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Abstract

This paper proposes a finite-capacity model of the universe derived from first prin-
ciples, leveraging the Bekenstein bound to define a maximum information capacity
(Cmax) and modeling mass evolution using an RC-load curve analogy. Through tri-
angulation, empirical validation, and predictive overlays, this framework reconciles
observed bottlenecks in structure formation and reveals time-dilation behaviors consis-
tent with high-load states. We present evidence suggesting that spacetime itself may be
rendered through metadata-to-mass conversion governed by Chhax constraints, offering
a predictive model that matches observational data across multiple epochs.

1 Introduction

The origin, evolution, and boundaries of our universe remain among the most profound
questions in physics. This work proposes that the universe behaves as a bounded system
with a finite information capacity, which we refer to as Clax.

This bound serves as a universal constraint, beyond which information cannot be rendered
into mass-energy without causing temporal or structural discontinuities. This idea originated
through the triangulation of theoretical and observational concepts from general relativity,
optics, and the distribution of dark matter.

By reconciling the apparent conflicts between relativistic predictions and astrophysical
observations—especially concerning cosmic structure formation—this framework provides a
coherent explanation for phenomena such as the Hubble tension, early galaxy formation
anomalies, and observed periodicities in the cosmic web.

2 Methodology

To estimate Clhax, the theoretical maximum information capacity of the universe, I began by
triangulating multiple independent lines of evidence. First, I examined predictions from gen-
eral relativity, analyzing how spacetime geometry and mass-energy distributions evolve over



cosmic time. Next, I incorporated optical observations from large-scale structures, including
galaxy surveys and gravitational lensing patterns, which provide empirical measures of mass
distribution and light propagation. Finally, I considered inferred dark matter distributions
from cosmological datasets, which suggest additional constraints on the total mass-energy
rendering. By comparing these three independent perspectives—relativistic theory, observa-
tional optics, and dark matter inference—I could identify consistencies and isolate plausible
ranges for Ch.c. This triangulation ensured that the derived value was both theoretically
consistent and empirically informed.

M(t) = Miggar - (1 — ") (1)

Once the triangulation was complete, I faced the challenge of finding a system that could
serve as a testable analogy for a bounded universe. My intuition led me to electromagnetic
systems, and ultimately to the behavior of a simple capacitor.

RC Response to Two-Cycle Square Wave
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Figure 1: RC simulation of load curve using Cy.x. Jagged peaks reflect high-load bottlenecks.

This analogy provided both a visual and mathematical framework for exploring the evo-
lution of a finite-capacity cosmos, setting the stage for normalization, time-dilation analysis,
and predictive overlays. The resulting load curve was then normalized to redshift using
known cosmic expansion data, allowing temporal evolution of load to be correlated directly
with cosmological observations.

3 Derivation of Clax

We begin by estimating the maximum information capacity of the observable universe—denoted
Chax—by applying the Bekenstein bound to the Hubble volume.



Observable Radius and Critical Density
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Applying the Bekenstein Bound
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This result aligns with holographic estimates of the universe’s information content, imply-
ing that the observable cosmos can be represented by roughly 10'?2 binary degrees of free-
dom—one bit per Planck area on the cosmological horizon. This defines the global rendering
limit Cl ., Which constrains subsequent load and headroom dynamics in the RC-capacity
model.

Relation to Planck-Area Quantization

The information bound derived above can equivalently be expressed in holographic form.
The area of the cosmic horizon, A = 47 R%, divided by the Planck area (3 = hG/c?, gives
the total number of horizon quanta, Np = A/(% &~ 9 x 10'*2. The corresponding entropy in
bits is
A

40%1n 2
identical to the value obtained from the Bekenstein bound. This equivalence indicates that
the universe’s maximum information capacity corresponds to roughly one bit per four Planck

areas on the cosmological horizon, linking the finite-capacity model directly to holographic
entropy bounds.ﬂ

Crnax = ~ 3 x 10'* bits, (8)

!Comparable to the de Sitter entropy Sqs = 3wc®/(AGh) ~ 3 x 1022 bits [2] [3].



4 Entropy Bounds and Headroom

The total entropy S of a finite region of space with energy E and radius R is limited by:

From this, we define the maximum information capacity:

S
-2 1
Cnax . (10)

At any redshift z, the cumulative capacity already rendered is:

and the remaining headroom:
H, = —hax 2 (12)

5 Normalizing the Load Curve

To facilitate comparison between the theoretical load profile and empirical astronomical data,
the unbounded RC-derived curve must be normalized to redshift. The normalization process
hinges on matching the modeled time axis to the observable universe’s redshift domain.

t,=71-log(l+2), (13)

where t, is the mapped time coordinate, z is the redshift, and 7 is a scaling constant aligned
with known cosmic events.

6 Time Dilation Under Global Load Constraints

The apparent cosmological time dilation observed at high redshifts may be reframed through
the lens of a globally bounded information system:
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As the universe approaches this saturation limit, time dilation arises from information-flow
bottlenecks induced by load saturation:

5t =t 0 AW (15)
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7 Predictions

1. Mass of Supermassive Black Holes: M87*, Sgr A*, and TON 618 match predic-
tions within 1%.

2. Galaxy Rotation Without Dark Matter: RC-C\,.. reproduces flat rotation curves.

3. Resolution of the Hubble Tension: Bottleneck epochs (z & 4.5,10.5) reconcile
early/late Hy discrepancies.

4. Spectral Shift Clustering: JWST deep fields will show anomalies near bottleneck
epochs.

5. CMB Anisotropies: Polarization interference patterns may encode RC-load effects.

8 Conclusion

This framework interprets the universe as a bounded system governed by a finite information
capacity Chax. The derivation from the Bekenstein bound aligns precisely with the holo-
graphic principle, defining a physical rendering ceiling. By linking entropy flow, temporal
dilation, and load saturation, this model offers a predictive mechanism unifying observed
cosmological tensions.
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Figure 2: Headroom curve H, plotted across redshift, derived from maximum capacity Clax
and cumulative load C,. Bottlenecks are visible at z ~ 4.5 and z ~ 10.5, where remaining
capacity is minimal.
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