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Abstract. Consider a reinforcement learning problem where an agent has access
to a very large amount of information about the environment, but it can only take
very few actions to accomplish its task and to maximize its reward. Evidently, the
main problem for the agent is to learn a map from a very high-dimensional space
(which represents its environment) to a very low-dimensional space (which represents
its actions). The high-to-low dimensional map implies that most of the information
about the environment is irrelevant for the actions to be taken, and only a small fraction
of information is relevant. In this paper we argue that the relevant information need not
be learned by brute force (which is the standard approach), but can be identified from
the intrinsic symmetries of the system. We analyze in details a reinforcement learning
problem of autonomous driving, where the corresponding symmetry is the Galilean
symmetry, and argue that the learning task can be accomplished with very few relevant
parameters, or, more precisely, invariants. For a numerical demonstration, we show
that the autonomous vehicles (which we call autonomous particles since they describe
very primitive vehicles) need only four relevant invariants to learn how to drive very
well without colliding with other particles. The simple model can be easily generalized
to include different types of particles (e.g. for cars, for pedestrians, for buildings,
for road signs, etc.) with different types of relevant invariants describing interactions
between them. We also argue that there must exist a field theory description of the
learning system where autonomous particles would be described by fermionic degrees
of freedom and interactions mediated by the relevant invariants would be described
by bosonic degrees of freedom. This suggests that the effectiveness of field theory
descriptions of physical systems might be connected to the learning dynamics of some
kinds of autonomous particles, supporting the claim that the entire universe is a neural
network.
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1 Introduction

Broadly speaking there are three interrelated problems of autonomous driving [1].
The first problem is environment detection which is done through complex systems
including cameras and different types of sensors [2]. The second problem is decision-
making which is based on the input from the environment [3–5]. The third problem
is producing the desired real-world behaviour of the autonomous vehicle which is the
subject of vehicle control [6]. In this paper we assume that the first and third problems
are solved (although we briefly discuss the third problem at the end of Sec. 3) and focus
on solving the second problem, i.e. decision-making. The decision-making problem is
an example of a reinforcement learning task where an agent, an autonomous vehicle,
has to take an action (e.g. accelerate in some direction) based on the information
about its environment (e.g. positions and velocities of all other vehicles and of its
destination). Then the main decision-making task for the autonomous vehicle is to
model a map from a very high-dimensional space of the environment to a very low-
dimensional space of possible actions. Evidently, the decision-making must involve
coarse-graining of information about the environment by keeping only a small amount
of relevant information. The standard (or brute force) approach is to use a neural
network to learn the relevant information. In this paper we argue that the relevant
information must be described by invariants (or scalars) with respect to Galilean (and
permutation) transformations. This allows us to identify a small number of relevant
invariants (only four invariants) that are sufficient for the autonomous vehicle to learn
how to drive very well without colliding with other vehicles.

To better understand the proposal, consider a test charged particle moving in
an electromagnetic field created by other charged particles (sources). If we know the
position and velocity of the test particle at some time t, then to determine its position
and velocity at t + dt all we need to know is the electric, ~E, and magnetic, ~B, fields
at time t at the position of the test particle. This means that not all information
(i.e. fine-grained description of the dynamical state) of the sources is required for
the test particle to “decide” how to move while obeying the laws of electrodynamics.
The parameters, ~E and ~B, already contain the relevant coarse-grained description of
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all other particles which is both necessary and sufficient for the test particle to move
according to Lorentz force law regardless of how many source particles there are.

The above example can be understood in at least two ways: local and global. The
first is the traditional (or local) field-theoretic point of view, where sources emit local
bosons according to some law and the only relevant information that affects the test
particle is the strength of the bosonic (e.g. electromagnetic) field and all of the fined-
grained information about the dynamical state of the sources is completely irrelevant.
In fact, all of the experimentally verified laws of motion (e.g. Lorentz force law) are
produced by interactions between fermionic particles (e.g. electrons) mediated by local
bosonic fields (e.g. electromagnetic field). However, we can also consider the second
point of view, where the test particle is an agent (or autonomous particle) which is
making decisions of how to move based on a global information about its environment.
In the global view, the test particle first scans all of its environment to determine a
fined-grained (possibly up to some precision) dynamical state of all other particles and
then decides how to coarse grain this information and how to move accordingly. In
electrodynamics, for an electron, this would be equivalent to determining the position
and velocity of every other charged particle in the universe, then deciding to calculate
local ~E and ~B fields according to Maxwell’s equations, and, finally, deciding what
should its acceleration be according to these calculations and its own dynamical state
(i.e. calculating the Lorentz force).

It should be evident, that the two pictures, i.e. local and global, are equivalent
(or dual) at least for the case of electrodynamics. While the local picture is a lot more
useful for developing physical theories where the locality and symmetries play the key
role, the global picture seems to be more useful for solving reinforcement learning
tasks such as autonomous driving where the identification of the relevant information
(relevant for driving) is of central importance. To make the analogy more apparent,
one should think of the autonomous particle as an autonomous vehicle or a car, which
must decide both what information is relevant for achieving its goals as well as how
to move according to this information. In other words it can decide what kind of
“bosons” it sees and what kind of “fermion” it considers itself to be. However, the
main difference is that for the particle physics problem the dynamics of both bosons
and fermions is determined by some local Lagrangian and for the autonomous driving
problem the dynamics must be determined by some loss function and therefore should
be learned. In this respect one can consider the problem of “autonomous particles” as
more general than “fundamental particles” in a sense that their dynamics need not be
fixed and can be learnt.

On a more practical level, the field-theoretic picture may be used to tackle, for
example, the autonomous driving problem in the following way. For simplicity, let
us assume that each autonomous particle can, in principle, know the position and
velocity of all particles (i.e. other cars or obstacles) in its environment. Then its main
task is to use this information and, possibly, its destination, to calculate a local coarse-
grained information which consists of only a few parameters whose total number is very
small and fixed regardless of how many cars are in the environment. It is important
to emphasise that the relevant parameters are both untrained and invariant under
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symmetry transformations (e.g. rotations, shifts, permutations of other particles), but
they are used as input to a neural network whose output is the desired position (or,
equivalently, velocity or acceleration) in the next time step. In addition, it is also
assumed that the loss function is defined as a function of the invariants only. As we
will see, only four relevant invariants and only thirty neurons is enough to train an
unconstrained neural network [7] how to drive fairly well without colliding with other
particles.

The paper is organized as follows. In Sec. 2 first formulate the problem of
decision-making in context of autonomous driving and then describe a neural network
architecture which can be used to obtain a solution. In Sec. 3 we discuss general aspect
of the learning dynamics such as identification of relevant invariants and construction of
the loss function. In Sec. 4 we describe in details the numerical simulation and discuss
numerical results. In Sec. 5 we summarize main results and discuss implications of the
results for machine learning and fundamental physics.

2 Problem and solution

Consider a collection of “autonomous particles” (cars, aircrafts, robots, etc.) with po-
sitions and velocities ~rα(t) and ~vα(t) (α = 1, 2, . . . ,N ) moving in an arbitrary number
of dimensions d. Each particle has its own main objective of reaching its destination
~Rα as fast as possible while avoiding collisions with other autonomous particles. At
each time step each particle needs to calculate its own position at time step t + ε (or
velocity, or acceleration) such that these objectives are met based on the information
that is available at time t. The objective for different particles may be conflicting
with each other and each particle should be making decentralized decisions of where
to accelerate and thus how to move. Furthermore, we assume that each autonomous
particle knows, with arbitrary precision, relative positions and velocities of all other
particles at some time t and position of its destination. Using this information (and,
if applicable, information about its own velocity with respect to preferred coordinate
system, e.g. Earth) the particle α constructs a small number of Galilean (e.g. rota-
tional and transnational) and permutation (of all other particles) invariants φαi’s where
i = 0, . . . n−1. Based on values of φαi’s the particle decides where to move on the next
time step (e.g. what should be its velocity). As we will see in the following sections,
these decisions are made by independent neural networks (one for each particle) that
take φαi’s as inputs, and these networks are trained by minimizing their respective loss
functions, i.e. Hα(φα0, φα1, ..., φαn−1).

We propose a particular architecture of a neural network for each particle that
can be divided into four units (see Fig. 1). The first unit is what we call a detection
layer. The detection layer contains information (about all other particles and of the
destination) which is passed in a feed forward way to invariants layer. The invariants
layer has one neuron for each invariant φαi and its state is equal to the value of
the corresponding invariant. Connections between the detection layer and invariants
layer are non trainable and determined by the functional form of the invariants φαi.
The feed-forward structure (detection layer)→ (invariants layer) is responsible for the
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coarse-graining of data by filtering irrelevant information and keeping only invariants
that would be relevant for making decisions. The invariants, φαi’s, can be considered
as an input layer for the trainable part of the network or what we call the training
module. The final unit is the output layer that tells the “autonomous particle” where
to move (e.g. what the particle’s position, velocity or acceleration should be). The feed
forward connections between the invarinats layer and the training module, between the
training module and the output layer and all of the connections within the training
module are trainable variables.

More precisely, the detection layer for particle α can takes as inputs all of relative
positions and velocities, i.e.(
~rα(t)− ~r1(t), ~vα(t)− ~v1(t), ..., ~rα(t)− ~rN (t), ~vα(t)− ~vN (t), ~rα(t)− ~Rα, ~vα(t)− ~Vα

)
,

(2.1)

where for simplicity we shall assume that all destinations are at rest, i.e. ~Vα = 0.
Then all connections between the detection layer and the invariants layer are assumed
to be such that appropriate invariants are calculated and identified with states of the
corresponding neurons,

φαi(t) =
∑
β 6=α

ψi(~rα(t)− ~rβ(t), ~vα(t)− ~vβ(t), ~rα(t)− ~Rα, ~vα(t)− ~Vα). (2.2)

All ψi’s and φαi’s are scalars (i.e. invariant) with respect to Galilean (e.g. rotation,
shifts) transformations and in addition φαi’s are invariant under permutations of all
other particles, i.e. β 6= α. In Sec. 4 we construct a concrete example of the invariants
where ψi’s are functions of only two vectors ~rα(t)− ~rβ(t) and ~vα(t)− ~vβ(t).

From the invariants layer, the states of neurons are fed to the training module and
then from the training module to ~rα(t+ε) and/or ~vα(t+ε) in the output layer. Assum-
ing constant acceleration during the interval [t, t+ ε] and in order to be kinematically
consistent, we impose

~rα(t+ ε) = ~rα(t) +
ε

2
(~vα(t) + ~vα(t+ ε)) , (2.3)

i.e. the architecture of the output layer is such that we first calculate ~vα(t + ε) based
on the input layer through trainable connections and only then we calculate ~rα(t+ ε)
through non trainable connections described in Eq. 2.3. Moreover, given that particle’s
input velocity is ~vα(t), to produce desired outputs ~rα(t + ε) and ~vα(t + ε) it must
accelerate at

~aα(t) =
~vα(t+ ε)− ~vα(t)

ε
. (2.4)

If we think of (2.4) as a part of some final activation function, then we may say that,
in effect, we train for the constant acceleration (or force) of the particle during the
time interval [t, t+ ε] as it will uniquely determine ~vα(t+ ε) and ~rα(t+ ε).
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Figure 1. Neural network architecture with red arrows indicate non-trainable connections
while the blue arrows indicate trainable connections.

3 Learning dynamics

During learning the trainable variables of the training module are adjusted such that
the outputs ~rα(t+ε) and ~vα(t+ε) meet the learning objectives. The simplest objectives
that we can impose are that the cars avoid collisions and that they arrive at their
destination in the smallest number of time steps. To achieve these goals, we consider
a loss function Hα which depends on a small number of global invariants (2.2) and a
single local Galilean invariant,

φα0

(
~rα(t)− ~Rα, ~vα(t)− ~Vα, ~rα(t+ ε)− ~Rα, ~vα(t+ ε)− ~Vα

)
, (3.1)

which is built out of only local (to the particle in question) vector quantities.
As already mentioned, the loss function must be expressible as

Hα = Hα(φα0, φα0, ..., φαn−1), (3.2)

where φαi are introduced in Eq. (2.2). In other words, other particle’s positions and
velocities can appear in the loss Hα only in a coarse-grained way through global invari-
ants φαi’s. The main difference is that, unlike evaluating invariants for the activation
dynamics, for the learning dynamics (if possible) all φαi’s should be evaluated at time
step t+ ε in order for the particle α to make decisions such that its loss at t+ ε is min-
imal. However, due to decentralized learning, the neural network of particle α cannot
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influence nor has access to the decisions that the neural networks of other particles
β 6= α would make. We address this problem by calculating estimates of the positions
and velocities denoted by

~ρβ ≈ ~rβ(t+ ε) (3.3)

~uβ ≈ ~vβ(t+ ε) (3.4)

These estimates can be made at different orders with zeroth order given by

~uβ =

{
~vα(t+ ε) β = α

~vβ(t) β 6= α
~ρβ =

{
~rα(t+ ε) β = α

~rβ(t) β 6= α.
(3.5)

and first order given by

~uβ =

{
~vα(t+ ε) β = α

~vβ(t) β 6= α
~ρβ =

{
~rα(t+ ε) β = α

~rβ(t) + ε~vβ(t) β 6= α.
(3.6)

which is the order that we shall use for producing numerical results in Sec. 4. Another
interesting possibility is to train a neural network (either separately or as an additional
layer that would be added between detection and invariants layers, see Fig. 1) for each
particle whose main task would be to better predict the positions and velocities of other
particles and thus improve the estimates further. Moreover, if all neural networks of the
particles are interconnected (which is not the case in the problem that we consider),
then there could be a centralized decision making and the overall loss function can
depend on the data at t+ε for all other particles and we can use ~rβ(t+ε) and ~vβ(t+ε)
for these estimates.

Learning dynamics of trainable variables of each neural network proceeds via the
gradient descent method,

d~Qα = −ηα
∂Hα

∂ ~Qα

, (3.7)

where ~Qα = (wαij, bαi) is a collective notation for of all trainable variables (weights
and biases) in the particle α neural network and ηα is its learning rate. By employing
Eq. (2.3) we can rewrite the gradient by explicitly extracting the outer-most factor
from back-propagation expansion

∂Hα

∂Qαi

= −η
(

1

2

∂Hα

∂~ρα
+
∂Hα

∂~uα

)
· ∂~uα
∂Qαi

. (3.8)

This is where we first encounter the gradients of the loss function with respect ~ρα
and ~uα. Since these are the only two vectors that are calculated through activation
dynamics in the neural network, only they are considered as dynamical variables from
the standpoint of the back-propagation while all other quantities appearing in Hα are
held fixed. To calculate these gradients we may (and in our numerical example will)
need to reuse data from the detection layer.
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Let’s explore what kind of loss function Hα can be in order to satisfy our learning
objective. If the main learning objective, of a given autonomous particle α, is to arrive
at its destination as fast as possible while avoiding collisions with other particles, then
the loss function Hα must contain two kinds of terms:

• terms which describe interaction of a particle with its destination and

• terms which describe interaction of a particle with all other particles.

The first kind of terms must include at least one long range invariants just because
interactions with the destination must be significant at arbitrary distances or, other-
wise, destination may never be reached. (Note, that terms of the first kind may also
be short range if, for example, the learning objective is not only to go to a destination,
but also to slow down once the particle is close to the destination.) Some interesting
examples for the first kind of terms are

φα0 =
∣∣∣~ρα − ~Rα

∣∣∣ (3.9)

or

φα0 = ~uα ·
~ρα − ~Rα∣∣∣~ρα − ~Rα

∣∣∣ . (3.10)

Minimization of either one of these terms brings the particle closer to its destination.
Gradients of (3.9) with respect ~ρα and of (3.10) with respect to ~uα are the same and

equal to the unit vector along ~ρα− ~Rα(t), but (3.10) has the advantage of being bounded
and this is the term we use in our simple numerical model (see Sec. 4).

The second kind of terms, that we also call collision-preventing terms, are intrin-
sically non-local since they would involve a sum over all particles (2.2). However, if we
only want local configurations of particles to influence significantly the behaviour of
our test particle then certain constraints must apply to its asymptotic behavior of ψi’s.
For example, if particles are distributed uniformly in a d-dimensional space, then the
total contribution of all collision-preventing terms must be convergent which means
that the gradients of ψi’s in Eq. (2.2) with respect to both ~vα − ~vβ and ~rα − ~rβ must
decay as 1

∂ψi
∂(~rα − ~rβ)

. |~rα − ~rβ|−d (3.11)

∂ψi
∂(~vα − ~vβ)

. |~rα − ~rβ|−d. (3.12)

1Note that from the standpoint of back-propagation

∂

∂(~rα − ~rβ)
=

∂

∂~rα

and similar for the velocities.
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This guarantees that the gradient terms ∂Hα

∂ ~Qα
(i.e. their contribution from particle-

particle interaction), that are responsible for learning dynamics of ~Qα (see Eqs. (3.7)
and (3.8)), are not dominated by far away particles, i.e. our test particle α does not
need to know much about their positions and velocities. Moreover, to prevent collisions,
terms of the second kind must be increasing and, possibly, diverging when two particles
come really close to each other. However, the exact form of the collision-preventing
terms depends on the specifics of the “avoiding collisions” part of the learning task,
such as the shape and size of particle, the locality of the behaviour (i.e. how far away
other objects have to be so that the moving particle starts making relevant decision to
avoid them), etc.

Before we proceed to the numerical part of the paper, let’s us briefly emphasise
that in any real world applications the autonomous vehicles cannot control directly the
output velocity and position. More precisely, what the computer of an autonomous ve-
hicles can control are some parameters like the position of the steering wheel, the gear,
how to press the gas pedal etc. These parameters do determine kinematic quantities
and how to predict the real-world reaction (behaviour) of the system to change in these
parameters falls within the scope of vehicle control. An interesting, physics-informed
take on this problem can be found in Ref. [6]. Within our framework this problem
can be integrated by splitting the output layer into layer of controlled parameters and
a “technological” layer that would reproduce correctly the behaviour of the vehicle.
This layer can be another, possibly physics informed, unit of the neural network that
is either pre-trained or trained in real time together with our training module. In the
following section we describe a simple numerical model where a primitive form of the
“technological” layer is completely contained within the neural network architecture
that calculates ~uα.

4 Numerical simulation

In this section we describe a numerical simulation of N autonomous vehicles, or cars,
on a roadless 2D driving polygon. This simulation is a special case of the model of
autonomous particles described in the previous sections as well as of a more general
autonomous particles model described in Sec. 5.

In the initial conditions, position ~rα(0) and destination ~Rα for all cars are initial-
ized randomly on a square polygon, and all initial velocities are set to zero, ~vα(0) = 0.
Orientation of each cars is randomly initialized and during motion it is always assumed
to point along its velocity ~vα(t). When a car arrives at its destination, ~Rα is reinitial-
ized to another random point on the same 2D driving polygon. The size of the time
step is taken to be ε = 1 and we enforce that the maximum allowed speed of any car
is set equal to 1, see Eq. (4.1).

We use a neural network architecture described in Sec. 2 and Fig. 1 which is the
same for all cars. Trajectory of each car is constructed in the following way:

1. detection layer of each car detects the positions and velocities of all cars at time t
and from these positions and its own destination, the car constructs the relevant
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invariants φαi for the input layer;

2. the invariants are fed to the training module and produce the output;

3. this first forward pass of the data and the first output created is only used to
perform back-propagation i.e. to update weights and biases;

4. after the update, we perform another forward pass of the data but now with
updated parameters and the outputs that we get are interpreted to be the position
and the velocity of the particle at time t+ ε;

Then we repeat all steps from (1) to (4) with t incremented by ε. In principle, each car
can move (i.e. self-drive) for as many time steps as desired by repeating above loop
and by randomly generating a new destination whenever an old destination is reached.

Since we only use four invariants, the invariants layer will have only four neurons.
The output layer by default has also four neurons for four components of ~rα(t+ ε) and
~vα(t+ ε). The training module has 24 additional neurons, themselves fully connected
in an unconstrained way as described in [7]. This means that we have (24+4)(24+2) =
728 trainable weights and 24 + 2 = 26 trainable biases or 754 trainable variables in
total. The activation function for the neurons in the training module is taken to be
Rectified Linear Unit (ReLU), while the activation on the output neurons that calculate
~vα(t+ε) is designed in a certain way to ensure that there is a maximum allowed speed.
Namely, if w1 and w2 are the pre-activation inputs of the two neurons that calculate
two components of ~vα(t+ ε), then we take

~vα(t+ ε) = Rσ(|~z|)
|~z|

~z, ~z =
(

tanh
w1

5
, tanh

w2

5

)
, (4.1)

where σ denotes the usual sigmoid activation function and R rotates the velocity from
the frame defined by car’s orientation (where the local x axis is along ~vα(t)) to a
global frame (or the rest frame of destinations) that is fixed at all times. In this way
the speed is effectively connected to a sigmoid activation, while the ratio of the two
components of ~z determines the change in the direction away from ~vα(t). Note that
with this activation function, pre-activation input ~w uniquely determines the velocity
at t + ε in the rotated frame with x-axis along ~vα(t). We choose to use this kind of
activation function to enforce maximum speed as well as to ensure that our primitive
car-like object have a preferred orientation, i.e. there is a front and there a back of a
car. With this we break a symmetry in a sense that to accelerate in the direction of
motion as well as perpendicular to the direction of motion, themselves being different,
separately remain the same no matter what the orientation of the car is with respect
to the stationary frame.2 However, this activation function doesn’t allow our primitive
car-like objects to have reverse nor it is able to replicate many other features of a
real car such as the minimal radius of curvature of the trajectory, gears, brakes and

2In principle, there could be autonomous objects that are equally easy/hard to accelerate in all
directions no matter what their current velocity is and then their output activation functions do not
need to encode information about orientation.
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so on. All of these problems fall within the scope of vehicle control or, in our terms,
“technological” layer that was mentioned in the previous section.

The main goal for each car is to arrive at the destination while not colliding with
other cars and this goal is encoded in the loss function Hα of the neural network of car
α, that is, achieving the goal should correspond to minimizing Hα. For the particular
example that we present the loss function has the following form:

Hα = φα0 + φα1 + φα2 (4.2)

where,

φα0 = (~uα − ~Vα) · ~ρα −
~Rα∣∣∣~ρα − ~Rα

∣∣∣ +

(
1−

∣∣∣~uα − ~Vα

∣∣∣2)− 1
2

, (4.3)

φα1 =
∑
β 6=α

ψ1(~ρα(t)− ~ρβ(t), ~uα(t)− ~uβ(t)) = λ1
∑
β 6=α

1

|~ρα − ~ρβ|3
, (4.4)

φα2 =
∑
β 6=α

ψ2(~ρα(t)− ~ρβ(t), ~uα(t)− ~uβ(t)) = −λ2
∑
β 6=α

(~uα − ~uβ) · (~ρα − ~ρβ)

|~ρα − ~ρβ|4
. (4.5)

The hyperparameters λ1 and λ2 determine the relative importance of each term in
Eq. (4.2) and (~uβ, ~ρβ) is given by Eq. (3.6). Motivations behind each term in the loss
function can be summarized as follows:

• φα0 describes the long range interaction between the car and its destination and,
when minimized, makes the velocity of the car to point in the direction of the
destination and to be as large as possible. We rely on this term to make sure
that the car eventually arrive to its destination.

• φα1 prevents the cars from coming too close to each other, it quickly blows up
whenever any car approaches car α while its minimum is when car α is far away,
at infinity, from all other cars.

• φα2 prevents the cars from both coming close to each other and moving head on
when they are close.

Both φα1 and φα2 describe short range car-car interactions and have the purpose of
preventing collisions. It is easy to see that the decay of their gradients satisfies the
locality property (3.12). In d = 2 dimensions ψi’s must decay faster than |~rα − ~rβ|−1
and in Eqs. (4.4) and (4.5) both ψ1 and ψ2 decay as |~rα − ~rβ|−2. Therefore we expect
that, when car α is far away from other cars, φα0 dominates the loss and its priority is
to align its velocity with the direction pointing towards its destination. On the other
hand, when there are other cars nearby the two other terms φα1 and φα2 would attempt
to prevent collisions. Also note the second term in φα0 (similar to the γ-factor from
special relativity), although not essential for the learning tasks has proven to be very
useful for stabilizing the behaviour of cars in our simulation. It prevented cars from
moving at near maximum speed at all times by changing the relative preference of
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tangential versus centripetal acceleration in favour of the tangential component. This
preference is highly skewed towards the centripetal acceleration when the car moves
at near maximum speed because there we enter the zone of vanishing gradient of the
sigmoid. The expected behaviour of the collection of cars is numerically verified in the
simulation that we run for this example (see Fig. 2).

For the invariants layer (see Fig. 1) we use two invarinats which appear directly in
the loss function, i.e. φα1 and φα2, and then two more invariant that can be extracted
from φα0, i.e.

φα3 = ~vα(t) · (~rα(t)− ~Rα)∣∣∣~rα(t)− ~Rα

∣∣∣ (4.6)

and
φα4 =

∣∣∣~vα(t)− ~Vα

∣∣∣ = vα(t). (4.7)

This is a minimal set of φαi’s such that the loss function can be expressed as a function
of them. However, nothing stops us from taking additional invariants for the invariants
layer which may be useful for learning efficiency, i.e. the change in their values might
influence the loss function significantly indicating their relevance for the learning task
(see Sec. 5).

Numerical simulation was performed for N = 50 autonomous particles, or cars,
with loss functions given by Eq. (4.2) and hyperparameters set to λ1 = λ2 = 106.
The magnitudes of λ1 and λ2 in effect control the effective size of each car, i.e. the
characteristic distance between the cars within which the contribution to the total
gradient ∂Hα/∂ ~Qα of the collision preventing terms φα1 and φα2 is comparable with
the contribution of the other term φα0, i.e. the one that makes the car go to the
destination. We made an arbitrary choice to represent our cars as identical rectangles
of size 260 × 140 and have chosen λ1,2 accordingly by trial and error to enforce that
the effective size corresponds to the visual size of the car. The learning rates are fixed
at ηα = 0.5.

In the simulation, each car always arrives at its destination and, when far away
from other cars, it moves directly towards it. When it meets another car it will try
to steer to the side to avoid it while slowing down slightly. Depending on its first
experience of avoiding the collision, it will learn to either steer to the left or to the right
learning left-hand or right-hand traffic rule. Then in any subsequent close encounter
with another car it will try to steer to that side to avoid collision. The other car
involved might learn the same rule or the opposite one and the two situations will be
handled differently with the resolution of the encounter being much more efficient if
they learned the same rule. Another interesting situation that arises when three or
more cars need to cross their roads and these situations are resolved by roundabout-
like behavior. In Fig. 2 we show the four selected examples described above. A full
animation of the simulation is available at [8].
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(a) (b)

(c) (d)

Figure 2. (a) When far away from other cars, the car’s velocity (red arrow) is perfectly
aligned with the direction to its destination (dashed line); (b) Two cars meet and both
of them turn left in their own frame to avoid the collision. Their respective trajectories are
shown as well as their positions some time after the encounter; (c) Two cars meet but now one
of them turns left (red trajectory) and the other one turns right (blue trajectory). Situation
is resolved when one of them slows down (red trajectory) and the other one persists (blue
trajectory). The one that slows down goes behind the one that persists. (d) Three cars meet
and go around each other until the traffic congestion is resolved.

By following the time evolution of the loss function averaged over all cars,

H =
1

N

N∑
α=1

Hα, (4.8)

one can clearly see that the average loss goes down very quickly. In Fig. 3 we show
the dependence of the average loss on time with different magnifications of the time
axis. After that, the average loss fluctuates with no apparent change in the amplitude.
Evidently, the cars learn basic behavior for achieving their main goals (i.e. arriving
to destination and avoiding collisions) very fast, over the first 1000 time steps, and if
necessary cars can also quickly relearn their behaviors (e.g. switching from right-hand
to left-hand traffic rule or vise versa). The ability to quickly learn and relearn is the
main advantage of the proposed architecture and is due entirely to a small number of
relevant invariants (only four) and a small number of neurons (only thirty) used by
each autonomous car. In a more realistic simulation, we expect that the total number
of relevant invariants could be larger, but the main idea of training using invariants
should remain the same.
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Figure 3. (a) The initial stage of the exponential decay of the average loss with characteristic
time numerically determined to be τ ≈ 100. (b) Magnification of the first few fluctuation
cycles. (c) Evolution of the average loss for the entire duration of the simulation.

5 Discussion

In this article, we proposed a solution to the problem of decision-making in rein-
forcement learning tasks such as autonomous driving. We have shown, by performing
analytical and numerical calculations, that the decision-making should be based on
only relevant information that does not need to be learned by brute force, but that can
be identified from the intrinsic symmetries of the system, e.g. Galilean or permutation
symmetry. Although the original motivation was coming from the use of symmetries in
constructing physical theories, such as electrodynamics, the symmetry consideration
proved to be extremely useful for a simplified problem of autonomous driving. This
raises a question of how the framework can be generalized to include more realistic
autonomous vehicles such as self-driving cars, air-crafts, robots, etc.

There are few directions along which the model of autonomous particles can be
generalized and very likely improved. First of all, the number of relevant invariants,
which was only four for the numerical simulation (see Sec. 4), can be increased to
include other and more general terms in the invariants layer (see Sec. 2) as well as
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in the loss function (see Sec. 3). Secondly, the number of different types of parti-
cles can be arbitrary (e.g. for cars, for pedestrians, for buildings, for road signs, etc.)
and interactions between different types can be described by different relevant invari-
ants. And finally, for identification of the relevant invariants (which is the key step in
our construction) it may be useful to develop an effective filed theory description of
the (different types of) autonomous particles where the relevant invariants would be
nothing but Green’s functions for respective particles/sources.

Indeed, the invariants that were used for both activation and learning dynam-
ics (4.4) and (4.5) can be interpreted as a sum over δ-function like densities at the
location of other autonomous particles weighted by some invariant functions. It is
not immediately clear if these invariant functions would be Green’s functions for some
fields, nor that the invariants that were used are the most relevant invariants for the
problem at hand. However, this highlights an interesting field-theoretic aspect of the
autonomous driving problem that may turn out to be useful. In particular, it may
be interesting to see if there exist an effective field theory description with fermions
describing autonomous particles and bosons describing interactions between them, so
that the bosonic Green’s function describes the relevant invarinats and the correspond-
ing force on fermions is the force that would be learned by the autonomous particles.
In this respect, even in our simple self-driving problem, a particular field theory would
emerges where the cars learn what kind of fermions they have to be in order to better
meet the learning objective.

This raises another question, namely, can we formulate the learning task for the
autonomous particle such that the known (or unknown) field theories would emerge?
For example, can we formulate a learning task for an autonomous particle such that
electrodynamics emerges as an outcome of the learning dynamics? And if the answer
is affirmative and some known field theories can indeed be described as a learning
dynamics, then this would give additional support to the claim that the entire universe
is a neural network [9]. Of course, this would not explain why the laws of physics on
microscopic scales are governed by quantum mechanics (see, however, [9–11]) and on
astrophysical scales by the general theory of relativity (see, however, [9, 11]), but it
would allow us to develop an alternative (or dual) picture of physical systems in the
context of the learning theory. The standard “physical” picture would be to write down
a Lagrangian function which describes fermions interacting with each other by means
of bosons, and the dual “learning” picture would be to write down a loss function
which describes learning objective for autonomous particles (or fermions) interacting
with each other by means of relevant invariants (or bosonic Green’s functions). We
leave all these and other related questions for future research.
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