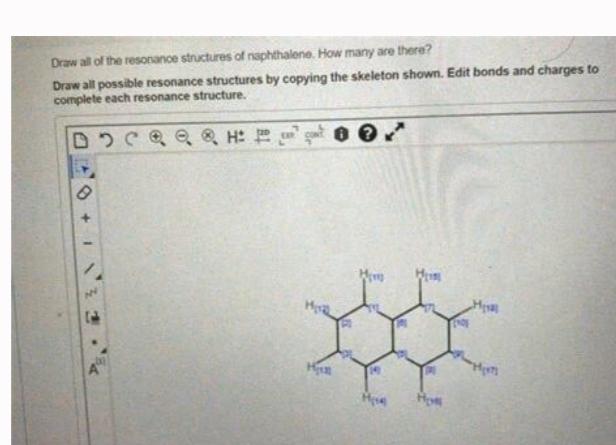
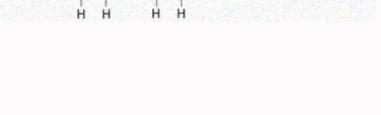
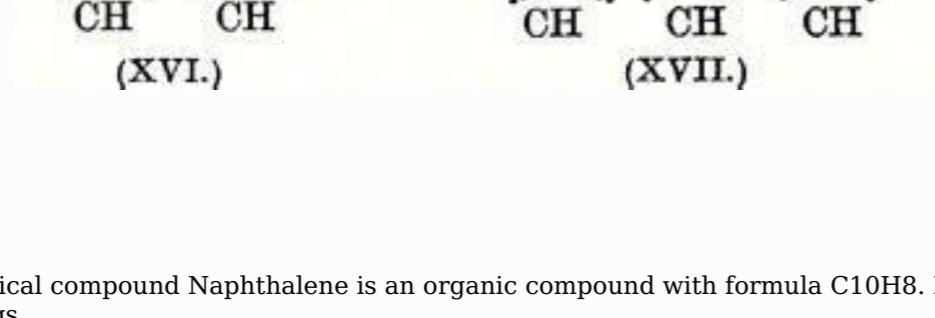

I am not a robot!

Naphthalene lewis dot structure


N13 lewis dot structure. Lewis structure of naphthalene. What is the structure of naphthalene.


History In the early 1820s, two separate reports described a white solid with a pungent odor derived from the distillation of coal tar. In 1821, John Kidd cited these two disclosures and then described many of this substance's properties and the means of its production.

History In the early 1820s, two separate reports described a white solid with a pungent odor derived from the distillation of coal tar. In 1821, John Kidd cited these two disclosures and then described many of this substance's properties and the means of its production. He proposed the name naphthaline, as it had been derived from a kind of naphtha (a broad term encompassing any volatile, flammable liquid hydrocarbon mixture, including coal tar).^[16] Naphthalene's chemical formula was determined by Michael Faraday in 1826. The structure of two fused benzene rings was proposed by Emil Erlenmeyer in 1866,^[17] and confirmed by Carl Gräbe three years later.^[18] Physical properties A naphthalene molecule can be viewed as the fusion of a pair of benzene rings. (In organic chemistry, rings are fused if they share two or more atoms.) As such, naphthalene is classified as a benzenoid polycyclic aromatic hydrocarbon (PAH).^[19] The eight carbon atoms that are not shared by the two rings carry one hydrogen atom each. For purpose of the standard IUPAC nomenclature of derived compounds, those eight atoms are numbered 1 through 8 in sequence around the perimeter of the molecule, starting with a carbon atom adjacent to a shared one. The shared carbon atoms are labeled 4a (between 4 and 5) and 8a (between 8 and 1).^[20] Molecular geometry The molecule is planar, like benzene. Unlike benzene, the carbon–carbon bonds in naphthalene are not of the same length. The bonds C1–C2, C3–C4, C5–C6 and C7–C8 are about 1.37 Å (137 pm) in length, whereas the other carbon–carbon bonds are about 1.42 Å (142 pm) long. This difference, established by X-ray diffraction,^[21] is consistent with the valence bond model in naphthalene and in particular, with the theorem of cross-conjugation. This theorem would describe naphthalene as an aromatic benzene unit bonded to a diene but not extensively conjugated to it (at least in the ground state), which is consistent with two of its three resonance structures. Because of this resonance, the molecule has bilateral symmetry across the plane of the shared carbon pair, as well as across the plane that bisects bonds C2–C3 and C6–C7, and across the plane of the carbon atoms. Thus there are two sets of equivalent hydrogen atoms: the alpha positions, numbered 1, 4, 5, and 8, and the beta positions, 2, 3, 6, and 7. Two isomers are then possible for mono-substituted naphthalenes, corresponding to substitution at an alpha or beta position. Azulene Structural isomers of naphthalene that have two fused aromatic rings include azulene, which has a 5-7 fused ring system, and Bicyclo[6.2.0]decapentaene which has a fused 4-8 ring system.^[22] The point group symmetry of naphthalene is D_{2h}. Electrical conductivity Pure crystalline naphthalene is a moderate insulator at room temperature, with resistivity of about 10¹² Ω m.



energy (ΔfH_θ) 201.585 kJ/mol[4] Std enthalpy of combustion (ΔcH_θ 298) -51.563 kJ/mol[4] Hazards Occupational safety and health (OHS/OSH): Main hazards Flammable, sensitizer, possible carcinogen.[12] Dust can form explosive mixtures with air GHS labelling: Pictograms [11] Signal word Danger Hazard statements H228, H302, H351, H410[11] Precautionary statements P210, P273, P281, P501[11] NFPA 704 (fire diamond) 2 2 0 Flash point 80 °C (176 °F, 353 K)[11] Autoignition temperature 525 °C (977 °F, 798 K)[11] Explosive limits 5.9%[11] Threshold limit value (TLV) 10 ppm[4] (TWA), 15 ppm[4] (STEL) Lethal dose or concentration (LD₅₀, LC₅₀) LD50 (median dose) 1800 mg/kg (rat, oral)[490 mg/kg (rat, intravenous)[12] 200 mg/kg (guinea pig, oral)[533 mg/kg (mouse, oral)[14] NIOSH (US health exposure limits): PEL (Permissible) TWA 10 ppm (50 mg/m³)[13] REL (Recommended) TWA 10 ppm (50 mg/m³) ST 15 ppm (75 mg/m³)[13] IDLH (Immediate danger) 250 ppm[13] Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). N verify (what is YN ?) Infobox references Chemical compound Naphthalene is an organic compound with formula C₁₀H₈. It is the simplest polycyclic aromatic hydrocarbon, and is a white crystalline solid with a characteristic odor that is detectable at concentrations as low as 0.08 ppm by mass.[15] As an aromatic hydrocarbon, naphthalene's structure consists of a fused pair of benzene rings. It is the main ingredient of traditional mothballs. History In the early 1820s, two separate reports described a white solid with a pungent odor derived from the distillation of coal tar. In 1821, John Kidd cited these two disclosures and then described many of this substance's properties and the means of its production. He proposed the name naphthalene, as it had been derived from a kind of naphtha (a broad term encompassing any volatile, flammable liquid hydrocarbon mixture, including coal tar).[16] Naphthalene's chemical formula was determined by Michael Faraday in 1826. The structure of two fused benzene rings was proposed by Emil Erlenmeyer in 1866.[17] and confirmed by Carl Gräbe three years later.[18] Physical properties A naphthalene molecule can be viewed as the fusion of a pair of benzene rings. (In organic chemistry, rings are fused if they share two or more atoms.) As such, naphthalene is classified as a benzoid polycyclic aromatic hydrocarbon (PAH). [19] The eight carbon atoms that are not shared by the two rings carry one hydrogen atom each. For purpose of the standard IUPAC nomenclature of derived compounds, those eight atoms are numbered 1 through 8 in sequence around the perimeter of the molecule, starting with a carbon atom adjacent to a shared one. The shared carbon atoms are labeled 4a (between 4 and 5) and 8a (between 8 and 1). [20] Molecular geometry The molecule is planar, like benzene. Unlike benzene, the carbon-carbon bonds in naphthalene are not of the same length. The bonds C1-C2, C3-C4, C5-C6 and C7-C8 are about 1.37 Å (137 pm) in length, whereas the other carbon-carbon bonds are about 1.42 Å (142 pm) long. This difference, established by X-ray diffraction,[21] is consistent with the valence bond model in naphthalene and in particular, with the theorem of cross-conjugation. This theorem would describe naphthalene as an aromatic compound with a fused pair of benzene rings, that is, with a bisulphide symmetry across the plane of the shared carbon pair, as well as across the plane that bisects bonds C2-C3 and C6-C7, and across the plane of the carbon atoms. Thus there are two sets of equivalent hydrogen atoms: the alpha positions, numbered 1, 4, 5, and 8, and the beta positions, 2, 3, 6, and 7. Two isomers are then possible for mono-substituted naphthalenes, corresponding to substitution at an alpha or beta position. Azulene Structural isomers of naphthalene that have two fused aromatic rings include azulene, which has a 5-7 fused ring system, and Bicyclo[6.2.0]decapentaene which has a fused 4-8 ring system.[22] The point group symmetry of naphthalene is D_{2h}. Electrical conductivity Pure crystalline naphthalene is a moderate insulator at room temperature, with resistivity of about 1012 Ω m. Both in the liquid and in the solid, the resistivity depends on temperature as $\rho = \rho_0 \exp(E/kT)$, where ρ_0 (Ω m) and E (eV) are constant parameters, k is Boltzmann's constant (8.617 × 10⁻⁵ eV/K), and T is absolute temperature (K). The parameter E is 0.73 in the solid. However, the solid shows semiconducting character below 100 K.[23][24] Chemical properties Reactions with electrophiles In electrophilic aromatic substitution reactions, naphthalene reacts more readily than benzene. For example, chlorination and bromination of naphthalene proceeds without a catalyst to give 1-chloronaphthalene and 1-bromonaphthalene, respectively. Likewise, whereas both benzene and naphthalene can be alkylated using Friedel-Crafts reaction conditions, naphthalene can also be easily alkylated by reaction with alkenes or alcohols, using sulfuric or phosphoric acid catalysts.[25] In terms of regiochemistry, electrophiles attack at the alpha position. The selectivity for alpha over beta substitution can be rationalized in terms of the resonance structures of the intermediate: for the alpha substitution intermediate, seven resonance structures can be drawn, of which four preserve an aromatic ring. For beta substitution, the intermediate has only six resonance structures, and only two of these are aromatic. Sulfonation gives the "alpha" product naphthalene-1-sulfonic acid as the thermodynamic product. The 1-isomer forms predominantly at 25 °C, and the 2-isomer at 160 °C. Sulfonation to give the 1- and 2-sulfonic acid occurs readily: H₂SO₄ + C₁₀H₈ → C₁₀H₇SO₃H + H₂O. Further sulfonation give di-, tri-, and tetrasulfonic acids. Lithiation Analogous to the synthesis of phenyllithium is the conversion of 1-bromonaphthalene to 1-lithionaphthalene, by lithium-halogen exchange: C₁₀H₇Br + BuLi → C₁₀H₇Li + BuBr. The resulting lithionaphthalene undergoes a second lithiation, in contrast to the behavior of phenyllithium. These 1,8-dilithio derivatives are precursors to a host of peri-naphthalene derivatives.[26] Reduction and oxidation With alkali metals, naphthalene forms the dark blue-green radical anion salts such as sodium naphthalene, Na-C₁₀H₈-.

C₁₀H₈ naphthalene The naphthalene compound may be called differently depending on the various different situations of industrial applications. Below are the list of the other names (synonyms) of naphthalene including the various registry numbers, if available: BBV-76024228 72931-45-4 Naphthalene solution, certified reference material, 5000 mg/mL in methanol Naphthalene solution, certified reference material, 200 mg/mL in methanol Naphthalene, United States Pharmacopeia (USP) Reference Standard Naphthalene solution, 100 ng/mL in cyclohexane, analytical standard Naphthalene, pharmaceutical secondary standard; traceable to USP Naphthalene, crude or refined [UN1334] [Flammable solid] Naphthalene, crude or refined [UN1334] [Flammable solid] Naphthalene, certified reference material, TraceCERT(R) F0001-2217 SR-01000854997-2 Melting point standard 79-81°C, analytical standard 114-6949 Naphthalene, molten [UN2304] [Flammable solid] Naphthalene, molten [UN2304] [Flammable solid] L001166 Naphthalene, suitable for scintillation, >=99% S0672 N0885 N0004 Bicyclo[4.4.0]deca-1,3,7,9-penta-naphthalene, SA1 first grade, >>98.0% S056 68412-25-9 20 2340 UN 1334 RTR-003288 Naphthalene, for synthesis, 98.5% BBDM50159249 ANW-39567 LTBB002419 HMs3039N15 2166N72UN Naphthalene, 99.5% 500 BIDD:ER0665 NAPHTHALENE- D8 Naphthalene, di-C₅-6-alkyl derivs. Naphthalene, 98% Naphthalene, crude 2-naphthalenyl 1-naphthalenyl Naphthal Group moth flaker naphthalin mothball antitits Di(C₅-C₆)alkylnaphthalene NPY CAS-91-20-3 Naphthalene-1,2,3,4-13C4 NAPHTHALENE [1-14C] Naphthalene, analytical standard MFC00001742 Naphthalene, 99% Naphthalene, crude or refined EPA Pesticide Chemical Code 055801 RCRA waste no. U165 Naphthalene (molten) Naphthalene, pure Naphthalene [BSI:ISO] Mothballs naphthalin naphthalin Caswell No. 587 Naftalen [Polish] naphthalene Mighty RD1 RCRA waste number U165 Naftalen Mighty 150 Dezodorator naphthalene Tar camphor Moth balls Naphthalin White Tar camphor Tar Naphthalin Naphthalin, antimite, albacarbon, hexane, mothballs, moth flakes[11] Identifiers CAS Number 91-20-3 Y3D model (JSmol) Interative image Beilstein Reference 1421310 Chebi16482 Y ChEMBL CheMBL16293 Y ChemSpider906 Y ECHA InfoCard 100.001.863 EC Number 214-552-7 Gmelin Reference 3347 KEGG C00829 Y PubChem CID 931 RTECS number QJ0525000 UNII 2166N72UN CompTox Dashboard (EPA) DTXSID8020913 InChI InChI=1S/C10H8-1-2-6-10-8-4-3-7-9(10)5-1h1-8H YKey: UFWIBTONFRDIAS-UHFFFAOYAS-N YInChI=1/C10H8-1-2-6-10-8-4-3-7-9(10)5-1h1-8HKey: UFWIBTONFRDIAS-UHFFFAOYAS-CMILES c1c2ccc2cc1 Properties Chemical formula C10H₈ Molar mass 128.174 g·mol⁻¹ Appearance White solid crystals/flakes Odor Strong odor of coal tar or mothballs Density 1.145 g/cm³ (20 °C)[4] 0.9625 g/cm³ (100 °C)[3] Melting point 78.2 °C (172.8 °F, 351.3 K) 80.26 °C (176.47 °F, 353.41 K) at 760 mmHg[3] Solubility in water 19 mg/L (10 °C) 31.6 mg/L (25 °C) 43.9 mg/L (50 °C) 80.9 mg/L (70 °C) 238.1 mg/L (73.4 °C) [5] Solubility Soluble in alcohols, liquid ammonia, Carboxylic acids, C6H6, SO₂[5] CC14, CS2, toluene, aniline[6] Solubility in ethanol 5 g/100 g (0 °C) 11.3 g/100 g (25 °C) 19.5 g/100 g (40 °C) 179 g/100 g (70 °C) [6] Solubility in acetone 6.8 g/100 g (6.75 °C) 13.1 g/100 g (21.5 °C) 111 g/100 g (60 °C) [6] Solubility in chloroform 19.5 g/100 g (0 °C) 35.5 g/100 g (25 °C) 49.0 g/100 g (40 °C) 87.2 g/100 g (70 °C) [6] Solubility in hexane 5.5 g/100 g (0 °C) 17.5 g/100 g (25 °C) 30.8 g/100 g (40 °C) 78.8 g/100 g (70 °C) [6] Solubility in butyric acid 13.6 g/100 g (6.75 °C) 22.1 g/100 g (21.5 °C) 131.6 g/100 g (60 °C) [6] log P 3.34[4] Vapor pressure 8.64 Pa (20 °C) 23.6 Pa (30 °C) 0.93 kPa (80 °C) [5] 2.5 kPa (100 °C) [7] Henry's lawconstant (kH) 0.42438 L·atm/mol[4] Magnetic susceptibility (χ) -91.9-10-6 cm³/mol Thermal coefficient 98.9 K/m² W/m² K (372.27 K) 0.1174 W/m² K (402.22 K) 0.1152 W/m² K (418.37 K) 0.1052 W/m² K (479.72 K) [8] Refractive index (nD) 1.58984[4] Viscosity 0.964 cP (80 °C) 0.761 cP (100 °C) 0.217 cP (150 °C)[9] Structure Crystal structure Monoclinic[10] Space group P21/b[10] Point group C52h[10] Lattice constant a = 8.235 Å, b = 6.003 Å, c = 8.658 Å[10] a = 90°, β = 122.92°, γ = 90° Thermochemical Heat capacity (C) 165.72 J/mol·K[4] Std molar entropy (S) 298.167 39.1 J/mol·K[4] Std enthalpy of formation (ΔH_f) 298.78.53 J/mol[4] Gibbs free energy (ΔG) 201.588 kJ/mol[4] Std enthalpy of combustion (ΔcH_f) 298.5156.3 kJ/mol[4] Hazards Occupational and health (OHS/OSH): Main hazards Flammable, sensitizer, possible carcinogen.[12] Can form explosive mixtures with air GHS labelling: Pictograms [11] Signal word Danger Hazard statements H228, H302, H351, H410[11] Precautionary statements P210, P273, P281, P501[11] NFPA 704 (fire diamond) 2 2 0 Flash point 80 °C (176 °F, 353 K)[11] Autoignition temperature 525 °C (977 °F, 798 K)[11] Explosive limits 5.9%[11] Threshold limit value (TLV) 10 ppm[4] (TWA), 15 ppm[4] (STEL) Lethal dose or concentration (LD₅₀, LC₅₀) LD50 (median dose) 1800 mg/kg (rat, oral)[490 mg/kg (rat, intravenous)[12] 200 mg/kg (guinea pig, oral)[533 mg/kg (mouse, oral)[14] NIOSH (US health exposure limits): PEL (Permissible) TWA 10 ppm (50 mg/m³) ST 15 ppm (75 mg/m³)[13] IDLH (Immediate danger) 250 ppm[13] Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). N verify (what is YN ?) Infobox references Chemical compound Naphthalene is an organic compound with formula C₁₀H₈. It is the simplest polycyclic aromatic hydrocarbon, and is a white crystalline solid with a characteristic odor that is detectable at concentrations as low as 0.08 ppm by mass.[15] As an aromatic hydrocarbon, naphthalene's structure consists of a fused pair of benzene rings. It is the main ingredient of traditional mothballs. History In the early 1820s, two separate reports described a white solid with a pungent odor derived from the distillation of coal tar. In 1821, John Kidd cited these two disclosures and then described many of this substance's properties and the means of its production. He proposed the name naphthalene, as it had been derived from a kind of naphtha (a broad term encompassing any volatile, flammable liquid hydrocarbon mixture, including coal tar).[16] Naphthalene's chemical formula was determined by Michael Faraday in 1826. The structure of two fused benzene rings was proposed by Emil Erlenmeyer in 1866.[17] and confirmed by Carl Gräbe three years later.[18] Physical properties A naphthalene molecule can be viewed as the fusion of a pair of benzene rings. (In organic chemistry, rings are fused if they share two or more atoms.) As such, naphthalene is classified as a benzoid polycyclic aromatic hydrocarbon (PAH). [19] The eight carbon atoms that are not shared by the two rings carry one hydrogen atom each. For purpose of the standard IUPAC nomenclature of derived compounds, those eight atoms are numbered 1 through 8 in sequence around the perimeter of the molecule, starting with a carbon atom adjacent to a shared one. The shared carbon atoms are labeled 4a (between 4 and 5) and 8a (between 8 and 1). [20] Molecular geometry The molecule is planar, like benzene. Unlike benzene, the carbon-carbon bonds in naphthalene are not of the same length. The bonds C1-C2, C3-C4, C5-C6 and C7-C8 are about 1.37 Å (137 pm) in length, whereas the other carbon-carbon bonds are about 1.42 Å (142 pm) long. This difference, established by X-ray diffraction,[21] is consistent with the valence bond model in naphthalene and in particular, with the theorem of cross-conjugation. This theorem would describe naphthalene as an aromatic compound with a fused pair of benzene rings, that is, with a bisulphide symmetry across the plane of the shared carbon pair, as well as across the plane that bisects bonds C2-C3 and C6-C7, and across the plane of the carbon atoms. Thus there are two sets of equivalent hydrogen atoms: the alpha positions, numbered 1, 4, 5, and 8, and the beta positions, 2, 3, 6, and 7. Two isomers are then possible for mono-substituted naphthalenes, corresponding to substitution at an alpha or beta position. Azulene Structural isomers of naphthalene that have two fused aromatic rings include azulene, which has a 5-7 fused ring system, and Bicyclo[6.2.0]decapentaene which has a fused 4-8 ring system.[22] The point group symmetry of naphthalene is D_{2h}. Electrical conductivity Pure crystalline naphthalene is a moderate insulator at room temperature, with resistivity of about 1012 Ω m. Both in the liquid and in the solid, the resistivity depends on temperature as $\rho = \rho_0 \exp(E/kT)$, where ρ_0 (Ω m) and E (eV) are constant parameters, k is Boltzmann's constant (8.617 × 10⁻⁵ eV/K), and T is absolute temperature (K). The parameter E is 0.73 in the solid. However, the solid shows semiconducting character below 100 K.[23][24] Chemical properties Reactions with electrophiles In electrophilic aromatic substitution reactions, naphthalene reacts more readily than benzene. For example, chlorination and bromination of naphthalene proceeds without a catalyst to give 1-chloronaphthalene and 1-bromonaphthalene, respectively. Likewise, whereas both benzene and naphthalene can be alkylated using Friedel-Crafts reaction conditions, naphthalene can also be easily alkylated by reaction with alkenes or alcohols, using sulfuric or phosphoric acid catalysts.[25] In terms of regiochemistry, electrophiles attack at the alpha position. The selectivity for alpha over beta substitution can be rationalized in terms of the resonance structures of the intermediate: for the alpha substitution intermediate, seven resonance structures can be drawn, of which four preserve an aromatic ring. For beta substitution, the intermediate has only six resonance structures, and only two of these are aromatic. Sulfonation gives the "alpha" product naphthalene-1-sulfonic acid as the thermodynamic product. The 1-isomer forms predominantly at 25 °C, and the 2-isomer at 160 °C. Sulfonation to give the 1- and 2-sulfonic acid occurs readily: H₂SO₄ + C₁₀H₈ → C₁₀H₇SO₃H + H₂O. Further sulfonation give di-, tri-, and tetrasulfonic acids. Lithiation Analogous to the synthesis of phenyllithium is the conversion of 1-bromonaphthalene to 1-lithionaphthalene, by lithium-halogen exchange: C₁₀H₇Br + BuLi → C₁₀H₇Li + BuBr. The resulting lithionaphthalene undergoes a second lithiation, in contrast to the behavior of phenyllithium. These 1,8-dilithio derivatives are precursors to a host of peri-naphthalene derivatives.[26] Reduction and oxidation With alkali metals, naphthalene forms the dark blue-green radical anion salts such as sodium naphthalene, Na-C₁₀H₈-.

The most stable or mean phases of naphthalene and anthracene are shown in (XVI) and (XVII) respectively,

N verify (what is YN ?) Infobox references Chemical compound Naphthalene is an organic compound with formula C₁₀H₈. It is the simplest polycyclic aromatic hydrocarbon, and is a white crystalline solid with a characteristic odor that is detectable at concentrations as low as 0.08 ppm by mass.[15] As an aromatic hydrocarbon, naphthalene's structure consists of a fused pair of benzene rings.

It is the main ingredient of traditional mothballs. History In the early 1820s, two separate reports described a white solid with a pungent odor derived from the distillation of coal tar. In 1821, John Kidd cited these two disclosures and then described many of this substance's properties and the means of its production. He proposed the name naphthalene, as it had been derived from a kind of naphtha (a broad term encompassing any volatile, flammable liquid hydrocarbon mixture, including coal tar).[16] Naphthalene's chemical formula was determined by Michael Faraday in 1826. The structure of two fused benzene rings was proposed by Emil Erlenmeyer in 1866.[17] and confirmed by Carl Gräbe three years later.[18] Physical properties A naphthalene molecule can be viewed as the fusion of a pair of benzene rings. (In organic chemistry, rings are fused if they share two or more atoms.) As such, naphthalene is classified as a benzoid polycyclic aromatic hydrocarbon (PAH). [19] The eight carbon atoms that are not shared by the two rings carry one hydrogen atom each. For purpose of the standard IUPAC nomenclature of derived compounds, those eight atoms are numbered 1 through 8 in sequence around the perimeter of the molecule, starting with a carbon atom adjacent to a shared one. The shared carbon atoms are labeled 4a (between 4 and 5) and 8a (between 8 and 1). [20] Molecular geometry The molecule is planar, like benzene. Unlike benzene, the carbon-carbon bonds in naphthalene are not of the same length. The bonds C1-C2, C3-C4, C5-C6 and C7-C8 are about 1.37 Å (137 pm) in length, whereas the other carbon-carbon bonds are about 1.42 Å (142 pm) long. This difference, established by X-ray diffraction,[21] is consistent with the valence bond model in naphthalene and in particular, with the theorem of cross-conjugation. This theorem would describe naphthalene as an aromatic compound with a fused pair of benzene rings, that is, with a bisulphide symmetry across the plane of the shared carbon pair, as well as across the plane that bisects bonds C2-C3 and C6-C7, and across the plane of the carbon atoms. Thus there are two sets of equivalent hydrogen atoms: the alpha positions, numbered 1, 4, 5, and 8, and the beta positions, 2, 3, 6, and 7. Two isomers are then possible for mono-substituted naphthalenes, corresponding to substitution at an alpha or beta position. Azulene Structural isomers of naphthalene that have two fused aromatic rings include azulene, which has a 5-7 fused ring system, and Bicyclo[6.2.0]decapentaene which has a fused 4-8 ring system.[22] The point group symmetry of naphthalene is D_{2h}. Electrical conductivity Pure crystalline naphthalene is a moderate insulator at room temperature, with resistivity of about 1012 Ω m. Both in the liquid and in the solid, the resistivity depends on temperature as $\rho = \rho_0 \exp(E/kT)$, where ρ_0 (Ω m) and E (eV) are constant parameters, k is Boltzmann's constant (8.617 × 10⁻⁵ eV/K), and T is absolute temperature (K). The parameter E is 0.73 in the solid. However, the solid shows semiconducting character below 100 K.[23][24] Chemical properties Reactions with electrophiles In electrophilic aromatic substitution reactions, naphthalene reacts more readily than benzene. For example, chlorination and bromination of naphthalene proceeds without a catalyst to give 1-chloronaphthalene and 1-bromonaphthalene, respectively. Likewise, whereas both benzene and naphthalene can be alkylated using Friedel-Crafts reaction conditions, naphthalene can also be easily alkylated by reaction with alkenes or alcohols, using sulfuric or phosphoric acid catalysts.[25] In terms of regiochemistry, electrophiles attack at the alpha position. The selectivity for alpha over beta substitution can be rationalized in terms of the resonance structures of the intermediate: for the alpha substitution intermediate, seven resonance structures can be drawn, of which four preserve an aromatic ring. For beta substitution, the intermediate has only six resonance structures, and only two of these are aromatic. Sulfonation gives the "alpha" product naphthalene-1-sulfonic acid as the thermodynamic product. The 1-isomer forms predominantly at 25 °C, and the 2-isomer at 160 °C. Sulfonation to give the 1- and 2-sulfonic acid occurs readily: H₂SO₄ + C₁₀H₈ → C₁₀H_{7</}

structure not feasible? Draw an acceptable Lewis structure for acetaldehyde. Show the formal charges of all nonhydrogen atoms in both the correct and incorrect structures. Draw the most likely structure for HCN based on formal charges, showing the formal charge on each atom in your structure. Does this compound have any plausible resonance structures? If so, draw one.

Draw the most plausible Lewis structure for NO_3^- . Does this ion have any other resonance structures? Draw at least one other Lewis structure for the nitrate ion that is not plausible based on formal charges. At least two Lewis structures can be drawn for BCl_3 . Using arguments based on formal charges, explain why the most likely structure is the one with three B-Cl single bonds. Use arguments based on formal charges, explain why the most feasible Lewis structure for SO_4^{2-} has two sulfur-oxygen double bonds. At least two distinct Lewis structures can be drawn for N_3^- . Use arguments based on formal charges to explain why the most likely structure contains a nitrogen-nitrogen double bond. Is H-O-N=O a reasonable structure for the compound HNO_2 ? Justify your answer using Lewis electron dot structures. Is H-O=C-H a reasonable structure for a compound with the formula CH_2O ? Use Lewis electron dot structures to justify your answer. Explain why the following Lewis structure for SO_3^{2-} is or is not reasonable. Draw all the resonance structures for each ion.