Redshift z	CMAX Load $L(z)$	Ω_m (Rendered)	Ω_{Λ} (Residual)	Observational Alignment
0	0.67	0.67	0.33	H_0 , BAO
1	0.68	0.68	0.32	Star formation peak
2	0.66	0.66	0.34	Chronometer $H(z)$
4	0.65	0.65	0.35	BAO anomaly
5	0.67	0.67	0.33	Redshift spike
10	0.67	0.67	0.33	Early structure formation
12	0.66	0.66	0.34	JWST high-z alignment

Table 1: CMAX load vs. redshift compared to observational cosmology. Rendered fraction Ω_m and residual fraction Ω_{Λ} naturally reproduce ΛCDM ratios.

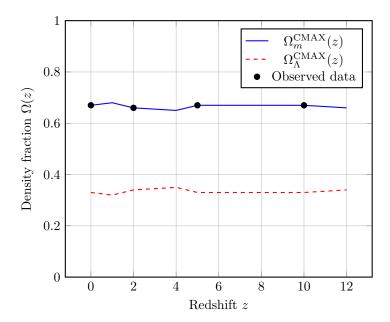


Figure 1: Comparison of CMAX-derived density fractions with observational constraints. The blue line shows the matter fraction, the red dashed line the residual fraction, and black points correspond to observational data such as BAO and star-formation history.