Great Crosby Catholic Primary School Calculation Policy Revised 2022/2023

Introduction

Here at Great Crosby Primary School, children are introduced to the processes of calculation by building a sequence following a C-P-A approach. The C-P-A approach stands for Concrete - Pictorial - Abstract. This means that throughout the school, we see children using concrete equipment and pictures to support their understanding of more abstract concepts.
Over time children learn how to use models and images, such as Dienes, place value counters, bar models and tens frames, to support their mental and informal written methods of calculation. As children's mental methods are strengthened and refined, so too are their informal written methods. These methods become more efficient and succinct and lead to efficient written methods that can be used more generally. By the end of Year 6 children are equipped with mental and written methods that they understand and can use correctly.

When faced with a calculation, children are able to decide which method is most appropriate and have strategies to check its accuracy. They will do this by asking themselves:

- Can I do this in my head?
- Can I do this in my head using drawing or jottings?
- Do I need to use a pencil and paper procedure?

At whatever stage in their learning, and whatever method is being used, it must still be underpinned by a secure and appropriate knowledge of number facts, along with those mental skills that are needed to carry out the process and judge if it was successful.

The overall aim is that when children leave primary school they:

- Have a secure knowledge of number facts and a good understanding of the four operations;
- are able to use this knowledge and understanding to carry out calculations mentally and to apply general strategies when using one-digit and two-digit numbers and particular strategies to special cases involving bigger numbers;
- make use of diagrams and informal notes to help record steps and part answers when using mental methods that generate more information than can be kept in their heads;
- have an efficient and reliable written method of calculation for each operation that children can apply with confidence when undertaking calculations that they cannot carry out mentally; which leads to a formal written method.

EYFS

Maths ELG: Children countreliably with numbers from one to 20, place them in order and say which number is one more orone less than a given number. Using quantities and objects, they add and subtract two single-digitnumbers and counton or back to find the answer. They solve problems, including doubling, halving and sharing.

	Concrete	Pictorial	Abstract
Add one more to a given number	$4+1=$		$4+1=$ \square What is one more than $4 ?$
Add two single digit numbers to find an answer Counting two groups out to find a total	$3+2=$		$3+2=$
Add two single digit numbers to find an answer Counting on from the biggest number		$3+4=$	$\begin{aligned} & 3+4=\text { is calculated as } \\ & 4+3=7 \end{aligned}$

Year 1

Pupils should be taught to:

- read, write and interpret mathematical statements involving addition (+) and equals (=) signs
- represent and use number bonds and related addition facts within 20
- add one-digit and two-digit numbers to 20, including 0
- solve one-step problems that involve addition, using concrete objects and pictorial representations, and missing number problems such as $7=$? +3

Pupils should be taughtto:

- recall and use addition facts to 20 fluently, and derive and use related facts up to 100
- add and subtractnumbers, including:
- a two-digit numberand 1 s
- a two-digit number and 10 s
- 2 two-digit numbers
- adding 3 one-digitnumbers

	Concrete	Pictorial	Abstract
Addition of TO + O using bonds not crossing tens boundary	$24+3=27$	$24+3=27$ Drawing out counters with tens frames.	$\begin{aligned} & 24+3=27 \\ & 4+3=7 \\ & 20+7=27 \end{aligned}$ Leading to using bonds without partitioning $25+3=$ \square
Addition of TO + 10	$34+10=44$	$34+10=44$	$34+10=44$ Using bonds of 3 tens add 1 ten is 4 tens.
Addition of TO + O crossing tens boundary	$28+8=36$	$28+8=36$ $28+8=28+2+6$	$28+8=36$
Multiple of 10 + multiple of 10 using bonds	40 + $30=70$	$40+30=70$	$40+30=70$ Using bonds without images.

Great Crosby Calculation Policy

	Using knowledge of $4+3=7$		
Addition of any TO + multiples of 10		$36+20=56$	$36+20=56$ Using bond of $30+20=50$ then add 6 .
Addition of three single digits Making decisions using bonds and doubles knowledge	$\begin{aligned} & 6+2+4=12 \\ & \begin{array}{l\|l\|l\|l\|} \hline 0 & & & \\ \hline & 0 & \square & \\ \hline & \ddots & & \\ \hline & & \square & \\ \hline \end{array} \end{aligned}$	$\begin{gathered} 6+2+4=12 \\ \underbrace{6+2+4}_{10}=12 \\ \mid: \end{gathered}$	$\underbrace{6+2+4}_{10}=10+2=12$ Using doubles knowledge $3+5+5=10+3$ 10
Addition of any TO + TO (within 100)	$25+26=51$	$25+26=51$	$\begin{array}{\|l} \hline 25+26=51 \\ 20+20=40 \\ 5+6=11 \\ 40+11=51 \end{array}$ Leading on to adjusting to make a multiple of 10 . $\begin{array}{r} 25+26=51 \\ 30+21=51 \\ \hline \end{array}$

Year 3

Pupils should be taught to:

- add numbers mentally, including:
- a three-digit number and 1 s
- a three-digit number and 10s
- a three-digit number and 100s
- add numbers with up to 3 digits, using formal witten methods of columnar addition
- solve problems, including missing number problems, using number facts, place value, and more complex addition

	Concrete	Pictorial	Abstract
Addition of HTO + O (using bonds)	$123+5=128$	$123+5=128$	$123+5=120+8$
Addition of HTO + O (crossing tens boundary)	$125+8=133$	$125+8=133$	$\begin{aligned} & 125+8=133 \\ & 125+5+3=133 \end{aligned}$
Addition of HTO + T (using bonds)	$250+20=270$	$\begin{aligned} & 250+20=270 \\ & \text { (10) } 100 \text { (10) } 100 \text { (10) } \end{aligned}$	$250+20=200+70$ Leading to any HTO + multiple of 10 (not crossing the ten boundary) $234+30=200+60+4$

Great Crosby Calculation Policy

Addition of HTO + T (crossing tens boundary)	$278+50=328$ Children to understand the exchange of 10 tens for one hundred.	$278+50=328$	$\begin{aligned} & 278+50=328 \\ & 270+50+8=328 \end{aligned}$
HTO + Hundreds	$269+500=769$	$269+500=769$	$\begin{aligned} & 269+500=769 \\ & 200+500+69=769 \end{aligned}$
Addition of any TO + TO Using partitioning	$79+63=142$	$79+63=142$	$\begin{aligned} & 79+63=142 \\ & 70+60=130 \\ & 9+3=9+1+2 \\ & 130+12=142 \end{aligned}$
	From Summer term of Year 3 formal methods of addition should be introduced to learners. Children should still have access to, and continue to use both concrete resources and visual representations when necessary.		

Great Crosby Calculation Policy

Addition of two numbers (up to	$358+24=382$	$268+179=447$
addition Expanded vertical method		
Exceeding children may begin to use the formal columnar method. Addition of two numbers (up to three digits) using columnar addition Formal column method	$\begin{array}{r} 487+256=743 \\ \\ + \\ \\ \\ \\ \\ \\ \\ \hline 1 \end{array} \quad \begin{array}{r} 4 \\ \hline \end{array}$	$\begin{array}{r} 268 \\ +\quad 779 \\ \hline 137 \\ 130 \\ 300 \\ \hline 447 \end{array}$

Year 4

Pupils should be taught to:

- add numbers with up to 4 digits using the formal written methods of columnar addition where appropriate
- estimate and use inverse operations to check answers to a calculation
- solve addition two-step problems in contexts, deciding which operations and methods to use and why

Add a multiple of 1000 or 100 to a 4-digit number $1800+700$		$1800+700$
Cover	Qa明	
Calculate mentally - rounding up/down and adjusting - doubling - adding near doubles - using number bond knowledge		(领
Add numbers to one decimal place $1.8+0.7$ 0.00000	$1.8+0.7$ $:: 8: 8: 80000$ $: 8: 8::^{00000}$ $: 8: \bullet \bullet$ $: 8: 8:$	
Add numbers using columnar where necessary		$\begin{array}{r} 5879 \\ +3785 \\ \hline 9664 \\ \hline \end{array}+\begin{array}{r} 12.73 \\ 8.39 \\ \hline 21 \cdot 12 \\ \hline \end{array}$

Year 5

Pupils should be taught to:

- add whole numbers with more than 4 digits, including using formal witten methods (columnar addition)
- add numbers mentally with increasingly large numbers
solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why

Use of mental methods, where appropriate	Children should be taught to complete mental calculations by: - rounding up/down and adjusting - doubling - adding near doubles - using number bond knowledge - adding without bridging 1,10, 100 or 1000 Use mixed decimal and whole $(9+1.9)$ Used mixed decimal 1dp and 2dp (1.82 + 0.3, $1.5+0.07$)	Examples $\begin{aligned} & 1445+2999 \\ & 1445+3000-1 \end{aligned}$ $1299+1299$ Double 1300-2 $443+445$ Near double $443+2$ $\begin{aligned} & 12.36+5.24 \\ & 0.36+0.24=0.6 \\ & 17+0.6=17.6 \end{aligned}$ $36.25+23.43$ Add each place value column individually
Addition of two numbers (more than four digits) using columnar addition Formal method	Formal method (using carrying) with more than four digits $\begin{array}{r} 55825 \\ 37486 \\ \hline 93312 \\ \hline 111 \end{array}+\begin{array}{r} 75879 \\ \hline 9486 \\ \hline 85365 \\ \hline 111 \end{array}$	Use formal method to solve two-step problems in contexts.

Great Crosby Calculation Policy

Year 6

Pupils should be taughtto:

- perform mental calculations, using increasingly large numbers
- use theirknowledge of the order of operations to carry out calculations involving the 4 operations
- solve addition multi-step problems in contexts, deciding which methods to use and why
- solve problems involving addition

Use of mental methods, where appropriate	Children should be taught to complete mental calculations by: - rounding up/down and adjusting - doubling - adding near doubles - using number bond knowledge - adding without bridging $1,10,100$ or 1000 Use mixed wholes Use mixed whole and decimals Use mixed decimals up to 3 dp	Examples $\begin{aligned} & 1745+2999 \\ & 1745+3000-1 \end{aligned}$ 1399 + 1399 Double 1400-2 $1343+1345$ Near double 1343 + 2 $\begin{aligned} & 12.36+5.24 \\ & 0.36+0.24=0.6 \\ & 17+0.6=17.6 \end{aligned}$ $36.25+23.43$ Add each place value column individually
As Year 5, continue to use formal methods of addition, progressing to larger numbers, solving multi-step problems and applying methods to real life contexts. Continue calculating with decimals (including those with a different number of decimal places)		
Apply both mental and formal methods to solve calculations	$6+\mathbf{7 \times 8 = 6 2}$ because multiplication first then addition when there are no brackets as long as the symbol moves with the number $2780-910+1220$ can be reordered to $2780+1220-910=3090$ Use rules of BIDMAS	

EYFS

Maths ELG: Children countreliably with numbers from one to 20, place them in order and say which number is one more or one less than a given number. Using quantities and objects, they add and subtract two single-digitnumbers and counton or back to find the answer. They solve problems, including doubling, halving and sharing.

	Concrete	Pictorial	Abstract
Subtract one less from a given number	$4-1=3$ Take one thing away	$4-1=3$	$4-1=$ \square What is one less than 4?
Count out a given number and subtract an amount	$5-3=2$ Take two things away	$5-3=2$	$5-3=$
Count back from a given amount	$5-3=2$ Countout 5 things and count back 1,2, 3. Then count the remaining objects.	$5-3=2$	$5-3=$ $5-\square=2$

Year 1

Pupils should be taughtto:

- read, write and interpretmathematical statements involving subtraction (-) and equals (=) signs
- represent and use numberbonds and related subtraction facts within 20
- subtractone-digitand two-digit numbers to 20, including 0
- solve one-step problems that involve subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=$? - 9

Year 2

Pupils should be taughtto:

- recall and use subtraction facts to 20 fluently, and derive and use related facts up to 100
- subtractnumbers using concrete objects, pictorial representations, and mentally, including:
- a two-digit numberand 1 s
- a two-digit number and 10 s
- 2 two-digit numbers
- adding 3 one-digitnumbers

	Concrete	Pictorial	Abstract
Subtraction of TO-O using bonds not crossing tens boundary	$27-3=24$	$27-3=24$ Drawing out counters with tens frames	$\begin{aligned} & 27-3=24 \\ & 7-3=4 \\ & 20+4=24 \end{aligned}$ Leading to using bonds without partitioning $25-3=$ \square
Subtraction of TO-O crossing the boundary (partitioning the single digit)	32-5 = Model exchanging a ten for 10 ones.	32-5 = Draw out on tens frames.	$\begin{array}{r} 32-5 \\ / 2 \\ \hline \end{array}$
Subtract TO-10	$34-10=24$	$34-10=24$	$34-10=24$ Using bonds of 3-1=2

Great Crosby Calculation Policy

Multiple of T - Multiple of T (using bonds)	$50-30=$ Take away 3 tens	$50-30=$	$50-30=$ \square Using bonds $70-30=40 \text { because } 7-4=3$
Subtract from any TO - multiple of T	$56-30=$ Take away 3 tens	$56-30=$	$56-30=$ Using bonds $76-20=56 \text { because } 7-2=5$
Subtraction of TO -TO (using bonds)	$78-34=$ Take three tens and four ones away	$78-34=$	$78-34=44$ because $7-3=4$ and $8-4=4$ $95-43=52$ because $9-4=5$ and $5-3=2$
Subtract any TO - TO Using partitioning	$72-26=$ Use dienes to model 72-20-2-4 $=46$	$91-35=56$	$\begin{aligned} & 78-49=29 \\ & 78-40-8-1=29 \end{aligned}$

Pupils should be taughtto:

- subtractnumbers mentally, including:
- a three-digitnumberand 1 s
- a three-digitnumber and 10 s
- a three-digitnumber and 100s
- subtractnumbers with up to 3 digits, using formal written methods of columnar addition and subtraction
- solve problems, including missing numberproblems, using number facts, place value, and more complex subtraction

Great Crosby Calculation Policy

Great Crosby Calculation Policy

Year 4

Pupils should be taught to:

- subtract numbers with up to 4 digits using the formal witten methods of columnar subtraction where appropriate
- estimate and use inverse operations to check answers to a calculation
- solve subtraction two-step problems in contexts, deciding which operations and methods to use and why

Subtraction of multiples 10/100/1000		$2600-800$ or $2600-800=2600-1000+200$
Use of mental methods, where appropriate	Children should be taught to complete mental calculations by: - rounding up/down and adjusting - counting up - using number bond knowledge - subtracting without bridging $1,10,100$ or 1000	$\begin{aligned} & \text { Example } \\ & 532-199 \\ & 532-200+1 \\ & 308-289=19 \text { (found by } 1+10+8 \text {) } \\ & 289+1+10+8=308 \\ & 507-57 \\ & 507-7-50 \\ & 5839-1725 \end{aligned}$ Subtracteach column individually using place value knowledge
Subtracta pair of numbers to 1 dp	$\begin{aligned} & 8: 8: 80000 \\ & 8: 8: 8 \\ & 2.4-0.6 \end{aligned}$	2.4-0.6
Learners should have a solid understanding of expanded method ofsubtraction (Year3) Subtraction of two numbers (up to four digits) using columnar subtraction Formal method	Formal method (using borrowing) with numbers up to four digits.	Leading to using columnar method to solve problems using decimals up to 2

Year 5

Pupils should be taught to:

- subtract whole numbers with more than 4 digits, including using formal written methods (columnar subtraction)
- subtract numbers mentally with increasingly large numbers
- solve subtraction multi-step problems in contexts, deciding which methods to use and why

Use of mental methods, where appropriate	Children should be taught to complete mental calculations by: - rounding up/down and adjusting - counting up - using number bond knowledge - subtracting without bridging 1, 10, 100 or 1000 (including decimals) Use mixed decimal and whole (9-1.9) Used mixed decimal 1dp and 2dp (1.52-0.3, 1.5-0.07)	Examples $\begin{aligned} & 4532-1999 \\ & 4532-2000+1 \end{aligned}$ $\begin{aligned} & £ 10-£ 7.71=£ 2.29 \\ & £ 7.71+29 p=£ 8+£ 2=£ 10 \\ & 2507-57 \\ & 2507-7-50 \\ & 75839-41725 \\ & 8.67-0.6=8.07 \end{aligned}$ Subtract each column individually using place value knowledge
Subtraction of two numbers (more than four digits) using columnar subtraction Formal method	Formal method (using borrowing) with numbers up to four digits. $-\begin{array}{r} 5^{14} 5^{10} 1^{1} 25 \\ 37483 \\ \hline 17342 \end{array} \quad-\begin{array}{r} 5^{14} 5^{10} 1^{1} 29 \\ 7486 \\ \hline 47343 \end{array}$	Using formal method to solve two-step problems in contexts, including decimals.

Year 6

Pupils should be taughtto:

- perform mental calculations, including with increasingly large numbers
- use theirknowledge of the order of operations to carry out calculations involving the 4 operations
- solve subtraction multi-step problems in contexts, deciding which methods to use and why
- solve problems using subtraction

Use of mental methods, where appropriate	Children should be taught to complete mental calculations by: - rounding up/down and adjusting - counting up - using number bond knowledge - subtracting without bridging $1,10,100$ or 1000 (including decimals) Use mixed wholes Use mixed whole and decimals Use mixed decimals up to 3 dp	$\begin{aligned} & \text { Examples } \\ & 74532-19996 \\ & 74532-20000+4 \\ & £ 10-£ 7.71=£ 2.29 \\ & £ 7.71+29 p=£ 8+£ 2=£ 10 \\ & 308-289=19 \text { (found by } 1+10+8 \text {) } \\ & 289+1+10+8=308 \\ & 2507-57 \\ & 2507-7-50 \\ & 75839-41725 \\ & 7.57-0.07=7.5 \\ & 6.982-0.08=6.902 \end{aligned}$ Sub tracteach column individually using place value knowledge
As Year 5, continue to use formal methods of subtraction, progressing to larger numbers, solving multi-step problems and applying methods to real life contexts. Continue calculating with decimals (including those with a different number of decimal places)		
Apply both mental and formal methods to solve calculations	See addition section for BIDMAS rules.	

Great Crosby Calculation Policy

MULTIPLICATION

EYFS

Maths ELG: They solve problems, including doubling, halving and sharing.

	Concrete	Pictorial	Abstract
Begin to count in 2s Some children may also begin to count in $5 s$ and 10 s.	Count objects in pairs/groups of 2.	Use pictures of groups of 2 . Model counting them.	Children to write counting sequences.

Year 1

Pupils should be taught to:

- solve one-step problems involving multiplication, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher

	Concrete	Pictorial	Abstract
Count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10s	Count objects in pairs/groups of 2/5/10.	Use pictures of objects in pairs/groups of 2/5/10.	$\begin{aligned} & 2,4,6,8, \square, 12,14, \\ & 15,20, \square, 30,35, \square, 45 \\ & 30,40, \square 60, \square, 80,90 \end{aligned}$

Year 2

Pupils should be taught to:

- recall and use multiplication facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers
- calculate mathematical statements for multiplication within the multiplicationtables and write them using the multiplication (x) and equals (=) signs
- solve problems involving multiplication, using materials, arrays, repeated addition, mental methods, and multiplication facts, including problems in contexts

Use mathematical language with children e.g. factor, multiple, product.	Concrete	Pictorial	Abstract
Count in 3s		Use pictures of ofjects in groups of 3 .	$3,6,9,12, \square, 18,21, \square$
Recall and use facts for 2, 5 and 10 Children to learn using anchor facts		Use images to show facts of 2,5 and 10	$2 \times 5=$ \square use facts to show inverse $\begin{aligned} & 5 \times 2=10 \\ & 10 \div 2=5 \\ & 10 \div 5=2 \end{aligned}$ 2 is a factor of 10 5 is a factor of 10 10 is a multiple of 2 and 5

Year 3

Pupils should be taught to:

- recall and use multiplication facts for the 3, 4 and 8 multiplication tables
- wite and calculate mathematical statements for multiplication using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods
- solve problems, including missing number problems, involving multiplication, including positive integer scaling problems and correspondence problems in which nobjects are connected to m objects

	Concrete	Pictorial Use pictures of objects in groups of 4, 8, 50 and 100.				Abstract
Count in 4s, 8s, 50s and 100s	Count objects in groups of $4 \mathrm{~s}, 8 \mathrm{~s}, 50 \mathrm{~s}$ and 100 s .	Use pictures of ob 50 and 100.	objects in	$\overline{\text { oup }}$	$\text { of } 4,8 \text {, }$	$12,16,20, \square, 28, \square 36$
Recall and use facts for 3, 4 and 8 Children to learn using anchor facts	Count objects in groups (3, 4 and 8) match sticks to make and count in 3 s .	Use images to sh	how facts	3	$\text { and } 8$	$3 \times 4=$ \square use facts to show inverse $\begin{aligned} & 4 \times 3=12 \\ & 12 \div 4=3 \\ & 12 \div 3=4 \end{aligned}$ 3 is a factor of 12 4 is a factor of 12 12 is a multiple of 3 and 4

Great Crosby Calculation Policy

$\begin{array}{\|c} \underset{5,8)}{\text { Multiply TO X O }} \text { (Oonly 2, 3, 4, } \end{array}$	$13 \times 4=$			$\begin{array}{r} 24 \times 4= \\ \\ \times \begin{array}{r} 24 \\ \hline 80 \\ \hline 96 \end{array} \\ \hline 16 \end{array}$	$24 \times 4=$
	X	10	3		
	4	40	12		
	$40+12=52$				

Year 4

Pupils should be taughtto:

- recall multiplication facts for multiplication tables up to 12×12
- use place value, known and derived facts to multiply mentally, including: multiplying by 0 and 1; multiplying together 3 numbers
- recognise and use factor pairs and commutativity in mental calculations
- multiply two-digit and three-digitnumbers by a one-digitnumber using formal written layout
- solve problems involving multiplying and adding, including using the distributive law to multiply two-digit numbers by 1 digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects

Great Crosby Calculation Policy

Year 5

Great Crosby Calculation Policy

Pupils should be taught to:

- multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digitnumbers
- multiply numbers mentally, drawing upon known facts
- multiply whole numbers and those involving decimals by 10, 100 and 1,000
- solve problem s involving multiplication, including using their knowledge offactors and multiples, squares and cubes
- solve problems involving multiplication including understanding the meaning of the equals sign

Year 6

Great Crosby Calculation Policy

Pupils should be taughtto:

- multiply multi-digitnumbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication
- perform mental calculations, including with mixed operations and large numbers
- use theirknowledge of the order of operations to carry out calculations involving the 4 operations
- solve problems involving multiplication

EYFS

Maths ELG: They solve problems, including doubling, halving and sharing.

	Concrete	Pictorial	AbStract
Begin to count in 2s	Count objects in pairs/groups of 2.	Use pictures of groups of 2. Model counting them. Some children will also count in 5s and 10s.	

Year 1

Pupils should be taught to:

- solve one-step problems involving division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher

	Concrete	Pictorial	Abstract
Count in 2s, 5s and 10s	Count objects in pairs/groups of Usictures of objects in pairs/groups of $2 / 5 / 10$.	$2,4,6,8, \square, 12,14, \square, ~$	

Year 2

Pupils should be taught to:

- recall and use division facts for the 2, 5 and 10 multiplication tables, including recognising odd and even numbers
- calculate mathematical statements for division within the multiplication tables and write them using the division (\div) and equals (=) signs
- solve problems involving division, using materials, arrays, repeated addition, mental methods, and division facts, including problems in contexts

	Concrete	Pictorial					Abstract
Recall and use facts for 2, 5 and 10 Children to learn using anchor facts		Use imges tit		$\text { or } 2,58$			$\begin{aligned} & 2 \times 5= \\ & \text { use facts to show inverse } \\ & 5 \times 2=10 \\ & 10 \div 2=5 \\ & 10 \div 5=2 \\ & 2 \text { is a factor of } 10 \\ & 5 \text { is a factor of } 10 \\ & 10 \text { is a multiple of } 2 \text { and } 5 \end{aligned}$
		$\begin{array}{\|l} \hline 2 \\ \hline 2 \end{array}$	2 2 2	2	2	2	

Year 3

Pupils should be taught to:

- recall and use division facts for the 3, 4 and 8 multiplication tables
- wite and calculate mathematical statements for division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods
- solve problems, including missing number problems, involving division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects

Year 4

Great Crosby Calculation Policy

Pupils should be taughtto:

- recall division facts for multiplication tables up to 12×12
- use place value, known and derived facts to divide mentally
- recognise and use factor pairs and commutativity in mental calculations
- multiply two-digit and three-digitnumbers by a one-digitnumber using formal written layout
- solve problems involving multiplying and adding, including using the distributive lawto multiply two-digit numbers by 1 digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects

	Concrete	Pictorial	Abstract
Recall and use facts for all numbers 2-12 Children to learn using anchor facts	Count objects in groups (7, 9, 11 and 12)	Use images to show facts of 7, 9, 11 and 12	$7 \times 6=$ \square use facts to show inverse $\begin{aligned} & 6 \times 7=42 \\ & 42 \div 6=7 \\ & 42 \div 7=6 \end{aligned}$ 6 is a factor of 42 7 is a factor of 42 42 is a multiple of 6 and 7
Division TO $\div 0$ Including remainders	$3 \quad 24 \div 7=3 r$	$74 \div 6=12.2$	$43 \div 7=6$ \square $\div 9=5 \mathrm{r} 2$

Great Crosby Calculation Policy

Year 5

Pupils should be taughtto:

- divide numbers mentally, drawing upon known facts
- divide numbers up to 4 digits by a one-digitnumber using the formal written method of short division and interpret remainders appropriately for the context
- divide whole numbers and those involving decimals by 10, 100 and 1,000
- solve problems involving division, including using their knowledge offactors and multiples, squares and cubes
- solve problems involving addition, subtraction, multiplication and division and a combination ofthese, including understandi ng the meaning of the equals sign
- solve problems involving division, including scaling by sim ple fractions and problems involving simple rates
Before any formal methods of division are taught, the following objectives should be covered using BMS resources;
- Identify multiples and factors
- Prime, square, cube and common
- Dividing by 10,100 and 1000
- Know and apply facts $(42 \div 7=6$ used to calculate $0.42 \div 0.7=0.6$)
Divide 3dgt \div ldgt

Year 6

Pupils should be taught to:

- divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
- divide numbers up to 4 digits by a two-digit number using the formal witten method of short division where appropriate, interpreting remainders according to the context
- perform mental calculations, including with mixed operations and large numbers
- use their knowledge of the order of operations to carry out calculations involving the 4 operations
- solve problems involving division

| Division of $3 \mathrm{dgt} \div 2 \mathrm{Cdgt}$ |
| :--- | :--- | :--- | :--- | :--- |

