Simulator
ED06PO0908133
visual impairment
ED08CO0056124
EDIES09C005627
EDIES11C002849, 127
EDIES11C003485, 125
R305S05007091, 126
R324A06003480, 124
R324A090288119, 130
R324A110088127
R324A11035551, 128
R324A12000653, 128
Visual Retrieval Practice
R305B07053711
vocational/ career technical education
R324A090288119, 130
R324A100025117, 129
R324A120188130
Volunteer, Employment, and Internship Web
Solutions
EDIES10P0110105
Voyage to Galapagos (VTG)
R305A110021
V-SOURCE (Virtual Student Outreach for
College Enrollment)
R305A110809117

Wayang Outpost
R305A08066427
Web-based Inquiry Science Environment
(WISE)
R305H02011335
WKe-Book
R305F10002772
Word-Learning Strategies
EDIES09C001383
World Explorador
EDIES13C0040
World of Words (WOW)
R305A09001371
writing
ED08CO005041
ED08CO0056124
EDIES09C001892
EDIES11C001995
EDIES13C0027 104
EDIES13C003996
EDIES14C001897
EDIES14C004597
R305A04005677
R305A08058999
R305A08062244
R305A09039493
R305A09047693
R305A11033396
R305A120370
R305A120707
R305A13070588
R305G02001876, 135
R305H02003998
R305H05013398
R305M050086 155
Writing Wings
R305M050086 155
Youth Map
ED07CO0046105
Zaption
EDIES14C0049 140
Zoo U
EDIES11C0039 110

Appendix A: Compendium Process

The Institute identified 401 projects, spanning 13 years (2002-2014), to be included in this compendium. These projects included NCER and NCSER research grants, evaluation contracts, and other awards. The compendium process was highly collaborative, with multiple rounds of feedback from the Institute and Dr. Art Graesser, the content advisor with expertise in education technology. The contractor led the writing of the project descriptions and the development of the structure of the compendium. Dr. Graesser and the Institute provided feedback on the proposed structure, and the Institute provided additional feedback on writing conventions. The Institute also provided all project information, including the full abstracts, a list of publications and products, and other award information.

Project Descriptions

The contractor developed a project description template that included prescriptive guidelines on verb tense, verb usage, description length, and sentence stems. For each project, the contractor wrote a short project description using the project abstract provided by the Institute.⁶ To ensure consistency across the project descriptions, the contractors used the past tense and active voice for all projects.

Project descriptions are typically 100 words or fewer and highlight key areas of the project abstract including the following:

- the theory or motivation behind the project;
- the type of research project;
- the population of students/project focus; and
- the level of intervention (e.g., student, class, school).

NCER and NCSER fund research that align with the following research goals: exploration, development and innovation of interventions (e.g., curricula, policies), evaluation, and development and validation of assessments.⁷ To help readers categorize projects appropriately, the contractor developed a set of common verbs and sentence stems associated with each research goal, as shown below:

⁶ Copies of the full abstracts, which served as the source documents for this compendium, are available online at <u>http://ies.ed.gov/funding/grantsearch</u>.

⁷ These research types reflect the Research Goals described in NCER's Request for Applications for Education Research and NCSER's Request for Applications for Special Education Research. These two requests, however, identify five research goals: Exploration, Development and Innovation, Efficacy and Replication, Effectiveness, and Measurement. For the purposes of this compendium, we combine Efficacy and Replication and Effectiveness under the term *evaluation*.

Research Goal	Sentence Stems	Recurring Verbs
Exploration	"In this project, researchers explored the relationship between"	Explored
	"In this project, researchers explored how"	
Development and	"In this project, researchers iteratively developed and	Developed
Innovation of	studied"	Adapted
Policies and	"In this project, researchers iteratively adapted and	Tested
Practices	tested"	
Evaluation	"In this project, researchers evaluated the impact of"	Evaluated
Development and	"In this project, researchers designed and validated"	Designed
Validation of	"In this project, researchers validated"	Validated
Assessments		

Compendium Categorization

The categorization process included tagging each project for domains—such as settings, grade level, focal population, and type of technology developed or studied—and categorizing each project into compendium sections and chapters. The three sections of the compendium include: Technology to Support Student Learning (in which the target of the project was students themselves or their families), Technology to Support Teachers and Instructional Practice, and Technology to Support Research and School Improvement. Each section includes multiple chapters, based on a major research focus. The contractor developed a categorization scheme in partnership with the Institute and the external content advisors. The categorization scheme, shown in the text boxes that follow, includes section headers (e.g., Technology to Support Student Learning), chapter headers (e.g., Cognition), section and chapter descriptions, and key words.

After developing the definitions for and parameters of each section and chapter, the contractor reviewed each project description to determine the section and chapter in which each project would best fit. Per Institute guidance, the contractor categorized projects for this compendium into multiple sections and chapters. The contractor followed these guidelines set forth by the Institute:

- 1. Within a section, a project was listed only once according to its primary focus. An exception to this rule was made for the Assitive Technology chapter in order to help readers quickly locate information about this specific area of research. Projects could be categorized in the Assistive Technology chapter and another chapter in the student section or across sections.
- 2. A project could be listed across sections if a project had equal or near equal focus on more than one of the other research foci.

Per Institute guidance, the contractor did not consult additional information sources or review publications from projects for more information about the projects. Thus, the Institute was the sole source of project information. Institute staff verified all project information presented in this compendium. Two contract staff independently categorized each of the projects and compared their categorizations. In instances where the two coders did not agree, a third contract staff member was brought in for reconciliation. For any project in which the contract staff could not reach agreement, Institute staff provided further assistance or documentation to determine the best chapter for each project. Upon completion of all categorizations, Institute staff reviewed the categorization(s) of each project to ensure content accuracy and agreement.

In addition to determining the section and chapter in which a project should be placed, the contractor coded projects for the student population (i.e., grade level, English learners, and students with or at risk for disabilities). The grade level reflects the grade range of students who are targeted by the technology or who are taught by those targeted by the intervention (e.g., elementary school teachers) as noted in the abstracts, and, when this information was not available, Institute staff provided additional documentation. Projects received the abbreviation EL to note the inclusion of English learners (ELs) as a primary focus population or a significant component of the sample group. All projects funded through NCSER necessarily had students with or at risk for disabilities as part of their samples and, thus, received the abbreviation SWD. NCER projects in which students with or at risk for disabilities were a noted as a subgroup in the research plan also received a SWD abbreviation. The coding process followed was similar to that of the categorization process. Two contract staff coded each project for reconciliation. A third contract staff member was brought in if necessary, and, for any instance in which contract staff could not reach agreement based on the abstracts provided by the Institute, Institute staff provided further assistance or documentation. Finally, Institute staff verified all codes or tags for grade-level and focal population.

The categorization scheme for the Technology to Support Student Learning section and chapters are provided below.

Categoriz	ation Scheme for Technology to Support St	udent Learning
Chapter Headers	Definition	Key Words
1. Cognition	This chapter focuses on projects intended to impact or affect processes through which an individual obtains knowledge or conceptual understanding (cognitive processes) or conditions that affect cognitive processing. Projects focus on student mental processes, and not social interactions or behaviors.	Abstract reasoning, anxiety (math, test, writing, etc.), attention, concept formation, critical thinking, executive function, self- regulation, logical thinking, memory, metacognition, motivation, perception, problem solving, self- efficacy, spatial ability, symbolic learning, growth mindset
2. Math and Science Education	This chapter focuses on projects intended to impact or affect mathematics skills or science skills.	Algebra, computation, fractions, geometry, math difficulties, measurement, numeracy, probability, statistics, word problems, biology, chemistry, earth science, hands-on science, physics, science inquiry, scientific literacy
3. Reading, Writing, and Language Development	This chapter focuses on projects intended to impact or affect language skills in English, reading skills, and writing skills.	Grammar, morphology, prosody, language impairments, expressive or receptive oral language, pragmatics, beginning reading, comprehension, decoding, oral and silent reading, vocabulary, reading difficulties, beginning writing, content area writing, expository writing, writing difficulties, writing strategies
4. Other Academic Content Areas	This chapter focuses on projects intended to impact or affect learning in other academic categories.	Fine or performing arts, economics, foreign language, health, history, physical education, psychology, social studies, and sociology.

5. Social and Behavioral Outcomes	This chapter focuses on projects intended to impact or affect social-behavioral learning or skills. Projects focus on social behaviors and interactions with peers and teachers.	Affective behavior, aggression/disruptive behavior, behavior problems, character development or education, engagement, functional skills, interpersonal relationships, peer acceptance and relationships, on-task behavior, social and emotional learning, social- behavioral counseling, social behavior, and social competence/skills.
6. Postsecondary Education and Adult Education	This chapter focuses on projects intended to impact or affect pathways to postsecondary learning and on programs beyond the secondary level.	Transition to college/career, transition to independent learning, high school equivalency, college access and financial support, postsecondary curriculum, postsecondary remediation, postsecondary credit recovery, college retention and completion, the adult education system
7. Assistive Technology	This chapter focuses on projects intended to impact or affect student learning via assistive technology, or its use or availability for students with special needs.	Assistive technology/ devices, augmented technology/ devices, augmented/ alterative communication, screen enlargements, screen readers, voice recognition programs

The categorization scheme for the Technology to Support Teachers and Instructional Practice section and chapters are provided below.

Categorization Scheme for Technology to Support Teachers and Instructional Practice		
Chapter Headers	Definition	Key Words
1. Classroom	This chapter focuses on projects intended	Lesson planning,
Management and	to impact or affect classroom management	accommodating learning,
Instructional	and classroom management techniques, as	managing differentiation,
Supports	well as classroom teachers' methods and	personalizing learning, using
	strategies for instruction, such as presenting	digital teaching platforms,
	instructional materials, conducting	implementation supports,
	instructional activities, and technology that	pedagogical/ instructional
	helps teachers implement interventions and	supports, productivity tools
	teach subjects.	
2. Educator	This chapter focuses on projects intended	Teacher development,
Professional	to impact or affect professional	teacher training, teacher
Development	development programs and practices for	coaching, student teaching,
	currently practicing educators, the training	instructional coaching,
	of education students to become practicing	pedagogical or instructional
	educators, and the mentoring of educational	improvements, pedagogical
	professionals, including teachers and other	or instructional training
	direct service providers.	

The categorization scheme for the Technology to Support Research and School Improvement section and chapters are provided below.

Categorization Scheme for Technology to Support Research and School Improvement		
Chapter Headers	Definition	Key Words
1. Tools for Researchers	This chapter focuses on projects intended to provide education researchers with the tools they need to conduct rigorous applied research, including single-subject design, quasi-experimental design, randomized controlled trials, psychometrics, power analysis, and "big data" use. Projects develop new approaches, extend and improve existing methods, and create other tools that would enhance the ability of researchers to conduct the types of research	Statistical analysis, research design, quasi-experimental design, survey methods, power analysis, experimental methods, data analysis, sampling methodology, psychometrics, analytic modeling
	that the Institute funds.	
2. Technology for School Improvement	This chapter focuses on projects intended to impact or affect school planning, school- level data management, financial management tools, quality control systems, and providing supports for students with disabilities (not assistive technologies).	Data-based decisions making, early warning indicator system, education finance, education systems

Each project was coded by the contractor to indicate whether it explored, developed, or studied (e.g., evaluated) one or more of the following technology types: web-based (spider web icon), virtual environment and/or interactive simulation (viewer icon), intelligent tutor and/or artificial intelligence (tutor icon), game-based (chess icon), and computer-based assessments (checkmark icon). Blank cells indicate that no products of these specific types were developed or studied as part of the project. Institute staff verified the coding and provided additional documentation to resolve any remaining questions about coding when necessary. Some projects received multiple technology icons. For instance, if a project was developing a computer-based assessment, and this assessment featured game-based technologies to engage students, it would receive both a checkmark icon (computer-based assessments) and an chess icon (game-based).

The icons and definitions for each technology type identified in the project tables are provided below.

Technology	Icon	Definition
Web-based		Web-based technology includes devices or other applications which leverage access to the Internet, such as cloud computing which involves groups of remote servers, software networks that allow for centralized data storage and online access. Web-based technologies can be based completely online (e.g., a mobile application) or can be hybrids in which the technology has a mix of web-based and non-web-based components (e.g., computer software for which user data can be uploaded to Internet). Key words: cloud-based, Internet, online, streaming, web-based, cloud computing, remote servers, software networks, cloud engineering, cloud architecture.
Virtual environment / Interactive Simulation	?	Virtual environments are interactive, virtual image displays enhanced by visual, aural, and tactile modalities. Virtual environments allow users to "have a sense of being present in an environment other than the one they are actually in, and to interact with that environment". Interactive simulation is an imitation of a real-world process or system. It is designed to promote learning by allowing the user to actively control input parameters and observe the results on the system. Key words: interactive environment, interactive simulation, simulation, virtual environment, virtual world, virtual simulation, virtual classroom, virtual simulator, virtual event.

Intelligent Tutor / Artificial Intelligence	Intelligent tutors and artificial intelligence track the knowledge of the student or other user (called "user modeling") and adaptively respond to him or her. This incorporates computational models in artificial intelligence and cognitive science. Key words: adaptive tutor, artificial intelligence, cognitive tutor, computerized tutor, intelligent tutor, user modeling, computer-based agent, web-based tutor.
Game-based	Game-based technologies offer an instructional method that incorporates educational content or learning principals into a computer-based game (or a game played on other devices such as tablets or mobile phones). Game-based learning technologies often feature feedback, progress markers, engaging content, fantasy, competition, challenge, uncertainty, curiosity, control, and other factors that involve cognition, emotions, motivation, and art. Key words: games, computer games, game-based learning, learning games, video games, mobile games, educational games.
Computer-based Assessments	Computer-based assessments are assessments administered using tablets, computers, and other computing platforms. It also refers to computerized adaptive testing (CAT) (i.e., a form of computer-based testing that adapts to the user's ability/knowledge level by selecting questions from a pre- calibrated item bank). Assessment may be stand-alone or embedded in intelligent tutoring systems and game-based projects. Key words: computer-based testing/ assessment, computerized testing/ assessment, computer-adaptive testing/ assessment, IRT models.

Appendix B: Web-Based Technologies by Chapter

Projects are listed in alphanumeric order and may not match the order of presentation within the actual chapter.

Cognition

Award Number	Web-Based Technologies by Chapter
ED06PO0896	Computer-Enhanced Automated Lecture (CEAL)
EDIES10C0022	Growth Mindset Learning Platform for Educators and Students: Supporting Academic Motivation and Achievement through an Integrated Online Platform
EDIES11C0044	Computer Adaptive Triarchic Assessment and Instructional Activities for Early Childhood
EDIES14C0047	A Game-Based Intervention to Promote Executive Function and Reasoning in Early Learning
R305A090324	Creating Scalable Interventions for Enhancing Student Learning and Performance
R305A130699	The Impact of Theories of Intelligence on Self-Regulated Learning Strategies and Performance Improvement
R305B070537	Harnessing Retrieval Practice to Enhance Learning in Diverse Domains
R305H030016	The Neural Markers of Effective Learning
R305H030175	Study Enhancement Based on Principles of Cognitive Science
R305H050036	A Randomized Trial of Two Promising Interventions for Students with Attention Problems
R305H050038	Supporting Efficient and Durable Student Learning
R324B070176	Electronic Performance Support Systems (EPSS) as Assistive Technologies To Improve Outcomes for Secondary Students

Math and Science Education

Web-Based Technologies by Chapter
Higher Learning @ Higher Speeds in Biosciences using Time Compressed
Animated Delivery (TCAD)
Cinematic Sciences: An Online Simulation Platform with Real Physics and
Behavioral Programming for Physical Sciences
Videogame-Based Inquiry Learning Module for Science Literacy
A Virtual Launchpad for Learning at Higher Speeds
Virtual Physics Laboratory
Math Messenger

Award Number	Web-Based Technologies by Chapter
ED06PO0921	Natural Math: An Empirically Derived Software for Mathematics Education
ED06PO0930	Fathom Dynamic Data Software
ED07CO0037	Technology Enhanced Science Education in Middle School
ED07CO0038	The Tactus Immersive Learning Environment (TILE) for Enhancing Learning in High School Science Classrooms
ED07CO0039	Early Childhood Assessment and Intervention to Improve Grade School Students' Math and Reading
ED07CO0040	Virtual Physics Laboratory
ED07CO0044	Intelligent Molecular Model Kit and Software Suite for Improving High Schoo Chemistry Instruction and Student Achievement
ED08CO0044	Online Learning System to Advance Teaching of Hyper Molecular Modeling
ED08CO0050	The Digital Earth Explorations Project to Enrich the Middle School Sciences
ED08CO0051	Electronic Chemistry Laboratory Workbook (ECLW)
EDIES09C0009	An Online Intelligent Tutoring System to Advance Learning in Math Games
EDIES09C0015	Math Monster Mystery: A Formative Assessment in Game Format for Grade 4 Mathematics
EDIES09C0017	Agile Mind Visualizations to Increase High School Biology Learning
EDIES09C0056	Refining and Validating the NimblePad
EDIES10C0023	Game-Based Interactive Life Science for Students With Learning Disabilities
EDIES10C0024	Perceptual and Adaptive Learning Technologies: Developing Products to Improve Algebra Learning
EDIES10P0102	Fablab Construction Station: Engaging Teacher and Students in Technology, Engineering, and Math
EDIES10P0103	Planet First Energy World (PFEW)
EDIES10P0104	An Empirical Approach to Developing Web-based Math Learning Games to Improve Elementary School Student Outcomes
EDIES11C0022	STEM Solar Explorations
EDIES11C0026	Project NumberShire: A Game-Based Integrated Learning and Assessment System to Target Whole Number Concepts
EDIES11C0028	Haptic Immersion Platform to Improve STEM Learning for the Visually Impaired
EDIES11C0029	Virtual Labs for High School Physics
EDIES11C0041	Math Education for Adult Learners and College Remediation Using Artificial Intelligence
EDIES12C0040	Possible Worlds: Explorer Series
EDIES13C0028	SciSkillQuest: A Standards-Based Game to Develop Students' Scientific Skills, Academic Mindsets, and Learning Strategies in Science
EDIES13C0032	Web Fluid Math

Award Number	Web-Based Technologies by Chapter
EDIES13C0033	Science4Us: Game-Based K-2 STEM Education For Teachers And Students
EDIES13C0037	Transmedia: Augmented Reality Game For Essential Transfer Of Science
EDIES13C0043	Empires: The First Socially-Networked Story-Based Math Game
EDIES13C0044	Teachley: Math Facts - Design And Development Of Intervention Software
	Promoting Single-Digit Operational Fluency
EDIES13C0045	NumberShire II: Development Of A Second Grade Game-Based Integrated
	Learning System To Target Whole Numbers And Operations In Base Ten And
	Operations And Operations And Algebraic Thinking
EDIES14C0025	S3: A Game-based 3rd Grade Math Curriculum
EDIES14C0041	Happy Atoms
EDIES14C0044	Eco: An Online Virtual World for Secondary School Environmental Literacy
	and Collaborative Problem Solving
EDIES14C0052	Engaging Students in STEM: International Social Collaborative Exchange Network for Education: iSCENE
R305A070067	Integrated Software for Artificial Intelligence Tutoring and Assessment in
	Science
R305A070440	Making Longitudinal Web-Based Assessments Give Cognitively Diagnostic
	Reports to Teachers, Parents, and Students While Employing Mastery Learning
R305A080063	A Randomized Controlled Study of the Effects of Intelligent Online Chemistry Tutors in Urban California School Districts
R305A080093	Bringing Cognitive Tutors to the Internet: A Website that Helps Middle-School Students Learn Math
R305A080141	Advancing Ecosystems Science Education via Situated Collaborative learning in Multi-User Virtual Environments
R305A080225	Multilevel Assessments of Science Standards (MASS)
R305A080464	Closing the Achievement Gap in Middle School Mathematics Utilizing Stanford University's Education Program for Gifted Youth Differentiated Mathematics Program
R305A080514	Virtual Performance Assessments for Measuring Student Achievement in Science
R305A080594	Guru: A Computer Tutor that Models Expert Human Tutors
R305A080614	SimScientists: Interactive Simulation-Based Science Learning Environments
R305A080622	Expanding the Science and Literacy Curricular Space: The GlobalEd 2 Project
R305A080664	Teaching Every Student: Using Intelligent Tutoring and Universal Design to
	Customize the Mathematics Curriculum
R305A090170	ASSISTment Meets Science Learning (AMSL)
R305A090195	Testing the Effectiveness of CALM for High School Chemistry Students

Award Number	Web-Based Technologies by Chapter
R305A090197	Efficacy Study of AnimalWatch: An Intelligent Tutoring System for Pre- Algebra
R305A090528	Applications of Intelligent Tutoring Systems (ITS) to Improve the Skill Levels of Students with Deficiencies in Mathematics
R305A090549	Promoting Robust Understanding of Genetics with a Cognitive Tutor that Integrates Conceptual Learning with Problem Solving
R305A100069	Embedded Assessments Using the ChemCollective Virtual Lab
R305A100074	Improving Students' Skill at Solving Equations Through Better Encoding of Algebraic Concepts
R305A100110	Developing and Evaluating a Technology-Based Fractions Intervention Program for Low-Achieving and At-Risk Students
R305A100163	Improving a Natural-Language Tutoring System that Engages Students in Deep Reasoning Dialogues about Physics
R305A100234	An Adaptive Testing System for Diagnosing Sources of Mathematics Difficulties
R305A100404	Promoting Transfer of the Control of Variables Strategy in Elementary and Middle School Children via Contextual Framing and Abstraction
R305A100782	Habitat Tracker: Learning About Scientific Inquiry Through Digital Journaling at Wildlife Centers
R305A110021	Voyage to Galapagos: Development of a Differentiated Assistance Model in an Inquiry Learning Environment
R305A110149	Assessing the Efficacy of Online Credit Recovery in Algebra I for At-Risk Ninth Graders
R305A110810	An Examination of the Qualities of Interactive Science Learning Environments That Promote Optimal Motivation and Learning
R305A120125	An Efficacy Study of Online Mathematics Homework Support: An Evaluation of the ASSISTments Formative Assessment and Tutoring Platform
R305A120186	SimSelf: A Simulation Environment Designed to Model and Scaffold Learners' Self-Regulation Skills to Optimize Complex Science Learning
R305A120288	Perceptual Learning Technology in Mathematics Education: Efficacy and Replication
R305A120390	SimScientists Assessment System
R305A120734	Combining Advantages of Collaborative and Individual Learning with an Intelligent Tutoring System for Fractions
R305A120778	The Development of an Intelligent Pedagogical Agent for Physical Science Inquiry Driven by Educational Data Mining
R305A130125	Using Computer-Assisted Instruction to Accelerate Students through Developmental Math: An Impact Study of Modularization and Compression

Award Number	Web-Based Technologies by Chapter	
R305A130160	SimScientists Model Progressions	
R305A130195	GlobalEd 2	
R305A130215	Use of Machine Learning to Adaptively Select Activity Types and Enhance Student Learning with an Intelligent Tutoring System	
R305A140221	Efficacy of ALEKS for Improving Student Algebra Achievement	
R305A140340	Khan Academy Resources for Maximizing Mathematics Achievement: A Postsecondary Mathematics Efficacy Study	
R305A140602	Bootstrapping Achievement and Motivation in STEM: An Integrated Cognitive-Motivational Intervention to Improve Biology Grades	
R305B070048	Evaluation of the First In Math Online Mathematics Program in New York City: A Randomized Control Trial	
R305B070325	mCLASS:Math: Development and Analysis of an Integrated Screening, Progress Monitoring, and Cognitive Assessment System for K-3 Mathematics	
R305B070349	Acquiring Research Investigative and Evaluative Skills (ARIES) for Scientific Inquiry	
R305B070430	Democratizing Access to Core Mathematics Grades 9-12	
R305B070487	Bridging the Bridge to Algebra: Measuring and Optimizing the Influence of Prerequisite Skills on a Pre-Algebra Curriculum	
R305C080015	National Research & Development Center on Instructional Technology: Center for Advanced Technology in Schools	
R305C080022	National Research & Development Center on Instructional Technology: Possible Worlds	
R305H020113	Introducing Desirable Difficulties for Educational Applications in Science	
R305H050052	Dynamically Modifying the Learning Trajectories of Novices with Pedagogical Agents	
R305H060034	Training in Experimental Design: Developing Scalable and Adaptive Computer-based Science Instruction	
R305H060070	Integrating Conceptual Foundations in Mathematics through the Application of Principles of Perceptual Learning	
R305K030140	Using Web-Based Cognitive Assessment Systems for Predicting Student Performance on State Exams	
R305K040008	Integrated Software for Artificial Intelligence Tutoring and Assessment in Science	
R305K050045	Classroom Connectivity in Promoting Mathematics and Science Achievement	
R305K050157	Scaling Up TRIAD: Teaching Early Mathematics for Understanding with Trajectories and Technologies	
R324A070035	Principled Science Assessment Designs for Students with Disabilities	
R324A070130	The Universally Designed Science Notebook: An Intervention To Support	

Award Number	Web-Based Technologies by Chapter
	Science Learning For Students With Disabilities
R324A090145	Building Math Readiness in Young Deaf/Hard-of-Hearing Children: Parents as
	Partners
R324A090340	The Math Learning Companion: An Individualized Intervention for Students
	with Math Learning Disabilities
R324A120006	AnimalWatch-VI Suite: A Comprehensive Program to Increase Access to
	Mathematics for Students with Visual Impairments
R324A120071	Development of a Game-based Integrated Learning and Assessment System to
	Target Whole Number Concepts (Project NumberShire)

Reading, Writing, and Language Development

Award Number	Web-Based Technologies by Chapter
ED06PO0904	Dynamic Offset of Text Highlighting to Build Reading Fluency
ED07CO0039	Early Childhood Assessment and Intervention to Improve Grade School
	Students' Math and Reading
ED07CO0043	4KW: A Multimedia System for Ensuring that Grade School Students Know
	the Meaning of the 4,000 Most Frequently Used English Words
EDIES09C0013	Word-Learning Strategies: A Program for Upper Elementary Readers
EDIES09C0018	Capitalizing on Social Networking: Social Networking Practices to Increase
	Adolescent Literacy Engagement and Achievement
EDIES10P0011	Developing a More Effective Speech Therapy Distance Learning Web-Based
	Product and Service
EDIES11C0019	u-learn.net: An Anywhere/Anytime Formative Assessment and Learning
	Feedback Environment
EDIES11C0027	Go Talk Phonics: Phonics for Individuals with Disabilities
EDIES11C0032	MyASL Quizmaker
EDIES11C0034	Artificial Intelligence Software to Tutor Literary Braille to the Blind and
	Visually Impaired
EDIES11C0042	Readorium Software for Improved Reading Comprehension of Non-fiction
	Science Text
EDIES13C0030	Readorium Rising Reader: Smart Nonfiction Comprehension Software For
	Students In Grades 3-5
EDIES13C0039	Infowriter: A Student Feedback And Formative Assessment Environment For
	Writing Information And Explanatory Texts
EDIES13C0040	World Explorador
EDIES14C0018	Access: Language Arts

Award Number	Web-Based Technologies by Chapter
EDIES14C0026	Commercializing the Effective K-3 Assessment to Instruction (A2i)
	Intervention to Reduce Cost and to Scale Access to the Benefit of More
	Students
EDIES14C0042	The Iowa Assessment of Skills and Knowledge for Automatic Word
	Recognition and Decoding (iASK)
EDIES14C0043	Enhancing Augmentative and Alternative Communication Rates in pre-K Through 6
EDIES14C0045	Automated, Personalized Formative Feedback for Student Writing with the
	LightSide Revision Assistant
EDIES14C0046	Technology-Enhanced Tutoring: Linking School and Home to Help Struggling
	Readers
R305A040056	National Research Center on Rural Education Support
R305A080133	Efficacy and Replication Research on the Intelligent Tutoring System for the
	Structure StrategyRural and Suburban Schools Grades 4, 5, 7, and 8
R305A080589	The Writing Pal: An Intelligent Tutoring System that Provides Interactive
	Writing Strategy Training
R305A090227	The ESTRELLAS Project: Electronic Supported Text Research for English
100011070221	Language Learner Academic Success
R305A090394	The Assess-as-You-Go Writing Assistant: A Student Work Environment that
	Brings Together Formative and Summative Assessment
R305A090476	STEPS to Literacy: An Integrated Digital Writing Space for English Language
	Learners
R305A090608	Assessing Online Reading Comprehension: The ORCA Project
R305A100261	Assessment of Comprehension in Older Struggling Readers
R305A110333	Creating Compositions Using a Technology-Based Writing Tool: Supporting
	Students With Universal Design for Learning
R305A120086	Computer Based Assessment System for Reading (CBAS-R): Skills Analysis and
	Progress Monitoring
R305A120593	Improving Reading Comprehension of Middle Grades English Language
	Learners by Combining Structure Strategy with Web-Based Adaptive Tutoring
	for EL Learners (SWELL)
R305A120707	Exploration of Automated Writing Strategy Instruction for Adolescent Writings
	Using The Writing Pal
R305A130460	BLOOM: Facilitating Language and Literacy Outcomes of English Language
	Learners
R305A130467	Developing an Online Tutor to Accelerate High School Vocabulary Learning
R305A130705	Development of a Web-Based Writing Partner (Strategic Writing Assisted by
	intelligent tutoring for 5th grade Youth (SWAY)) to Improve Writing
	Persuasive Essays for 5th Grade Students

Award Number	Web-Based Technologies by Chapter
R305A140185	Multiple-choice Online Cloze Comprehension Assessment (MOCCA): Refining and Validating a Measure of Individual Differences in Reading Comprehension
	Processes During Reading
R305C120001	Center for the Study of Adult Literacy (CSAL): Developing Instructional Approaches Suited to the Cognitive and Motivational Needs for Struggling Adults
R305F100027	Examining Effective Intervention Targets, Longitudinal Intensity, and Scaling Factors for Pre-K to 5th Grade Student Comprehension
R305G020018	Coh-Metrix: Automated Cohesion and Coherence Scores to Predict Text Readability and Facilitate Comprehension
R305G030072	Intelligent Tutoring Using The Structure Strategy To Improve Reading Comprehension Of Middle School Students
R305G030123	Reader-Specific Lexical Practice For Improved Reading Comprehension
R305G040046	iSTART: Interactive Strategy Trainer for Active Reading and Thinking
R305G040055	Assessing Reading Comprehension with Verbal Protocols and Latent Semantic Analysis
R305G050029	Improving Reading Comprehension for Struggling Readers: Understanding the Roles of Vocabulary Development, Guided Strategy Use, and Spanish Language Supports in a Digital Reading Environment
R305G050154	Developing Internet Comprehension Strategies Among Adolescent Students At Risk to Become Dropouts
R305H020039	Improving Students' Comprehension and Construction of Arguments
R305H050133	Creating a Usable Environment to Teach Argument Comprehension and Production Skills
R305S050010	An Independently Usable Multimedia Software System in Listening Comprehension and Auditory Repetition Priming for Intellectually Disabled Non-Readers
R324A080006	Project LIBERATE (Literacy Instruction Based on Evidence through Research for Adjudicated Teens to Excel)
R324A090038	Formative Assessment and Instrumentation Procedures for Reading
R324A100322	Project SAIL: Strategies for Academic Internet Learning
R324A120103	Reducing Special Education/Reading Risk for Urban Learners through An Ora Reading Fluency Intervention
R324A120365	The Effects of Online Decision Making Support for Home Visitors Using an RTI Approach to Promote the Language Development of At-risk Infants and Toddlers

Award Number	Web-Based Technologies by Chapter
ED06PO0906	Give Me 5 For Children
ED06PO0936	A National PBS Television & Interactive New Technology Program for
	Children 7-11
ED07CO0046	Youth Map: A Software Based Program to Increase Service-Learning Quality
EDIES10C0020	OPEN's Virtual National Parks 3D Learning Environment for Science and
	Social Studies: Low-Cost and Easy to Implement Curriculums
EDIES10P0101	Online Socratic Learning for Enhanced Critical Thinking
EDIES10P0110	School Views (VIEWS): Volunteer, Internship, and Employment Web
	Solutions
EDIES12C0034	The American War Featuring Valley Sim
EDIES13C0027	Mission US: An Interactive Solution for Middle School History Learning
EDIES13C0035	Integrated System For Teaching And Assessing Online Information Research
EDIES13C0042	Go Games Civics: Meeting Common Core Standards with Tablet-Enhanced
	Multiplayer Role Play Games

Other Academic Content Areas

Social and Behavioral Outcomes

Award Number	Web-Based Technologies by Chapter
ED06PO0910	Digitizing the K-8 Portion of the Positive Action Program for Web-Delivery
EDIES10P0106	My Personal Academic Plan
EDIES11C0033	A Computer-based Social Intervention for Students with High Functioning
	ASD: Using Technology to Improve Special Education
EDIES11C0039	An Interactive Social Tutoring System to Improve and Measure Social Goals
	for Students Related to Academic and Other School-Related Outcomes
EDIES12C0047	PEAT Communication Scheduler for Autism
EDIES13C0034	Dynamic Narrative Generation Software To Improve Social And Behavioral
	School Readiness Skills Needed For The Successful Transition To Grade
	School
EDIES13C0041	Hall Of Heroes: An Interactive Social Tutoring System To Improve And
	Measure Social Goals For Students In Preparation For Transition To Middle
	School
R305A110583	Interactive Social Tutoring System for Social Skills Training with Elementary
	Students
R324A080136	Development of an Intervention to Enhance the Social Competencies of
	Children with Asperger's/High Functioning Autism Spectrum Disorders
R324A090197	Developing a 3D-based Virtual Learning Environment for Use in Schools to
	Enhance the Social Competence of Youth with Autism Spectrum Disorder

Award Number	Web-Based Technologies by Chapter
R324A100094	iSKILLS : The Audio/Video Guidance Repository for Life Skills
R324A100246	Transition Success Assessment
R324A110074	Student Self-Management System (SSMS): Reducing Problem Behavior in Upper Elementary Classrooms by Transferring Externally Applied Teacher Controls to Internally Applied Student Controls
R324A120284	Early Intervention for Young Children with ADHD: Developing Strategies to Enhance Parent Engagement

Pathways Into and Through Postsecondary Education

Award Number	Web-Based Technologies by Chapter
EDIES13C0026	Dynamic E-Learning to Improve Postsecondary Transition Outcomes for Secondary Students with High Functioning Autism
R305A080263	Using High School Transcript Data to Improve Student Access to Four-Year Colleges
R305A110112	Evaluating the Success of Undergraduates in the U-Pace Intervention to Improve Academic Achievement for All Postsecondary Education Students
R305A110288	Strategizing for College: A Game-based Approach to Increasing College Access
R305A110809	Promoting College Enrollment among Disadvantaged Students: A Randomized Controlled Trial of Two Low-Cost Interventions
R324A090307	Transition Outcomes for Special Education Secondary Students: Project Choices

Assistive Technology

Award Number	Web-Based Technologies by Chapter
ED08CO0056	The Universal Assessment System (UAS)
EDIES11C0028	Haptic Immersion Platform to Improve STEM Learning for the Visually
	Impaired
EDIES11C0032	MyASL Quizmaker
EDIES11C0034	Artificial Intelligence Software to Tutor Literary Braille to the Blind and
	Visually Impaired
EDIES11C0040	iPrompt to Improve Teaching Students with ASD
EDIES12C0047	PEAT Communication Scheduler for Autism
EDIES14C0043	Enhancing Augmentative and Alternative Communication Rates in pre-K
	Through 6
R324A120006	AnimalWatch-VI Suite: A Comprehensive Program to Increase Access to
	Mathematics for Students with Visual Impairments

Award Number	Web-Based Technologies by Chapter
R324B070033	Development of an IFSP Form and Process to Maximize Learning Opportunities for Young Children with Disabilities
R324B070176	Electronic Performance Support Systems (EPSS) as Assistive Technologies To Improve Outcomes for Secondary Students

Instructional Supports and Tools for Classroom Management

Award Number	Web-Based Technologies by Chapter
ED06PO0908	The Virtual STAR Classroom Simulator
ED06PO0910	Digitizing the K-8 Portion of the Positive Action Program for Web-Delivery
ED06PO0918	The eServe Initiative: An Empirically Supported, Web-based Educational Decision Making Product
ED06PO0922	Data-Management Program
ED06PO0927	Development of a Process Methodology to Determine the Cost of Ownership of Instructional Resources in Relation to the Benefits of Improved Student Performance
ED08CO0044	Online Learning System to Advance Teaching of Hyper Molecular Modeling
EDIES09C0014	Online Application to Support Inquiry-based Science Teaching
EDIES10C0018	The Learning Element: A Lesson Planning and Curriculum Documentation Tool for Teachers
EDIES11C0040	iPrompt to Improve Teaching Students with ASD
EDIES11C0043	The Social Shape Up System
EDIES12C0035	myEdna: Web 2.0 Teacher Personal Assistant
EDIES13C0036	Virtual Research Assistant For Teachers
EDIES13C0038	Project Hi-Fi: Promoting High Fidelity Of Screening And Progress Monitoring Assessments
EDIES13C0046	Handheld Technology For Speech Development In Students With Autism Spectrum Disorders
EDIES14C0048	Socrative Learning Network
EDIES14C0049	Zaption Mobile: Develop and Testing a Mobile App for Video Learning
EDIES14C0050	The eSparkBeat: A Pulse on the Modern Classroom
EDIES14C0051	Expanding Supports for Data-Driven Language Instruction
R305A080231	The Diagnostic Geometry Assessment Project
R305A080667	Agent and Library Augmented Shared Knowledge Areas (ALASKA)
R305A100178	Making Room for Student Thinking: Using Automated Feedback, Video-Based Professional Development, and Evidence-Based Practice Recommendations to Improve Mathematical Discussions

Award Number	Web-Based Technologies by Chapter
R305A110306	Eliciting Mathematics Misconceptions (EM2): A Cognitive Diagnostic
	Assessment System
R305A120125	An Efficacy Study of Online Mathematics Homework Support: An Evaluation
	of the ASSISTments Formative Assessment and Tutoring Platform
R305A120217	Innovative Computer-Based Formative Assessment via a Development,
	Delivery, Scoring, and Report-Generative System
R305A130375	The Classroom Check-up: Supporting Elementary Teachers in Classroom
	Management Using a Web-based Coaching System
R305A130517	Making Individualized Literacy Instruction Available to All Teachers: Adapting
	the Assessment to Instruction (A2i) Software for Multiple Real-World Contexts
R305A140472	Linguistically-Informed Activity Generation Technology to Support English
	Learner Content Learning
R305B070074	Child-Instruction Interactions in Reading: Examining Causal Effects of
	Individualized Instruction in Second and Third Grade
R305G020018	Coh-Metrix: Automated Cohesion and Coherence Scores to Predict Text
	Readability and Facilitate Comprehension
R305H040099	Bridging the Gap: Applying Algebra Cognition Research to Develop and
	Validate Diagnostic Classroom Algebra Testlet
R305W020001	Scaling Up an Assessment-Driven Intervention Using the Internet and Hand-
	held Computers
R324A100014	Reliability and Validity Evidence for Progress Measures in Reading
R324A110262	Algebra Screening and Progress Monitoring
R324A130161	Decision Rule Research Project: Curriculum-Based Measurement in Reading
R324B070033	Development of an IFSP Form and Process to Maximize Learning
	Opportunities for Young Children with Disabilities

Educator Professional Development

Award Number	Web-Based Technologies by Chapter
ED06PO0902	Design of an Online Professional Development Resource for Mainstream Teachers of English Language Learners
ED06PO0933	From Assessment to Action
ED07CO0045	Developing a Web-based Classroom Observation System (COS) to Support Increased Teacher Quality
EDIES09C0012	An On-Line Professional Development Program for FluidMath
EDIES10C0022	Growth Mindset Learning Platform for Educators and Students: Supporting Academic Motivation and Achievement through an Integrated Online Platform

Award Number	Web-Based Technologies by Chapter
EDIES11C0045	PlatinuMath: An Online Formative Assessment Math Game for Preservice Elementary Teachers
R305A040056	National Research Center on Rural Education Support
R305A080078	Leadership for Integrated Middle-School Science (LIMSS)
R305A080295	Development of an Interactive, Multimedia Assessment of Teachers' Knowledge of Early Reading
R305A090107	Establishing Positive Behavior Supports in Elementary School Instructional Settings
R305A090145	INSPIRE: Urban Teaching Fellows Program
R305A100091	Accessible Professional Development for Teaching Aquatic Science Inquiry
R305A100105	A Technology-Rich Teacher Professional Development Intervention that Supports Content-Based Curriculum Development for English Language Learners
R305A100154	Development of an Online Course to Improve Teachers' Use of Effective Teacher-Child Interactions During Delivery of Early Literacy and Language Instruction
R305A100367	Increasing Adolescent Engagement, Motivation, and Achievement: Efficacy of a Web-Based, Teacher Professional Development Model
R305A100654	The Targeted Reading Intervention: A Web-Based Professional Development Program Targeting K-1 Classroom Teachers and their Struggling Readers
R305A110090	Developing Guidelines for Optimizing Levels of Students' Overt Engagement Activities
R305A110913	Strengthening School Leaders' Instructional Leadership Practice Through Developing Teachers' Abilities to Integrate Technology in Support of Student Learning
R305A120323	Using Validated Measures of Children's Engagement with Teachers, Peers, and Tasks to Guide Teachers' Response Toward Children with Emotional and Behavioral Challenges
R305A120526	Early Truancy Prevention Project
R305A140378	Scalable Approaches for Preparing Early Childhood Teachers: Identifying Costs and Effectiveness of Evidence Based Approaches to Coaching
R305A140386	Internet Implementation of Empirically-Supported Interventions that can be Remotely Delivered in Authentic Preschool Programs for Mothers and Teachers: Evaluation of Direct Child and Teacher Outcomes
R305H040013	Child Instruction Interactions in Early Reading: Examining Causal Effects of Individualized Instruction
R305K050045	Classroom Connectivity in Promoting Mathematics and Science Achievement
R305M040086	Can Literacy Professional Development be Improved with Web-based Collaborative learning Tools: A Randomized Field Trial

Award Number	Web-Based Technologies by Chapter
R305M040167	Professional Development in Early Reading (Classroom Links to Early Literacy)
R305M050021	Teaching Teachers to Teach Critical Reading Strategies (CREST) through an
K303141030021	Intensive Professional Development Model
R305M050026	Examining the Efficacy of Two Models of Preschool Professional Development in Language and Literacy
R305M060057	Using Video Clips of Classroom Instruction as Item Prompts to Measure
	Teacher Knowledge of Teaching Mathematics: Instrument Development and Validation
R305W030257	Scaling-up Effective Intervention for Preventing Reading Difficulties in Young Children
R324A070008	Impact of Professional Development on Preschool Teachers' Use of Embedded-Instruction Practices
R324A080150	Online Teacher Training: Promoting Student Social Competence to Improve Academic and Behavioral Outcomes in Grades K-3
R324A090283	Professional Development that is Systemic, Focused on Teacher Growth, Incorporates Coaching, Collaboration, Cohorts, and Increased Knowledge to Create Student Success
R324A100196	Prime Online: Teacher Pedagogical Content Knowledge and Research-based Practice in Inclusive Elementary Mathematics Classrooms
R324A110131	Using Data to Foster the School Success of Students with Disabilities
R324A120081	Implementing the Common Core State Standards for Students with Disabilities Research and Development of Web-based Supports for IEP Team Decision
R324A130249	Supporting Young Children's School Readiness and Reduced Challenging Behaviors: An Online Course to Enhance Toddler Teacher-Child Interactions
R324J060002	IEP Quality Improvement: Research and Development of Web-based Decision Support

Technology for School Improvement

Award Number	Web-Based Technologies by Chapter
ED06PO0913	Differentiated Placement Quality Control Model
ED06PO0915	Study of Educational Improvement Planning System Feasibility for Promoting Effective School Improvement and Planning
ED06PO0917	Student Outcomes Analysis Reporting (SOAR) Server
ED06PO0918	The eServe Initiative: An Empirically Supported, Web-based Educational Decision Making Product

Award Number	Web-Based Technologies by Chapter
ED06PO0925	Data Services Model to Support Effective Management, Analysis, and Use of
	Data
ED06PO0928	Education Data Management System
ED08CO0055	MeasureResults: A Web-based Tool To Support School Administrators in
	Conducting Analyses
R305A080263	Using High School Transcript Data to Improve Student Access to Four-Year
	Colleges
R305A100630	Strategic School Funding for Results Project, Phase II
R305E090005	A Proposal to Measure the Impact of Indiana's System of Diagnostic
	Assessments on Student Achievement Outcomes
R305S050040	School Forward Tracker: An Online Tool to Help Schools Implement and
	Monitor Action Plans for School Improvement
R324B070003	TEIDS Plus: Integrating Quality Assurance and Data-Based Decision Making
	To Enhance IFSP Quality, Implementation, and Child and Family Outcomes

Appendix C: Virtual Environments / Interactive Simulations by Chapter

Projects are listed in alphanumeric order and may not match the order of presentation within the actual chapter.

Cognition

Award Number	Virtual Environments / Interactive Simulations by Chapter
EDIES10C0022	Growth Mindset Learning Platform for Educators and Students: Supporting Academic Motivation and Achievement through an Integrated Online Platform
EDIES14C0047	A Game-Based Intervention to Promote Executive Function and Reasoning in Early Learning
R305A090324	Creating Scalable Interventions for Enhancing Student Learning and Performance
R305H060089	A Learning by Teaching Approach to Help Students Develop Self-Regulatory Skills in Middle School Science Classrooms
R324A120168	Virtual Reality Applications for the Study of Attention and Learning in Children with Autism and ADHD

Math and Science Education

Award Number	Virtual Environments / Interactive Simulations by Chapter
ED06C00039	Cinematic Sciences: An Online Simulation Platform with Real Physics and
	Behavioral Programming for Physical Sciences
ED06PO0899	Videogame-Based Inquiry Learning Module for Science Literacy
ED06PO0900	A Virtual Launchpad for Learning at Higher Speeds
ED06PO0909	Virtual Physics Laboratory
ED06PO0912	Math Messenger
ED06PO0921	Natural Math: An Empirically Derived Software for Mathematics Education
ED07CO0037	Technology Enhanced Science Education in Middle School
ED07CO0038	The Tactus Immersive Learning Environment (TILE) for Enhancing Learning
	in High School Science Classrooms
ED07CO0040	Virtual Physics Laboratory
ED07CO0044	Intelligent Molecular Model Kit and Software Suite for Improving High
	School Chemistry Instruction and Student Achievement
ED08CO0044	Online Learning System to Advance Teaching of Hyper Molecular Modeling
ED08CO0050	The Digital Earth Explorations Project to Enrich the Middle School Sciences

Award Number	Virtual Environments / Interactive Simulations by Chapter
ED08CO0051	Electronic Chemistry Laboratory Workbook (ECLW)
EDIES09C0017	Agile Mind Visualizations to Increase High School Biology Learning
EDIES10P0102	Fablab Construction Station: Engaging Teacher and Students in Technology,
	Engineering, and Math
EDIES10P0103	Planet First Energy World (PFEW)
EDIES10P0104	An Empirical Approach to Developing Web-based Math Learning Games to
	Improve Elementary School Student Outcomes
EDIES11C0022	STEM Solar Explorations
EDIES11C0026	Project NumberShire: A Game-Based Integrated Learning and Assessment
	System to Target Whole Number Concepts
EDIES11C0028	Haptic Immersion Platform to Improve STEM Learning for the Visually
	Impaired
EDIES11C0029	Virtual Labs for High School Physics
EDIES12C0040	Possible Worlds: Explorer Series
EDIES13C0028	SciSkillQuest: A Standards-Based Game to Develop Students' Scientific Skills,
	Academic Mindsets, and Learning Strategies in Science
EDIES13C0033	Science4Us: Game-Based K-2 STEM Education For Teachers And Students
EDIES13C0037	Transmedia: Augmented Reality Game For Essential Transfer Of Science
EDIES13C0043	Empires: The First Socially-Networked Story-Based Math Game
EDIES13C0045	NumberShire II: Development Of A Second Grade Game-Based Integrated
	Learning System To Target Whole Numbers And Operations In Base Ten
	And Operations And Operations And Algebraic Thinking
EDIES14C0041	Happy Atoms
EDIES14C0044	Eco: An Online Virtual World for Secondary School Environmental Literacy
	and Collaborative Problem Solving
EDIES14C0052	Engaging Students in STEM: International Social Collaborative Exchange
	Network for Education: iSCENE
R305A080141	Advancing Ecosystems Science Education via Situated Collaborative learning
	in Multi-User Virtual Environments
R305A080507	Scaffolding Students' Use of Multiple Representations for Science Learning
R305A080514	Virtual Performance Assessments for Measuring Student Achievement in Science
R305A080594	Guru: A Computer Tutor that Models Expert Human Tutors
R305A080614	SimScientists: Interactive Simulation-Based Science Learning Environments
R305A080622	Expanding the Science and Literacy Curricular Space: The GlobalEd 2I Project
R305A090170	ASSISTment Meets Science Learning (AMSL)
R305A090197	Efficacy Study of AnimalWatch: An Intelligent Tutoring System for Pre-
	Algebra

Award Number	Virtual Environments / Interactive Simulations by Chapter
R305A090210	Systems and Cycles: Using Structure-Behavior-Function Thinking as a
	Conceptual Tool for Understanding Complex Natural Systems in Middle
	School Science
R305A090519	Learning by Teaching Synthetic Student: Using SimStudent to Study the Effect
	of Tutor Learning
R305A100069	Embedded Assessments Using the ChemCollective Virtual Lab
R305A100110	Developing and Evaluating a Technology-Based Fractions Intervention
	Program for Low-Achieving and At-Risk Students
R305A100267	Mathemantics Preschool> 3: Development and Evaluation of Mathematics
	Software for Children from Preschool to Grade 3
R305A100992	The Connected Chemistry Curriculum
R305A110021	Voyage to Galapagos: Development of a Differentiated Assistance Model in an
	Inquiry Learning Environment
R305A110060	Learning the Visual Structure of Algebra Through Dynamic Interactions with
	Notation
R305A110782	Explanation and Prediction Increasing Gains and Metacognition (EPIGAME)
R305A110810	An Examination of the Qualities of Interactive Science Learning
	Environments That Promote Optimal Motivation and Learning
R305A120047	Cyber-enabled Tangible Molecular Models for High School
R305A120186	SimSelf: A Simulation Environment Designed to Model and Scaffold Learners'
	Self-Regulation Skills to Optimize Complex Science Learning
R305A120390	SimScientists Assessment System
R305A120778	The Development of an Intelligent Pedagogical Agent for Physical Science
	Inquiry Driven by Educational Data Mining
R305A130016	Connecting Mathematical Ideas through Animated Multimodal Instruction
R305A130160	SimScientists Model Progressions
R305A130195	GlobalEd 2
R305A140117	Technology-interactive Classroom-embedded Modules for Measuring
	Challenging Math and Science Skills of ELs
R305B070349	Acquiring Research Investigative and Evaluative Skills (ARIES) for Scientific
	Inquiry
R305C080022	National Research & Development Center on Instructional Technology:
	Possible Worlds
R305H020113	Introducing Desirable Difficulties for Educational Applications in Science
R305H050052	Dynamically Modifying the Learning Trajectories of Novices with Pedagogical
	Agents
R305H050116	Grounded and Transferable Knowledge of Complex Systems Using Computer
	Simulations

Award Number	Virtual Environments / Interactive Simulations by Chapter
R305H050169	An Implementation of Vicarious Learning with Deep-Level Reasoning
R305H060034	Questions in Middle School and High School Classrooms Training in Experimental Design: Developing Scalable and Adaptive
K30511000054	Computer-based Science Instruction
R305K050086	AnimalWatch: An Intelligent Tutoring System for Grade 6 Mathematics
R305K050140	Molecules and Minds: Optimizing Simulations for Chemistry Education
R305S050019	V-Frog: Applying Virtual Surgery Principles to Dissection Simulation
R324A120071	Development of a Game-based Integrated Learning and Assessment System to Target Whole Number Concepts (Project NumberShire)

Reading, Writing, and Language Development

Award Number	Virtual Environments / Interactive Simulations by Chapter
EDIES11C0042	Readorium Software for Improved Reading Comprehension of Non-fiction Science Text
R305F100005	Assessing Reading for Understanding: A Theory-based, Developmental Approach
R324A090038	Formative Assessment and Instrumentation Procedures for Reading

Other Academic Content Areas

Award Number	Virtual Environments / Interactive Simulations by Chapter
ED06PO0906	Give Me 5 For Children
EDIES10C0020	OPEN's Virtual National Parks 3D Learning Environment for Science and Social Studies: Low-Cost and Easy to Implement Curriculums
EDIES12C0034	The American War Featuring Valley Sim
EDIES13C0027	Mission US: An Interactive Solution for Middle School History Learning
EDIES13C0035	Integrated System For Teaching And Assessing Online Information Research

Social and Behavioral Outcomes

Award Number	Virtual Environments / Interactive Simulations by Chapter
EDIES11C0033	A Computer-based Social Intervention for Students with High Functioning ASD: Using Technology to Improve Special Education
EDIES11C0039	An Interactive Social Tutoring System to Improve and Measure Social Goals for Students Related to Academic and Other School-Related Outcomes

Award Number	Virtual Environments / Interactive Simulations by Chapter
EDIES13C0034	Dynamic Narrative Generation Software To Improve Social And Behavioral School Readiness Skills Needed For The Successful Transition To Grade School
EDIES13C0041	Hall Of Heroes: An Interactive Social Tutoring System To Improve And Measure Social Goals For Students In Preparation For Transition To Middle School
R305A110583	Interactive Social Tutoring System for Social Skills Training with Elementary Students
R324A090197	Developing a 3D-based Virtual Learning Environment for Use in Schools to Enhance the Social Competence of Youth with Autism Spectrum Disorder

Pathways Into and Through Postsecondary Education

Award Number	Virtual Environments / Interactive Simulations by Chapter
EDIES13C0026	Dynamic E-Learning to Improve Postsecondary Transition Outcomes for Secondary Students with High Functioning Autism

Assistive Technology

Award Number	Virtual Environments / Interactive Simulations by Chapter
EDIES11C0028	Haptic Immersion Platform to Improve STEM Learning for the Visually Impaired

Instructional Supports and Tools for Classroom Management

Award Number	Virtual Environments / Interactive Simulations by Chapter
ED06PO0908	The Virtual STAR Classroom Simulator
ED08CO0044	Online Learning System to Advance Teaching of Hyper Molecular Modeling
R305A080507	Scaffolding Students' Use of Multiple Representations for Science Learning

Educator Professional Development

Award Number	Virtual Environments / Interactive Simulations by Chapter
EDIES10C0022	Growth Mindset Learning Platform for Educators and Students: Supporting Academic Motivation and Achievement through an Integrated Online Platform

Award Number	Virtual Environments / Interactive Simulations by Chapter
R305A100110	Developing and Evaluating a Technology-Based Fractions Intervention Program for Low-Achieving and At-Risk Students
R324A080150	Online Teacher Training: Promoting Student Social Competence to Improve Academic and Behavioral Outcomes in Grades K-3

Appendix D: Intelligent Tutor / Artificial Intelligence Technologies by Chapter

Projects are listed in alphanumeric order and may not match the order of presentation within the actual chapter.

Cognition

Award Number	Intelligent Tutor / Artificial Intelligence Technologies by Chapter
ED06PO0896	Computer-Enhanced Automated Lecture (CEAL)
EDIES11C0044	Computer Adaptive Triarchic Assessment and Instructional Activities for Early Childhood
R305B070537	Harnessing Retrieval Practice to Enhance Learning in Diverse Domains
R305H030016	The Neural Markers of Effective Learning
R305H030175	Study Enhancement Based on Principles of Cognitive Science
R305H050036	A Randomized Trial of Two Promising Interventions for Students with Attention Problems
R305H050038	Supporting Efficient and Durable Student Learning
R305H060089	A Learning by Teaching Approach to Help Students Develop Self-Regulatory Skills in Middle School Science Classrooms

Math and Science Education

Award Number	Intelligent Tutor / Artificial Intelligence Technologies by Chapter
ED07CO0039	Early Childhood Assessment and Intervention to Improve Grade School
	Students' Math and Reading
ED07CO0044	Intelligent Molecular Model Kit and Software Suite for Improving High
	School Chemistry Instruction and Student Achievement
ED08CO0044	Online Learning System to Advance Teaching of Hyper Molecular Modeling
EDIES09C0009	An Online Intelligent Tutoring System to Advance Learning in Math Games
EDIES09C0015	Math Monster Mystery: A Formative Assessment in Game Format for Grade 4
	Mathematics
EDIES10C0024	Perceptual and Adaptive Learning Technologies: Developing Products to
	Improve Algebra Learning
EDIES10P0104	An Empirical Approach to Developing Web-based Math Learning Games to
	Improve Elementary School Student Outcomes
EDIES11C0041	Math Education for Adult Learners and College Remediation Using Artificial
	Intelligence

Award Number	Intelligent Tutor / Artificial Intelligence Technologies by Chapter
EDIES13C0044	Teachley: Math Facts - Design And Development Of Intervention Software Promoting Single-Digit Operational Fluency
EDIES13C0045	NumberShire II: Development Of A Second Grade Game-Based Integrated Learning System To Target Whole Numbers And Operations In Base Ten And Operations And Operations And Algebraic Thinking
R305A070067	Integrated Software for Artificial Intelligence Tutoring and Assessment in Science
R305A070185	Effectiveness of Cognitive Tutor Algebra One Implemented at Scale
R305A070440	Making Longitudinal Web-Based Assessments Give Cognitively Diagnostic Reports to Teachers, Parents, and Students While Employing Mastery Learning
R305A080063	A Randomized Controlled Study of the Effects of Intelligent Online Chemistry Tutors in Urban California School Districts
R305A080093	Bringing Cognitive Tutors to the Internet: A Website that Helps Middle- School Students Learn Math
R305A080594	Guru: A Computer Tutor that Models Expert Human Tutors
R305A080664	Teaching Every Student: Using Intelligent Tutoring and Universal Design to Customize the Mathematics Curriculum
R305A090170	ASSISTment Meets Science Learning (AMSL)
R305A090197	Efficacy Study of AnimalWatch: An Intelligent Tutoring System for Pre- Algebra
R305A090460	Adapterrex: Exploring the Learning Benefits of Erroneous Examples and their Dynamic Adaptations within the Context of Middle School Mathematics
R305A090519	Learning by Teaching Synthetic Student: Using SimStudent to Study the Effect of Tutor Learning
R305A090528	Applications of Intelligent Tutoring Systems (ITS) to Improve the Skill Levels of Students with Deficiencies in Mathematics
R305A090549	Promoting Robust Understanding of Genetics with a Cognitive Tutor that Integrates Conceptual Learning with Problem Solving
R305A100074	Improving Students' Skill at Solving Equations Through Better Encoding of Algebraic Concepts
R305A100109	A Theory-Driven Search for the Optimal Conditions of Instructional Guidance in Algebra Tutor
R305A100110	Developing and Evaluating a Technology-Based Fractions Intervention Program for Low-Achieving and At-Risk Students
R305A100163	Improving a Natural-Language Tutoring System that Engages Students in Deep Reasoning Dialogues about Physics
R305A100267	Mathemantics Preschool> 3: Development and Evaluation of Mathematics Software for Children from Preschool to Grade 3

Award Number	Intelligent Tutor / Artificial Intelligence Technologies by Chapter
R305A100404	Promoting Transfer of the Control of Variables Strategy in Elementary and
	Middle School Children via Contextual Framing and Abstraction
R305A100875	DeepTutor: An Intelligent Tutoring System Based on Deep Language and
	Discourse Processing and Advanced Tutoring Strategies
R305A110021	Voyage to Galapagos: Development of a Differentiated Assistance Model in an
	Inquiry Learning Environment
R305A120125	An Efficacy Study of Online Mathematics Homework Support: An Evaluation
	of the ASSISTments Formative Assessment and Tutoring Platform
R305A120186	SimSelf: A Simulation Environment Designed to Model and Scaffold Learners'
	Self-Regulation Skills to Optimize Complex Science Learning
R305A120734	Combining Advantages of Collaborative and Individual Learning with an
	Intelligent Tutoring System for Fractions
R305A120778	The Development of an Intelligent Pedagogical Agent for Physical Science
	Inquiry Driven by Educational Data Mining
R305A130160	SimScientists Model Progressions
R305A130206	My Science Tutor: Improving Science Learning through Tutorial Dialogs
	(MyST)
R305A130215	Use of Machine Learning to Adaptively Select Activity Types and Enhance
	Student Learning with an Intelligent Tutoring System
R305A130400	Efficacy of an Integrated Digital Elementary School Mathematics Curriculum
R305A130441	Exploring Studies to Derive Policies for Adaptive Natural-language Tutoring
	in Physics
R305A140221	Efficacy of ALEKS for Improving Student Algebra Achievement
R305B070349	Acquiring Research Investigative and Evaluative Skills (ARIES) for Scientific
	Inquiry
R305B070434	Improving Science Learning Through Tutorial Dialogs
R305B070487	Bridging the Bridge to Algebra: Measuring and Optimizing the Influence of
	Prerequisite Skills on a Pre-Algebra Curriculum
R305H050052	Dynamically Modifying the Learning Trajectories of Novices with Pedagogical
	Agents
R305H050169	An Implementation of Vicarious Learning with Deep-Level Reasoning
	Questions in Middle School and High School Classrooms
R305H060034	Training in Experimental Design: Developing Scalable and Adaptive
	Computer-based Science Instruction
R305K030140	Using Web-Based Cognitive Assessment Systems for Predicting Student
	Performance on State Exams
R305K040008	Integrated Software for Artificial Intelligence Tutoring and Assessment in
	Science

Award Number	Intelligent Tutor / Artificial Intelligence Technologies by Chapter
R305K050086	AnimalWatch: An Intelligent Tutoring System for Grade 6 Mathematics

Reading, Writing, and Language Development

Award Number	Intelligent Tutor / Artificial Intelligence Technologies by Chapter
ED07CO0039	Early Childhood Assessment and Intervention to Improve Grade School
	Students' Math and Reading
ED07CO0043	4KW: A Multimedia System for Ensuring that Grade School Students Know
	the Meaning of the 4,000 Most Frequently Used English Words
EDIES11C0034	Artificial Intelligence Software to Tutor Literary Braille to the Blind and
	Visually Impaired
EDIES11C0042	Readorium Software for Improved Reading Comprehension of Non-fiction
	Science Text
EDIES14C0026	Commercializing the Effective K-3 Assessment to Instruction (A2i)
	Intervention to Reduce Cost and to Scale Access to the Benefit of More
	Students
EDIES14C0043	Enhancing Augmentative and Alternative Communication Rates in pre-K
	Through 6
EDIES14C0045	Automated, Personalized Formative Feedback for Student Writing with the
	LightSide Revision Assistant
EDIES14C0046	Technology-Enhanced Tutoring: Linking School and Home to Help Strugglin
	Readers
R305A080133	Efficacy and Replication Research on the Intelligent Tutoring System for the
	Structure StrategyRural and Suburban Schools Grades 4, 5, 7, and 8
R305A080157	Developing Vocabulary in an Automated Reading Tutor
R305A080589	The Writing Pal: An Intelligent Tutoring System that Provides Interactive
	Writing Strategy Training
R305A080596	Explicit Scaffolding for Word Learning in Context through Multimedia Word
	Annotation
R305A080628	Accelerating Fluency Development in an Automated Reading Tutor
R305A120370	Intelligent Scaffolding for Peer Reviews of Writing
R305A120593	Improving Reading Comprehension of Middle Grades English Language
	Learners by Combining Structure Strategy with Web-Based Adaptive Tutoring
	for EL Learners (SWELL)
R305A120707	Exploration of Automated Writing Strategy Instruction for Adolescent
	Writings Using The Writing Pal
R305A120811	Burst: Reading Efficacy Study

Award Number	Intelligent Tutor / Artificial Intelligence Technologies by Chapter
R305A130124	Exploring the Educational Game Landscape through Focused Studies and Ecological Interventions
R305A130467	Developing an Online Tutor to Accelerate High School Vocabulary Learning
R305A130705	Development of a Web-Based Writing Partner (Strategic Writing Assisted by intelligent tutoring for 5th grade Youth (SWAY)) to Improve Writing Persuasive Essays for 5th Grade Students
R305A140065	Individual Growth and Development Indicators: Automated Applications for Performance Evaluation of Early Literacy (IGDI-APEL)
R305A140471	English Learner Vocabulary Acquisition (ELVA): Promoting the Vocabulary and Language Proficiency of Spanish Speaking English Learners in Second Grade
R305B070458	Explicit Comprehension Instruction in an Automated Reading Tutor that Listens
R305C120001	Center for the Study of Adult Literacy (CSAL): Developing Instructional Approaches Suited to the Cognitive and Motivational Needs for Struggling Adults
R305G030072	Intelligent Tutoring Using The Structure Strategy To Improve Reading Comprehension Of Middle School Students
R305G030123	Reader-Specific Lexical Practice for Improved Reading Comprehension
R305G040046	iSTART: Interactive Strategy Trainer for Active Reading and Thinking
R305S050010	An Independently Usable Multimedia Software System in Listening Comprehension and Auditory Repetition Priming for Intellectually Disabled Non-Readers
R324A070196	CopyCat: Learning Through Signing
R324A080006	Project LIBERATE (Literacy Instruction Based on Evidence through Research for Adjudicated Teens to Excel)
R324A100322	Project SAIL: Strategies for Academic Internet Learning
R324A120103	Reducing Special Education/Reading Risk for Urban Learners through An Oral Reading Fluency Intervention

Other Academic Content Areas

Award Number	Intelligent Tutor / Artificial Intelligence Technologies by Chapter
EDIES10P0101	Online Socratic Learning for Enhanced Critical Thinking

Social and Behavioral Outcomes

Award Number	Intelligent Tutor / Artificial Intelligence Technologies by Chapter
EDIES10P0106	My Personal Academic Plan
EDIES11C0039	An Interactive Social Tutoring System to Improve and Measure Social Goals for Students Related to Academic and Other School-Related Outcomes
EDIES13C0041	Hall Of Heroes: An Interactive Social Tutoring System To Improve And Measure Social Goals For Students In Preparation For Transition To Middle School
R305A110583	Interactive Social Tutoring System for Social Skills Training with Elementary Students
R324A130216	Efficacy of a Comprehensive School-Based Intervention for Children with High-Functioning Autism Spectrum Disorders (HFASDs)

Pathways Into and Through Postsecondary Education

Award Number	Intelligent Tutor / Artificial Intelligence Technologies by Chapter
EDIES13C0026	Dynamic E-Learning to Improve Postsecondary Transition Outcomes for Secondary Students with High Functioning Autism

Assistive Technology

Award Number	Intelligent Tutor / Artificial Intelligence Technologies by Chapter
EDIES11C0034	Artificial Intelligence Software to Tutor Literary Braille to the Blind and Visually Impaired
EDIES14C0043	Enhancing Augmentative and Alternative Communication Rates in pre-K Through 6

Instructional Supports and Tools for Classroom Management

Award Number	Intelligent Tutor / Artificial Intelligence Technologies by Chapter
ED08CO0044	Online Learning System to Advance Teaching of Hyper Molecular Modeling
R305A080667	Agent and Library Augmented Shared Knowledge Areas (ALASKA)
R305A120125	An Efficacy Study of Online Mathematics Homework Support: An Evaluation of the ASSISTments Formative Assessment and Tutoring Platform
R305A130030	Automating the Measurement and Assessment of Classroom Discourse

Educator Professional Development

Award Number	Intelligent Tutor / Artificial Intelligence Technologies by Chapter
EDIES11C0045	PlatinuMath: An Online Formative Assessment Math Game for Preservice Elementary Teachers
R305A100105	A Technology-Rich Teacher Professional Development Intervention that Supports Content-Based Curriculum Development for English Language Learners
R305A100110	Developing and Evaluating a Technology-Based Fractions Intervention Program for Low-Achieving and At-Risk Students

Appendix E: Game-Based Technologies by Chapter

Projects are listed in alphanumeric order and may not match the order of presentation within the actual chapter.

Cognition

Award Number	Game-Based Technologies by Chapter
EDIES14C0047	A Game-Based Intervention to Promote Executive Function and Reasoning in
	Early Learning
R305A090100	An Efficacy Study of Two Computer-Based Attention Training Systems in
	Schools
R305H030175	Study Enhancement Based on Principles of Cognitive Science
R305H060161	The Effect of Metacognition on Children's Control of Their Study and of
	Their Cognitive Processes
R324A090164	Training Working Memory and Executive Control in Attention
	Deficit/Hyperactivity Disordered Children
R324A120168	Virtual Reality Applications for the Study of Attention and Learning in
	Children with Autism and ADHD

Math and Science Education

Award Number	Game-Based Technologies by Chapter
ED06C00039	Cinematic Sciences: An Online Simulation Platform with Real Physics and
	Behavioral Programming for Physical Sciences
ED06PO0899	Videogame-Based Inquiry Learning Module for Science Literacy
ED08CO0050	The Digital Earth Explorations Project to Enrich the Middle School Sciences
EDIES09C0009	An Online Intelligent Tutoring System to Advance Learning in Math Games
EDIES09C0015	Math Monster Mystery: A Formative Assessment in Game Format for Grade 4
	Mathematics
EDIES10C0023	Game-Based Interactive Life Science for Students With Learning Disabilities
EDIES10P0104	An Empirical Approach to Developing Web-based Math Learning Games to
	Improve Elementary School Student Outcomes
EDIES11C0026	Project NumberShire: A Game-Based Integrated Learning and Assessment
	System to Target Whole Number Concepts
EDIES12C0040	Possible Worlds: Explorer Series
EDIES13C0028	SciSkillQuest: A Standards-Based Game to Develop Students' Scientific Skills,
	Academic Mindsets, and Learning Strategies in Science
EDIES13C0033	Science4Us: Game-Based K-2 STEM Education For Teachers And Students

Award Number	Game-Based Technologies by Chapter
EDIES13C0037	Transmedia: Augmented Reality Game For Essential Transfer Of Science
EDIES13C0043	Empires: The First Socially-Networked Story-Based Math Game
EDIES13C0044	Teachley: Math Facts - Design And Development Of Intervention Software Promoting Single-Digit Operational Fluency
EDIES13C0045	NumberShire II: Development Of A Second Grade Game-Based Integrated Learning System To Target Whole Numbers And Operations In Base Ten And Operations And Operations And Algebraic Thinking
EDIES14C0025	S3: A Game-based 3rd Grade Math Curriculum
EDIES14C0044	Eco: An Online Virtual World for Secondary School Environmental Literacy and Collaborative Problem Solving
R305A080479	Fostering Fluency With Basic Addition and Subtraction
R305A090527	Spatial Temporal Mathematics at Scale: An Innovative and Fully Developed Paradigm to Boost Math Achievement Among All Learners
R305A110782	Explanation and Prediction Increasing Gains and Metacognition (EPIGAME)
R305A130400	Efficacy of an Integrated Digital Elementary School Mathematics Curriculum
R305B070048	Evaluation of the First In Math Online Mathematics Program in New York City: A Randomized Control Trial
R305B070349	Acquiring Research Investigative and Evaluative Skills (ARIES) for Scientific Inquiry
R305C080015	National Research & Development Center on Instructional Technology: Center for Advanced Technology in Schools
R305C080022	National Research & Development Center on Instructional Technology: Possible Worlds
R305K050082	Developing an Intervention to Foster Early Number Sense and Skill
R324A120071	Development of a Game-based Integrated Learning and Assessment System to Target Whole Number Concepts (Project NumberShire)

Reading, Writing, and Language Development

Award Number	Game-Based Technologies by Chapter
EDIES11C0042	Readorium Software for Improved Reading Comprehension of Non-fiction Science Text
EDIES13C0030	Readorium Rising Reader: Smart Nonfiction Comprehension Software For Students In Grades 3-5
EDIES13C0040	World Explorador
R305A080196	Efficacy of Earobics Step I in English Language Learners and Low SES Minority Children

Award Number	Game-Based Technologies by Chapter
R305A120707	Exploration of Automated Writing Strategy Instruction for Adolescent Writings Using The Writing Pal
R305A130124	Exploring the Educational Game Landscape through Focused Studies and Ecological Interventions
R305A130467	Developing an Online Tutor to Accelerate High School Vocabulary Learning
R305H050133	Creating a Usable Environment to Teach Argument Comprehension and Production Skills
R305S050034	Project PREPARE: Teaching Service Words to Deaf Children
R324A070196	CopyCat: Learning Through Signing

Other Academic Content Areas

Award Number	Game-Based Technologies by Chapter
ED06PO0906	Give Me 5 For Children
ED06PO0936	A National PBS Television & Interactive New Technology Program for Children 7-11
EDIES10C0020	OPEN's Virtual National Parks 3D Learning Environment for Science and Social Studies: Low-Cost and Easy to Implement Curriculums
EDIES12C0034	The American War Featuring Valley Sim
EDIES13C0027	Mission US: An Interactive Solution for Middle School History Learning
EDIES13C0042	Go Games Civics: Meeting Common Core Standards With Tablet-Enhanced Multiplayer Role Play Games

Social and Behavioral Outcomes

Award Number	Game-Based Technologies by Chapter
EDIES11C0039	An Interactive Social Tutoring System to Improve and Measure Social Goals for Students Related to Academic and Other School-Related Outcomes
EDIES13C0041	Hall Of Heroes: An Interactive Social Tutoring System To Improve And Measure Social Goals For Students In Preparation For Transition To Middle School
R305A110583	Interactive Social Tutoring System for Social Skills Training with Elementary Students

Pathways Into and Through Postsecondary Education

Award Number	Game-Based Technologies by Chapter
EDIES13C0026	Dynamic E-Learning to Improve Postsecondary Transition Outcomes for Secondary Students with High Functioning Autism
R305A110288	Strategizing for College: A Game-based Approach to Increasing College Access

Educator Professional Development

Award Number	Game-Based Technologies by Chapter
EDIES11C0045	PlatinuMath: An Online Formative Assessment Math Game for Preservice
	Elementary Teachers

Appendix F: Computer-Based Assessments by Chapter

Projects are listed in alphanumeric order and may not match the order of presentation within the actual chapter.

Cognition

Award Number	Computer-Based Assessments by Chapter
ED06PO0896	Computer-Enhanced Automated Lecture (CEAL)
EDIES11C0044	Computer Adaptive Triarchic Assessment and Instructional Activities for Early Childhood
R324A120033	Development of a Computerized Assessment of Executive Function for Preschool-Aged Children

Math and Science Education

Award Number	Computer-Based Assessments by Chapter
ED06PO0931	Venture Map
ED07CO0039	Early Childhood Assessment and Intervention to Improve Grade School
	Students' Math and Reading
ED08CO0044	Online Learning System to Advance Teaching of Hyper Molecular Modeling
EDIES09C0015	Math Monster Mystery: A Formative Assessment in Game Format for Grade 4
	Mathematics
EDIES09C0056	Refining and Validating the NimblePad
EDIES10C0024	Perceptual and Adaptive Learning Technologies: Developing Products to
	Improve Algebra Learning
EDIES11C0026	Project NumberShire: A Game-Based Integrated Learning and Assessment
	System to Target Whole Number Concepts
EDIES11C0041	Math Education for Adult Learners and College Remediation Using Artificial
	Intelligence
EDIES13C0044	Teachley: Math Facts - Design And Development Of Intervention Software
	Promoting Single-Digit Operational Fluency
EDIES13C0045	NumberShire II: Development Of A Second Grade Game-Based Integrated
	Learning System To Target Whole Numbers And Operations In Base Ten And
	Operations And Operations And Algebraic Thinking
EDIES14C0025	S3: A Game-based 3rd Grade Math Curriculum
R305A070067	Integrated Software for Artificial Intelligence Tutoring and Assessment in
	Science

Award Number	Computer-Based Assessments by Chapter
R305A070440	Making Longitudinal Web-Based Assessments Give Cognitively Diagnostic Reports to Teachers, Parents, and Students While Employing Mastery Learning
R305A080063	A Randomized Controlled Study of the Effects of Intelligent Online Chemistry
	Tutors in Urban California School Districts
R305A080225	Multilevel Assessments of Science Standards (MASS)
R305A080464	Closing the Achievement Gap in Middle School Mathematics Utilizing Stanford University's Education Program for Gifted Youth Differentiated Mathematics Program
R305A080514	Virtual Performance Assessments for Measuring Student Achievement in
	Science
R305A080614	SimScientists: Interactive Simulation-Based Science Learning Environments
R305A080664	Teaching Every Student: Using Intelligent Tutoring and Universal Design to Customize the Mathematics Curriculum
R305A090502	Lens on Science: Development and Validation of a Computer-Administered, Adaptive, IRT-Based Science Assessment for Preschool Children
R305A090528	Applications of Intelligent Tutoring Systems (ITS) to Improve the Skill Levels of Students with Deficiencies in Mathematics
R305A100069	Embedded Assessments Using the ChemCollective Virtual Lab
R305A100234	An Adaptive Testing System for Diagnosing Sources of Mathematics Difficulties
R305A100875	DeepTutor: An Intelligent Tutoring System Based on Deep Language and Discourse Processing and Advanced Tutoring Strategies
R305A110021	Voyage to Galapagos: Development of a Differentiated Assistance Model in an Inquiry Learning Environment
R305A110782	Explanation and Prediction Increasing Gains and Metacognition (EPIGAME)
R305A120125	An Efficacy Study of Online Mathematics Homework Support: An Evaluation of the ASSISTments Formative Assessment and Tutoring Platform
R305A120390	SimScientists Assessment System
R305A120778	The Development of an Intelligent Pedagogical Agent for Physical Science Inquiry Driven by Educational Data Mining
R305A130160	SimScientists Model Progressions
R305A130612	Enfoque en Ciencia: Extending the Cultural and Linguistic Validity of a Computer Adaptive Assessment of Science Readiness for Use with Young Latino Children
R305A140117	Technology-interactive Classroom-embedded Modules for Measuring Challenging Math and Science Skills of ELs
R305A140221	Efficacy of ALEKS for Improving Student Algebra Achievement
R305B070325	mCLASS®: Development and Analysis of an Integrated Screening, Progress Monitoring, and Cognitive Assessment System for K-3 Mathematics

Award Number	Computer-Based Assessments by Chapter
R305H060070	Integrating Conceptual Foundations in Mathematics through the Application of Principles of Perceptual Learning
R305K030140	Using Web-Based Cognitive Assessment Systems for Predicting Student Performance on State Exams
R305K040008	Integrated Software for Artificial Intelligence Tutoring and Assessment in Science
R324A090340	The Math Learning Companion: An Individualized Intervention for Students with Math Learning Disabilities

Reading, Writing, and Language Development

Award Number	Computer-Based Assessments by Chapter
ED07CO0039	Early Childhood Assessment and Intervention to Improve Grade School
	Students' Math and Reading
ED07CO0043	4KW: A Multimedia System for Ensuring that Grade School Students Know
	the Meaning of the 4,000 Most Frequently Used English Words
EDIES11C0019	u-learn.net: An Anywhere/Anytime Formative Assessment and Learning
	Feedback Environment
EDIES11C0032	MyASL Quizmaker
EDIES11C0042	Readorium Software for Improved Reading Comprehension of Non-fiction
	Science Text
EDIES13C0039	Infowriter: A Student Feedback And Formative Assessment Environment For
	Writing Information And Explanatory Texts
EDIES14C0018	Access: Language Arts
EDIES14C0026	Commercializing the Effective K-3 Assessment to Instruction (A2i)
	Intervention to Reduce Cost and to Scale Access to the Benefit of More
	Students
EDIES14C0042	The Iowa Assessment of Skills and Knowledge for Automatic Word
	Recognition and Decoding (iASK)
EDIES14C0045	Automated, Personalized Formative Feedback for Student Writing with the
	LightSide Revision Assistant
R305A070231	Early ICARE: Early Independent Comprehensive Adaptive Reading
	Evaluation
R305A090394	The Assess-as-You-Go Writing Assistant: A Student Work Environment that
	Brings Together Formative and Summative Assessment
R305A090608	Assessing Online Reading Comprehension: The ORCA Project
R305A100261	Assessment of Comprehension in Older Struggling Readers

Award Number	Computer-Based Assessments by Chapter
R305A110284	Using Developmental Science to Create a Computerized Preschool Language Assessment
R305A110549	Development of the School Readiness Curriculum Based Measurement System
R305A120086	Computer Based Assessment System for Reading (CBAS-R): Skills Analysis and Progress Monitoring
R305A120811	Burst: Reading Efficacy Study
R305A130223	Comprehensive Research-Based Computer Assessment and Accommodation System for ELL Students
R305A130467	Developing an Online Tutor to Accelerate High School Vocabulary Learning
R305A130705	Development of a Web-Based Writing Partner (Strategic Writing Assisted by intelligent tutoring for 5th grade Youth (SWAY)) to Improve Writing Persuasive Essays for 5th Grade Students
R305A140065	Individual Growth and Development Indicators: Automated Applications for Performance Evaluation of Early Literacy (IGDI-APEL)
R305A140090	Teaching the Vocabulary of Comprehension: A Technology-Enhanced System to Enhance At-Risk Third Graders' Acquisition and Application of Essential Vocabulary
R305A140185	Multiple-choice Online Cloze Comprehension Assessment (MOCCA): Refining and Validating a Measure of Individual Differences in Reading Comprehension Processes During Reading
R305A140203	Measuring Oral Reading Fluency: Computerized Oral Reading Evaluation (CORE)
R305F100005	Assessing Reading for Understanding: A Theory-based, Developmental Approach
R305G040055	Assessing Reading Comprehension with Verbal Protocols and Latent Semantic Analysis
R305G050083	Assessment of Comprehension Skills in Older Struggling Readers
R305G050091	Assessing Readers Struggling to Comprehend Multiple Sources of Information
R305S050010	An Independently Usable Multimedia Software System in Listening Comprehension and Auditory Repetition Priming for Intellectually Disabled Non-Readers
R324A060034	National Accessible Reading Assessment Projects: Research and Development for Students with Visual Impairments
R324A080006	Project LIBERATE (Literacy Instruction Based on Evidence through Research for Adjudicated Teens to Excel)
R324A090038	Formative Assessment and Instrumentation_Procedures for Reading
R324A100176	Assessing ASL Knowledge and its Relationship to Reading English in Deaf Children

Award Number	Computer-Based Assessments by Chapter
R324A120103	Reducing Special Education/Reading Risk for Urban Learners through An Oral Reading Fluency Intervention

Other Academic Content Areas

Award Number	Computer-Based Assessments by Chapter
EDIES13C0027	Mission US: An Interactive Solution for Middle School History Learning

Social and Behavioral Outcomes

Award Number	Computer-Based Assessments by Chapter
EDIES10P0106	My Personal Academic Plan
EDIES11C0033	A Computer-based Social Intervention for Students with High Functioning ASD: Using Technology to Improve Special Education
R324A100246	Transition Success Assessment
R324A110074	Student Self-Management System (SSMS): Reducing Problem Behavior in Upper Elementary Classrooms by Transferring Externally Applied Teacher Controls to Internally Applied Student Controls
R324A130065	Assessing Self-Determination in the Era of Evidence-Based Practices: The Development and Validation of Student and Adult Measures of Self- Determination

Pathways Into and Through Postsecondary Education

Award Number	Computer-Based Assessments by Chapter
EDIES13C0026	Dynamic E-Learning to Improve Postsecondary Transition Outcomes for Secondary Students with High Functioning Autism
R305A110112	Evaluating the Success of Undergraduates in the U-Pace Intervention to Improve Academic Achievement for All Postsecondary Education Students
R305H140028	Dual-Credit Courses and the Road to College: Experimental Evidence from Tennessee

Assistive Technology

Award Number	Computer-Based Assessments by Chapter
ED08CO0056	The Universal Assessment System (UAS)
EDIES11C0032	MyASL Quizmaker

Award Number	Computer-Based Assessments by Chapter
R324A060034	National Accessible Reading Assessment Projects: Research and Development for Students with Visual Impairments
R324A090028	Using the International Classification of Function-Children & Youth to Guide Communication Instruction for Augmentative and Alternative Communication Users
R324A100176	Assessing ASL Knowledge and its Relationship to Reading English in Deaf Children
R324A110088	Development of Computer-based Testing Accommodations for Students with Visual Disabilities

Instructional Supports and Tools for Classroom Management

Award Number	Computer-Based Assessments by Chapter
ED08CO0044	Online Learning System to Advance Teaching of Hyper Molecular Modeling
EDIES13C0038	Project Hi-Fi: Promoting High Fidelity Of Screening And Progress Monitoring
	Assessments
EDIES14C0048	Socrative Learning Network
EDIES14C0049	Zaption Mobile: Develop and Testing a Mobile App for Video Learning
EDIES14C0050	The eSparkBeat: A Pulse on the Modern Classroom
R305A080231	The Diagnostic Geometry Assessment Project
R305A110306	Eliciting Mathematics Misconceptions (EM2): A Cognitive Diagnostic
	Assessment System
R305A120125	An Efficacy Study of Online Mathematics Homework Support: An Evaluation
	of the ASSISTments Formative Assessment and Tutoring Platform
R305A120217	Innovative Computer-Based Formative Assessment via a Development,
	Delivery, Scoring, and Report-Generative System
R305A130030	Automating the Measurement and Assessment of Classroom Discourse
R305A130517	Making Individualized Literacy Instruction Available to All Teachers: Adapting
	the Assessment to Instruction (A2i) Software for Multiple Real-World
	Contexts
R305H040099	Bridging the Gap: Applying Algebra Cognition Research to Develop and
	Validate Diagnostic Classroom Algebra Testlet
R305W020001	Scaling Up an Assessment-Driven Intervention Using the Internet and Hand-
	held Computers
R324A090028	Using the International Classification of Function-Children & Youth to Guide
	Communication Instruction for Augmentative and Alternative Communication
	Users
R324A100014	Reliability and Validity Evidence for Progress Measures in Reading

Award Number	Computer-Based Assessments by Chapter
R324A110262	Algebra Screening and Progress Monitoring
R324A130161	Decision Rule Research Project: Curriculum-Based Measurement in Reading

Educator Professional Development

Award Number	Computer-Based Assessments by Chapter
ED06PO0933	From Assessment to Action
EDIES11C0045	PlatinuMath: An Online Formative Assessment Math Game for Preservice Elementary Teachers
R305A080295	Development of an Interactive, Multimedia Assessment of Teachers' Knowledge of Early Reading
R305M060057	Using Video Clips of Classroom Instruction as Item Prompts to Measure Teacher Knowledge of Teaching Mathematics: Instrument Development and Validation
R324A090283	Professional Development that is Systemic, Focused on Teacher Growth, Incorporates Coaching, Collaboration, Cohorts, and Increased Knowledge to Create Student Success

Technology for School Improvement

Award Number	Computer-Based Assessments by Chapter
ED06PO0913	Differentiated Placement Quality Control Model
R305E090005	A Proposal to Measure the Impact of Indiana's System of Diagnostic Assessments on Student Achievement Outcomes