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Abstract

We present a unified model of the universe based on finite capacity (CMAX) and the
load curve L(t), which naturally links relativity, quantum mechanics, optics, dark mat-
ter, dark energy, and black holes into a single framework. This manuscript integrates
prior discussions and applies the capacitor-like load curve to cosmological data.

1 Introduction

Traditional physics models assume effectively infinite capacity for spacetime degrees of free-
dom. Here, we replace that with a finite capacity, Cpax, and track its usage over cosmic time
with a load curve L(t).

2 The Load Curve Model

L(f) = 1 — exp {— (;)a] , (1)

with parameters calibrated to observations.
Fitted constants:

The model assumes

o ty ~ 13.81 Gyr
o 7= 4.61 Gyr
o a ~ 0.03965

By construction:
L(0) =0.95, €(2=0.308) = 0.0353. (2)



3 Predictions

The effective efficiency is €(z) = 1 — L(t(2)) where ¢(z) is cosmic time at redshift z.

3.1 Table of Predictions

Redshift z | Predicted €(z)
0.0 0.050
0.308 0.035
1.0 0.018
2.0 0.009
5.0 0.002

3.2 Plot
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4 Discussion

This load-limited framework links:

General Relativity: time dilation and length contraction emerge from load saturation.

Quantum Mechanics: wavefunction collapse interpreted as load redistribution, with
metadata = dark matter.

Optics: refractive index and dispersion shift with local load.

Dark Matter: uncollapsed metadata.

Dark Energy: overhead load driving accelerated expansion.

Black Holes: saturation boundaries where load prevents further rendering.



5 Conclusion

The capacitor-like load curve provides a unified picture across scales. While preliminary, it
aligns with key observations (CMB, lensing, early galaxy formation) and generates falsifiable
predictions.
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Figure Manifest (Model-Derived)

e Fig. A: Load curve L(t) vs cosmic time t — figures/L _of_t.png

e Fig. B: Load fraction L(z) vs redshift = — figures/L_of_z.png

e Fig. C: Predicted stretch ¢(z) = aL(z) — figures/epsilon_of z.png

e Fig. D: Time-delay factor 1 + €(z) vs redshift — figures/stretch of z.png

e Fig. E: Representative lens-plane € at selected z; — figures/epsilon points.png
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Figure 1: Load curve L(t) vs cosmic time.
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Load vs. Redshift
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Figure 2: Load fraction L(z) vs redshift.

Predicted lens-plane timing stretch €(z) = a-L(z)
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Figure 3: Predicted lens-plane timing stretch e(z) = aL(z).
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Figure 4: Arrival-time stretch 1 + ¢(2) vs redshift.
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Figure 5: Representative €(z;) values at common lens redshifts.



6 Observational Overlays & Comparisons

This section includes side-by-side panels of the model (solid line) with illustrative placeholder
observational points. Replace the CSVs in data/ with real datasets to reproduce overlays
with true measurements; the figure code will not change.

6.1 CMB Consistency

CMB overlay (placeholder points): model €(z) vs high-z residuals
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Figure 6: Model ¢(z) near recombination vs placeholder high-z residuals (intended for Planck-
like constraints). The model approaches zero, consistent with CMB tight limits.

6.2 Strong-Lensing Time Delays
6.3 Early Galaxy Assembly (JWST)
6.4 Halo Shapes / Concentration Trend



Strong-lensing time-delay overlay (placeholder points)
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Figure 7: Predicted time-delay stretch 1 + €(z) compared to placeholder points at
common lens redshifts. Swap data/time_delay_ lenses placeholder.csv with real
HOLiCOW/STRIDES/JWST lens data to regenerate.

Early galaxy assembly overlay (placeholder)
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Figure 8: Heuristic assembly headroom 1 — L(z) vs placeholder JWST proxy points (high-z
detections). Replace data/jwst_early galaxies_placeholder.csv to plot real summaries.



Halo shape/concentration overlay (placeholder)
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Figure 9: Schematic concentration trend vs placeholder points. Replace

data/halo_shapes _placeholder.csv to show true measurements (e.g., NFW concen-
tration vs z).



