Strategy for factoring polynomials:

- Step 1. <u>GCF:</u> If the polynomial has a greatest common factor other than 1, then factor out the greatest common factor.
- Step 2. **Binomials:** If the polynomial has two terms (it is a binomial), then see if it is the **difference** of two squares: $(a^2 b^2)$.

Remember if it is the sum of two squares, it will NOT factor.

- Step 3. <u>Trinomials</u>: If the polynomial is a trinomial, then check to see if it is a perfect square trinomial which will factor into the square of a binomial: $(a+b)^2 or (a-b)^2$.
 - ❖ If it is not a perfect square trinomial, use factoring by trial and error or the AC method.

Instructor: C. St.Denis

- **Strategy for factoring** $ax^2 + bx + c$ by grouping (AC method):
 - a. Form the product ac
 - b. Find a pair of numbers whose product is ac and whose sum is b.
 - c. Rewrite the polynomial so that the middle term (bx) is written as the sum of two terms whose coefficients are the two numbers found in step 2.
 - d. Factor by Grouping (as in step 4)
- Step 4. Other polynomials: If it has more than three terms, try to factor it by grouping.
 - a. Group two terms together which can be factored further
 - b. Use the distributive property in reverse to factor out common terms
 - c. Write the factors as multiplication of binomials.
- Step 5. *Final check*: See if any of the factors you have written can be factored further. If you have overlooked a common factor, you can catch it here.

Remember the following properties:		
Perfect Squares:	$(a+b)^2 = a^2 + 2ab + b^2$ and	
	$(a-b)^2 = a^2 - 2ab + b^2$	
Difference of two squares:	$a^2 - b^2 = (a - b)(a + b)$	
Sum of two squares:	$a^2 + b^2$ is NOT factorable	

Factoring, among other benefits, helps us simplify division of polynomials such as:

$$\frac{x^2-4}{x-2}$$

Instead of trying to do the long division, let's see if we can factor the numerator so we can cancel some things out:

$$\frac{x^2 - 4}{x - 2} = \frac{(x - 2)(x + 2)}{(x - 2)} = x + 2$$

Example:	Description of steps:		
$2x^5 - 8x^3 =$	Step 1: Factor out greatest common factor $(2x^3)$		
2x - 6x -			
	Step 2: Determine if the remaining binomial is the difference of		
$2x^{3}(x^{2}-4)$	two squares		
	Step 2: It is the difference of two squares		
1	(skip steps 3-4)		
$2x^{3}(x+2)(x-2)$	Step 5: Can it be factored further? No		
$3x^4 - 18x^3 + 27x^2 =$	Step 1: Factor out greatest common factor $(3x^2)$		
	Step 2: Determine if the remaining binomial is the difference of		
	two squares: NOT binomial.		
$3x^2(x^2-6x+9)$	Step 3: Determine if the remaining trinomial is a perfect square:		
	It seems to be $(x-3)^2$		
$3x^2(x-3)^2 \blacktriangleleft$	Step 5: Can it be factored further? No		
	-		
$6a^2 - 11a + 4 =$	Step 1: no GCF Step 2: Not a binomial		
	Step 3: Not a binomial Step 3: Not a perfect square; factor by AC method (or trial &		
$6a^2 - 3a - 8a + 4 =$	error).		
	a. Find the product of ac (24).		
	b. Find two numbers whose product is ac (24) and whose		
$(6a^2 - 3a) + (-8a + 4)$	sum is b (-11). The two numbers are -8 and -3.		
	c. Rewrite the trinomial so the middle term is the sum of		
	the two numbers found as coefficients.		
3a(2a-1)+(-4)(2a-1) =	Step 4: Factor by grouping.		
	Step 5: Cannot be factored further.		
(3a-4)(2a-1)	Step 5. Calmot be factored further.		
xy + 8x + 3y + 24 =	Skip steps 1-3.		
	Step 4: Factor by grouping		
4	a. group two terms together		
(xy+8x)+(3y+24)=	b. find GCF of each group		
	c. Use distributive property to "pull out" the common		
x(y+8) + 3(y+8) =	term.		
$\lambda(y+0)+3(y+0)=$	d. Rewrite as product of two binomials		
4	Step 5: Cannot be factored further		
(x+3)(y+8)			
$2ab^5 + 8ab^4 + 2ab^3 =$	Step 1: Find GCF $(2ab^3)$		
	Skip step 2 (not a binomial remaining)		
	Step 3-4: Not a perfect square and can't be factored.		
$2ab^{3}(b^{2}+4b+1)$	Step 5: Cannot be factored further.		
$x^2 + 5x + 6 =$	Skip steps 1-2		
	Step 3: Not a perfect square, coefficient of first term is 1, so just		
(x+3)(x+2)	reverse FOIL:		
	a. First two terms are x and x		
	b. Last two terms have to multiply to be 6 and sum to be		
	5. The two numbers are 2 and 3.		
	c. Both signs need to be positive		
	Step 4: Check the OI term to make sure it's correct. It is.		

MAT 0024 Ch 13 Factoring Review Worksheet Factor the following polynomials using the strategy and examples above:

Polynomial:	Factored form:
$12a^2b^2 - 3ab$	
$4x^2 - 9$	
$x^2 - 16y^2$	
$x^2 - 4x + 2xy - 8y$	
$x^2 - 9x + 20$	
$9x^2 - 12x + 4$	
$8x^3 - x^2$	
$x^2 + 49$	
$16x^3 + 16x^2 + 3x$	
$x^2 - 9x + 18$	
$6x^2 + 13x + 6$	

 $6x^4y^5 - 2x^2y^3 + 14x^3y^4$

MAT 0024	Ch 13 Factoring Review Worksheet	Instructor: C. St.Denis
$2x^2 + 3x - 2$		
$5x^2 - 22x - 15$		
$3x^3 + 9x^2 - 12x$		
$x^2 + 3x - 28$		
$x^2 - 8x + 16$		
$4x^2 - 7xy + 3y^2$		
$x^3 - xy + x^2 - y$		
$8x^2 - 6x - 2$		
$x^4 - 11x^3 + 24x^2$		