
⏩
10 Rules for Learning to Code [cheatsheet-
version]
You can find the original (a longer, more detailed) version here: https://brupy.notion.site/10-rules-for-learning-
to-code

✅ Rule #1 – The 30-Minute Rule
Don’t aim for hours, aim for 30 minutes a day.

Getting started is the hardest part — once you begin, momentum will carry you.

Build a streak: mark an “X” on the calendar for every day you code.

Protect the chain. Your brain hates breaking it.

Consistency > intensity. Small wins daily add up.

✅ Rule #2 – Code to Create, Not Just to Learn
Don’t just copy code from tutorials — build something.

Motivation comes from making, not memorizing.

Even small projects (dice game, flashcards, timer app) are more fun than solving math problems you don’t
care about.

Projects = practice + creativity + something you can actually use.

Code is most powerful when it creates.

✅ Rule #3 – There’s No “Perfect” Programming Language (But Python Comes Close)
No “best language” exists — only the right tool for the job.

10 Rules for Learning to Code [cheatsheet-version] 1

https://brupy.notion.site/10-rules-for-learning-to-code?source=copy_link
https://brupy.notion.site/10-rules-for-learning-to-code?source=copy_link

But Python is a Swiss Army knife:

Websites → Django / Flask

Data Science → Pandas, NumPy

AI & ML → TensorFlow, PyTorch

Automation → requests, BeautifulSoup

Hardware → Raspberry Pi, MicroPython

Concepts you learn in Python transfer to ANY other language.

Start with Python. Build anything. Level up anywhere.

✅ Rule #4 – Beware of the “Draw an Owl” Tutorial
Avoid tutorials that skip steps or throw in “simply” without explaining.

Copy-pasting code without understanding teaches nothing.

If a tutorial feels way over your head → it’s not you, it’s the tutorial.

Learning should feel like climbing a ramp: steady, not too steep, not too flat.

Good tutorials stretch you, not crush you.

✅ Rule #5 – Everyone Uses Google (and That’s Okay)
Feeling like you’re not “good enough” = imposter syndrome (70% of people feel it).

Even Google, Amazon, and Microsoft engineers use Stack Overflow, Google, & AI daily.

Your real skill is problem-solving and knowing how to ask good questions — not memorizing 10,000
functions.

Debug first → then Google → then Stack Overflow.

Learn from the answer instead of just copy-pasting.

Learn how to properly utilize AI for code checking and debugging.

Great coders aren’t walking encyclopedias. They’re great thinkers.

✅ Rule #6 – Be a Copycat
Don’t just read books — build things.

Stuck on ideas? Copy existing apps & games.

Copycats teach you how things actually work.

The best part: you’ll find tons of help online since others have built them too.

Copy first. Create later. That’s how you learn.

✅ Rule #7 – Get Into the Habit of Chunking
Big ideas feel overwhelming → break them into small chunks called modules.

Solve one chunk at a time → they add up to the full project.

10 Rules for Learning to Code [cheatsheet-version] 2

The simpler the chunk, the easier it is to code.

Chunking turns impossible ideas into step-by-step progress.

Don’t build the whole robot. Build one function at a time.

✅ Rule #8 – Get a Mentor (Like Me 😉)
A mentor accelerates your growth like nothing else.

Good mentors don’t just give answers — they teach you how to think.

With my course, you’re not learning alone:

Access our private Discord server.

Get help, ask questions, and connect with peers.

I’ll be there to guide you too.

Learn, share, teach → grow faster together.

Information is cheap. A mentor shows you how to think.

✅ Rule #9 – Learn to Walk Away From Your Code
Coding ≠ nonstop typing. It’s mostly thinking.

Staring at your screen is working.

Stuck on a bug? Step away. Sleep on it. Walk it off.

9 times out of 10, the solution shows up when you’re not forcing it.

Code less, think more. Bad code written in a rush = painful refactoring later.

Sometimes the smartest move is to stop coding.

✅ Rule #10 – Play the Game, Don’t Just Run the Drills
Fundamentals matter, but projects that exercise those fundamentals are where the real learning happens.

Start building from Day 1 — no project is “too early.”

Projects boost confidence, pride, self-esteem, and creativity.

Use Git/GitHub to track your growth and showcase your work.

Keeping all your projects organized and well documented makes you a better candidate.

Employers make decisions based more-so on an applicants Portfolio than anything else.

Drills teach you skills. Projects let you play the game.

10 Rules for Learning to Code [cheatsheet-version] 3

