10 Rules for Learning to Code [cheatsheet-
version]

You can find the original (a longer, more detailed) version here: https://brupy.notion.site/10-rules-for-learning-
to-code

Rule #1- The 30-Minute Rule

Don't aim for hours, aim for 30 minutes a day.
Getting started is the hardest part — once you begin, momentum will carry you.
Build a streak: mark an “X" on the calendar for every day you code.

Protect the chain. Your brain hates breaking it.

Consistency > intensity. Small wins daily add up.

Rule #2 - Code to Create, Not Just to Learn

Don't just copy code from tutorials — build something.
Motivation comes from making, not memorizing.

Even small projects (dice game, flashcards, timer app) are more fun than solving math problems you don’t
care about.

Projects = practice + creativity + something you can actually use.

Code is most powerful when it creates.

Rule #3 - There's No “Perfect” Programming Language (But Python Comes Close)

No "best language"” exists — only the right tool for the job.

10 Rules for Learning to Code [cheatsheet-version]


https://brupy.notion.site/10-rules-for-learning-to-code?source=copy_link
https://brupy.notion.site/10-rules-for-learning-to-code?source=copy_link

But Python is a Swiss Army knife:
o Websites » Django / Flask
o Data Science » Pandas, NumPy
o Al & ML - TensorFlow, PyTorch
o Automation - requests, BeautifulSoup
o Hardware - Raspberry Pi, MicroPython

Concepts you learn in Python transfer to ANY other language.

Start with Python. Build anything. Level up anywhere.

Rule #4 - Beware of the "Draw an Owl"” Tutorial

Avoid tutorials that skip steps or throw in “simply” without explaining.
Copy-pasting code without understanding teaches nothing.
If a tutorial feels way over your head - it's not you, it's the tutorial.

Learning should feel like climbing a ramp: steady, not too steep, not too flat.

Good tutorials stretch you, not crush you.

Rule #5 - Everyone Uses Google (and That's Okay)

Feeling like you're not “good enough” = imposter syndrome (70% of people feel it).
Even Google, Amazon, and Microsoft engineers use Stack Overflow, Google, & Al daily.

Your real skill is problem-solving and knowing how to ask good questions — not memorizing 10,000
functions.

Debug first = then Google - then Stack Overflow.
Learn from the answer instead of just copy-pasting.

Learn how to properly utilize Al for code checking and debugging.

Great coders aren’t walking encyclopedias. They're great thinkers.

Rule #6 - Be a Copycat

Don't just read books — build things.
Stuck on ideas? Copy existing apps & games.
Copycats teach you how things actually work.

The best part: you'll find tons of help online since others have built them too.

Copy first. Create later. That's how you learn.

Rule #7 - Get Into the Habit of Chunking

Big ideas feel overwhelming = break them into small chunks called modules.

Solve one chunk at a time = they add up to the full project.

10 Rules for Learning to Code [cheatsheet-version]



« The simpler the chunk, the easier it is to code.
e Chunking turns impossible ideas into step-by-step progress.

Don't build the whole robot. Build one function at a time.

Rule #8 - Get a Mentor (Like Me &)
« A mentor accelerates your growth like nothing else.
+ Good mentors don't just give answers — they teach you how to think.
« With my course, you're not learning alone:
o Access our private Discord server.
o Get help, ask questions, and connect with peers.
o I'll be there to guide you too.
e Learn, share, teach - grow faster together.

Information is cheap. A mentor shows you how to think.

Rule #9 - Learn to Walk Away From Your Code
e Coding # nonstop typing. It's mostly thinking.
o Staring at your screen is working.
e Stuck on a bug? Step away. Sleep on it. Walk it off.
« 9 times out of 10, the solution shows up when you're not forcing it.
e Code less, think more. Bad code written in a rush = painful refactoring later.

Sometimes the smartest move is to stop coding.

Rule #10 - Play the Game, Don’t Just Run the Drills
« Fundamentals matter, but projects that exercise those fundamentals are where the real learning happens.
o Start building from Day 1— no project is “too early."
* Projects boost confidence, pride, self-esteem, and creativity.
« Use Git/GitHub to track your growth and showcase your work.
« Keeping all your projects organized and well documented makes you a better candidate.
* Employers make decisions based more-so on an applicants Portfolio than anything else.

Drills teach you skills. Projects let you play the game.

10 Rules for Learning to Code [cheatsheet-version]



