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Reports of COVID-19 cases potentially attributed to fomite transmission led to the

extensive use of various disinfectants to control viral spread. Alternative disinfectants,

such as essential oils, have emerged as a potential antimicrobial. Four essential

oil blends were tested on three different surfaces inoculated with a coronavirus

surrogate, bacteriophage Phi 6, and a bacterial indicator, Staphylococcus aureus. Log10
concentration reductions were analyzed using GraphPad Prism software. Data collected

in this study show that the application of dilute essential oil disinfectants using a

spray delivery device is an effective way to reduce concentrations of bacterial and viral

microorganisms on ceramic, stainless steel, and laminate surfaces. Surrogate viruses

were reduced up to 6 log10 PFU and bacterial were reduced up to 4 log10 CFU. Although

surfaces are no longer considered a high risk fomite for COVID-19 transmission, the

disinfection of microorganisms on surfaces remains an important consideration for high

touch areas in hospitals, waiting rooms, etc. The application of spray disinfectants,

based on essential oil blends, provides a rapid and effective means to reduce microbial

contamination on high-touched surfaces.

Keywords: coronavirus, SARS-CoV-2, essential oil, surrogate, surface

INTRODUCTION

During the 2020 outbreak of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2),
the causative agent of COVID-19, contaminated surfaces were proposed as a potential source for
the dissemination of viral particles (1). Respiratory viruses are known to survive for hours to days
on such surfaces (2–4), and viral nucleic acids have been detected on surfaces in health care, and
community settings (4–7). Enhanced environmental cleaning was therefore recommended early in
the pandemic as a component of outbreak control for SARS-CoV-2 (8).

As of May 2021, the United States Centers for Disease Control no longer states
that SARS-CoV-2 is likely transmitted through surface contamination (8), but is more
likely spread through aerosolization of viral particles (9). Despite this, much effort went
into the cleaning of environmental surfaces during the pandemic and continues to
be a major component of infection control protocols in areas of interaction both in
hospital and community settings. Generally, surface disinfection is typically performed
through the manual application of liquid or spray disinfectants. Here, we tested the
effectiveness of an essential oil disinfectant on SARS-CoV-2 surrogate microorganisms.
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GRAPHICAL ABSTRACT |

Phi 6, an RNA pseudomonas phage, has been previously
evaluated as a surrogate for multiple virus pathogens including
ebolavirus (10–12) and various human respiratory viruses (13,
14), including coronaviruses such as SARS-CoV-2 (3, 15, 16)
on surfaces (16–18). We have also examined the use of these
disinfectants against a bacterial target, Staphylococcus aureus,
known to be important in health care and food service settings
where the disinfection of pathogens on surfaces is important
(19, 20).

Essential oil disinfectants have been proposed for a variety of
uses, particularly in the inhibition or inactivation of influenza
viruses in vitro, with cultured cells (21–26). Benefits of using
essential oils as alternative disinfectants include their potential
for application on porous surfaces that may not be effectively
reached by traditional chemical disinfectants as well as the
ability to combine essential oils in blends that affect microbes at
different stages in the life cycle. In this study, we evaluate four
different blends of essential oils on three different surface types
using two SARS-CoV-2 microbial surrogates, a bacterial and a
viral surrogate.

Abbreviations: ANOVA, analysis of variance; ATCC, American Type Culture

Collection; CFU, colony forming units; COVID-19, novel coronavirus 19 disease;

PFU, plaque forming units; SARS-CoV-2, Severe Acute Respiratory Syndrome

Coronavirus 2; TSB, tryptic soy broth; US EPA, United States Environmental

Protection Agency.

TABLE 1 | Components of essential oil mixtures.

Scientific Name Common Name

Melaleuca alternifolia Tea Tree

Eucalyptus globulus Blue gum

Rosmarinus officinalis Rosemary

Curcuma longa Turmeric

Zingeber officinale Ginger

Citrus aurantifoila Swingle peel Lime

Cinnamomum zeylanicum Ceylon cinnamon

Santalum album Sandalwood

Ormenis mixta Moroccan chamomile

Rosa damascena Damask Rose

Citrus aurantum flower Bitter orange

Pogostemon cablin Patchouli

Comiphora myrrha Myrrh

Dipterocarpus turbinatus Gurjan tree

Cyperus scraiosus Cypril or nutgrass

Liquidamber styraciflua Sweetgum

Pogostone -

Benzyl benzoate -

Methyl cyclopentanone -

MATERIALS AND METHODS

Test Organisms
Bacteriophage phi 6 and host Pseudomonas syringae were kindly
supplied by the Water Institute laboratory of the Gillings School
of Public Health at the University of North Carolina at Chapel
Hill. Using prepared 18-h growth of P. syringae in 50ml
tryptic soy broth (TSB), bacteriophage phi 6 was propagated by
reconstituting with 1ml of prewarmed (37◦C) TSB. Five hundred
microliters of reconstituted phi 6 was transferred into 50ml of
fresh TSB with 100 ul of host P. syringae, and incubated at 22◦C
with gentle agitation (100 rpm) for 18 h. The phi 6 stock titer was
∼109 plaque forming units (PFU)/ml.

Bacteria S. aureus was obtained from the American Type
Culture Collection (ATCC 12600) and prepared as previously
described (27). The S. aureus stock titer was approximately 108

colony forming units (CFU)/ml.

Essential Oil Disinfectants
Four essential oil blends produced and delivered free of charge
by EPS Fragrances (Istanbul, Turkey) were examined. These
essential oil blends were designed to target viruses, including
SARS-CoV-2 and included a proprietary mix of essential oils at
various concentrations (Table 1).

Disinfectant 1 (NewAnti FL) was a solution of 5% disinfectant
2 (AntiVir19ED) in 95% ethanol. Disinfectant 2 was undiluted
AntiVir19ED. Disinfectant 3 was undiluted Anti-COV19VERS4.
Disinfectant 4 was 5% disinfectant 3 (Anti-COV19VERS4) in
95% ethanol.

Disinfectants were provided as either sprays or liquid
chemicals and redistributed into 2oz spray bottles for application
on surfaces for microbial disinfection.
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FIGURE 1 | Log10 reductions of bacteriophage phi 6 by disinfectant and

surface type.

Surface Inoculation and Sampling
The effectiveness of the four disinfectants was examined on three
different surface material: laminate, stainless steel, and ceramic
tile. As the laminate surface was more porous than the other two
surface material, it was not possible to decontaminate this surface
between disinfectant trials; therefore, a new piece of laminate tile
was used for each experiment. The stainless steel and ceramic tiles
were cleaned and autoclaved between each use.

For each trial run, microbes were applied to the tile surface
and allowed to dry for approximately two min. Then spray
disinfectants were applied onto experimental surfaces and
allowed to air dry. Cultures were collected from control surfaces
before the addition of spray disinfectants. CultureSwabs (Becton
Dickinson) premoistened with sterile Dey-Engley neutralizer
were used to collect samples from each experimental surface.
In addition to experimental surfaces, control surfaces were also
sampled during the course of the experiment. Two control
surfaces were prepared for each tile surface (1) a negative control
surface inoculated with phosphate buffered saline, and (2) a
non-spiked surface; both surfaces were sampled using the same
methods as the experimental surfaces. Samples of bacteria were
detected using a standard bacteriological spread plate method
(27) and bacteriophage viruses were cultured using United States
Environmental Protection Agency (US EPA) method 1602 (28).

Statistical Analysis
Data analysis and graphical representations were created in
GraphPad Prism (Version 9). Log10 concentration values were
calculated by taking the log10 of the concentration (N) of each
microbe (phi 6 and S. aureus) detected at time (t), the end of
the experiment, and subtracting the log10 concentration of each
microbe respectively at time 0. Total log10 concentrations for
each surface material are shown for phi 6 in Figure 1 and for
Staphylococcus aureus in Figure 2. A one-way ANOVA (analysis
of variance) test was used to determine if there was a difference
among mean log10 reductions by tile and Tukey’s multiple
comparisons test was used to examine the relationship between
means. All statistical significance was evaluated at an alpha level
of 0.05.

FIGURE 2 | Log10 reductions of S. aureus by disinfectant and surface type.

RESULTS

The log10 reductions for each microorganism by disinfectant
and tile type are summarized in Figures 1, 2. On laminate tiles,
disinfectant 1 reduced bacteriophage phi 6 an average of 2.4
log10 plaque forming units (PFU) and S. aureus 1.5 log10 colony
forming units (CFU). The log10 reduction for disinfectant 2 on
this surface for S. aureus was also close to two log10 (2.2 log10
CFU); however, the bacteriophages were decreased to a much
lower degree at only 1.0 log10 PFU. Disinfectant 3 decreased the
S. aureus and phi 6 1.3 and 0.2 log10 CFU and PFU respectively.
On laminate tile, disinfectant 4 was themost effective disinfectant
against phi 6 with a log10 reduction of 6.5 log10 PFU but the least
effective against S. aureus with a 0.9 log10 CFU reduction.

On the stainless-steel surface, disinfectant 1 had the greatest
overall effect on S. aureus with a log10 reduction of 3.9 log10
CFU. Disinfectant 1 was also very effective against phi 6 with a
reduction of 3.4 log10 PFU. Disinfectants 2 and 3 were not very
effective against either microbe with log10 reductions of 2.0 and
1.4 log10 CFU for S. aureus and 0.6 and 1.0 log10 PFU for phi 6
respectively. In contrast to disinfectant 1, disinfectant 4 was the
most effective for phi 6 with a reduction of 4.2 log10 PFU but
only moderately effective for S. aureus with a reduction of 2.2
log10 CFU.

On the ceramic surface, the bacterial log10 reductions were
very similar for all four disinfectants, each falling within the rage
of 1.8–2.7 log10 CFU (<1 log10). For the bacteriophage phi 6,
disinfectant 4 was the most effective with a log10 reduction of 6.4
log10 PFU, followed by disinfectant 3 with a log10 reduction of 4.2
log10 PFU.

In order to compare the differences between mean log10
reduction across surface type by disinfectant, a one-way ANOVA
was conducted followed by a Tukey’s multiple Comparison
Test (Table 2). Based on this analysis, there were no significant
differences between disinfectants 1, 2, 3, or 4 on laminate or
ceramic surfaces when disinfecting S. aureus. However, there
was difference in the disinfection of S. aureus on stainless steel
surfaces between disinfectants 1 and 3, which have average log10
reductions of 3.9 and 1.4 log10 CFU respectively.

In the comparison of disinfectants used against bacteriophage
phi 6, most were statistically significantly different from one

Frontiers in Public Health | www.frontiersin.org 3 December 2021 | Volume 9 | Article 783832

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Bailey et al. Essential Oil Disinfection of Coronavirus Surrogates

TABLE 2 | Tukey’s multiple comparison test of the relationship between log10 reduction means by disinfectant and surface type.

Laminate Stainless Steel Ceramic

Disinfectant Mean Difference P− Value Mean Difference P− Value Mean Difference P− Value

Comparison (95% Confidence Interval) (95% Confidence Interval) (95% Confidence Interval)

Phi 6

1 vs. 2 1.36 (0.30, 2.41) 0.015* 2.82 (1.60, 4.04) < 0.001* 1.62 (0.57, 2.67) 0.005*

1 vs. 3 2.18 (1.12, 3.23) 0.001* 2.33 (1.12, 3.56) 0.001* −0.45 (−1.50, 0.60) 0.54

1 vs. 4 −4.14 (−5.20,−3.08) < 0.001* −2.85 (−4.07,−1.63) < 0.001* −2.63 (−3.68,−1.58) < 0.001*

2 vs. 3 0.82 (−0.23, 1.89) 0.14 −0.48 (−1.70, 0.74) 0.61 −2.07 (−3.12,−1.03) 0.001*

2 vs. 4 −5.50 (−6.55,−4.44) < 0.001* −5.67 (−6.89,−4.45) < 0.001* −4.25 (−5.30,−3.20) < 0.001*

3 vs. 4 −6.32 (−7.38,−5.26) < 0.001* −5.18 (−6.40,−3.97) < 0.001* −2.18 (−3.23,−1.13) 0.001*

S. aureus

1 vs. 2 −0.35 (−2.24, 1.54) 0.93 1.88 (−0.02, 3.79) 0.05 0.90 (−1.37, 3.16) 0.61

1 vs. 3 0.54 (−1.35, 2.42) 0.80 2.46 (0.56, 4.37) 0.014* 0.11 (−2.16, 2.37) 1.00

1 vs. 4 0.86 (−1.03, 2.74) 0.51 1.80 (−0.10, 3.71) 0.06 0.58 (−1.68, 2.84) 0.84

2 vs. 3 0.89 (−1.00, 2.77) 0.48 0.58 (−1.33, 2.48) 0.77 −0.79 (−3.05, 1.48) 0.69

2 vs. 4 1.21 (−0.68, 3.09) 0.25 −0.08 (−1.99, 1.82) 1.00 −0.32 (−2.58, 1.95) 0.97

3 vs. 4 0.32 (−1.57, 2.21) 0.95 −0.66 (−2.57, 1.24) 0.69 0.47 (−1.79, 2.74) 0.91

*Significant at the 0.05 level.

another based on mean log10 reduction analysis. Disinfectants
that were not different include disinfectant 2 and 3 on laminate
and stainless-steel surfaces and disinfectants 1 and 3 on
ceramic surfaces.

DISCUSSION

In this study, we found that essential oil disinfectants were
able to reduce bacterial and viral microorganisms up to 6
log10 PFU for bacteriophage phi 6 and up to 4 log10 CFU
for S. aureus. There was a statistically significant difference by
Tukey’s Multiple Comparison Test between all disinfectants and
disinfectant 4 for phi 6. This result indicates that disinfectant 4
(5% Anti-COV19VERS4 in 95% ethanol) was the most effective
for reducing bacteriophage phi 6 on all surfaces considered.
For S. aureus, there was not one disinfectant that was clearly
the most effective. There was a statistically significant difference
between disinfectants 1 and 3 on the stainless steel surface, but
this is primary due to the high efficacy of disinfectant 1 on
this surface. During the coronavirus pandemic, there has been
increased attention to surface disinfection methods, particularly
in common areas and highly trafficked surfaces. The application
of spray disinfectants, such as those examined in this study,
provide a rapid and effective means to reduce bacterial and viral
contamination on these surfaces.

Previous studies have determined that human coronaviruses
can survive on dry surfaces for up to 9 days (8, 10), and that
SARS-CoV-2 in particular is viable on plastic and stainless steel
for up to 72 h after aerosol contact (11). Despite this, SARS-CoV-
2 is readily inactivated by lipid solvents; and multiple studies
have evaluated the efficacy of ethanol at various concentrations
(29) against viral agents. In suspension tests with ethanol,
concentrations of SARS-CoV has been shown to be reduced>5.5

log10 tissue culture infectious doses (30). On surfaces, including
porcelain and ceramic, spray applications ethanol have shown
an inverse relationship between log10 reduction and ethanol
concentration. A recent study has shown that 95% ethanol was
only able to achieve ∼2 log10 reductions in infectivity (31),
indicating that the blend of essential oils examined in this study
is more effective in combination with ethanol than the lipid
solvent alone. Although surfaces are no longer considered a high
risk fomite for COVID-19 transmission (8), the disinfection of
microorganisms on surfaces remains an important consideration
for high touch areas in hospitals, waiting rooms, etc. Recently
detected and continually evolving variants of SARS-CoV-2,
such as the delta variant, may have greater transmissibility. As
transmission of SARS-CoV-2 variants on surfaces has not yet
been examined and it has been proposed the viral load of the
SARS-CoV-2 virus in individuals infected with these strains of
the virus is higher than with previous variants (32), it will
be important to continue with multilayered control measures
and surface cleaning procedures. The use of essential oils as
disinfectants and the results presented here provide important
context in light of the current coronavirus pandemic. As variants
continue to emerge, new technologies and methods of delivering
disinfectants are important to preventing the spread of pathogens
on surfaces and through contact with fomites. As our results
show, the use of dilute essential oil blends on surfaces may
be an alternative for high concentration lipid solvents in some
situations, as we determined similar log10 reductions during
spray application.

Antimicrobial properties of essential oils have been previously
evaluated for both bacteria and viruses (33). Despite this, the
mechanism of action of essential oil inactivation or disinfection is
not fully understood. Although not the primary focus of our pilot
study, previous research has suggested that potential mechanisms
for viral inactivation with essential oils may be due to either
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damage to virus particles and the inhibition of virus adsorption
to host cells (33). In work with influenza A, an enveloped virus,
authors concluded that essential oils did not prevent adsorption
of virus to host cells (23, 34); however, in work with herpes
simplex virus, a non-enveloped virus, other researchers proposed
that the mechanism of action was direct binding to the virus
and inhibition of virus adsorption to the host cells (35–37). In
our work with essential oil blends, it is clear that inactivation
is occurring on surfaces spiked with microorganisms, but it is
outside of the scope of this pilot study to elucidate mechanisms
of action for the essential oil blends.

Limitations of our study include the use of a bacteriophage
instead of the evaluation of a viral pathogen. However, there
is evidence that bacteriophage phi 6 is a reliable model for
the survival of coronaviruses under various conditions (38–42).
Further research is recommended to include additional viruses,
such as SARS-CoV-2 and influenza viruses. A second limitation
includes the use of only one type of spray application of these
disinfectants. It may be that there are other delivery methods that
are more effective in applying or distributing these essential oil
disinfectants. Our primary goal was to conduct a pilot study to
evaluate the efficacy of the disinfectants on microorganisms, but
future work should evaluate the delivery method.

Our results suggest that the application of dilute
essential oil disinfectants by using a spray delivery device
is an effective way to reduce concentrations of viral and
bacterial microorganisms on ceramic, stainless steel, and
laminate surfaces. Additional studies are needed to evaluate
the utility of these sprays in community settings and to

optimize the method of delivery in the decontamination
of surfaces.
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