

Generic Remote IO User Manual

Document No. CS-RIO101 10/2020

Revision 1

CONTENTS

1.	PRE	FAC	Ε5	
1	.1.	. Features5		
1.	1.2. Application			
1.	1.3. Additional Information			
1	.4.	Ref	erences7	
1.	.5.	Sup	port7	
2.	INS	TALL	ATION	
2	.1.	Mo	dule Overview8	
2	.2.	Cor	nnection10	
2	.3.	Pov	ver11	
	2.3	.1.	DC Input11	
	2.3	.2.	AC Input12	
2	.4.	10	Connections13	
	2.4	.1.	Digital Inputs13	
	2.4	.1.	Digital Outputs14	
	2.4	.1.	Analogue Input15	
2	.5.	Eth	erNet Port15	
2	.6.	DIF	9 Switches	
	2.6	.1.	System DIP Switches	
	2.6	.2.	Mode DIP Switches17	
	2.6	.3.	SW3 DIP SWITCHES17	
3.	SET	ŪΡ		
3	.1.	Inst	all Configuration Software18	
3	.2.	Net	work Parameters19	
3	.3.	Log	ix Integration23	
	3.3	.1.	Add Module to I/O Configuration23	
4.	LOC	SIX N	1APPING	
	4.1	.1.	Input Assembly25	
	4.1	.1.	Output Assembly	
5.	MC	DBU	S TCP MAPPING27	
	5.1	.1.	Holding Registers	

	5.1.1	. Monitor Discrete Inputs	.29
	5.1.1	. Control Outputs	.29
6.	DIAGI	NOSTICS	.30
6.	1. L	EDs	.30
7.	TECHI	NICAL SPECIFICATIONS	.32
7.	1. E	nclosure Details	.32
7.	2. E	lectrical	.32
7.3	3. E	thernet	.33
7.	4. D	Digital Inputs	.33
7.	5. R	Relay Outputs	.33

Revision History

Revision	Date	Comment
1.0	13 October 2020	First Issue

1. PREFACE

1.1. FEATURES

The Remote IO enclosure is the perfect solution for easily integrating low density IO clusters into Control Systems via EtherNet/IP or Modbus TCP.

The IO modules are housed in robust polycarbonate housings to ensure maximum resilience in harsh and normally damp conditions. The housings have an ingress protection of IP66 and an IK10 impact rating (Equivalent to impact of 5kg mass dropped from 400 mm above impacted surface).

Key Features:

- Dual power supply to reduce required spares holding (110VAC and 24VDC)
- Easy Setup via Circular Configurator
- 4 x Digital Inputs (24VDC)
- 5 x Digital Outputs (up to 60VDC)
- 1 x Analogue Input (4-20mA or 0-10V)
- Supports redundancy
- EtherNet/IP and Modbus-TCP communication protocols standard
- Internal Diagnostics and communication fault management

1.2. APPLICATION

The CS-RIO20 is suitable for monitoring and control of small clusters of IO. The prepackaged IO module and IP66 enclosure allow for implementation in harsh industrial environments.

While the units are generic and can be used for most applications requiring integration of IO, into control systems, they have proven ideal for the following:

- Pump stations
- Loading stations
- Conveyors and conveyor protection
- Remote access control

The units can accommodate both AC and DC power supplies thereby reducing required spares holding.

The Remote IO module is configured for via onboard DIP switches as well as via the *Circular Configurator* application. This software utility can be downloaded from <u>www.circularsolutions.co.za</u> free of charge.

1.3. ADDITIONAL INFORMATION

The following documents contain additional information that can assist the user with the module installation and operation.

Resource	Link
Circular Configurator Installation	http://www.circularsolutions.co.za/configurator
User Manual, Datasheet Example Code & UDTs	http://www.circularsolutions.co.za/remote-io
Ethernet wiring standard	www.cisco.com/c/en/us/td/docs/video/cds/cde/cde205_220_42 0/installation/guide/cde205_220_420_hig/Connectors.html

Table 1.1 – Additional information

Resource	Link
Modbus	http://www.modbus.org

1.4. REFERENCES

Table 1.2 – References

1.5. SUPPORT

Technical support is provided via the Web (in the form of user manuals, datasheets etc.) to assist with installation, operation, and diagnostics.

For additional support the user can use either of the following:

Resource	Link
Contact Us web link	www.circularsolutions.co.za/contact-us
Support email	contact@circularsolutions.co.za

Table 1.3 – Support details

2. INSTALLATION

2.1. MODULE OVERVIEW

The CS-RIO20 Remote IO module is housed inside a IP66 polycarbonate enclosure. The lid is removed by means of the ¼ stainless steel screws in the corners and midpoint of the cover. These screws are spring-loaded and should be pushed in to turn ¼ anticlockwise to release.

Figure 2.1 – Remote IO Module with Lid Fastened

Mounting of the unit is done through the four mounting holes which are accessed by removing the cover. These mounting holes have been designed to ensure that no holes are required inside the main enclosure which could compromise the enclosure IP rating. The mounting holes accommodate screws/bolts up to 5mm in diameter.

Figure 2.2 – Internal Enclosure Layout

The communications cable is routed through the Ethernet cable gland supplied with the unit. This allows a pre-terminated RJ45 connector to be installed. Two additional gland holes have been predrilled for installation of power and IO cables. Additional gland holes can be drilled as required.

2.2. CONNECTION

The Remote IO modules are pre-wired, pre-assembled and ready for use.

Figure 2.3 – Typical RIO Wiring Diagram

2.3. POWER

Each unit is equipped with both a 24VDC input as well as an AC input (either 110VAC or 220VAC). **Only one of the two options is required to be connected.**

Figure 2.4 – AC & DC Power Circuits

2.3.1. DC INPUT

A three-way power connector is used to connect Power+, Power– (ground), and earth. The module requires an input voltage of 24VDC. Refer to the technical specifications section in this document.

Figure 2.5 – DC Power Connector

2.3.2. AC INPUT

A three-way power connector is used to connect AC Power Live, Neutral and Earth. The unit is configured for either 220VAC or 110VAC depending on option ordered. The module will be labelled with specified AC supply voltage level. Refer to the technical specifications section in this document.

Figure 2.6 – AC Power Connector

The unit is protected from AC supply disturbances by a replaceable 1A fuse as well as a MOV.

The unit's AC rated supply voltage should be confirmed from the label as a well as by confirming the supply jumper configuration.

Figure 2.7 – AC Power - Jumper Configuration

NOTE: Ensure that the correct voltage is applied to the unit. Connecting the incorrect voltage to the unit will cause damage and ould result in personal injury.

2.4. IO CONNECTIONS

The Remote IO module is equipped with four digital inputs, five digital outputs and one analogue input which are connected directly on the labelled terminals on the PCB.

Figure 2.8 – Input and Output Connection

2.4.1. DIGITAL INPUTS

The four digital input channels are optically-isolated sharing a common ground. A voltage of between 10-32 VDC applied to an input will result in a logic on state for that input.

Digital Input	Description
DI 0	Input 0
DI 1	Input 1
DI 2	Input 2
DI 3	Input 3

Table 2.1 – Digital Input Description

NOTE: The Digital Inputs are optically isolated and thus the Digital Input Common point is separate to 0V. These can be commoned by setting DIP Switch SW3-1 on or by adding an external jumper.

Figure 2.9 – Digital Input Wiring Example

2.4.1. DIGITAL OUTPUTS

There are five solid state digital outputs of which three are independent and the remaining two relays (D03 & D04) are connected with a single common as shown in Figure 2.11 – Common Internal Connections of DO3 and DO4.

Figure 2.10 – Typical Wiring for DO0-D02

Figure 2.11 – Common Internal Connections of DO3 and DO4

Digital Input	Description
DO 0	Digital Output 0
DO 1	Digital Output 1
DO 2	Digital Output 2
DO 3	Digital Output 3 – Common connection with D04
DO 4	Digital Output 4 – Common connection with D03

Table 2.2 – Digital Output Description

NOTE: The digital outputs are capable of switching a maximum DC current of 400mA.

2.4.1. ANALOGUE INPUT

There is one analogue input on the Remote IO unit. This can be set as either a 4-20mA input or alternately as a 0-10V input. This selection is done with DIP switch SW3-2. Refer to section 2.6.3.

Table 2.3 – Analogue Input Selection

2.5. ETHERNET PORT

The Ethernet connector should be wired according to industry standards. Refer to the additional information section in this document for further details.

2.6. DIP SWITCHES

The module is pre-programmed with multiple different operating modes. These modes are selected via dip switches on the PCB. Three sets of DIP switches are available for configuration as shown in the figure below.

Figure 2.12 – Location of DIP Switches

2.6.1. SYSTEM DIP SWITCHES

System DIP Switch Settings

DIP Switch	Description
DIP Switch 1	Used to force the module into "Safe Mode". When in "Safe Mode" the module will not load the application firmware and will wait for new firmware to be downloaded. This should only be used in the rare occasion when a firmware update was interrupted at a critical stage. 0 = Normal
	1 = Safe Boot Mode
DIP Switch 2	This will force the module into DHCP mode which is useful when the user has forgotten the IP address of the module.
	0 = Normal
	1 = Force DHCP
DIP Switch 3	This will force the module into a fixed IP address – 192.168.1.100
	0 = Normal
	1 = Force Fixed IP

DIP Switch 4	This selects the PLC communications protocol.
	0 = EtherNet/IP
	1 = Modbus TCP

Table 2.4 – System DIP Switch Settings

2.6.2. MODE DIP SWITCHES

Mode DIP Switch Settings

DIP Switch	Description
DIP Switch 1	Comms Fail Mode for DO0, DO1 and DO2
	0 = Turn output off for Comms Fail
	1 = Retain last status for Comms Fail
DIP Switch 2	Comms Fail Mode for DO3, DO4
	0 = Turn output off for Comms Fail
	1 = Retain last status for Comms Fail
DIP Switch 3	Reserved
DIP Switch 4	Reserved

Table 2.5 – Mode DIP Switch Settings

2.6.3. SW3 DIP SWITCHES

DIP Switch	Description
DIP Switch 1	Used to common the Digital input common (DI COM) to the internal 0V. When in the off position, the DI COM is isolated from the internal 0V and the inputs are designed to operate from an external power supply. In this mode, if no external power supply is used, a bridge is required between DI COM and 0V. 0 = DI COM and 0V isolated 1 = DI Com and 0V common
DIP Switch 2	Analogue Input selection 0 = 0-10V 1 = 4-20mA

Table 2.6 – SW3 DIP Switch Settings

3. SETUP

3.1. INSTALL CONFIGURATION SOFTWARE

All the network setup and configuration of the module is achieved by means of the Circular Configurator device configuration environment. This software can be downloaded from *http://www.circularsolutions.co.za/configurator*

3.2. NETWORK PARAMETERS

The module will have DHCP (Dynamic Host Configuration Protocol) enabled as a factory default. Thus, a DHCP server must be used to provide the module with the required network parameters (IP address, subnet mask, etc.). There are several DHCP utilities available, however it is recommended that the DHCP server in Circular Configurator be used.

Within the Circular Configurator environment, the DHCP Server can be found under the Tools menu.

Figure 3.2. - Selecting DHCP Server

Once opened, the DHCP server will listen on all available network adapters for DHCP requests and display their corresponding MAC addresses.

6	DHCP Server								
ſ	MAC Address	Vendor	Requests	Elapsed	Assigned IP	Assign	Status	Identity	
	00:60:35:35:10:0B	Circular Solutions	7	3		Assign	Discover		

Figure 3.3. - DHCP Server

NOTE: If the DHCP requests are not displayed in the DHCP Server it may be due to the local PC's firewall. During installation the necessary firewall rules are automatically created for the Windows firewall. Another possibility is that another DHCP Server is operational on the network and it has assigned the IP address.

To assign an IP address, click on the corresponding Assign button. The IP Address Assignment window will open.

DHCP Server							
MAC Address	Vendor	Requests	Elapsed	Assigned IP	Assign	Status	Identity
00:60:35:35:10:0B	Circular Solutions	6	4		Assign	Discover	
			IP Addre 192 V E	IP Address for MAC ss . 168 . 1 . inable Static (Disable D	: 00:60:35:35:10. Re 100 1 HCP) 1 I	— — — — — — — — — — — — — — — — — —	×
				Ok	Car	ncel	

Figure 3.4. - Assigning IP Address

The required IP address can then be either entered, or a recently used IP address can be selected by clicking on an item in the *Recent* List. If the *Enable Static* checkbox is checked, then the IP address will be set to static after the IP assignment, thereby disabling future DHCP requests.

Once the IP address window has been accepted, the DHCP server will automatically assign the IP address to the module and then read the *Identity Object Product* name from the device.

The successful assignment of the IP address by the device is indicated by the green background of the associated row.

6	DHCP Server								×
[MAC Address	Vendor	Requests	Elapsed	Assigned IP	Assign	Status	Identity	٦
	00:60:35:35:0F:C7	Circular Solutions	3	8	192.168.1.100	Assign	Set Static	RIO	
L									

Figure 3.5. - Successful IP address assignment

It is possible to force the module back into DHCP mode by powering up the device with DIP switch 2 set to the "On" position. A new IP address can then be assigned by repeating the previous steps.

NOTE: It is important to return DIP switch 2 back to Off position, to avoid the module returning to a DHCP mode after the power is cycled again.

In addition to the setting the IP address, a number of other network parameters can be set during the DHCP process. These settings can be viewed and edited in Circular Configurator's Application Settings, in the *DHCP Server* tab.

Once the DHCP process has been completed, the network settings can be set using the Ethernet Port Configuration via the *Target Browser*. The Target Browser can be accessed under the *Tools* menu.

Figure 3.6. - Selecting the Target Browser

The Target Browser automatically scans the Ethernet network for EtherNet/IP devices.

Right-clicking on a device, reveals the context menu, including the *Port Configuration* option.

Figure 3.8. - Selecting Port Configuration

All the relevant Ethernet port configuration parameters can be modified using the *Port Configuration* window.

Network Configuration	Туре		
O Dynamic	Method DHCP V	Negotiation Negot	iation
 Static 		Auto	\sim
Static Configuration	n	Port Speed Port S	peed
IP Address	192 . 168 . 1 . 100	100 ~	\sim
Subnet Mask	255 . 255 . 255 . 0	Duplex Duple	×
Default Gateway	0.0.0.0	Full Duplex 🗸	\sim
Primary NS	0.0.0.0	General	
Secondary NS	0.0.0.0	MAC Address 00:60:25:	25-05-07
Domain Name		MAC Address	33.01.07
Host Name		TCP Inactivity Timeout 1	20 (s)

Figure 3.9. - Port Configuration

Alternatively, these parameters can be modified using Rockwell Automation's RSLinx software.

3.3. LOGIX INTEGRATION

The CS-RIO20 Remote IO Module is designed to easily integrate with the Allen-Bradley Logix family of controllers.

3.3.1. ADD MODULE TO I/O CONFIGURATION

The Remote IO Module must be added to the RSLogix 5000 / Studio 5000 I/O tree as a generic Ethernet module. This is achieved by right clicking on the Ethernet Bridge in the RSLogix 5000 and selecting New Module after which the ETHERNET-MODULE is selected to be added as shown in the figure below.

	Select Module ×
I/O Configuration I 1756 Backplane, 1756-A4 II (0) 1756-161 RIO II 1756-RBT/A Ethernet II 1756 Ethernet Paste Ctrl+V Print →	Module Description 2097-V34PR5 Kinetix 300, 4A, 480V, No Filter 2097-V34PR6 Kinetix 300, 6A, 480V, No Filter 2364F R6U-EN1 Regen Bus Supply via 1203-EN1 Drivelogix5730 Ethernoit Overload Relay Communications Interface ETHERNET-BRIDGE Generic Ethernet Module ETHERNET-PANELVI Etherter/IP Panelview EtherNet/IP SoftLogix 5800 EtherNet/IP PowerFlex 4 Class Mu Multi Drive via 22-COMM-E PowerFlex 4-E AC Drive via 22-COMM-E PowerFlex 4-E AC Drive via 22-COMM-E PowerFlex 4-E AC Drive via 22-COMM-E PowerFlex 4-B AC Drive via 22-COMM-E Divertiley By Category By Category By Vendor

Figure 3.10 - Add a Generic Ethernet Module in RSLogix 5000

The user must enter the IP address of the Remote IO module that has been configured. The assembly instance and size must also be added for the input, output, and configuration in the connection parameters section.

The required connection parameters for the Remote IO module are shown below:

Connection Parameter	Assembly Instance	Size
Input	184	100 (8-bit)
Output	185	20 (8-bit)
Configuration	102	0 (8-bit)

Table 3.1 - RSLogix class 1 connection parameters

acherdi Cur	inection module thro			
Туре:	ETHERNET-MODULE Generic Et	hernet Module		
Vendor:	Allen-Bradley			
Parent:	Ethernet			
Name:	Remote_I0	Lonnection Pa	rameters	
Description			Assembly Instance:	Size:
Description.		nput:	184	125 🌲 (32-bit)
		 ✓ Output: 	164	124 🔹 (32-bit)
Comm Forma	t: Data - DINT	Configuration	. 102	0 (9.5a)
Address / I	Host Name	Conliguration		• • (0·Dit)
IP Addr	ess: 192 . 168 . 1 . 100	Status Input:		
O Host Na	ame:	Status Outpu	t	

Figure 3.11 - RSLogix 5000 General module properties for Remote IO

Next the user needs to add the connection requested packet interval (RPI). This is the rate at which the input and output assemblies are exchanged. The recommended value is 100ms.

Module Properties: Ethernet (ETHERNET-MODULE 1.1)
General Connection Module Info
Requested Packet Interval (RPI): 100.0 ⊕ms (1.0 - 3200.0 ms)
Major Fault On Controller If Connection Fails While in Run Mode
Use Unicast Connection over EtherNet/IP
Module Fault
Status: Offline OK Cancel Apply Help

Figure 3.12 - Connection module properties in RSLogix 5000

Once the module has been added to the RSLogix 5000 I/O tree the user must assign the User Defined Types (UDTs) to the input and output assemblies. The user can import the required UDTs by right-clicking on User-Defined sub-folder in the Data Types folder of the I/O tree and selecting Import Data Type. The assemblies are then assigned to the UDTs with a ladder copy instruction (COP) as shown in the figure below.

Figure 3.13 – RSLogix 5000 I/O module tree

4. LOGIX MAPPING

The Remote IO module can be added in the Logix IO tree to provide diagnostics information to the Logix controller. The Logix controller will establish a class 1 cyclic communication connection with the module. An input and output assembly is exchanged at a fix interval.

As described in chapter 3, by copying the module's input assembly to the supplied UDT, the following structured parameters can be extracted:

4.1.1. INPUT ASSEMBLY

The following parameters are used in the input assembly of the Remote IO module.

Parameter	Datatype	Description
Instance	STRING	The instance name of the module that was configured under the general Belt Rip and Tear module configuration in Circular Configurator.
Input		
General Status	BOOL	Bit 0 - Class 1 owned Bit 1 - Modbus comms OK
Mode DIP Switch	SINT	Status of Mode DIP-Switches
System DIP Switch Boot	SINT	Status of System DIP-Switches at power-up
System DIP Switch Current	SINT	Status of System DIP-Switches
Firmware Major Rev	SINT	Major Firmware Revision
Firmware Minor Rev	SINT	Minor Firmware Revision
Firmware Micro Rev	SINT	Micro Firmware Revision
DI Status	SINT	Status of input DI0 to DI3
DO Status	SINT	Status of outputs DO0-DO4
CPU Temperature	REAL	CPU temperature (°C)
UpTime	DINT	Seconds since power-up
HardwareMACaddress	SINT[6]	Ethernet MAC address
Analog Input - Voltage (0-10V)	REAL	Analog Input in Volts (when DIP SW3.2 =0)
Analog Input - Current (0-20mA)	REAL	Analog Input in mA (when DIP SW3.2 =1)
CurrentDO0	REAL	Current consumption of DO0 load
CurrentDO1	REAL	Current consumption of DO1 load
CurrentDO2	REAL	Current consumption of DO2 load

CurrentDO0On	REAL	Last On Current consumption of DO0 load
CurrentDO1On	REAL	Last On Current consumption of DO3 load
CurrentDO2On	REAL	Last On Current consumption of DO2 load
DI0 Counter	DINT	DI0 Counter
DI1 Counter	DINT	DI1 Counter
DI2 Counter	DINT	DI2 Counter
DI3 Counter	DINT	DI3 Counter
ResetStatsCommand Readback	DINT	Echo of Output Assembly

Table 4.1 – Remote IO Logix 5000 input assembly parameters

4.1.1. OUTPUT ASSEMBLY

The following parameters are used in the Output assembly of the Remote IO module.

Output		
ResetStatsCommand	SINT	Transition from 0-1 triggers reset stats
DOCmd	SINT	1=ON, 0=OFF Bit 0 – DO0 Bit 1 – DO1 Bit 2 – DO3 Bit 3 – DO4
		Bit 4 – DO5

Table 4.2 – Remote IO Logix 5000 Output Assembly Parameters

5. MODBUS TCP MAPPING

The Remote IO module can be configured to operate as a Modbus-TCP Slave via the Mode DIP switches (section 2.6.2).

The user will need to enter the IP Address, Slave Node Address and Holding register Start address.

5.1.1. HOLDING REGISTERS

The following parameters are used in the input assembly of the Remote IO module.

Description	Address	Туре	Count	Comment
General Status		INT	1	
Bit 0 - Class 1 owned		BOOL	0	
Bit 1 - Modbus comms OK		BOOL	0	
Bit 2 -		BOOL	0	
Bit 3 -	0	BOOL	0	
Bit 4 -	0	BOOL	0	
Bit 5 -		BOOL	0	
Bit 6 -		BOOL	0	-
Bit 7 -		BOOL	0	
Bit 8 -		BOOL	0	
Reserved	1	INT	1	Reserved for future use.
Mode DIP Switch	2	INT	1	Status of Mode DIP-Switches
System DIP Switch Boot	3	INT	1	Status of System DIP- Switches at power-up
System DIP Switch Current	4	INT	1	Status of System DIP- Switches
Firmware Major Rev	5	INT	1	Major Firmware Revision
Firmware Minor Rev	6	INT	1	Minor Firmware Revision
Firmware Micro Rev	7	INT	1	Micro Firmware Revision
DI Status	8	INT	1	Status of input DI0 to DI3
DO Status	9	INT	1	Status of input DO0 to DO4
CPU Temperature	10	INT	1	CPU temperature (°C)
UpTime	11	DINT	2	Seconds since power-up
HardwareMACaddress	13	SINT[6]	3	Ethernet MAC address
Analog Input - Voltage (0-10V)	16	INT	1	Analog Input in Volts (when DIP SW3.2 =0)

Analog Input - Current (0-20mA)	17	INT	1	Analog Input in mA (when DIP SW3.2 =1)
CurrentDO0 (mA)	18	INT	1	Current consumption of LED 1
CurrentDO1 (mA)	19	INT	1	Current consumption of LED 2
CurrentDO2 (mA)	20	INT	1	Current consumption of Siren
CurrentDO0On	21	INT	1	Last On Current consumption of DO0
CurrentDO1On	22	INT	1	Last On Current consumption of DO1
CurrentDO2On	23	INT	1	Last On Current consumption of DO2
DI0 Counter	24	INT	1	DI0 Counter
DI1 Counter	25	INT	1	DI1 Counter
DI2 Counter	26	INT	1	DI2 Counter
DI3 Counter	27	INT	1	DI3 Counter
Reserved	28	INT	1	
ResetStatsCommand Readback	29	INT	1	Echo of reset Command
Reserved	30	INT	8	Reserved for future use.

Table 5.1 – Modbus TCP Holding Registers

Туре	Address	Description	Туре	Count
DI	0	General Status - Bit 0 - Class 1 owned	BOOL	1
DI	1	General Status - Bit 1 – Modbus Comms OK	BOOL	1
DI	2	General Status - Bit 2	BOOL	1
DI	3	General Status - Bit 3	BOOL	1
DI	4	General Status - Bit 4	BOOL	1
DI	5	General Status - Bit 5	BOOL	1
DI	6	General Status - Bit 6	BOOL	1
DI	7	General Status - Bit 7	BOOL	1
DI	8	General Status - Bit 7	BOOL	1
DI	16	DI Status - DI0	BOOL	1
DI	17	DI Status – DI1	BOOL	1
DI	18	DI Status – DI2	BOOL	1
DI	19	DI Status – DI3	BOOL	1
DI	24	DO Status - DO0	BOOL	1
DI	25	DO Status – DO1	BOOL	1
DI	26	DO Status – DO2	BOOL	1
DI	27	DO Status – DO3	BOOL	1
DI	28	DO Status – DO4	BOOL	1

5.1.1. MONITOR DISCRETE INPUTS

Table 5.2 – Modbus TCP Discrete Inputs

5.1.1. CONTROL OUTPUTS	5.1.1.	CONTROL OUTPUTS
------------------------	--------	------------------------

Туре	Address	R/W	Description	Туре	Count	Comment
HR	100	R/W	ResetStatsCommand	INT	1	Transition from 0-1 triggers reset status
						1=ON, 0=OFF Bit 0 – DO0 Bit 1 – DO1
HR 101 R/W	DOCmd	INT	1	Bit 2 – DO3 Bit 3 – DO4 Bit 4 – DO5		
HR	102	R/W	Reserved	INT	1	
HR	103	R/W	Reserved	INT	1	

Table 5.3 – Modbus TCP Control

6. DIAGNOSTICS

6.1. LEDS

The module PCB is equipped with multiple diagnostic LEDs as shown in Figure 6.1 -Module Diagnostic LEDs. These LEDs are used to provide information regarding the modules system operation, power supply, the Ethernet interface as well as the status of the inputs and outputs.

Figure 6.1 - Module Diagnostic LEDs

LED Description	Colour	Description
PWR	Green	Indicates that the unit is powered – either from the 24VDC supply or alternately from the 110/220V AC supply.
DO0	Green	Digital Output – LED is Green when output is on.
DO1	Green	Digital Output – LED is Green when output is on.
DO2	Green	Digital Output – LED is Green when output is on.
DO3	Green	Digital Output – LED is Green when output is on.
DO4	Green	Digital Output – LED is Green when output is on.
DIO	Green	Digital Input – LED is Green when input is on.

DI1	Green	Digital Input – LED is Green when input is on.
DI2	Green	Digital Input – LED is Green when input is on.
DI3	Green	Digital Input – LED is Green when input is on.
ETH	Green	The Ethernet LED will light up when an Ethernet link has been detected (by plugging in a connected Ethernet cable). The LED will flash every time traffic was detected.
ОК	Green/Red	The module LED will provide information regarding the system-level operation of the module.
		If the LED is red, then the module is not operating correctly. For example, if the module application firmware has been corrupted or there is a hardware fault the module will have a red Module LED.
		If the LED is green (flashing), then the module has booted and is running correctly without any application configuration loaded.
		If the LED is green (solid), then the module has booted and is running correctly with application configuration loaded.
STS	Green/Red	Status LED
		When in Modbus-TCP mode, the LED flashes green every time a valid Modbus request is received and flashes red every time an invalid Modbus request is received.

Table 6.1 – Diagnostic LED's

7. TECHNICAL SPECIFICATIONS

7.1. ENCLOSURE DETAILS

Specification	Rating	
Dimensions	Receiver Unit	Emitter Unit
	Length 240mm	Length 160mm
	Height 160mm	Height 120mm
	Depth 100mm	Depth 90mm
Material	Polycarbonate	
Impact Rating	IK10	
Enclosure IP Rating	IP66	
Tala		

Table 7.1 – Enclosure Construction Specification

7.2. ELECTRICAL

Specification	Rating
Power requirements	Input: 24V DC,
	130mA @ 24 VDC (Typical)
	250mA @ 24 VDC (Maximum)
	Input 110VAC
	32mA @ 110VAC (Typical)
	55mA @ 110VAC (Maximum)
	Input 220VAC
	16mA @ 24 VDC (Typical)
	28mA @ 24 VDC (Maximum)
Power consumption	3.5 W (Typical)
	6.0 W (Maximum)
Connector (Power)	24VDC - 3-way terminal (3.81 mm pitch)
	110/220VAC - 3-way terminal (5.08 mm pitch)
Conductors	24 – 18 AWG
Temperature	-20 – 70 °C
Earth connection	Yes, terminal based

Table 7.2 - Electrical specification

Specification	Rating
Connector	RJ45
Conductors	CAT5 STP/UTP
ARP connections	Max 20
TCP connections	Max 20
CIP connections	Max 10
Communication rate	10/100Mbps
Duplex mode	Full/Half
Auto-MDIX support	Yes

7.3. ETHERNET

Table 7.3 - Ethernet specification

7.4. DIGITAL INPUTS

Specification	Rating
Number of channels	4
Connector	5-way terminal (3.81 mm pitch)
Туре	Optical Isolation
Input impedance	>10 kΩ
Logic 1 Voltage	10 – 32 V

Table 7.4 - Digital Input specification

7.5. RELAY OUTPUTS

Specification	Rating
Number of channels	5
Connector	terminal (3.81 mm pitch)
Туре	Solid State - Normally Open Single Pole
Load Current	400 mA (maximum)
Load Voltage	60 Vdc (maximum)

Table 7.5 - Relay Output specification