

Questions | Will Answer Today

= What Is DevOps?

= What Problems Will DevOps
Help Me Solve?

= How Do | Get Started?
= What Mistakes Can | Avoid?

Who Am I1?

Lead Time "

l‘““'*Shorten <------1

Development Operations — Design
Operate Support
P DEVOPS I Process \
rocess Application Management
r Toals Configuration Management Tools
0o Release Management Priorities
Priorities) Breakfix Test . Develop
Learn . Fix skI“S
skills \ / Ah-hal!
Deploy Deploy

Knowledge Transfer .~

Documentation 25%

On the Job Training 5%!
Class Room education 10%
Cross Traiming 305!

— e —

Feedback

Develop/Test
+%

N 9
: Stratos u y

..“ e Team
st Continuous
N Y " /n
\\ - ASANN Deployment

\WEREECERIY

development
workflow

APP FACTORY

APP F/4

Compliance

W&

APP FACTORY

Developmen WSQZ

Dashboards Are

Steer Deploy Stratos

<KPACHE ANT>

Issue

. I I I . 10/22/12 e R Control Tracking

The Problem In A Nutshell

Everything needs software.

Software runs on a server to become a
service.

Delivering a service from inception to its
users is too slow and error-prone.

There are internal friction points that
make this the case.

This loses you money. (Delay = loss)

Therefore IT is frequently the bottleneck
in the transition of “concept to cash.”

Symptoms

* Defects released into production, causing outage
 Inability to diagnhose production issues quickly

* Problems appear in some environments only

* Blame shifting/finger pointing

* Long delays while dev, QA, or another team waits
on resource or response from other teams

* “Manual error” is a commonly cited root cause
* Releases slip/fail
* Quality of life issues in IT

Why Does This Problem EXxist?

= “Business-IT Alignment?”

®The business has demanded the
wrong things out of IT
= Cost sensitive
= Risk averse

=T has metastasized over time into a
form to give the business what it’s
said It wants

= Centralized and monolithic
" Slow and penny wise, pound foolish

But Then We Demanded Innovation

WOHI(EII *FINE

DEV="
e 2L
— 4 ,£‘~.

: . v

..0PS PROBLEM'NOW

R~

DevOps Defined

= DevOps is the practice of operations
and development engineers
participating together in the entire
service lifecycle, from design
through the development
process to production support.

DevOps Defined

= DevOps is the practice of operations
and development engineers
participating together in the entire
service lifecycle, from design
through the development
process to production support.

= DevOps is also characterized by
operations staff making use many of
the same techniques as developers
for their systems work.

DevOps History In 60 Seconds

= |TIL, ITSM, ESM, etc. underdeliver in IT from 1989 on

= Agile comes to the developer world in 2001

= Lean comes to the developer world in 2003 (more slowly)

= O'Reilly Radar “Operations: The New Secret Sauce” in 2006
= Agile Infrastructure discussions start in Europe circa 2007
= Patrick Debois and Andrew Schafer meet up at Agile 2008
= O'Reilly Velocity Conference starts 2008

= Velocity 2009, seminal John Allspaw “10+ Deploys Per Day:
Dev and Ops Cooperation” presentation

= Patrick Debois and Kris Buytaert put together first
DevOpsDays in Ghent in 2009. Many more follow

= Lean influences enter DevOps via startup culture
= Large companies start branding DevOps “solutions”

Where Do | Start?

DevOps Concepts

DevOps Principles

DevOps Practices

DevOps Tools

DevOps Principles

* The Three Ways

e Systems Thinking
 Amplify Feedback Loops
 Culture of Continual Experimentation

* CAMS

* Culture - People > Process > Tools
 Automation - Infrastructure as Code
* Measurement - Measure Everything
* Sharing - Collaboration/Feedback

* Informed by the values in the Agile
Manifesto and Lean Theory of Constraints

DevOps Practices

* Version Control For All

 Automated Testing

* Proactive Monitoring and Metrics
 Kanban/Scrum

* Visible Ops/Change Management

* Configuration Management

* Incident Command System

e Continuous Integration/Deployment/Delivery
* “Put Developers On Call”

e Virtualization/Cloud/Containers

* Toolchain Approach

* Transparent Uptime/Incident Retrospectives

An Implementation Model

Service Service
Design Transition
(Dev) (Release)

Service
“ Operation (Ops) /

Add Ops Into Dev

=" Enhance Service Design With Operational
Knowledge

= Reliability

= Performance
= Security

= Test Them

= Build Feedback Paths Back from Production
= Monitoring and metrics
= Postmortems

= Foster a Culture of Responsibility

= Whether your code passes test, gets deployed, and stays
up for users is your responsibility - not someone else’s

= Make Development Better With Ops
= Productionlike environments
= Power tooling

Accelerate Flow To Production

=" Reduce batch size

= Automated environments mean identical
dev/test/prod environments

" Create safety through automation
= Continuous Integration/Testing
= Automated Regression Testing
= Continuous Delivery
= Continuous Deployment
= Feature Flags (A/B testing)
= Security Testing

Add Dev Into Ops

* Don’t do tasks for people. Build tools so they
can do their own work.

* Monitoring/logging/metrics feeds back into dev
(and the business)

e Blameless Incident Postmortems

* Developers Do Production Support/Empower
Ops Acceptance

Grass Roots Checklist

" Find ways to collaborate - involve others early
" Find ways to automate and make self-service
= Become metrics driven

= | earn new things, continually improve

* Understand the larger business goals, metrics,
and priorities you support

= Communicate

= Work in parallel with small batches

= Allow refactoring

= Prove the business value to management

Management Checklist

* Experiment - choose a test case as a pilot
 Then document and spread best practices
* Empower your teams, but guide their values

* Metrics are your friend - demand measurable
outcomes

* Don’t accept excuses when the old baseline isn’t
good enough

* Fail fast, continually improve

* Build on small successes to gain broad support for
more substantive change.

 Align roles and responsibilities across groups -
enable collaboration even if it seems “inefficient”

Things Not To Do

= Only Token Gestures
= “Ops team, change your name to DevOps team!”
= “Put DevOps in those job titles!”

=" Only Implement Tools

= Changing tools without changing tactics leaves the
battlefield strewn with bodies

= Create More Silos
= Devalue Operations Or Development Knowledge
= Anything You’re Not Measuring The Impact Of

Does It Really Help?

e 2014 State of DevOps Report (9200
surveyed) measured correlation
between high performing
organizations and DevOps practice
adoption

* Lead time to changes down
« MTTR up

* No alteration in change fail rate

Core DevOps Research List

 Gene Kim’s Visible Ops

 Tom Limoncelli’s The Practice Of Cloud System Administration
 Gene Kim’s The Phoenix Project (modeled on Goldratt’s The Goal)
* Jez Humble’s Continuous Delivery

* Michael Nygard’s Release It!

* Gene Kim’s The DevOps Cookbook (coming soon-ish)

. \éari?(us Mary and Tom Poppendieck Lean Software Development
ooks

* Velocity Conference (velocityconf.com)

 DevOpsDays Unconferences - There’s one near you!
(devopsdays.org)

 DevOps Weekly newsletter (devopsweekly.com)
 DevOps Café Podcast (devopscafe.com)

 The Twelve Factor App (12factor.net)

* The Agile Admin (theagileadmin.com)

deployments

~_everything = Puppet systems EQO_IS mor‘"‘torlI"Igpipe“ne

windows business @

t
v testing .~ orchestration = =

automatlo et CONLINLOUS

ccccccccccccccccccc

2= chef——IManagement=:

............. analytics saltstack

onment d k -.containers

dellvery

data ore

ep
cloud

