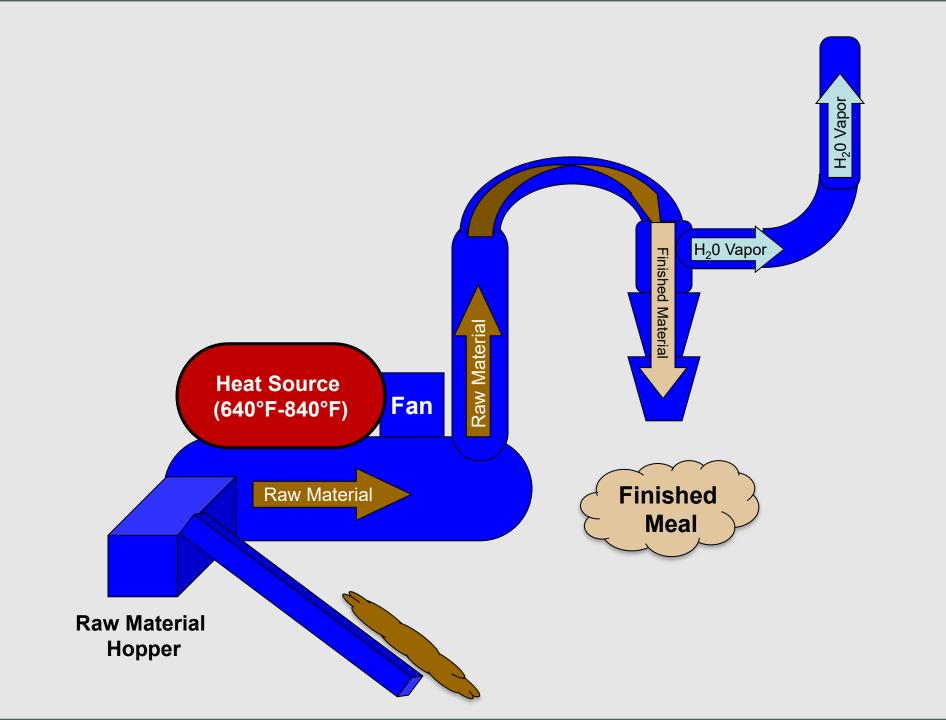
International Protein-USA, LLC.

International Protein-USA, LLC.

History

International Protein-USA, LLC. was formed for the purpose of commercially developing the Agricultural Byproduct Value Recovery System™ (ABVRS™) technology.


What is ABVRS™?

ABVRS™

 Technology that allows agricultural waste to be converted to marketable meals, oils and other value-added products in an environmentally preferential and cost-effective manner

ABVRS™ Technological Advantages

- Low Noxious Emissions and Low Odors
- No Waste Water From Processing
- Allows Plants to be Fully Integrated

Markets for ABVRS™

- Animal Waste from Processing (Offal)
 - Freshwater Fish (Catfish/Carp, etc), Marine Fish,
 Poultry and Other Meat Products
- WASTEWATER SOLIDS (SPN/DAF Skimmings)
- Hatchery Waste
- Liquid Egg Waste
- Whole Bird Disposal (Spent Hen Programs)
- Avian Influenza Remediation (Carcass Disposal)

Markets for ABVRS™

- Shrimp and Crab Waste
- Whole Fish
 - Marine, Fresh Water
- Others
 - -Manure
 - Cattle Manure
 - Chicken Litter

ABVRS™ vs. Traditional Rendering of Offal

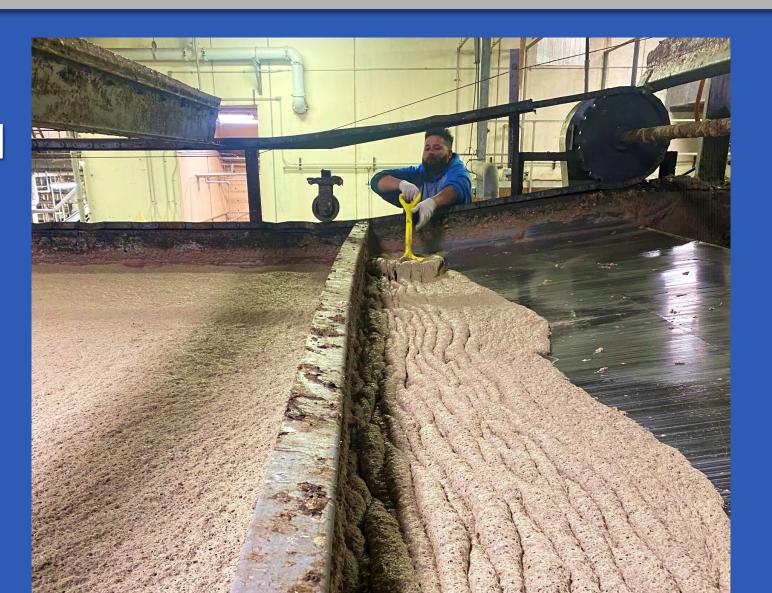
(Offal: Inedible Animal Byproducts from Processing)

Conventional Rendering

- Processing Creates Significant Waste Water
- Processing Creates A High Level of Noxious Odor
- Centralized Operations Required

Slow Cooking Process

ABVRSTM*


*Environmentally Friendly Process

- Processing Creates
 No Waste Water
- Processing Creates A Low-Level of Noxious Odors
- Clean Stack Emissions
- Technology Can be Installed at each processing facility.

Flash Evaporation Process

Wastewater Solids (SPN/DAF Skimmings)

DAF-SPN Material

Finished Meal (DAF/SPN)

DAF/SPN
Material
mixed with
Soybean

New Jersey Feed Laboratory, Inc.

Mailing Address: PO Box 06650 Trenton, NJ 08650 Shipping Address:

1686 Fifth Street Ewing, NJ 08638

I.P-USA Rick Renninger 2516 Cone Drive Birmingham, AL 35217

CERTIFICATE OF ANALYSIS

Sludge

Moisture	66.76 %
Total Solids	33.24 %
Protein (crude)	8.5 %
.2% Pepsin Digestibility	85.3 %
.02% Pepsin Digestibility	84.4 %
Total Volatile Nitrogen	34.0 mg/100g
Fat (crude)	21.96 %
Ash	0.66 %
Calcium	0.13 %
Phosphorus	0.10 %
Sodium	0.024 %
FFA (% of sample)	19.10 % of sample
FFA (% of fat)	90.30 % of fat
Peroxide Value Initial	3.0 mep/kg of fa

Order ID: 2207490 Received: 7/28/2022 Reported: 8/2/2022 NJFL ID: 0722-3004

New Jersey Feed Laboratory, Inc.

Mailing Address: PO Box 06650 Trenton, NJ 08650

Shipping Address: 1686 Fifth Street Ewing, NJ 08638

CERTIFICATE OF ANALYSIS

Order ID: 2207490 Received: 7/28/2022 Reported: 8/8/2022 NJFL ID: 0722-3004

I.P-USA Rick Renninger 2516 Cone Drive Birmingham, AL 35217

Sludge

% of sample
0.15
0.14
0.57
0.41
0.74
0.32
0.39
0.40
0.25
0.49
0.44
0.80
0.42
0.99
0.33
0.03
0.55
0.30
0.11
0.01
7.84

Respectfully Submitted

Results are reported on as-received basis unless specified otherwise. * indicates the marked result was carefully rechecked.

lan Cartwright, vice pres.

New Jersey Feed Laboratory, Inc.

PO Box 06650 Trenton, NJ 08650 1686 Fifth Street Ewing, NJ 08638

CERTIFICATE OF ANALYSIS

Attn: Rick Renninger 2516 Cone Drive Birmingham, AL 35217 Order ID: 2207490

Sludge - SPN 7/28/2022

August 5, 2022

NJFL No. 0722-3004

		Relative	Sample
Fatty Acid Profile	C#: Dbl. Bonds	Basis %	Basis %
Hexanoic	6:0	0.00	0.000
	8:0	0.00	
Caprylic	8:0 10:0		0.000
Capric Lauric	12:0	0.06 0.08	0.011
	14:0	0.08	0.015 0.107
Myristic		0.58	
Myristoleic Pentadecanoic	14:1 15:0	0.10	0.019 0.013
Palmitic	16:0	24.77	4.552
	2277		
Palmitoleic	16:1 16:2	5.12	0.942
Hexadecadienoic		0.00	0.000
Hexadecatrienoic	16:3	0.00	0.000
Hexadecatetraenoic	16:4	0.00	0.000
Heptadecanoic	17:0	0.15	0.028
Heptadecenoic	17:1	0.00	0.000
Stearic	18:0	6.69	1.228
Oleic	18:1ω9	35.85	6.587
Oleic	18:1ω7	1.69	0.310
Linoleic	18:2ω6	21.72	3.991
Linoleic	18:2ω4	0.00	0.000
Linolenic	18:3ω6	0.16	0.030
Linolenic	18:3ω3	0.71	0.131
Octadecatetraenoic	18:4ω3	0.00	0.000
Arachidic	20:0	0.16	0.030
Eicosanoic	20:1ω11	0.08	0.015
Eicosanoic	20:1ω9	0.27	0.049
Eicosanoic	20:1ω7	0.00	0.000
Eicosadienoic	20:2ω6	0.12	0.021
Eicosatrienoic	20:3ω6	0.16	0.030
Eicosatrienoic	20:3ω3	0.00	0.000
Arachidonic	20:4ω6	0.42	0.077
Arachidonic	20:4ω3	0.00	0.000
Eicosapentaenoic (EPA)	20:5ω3	0.00	0.000
Behenic	22:0	0.06	0.011
Erucic	22:1ω11	0.00	0.000
Erucic	22:1ω9	0.00	0.000
Uncosapentaenoic	21:5ω3	0.00	0.000
Docosadienoic	22:2ω3	0.00	0.000
Docosatetraenoic	22:4ω6	0.09	0.017
Docosapentaenoic	22:5ω6	0.00	0.000
Docosapentaenoic	22:5ω3	0.00	0.000
Docosahexaenoic (DHA)	22:6ω3	0.00	0.000
Lignoceric	24:0	0.31	0.058
Nervonic	24:1	0.00	0.000
Other	n/a	0.56	0.103
		100.00	18.374
	Total % ω3	0.71	0.131

Respectfully Submitted, 4.T. C. H

Results are reported on as-received basis unless specified otherwise. * indicates the marked result was carefully rechecked.

4.167

New Jersey Feed Laboratory, Inc.

Mailing Address: PO Box 06650 Trenton, NJ 08650 Shipping Address: 1686 Fifth Street Ewing, NJ 08638

CERTIFICATE OF ANALYSIS

Order ID: 2306218
Received: 6/12/2023
Reported: 6/14/2023

I.P-USA Rick Renninger 2516 Cone Drive Birmingham, AL 35217

NJFL ID: 0623-1135

2 to 1 Mix of Soybean Meal and SPN A

 Moisture
 8.46 %

 Protein (crude)
 46.0 %

 .2% Pepsin Digestibility
 93.3 %

 Fat (crude)
 8.31 %

 Ash
 5.87 %

 Ethoxyquin
 19.0 ppm

 Peroxide Value 20 hr AOM
 0.4 mep/kg of fat

2 to 1 Mix of Soybean Meal and SPN B

 Moisture
 5.47 %

 Protein (crude)
 47.1 %

 .2% Pepsin Digestibility
 94.2 %

 Fat (crude)
 8.64 %

 Ash
 5.79 %

 Ethoxyquin
 30.0 ppm

Peroxide Value 20 hr AOM 0.1 mep/kg of fat

0623-1136

New Jersey Feed Laboratory, Inc.

Mailing Address: PO Box 06650 Trenton, NJ 08650 Shipping Address:

Shipping Address: 1686 Fifth Street Ewing, NJ 08638

NJFL ID: 0523-0413

0.1 mep/kg of fat 0.1 mep/kg of fat 0.1 mep/kg of

CERTIFICATE OF ANALYSIS

I.P-USA Rick Renninger 2516 Cone Drive Birmingham, AL 35217 Order ID: 2305062 Received: 5/3/2023 Reported: 5/5/2023

Raw SPN 2A 5/1/23	NJFL ID : 0523-0410	2 to 1 Treated Processed SPN/Soy Meal Not
Peroxide Value Initial	0.8 mep/kg of	Treated 3B 5/1/23 Peroxide Value Initial
Peroxide Value 4hr AOM	fat 30.0 mep/kg of fat	Peroxide Value 4hr AOM
Peroxide Value 20 hr AOM	40.0 mep/kg of fat	Peroxide Value 20 hr AOM
Treated Raw SPN (Santoquin) 2B 5/1/23	0523-0411	
Peroxide Value Initial	0.1 mep/kg of fat	
Peroxide Value 4hr AOM	0.1 mep/kg of fat	
Peroxide Value 20 hr AOM	0.1 mep/kg of fat	
2 to 1 Treated Processed SPN/Soy Meal 3A 5/1/23	0523-0412	
Peroxide Value Initial	0.1 mep/kg of fat	
Peroxide Value 4hr AOM	0.1 mep/kg of fat	
Peroxide Value 20 hr AOM	0.1 mep/kg of	

ABVRS Sludge Processing Energy Costs

Electrical	Cost - S	PN Plant
LIELLILAI	CUSL - 3	FIN FIGURE

Connected HP 900 VFD efficiency 65% 585 HP to KW required 436.41 Run Hours Per Week 80 Run hours times KWH 34,913 Cost Per KWH 0.095 Weekly electrical cost 3.316.72

Fuel Cost

Total Fuel Cost

Pounds of sludge per week 650,000 Based on 2-1 Pounds of Soybean meal per week 1.300.000 Pounds of moisture from sludge 455,000 Pounds of moisture from soybean meal 91,000 To achieve < 5% **Total Moisture Evaporated** 546,000 final moisture BTUs required per pound of moisture 1500 Total BTUs required 819,000,000 Natural Gas cost per 1,000,000 Btu

7.00

5,733.00

Annual Energy Cost	\$ 470,585.23
Total Energy Cost per week	\$ 9,049.72
Natural Gas Cost	\$ 5,733.00
Electrical Cost per week	\$ 3,316.72

	Lbs in	Value		\$ in		Lbs in	Value	\$ in
SBM	1,300,000	0.248	\$	322,400	Cost Redu	29,000,000	0.00173	\$ 50,170
Sludge	650,000	-0.025	\$	(16,250)	Sludge	650,000	0.025	\$ 16,250
Total cost in			\$	306,150	Savings			\$ 66,420
Cost to convert			\$	9,050	Extra Tons	52	\$ 496.00	\$ 25,792
Variable cost to operate			\$	10,000				
Trucking			\$	13,125	Cost to convert			\$ 9,050
					Variable cost to operate			\$ 10,000
Total Cost			\$	338,325	Trucking			\$ 13,125
Lbs of new material			1	,404,000	Total Savings			\$ 60,037
Cost per lb				0.24				
Cost per ton			\$	481.94	1			
					-			
Feed Cost BE			\$	138.06				
				702	2			
Savings per week				96,915				

ABVRS Sludge Processing Value Added

SPN Plant

Value of Sludge Processed

Total of added value and cost reduction annually

Annual disposal savings		\$ 624,000.00	
Total disposal Savings per week		\$ 12,000.00	
Sludge Hauler #2	\$ 1,500.00	\$ 6,000.00	
Tipping fee	\$ 250.00	2,500.00	
Sludge Hauler #1	\$ 350.00	\$ 3,500.00	
Disposal Cost Offset			
Value added Annually		\$ 2,514,720.00	
Added Value to Soy bean meal Per week		\$ 48,360.00	
Soybean meal value		\$ 496.00	
Tons of added volume to Soybean meal		97.5	
Sludge Processed Added Protein, fat, from sludge		650000 195000	
value of Studge Processed			

3,138,720.00

ABVRS Sludge Processing Cost and Payback at Plant

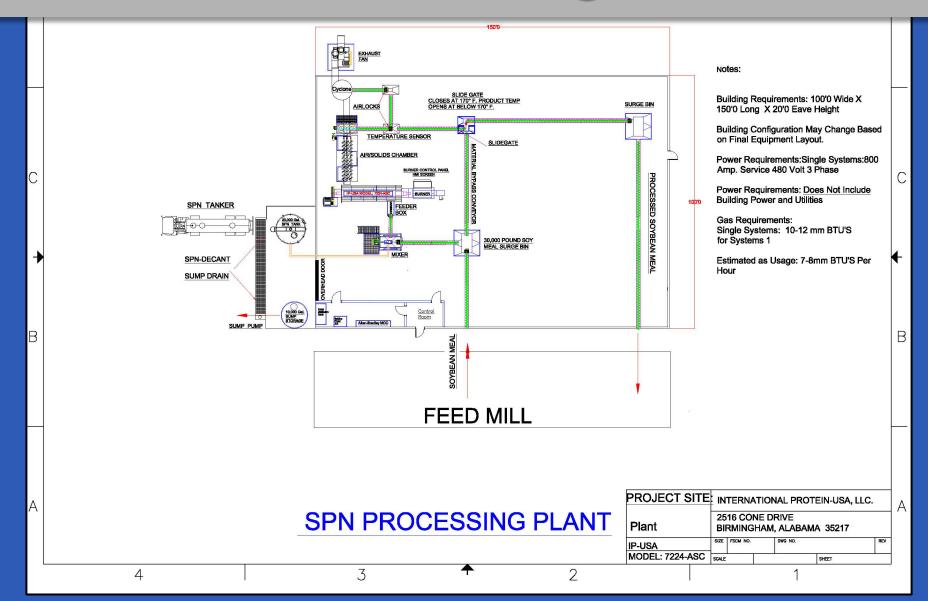
Building		Trucking per week				
10000 sqft building	\$ 1,500,000.00	Loads of soybean meal to the plant	30	\$ 175.00	\$	5,250.00
Utilities, gas, water, drains	\$ 250,000.00	Loads of processed sludge / soybean meal	45	175.00	\$	7,875.00
Electrical service	\$ 120,000.00				ć	12 125 00
	\$ 1,870,000.00				\$	13,125.00
Equipment		Trucking per year			\$	682,500.00
ABVRS equipment	\$ 3,000,000.00	Labor Per week				
New Bins for soybean meal at plant with live unloading, foundation included	\$ 585,000.00	Dayshift	2	\$ 55.00	40 \$	4,400.00
Unloading pit at plant	\$ 250,000.00	Off shift	2	\$ 55.00	40 \$	4,400.00
New drags needed at plant	\$ 250,000.00					
New Bin at feed mill with live unloading, foundation included	\$ 585,000.00				\$	8,800.00
New unloading Pit at feed mill	\$ 250,000.00	Labor per year			\$	457,600.00
New drags needed at feed mill	\$ 250,000.00	Labor per year			Ą	437,000.00
Electrical Instalation	\$ 300,000.00					
	\$ 5,470,000.00					
Contingency	\$ 367,000.00					
Total	\$ 7,707,000.00					

ABVRS Sludge Processing Cost and Payback at Plant

SUMMARY- Based on Customer Evaluation	
Trucking cost	\$ 13,125.00
Labor	\$ 8,800.00
Utility Cost	\$ 9,049.72
M&R	\$ 1,000
Cost per week	31,975
Extra tons	\$ 25,792.00
Value Added	50,170
Disposal Savings	\$ 12,000
Weekly Net Savings	55,987

PayBack	
Capital Cost	\$ 7,707,000.00
Savings Per Week	\$ 55,987.28
Weeks Payback	138
Years Payback	 2.6

ABVRS Sludge Processing Cost and Payback at Feedmill


Building			Trucking per week located at plant					
10000 sqft building	\$	1,500,000.00						
Utilities, gas, water, drains	\$	250,000.00	Loads of soybean meal to the plant	15	\$	175.00	\$	2,625.00
Electrical service	\$	120,000.00						2 625 00
	\$	1,870,000.00					\$	2,625.00
Equipment			Trucking per year				\$	136,500.00
ABVRS equipment	\$	3,000,000.00						
			Labor Per week					
New Bin at feed mill with live unloading, foundation included	\$	585,000.00	Dayshift Off shift	2 2	\$ \$	55.00 55.00	40 \$ 40 \$	4,400.00 4,400.00
New unloading Pit at feed mill	\$	250,000.00	on since	_	Y	33.00	40 Ş	4,400.00
New drags needed at feed mill	\$	250,000.00					\$	8,800.00
Electrical Instalation	\$	300,000.00	Labarnary				ċ	457.600.00
	\$	4,385,000.00	Labor per year				\$	457,600.00
Contingency	_ \$	312,750.00						
Total	\$	6,567,750.00						

ABVRS Sludge Processing Cost and Payback at Feedmill

SUMMARY- Based on Customer Evaluation	
Trucking cost	\$ 2,625.00
Labor	\$ 8,800.00
Utility Cost	\$ 9,049.72
M&R	\$ 1,000
Cost per week	21,475
Extra tons	\$ 25,792.00
Value Added	50,170
Disposal Savings	\$ 12,000
Weekly Net Savings	66,487

PayBack		
Capital Cost	\$ 6,567,750.00	
Savings Per Week	\$ 66,487.28	
Weeks Payback		99
Years Payback		1.9

SPN Processing Plant

(12) United States Patent Mosley et al.

(10) Patent No.:

US 7,984,865 B2

(45) Date of Patent:

Jul. 26, 2011

(54) APPARATUS AND METHOD OF PROCESSING RAW MATERIALS

(75) Inventors: Ken Mosley, Trussville, AL (US);

Kenneth T. Nickerson, Hueytown, AL (US); Rick Renninger, Hoover, AL (US)

- (73) Assignee: Auburn University, Auburn, AL (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
- (21) Appl. No.: 12/889,251
- (22) Filed: Sep. 23, 2010
- (65) Prior Publication Data

US 2011/0011963 A1 Jan. 20, 2011

Related U.S. Application Data

- (62) Division of application No. 11/517,759, filed on Sep. 8, 2006, now Pat. No. 7,823,811.
- (60) Provisional application No. 60/715,408, filed on Sep. 9, 2005.

See application file for complete search history.

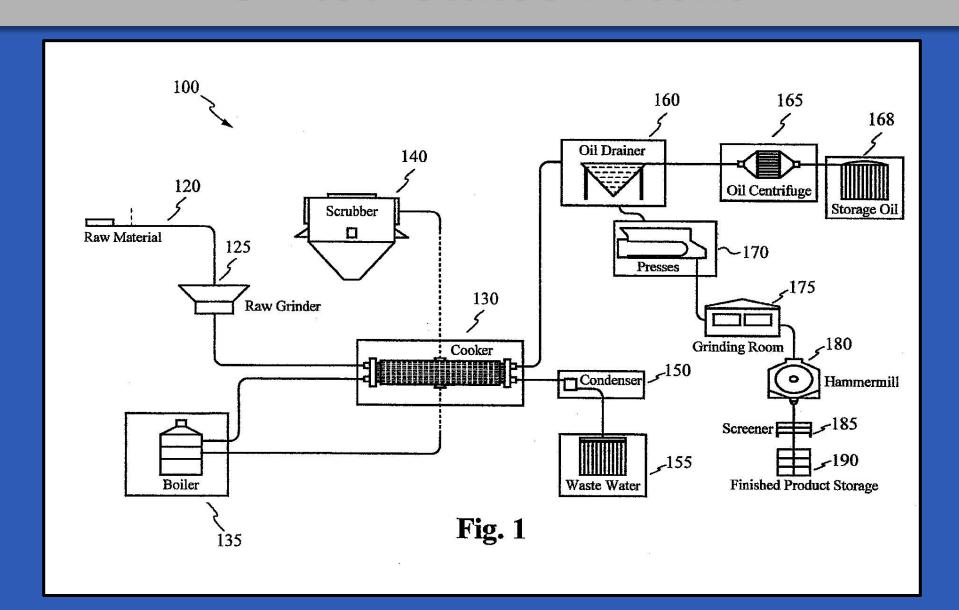
241/22, 25, 19, 23, 24.11, 101.8, 79.1, 80,

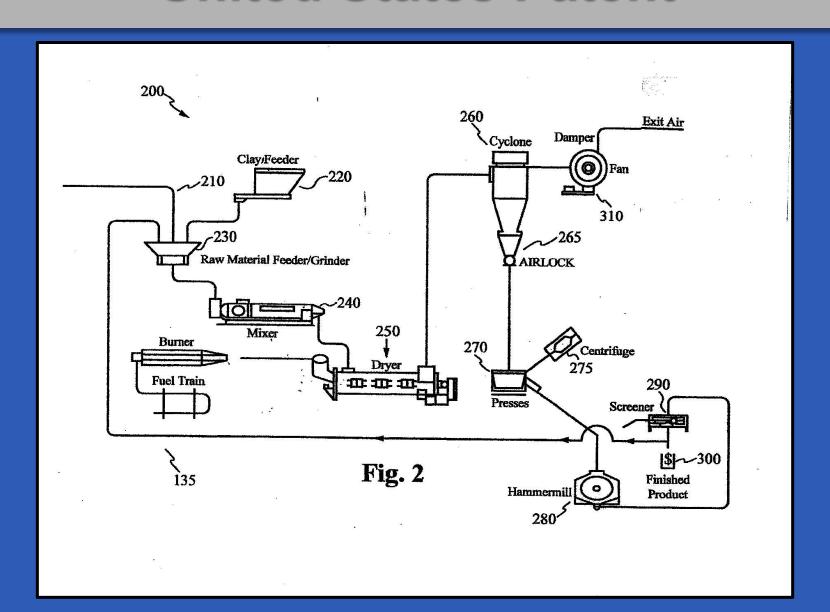
(56) References Cited

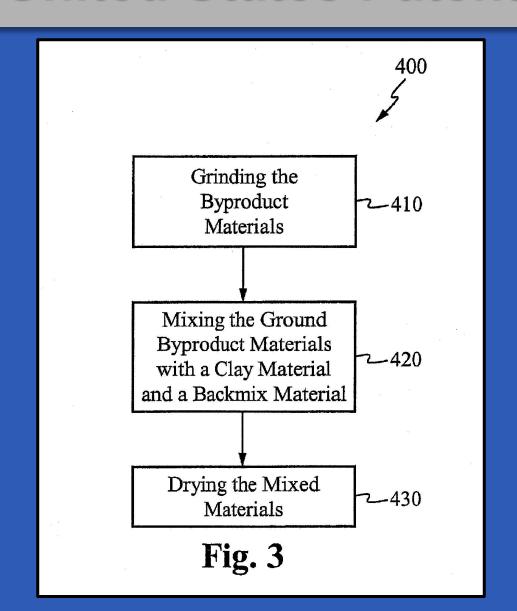
U.S. PATENT DOCUMENTS

2,622,027	A *	12/1952	Тогт 426/518
3,437,489	A *	4/1969	Arakawa et al 426/541
3,598,606	A *	8/1971	Spinellii 530/420
5,713,788	A *	2/1998	Ferket et al 452/138
5,759,568	A *	6/1998	Mosley, Sr 424/442
5,935,623	A *	8/1999	Alonso-Debolt 426/2
6,136,590	A *	10/2000	Kruse 435/262
6,635,297	B2*	10/2003	Moss et al 426/531
6,899,294	B2 *	5/2005	MacNeil 241/24.12
2003/0209617	A1*	11/2003	MacNeil 241/24.12
2007/0134376	A1*	6/2007	Connell 426/56
10 miles	250.00		

* cited by examiner


Primary Examiner — Bena Miller


(74) Attorney, Agent, or Firm - Haverstock & Owens LLP


(57) ABSTRACT

A method and apparatus for processing animal byproduct materials is disclosed. In some embodiments, the apparatus includes a grinder for grinding the byproduct materials; a mixer for mixing the ground byproduct materials with an oil absorbing material and a backmix material; and a dryer for drying the mixed materials. In some embodiments, the apparatus also includes a cyclone for separating an air stream from the dried materials. The dried materials are transported to one or more presses for pressing the dried materials, thereby reducing oil content. The one or more presses includes a first opening for delivering pressed oil to a centrifuge and a second opening for sending the pressed materials to a screener. A portion of the screened material is sent back to the mixer (and/or the grinder) and the balance of the screened material are sent to storage as a finished product.

16 Claims, 3 Drawing Sheets



Catfish Offal

Raw Catfish Offal

ABVRS™ Produced Catfish Meal

ABVRS™ Catfish Meal Analysis

Analysis	Un-pressed	Pressed
Moisture	10.88 %	9.25 %
Fat	13.74 %	9.87 %
Fiber	0.62%	0.72 %
Ash	30.53 %	26.40 %
Calcium	9.60 %	7.37 %
Phosphorus	4.88 %	3.83 %
Sodium	0.48 %	0.55 %
Crude Protein	42.3 %	52.1 %
Pepsin Indigestible Protein	4.5 %	7.0 %
Pepsin Digestible Protein	37.8 %	45.1%
Digestible Crude Protein	89.39 %	85.56 %

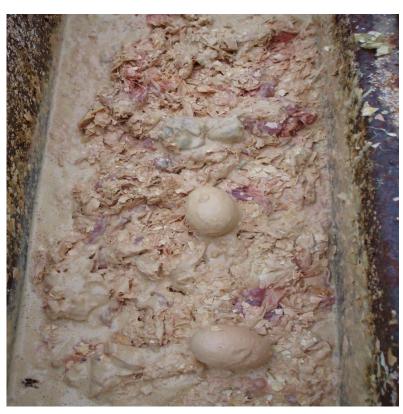
Source: New Jersey Feed Lab, Inc.

Asian Carp

Whole Asian Carp

ABVRS™ Produced Carp Meal

ABVRS™ Carp Meal Analysis


Analysis	Un-pressed	Pressed
Moisture	5.38 %	2.79 %
Fat	14.02 %	6.34 %
Fiber	0.65%	1.03 %
Ash	22.52 %	27.22 %
Crude Protein	56.6 %	60.8 %
Pepsin Indigestible Protein	7.0 %	6.2 %
Pepsin Digestible Protein	49.6 %	54.6%
Digestible Crude Protein	87.63 %	89.80 %

Illinois River Carp August 2007

Source: New Jersey Feed Lab, Inc.

Hatchery Waste

Raw Hatchery Waste

ABVRS™ Produced Hatchery Waste Meal

ABVRS™ Hatchery Waste Analysis

Analysis	Raw (avg)	Finished (avg)
Moisture	51.70 %	4.63 %
Fat	6.85 %	10.90 %
Fiber	0.92 %	0.49 %
Ash	28.64 %	61.14 %
Calcium	8.40 %	23.80 %
Phosphorus	0.19 %	0.40 %
Sodium	0.11 %	0.28 %
Crude Protein	13.98 %	24.65 %
Pepsin Indigestible Protein	2.28 %	4.73 %
Pepsin Digestible Protein	11.70 %	19.93 %
Digestible Crude Protein	83.49 %	80.74 %

Source: New Jersey Feed Lab, Inc.

Avian Influenza Remediation

Advantages of Incorporating ABVRS™ into Avian Influenza Remediation Project Plans

- Unit is mobile and can be brought to the site thereby eliminating the need to move the birds from the quarantine area
- Whole birds can be processed, including feathers
- Infected litter can be processed with the whole birds
- ABVRS™ high heat kills the virus resulting in a clean meal
- Resulting meal can be used as a fuel source to fuel the ABVRS burner or for other uses

Avian Influenza Remediation

Advantages of Incorporating ABVRS™ into Avian Influenza Remediation Project Plans

- As a result of ABVRS[™] processing, the total biomass of original birds and litter can be reduced by 60% resulting in a clean meal that can be disposed safely in a landfill
- If the meal is used as a fuel source, the biomass can be reduced to 10% sterile ash which can be safely disposed in a landfill
- ABVRS™ equipment is mobile and can be moved from outbreak site to outbreak site as needed

Shrimp & Crab

Current Method

- Require Transportation
- Landfill Disposal
- Processing Creates Odor & Waste Water
- Processing Creates Low Value Fertilizer Product

- Disposal Costs = \$120.00/T
- Fertilizer Value = \$75.00/T

ABVRSTM*

- No Transportation Required
- Can Be Processed into Value Added Shrimp/Crab Meal
- Process Creates No Waste Water
- Eliminates Landfill Use
- Meal Value
 - Animal Food Supplement
 - Industrial Raw Material
 - Disposal Costs = \$0.00
 - Shrimp/Crab Meal Value = \$300.00/T

(Less cost of equipment amortization and operating costs)

Pathogen Analysis

- Listeria Negative
- Salmonella Negative
- E. coli <3 MPN/g
- Water Activity 0.24

VOC Testing-AU, 2/19/08

- Whole birds mixed with litter
- Ion Science PhoCheck 5000 Photo Ionization Detector (PID)
- VOC concentrations were consistently under 0.2ppm, but high as 10.3ppm
- VOC calculation based on 10.3ppm, 365 days/yr, 24 hrs/day = 14.06 tons/yr
- Well below the 100 tons/yr limit for Title V permitting

Stick water is eliminated with the AVBRS™ process, which results in a discharge of clean steam.

International Protein-USA, LLC