Diagnostic Test Design with Blueprint Specifications

Matthew J. Madison & Nancy Alila University of Georgia

2025 Meeting of the National Council on Measurement in Education

Talk Overview

- Background
 - » Introduction to DCMs
 - » Item influence
 - » DCM empirical blueprints
- Simulated scenarios
 - » Two models and two assessment scenarios
- Results and conclusions

Diagnostic Classification Models

• DCMs use item responses to place students into groups according to proficiency or non-proficiency of attributes

Student	Addition	Subtraction	Multiplication	Division
	\checkmark		\checkmark	
	\checkmark	\checkmark	\checkmark	\checkmark

• Defining features: multidimensionality and diagnostic interpretations

Item Influence

- DCM applications use fewer items
- *Item influence* one item (or subset) can have a disproportionate impact on classifications (Jurich & Madison, 2023)
 - » Problematic for construct and content validity
- Item influence metrics:
 - » Item override: how many classifications change if an item is omitted?
 - » Proportion of attribute information

- Item response theory information
 - » Item information function \rightarrow test information function
- Analogous concept for DCMs
 - » Cognitive diagnostic index (CDI; Henson & Douglas, 2005)
 - » All the items measuring an attribute contribute to the overall information

Item	CDI	Compute	Proportion of Att Info
1	.24		
2	.44		
3	.36		
Total	1.04		

- Item response theory information
 - » Item information function \rightarrow test information function
- Analogous concept for DCMs
 - » Cognitive diagnostic index (CDI; Henson & Douglas, 2005)
 - » All the items measuring an attribute contribute to the overall information

Item	CDI	Compute	Proportion of Att Info
1	.24	$.24 \div 1.04$	
2	.44		
3	.36		
Total	1.04		

- Item response theory information
 - » Item information function \rightarrow test information function
- Analogous concept for DCMs
 - » Cognitive diagnostic index (CDI; Henson & Douglas, 2005)
 - » All the items measuring an attribute contribute to the overall information

Item	CDI	Compute	Proportion of Att Info
1	.24	$.24 \div 1.04$	23%
2	.44		
3	.36		
Total	1.04		

- Item response theory information
 - » Item information function \rightarrow test information function
- Analogous concept for DCMs
 - » Cognitive diagnostic index (CDI; Henson & Douglas, 2005)
 - » All the items measuring an attribute contribute to the overall information

Item	CDI	Compute	Proportion of Att Info
1	.24	$.24 \div 1.04$	23%
2	.44	$.44 \div 1.04$	42%
3	.36	.36 ÷ 1.04	35%
Total	1.04	$1.04 \div 1.04$	100%

- Test blueprints guide test development efforts
- Common Core Mathematics Standards
 - » Grade 4 Measurement and Data

Geometric measurement: understand concepts of angle and measure angles.

- Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint, and understand concepts of angle measurement:
 - a. An angle is measured with reference to a circle with its center at the common endpoint of the rays, by considering the fraction of the circular arc between the points where the two rays intersect the circle.
 - b. An angle that turns through n one-degree angles is said to have an angle measure of n degrees.

- Suppose in this case, that test developers had prespecified blueprint proportions of 25% and 75%
 - » Then they might allocate 2 and 6 items to the two subattributes

Item	Proportion of Att Information	Empirical Blueprint	Prespecified Blueprint
1			250/
2			23%
3			
4			
5			750/
б			13%
7			
8			

- Suppose in this case, that test developers had prespecified blueprint proportions of 25% and 75%
 - » Then they might allocate 2 and 6 items to the two subattributes

Item	Proportion of Att Information	Empirical Blueprint	Prespecified Blueprint
1	12		250/
2	28		23 %
3	10		
4	8		
5	8		750/
6	9		/ 3 %0
7	11		
8	14		

Madison & Alila (NCME, 2025)

- Suppose in this case, that test developers had prespecified blueprint proportions of 25% and 75%
 - » Then they might allocate 2 and 6 items to the two subattributes

Madison & Alila (NCME, 2025)

- Suppose in this case, that test developers had prespecified blueprint proportions of 25% and 75%
 - » Then they might allocate 2 and 6 items to the two subattributes
 - » This allocation does not guarantee a match
- The purpose of this study is to examine the ability of DCMs to adhere to prespecified blueprints

General and Constrained DCMs

- General model: log-linear cognitive diagnosis model (LCDM)
 - » Subsumes many other DCMs
 - » Allows for top-down approach to model building
 - » Blueprint matching not guaranteed
- Constrained model: one-parameter LCDM (1-PLCDM)
 - » Special case of LCDM where attribute main effects are constrained
 - » Analogous to 1-PL IRT model
 - » Nice measurement properties (sufficiency, invariant item ordering)
 - » Assumptions: simple structure Q-matrix and independent attributes

Two Blueprint Scenarios

Madison & Alila (NCME, 2025)

Scenario #1: Summative

- Guiding example: North Carolina end-of-course mathematics tests
 - » Use unidimensional IRT with cutscores to classify examinees into <u>four levels</u>

Table 1. EOC Mathematics domain weight distributions.			
Domain	NC Math 1		
Number and Quantity and Algebra	36 - 40%		
Functions	32 - 36%		
Geometry	8 - 12%		
Statistics and Probability	18 - 20%		
Total	100%		

Madison & Alila (NCME, 2025)

Scenario #1: Summative

- One polytomous attribute with four subattributes
 » Prespecified blueprint: 40 / 28 / 12 / 20
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 - » Item allocation (25 items): 10 / 7 / 3 / 5
- N = 2000
- Item parameters:
 - » Level 1: probability correct uniform on (0,.25)
 - » Each subsequent level increased by (.05,.30)

Scenario #1: Summative

- Estimated the polytomous LCDM and 1-PLCDM *» mirt* package (Chalmers, 2012)

Scenario #1 Results

- On *average*, both models approximated the prespecified blueprint
 - » Precision was much better for 1-PLCDM

Scenario #1 Results

Madison & Alila (NCME, 2025)

Scenario #1 Results

- On *average*, both models approximated the prespecified blueprint
 - » Precision was much better for 1-PLCDM
 - » LCDM ranged from (25, 57)
 - » 1-PLCDM ranged from (35,45)
- Combined absolute error much lower for 1-PLCDM
 - » LCDM had mean blueprint error of 14%, max of 37%
 - » 1-PLCDM had mean blueprint error of 4%, max of 10%

Scenario #2: Intermediate

• Guiding example: Common Core State Standards

Scenario #2: Intermediate

- Three dichotomous attributes with subattributes
 - » Attribute 1 blueprint: 50 / 50 (3 / 3)
 - » Attribute 2 blueprint: 40 / 40 / 20 (4 / 4 / 2)
 - » Attribute 3 blueprint: 60 / 40 (6 / 4)
- Similar design to Scenario #1
 - » N = 2000
 - » Simple structure Q-matrix
 - » Attribute correlations uniform (.25,.75)

Scenario #2 Results

- Similar trend to Scenario #1
 - » LCDM error exacerbated in the multiattribute settings
- On *average*, both models approximated the prespecified blueprint
 - » Precision was much better for 1-PLCDM
 - » Attribute #1 (50/50)
 - LCDM 90% interval was (41, 59); worst replication was 0% / 100%
 - 1-PLCDM 90% interval was (49, 51); worst replication was 48% / 52%
- <u>1-PLCDM had much less total error</u>
 - » LCDM mean error of 16%, max of 255%
 - » 1-PLCDM mean error of 1%, max of 5%

Conclusions

- Examined DCMs' ability to adhere to prespecified blueprints » Critical for classification validity and interpretation
- Developed a framework for estimating empirical blueprints
 » Proportion of attribute information
- Two simulated scenarios (summative and intermediate)
 » 1-PLCDM was able to approximate prespecified blueprints
 - » Confirmed that general models struggle to match blueprints

Conclusions

- Not a criticism of the LCDM or general models
 - » Need general models to support use of constrained models
 - » 1-PLCDM limited to simple structure and makes strong assumptions
- DCMs can be used in contexts where blueprints are applied
 - » Increases validity and interpretability of classifications
 - » Expands the settings in which they can be applied

Conclusions

- Encourage prospective development of diagnostic tests
 - » Attributes are predefined and operationalized
 - » Items are written to reflect the definitions
- DCM applications should examine empirical blueprints
 - » Better understanding of how attributes are defined
 - » Evaluate the congruence of model-based attribute definitions and practitioner-based definitions
 - » Use item influence metrics to revise tests, if needed
- We hope that this work contributes to wider application of DCMs and better understanding of classifications

If you have questions or comments, feel free to contact us: **mjmadison@uga.edu nancy.alila@uga.edu**