Pure Gases CGA Selection Chart For Fittings

CGA Fittings Required	Pure Gases	
510/300	Acetylene	
590/346/347/702	Air	
240/660/705	Ammonia	
580/680/677	Argon	
350	Arsine*	
320	Carbon Dioxide	
350	Carbon Monoxide	
660	Chlorine	
510	Cyclopropane	
350	Deuterium	
350	Ethane	
350	Ethylene	
510	Ethylene Oxide	
580/680/677	Helium	
350/695/703	Hydrogen	
330	Hydrogen Chloride	
330	Hydrogen Sulfide	
580	Krypton	
350/695/703	Methane	
510	Methyl Chloride	
580/680/677	Neon	
580/680/677	Nitrogen	
326	Nitrous Oxide	
540/577/701	0xygen*	
350	Phosphine	
510	Propane	
350	Silane*	
668/660	Sulfur Dioxide	
590	Sulfur Hexaflouride	
580/680/677	Xenon	

GASES CGA SELECTION CHART

Mixed Gases CGA Selection Chart For Fittings

OOA Fittings Deswined	Mixed Gases	
CGA Fittings Required	Minor Component i	n Major Component
240/660/705	Ammonia	Nitrogen
350	Butane	Nitrogen
296	Carbon Dioxide	Oxygen
580	Carbon Dioxide	Helium or Nitrogen
	Carbon Dioxide	
580	and/or Nitrogen	Helium
590	Carbon Monoxide	Air
330	Chlorine	Nitrogen
		Argon, Helium,
350	Diborane	Hydrogen, Nitrogen
580	Freon-12	Nitrogen
296	Helium	Oxygen
350	Hexane	Nitrogen
350	Isobutane	Nitrogen
580	Krypton	Argon
590	Methane	Air
580	Moisture	Argon, Helium or Nitrogen
660	Nitric Oxide	Nitrogen
660	Nitrogen Dioxide	Air or Nitrogen
590	Nitrous Oxide	Nitrogen
590	Oxygen	Nitrogen or Helium
350	Propane	Nitrogen or Helium
590	Propane	Air
660	Sulfur Dioxide	Air or Nitrogen
590	Sulfur Hexaflouride	Argon, Helium or Nitrogen
350	Sulfur Hexaflouride	Hydrogen

It is recommended that the user thoroughly familiarize himself with the specific properties of these gases.

The Compressed Gas Association (CGA) has selected and standardized the valve outlet to be used on each gas cylinder. These standards, contained in the document "CGA STANDARD V-1, Compressed Gas Cylinder Valve Outlet Connections", have been adopted to prevent the inadvertent mixing of gases which could be reactive and to avoid other possible misuse hazards.

The above chart may be used for guide purposes only. Consult your gas supplier to determine the actual CGA connection required when ordering a regulator.

Since the combined characteristics of a mixture of gases often differ from the properties of the separate components, different CGA connections are often required. The CGA has selected and standardized the valve outlets to be used with mixed gases. These standards are described in CGA publication V-7 - "Standard Method for Determining Cylinder Valve Outlet Connections for Industrial Gas Mixtures".

Mixtures which use the same CGA connection as if the minor component were in its pure gas form have not been included for the sake of brevity. The proper fitting for these mixtures can be determined by looking up the minor component on the chart for pure gases.