

Build a Model Catapult Worksheet

Data Table A. Mass of Projectile

Projec- tile	Rubber Stopper Mass:	Cork Mass:	Observations
Trial	Distance (m)		
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
Avg.			

Data Table B. Length of Lever Arm

Projec- tile:	Lever Arm: cm	Lever Arm: cm	Lever Arm: cm
Trial	Distance (m)		
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
Avg.			

© 2018, Flinn Scientific, Inc. All Rights Reserved. Reproduction permission is granted from Flinn Scientific, Inc. Batavia, Illinois, U.S.A. No part of this material may be reproduced or transmitted in any form or by any means, electronic or mechanical, including, but not limited to photocopy, recording, or any information storage and retrieval system, without permission in writing from Flinn Scientific, Inc.

Post-Lab Questions

- 1. Consider the model catapult from Part 1.
 - *a*. What acts as the fulcrum?
 - b. When the lever arm is released, what is the load that is being moved?
 - c. When the lever arm is released, what provides the applied force that moves the load?
- 2. How did the mass of the projectile affect the distance it traveled in Part IIA?
- 3. How did the length of the lever arm affect the distance the projectile traveled in Part IIB?
- 4. How does the relationship between the fulcrum and the load explain the results from Part IIB?
- 5. List the modifications made to the model catapult in Part III and the reason for each.
- 6. Explain why you chose the projectile used for the Design Challenge.
- 7. Which was more important in redesigning the model catapult-accuracy, precision, or both equally important?
- 8. Did the redesigned catapult achieve the desired results? If not, what other improvements might be made?