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Preface to the Sixth English Edition

This sixth English edition is based on the fifth English edition (2007) and corresponds to the improved
seventh (2008), eighth (2012) and ninth (2013) German edition. It contains all the chapters of the
mentioned editions, but in a renewed, revised and extended form (see also the preface to the fifth English
edition).

Special new parts to be mentioned here are such supplementary sections as Geometric and Coordinate
Transformations and Plain Projections in Chapter on Geometry, as Quaternions and Applications in
Chapter on Linear Algebra, as Lie Groups and Lie Algebras in Chapter on Algebra and Discrete Math-
ematics and as Matlab in Chapter on Numerical Analysis. The Chapter on Computer Algebra Systems
is restricted to Mathematica only as a representative example for such systems.

Extended and revised paragraphs are given in Chapter on Geometry about Cardan and Euler angles
and about Coordinate transformations, in Chapter on Integral Calculus about Applications of Definite
Integrals, in Chapter on Optimization about Evaluation Strategies, in Chapter on Tables about Natural
Constants and Physical Units (System SI). The Index has been completed to an extent as in the previous
German editions.

We would like to cordially thank all readers and professional colleagues who helped us with their valu-
able statements, remarks and suggestions on the German editions of the book during the revision pro-
cess. Special thanks go to Mrs. Professor Dr. Gabriella Szép (Budapest), who made this English
edition possible by valuable contributions and the basic translation into the English. Furthermore our
thanks go to all co-authors for the critical treatment of their chapters.

Dresden, December 2014

Prof. Dr. GERHARD MUSIOL Prof. Dr. HEINER MUHLIG

Preface to the Fifth English Edition

This fifth edition is based on the fourth English edition (2003) and corresponds to the improved sixth
German edition (2005). It contains all the chapters of the both mentioned editions, but in a renewed
revised and extended form.

So in the work at hand, the classical areas of Engineering Mathematics required for current practice are
presented, such as “Arithmetic”, “Functions”, “Geometry”, “Linear Algebra”, “Algebra and Discrete
Mathematics”, (including “Logic”, “Set Theory”, “Classical Algebraic Structures”, “Finite Fields”,
“Elementary Number Theory”, ” Cryptology”, “Universal Algebra”, “Boolean Algebra and Switch Al-
gebra”, “Algorithms of Graph Theory”, “Fuzzy Logic”), “Differentiation”, “Integral Calculus”, “Dif-
ferential Equations”, “Calculus of Variations”, “Linear Integral Equations”, “Functional Analysis”,
“Vector Analysis and Vector Fields”, “Function Theory”, “Integral Transformations”, “Probability
Theory and Mathematical Statistics”.

Fields of mathematics that have gained importance with regards to the increasing mathematical mod-
eling and penetration of technical and scientific processes also receive special attention. Included
amongst these chapters are “Stochastic Processes and Stochastic Chains” as well as “Calculus of Er-
rors”, “Dynamical Systems and Chaos”, “Optimization”, “Numerical Analysis”, “Using the Com-
puter” and “Computer Algebra Systems”.

The Chapter 21 containing a large number of useful tables for practical work has been completed by
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. adding tables with the physical units of the International System of Units (SI).
Dresden, February 2007

Prof. Dr. GERHARD MUSIOL Prof. Dr. HEINER MUHLIG

From the Preface to the Fourth English Edition

The “Handbook of Mathematics” by the mathematician, I. N. BRONSHTEIN and the engineer, K. A.
SEMENDYAYEV was designed for engineers and students of technical universities. It appeared for the
first time in Russian and was widely distributed both as a reference book and as a text book for colleges
and universities. It was later translated into German and the many editions have made it a permanent
fixture in German-speaking countries, where generations of engineers, natural scientists and others in
technical training or already working with applications of mathematics have used it.

On behalf of the publishing house Harri Deutsch, a revision and a substantially enlarged edition was
prepared in 1992 by Gerhard Musiol and Heiner Miihlig, with the goal of giving ” Bronshtein” the mod-
ern practical coverage requested by numerous students, university teachers and practitioners. The
original style successfully used by the authors has been maintained. It can be characterized as “short,
easily understandable, comfortable to use, but featuring mathematical accuracy (at a level of detail
consistent with the needs of engineers)”*. Since 2000, the revised and extended fifth German edition of
the revision has been on the market. Acknowledging the success that “BRONSTEIN” has experienced
in the German-speaking countries, Springer Verlag Heidelberg/Germany is publishing a fourth English
edition, which corresponds to the improved and extended fifth German edition.

The book is enhanced with over a thousand complementary illustrations and many tables. Special
functions, series expansions, indefinite, definite and elliptic integrals as well as integral transformations
and statistical distributions are supplied in an extensive appendix of tables.

In order to make the reference book more effective, clarity and fast access through a clear structure
were the goals, especially through visual clues as well as by a detailed technical index and colored tabs.

An extended bibliography also directs users to further resources.

Special thanks go to Mrs. Professor Dr. Gabriella Szép (Budapest), who made this English debut ver-
sion possible.
Dresden, June 2003

Prof. Dr. GERHARD MUSIOL Prof. Dr. HEINER MUHLIG

Co-Authors

Some chapters or sections are the result of cooperation with co-authors.

Chapter resp. section Co-author

Spherical Trigonometry (3.4.1 - 3.4.3.3) Dr. H. NICKEL , Dresden

Spherical Curves (3.4.3.4) Prof. L. MARSOLEK, Berlin

Geometric Transformations, Coordinate Trans-

formations, Planar Projections (3.5.4, 3.5.5) Dr. I. STEINERT, Diisseldorf

Quaternions and Applications (4.4) PD Dr. S. BERNSTEIN, Freiberg (Sachsen)

*See Preface to the First Russian Edition
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Logic (5.1), Set Theory (5.2), Classical Algebraic
Structures (5.3), Applications of Groups

(beyond) 5.3.4, 5.3.5.4 - 5.3.5.6), Rings and Fields
(5.3.7), Vector Spaces (5.3.8), Boolean Algebra
and Switch Algebra (5.7), Universal Algebra (5.6)
Group Representation (5.3.4), Applications of
Groups (5.3.5.4 - 5.3.5.6)

Lie-Groups and Lie-Algebras (5.3.6)
Elementary Number Theory (5.4), Cryptology ,
(5.5) Graphs (5.8)

Fuzzy-Logic (5.9)

Important Formulas for the Spherical Bessel
Functions (9.1.2.6, sub-point 2.5)

Statistical Interpretation of the Wave Function
(9.2.4.4)

Non-linear partial Differential Equations:
Solitons, Periodic Patterns and Chaos (9.2.5)
Dissipative Solitons, Light and Dark

Solitons (9.2.5.3, in point 2)

Linear Integral Equations (11)

Functional analysis (12)

Elliptic Functions (14.6)

Dynamical Systems and Chaos (17)

Optimization (18)

Using the Computer: (19.8.1, 19.8.2), Interactive
System: Mathematica (19.8.4.2), Maple (19.8.
4.3), Computeralgebra Systems — Example Mathe-
matica (20)

Interactive System: Matlab (19.8.4.1)
Computeralgebra Systems — Example Mathemati-
ca (20): Revision of the chapter in accordance with
version 10 of Mathematica

Dr. J. BRUNNER, Dresden

Prof. Dr. R. REIF, Dresden
PD Dr. S. BERNSTEIN, Freiberg (Sachsen)

Prof. Dr. U. BAUMANN, Dresden
Prof. Dr. A. GRAUEL, Soest

Prof. Dr. P. Ziesche, Dresden
Prof. Dr. R. REIF, Dresden
Prof. Dr. P. ZIESCHE, Dresden
Dr. J. Brand, Dresden

Dr. I. STEINERT, Diisseldorf
Prof. Dr. M. WEBER, Dresden
Dr. N. M. FLEISCHER f, Moskau

Prof. Dr. V. REITMANN, St. Petersburg
Dr. I. STEINERT, Diisseldorf

Prof. Dr. G. FLACH, Dresden
PD Dr. B. Mulansky, Clausthal

Dr. J. T6th, Budapest

Additional Chapters with Co-Authors inthe CD-ROM
to the Books of the German Editions 7,8 and 9.

Lie-Groups and Lie-Algebras (5.3.5), (5.3.6)
Non-linear Partial Differential Equations:
Inverse Scattering Theory (methods in analogy
to the Fourier method)(9.2.6)

Mathematical Basis of Quantum Mechanics (21)

Prof. Dr. R. Reif, Dresden

Dr. B. Rumpf,
Prof. Dr. A. Buchleitner, PD Dr. M. Tiersch,

Dr. Th. Wellens, Freiburg

Quantencomputer (22)

Prof. Dr. A. Buchleitner, PD Dr. M. Tiersch,

Dr. Th. Wellens, Freiburg
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1 Arithmetics

1.1 Elementary Rules for Calculations

1.1.1 Numbers
1.1.1.1 Natural, Integer, and Rational Numbers

1. Definitions and Notation
The positive and negative integers, fractions, and zero together are called the rational numbers. In
relation to these the following notations are used (see 5.2.1, 1., p. 327):

e  Set of natural numbers: N={0,1,2,3,...},

e Set of integers: 7Z={...,-2,-1,0,1,2,...},

e  Set of rational numbers: Q= {z|z = P with peZ qe€Z and ¢#0}.
q

The notion of natural numbers arose from enumeration and ordering. The natural numbers are also
called the non-negative integers.

2. Properties of the Set of Rational Numbers

e The set of rational numbers is infinite.

e Theset is ordered, i.e., for any two different given numbers a and b one can tell which is the smaller
one.

e The set is dense everywhere, i.e., between any two different rational numbers a and b (a < b) there
is at least one rational number ¢ (a < ¢ < b). Consequently, there is an infinite number of other rational
numbers between any two different rational numbers.

3. Arithmetical Operations

The arithmetical operations (addition, subtraction, multiplication and division) can be performed with
any two rational numbers, and the result is a rational number. The only exception is division by zero,
which is not possible: The operation written in the form a : 0 is meaningless because it does not have
any result: If a # 0, then there is no rational number b such that b-0 = a could be fulfilled, and if a = 0
then b can be any of the rational numbers. The frequently occurring formula @ : 0 = oo (infinity) does
not mean that the division is possible; it is only the notation for the statement: If the denominator
approaches zero and, e.g., the numerator does not, then the absolute value (magnitude) of the quotient
exceeds any finite limit.

4. Decimal Fractions, Continued Fractions

Every rational number a can be represented as a terminating or periodically infinite decimal fraction
or as a finite continued fraction (see 1.1.1.4, p. 3).

5. Geometric Representation

Fixing an origin the zero point 0, a positive direction the orientation, and the unit of length I the
measuring rule, (see also 2.17.1, p. 115 and (Fig. 1.1)), then every rational number a corresponds to
a certain point on this line. This point has the coordinate a, and it is a so-called rational point. The
line is called the numerical axis. Because the set of rational numbers is dense everywhere, between two
rational points there are infinitely many further rational points.

B
11 3, 8
3-7 2 -1 0 152 3 3 AO . K s
1=1 X
Figure 1.1 Figure 1.2
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1.1.1.2 Irrational and Transcendental Numbers
The set of rational numbers is not satisfactory for calculus. Even though it is dense everywhere, it does
not cover the whole numerical axis. If for example the diagonal AB of the unit square rotates around
A so that B goes into the point K, then K does not have any rational coordinate (Fig. 1.2).
The introduction of irrational numbers allows to assign a number to every point of the numerical axis.
In textbooks there are given exact definitions for irrational numbers, e.g., by nests of intervals. For this
survey it is enough to note that the irrational numbers take all the non-rational points of the numerical
axis and every irrational number corresponds to a point of the axis, and that every irrational number
can be represented as a non-periodic infinite decimal fraction.
First of all, the non-integer real roots of the algebraic equation

2"+ ay 0" e Faw+ag =0 (n> 1, integer; integer coefficients), (1.1a)
belong to the irrational numbers. These roots are called algebraic irrationals.
B A: The simplest examples of algebraic irrationals are the real roots of 2" —a = 0 (a > 0), as
numbers of the form {/a, if they are not rational.
B B: V/2=1414..., /10 = 2.154. .. are algebraic irrationals.
The irrational numbers which are not algebraic irrationals are called transcendental.
B A: 7=3.141592... e = 2.718281 ... are transcendental numbers.
B B: The decimal logarithm of the integers, except the numbers of the form 10", are transcendental.
The non-integer roots of the quadratic equation

2?4+ az+ag=0 (a,ao integers) (1.1b)
are called quadratic irrationals. They have the form (a + bv'D)/c (a,b,c integers, ¢ # 0; D > 0,
square-free number).
B The division of a line segment @ in the ratio of the golden section z/a = (a — x)/x (see 3.5.2.3, 3.,
p. 194) leads to the quadratic equation 22 + 2 — 1 = 0, if a = 1. The solution z = (v/5 — 1)/2is a
quadratic irrational. It contains the irrational number /5.

1.1.1.3 Real Numbers
Rational and irrational numbers together form the set of real numbers, which is denoted by R.

1. Most Important Properties

The set of real numbers has the following important properties (see also 1.1.1.1, 2., p. 1). It is:

o Infinite.

e  Ordered.

e Dense everywhere.

o (losed, i.e., every point of the numerical axis corresponds to a real number. This statement does
not hold for the rational numbers.

2. Arithmetical Operations

Arithmetical operations can be performed with any two real numbers and the result is a real number,
too. The only exception is division by zero (see 1.1.1.1, 3., p. 1). Raising to a power and also its
inverse operation can be performed among real numbers; so it is possible to take an arbitrary root of
any positive number; every positive real number has a logarithm for an arbitrary positive basis, except
that 1 cannot be a basis.

A further generalization of the notion of numbers leads us to the concept of complex numbers (see 1.5,
p. 34).

3. Interval of Numbers

A connected set of real numbers with endpoints a and b is called an interval of numbers with endpoints
a and b, where a < b and a is allowed to be —oo and b is allowed to be +oc0. If the endpoint itself does
not belong to the interval, then this end of the interval is open, in the opposite case it is closed.
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An interval is given by its endpoints a and b, putting them in braces: A bracket for a closed end of the
interval and a parenthesis for an open one. It is to be distinguished between open intervals (a, ), half-
open (half-closed) intervals [a,b) or (a,b] and closed intervals [a, b], according to whether none of the
endpoints, one of the endpoints or both endpoints belong to it, respectively. Frequently the notation
Ja, b[ instead of (a,b) for open intervals, and analogously [a, b[ instead of [a,b) is used. In the case of
graphical representations, in this book the open end of the interval is denoted by a round arrow head,
the closed one by a filled point.

1.1.1.4 Continued Fractions

Continued fractions are nested fractions, by which rational and irrational numbers can be represented
and approximated even better than by decimal representation (see 19.8.1.1, p. 1002 and l A and l
Bonp.4).

1. Rational Numbers 1

. LA (1.2)
The continued fraction of a rational number is fi- qa 0 1 : :
nite. Positive rational numbers which are greater ar+ 1
than 1 have the form (1.2). For abbreviation ot —————
. . o4
the symbol % = [ap; a1, as,...,a,] is used with 4y +
a,>1 (k=1,2,...,n). "
The numbers a;, are calculated with the help of the Fuclidean algorithm:
Q:aoJrﬁ <0<Q<1>7 (1.3a)
q q q
4 g+ 2 (0<9<1), (1.3b)
1 1 1
Do+ <0<T—3<1)7 (1.3¢)
T2 T2 T2
2 _ o 4 In <0 < In < 1) , (1.3d)
Trn-1 Tn—1 Tn—1
Tn-1
—— =ay (rp41=0). (1.3¢)
Tn
61 7 1 1
| 27:2+2—7:2+ =2+ T =[23.1,6].
1+
6

2. Irrational Numbers

Continued fractions of irrational numbers do not break off. They are called infinite continued fractions
with [ag; a1, az, . . ..

If some numbers ay, are repeated in an infinite continued fraction, then this fraction is called a periodic
continued fraction or recurring chain fraction. Every periodic continued fraction represents a quadratic
irrationality, and conversely, every quadratic irrationality has a representation in the form of a periodic
continued fraction.

B Thenumber /2 = 1.4142135 . . . is a quadratic irrationality and it has the periodic continued fraction

representation v/2 = [1;2,2,2,.. ].
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3. Aproximation of Real Numbers
If & = [ap; a1, as, . . ] is an arbitrary real number, then every finite continued fraction

ap = lag; a1, as, ..., a;) = P (1.4)
q
represents an approximation of av. The continued fraction «y, is called the k-th approximant of av. It
can be calculated by the recursive formula
P QpPr—1 + Pr—2
ap="—=——""" (k21 p1=1,po=ap;q1=0,q=1). (1.5)
Qr OkQr-1+ qr—2
According to the Liouville approzimation theorem, the following estimat holds:

1
oo —ay| = |ao— &‘ < (1.6)
@

Furthermore, it can be shown that the approximants approach the real number v with increasing ac-
curacy alternatively from above and from below. The approximants converge to « especially fast if the
numbers a; (i = 1,2,...,k) in (1.4) have large values. Consequently, the convergence is worst for the
numbers [1;1,1,.. .

B A: From the decimal presentation of 7 the continued fraction representation = = [3;7,15,1,292, .. ]
follows with the help of (1.3a)-(1.3¢). The corresponding approximants (1.5) with the estimate accord-

. . 22 . 72 333 s
ing to;;.;) are: o = — w1tl; [T —ai] < i 2-1077, = 106 with |7 — o] < 1062 ~9-107°,
a = 173 with |7 — a3| < — 13 ~ 8- 107°. The actual errors are much smaller. They are less than

1.3-107 for vy, 8.4-107° for ay and 2.7- 1077 for a3 . The approximants o, o and o represent better
approximations for 7 than the decimal representation with the corresponding number of digits.

B B: The formula of the golden section z/a = (a — )/ (see 1.1.1.2, p. 2, 3.5.2.3, 3., p. 194 and
17.3.2.4, 4., p. 908) can be represented by the following two continued fractions: x = a[1;1,1,...] and
= %(1 +5) = g(l +(2;4,4,4,..]). The approximant cy delivers in the first case an accuracy of

0.018 @, in the second case of 0.000 001 a.

1.1.1.5 Commensurability

Two numbers a and b are called commensurable, i.e., measurable by the same number, if both are an
integer multiple of a third number ¢. From a = me, b=nc (m,n € Z) it follows that

a .

7=7 (z rational). (1.7)
Otherwise a and b are incommensurable.

B A: The length of a side and a diagonal of a square are incommensurable because their ratio is the
irrational number /2.

B B: The lengths of the golden section are incommensurable, because their ratio contains the irra-

tional number v/5 (see 1.1.1.2, p. 2 and 3.5.2.3, 3.,p. 194). Therefore the sides and diagonals in a
regular pentagon are incommensurable (see B in 3.1.5.3, p. 139). Today Hippasos from Metapontum
(450 BC) is considered to have discovered the irrational numbers via this example.

1.1.2 Methods for Proof

Mostly three types of proofs are used:
e direct proof,
e indirect proof,
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e proof by (mathematical or arithmetical) induction.
Furthermore there are constructive proofs.

1.1.2.1 Direct Proof

The starting point is a theorem which has already been proven (premise p) and the truth of the state-
ment of the new theorem is derived from it (conclusion ¢). The logical steps mostly used for the con-
clusions are implication and equivalence (see 5.1, p. 323).

1. Direct Proof by Implication

The implication p = g means that the truth of the conclusion follows from the truth of the premise
(see “ Implication ” in the truth table, 5.1.1, p. 323).

b
B Prove the inequality % > Vabfora >0, b > 0. The premise is the well-known binomial formula

(a+0b)* = a*+2ab+ b*. By subtracting 4ab follows (a+b)? — 4ab = (a —b)* > 0. From this inequality
the statement is obtained certainly if the investigations are restricted only to the positive square roots
because of a > 0 and b > 0.

2. Direct Proof by Equivalence

The proof will be delivered by wverifying an equivalent statement. In practice it means that all the
arithmetical operations which have to be used for changing p into ¢ must be uniquely invertible.

1
B Prove the inequality 1 +a +a? + -+ +a" < 1 for0 <a < 1.

—a
Multiplying by 1 —ayields 1 —a+a—a’+a?>—a*+ - +a" —a"' =1 —a"! < 1.

This last inequality is true because of the assumption 0 < a™*! < 1. The starting inequality also holds
because all the arithmetical operations to be used are uniquely invertible.

1.1.2.2 Indirect Proof or Proof by Contradiction

To prove the statement ¢: Starting from its negation g, and from g arriving at a false statement 7, i.e.,
q = r (see also 5.1.1, 7., p. 325). In this case ¢ must be false, because using the implication a false
assumption can result only in a false conclusion (see truth table 5.1.1, p. 323). If 7 is false ¢ must be
true.

B Prove that the number /2 is irrational. Suppose, /2 is rational. So the equality v/2 = % holds for

some integers a,b and b # 0. Assuming that the numbers a, b are coprime numbers, i.e., they do not
a2
b?
and this is possible only if @ = 2n is an even number. Deducing a? = 4n? = 2b% holds, hence b must be
an even number, too. It is obviously a contradiction to the assumption that a and b are coprimes.

1.1.2.3 Mathematical Induction

Theorems and dependent on natural numbers n are proven with this method. The principle of math-
ematical induction is the following: If the statement is valid for a natural number ng, and if from the
validity of the statement for a natural number n > ng the validity of the statement follows for n + 1,
then the statement is valid for every natural number n > ny. According to these, the steps of the proof
are:

1. Basis of the Induction: The truth of the statement is to be shown for n = ny. Mostly nop = 1 can
be choosen.

have any common divisor, then follows (v/2)? = 2 = or a® = 2b?, therefore, a® is an even number,

2. Induction Hypothesis: The statement is valid for an integer n (premise p).

3. Induction Conclusion: Formulation the proposition for n + 1 (conclusion ).

4. Proof of the Implication: p = q.

Steps 3. and 4. together are called the induction step or logical deduction fromn ton + 1.
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1 1 1 1 ]
B Prove the formula s, = 13 + 33 + 3.1 4+ m = nrijil
The steps of the proof by induction are:
1 1 . .
1l.n=1: s = 13-1+1 is obviously true.
1 1 1 1
2. Suppose s, = 13 + 73 + 31 + e+ m = Z 1 holds for ann > 1.
1
3. Supposing 2. it is to show: s,11 = nt .
n+2
4. Tt f ! + ! + ! + 4+ ! + ! + !
. The proof: s,41 = —+-—+—+--- =S, =
P 1T 1272.37 31 nn+1)  (n+1)n+2) (n+D(n+2)

n 1 n’+2n+1 (n+1?*  n+1

n+1 " (n+1)(n+2) - (n+)(n+2) (+1)n+2) n+2’
1.1.2.4 Constructive Proof

In approximation theory, for instance, the proof of an existence theorem usually follows a constructive
process, i.e., the steps of the proof give a method of calculation for a result which satisfies the proposi-
tions of the existence theorem.

B The existence of a third-degree interpolation-spline function (see 19.7.1.1, 1., p. 996) can be proved
in the following way: It is to be shown that the calculation of the coefficients of a spline satisfying
the requirements of the existence theorem results in a tridiagonal linear equation system, which has a
unique solution (see 19.7.1.1, 2., p. 997).

1.1.3 Sums and Products
1.1.3.1 Sums

1. Definition
To briefly denote a sum the summation sign y is used:

n
ai+as+...+a, = Zak (1.8)
k=1
With this notation the sum of n summands a, (K = 1,2,...,n) is denoted, k is called the running

index or summation variable.
2. Rules of Calculation
1. Sum of Summands Equal to Each Other ,ie.,a, =afork=1,2,... n:

> ap = na. (1.9a)
k=1

2. Multiplication by a Constant Factor
ZC% = cZak. (1.9b)
k=1 k=1

3. Separating a Sum

SMa=>a+ Y. a (I<m<n). (1.9¢)
k=1

k=1 k=m-+1
4. Addition of Sums with the Same Length

n

Z(ak+bk+ck+...):Zak+2bk+zck+.... (1.9d)
k=1 k=1 k=1

k=1
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5. Renumbering

n m+n—1 n n—m-+l
Z ap = Ak—m+1, Z ar = Z Afpm—1- (1.9e)
k=1 k=m k=m k=l

6. Exchange the Order of Summation in Double Sums

£ (S 0) -5 (S0 .

i= k=1 k=1 \i=

1.1.3.2 Products

1. Definition
The abbreviated notation for a product is the product sign []:

n
aa;...a, =[] ar (1.10)
k=1
With this notation a product of n factors a (k =1,2,...,n) is denoted, where k is called the running
index.

2. Rules of Calculation

1. Product of Coincident Factors ,i.c.,a, =afork=1,2,... n:
11 @ = a™ (1.11a)
k=1

2. Factoring out a Constant Factor

n

1 (car) = (t"kf[ ag. (1.11b)

k=1
3. Separating into Partial Products

kliak: (ﬁak>< H ak) (I<m<n). (1.11c)

k=m+1

4. Product of Products
H apbpcy ... = (H a,k> (H bk> <H (:k> . (1.11d)
k=1 k=1 k=1 k=1

5. Renumbering

m+n—1 n—m-+l

n n
H ay = H i1, H ap = H Aym—i- (1.11e)
k=1 k=m k=l

k=m

6. Exchange the Order of Multiplication in Double Products

(i) i ({10:) .

k=1 \i=1
1.1.4 Powers, Roots, and Logarithms
1.1.4.1 Powers

The notation a” is used for the algebraic operation of raising to a power. The number a is called the
base, x is called the exzponent or power, and a” is called the power. Powers are defined as in Table 1.1.
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For the allowed values of bases and exponents there are the following
Rules of Calculation:

a“a’ =a"", a*:a'=— =a"", (1.12)
a¥
aI a x
L - b)E. Tt — 2 — (2 1.13
R oo
(a®)? = (a”)" = a"?, (1.14)
a® ="M (a>0). (1.15)

Here In a is the natural logarithm of a where e = 2.718281828459 . . . is the base. Special powers are

(=)" = { t%: g Z Z\g&i’ , (1.16a) a®=1 forany a #0. (1.16Db)

Table 1.1 Definition of powers

base a ‘ exponent power a*
0 1
arbitrary real, #0 | n=1,2,3,... a"=g-a-a-...-a (a tothepower n)
gaa ... a4

n factors

n=-1,-2-3,... |d"=—

r
a = aP

rational: P a
q

positive real (p, ¢ integer, ¢ > 0) | (¢-th root of a to the power p)

irrational:
. Pk . Pk
lim — lim a%
k—o0 Q. k—o0
0 positive 0

1.1.4.2 Roots
According to Table 1.1 the n-th root of a positive number a is the positive number denoted by
Va (a>0, real; n > 0, integer). (1.17a)

This operation is called taking of the root or extraction of the root, a is the radicand, n is the radical or
indez.
The solution of the equation

2" = a (areal or complex; n > 0, integer) (1.17b)
is often denoted by z = {/a. But there is no reason to be confused: In this relation the notation de-
notes all the solutions of the equation, i.e., it represents n different values z;, (k = 1,2,...,n) to be

calculated. In the cace of negative or complex values they are to be determined by (1.140b) (see 1.5.3.6,
p. 38).

B A: The equation 22 = 4 has two real solutions, namely ;o = +2.

B B: The equation 22 = —8 has three roots among the complex numbers: z; = 1 + iv/3,zy =
—2 and x5 = 1 —iV/3, but only one among the reals.
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1.1.4.3 Logarithms

1. Definition
The logarithm u of a positive number x > 0 to the base b > 0, b # 1, is the exponent of the power
which has the value z with b in the base. It is denoted by u = log, . Consequently the equation

b=z (1.18a) yields log, © = u (1.18b)
and conversely the second one yields the first one. In particular holds

—oo for b > 1,

400 for b < 1. (1.18¢)

log,1 =10, log,b=1, log,0= {
The logarithm of negative numbers can be defined only among the complex numbers. The logarithmic
functions see 2.6.2, p. 73.
To take the logarithm of a given number means to find its logarithm. To take the logarithm of an
expression means it is transformed like (1.19a, 1.19b). The determination of a number or an expression
from its logarithm is called raising to a power.
2. Some Properties of the Logarithm
a) Every positive number has a logarithm to any positive base, except the base b = 1.
b) For z > 0 and y > 0 the following Rules of Calculation are valid for any b (which is allowed to be
a base):

log (xy) = logz +logy, log <§) = logx — logy, (1.19a)
, . . 1

logz” = nlogz, in particular log /z = —logz. (1.19b)
n

With (1.19a, 1.19b) the logarithm of products and fractions can be calculated as sums or differences of
logarithms .

3 -2 3 3 -2 3/
B Take the logarithm of the expression ;z;éa . log ;z;éy =log (3x2 \ﬁ) — log (22u?)

1
=log3 +2logx + glogyflog27long 3log u.

Often the reverse transformation is required, i.e., an expression containing logarithms of different amou-
nts is to be rewritten into one, which is the logarithm of one expression.

322 Yy

2zu3
c) Logarithms to different bases are proportional, i.e., the logarithm to a base a can be change into a
logarithm to the base b by multiplication:

1
| log3+210gx+§logy—logQ—logz—iﬁloguzlog

1

=— 1.2
logy a (1.20)

log, v = M log, x where M =log,b

M is called the modulus of the transformation.

1.1.4.4 Special Logarithms
1. The logarithm to the base 10 is called the decimal or Briggsian logarithm, in formulas:

log;px =lgz and log (210%) = a + log . (1.21)
2. The logarithm to the base e is called the natural or Neperian logarithm, in formulas:

log, x =Inax. (1.22)
The modulus of transformation to change from the natural logarithm into the decimal one is

1
M =loge = —— = (0.4342944819 , 1.2
oge m10 0.4342944819 , (1.23)
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and to change from the decimal into the natural one it is

1
M, = v In 10 = 2.3025850930 . (1.24)

3. The logarithm to base 2 is called the binary logarithm, in formulas:

logoz =1dz  or log,z =1bux. (1.25)
4. The values of the decimal and natural logarithm can be found in logarithm tables. Some time ago
the logarithm was used for numerical calculation of powers, and it often made numerical multiplication
and division easier. Mostly the decimal logarithm was used. Today pocket calculators and personal
computers make these calculations.
Every number given in decimal form (so every real number), which is called in this relation the antilog,
can be written in the form

z=310F with 1 <4 < 10 (1.26a)
by factoring out an appropriate power of ten: 10* with integer k. This form is called the half-logarithmic
representation. Here 7 is given by the sequence of figures of , and 10* is the order of magnitude of z.
Then for the logarithm holds

logz = k+logz with 0<logi <1, ie., logz=0,.... (1.26b)
Here k is the so-called characteristic and the sequence of figures behind the decimal point of log & is
called the mantissa. The mantissa can be found in logarithm tables.
W 1g 324 = 2.5105, the characteristic is 2, the mantissa is 5105. Multiplying or dividing this number
by 10", for example 324000; 3240; 3.24; 0.0324, their logarithms have the same mantissa, here 5105,
but different characteristics. That is why the mantissas are given in logarithm tables. In order to get
the mantissa of a number z first the decimal point has to be moved to the right or to the left to get a
number between 1 and 10, and the characteristic of the antilog x is determined by how many digits k&
the decimal point was moved.
5. Slide rule Beside the logarithm, the slide rule was of important practical help in numerical calcu-
lations. The slide rule works by the principle of the form (1.19a), so multiplying and dividing is done
by adding and subtracting numbers. On the slide rule the scale-segments are denoted according to the
logarithm values, so multiplication and division can be performed as addition or subtraction (see Scale
and Graph Papers 2.17.1, p. 115).

1.1.5 Algebraic Expressions
1.1.5.1 Definitions

1. Algebraic Expression

One or more algebraic quantities, such as numbers or symbols, are called an algebraic expression or
term if they are connected by the symbols, +, —, -, :, ./, etc., as well as by different types of braces
for fixing the order of operations.

2. Identity
is an equality relation between two algebraic expressions if for arbitrary values of the symbols in them
the equality holds.
3. Equation
is an equality relation between two algebraic expressions if the equality holds only for a few values of
the symbols. For instance an equality relation

F() = f(a) (1.27)
between two functions with the same independent variable is considered as an equation with one variable
if it holds only for certain values of the variable. If the equality is valid for every value of x, it is called
an identity, or one says the equality holds identically, written as formula F'(z) = f(x).
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4. Identical Transformations

are performed in order to change an algebraic expression into another one if the two expression are
identically equal. The goal is to have another form, e.g., to get a shorter form or a more convenient
form for further calculations. Often it is of interest to have the expression in a form which is especially
good for solving an equation, or taking the logarithm, or calculating the derivative or integral of it, etc.

1.1.5.2 Algebraic Expressions in Detail

1. Principal Quantities

Principal quantities are those general numbers (literal symbols) occurring in algebraic expressions, ac-
cording to which the expressions are classified. They must be fixed in any single case. In the case of
functions, the independent variables are the principal quantities. The other quantities not given by
numbers are the parameters of the expression. In some expressions the parameters are called coeffi-
ctents.

B So-called coefficients occur e.g. in the cases of polynomials, Fourier series, and linear differential
equations, etc.

An expression belongs to a certain class depending on which kind of operations are performed on the
principal quantities. Usually, the last letters of the alphabet z,y, z,u,v,... are used to denote the
principal quantities and the first letters a, b, ¢, . .. are used for parameters. The letters m, n, p, ... are
usually used for positive integer parameter values, e.g. for indices in summations or in iterations.

2. Integral Rational Expressions

are expressions which contain only addition, subtraction, and multiplication of the principal quantities,
including powers of them with non-negative integer exponents.

3. Rational Expressions

contain also division by principal quantities, i.e., division by integral rational expressions, so principal
quantities can have negative integers in the exponent.

4. Irrational Expressions

contain roots, i.e., non-integer rational powers of integral rational or rational expressions with respect
to their principal quantities, of course.

5. Transcendental Expressions

contain exponential, logarithmic or trigonometric expressions of the principal quantities, i.e., there
can be irrational numbers in the exponent of an expression of principal quantities, or an expression
of principal quantities can be in the exponent, or in the argument of a trigonometric or logarithmic
expression.

1.1.6 Integral Rational Expressions

1.1.6.1 Representation in Polynomial Form
Every integral rational expression can be changed into polynomial form by elementary transformations,
as in addition, subtraction, and multiplication of monomials and polynomials.
W (—a® + 2a%r — 2°)(4a® + 8ax) + (a®x* + 2a%2® — daxt) — (a® + 4a’z? — daz?)
= —4a® + 8a*r — 4a’23 — 8a'w + 16a32? — Sax? + a®2? + 2a*2® — 4az* — a® — 4a32? + 4az?
= —5a® + 13a®z? — 2a*x® — Sax?.
1.1.6.2 Factoring Polynomials
Polynomials often can be decomposed into a product of monomials and polynomials. To do so, factoring
out, grouping, special formulas and special properties of equations can be used.
B A: Factoring out: 8az?y — 6bx’y? + dcx® = 222(day — 3bzy? + 2cx?).
B B: Grouping: 6z%+ 2y — y* — 1022 — dyz = 62% + 3zy — 22y — y> — 1022 — Syz = 3z(2v +y) —
y(2z +y) — 522z +y) = 2z +y)(3z —y — 52).
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B C: Using the properties of equations (see also 1.6.3.1, p. 43): P(x) = 2% — 22° + da? + 22° — 522

a) Factoring out 22. b) Realizing that a; = 1 and ay = —1 are the roots of the equation P(z) = 0 and
dividing P(x) by 2?(z—1)(z+1) = 2* —2? gives the quotient 72 —2x +5. This expression can no longer
be decomposed into real factors because p = —2, ¢ = 5, p*/4 — ¢ < 0, so finally the decomposition is

2% — 22 + 4ot + 223 — 527 = 2% (v — 1) (2 + 1) (2% — 20 + 5).
1.1.6.3 Special Formulas
(x+y)? = 2% £ 22y + o7, (1.28)
(x+y+2)* =22 +y?+ 2% + 20y + 202 + 22, (1.29)
(wty+z+-tttu)? =+ + 22+ R uR 4
2y + 2z + -+ 20u+2yz + -+ 2yu+ - -+ + 2tu, (1.30)
(z +y)* = 2® £ 327y + 30y + . (1.31)

The calculation of the expression (z & y)™ is done by the help of the binomial formula (see (1.36a)
(1.37a)).

r+y)(z—y) =2> -y 1.32
Y Y Y
"t —y" n—1 n—2 n-2 | n-1 ;
pr— =a" 2"y -+ ay"  +y", (for integer n, and n > 1), (1.33)
13 s
Ix 1 z =" ="y —py" 2 4yt (for odd n, and n > 1), (1.34)
" — yn
Tty 2" =" 2y oy —y" Tt (for even n, and n > 1). (1.35)

1.1.6.4 Binomial Theorem
1. Power of an Algebraic Sum of Two Summands (First Binomial Formula)
The formula

—1 n—1)n-2) , .
(@b = a gt "D e =D =2)

2! 3!
, —1)...(n— 1
FES n(n ) ('71 m+ )an—mbm Lt nabn—l + b (136&)
m!
is called the binomial theorem, where a and b are real or complex values and n = 1,2,.... Using the

binomial coefficients delivers a shorter and more convenient notation:
n n n n n n
)" = n n—lb n—2b2 n—3b3 . bn—l b"(1.36b
(a+b) (0)a +<l>a +<2>a + NE +- L + " (1.36b)

(@rpy =3 ("”) an Rk, (1.36¢)

k=0 \/¥

or

2. Power of an Algebraic Difference (Second Binomial Formula)

 — 1 ; v(n —1)(n —2
(a—b)" = a" — na"b + ”(”2' )a,"’zbz _ n(n 3)'(" )a"’3b3
—1)...(n— 1
4 (71)1"”(” ) ('n m+ )an—mbm + o4 (*1)"!)” (1373)
m:

or
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(a—b)" — g:o <Z>(71)’“a"””’b"‘. (1.37h)

3. Binomial Coefficients
The definition is for non-negative and integer n and k:

n n!
=—— (0<k<n), 1.38
(k) i (Osksn), (1.382)
where n! is the product of the positive integers from 1 to n, and it is called n factorial:
nl=1-2-3....-n, and by definition 0! = 1. (1.38Db)

The binomial coefficients can easily be seen from the Pascal triangle in Table 1.2. The first and the
last number is equal to one in every row; every other coefficient is the sum of the numbers standing on
left and on right in the row above it.

Simple calculations verify the following formulas:

B=(o)=mtm omo ()=r ()= ()=r 0o
(=0 ()= (7)o ()
(V)= e (D)-EE) o
()= 6)

Table 1.2 Pascal’s triangle

n Coefficients

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1
T T ) T T T

6 6 6 6 6 6 6 6

O 0 60 6 0 6 ¢

For an arbitrary real value o (a € R) and a non-negative integer k one can define the binomial coeffi-

cient ).
Nk

(Z) _ ala—1)(a— Qk)’- (a—k+1) for integer k and k > 1, <3> =1. (1.40)
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. (j)zwz_%.

4. Properties of the Binomial Coefficients

e The binomial coefficients increase until the middle of the binomial formula (1.36b), then decrease.
e The binomial coefficients are equal for the terms standing in symmetric positions with respect to
the start and the end of the expression.

e The sum of the binomial coefficients in the binomial formula of degree n is equal to 2™ .

e The sum of the coefficients at the odd positions is equal to the sum of the coefficients at the even
positions.

5. Binomial Series
The formula (1.36a) of the binomial theorem can also be extended for negative and fraction exponents.
If |b| < a, then (a + b)™ has a convergent infinite series (see also 21.5, p. 1057):

(n—1 ; —1)(n—2 3,
((l+b)" :(ln-ﬁ-n(lnilb-ﬁ-%(lnin)lﬁ-%ani&bd-‘r'“ . (1_41)

1.1.6.5 Determination of the Greatest Common Divisor of Two
Polynomials

Tt is possible that two polynomials P(z) of degree n and Q(z) of degree m with n > m have a common

polynomial factor, which contains z. The least common multiple of these factors is the greatest common
divisor of the polynomials.

B Pz) = (z— 12z —2)(z—4), Q@) = (x — 1)(z — 2)(z — 3); the greates common devisor is
(z—1)(x —2).

If P(z) and Q(x) do not have any common polynomial factor, they are called relatively prime or coprime.
In this case, their greatest common divisor is a constant.

The greatest common divisor of two polynomials P(z) and Q(x) can be determined by the Fuclidean
algorithm without decomposing them into factors:
1. Division of P(z) by Q(z) = Ry(z) results in the quotient T3 (x) and the remainder R (x):

P(z) = Qx)T1(x) + Ri(z). (1.42a)
2. Division of Q(x) by Ry (x) results in the quotient T5(x) and the remainder Ry(x):
Q(2) = Ri(2)Ta(x) + Ry(2). (1.42b)

3. Division of Ry(x) by Ro(z) results in T5(x) and Rs(x), etc. The greatest common divisor of the
two polynomials is the last non-zero remainder Ri(xz). This method is known from the arithmetic of
natural numbers (see 1.1.1.4, p. 3).

The determination of the greatest common divisor can be used, e. g., when equations musz be solved
to separate the roots with higher multiplicity or to apply the Sturm method (see 1.6.3.2, 2., p. 44).

1.1.7 Rational Expressions
1.1.7.1 Reducing to the Simplest Form

Every rational expression can be written in the form of a quotient of two coprime polynomials. To do
this, only elementary transformations are necessary such as addition, subtraction, multiplication and
division of polynomials and fractions and simplification of fractions.
2 +y
3T 4+ ——— T+ 2z
B Find the most simple form of zl 2 4 :

2 Y z
x (1 + ;)
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(Bzz+22+19)22  —yz+a+z B 323 + 2222 4yt + (2322 + ) (—yPr + o+ 2) B

(2322 4+ )z z 2328 4wz
3x2% + 202 + y2? — 289228 — wylr + 2t F 2?4 282+ az
x3z3 +az ’

1.1.7.2 Determination of the Integral Rational Part

A quotient of two polynomials with the same variable x is a proper fraction if the degree of the numerator
is less than the degree of the denominator. In the opposite case, it is called an improper fraction. Every
improper fraction can be decomposed into a sum of a proper fraction and a polynomial by dividing the
numerator by the denominator, i.e., separating the integral rational part.

. 3zt — 10ax® + 22a%2* — 24a*z + 10a*
B Determine the integral rational part of R(x) = : S e e+ a :
2% — 2ax + 3a?

—2a’x — bat

(3z*—10az*+22a*2°—24ax +10a*) : (2% — 2az + 3a®) = 32° — dax + 5a* + ———
2% — 2ax — 3a?

3xt— 6ar’+ 9a’x?
— dar*+13a2%—24a3x
— 4az*+ 8a’r®—12a*x

5a%2%—12ax +10a*
5a%2%—10a’x +15a*

—2a*z — 5a*
3 4 r) = 322 ?
— 2a’z— 5a*. R(x) = 3x 74ax+5a+m'

The integral rational part of a rational function R(z) is considered to be as an asymptotic approzimation
for R(x) because for large values of |z|, the value of the proper fraction part tends to zero, and R(x)
behaves as its polynomial part.

1.1.7.3 Partial Fraction Decomposition
Every proper rational fraction

P(z)  ana"+ap 2"+ a4 ag
Q(z)  bpa™ 4+ byqa™ -+ by + by

with coprime polynomials in the numerator and denominator can be uniquely decomposed into a sum of

R(z) = (n<m) (1.43)

partial fractions. The coefficients ag, a1, . .., a,, bo, b1, ..., b, are real or complex numbers. The partial
fractions have the form
A Dz + FE 2
— (1.44a) and QL where (B) —q¢<0. (1.44b)
(x — ) (2 +pr+q)m 2

In the followings real coefficients are assumed in R(x) in (1.43).

First the leading coefficient by, of the denominator Q(z) is transformed into 1 by dividing the numerator
and the denominator of (1.43) by the original value of b,,. In the case of real coefficients the following
three cases are to be distinguished.

In the case of complex coefficients in R(xz) only the first two cases can occur, since complex polynomials
can be factorized into a product of first degree polynomials. Every proper rational fraction R(z) can
be expanded into a sum of fractions of the form (1.44a), where A and « are complex numbers.

1. Partial Fraction Decomposition, Case 1

The denominator Q(x) has m different simple roots v , ... , @, . Then the expansion has the form

P(CE) anx" +---+ag Al AQ 4 Am

Qz) (I*O{l)(I*OéQ)A..(CU*Oé"J:I*O[1+$*062+” T —

(1.45a)
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with coefficients

P(a P Pl
a=Ple) -, Plag) Ay = Plom) (1.45b)
Q'(n) Q') Q'(om)
where in the numerators of (1.45b) the values of the derivative (ZTQ are taken for v = oy, © = aq,....
i
2 1 A B
| 6Ix3f;r =;+Ifl+xil o1 =0, a0 =+1and a3 = —1;
P(0) P(1) P(-1)
Plx) =622 —2+1,Q () =32> -1, A = =—-1,B= =3and C = =4,
) ) Q) Q) Q1)
P(x) 1 3 n 4
Q) = x—-1 a+1’
An other possibility to determine the coefficients A;, A,, ..., A, is the method of comparing coeffi-

cients (see 4., p. 17).
2. Partial Fraction Decomposition, Case 2

The denominator Q(z) has [ multiple real roots oy, s, ..., a; with multiplicities ky, ko, . .., k; respec-
tively. Then the decomposition has the form
P(z) A" + Gy 2" - 4 ag A4 Ay Ay,
Q(x) - (x —a)k(x — )k .. (x—aq)k Ta-a * (. — ay)? et (x — ay)m
By By By, Ly, X
pr—— + @) +oe 4 (1_52)1@ +~~+7((T_(;l)k[ . (1.46)
z+1 Ay By By Bs

— ="t +
z(z—1P3 =z x-1 (m71)2+

by the method of comparing coefficients.
3. Partial Fraction Decomposition, Case 3
If the denominator @ (z) has also complex roots, then its factorization is

Qz) = (x— )" (z — a)® -+ (z — o)

3 The coefficients Ay, By, By, B3 can be determined

@1

(2 4 pra+ @)™ (2% 4 2pex + go)™ - (@ + prx - g)™ (1.47)
according to (1.168), p. 44. Here oy, s, . .., oy are the [ real roots of polynomial Q(z). Beside these
roots Q(x) has r complex conjugate pairs of roots, which are the roots of the quadratic factors z% —

\ 2
pix + ¢ (1=1,2,...,r). The numbers p;, ¢; are real, and (%) — @i < 0 holds. In this case the partial

fraction decomposition has the form

P(z) " + Ay 12" i +ap
Qz)  (z—a)h(z—ag)k - (22 + pra + qu)™ (22 + pox + qa)™2 - -
A A Ay B By B
= R e e e e
r—ao (v —a)? (x—a)h -y (x— an)? (x — ag)h2
Cix+ Dy Cox + Dy leLL'JrDml
P24pr+q (224 pr+q)? (@2 +prx + q)™
Eir+ F Eyr + F Enyv + P,
=1 SR e Ty (1.48)
?+prte (27 +pr+g) (22 + paw + o)™
522 — 4z + 16 A Cix+ D Cox + D .
| h i = + L Ly 2 2 The cocfficients A, Ch, Dy, Cy, Dy are

(x=3)(a?2—2+1)?2 -3 22—z+1 (22—2+1)?
to be determined by the method of comparing coefficients.
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4. Method of Comparing Coefficients

In order to determine the coefficients Ay, As, ..., By, F ... in (1.48) the expression (1.48) has to be mul-
tiplied by Q(x), then the result Z(x) is compared with P(x), since Z(z) = P(z). After ordering Z(x)
by the powers of x, one gets a system of equations by comparing the coefficients of the corresponding
ax—powers in Z(z) and P(x) . This method is called the method of comparing coefficients or method of

undetermined coefficients.
622 —x+1 A B C A(@*—1)+ Ba(z +1) + Ca(z — 1) .

| - ="+ + =
-z z xz—-1 x+1 (2?2 —1)

Comparing the coefficients of the same powers of x, one gets the system of equations 6 = A+ B+ C',
—1=B—-C,1=—A,and its solutions are A = —1, B =3,C' = 4.

1.1.7.4 Transformations of Proportions
The equality

a ¢ :
7= (1.49a) yields ad = be, % = é7 g - 57 b — % (1.49b)

and furthermore

atb c+d a*tb ctd atc bEtd a+b c+d

= , = . 1.49¢
b d = a c ¢ d’a-b c—d (1.49¢)
From the equalities of the proportions
ap _ ap an . ata+--+ta, a
—= == 1.50a t follows that — " = —  (1.50b
b by bu (1502) it follows tha e S

1.1.8 Irrational Expressions

Every irrational expression can be written in a simpler form by 1. simplifying the exponent, 2. taking
out terms from the radical sign and 3. moving the irrationality into the numerator.

1. Simplifying the Exponent The exponent can be simplified if the radicand can be factorized
and the index of the radical and the exponents in the radicand have a common factor; the index of the
radical and the exponents must be divided by their greatest common divisor.

| f/16(x12 — 21 4 210) = (‘/42 cah2(x—1)2 = \3/4335(1' -1).

2. Moving the Irrationality There are different ways to mowve the irrationality into the numerator.

" O . Qﬂ:i‘m. BB " :321'92?:\/3295?;22.
2y 42 2y 4yz2 Sy3z3 2z
1 -~ T =y Ty
H C: = =— .

Ty (:c-&-\/zj)(x—\/gj) -y
) I 2 —ayy+ 2 P —ayy+ VY
RN (1—9—@/57)(#—1%4—(/?) 3 +y ’
3. Simplest Forms of Powers and Radicals Also powers and radicals can be transformed into
the simplest form.

HA: ﬂ 81x° _$ 923 _ ey 3uy/2(V2 + /1) _ 31v/2x + 3
Vv \VE-var VE-vE | 2% >

W B: (Vo+ Va2 +Vad+ ¥aT) (Vo — Vo + Vo — Vo) = (@242 4%/ 4a7/12) (12— g1+

x1/4f:c5/12) — b/ /A p13/12_ 05/6 o 18/12 0 11/12 4 08/4 4 11/12 gy 05/6 g 1112 g 18/12

HD
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27/6 — g = @B/ _ g13/12 _ g 11/12 | 03/4 \4/:?57 W7 WJr \4/73 _ x3/4(1 S Y Jr;761/2) _
Va3 (1 — Vo — Yxr+ /).

1.2 Finite Series

1.2.1 Definition of a Finite Series

The sum
n
sn=(1,0+(1,1+(1,2+~~+(1,n=Zai, (1.51)
i=0
is called a finite series. The summands a; (i = 0,1,2,...,n) are given by certain formulas, they are

numbers, and they are the terms of the series.

1.2.2 Arithmetic Series
1. Arithmetic Series of First Order

is a finite series where the terms form an arithmetic sequence, i.e., the difference of two terms standing
after each other is a constant:

Aa; = a;r1 —a; =d=const holds, so a; =ag+id. (1.52a)
Thus holds:

Sn=ag+ (ap +d) + (ap + 2d) + - - + (ag + nd) (1.52b)

n 1

Sp = ao-;—a (n+1)= nt (2a¢ + nd). (1.52¢)
2. Arithmetic Series of k-th Order
is a finite series, where the k-th differences A*q; of the sequence ag, ay, as, .. . ,a, are constants. The
differences of higher order are calculated by the formula

Aa;=AN"ra — A (v=2,3,...,k). (1.53a)

It is convenient to calculate them from the difference schema (also difference table or triangle schema):

agp
Allo
a A%aqy .
A(Zl Adao
as AQ(Il Akllo
Aas Aday
as A%ay o AFa e (1.53b)
An(lo
3 Al Ap—f -
Aay 3 -
Azan—Q
Aay
Qn

The following formulas hold for the terms and the sum:

a; = ap + <;>Aa0 + <;>A2ag +o 4 <IZ€>A"'(10 (1=1,2,...,n), (1.53c)

n+1 n+1 n+1 n+1
Sn:< 1 )ao+< 9 )ALLO+< 3 )A2a0+"‘+<k+1>Ak&g. (153(1)
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1.2.3 Geometric Series

The sum (1.51) is called a geometric series, if the terms form a geometric sequence, i.e., the ratio of two
successive terms is a constant:

Gt _ g =const holds, so a; = aoq'. (1.54a)
a;
Thus holds:
. qn+1 —1
Sp = g + agq + agq® + -+ + apq" = aOﬁ for q#1, (1.54b)
Sp=(n+1)ay for ¢=1 (1.54c)

For n — oo (see 7.2.1.1, 2., p. 459), there is an infinite geometric series, which has a limit if |¢| < 1,
and this limit is called sum s:

s= Mo (1.54d)
1—¢q
1.2.4 Special Finite Series
1
1+2+3+---+(n*1)+n:%, (1.55)
[ 1)(2
Pt P+ 1)+ (42 et (prn) = PFUEE )é p+n) (1.56)
14+3+5+--+(2n—=3)+(2n—1) =n?, (1.57)
2444644+ 2n—-2)+2n=n(n+1), (1.58)
1)(2 1
12492 4 8 4 oog (n—1)2 402 = MO )6(7” ) (1.59)
. . . . 2 1 2
P23t (no1)P4nd= LT (n4+ r (1.60)
. . ; . an? —1
12+32+52+~~+(2n—1)2:%7 (1.61)
P43 454+ 2n—1)% =n*20> - 1), (1.62)
+1D2n+1)(3n*+3n—1
14214 3t gt = M D0 33(” n=1) (1.63)
. 1— (n+1)a" + na™t!
14204322 4 gt = L q EII)Z M (@ #1). (1.64)
1.2.5 Mean Values
(See also 16.3.4.1, 1., p. 839 and 16.4, p. 848)
1.2.5.1 Arithmetic Mean or Arithmetic Average
The arithmetic mean of the n quantities ay, as, . . . , a, is the expression
I, n 1 )
IA:w:,Zak. (1.65&)
n ni
For two values a and b holds:
b
4= “; . (1.65D)

The values a, x4 and b form an arithmetic sequence.



20 1. Arithmetics

1.2.5.2 Geometric Mean or Geometric Average

The geometric mean of n positive quantities ay, as, .

n %
g = \/a1G2...0, = (Hak> .
k=1

For two positive values a and b holds

1(,~=m

.., ay, is the expression

(1.66a)

(1.66b)

The values a, ¢ and b form a geometric sequence.
If a and b are given line segments, then a segment

- ,/ Xe ™ with length z¢ = Vab can be given by the help of
// Xg / | \‘\ one of the constructions shown in Fig. 1.3a or in
[ D L b/, |  Fig13b.
e b | e —a = ] A special case of the geometric mean is given by di-
a) b) viding a line segment according to the golden sec-
tion (see 3.5.2.3, 3., p. 194).
Figure 1.3
1.2.5.3 Harmonic Mean
The harmonic mean of n quantities a1, ag, ..., a, (a; #0;i =1,2,...,n) is the expression
1.1 1 17t 11!
— [,(f voor | = {7 7} , (1.67a)
n'a a an n = a
For two values a and b holds
171 1\17! 2ab
rg=|=— , T = . 1.67b
=G (o)
1.2.5.4 Quadratic Mean
The quadratic mean of n quantities ay, as,. .., a, is the expression
1 n
g = \/7(a12+a22+-~+an2): =3 a;. (1.68a)
n ni=
For two values a and b holds
2 b2
sg=1/% ;’ . (1.68b)
The quadratic mean is important in the theory of observational error (see 16.4, p. 848).
1.2.5.5 Relations Between the Means of Two Positive Values
b 2ab 2402
For x4 = %7 rg = Vab, ry :u,i—(&l-lﬂ TQ = a4 ;r we have
1. ifa < b, then
a<zrg<rg<ra<mzg<b, (1.69a)
2. ifa = b, then

a=2p=Tg=Ty=T9=>0.

(1.69b)
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1.3 Business Mathematics

Business calculations are based on the use of arithmetic and geometric series, on formulas (1.52a)
(1.52¢) and (1.54a)—(1.54d). However these applications in banking are so varied and special that a
special discipline has developed using specific terminology. So business arithmetic is not confined only
to the calculation of the principal by compound interest or the calculation of annuities. It also includes
the calculation of interest, repayments, amortization, calculation of instalment payments, annuities,
depreciation, effective interest yield and the yield on investment. Basic concepts and formulas for cal-
culations are discussed below. For studying financial mathematics in detail, you will have to consult
the relevant literature on the subject (see [1.2], [1.8]).

Insurance mathematics and risk theory use the methods of probability theory and mathematical statis-
tics, and they represent a separate discipline, so they don’t be discussed here (see [1.4], [1.5]).

1.3.1 Calculation of Interest or Percentage
1.3.1.1 Percentage or Interest

The expression p percent of K means %K , where K denotes the principal in business mathematics.

The symbol for percent is %, i.e., the following equalities hold:
p

% = 100 or 1% = 0.01. (1.70)

1.3.1.2 Increment
If K is raised by p%, the increased value is

f(:K(lJrl%). (1.71)

Relating the increment K% to the new value K, the proportion is K1pﬁ : K = p: 100, so K contains

p-100
100 +p
percent of increment.

B If an article has a value of € 200 and a 15% extra charge is added, the final value is € 230. This price
15- 100

115
1.3.1.3 Discount or Reduction
Reducing the value K by p% rebate yields the reduced value

p= (1.72)

contains p = = 13.04 percent increment for the user.

K=K (17%). (1.73)

Comparing the reduction K 1%;0 to the new value K gives

_ p-100
p=
100 —p
percent of rebate.

B If an article has a value € 300, and they give a 10% discount, it will be sold for € 270. This price
10 - 100

(1.74)

contains p = = 11.11 percent rebate for the buyer.
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1.3.2 Calculation of Compound Interest
1.3.2.1 Interest

Interestis either payment for the use of a loan or it is a revenue realized from a receivable. For a principal
K, placed for a whole period of interest (usually one year),
p
K 1.75
100 (1.75)

interest is paid at the end of the period of interest. Here p is the rate of interest for the period of interest,
and one says that p% interest is paid for the principal K.

1.3.2.2 Compound Interest

Compound interest is computed on the principal and on any interest earned that has not been paid or
withdrawn. It is the return on the principal for two or more time periods. The interest of the principal
increased by interest is called compound interest.

In the following different cases are discussed which depend on how the principal is changing.

1. Single Deposit
Compounded annually the principal K increases after n years up to the final value K,,. At the end of
the n-th year this value is:

P \"
K,=K[(1+-—) . 1.76
( * 100) (1.76)
For a briefer notation the substitution 1 + - q is used and ¢ is called the accumulation factor or

100
growth factor.
Interest may be compounded for any period of time: annually, half-annually, monthly, daily, and so on.
Dividing the year into m equal interest periods the interest will be added to the principal K at the end
of every period. Then the interest is K% for one interest period, and the principal increases after
m

n years with m interest periods up to the value

. _ P mn
Knn = K (1 - 1007n,> ' (177)

m
The quantity (1 + ﬁ) is known as the nominal rate, and (1 + Toom ) as the effective rate.

B A principal of € 5000, with a nominal interest 7.2% annually, increases within 6 years a) com-
pounded annually to Kg = 5000(1 + 0.072)® =€ 7588.20, b) compounded monthly to K7, = 5000(1 +
0.072/12)™ = € 7691.74.

2. Regular Deposits

Suppose depositing the same amount F in equal intervals. Such an interval must be equal to an interest
period. The depositions can be made at the beginning of the interval, or at the end of the interval. At
the end of the n-th interest period the balance K, is

a) Depositing at the Beginning: b) Depositing at the End:
qn —1 q" —1
K,=F 1.78 K,=F . 1.78b
o1 (1.78a) 01 ( )

3. Depositing in the Course of the Year

A year or an interest period is divided into m equal parts. At the beginning or at the end of each of
these time periods the same amount E is deposited and bears interest until the end of the year. In this
way, after one year the balance K7 is
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a) Depositing at the Beginning: b) Depositing at the End:
, 1 —1
K, =FE [m—&- @Tm} (1.79a) K, =F [m—«— (”LQT)I)] . (1.79Db)

In the second year the total K; bears interest, and further deposits and interests are added like in the
first year, so after n years the balance K, for midterm deposits and yearly interest payment is:

a) Depositing at the Beginning: b) Depositing at the End:
(m+1)p|¢"—1 (m—=1)p| ¢ —1
K,=FE AR IPNG T2 (.80 K,=FE Nt . 1.80b
[”” 200 | g—1 150 " 500 | g1 (1.80)

B At a yearly rate of interest p = 5.2% a depositor deposits € 1000 at the end of every month. After
how many years will it reach the balance € 500 0007

From (1.80Db), for instance, from 500 000 = 1000 [12 +
22.42 years.

11-5.27 1.052" —1
] -—————— follows the answer, n =

200 0.052

1.3.3 Amortization Calculus
1.3.3.1 Amortization

Amortization is the repayment of credits. The assumptions:

1. For a debt S the debtor is charged at p% interest at the end of an interest period.

2. After N interest period the debt is completely repaid.

The charge of the debtor consists of interest and principal repayment for every interest period. If the
interest period is one year, the amount to be paid during the whole year is called an annuity.

There are different possibilities for a debtor. For instance, the repayments can be made at the interest
date, or meanwhile; the amount of repayment can be different time by time, or it can be constant during
the whole term.

1.3.3.2 Equal Principal Repayments

The amortization instalments are paid during the year, but no midterm compound interest is calcu-
lated. The following notation should be used:
o S debt (interest payment at the end of a period with p%),

S
e ' = —— principal repayment (7" = const),
mN

o m number of repayments during one interest period,
e N number of interest periods until the debt is fully repaid.
Besides the principal repayments the debtor also has to pay the interest charges:

a) Interest Z,, for the n-th Interest Period: b) Total Interest Z to be Paid for a Debt
S, mN Times, During N Interest Periods
with an Interest Rate p% :

7, - b5 {1 L (nf m 1)] . (1.81a)

N
100 N 2m g Z:ﬁ[Nfl m+1 181b
n; " 100 2 + 2m (1.81b)

B A debt of € 60000 has a yearly interest rate of 8%. The prin- cyear:  Zp = €4360

Lyear: Zp= <€ 3400

cipal repayment of € 1000 for 60 months should be paid at the
Lyear: Zz = € 2440

end of the months. How much is the actual interest at the end of
cach year? The interest for every year is calculated by (1.81a) with cyear: Zy= €1480
S = 60000, p =8, N = 5and m = 12. They are enumerated in .year: Zs= € 520
the annexed table. 7 = € 12200

Utk W N
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8-60000 [5—-1 13
— | —— + — | =€ 12200.
100 { + ] < 00

The total interest can be calculated also by (1.81b) as Z = 3 %

1.3.3.3 Equal Annuities

S
For equal principal repayments T = N the interest payable decreases over the course of time (see
m

the previous example). In contrast to this, in the case of equal annuities the same amount is repaid
for every interest period. A constant annuity A containing the principal repayment and the interest is
repaid, i.e., the charge of the debtor is constant during the whole period of repayment.
With the notation
e S debt (interest payment of p% at the end of a period),
e A annuity for every interest period (A const),
e ¢ one instalment paid m times per interest period (a const),
/
eg=1+ % the accumulation factor,
after n interest periods the remaining outstanding debt S,, is:

(m=1)p] ¢ —1
200 | q-1°

Sp=8¢"—a [m + (1.82)

Here the term Sq¢" denotes the value of the debt S after n interest periods with compound interest
(see (1.76)). The second term in (1.82) gives the value of the midterm repayments a with compound
interest (see (1.80b) with £ = a). For the annuity holds

(m—=1)p
W} . (1.83)

A=a [m +
Here paying A once means the same as paying a m times. From (1.83) it follows that A > ma. Because
after N interest periods the debt must be completely repaid, from (1.82) for Sy = 0 considering (1.83)
for the annuity holds:

_eng—1 g-1
A=sPd— =5ty (1.84)

To solve a problem of business mathematics, from (1.84), any of the quantities A, S, ¢ or N can be
expressed, if the others are known.

B A: Aloan of €60 000 bears 8% interest per year, and is to be repaid over 5 years in equal instalments.
How much is the yearly annuity A and the monthly instalment a? From (1.84) and (1.83) we get:

A = 60000 0'081 =€15027.39, 0 = &RE =€ 1207.99.
1—— 24—
1.08° 200

B B: Aloanof S =€ 100000 is to be repaid during N = 8 years in equal annuities with an interest rate
of 7.5%. At the end of every year € 5000 extra repayment must be made. How much will the monthly

0.075
instalment be? For the annuity A per year according to (1.84) follows A = 100 00071 =

1075
€ 17072.70. Because A consists of 12 monthly instalments a, and because of the € 5000 extra payment

11-7.
20; 5} + 5000 = 17072.70 holds, so the monthly

at the end of the year, from (1.83) A = a [12 +
charge is a = € 972.62.
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1.3.4 Annuity Calculations
1.3.4.1 Annuities

If a series of payments is made regularly at the same time intervals, in equal or varying amounts, at the
beginning or at the end of the interval, it is called annuity payments. To distinguish are:

a) Payments on an Account The periodic payments, called rents, are paid on an account and bear
compound interest. Therefore the formulas of 1.3.2 are to be used.

b) Receipt of Payments The payments of rent are made from capital bearing compound interest.
Here the formulas of the annuity calculations in 1.3.3 are to be used, where the annuities are called
rents. If no more than the actual interest is paid as a rent, it is called a perpetual annuity.

Rent payments (deposits and payoffs) can be made at the interest terms, or at shorter intervals during
the period of interest, i.e. in the course of the year.

1.3.4.2 Future Amount of an Ordinary Annuity

The date of the interest calculations and the payments should coincide. The interest is calculated at
p% compound interest, and the payments (rents) on the account are always the same, R. The future
value of the ordinary annuity R, i.e., the amount to which the regular deposits increase after n periods
amounts to:

R,=R p

7" - .

with ¢g=1+ —. 1.85
-1 ¢ 100 (1.85)
The present value of an ordinary annuity Ry is the amount which should be paid at the beginning of the
first interest period (one time) to reach the final value R,, with compound interest during n periods:

f . P
Ry =— with ¢=1+—. 1.86
T 1 100 (1.86)
B A man claims € 5000 at the end of every year for 10 years from a firm. Before the first payment
the firm declares bankruptcy. Only the present value of the ordinary annuity Ry can be asked from the
administration of the bankrupt’s estate. With an interest of 4% per year the man gets:

1 -1 1- 1-1.04710
Ry=—RY —Rr—% " 5000 — €40554.48.
- qg—1 q

—n

-1 0.04

1.3.4.3 Balance after n Annuity Payments

For ordinary annuity payments capital K is at our disposal bearing p% interest. After every interest
period an amount r is paid. The balance K, after n interest periods, i.e., after n rent payments, is:
n

q . p
K,=K¢"—R,=Kq¢" —1 rith =1+_——. 1.
q"— R q rqil with ¢ +100 (1.87a)
Conclusions from (1.87a):
r= Kﬁ (1.87b)  Consequently K,, = K holds, so the capital does not change. This
is the case of perpetual annwity.
r>K % (1.87c¢)  The capital will be completely used up after N rent payments.
From (1.87a) it follows for Ky = 0:
N
rgt —1
- ) 1.87d
qN q— 1 ( )

If midterm interest is calculated and midterm rents are paid, and the original interest period is divided

into m equal intervals, then in the formulas (1.85)-(1.87a) n is replaced by mn and accordingly ¢ =
P

100m”

P
1+——1 =1
+100 Y q +
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B What amount must be deposited monthly at the end of the month for 20 years, from which a rent of

€ 2000 should be paid monthly for 20 years, and the interest period is one month with an interest rate

of 0.5%.

From (1.87d) follows for n = 20 - 12 = 240 the sum K which is necessary for the required payments:
2000 1.005%4 — 1

K = 100529 0,005 :4€ 279161.54. The necessary monthly deposits R are given by (1.85):
1.005%40 — 1
= 279161.564 = R——————  i.e., R =€ 604.19.
Rogo 79161.5 R 000 e R =+<€604.19

1.3.5 Depreciation
1.3.5.1 Methods of Depreciation

Depreciation is the term most often used to indicate that assets have declined in service potential in
a given year either due to obsolescence or physical factors. Depreciation is a method whereby the
original (cost) value at the beginning of the reporting year is reduced to the residual value at year-end.
The following concepts are used:

e A depreciation base,

o N useful life (given in years),

o R, residual value after n years (n < N),

ea, (n=1,2,...,N) depreciation rate in the n-th year.

The methods of depreciation differ from each other depending on the amortization rate:

o straight-line method, i.e., equal yearly rates,

o decreasing-charge method, i.e., decreasing yearly rates.

1.3.5.2 Straight-Line Method

The yearly depreciations are constant, i.e., for amortization rates a,, and the remaining value R, after
n years follows:

A-R A-R
:TN:(J7 (1.88) R,L:A*HTN
Substituting Ry = 0, then the value of the given thing is reduced to zero after N years, i.e., it is totally
depreciated.

(€29

(n=1,2,...,N). (1.89)

B The purchase price of a machine is A =€ 50 000. In 5 years it should be depreciated to a value R5 =
€ 10000.

Year [Depreciation|Depreciation[Residual [Cumulated depr. in % . U "
base expense value of the depr. base Linear depreciation _accmdmg to
T [ 50000 8000 | 42000 16.0 (1.88) and (1.89) yiclds the an-
nexed amortization schedule:
g gi 888 2888 gg 888 %gg It shows that the percentage of ac-
. an cumulated depreciation with re-
g ?(8) 338 2888 %g 888 igi spect to the actual initial value is

increasing.

1.3.5.3 Arithmetically Declining Balance Depreciation
In this case the depreciation is not constant. It is decreasing yearly by the same amount d, by the
so-called multiple. For depreciation in the n-th year follows:

a,=a;—(n—1)d (n=2,3,...,N +1; a; and d are given). (1.90)

N

Considering the equality A — Ry = > a,, from the previous equation it follows that:
n=1

o Q[Nal - (A - Rr\r)]

d NN - 1)

(1.91)
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For d = 0 follows the special case of straight-line depreciation. If d > 0, it follows from (1.91) that
A— Ry
N
where a is the depreciation rate for straight-line depreciation. The first depreciation rate a; of the
arithmetically-declining balance depreciation must satisfy the following inequality:
A— RN A— RN
<ap <2 . 1.93
N " N (1.93)
B A machine of € 50 000 purchase price is to be depreciated to the value of € 10 000 within 5 years by
arithmetically declining deprecia-

a; >

=a, (1.92)

Year|Depretiation]Depreciation|Residual [ Depreciation in % tion. In the first year € 15000
base expense value of depr. base should be depreciated.
1 50 000 15 000 35 000 30.0 The annexed depreciation sched-
2 35 000 11 500 23 500 32.9 ule is calculated by the given for-
3 23 500 8 000 15 500 34.0 mulas, and it shows that with the
4 15 500 4 500 11 000 29.0 exception of the last rate the per-
5 11 000 1 000 10 000 9.1 centage of depreciation is fairly
equal.

1.3.5.4 Digital Declining Balance Depreciation

Digital depreciation is a special case of arithmetically declining depreciation. Here it is required that
the last depreciation rate ay should be equal to the multiple d. From ay = d it follows that

= %7 (1.94a) a1 = Nd, ay = (N —1)d, ... ,ay =d. (1.94b)
B The purchase price of a machine is € A = 50 000. This machine is to be depreciated in 5 years to
Year | Depreciation | Depreciation Residual [ Depreciation in % the value R5 =€ 10000 by
base expense value | of the depr. base digital depreciation.

1 50000 a; = bd = 13335] 36665 26.7 The annexed depreciation

2 36665 ay = 4d =10668| 25997 29.1 schedule, calculated by the

3 25997 a3 =3d= 8001| 17996 30.8 given formulas, shows that

4 17996 as =2d = 5334| 12662 29.6 the percentage of the de-

5 12662 as; = d= 2667| 9995 21.1 preciation is fairly equal.

1.3.5.5 Geometrically Declining Balance Depreciation
Consider geometrically declining depreciation where p% of the actual value is depreciated every year.
For the residual value R,, after n years holds:
p n
Ran(lfm) (n=1,2,...). (1.95)

Usually A (the acquisition cost) is given. The useful life of the asset is NV years long. If from the quan-
tities Ry, p and N, two is given, the third one can be calculated by the formula (1.95).
B A: A machine with a purchase value € 50000 is to be geometrically depreciated yearly by 10%.
After how many years will its value drop below € 10000 for the first time? Based on (1.95), yields

~ In(10000/50 000)

~ In(1-0.1)
B B: Forapurchase price of A =€ 1000 the residual value R, should be represented forn = 1,2,...,10
years by a) straight-line, b) arithmetically declining, ¢) geometrically declining depreciation. The re-
sults are shown in Fig. 1.4.

= 15.27 years.
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1.3.5.6 Depreciation with Different
n Types of Depreciation Account
Since in the case of geometrically declining deprecia-
tion the residual value cannot become equal to zero
for a finite n, it is reasonable after a certain time, e.g.,

A=1000

arithmetically declining

800 geometrically declining

600 linear after m years, to switch over to straight-line depreci-
ation. m is to be determined to an amount that from
400 this time on the geometrically declining depreciation
rate is smaller than the straight-line depreciation rate.
200 From this requirement it follows that:
> m > N — 100 . (1.96)
00 2 4 6 8 10n p

Here m is the last year of geometrically declining de-
preciation and N is the last year of linear depreciation
Figure 1.4 when the residual value becomes zero.

B A machine with a purchase value of € 50000 is to be depreciated to zero within 15 years, for m
years by geometrically declining depreciation with 14% of the residual value, then with the straight-
100

line method. From (1.96) follows m > 15— = 7.76, i.e., after m = 8 years it is reasonable to switch

over to straight-line depreciation.

1.4 Inequalities

1.4.1 PurelInequalities
1.4.1.1 Definitions

1. Inequalities
Inequalities are comparisons of two real algebraic expressions represented by one of the following signs:

Typel > (“greater”) Type 11 < (“smaller”)

TypeIIl # (“not equal”) Type Illa <> (“greater or smaller”)
TypeIV > (“greater or equal”) TypeIVa <« (“not smaller”)

Type V. < (“smaller or equal”) TypeVa  #  (“not greater”)

The notation III and ITTa, IV and IVa, and V and Va have the same meaning, so they can be replaced

by each other. The notation I1I can also be used for those types of quantities for which the notions of

“greater” or “smaller” cannot be defined, for instance for complex numbers or vectors, but in this case

it cannot be replaced by Illa.

2. Identical Inequalities, Inequalities of the Same and of the Opposite Sense,
Equivalent Inequalities

1. Identical Inequalities are valid for arbitrary values of the letters contained in them.

2. Inequalities of the Same Sense belong to the same type from the first two, i.e., both belong to

type I or both belong to type II.

3. Inequalities of the Opposite Sense belong to different types of the first two, i.e., one to type

I, the other to type II.

4. Equivalent Inequalities are inequalities if they are valid exactly for the same values of the un-

knowns contained in them.

3. Solution of Inequalities

Similarly to equalities, inequalities can contain unknown quantities which are usually denoted by the

last letters of the alphabet. The solution of an inequality or a system of inequalities means the determi-

nation of the limits for the unknowns between which they can change, keeping the inequality or system
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of inequalities true.

Solutions can be looked for any kind of inequality; mostly pure inequalities of type I and II are to be
solved.

1.4.1.2 Properties of Inequalities of Type I and 11
1. Change the Sense of the Inequality

If a>0bholds, then b<a isvalid, (1.97a)

if a<bholds, then b>a isvalid. (1.97b)
2. Transitivity

If a>0b and b>chold, then a>c isvalid; (1.98a)

if a<b and b<chold, then a<c isvalid. (1.98b)
3. Addition and Subtraction of a Quantity

If a>bholds, then atc>bEec isvalid; (1.99a)

if a<bholds, then atc<btc isvalid. (1.99b)

By adding or subtracting the same amount to the both sides of inequality, the sense of the inequality
does not change.

4. Addition of Inequalities
If a>b and c¢>d hold, then a-+c>0b+d isvalid; (1.100a)

if a<b and c¢<d hold, then a+c<b+d isvalid. (1.100b)
Two inequalities of the same sense can be added.

5. Subtraction of Inequalities
If a>b and c<d hold, then a—c>b—d isvalid; (1.101a)

if a<b and c¢>dhold, then a—c<b—d isvalid. (1.101b)

Inequalities of the opposite sense can be subtracted; the result keeps the sense of the first inequality.
Subtracting inequalities of the same sense is not allowed.

6. Multiplication and Division of an Inequality by a Quantity

If a>b and ¢>0 hold, then ac>bc and % > ? are valid, (1.102a)
if a<b and ¢>0 hold, then ac<bc and % < I—C) are valid, (1.102b)
if a>b and ¢<0 hold, then ac<bc and % < g are valid, (1.102¢)
if a<b and ¢<0 hold, then ac>bec and ? > gare valid. (1.102d)

Multiplication or division of both sides of an inequality by a positive value does not change the sense
of the inequality. Multiplication or division by a negative value changes the sense of the inequality.
7. Inequalities and Reciprocal Values

If 0<a<b or a<b<0 hold, then 1 > % is valid. (1.103)
a
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1.4.2 Special Inequalities
1.4.2.1 Triangle Inequality for Real Numbers

For arbitrary real numbers a, b, a1, as, . . . , a,, there are the inequalities

ool < lal+1bl;  lar+as+ -+ an < lar] +Jasl -+ Jal (1.104)
The absolute value of the sum of two or more real numbers is less than or equal to the sum of their
absolute values. The equality holds only if the summands have the same sign.
1.4.2.2 Triangle Inequality for Complex Numbers

For n complex numbers 21, 29,...,2, € C

n
>
k=1

n
=latzt -+l <l|al+lzl+ A+l = |zl (1.105)
=1

1.4.2.3 Inequalities for Absolute Values of Differences of Real and Complex
Numbers

For arbitrary real numbers a,b € R, there are the inequalities
lla] = [8l] < |a —b] < |af +[b]. (1.106)
The absolute value of the difference of two real numbers is less than or equal to the sum of their absolute

values, but greater than or equal to the absolute value of the difference of their absolute values. For
two arbitrary complex numbers z1, zp € C

[lz1] = |2l < [z = 2] < Jz1| + 2] (1.107)
1.4.2.4 Inequality for Arithmetic and Geometric Means

G tap+ - Fan > ajay--a, for a;>0. (1.108)
n

The arithmetic mean of n positive numbers is greater than or equal to their geometric mean. Equality
holds only if all the n numbers are equal.

1.4.2.5 Inequality for Arithmetic and Quadratic Means

[2 L 024 ... 2
< a” + az” + + an ) (1_109)
n

The absolute value of the arithmetic mean of numbers is less than or equal to their quadratic mean.

1.4.2.6 Inequalities for Different Means of Real Numbers

For the harmonic, geometric, arithmetic, and quadratic means of two positive real numbers a and b
with a < b the following inequalities hold (see also 1.2.5.5, p. 20):

ay+az+ - +an
n

a<zrg<rg<za<zg<b (1.110a)
Here

a+b 2ab a® + b?
= - —=Vab =" ro= . 1.110b
A 5 e avs i a+b’ rQ 2 ( )

1.4.2.7 Bernoulli’s Inequality

For every real number @ > —1 and integer n > 1 holds
(I+a)">1+na. (1.111)
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The equality holds only forn =1, or a = 0.
1.4.2.8 Binomial Inequality
For arbitrary real numbers a, b € R holds

lab| < %(aerbz). (1.112)

1.4.2.9 Cauchy-Schwarz Inequality

1. Cauchy-Schwarz Inequality for Real Numbers
The Cauchy-Schwarz inequality holds for arbitrary real numbers a;,b; € R :

[a1by 4 agby + -+ - 4+ a,b,| < \/(1,12 +ag2+ -+ (1,,],2\/1)12 + b4+ b2 (1.113a)
or

(arby + agby + -+ apbp)? < (a1 + a® + -+ @, ) (0> + b% + -+ b,2). (1.113b)
For two finite sequences of n real numbers, the sum of the pairwise products is less than or equal to
the product of the square roots of the sums of the squares of these numbers. Equality holds only if
ay by =ay:by=---=ay,: b,
If n = 3 and {ay,as, a3} and {by, by, b3} are considered as vectors in a Cartesian coordinate system,
then the Cauchy-Schwarz inequality means that the absolute value of the scalar product of two vectors
is less than or equal to the product of absolute values of these vectors. If n > 3, then this statement
can be extended for vectors in n-dimensional Euclidean space.
2. Cauchy-Schwarz Inequality for Complex Numbers
Considering that for complex numbers |z|* = 2*z (2* is the complex conjugate of ), the inequality
(1.113b) is valid also for arbitrary complex numbers z;, w; € C:
(z1w1 + 2owg + -+ + Zywy)* (21w + 2owe + - -+ + ZW,)
< (z21%21 4 29" 20 4 - 20 20) (W1 Wy + wotwg + -+ 4wy Fwy).
3. Cauchy-Schwarz Inequality for Convergent Infinite Series and Integrals
An analogous statement to (1.113b) is the Cauchy-Schwarz inequality for convergent infinite series and
for certain integrals:

(2 anlm)2 < (i aﬁ) (i bf) , (1.114)

n=1 n=1

[/abf(.y;) o(z) d:}z;r < </ab[f(:1;)]2(lx> </ab[4,9(:1;)]2dx). (1.115)

1.4.2.10 Chebyshev Inequality

If ay,as, ..., ay,, by, by, ..., b, are real positive numbers, then the following inequalities hold:
<al+a2+"'+an) <b1+b2+"'+bn> < aiby + agby + - + anby (1.116a)
n n n
for a;<ay<...<a, and by <by <...<b,,
or ay>ay>...>a, and by >by>...>0b,,
and
(m +a2+-~+an> (bl +b2+--~+bn> > arby + ashy + -+ - + ayb, (1116)
n n n

for a;<ay<...<a, and by >by>...>0D,.
For two finite sequences with n positive numbers, the product of the arithmetic means of these sequences
is less than or equal to the aritmetic mean of the pairwise products if both sequences are increasing or
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both are decreasing; but the inequality is valid in the opposite sense if one of the sequences is increasing
and the other one is decreasing.

1.4.2.11 Generalized Chebyshev Inequality

If ay,aq,...,a,, by, b, ..., b, are real positive numbers, then the following inequalities hold:
\k/alk +agk+ - +a,t \A/bl’“ +b b, - \,/(albl)k‘ + (asbo) + -+ + (anby)* (L1178)
n n n
for ay<ay<...<a, and by <by <...<b,
or ay>ay>...>a, and by >by>...>b,
and
Valk +agk oo+ ak \A/bl‘”‘ [ESRETN d(albou (0abo)" &+ (wnbn)® (1 1)
n n n
for a;<a,<...<a, and by >by>...>0,.
1.4.2.12 Holder Inequality
1. Holder Inequality for Series
1 1
If p and ¢ are two real numbers such that — + — = 1 is fulfilled, and if x1, 29, ..., 2, and y1,y2, ..., Yn

are arbitrary 2n complex numbers, then the following inequality holds:
1 1
n n ; n E
> ol < Y] [Smr] (1118%)
k=1 k=1 k=1
This inequality is also valid for countable infinite pairs of numbers:
1
a

3 ren] < [z |@ [2 w] | (1.118h)
k=1 k=1 k=1

where from the convergence of the series on the right-hand side the convergence of the left-hand side
follows.

2. Holder Inequality for Integrals
If f(x) and g(x) are two measurable functions on the measure space (X, A, i) (see 12.9.2, p. 695), then

the following inequality holds:
L 1
[}Z lg(z)|? d/z} . (1.118c)

[1#@) @l < L/fmv’ d

1.4.2.13 Minkowski Inequality

1. Minkowski Inequality for Series
If p > 1 holds, and {z;, }¥=5° and {y;}$°, with 24, yx € C are two sequences of numbers, then holds:

1 1
P P

Li:\xwrykl”r < [gmv] + [gl\ykl”] : (1.119a)
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2. Minkowski Inequality for Integrals
If f(z) and g(z) are two measurable functions on the measure space (X, A, p) (see 12.9.2, p. 695), then

holds:
: :
+ [J|g(1>)|”d4 . (1.119b)

{J 1) + y(w)pdu} "< u ) P

1.4.3 Solution of Linear and Quadratic Inequalities
1.4.3.1 General Remarks

During the solution of an inequality it is transformed into equivalent inequalities step by step. Similarly
to the solution of an equation the same expression can be added to both sides; formally, it may seem
that a summand is brought from one side to the other, changing its sign. Furthermore one can multiply
or divide both sides of an inequality by a non-zero expression, where the inequality keeps its sense if
this expression has a positive value, and changes its sense if this expression has a negative value. An
inequality of first degree can always be transformed into the form

ax >b. (1.120)
The simplest form of an inequality of second degree is
w2 >m (1.121a) or a*<m (1.121b)

and in the general case it has the form

az’ +br+c¢>0 (1.122a) or az’®+br+c<0. (1.122b)

1.4.3.2 Linear Inequalities
The linear inequality of first degree (1.120) has the solution

x> b for a >0 (1.123a) and < b for a < 0. (1.123Db)
a a

B5r+3<8r+1, fHr—8r<1-3, —-3Br<-2, z>

W N

1.4.3.3 Quadratic Inequalities

Inequalities of second degree in the form
w2 >m (1.124a) and 22 <m (1.124b)

have solutions

a) 2 >m: Form >0 thesolutionis z >m and z<—vm (|z| > vm), (1.125a)
for m < 0 the inequality obviously holds for any z. (1.125b)
b) 2 <m: Form >0 thesolutionis —v/m <z <+vm (|z| < vm), (1.126a)
for m < 0 there is no solution. (1.126b)

1.4.3.4 General Case for Inequalities of Second Degree

az® +br+c¢>0 (1.127a) or ar’+br+e<0. (1.127Db)

First dividing the inequality by a. If a < 0 then the sense of the inequality changes, but in any case it
will have the form

P4 pr+q<0 (1.127¢) or 22 +pr+q>0. (1.127d)
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By completing the square it follows that

2 2 2 2
p P P p
= =] - 1.12 = =] —q. 1.127f
<I+ 2> = <2> 1 (1.127¢) o <z+ 2) ” (2) 1 (11270
N P\? . .
Denoting z + 3 by z and 5) q by m, the inequalities
2 <m (1.128a) or 22>m (1.128b)

can be obtained. Solving these inequalities yields the values for z.

™G 9 3 7 3
WA 224 140 —20>0, a? — Te+10 < 0, (m—f) <3 —S<z-s<3,

2 4’
—§Jrz<:c<§+z
2 2 2 27

The solution is 2 < x < 5.
B B: 22 +62x+15>0, (x+3)2> —6. The inequality holds identically.

™2 9 7.3 7 3

. 9.2 b R i _t.2 o2

B C: —22°+ 142 — 20 <0, (.L 2)>4,x 2>2andx 2< 3
The solution intervals are x > 5 and z < 2.

1.5 Complex Numbers

1.5.1 Imaginary and Complex Numbers
1.5.1.1 Imaginary Unit

The imaginary unit is denoted by i, which represents a number different from any real number, and
whose square is equal to —1. In electronics, instead of i the letter j is usually used to avoid accidently
confusing it with the intensity of current, also denoted by i. The introduction of the imaginary unitleads
to the generalization of the notion of numbers to the complex numbers, which play a very important role
in algebra and analysis. The complex numbers have several interpretations in geometry and physics.

1.5.1.2 Complex Numbers
The algebraic form of a complex number is

z=a+1ib. (1.129a)
When a and b take all possible real values, then one gets all possible complex numbers z. The number
a is the real part, the number b is the imaginary part of the number z:

a=TRe(z), b=Im(z). (1.129b)
For b = 0 it is z = a, so the real numbers form a subset of the complex numbers. Fora = 0 it is z = ib,
which is a “pure imaginary number”.
The total set of complex numbers is denoted by C .

Remark: Functions w = f(z) with complex variable z = x + iy will be discussed in function theory
(see 14.1, p. 731 ff).

1.5.2 Geometric Representation
1.5.2.1 Vector Representation

Similarly to the representation of the real numbers on the numerical axis, the complex numbers can be
represented as points in the so-called Gaussian number plane: A number z = a + 1b is represented by
the point whose abscissa is @ and ordinate is b (Fig. 1.5). The real numbers are on the axis of abscissae
which is also called the real axis, the pure imaginary numbers are on the axis of ordinates which is
also called the imaginary axis. On this plane every point is given uniquely by its position vector or
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radius vector (see 3.5.1.1, 6., p. 181), so every complex number corresponds to a vector which starts at
the origin and is directed to the point defined by the complex number. So, complex numbers can be
represented as points or as vectors (Fig. 1.6).

1.5.2.2 Equality of Complex Numbers

Two complex numbers are equal by definition if their real parts and imaginary parts are equal to each
other. From a geometric viewpoint, two complex numbers are equal if the position vectors correspond-
ing to them are equal. In the opposite case the complex numbers are not equal. The notions “greater”
and “smaller” are meaningless for complex numbers.

Im(z)
z
0 Re(z)
Figure 1.5 Figure 1.6 Figure 1.7

1.5.2.3 Trigonometric Form of Complex Numbers
The form

z=a+1b (1.130a)
is called the algebraic form of the complex number. Using polar coordinates yields the trigonometric
form of the complex numbers (Fig. 1.7):

z = p(cosp +1sing). (1.130Db)

The length of the position vector of a point p = |z| is called the absolute value or the magnitude of the
complex number, the angle ¢, given in radian measure, is called the argument of the complex number
and is denoted by arg z:

p=1lz|, p=argz=w+2kr with 0<p<oo, -7 <w<+m, k=0,£1,+2,.... (1.130¢)
One calls ¢ the principal value of the argument of the complex number.

The relations between p, ¢ and a, b for a point are the same as between the Cartesian and polar
coordinates of a point (see 3.5.2.2, p. 192):

a = pcosp, (1.131a) b= psinep, (1.131b)  p = a2+ 12, (1.131c)
b
arctan . fora > 0,
arccos% forb >0, p >0, +g fora=0, b>0,
_ T
¢ =\ —arccos = forb <0, p> 0, p=1"%5 fora=0, b <0,
P
undefined  for p =0 arctan b +m fora<0, b>0,
(1.131d) b
arctan pald fora <0, b<0.

(1.131e)
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The complex number z = 0 has absolute value equal to zero; its argument arg 0 is undefined.

1.5.2.4 Exponential Form of a Complex Number
The representation

2= pe'? (1.132a)
is called the exponential form of the complex number, where p is the magnitude and ¢ is the argument.
The Euler relation is the formula

€'® =cosp+ising. (1.132Db)
B Representation of a complex number in three forms:
a) z = 1+1v/3 (algebraic form), b) z = 2 (cosg +1 sin g) (trigonometric form),

c) z=2¢'5 (exponential form), considering the principal value of it.

Without restriction to the principal value holds the representation

d)z=1+iV3=2exp [i (g i 2kfr)] =2 [cos (g + ka) Tisin (g i 2k;7r>] (k=0,4£1,42,...).
1.5.2.5 Conjugate Complex Numbers

Two complex numbers z and z* are called conjugate complex numbers if their real parts are equal and
their imaginary parts differ only in sign:

Re(z*) = Re(z), Im(z*) = —Im(z). (1.133a)
The geometric interpretation of points corresponding to the conjugate complex numbers are points
symmetric with respect to the real axis. Conjugate complex numbers have the same absolute value,
their arguments differ only in sign:

z=a+1ib=p(cosp +1ising) = pe'?, (1.133b)

2" =a—ib= p(cosp —ising) = pe . (1.133¢)

Instead of z* one often uses the notation z for the conjugate of z.

1.5.3 Calculation with Complex Numbers
1.5.3.1 Addition and Subtraction

Addition and subtraction of two or more complex numbers given in algebraic form is defined by the
formula
Z1+22—23+"‘ = (a,1+ib1)+(a2+ib2) — ((15+1b3)+

=(m+ay—az+---)+i(by +by—byg+---). (1.134)
The calculation can be done in the same way as doing with usual binomials. As a geometric interpreta-
tion of addition and subtraction can be considered the addition and subtraction of the corresponding
vectors (Fig. 1.8). For these the usual rules for vector calculations are to be used (see 3.5.1.1, p. 181).
For z and z*, z + z* is always real, and z — z* is pure imaginary.

Re(z)

Re(z)

Figure 1.8 Figure 1.9 Figure 1.10
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1.5.3.2 Multiplication

The multiplication of two complex numbers z; and 2, given in algebraic form is defined by the following
formula

z120 = (a1 +1b1)(az +1bs) = (a1az — biba) +i(aibs + biaz) . (1.135a)
For numbers given in trigonometric form holds
z129 = [pr1(cos @y + 1 sin ¢1)][p2(cos p2 + 1 sin )]
= pipafcos(pr + 2) +1sin(pr + @2)], (1.135b)
i.e., the absolute value of the product is equal to the product of the absolute values of the factors, and

the argument of the product is equal to the sum of the arguments of the factors. The exponential form
of the product is

2179 = prpoeP1FeR) (1.135¢)

The geometric interpretation of the product of two complex numbers z; and z; is a vector (Fig. 1.9). Tt
is generated by rotation of the vector corresponding to z; by the argument of the vector z; (clockwise or
counterclockwise according to the sign of this argument), and the length of the vector will be stretched
by |za].

The product z;z5 can also be represented with similar triangles (Fig. 1.9). The multiplication of a
complex number z by i means a rotation by /2 and the absolute value does not change (Fig. 1.10).
For z and 2*:

22t =pt =z = a® + V. (1.136)
1.5.3.3 Division

Division is defined as the inverse operation of multiplication. For complex numbers given in algebraic
form holds

z a1 +1ib ayaz + bib asby — a1
21 1+'1: 1?+ 122+i 2} 122. (1.137a)
Zo Gz +iby as® + by as? + by
For complex numbers given in trigonometric form holds
21 pi(cospr +ising:)  py Lo
— = T2 = “—[cos — o) +1sin(p; — w9)], 1.137b
2~ pa(cos s 1 s o) pz[ (1 = 2) (o1 = 2)] ( )
i.e., the absolute value of the quotient is equal to the ratio of the absolute values of the dividend and
the divisor; the argument of the quotient is equal to the difference of the arguments.
For the exponential form follows

z .
. &(3'(%*(/12). (1.137¢)
Z2 P2

In the geometric representation the vector corresponding to z;/zs can be generated by a rotation of the

vector representing z; by — arg z», and then by a contraction by |zs|.

Remark: Division by zero is impossible.

1.5.3.4 General Rules for the Basic Operations

Calculations with complex numbers z = a + ib are to be done in the same way as doing with ordinary
binomials, but considering i? = —1. Dividing a complex number by a complex number first the imag-
inary part of the denominator has to be removed by multiplying the numerator and the denominator
of the fraction by the complex conjugate of the divisor. This is possible because

(a+ib)(a—ib) =a®+b? (1.138)
is a real number.
m B4)(1H5)? 1047 (3-4)(1-10i-25)  (1047)i _ -2(3-4i)(12+5)

1+ 31 51 1+3i bii 1+3i
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7 — 10i —2(56—331)(1—Si)+7—101 B —2(—43—201i)+7—101 B
5  (1+3i)(1-3i) 5 10 5

1
= Z(50+191i) = 10+38.2i.
[9)

1.5.3.5 Taking Powers of Complex Numbers

The n-th power of a complex number could be calculated using the binomial formula, but it would
be very inconvenient. For practical reasons the trigonometric form is to be used and the so-called de
Moivre formula:

[p(cos +1sinp)|" = p™(cosny + 1 sinnyp), (1.139a)
i.e., the absolute value is raised to the n-th power, and the argument is multiplied by n. In particular,
holds:

iZ=-1, i*=-i, it=+1 (1.139b) in general pintk — gk (1.139¢)

1.5.3.6 Taking the n-th Root of a Complex Number

Taking of the n-th root is the inverse operation of taking powers. For z = p(cos ¢ + 1 sin ) # 0 the

notation
2=z (n>0, integer), (1.140a)
is the shorthand notation for the n different values z Im(z)
p+2kr . . p+2kn ,
Wi = 3 cos +1 sin s 4O
L= < n n @, g D
(k=0,1,2,...,n—1). (1.140b) / ,
While addition, subtraction, multiplication, division, and tak- 0 7 R
. L . ) . @, @ / Re(z)
ing a power with integer exponent have unique results, taking N /
the n-th root has n different solutions wy,. S|t
The geometric interpretations of the points wy, are the vertices o
of a regular n-gon whose center is at the origin. In Fig. 1.11 4
the six values of /z are represented. Figure 1.11

1.6 Algebraic and Transcendental Equations

1.6.1 Transforming Algebraic Equations to Normal Form
1.6.1.1 Definition

The variable z in the equality

F(z) = f(x) (1.141)
is called the unknown if the equality is valid only for certain values xy, zo, ..., x, of the variable, and
these values are called the solutions or the roots of the equation. Two equations are considered equiv-
alent if they have exactly the same roots.
An equation is called an algebraic equation if the functions F(x) and f(z) are algebraic, i.e., they are
rational or irrational expressions; of course one of them can be constant. Every algebraic equation can
be transformed into the normal form

P(z) = apa" + ap12" -+ a1z +ag =0 (1.142)
by algebraic transformations. The roots of the original equation occur among the roots of the normal
form, but under certain circumstances some are superfluous. The leading coefficient a,, is frequently
transformed to the value 1.
The exponent n is called the degree of the equation.

z—1+Va? -6 z-3
T

B Determine the normal form of the equation ——————— = 1 + . The transformations

3(x—2)
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step by step are:

2(x —1+Va2—06) =3z(x —2) +3(x — 2)(x — 3), z*—a+a2va2—6=32"— 6z + 32— 15z +
18, ava2—6=522—-20z+18, 2*(2?—6) = 25x*—2002>+5802% — 720z + 324, 24z* —200z°+
58622 — 720z + 324 = 0. The result is an equation of fourth degree in normal form.

1.6.1.2 System of n Algebraic Equations

Every system of algebraic equations can be transformed to normal form, i.e., into a system of polynomial
equations:

P(z,y,z,...) =0, Pa(z,y,2,...)=0, ..., P(x,y,2,...)=0. (1.143)
The P; (i =1,2,...,n) are polynomials in z,y, z, . ...

B Determine the normal form of the equation system: 1.

Sk

The normal form is: 1. 2?22 —y =0, 2. 22 —2x+1—y’2+2yz2—2=0, 3. ay—z2=
1.6.1.3 Extraneous Roots

After transforming an algebraic equation into the normal form (1.142) it can happen that the equation
P(z) = 0 has some roots which are not solutions of the original equation (1.141). The roots of the
equation P(z) = 0 must be substituted into the original equation to check whether they are really
solutions of (1.141).
Extraneous solutions can emerge if not invertible transformations are performed:
1. Vanishing denominator If the equation has the form

P(z)

Q(z)
with polynomials P(x) and Q(z), then the normal form of (1.144a) after multiplying by the denomi-
nator Q(z) is:

P(x)=0. (1.144b)
The roots of (1.144b) are the same as the roots of (1.144a), except the ones which are roots both of the
numerator and of the denominator, i.e. which satisfy P(z) = 0 and Q(x) = 0. If # = « is a root of
the denominator, then in the case # = « the multiplication by Q(z) is a multiplication by zero. Every
time when a non-identical transformation is performed, the checking of the solutions is necessary (see
also 1.6.3.1, p. 43).

T 3

—0 (1.144a)

1= T The corresponding normal form is 2* — 2° — 2 +1 = 0. 21 = 1 is a solution of
x— T —

the normal form, but it is not a solution of the original equation, since the fractions are not defined for
r=1.

2. Irrational equations If the original equation contains radicals, the normal form is usually
achieved by powering. E.g. squaring is not an identical transformation (since it is not invertible).

B \/r+7+1=2xo0rr+7=2r— 1. By squaring both sides of the second form of the equation
its normal form is 422 — 52 — 6 = 0, and the roots are #; = 2 and 2, = —3/4. The root z; = 2is a
solution of the original equation, but the root x5 = —3/4 is not.

1.6.2 Equations of Degree at Most Four
1.6.2.1 Equations of Degree One (Linear Equations)

1. Normal Form
ar+b=0 (a#0). (1.145)
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2. Number of Solutions
There is a unique solution

Y (1.146)

a

1.6.2.2 Equations of Degree Two (Quadratic Equations)

1. Normal Form

ar’ +br+c=0 (a#0) (1.147a)
or divided by a:
P4 pr+q=0. (1.147b)
2. Number of Real Solutions of a Real Equation Depending on the sign of the discriminant
2
D =4ac— b for (1.147a) or D =q — % for (1.147b), (1.148)
holds:

e for D < 0, there are two real solutions (two real roots),

e for D = 0, there is one real solution (two coincident roots)
e for D > 0, there is no real solution (two complex roots).
3. Properties of the Roots of a Quadratic Equation If z; and x5 are the roots of the quadratic
equation (1.147a) or (1.147b), then the following equalities hold:

b
I1+xz:75:7p, xl-mgza:m (1.149)

4. Solution of Quadratic Equations
Method 1: Factorization of
az® + bz +c=a(z —a)(z — ) (1.150a) or 22 +pr+q=(z—a)(z—pB), (1.150b)
if it is successful, immediately gives the roots
T =a, =/ (1.151)
B’ +2-6=022+2—6=(+3)(z—2),21=-3, 23=2.

Method 2: Using the solution formula in the cases D < 0:
a) For (1.147a) the solutions are

b b\
bt VP-4 ks <§) Cae
TM' (1.152a) or wp=——— . (1152D)

T12 =

If b is an even integer the second formula is to be used.
b) For (1.147b) the solutions are

»
Tio=—=F1/——q. 1.1
T1,2 B) 1 q (1.153)

1.6.2.3 Equations of Degree Three (Cubic Equations)

1. Normal Form
ar’® + b’ +er+d=0 (a#0) (1.154a)

or after dividing by a and substituting y = = + 3a there is
a

2+ 3py +2¢ =0 orinreduced form y*+p'y+¢* =0, (1.154b)
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where
. 203 be d B 3ac — b*
q :2(1:%*@4*5 and p :3p:T. (1.154c)
2. Number of Real Solutions Depending on the sign of the discriminant
D=¢+p (1.155)
holds:

e for D > 0, one real solution (one real and two complex roots),

o for D < 0, three real solutions (three different real roots),

o for D = 0, one real solution (one real root with multiplicity three) in the case p = ¢ = 0; or two real
solutions (a single and a double real root) in the case p* = —q? # 0.

3. Properties of the Roots of a Cubic Equation If z;, x5, and x3 are the roots of the cubic
equation (1.154a), then the following equalities hold:

b c d .
T+ Ty + 13 = 2 T1To + T1T3 + ToTy = . T1ToT3 = - (1.156)

4. Solution of a Cubic Equation
Method 1: If it is possible to decompose the left-hand side into a product of linear terms

az® + b2’ + cx +d = a(z — a)(x — B)(x — ) (1.157a)
one immediately gets the roots
1 =a, xo=0, x3="1. (1.157b)

B +a?—62=0 28 +22—6r=a(x+3)(x—2); z,=0, 29=—3, a3 =2.

Method 2: Using the Formula of Cardano. By substituting y = u + v the equation (1.154b) has the
form

u? +v* + (u+v)(3uv + 3p) + 2¢ = 0. (1.158a)
This equation is obviously satisfied if

w+vP=-2¢ and w=-—p (1.158b)
hold. Writing (1.158b) in the form

ud 4 0d = —2¢, udvd = —p* (1.158¢)

there are two unknowns u* and v*, the sum and product of which are known. Therefore using the Vieta
root theorem (see 1.6.3.1, 3., p. 44) the solutions of the quadratic equation

w? — (1 + 0w +uP? = w? + 2qw —p> =0 (1.158d)
can be calculated:

wy =ud = —q4+\/@® +p3, wy =03 = —q—\/q® + pB, (1.158e)

so for the solution y of (1.154b) the Cardano formula results in

y:u+v:\“/fq+\/m+\3/fqﬂ/q2+p3~ (1.158f)

Since the third root of a complex number means three different numbers (see (1.140b), p. 38) there are

nine different cases, but because of uv = —p, the solutions are reduced to the following three:
y1 = uy + vy (if possible, consider the real third roots u; and vy such that u;v; = —p), (1.158g)
= ( 1+i\/§)+ ( ! i\/§> (1.158h)
Y2 = Uy 273 U1 273 5 15

A S o (2t .
y3—u1< 5 2\/§>+L1< 2+2\/§>. (1.158i)
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B+ 6y+2=0withp=2 g=1land¢®+p®=9andu= /=1 +3 = ¥/2 = 1.2599,

v = +/—1—3 = /-4 = —1.5874. The real root is y; = u + v = —0.3275, the complex roots are
1

Yoz = 75(71, +v) £ i?(u —v) =0.1638 +1i - 2.4659.

Method 3: For a real equation, the auziliary values given in Table 1.3 can be used. With p from
(1.154c)

r==£/In| (1.159)

is substituted where the sign of 7 is the same as the sign of ¢. Next, using Table 1.3, one can determine
the value of the auxiliary variable ¢ and with it the roots y1, y» and y3 depending on the signs of p and
D =q+p*

Table 1.3 Auxiliary values for the solution of equations of degree three

p<0
p>0
PP <0 PP >0
cosp = r% coshp = T% sinh ¢ = r%
Y= —2r cos% Yy = —2r coshg Yy = —2r sinhg
Y2 = +2r cos (60° - %) yo=r cosh% +iv3r sinh% Yy = rsinhg + i\/grcoshg
Y3 = +2rcos <60° + %) Y3 = rcosh% —iV3r sinhg Yy =r sinh% —iV3r cosh%

Wy’ —0y+4=0. p=-3,¢=2, P +7p*<0,r=1+/3, cosp = =0.3849, ¢ = 67°22".

2
3v3
Y1 = —2v3¢0s22°27 = —3.201, y, = 2v/3cos(60° — 22°27') = 2.747, y3 = 2v/3 cos(60° + 22°27') =
0.455.

Checking: y; + y2 + y3 = 0.001 which can be considered 0 for the accuracy of our calculations.
Method 4: Numerical approximate solution, see 19.1.2, p. 952; numerical approximate solution by
the help of a nomogram, see 2.19, p. 128.
1.6.2.4 Equations of Degree Four
1. Normal Form

ar* +b2* +ca’ +dr+e=0 (a#0). (1.160)
If all the coefficients are real, this equation has 0 or 2 or 4 real solutions.
2. Special Forms If b = d = 0 holds, the roots of the biquadratic equation

azt + e +e=0 (1.161a)
can be calculated by the formulas

PRI/ )

Tipga = £V Y= o (1.161b)
For a = e and b = d, the roots of the equation

ax* + b’ +er’ fbhr+a=0 (1.161c)
can be calculated by the formulas

y+Vy?—4 —b+ Vb? — dac 2
s — Y \/21 . b+ /b : ac + 8a ' (1.161d)
a
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3. Solution of a General Equation of Degree Four
Method 1: If somehow the left-hand side of the equation can be factorized

ar* +bad + et fdrde=0=a(r —a)(z—B)(x —y)(z—9) (1.162a)
then the roots can be immediately determined:

=, =0, x3=7, x4=0. (1.162b)
Wt —22° —2?+ 20 =0, z(2a* — 1)z —2) =a(z—1)(z+1)(z — 2);
1 =0, 2o =1, x3=—1, 14 = 2.

Method 2: The roots of the equation (1.162a) for a = 1 coincide with the roots of the equation

: by —d
24 b+ A+ (y+ Y =0, (1.163a)
2 A
where A = ++/8y + b? — 4c and y is one of the real roots of the equation of third degree
8y® — 4ey® + (2bd — 8e)y + e(4c — b?) —d* =0 (1.163b)
b b b
with B = i 56 # 0. The case B = 0 gives by the help of the substitution z = u — 1 a biquadratic

equation of the form (1.161a) for u witha = 1.
Method 3: Approximate solution, see 19.1.2, p. 952.

1.6.2.5 Equations of Higher Degree

It is impossible to give a formula or a finite sequence of formulas which produce the roots of an equation
of degree five or higher (see also 19.1.2.2,2., p. 954).

1.6.3 Equations of Degreen
1.6.3.1 General Properties of Algebraic Equations

1. Roots
The left-hand side of the equation
"+ a, 2" 4 +ap=0 (1.164a)

is a polynomial P,(z) of degree n, and a solution of (1.164a) is a root of the polynomial P, (x). If av is
a root of the polynomial, then P,(x) is divisible by (z — «). Generally

Py(x) = (v — a)Pyi(2) + Po(a). (1.164b)
Here P, () is a polynomial of degree n — 1. If P, () is divisible by (z — «)*, but it is not divisible by
(# — a)**1 then o is called a root of order k of the equation P,(z) = 0. In this case a is a common root
of the polynomial P,(x) and its derivatives to order (k — 1).
2. Fundamental Theorem of Algebra
Every equation of degree n whose coefficients are real or complex numbers has n real or complex
roots, where the roots of higher order are counted by their multiplicity. Denoting the roots of P(x)
by a, 3,7, ... and they have multiplicity k,[,m, ..., then the product representation of the polynomial
is

P(z) = (z — o)z = Bz —~)™.... (1.165a)
The solution of the equation P(x) = 0 can be simplified by reducing the equation to another one, which
has the same roots, but only with multiplicity one (if possible). In order to get this, the polynomial is
to be composed into a product of two factors

P(z) = Q(2)T(z), (1.165b)
such that

Ta)=@-a)* N z-p)""..., Q)= —a)(z—p5).... (1.165¢)
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Because the roots of the polynomial P(x) with higher multiplicity are the roots of its derivative P'(x),
too, T'(x) is the greatest common devisor of the polynomial P(z) and its derivative P'(x) (see 1.1.6.5,
p.14). Dividing P(z) by T'(x) yields the polynomial Q(z) which has all the roots of P(z), and each
root occurs with multiplicity one.

3. Theorem of Vieta About Roots

The relations between the n roots @1, 2, ..., x, and the coefficients of the equation (1.164a) are:

n
Ty Tod . Ty =D T = Oy,
i=1

n
1o + X123+ ...+ Tp1Xy = Z Tikj = Ap-2,
i,j=1
i<j

n
T\ Loy + T1ToTy + ..+ Ty 0Ty 1T, = Z TiT T = —Qp_3, (1.166)
ijk=1
i<j<k

%o ... Ty = (=1)"ay.

1.6.3.2 Equations with Real Coefficients

1. Complex Roots

Polynomial equations with real coefficients can also have complex roots but only pairwise conjugate
complex numbers, i.e., if @« = a +1b is a root, then § = a — ib is also a root, and it has the same

multiplicity. The expressions p = —(a + 8) = —2a and ¢ = a8 = a® + V? satisfy the unequation
2
(g) —q < 0, so that
(z—a)(xz—B)=a’+pr+gq (1.167)

holds. Substituting the product corresponding to (1.167) for every pair of factors in (1.165a), one gets
a decomposition of the polynomial with real coefficients into real factors.

P(x) = (v —a)"(x —ag)? - (v — o)™

(@4 pre 4 @)™ (2% A+ pox 4 qo)™ - (2% + pea )™ (1.168)
Here aq, g, . . ., ay are the [ real roots of the polynomial P(z). It also has r pairs of conjugate complex
roots, which are the roots of the quadratic factors 2>+ p;z +¢; (i = 1,2,...,r). The numbers a; (j =

N2
1,2,...,0), ppand ¢; (i =1,2,...,r) are real and the inequalities (%) — ¢; < 0 hold.

2. Number of Roots of an Equation with Real Coefficients

According to (1.167) every equation of odd degree has at least one real root. The number of further
real roots of (1.164a) between two arbitrary real numbers a < b, can be determined in the following
way':

a) Separate the Multiple Roots: Separating the multiple roots of P(z) = 0, yields an equation
which has all the roots of the original equation, but only with multiplicity one. Then the form mentioned
in the case of the fundamental theorem must be produced.

For practical reasons it is a good idea to start with the determination of the Sturm chain (the Sturm
functions (1.169)). This is almost the same as the Euclidean algorithm for determining the greatest
common devisor, but it gives some further information. If P, is not a constant then P(z) has multiple
roots, which must be separated. Therefore in the following it can be assumed that P(z) = 0 has no
multiple roots.
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b) Creating the Sequence of Sturm Functions:
P(z), P'(z), Pi(z), Py(z),. .., P, = const. (1.169)

Here P(x) is the left-hand side of the equation, P’(z) is the first derivative of P(z), Py(x) is the re-
mainder on division of P(x) by P’(x), but with the opposite sign, P(x) is the remainder on division of
P'(z) by Py(z) similarly with the opposite sign, etc.; P, = const is the last non-zero remainder, but
it must be a constant, otherwise P(z) and P’(x) have common devisors, and P(x) has multiple roots.
In order to simplify the calculations the remainders can be multiplied by positive numbers, what does
not change the result.

c) Theorem of Sturm: If A is the number of changes in sign, i.e. the number of changes from “+”
to “—=" and vice versa, in the sequence (1.169) for = a, and B is the number of changes in sign in the
sequence (1.169) for x = b, then the difference A — B is equal to the number of real roots of P(z) = 0 in
the interval [a, b]. If in the sequence some numbers are equal to zero, then they should not be considered
in the sign change count.

B Determination of the number of roots of the equation 2! — 522 + 8z — 8 = 0 in the interval [0, 2].
The calculations by the Sturm functions are: P(z) = x* — 52% + 8z — 8; P'(z) = 4a® — 10z + §;
Py(x) = 5% — 121 + 16; Pa(x) = —3x + 284; Py = —1. Substituting z = 0 results in the sequence
—8, 48, +16, 4284, —1 with two changes in sign, substituting = 2 results in +4, +20, +12, 4278, —1
with one change in sign, so A — B =2 — 1 = 1, i.e., between 0 and 2 there is one root.

d) Descartes Rule: The number of positive roots of the equation P(z) = 0 is not greater than the
number of changes of sign in the sequence of coefficients of the polynomial P(z), and these two numbers
can differ from each other only by an even number.

B What can be told about the roots of the equation 2* 4 22% — 22+ 52 — 1 = 0 ? The coefficients in the
equation have signs +, +, —, 4+, —, i.e., there are three changes of sign. By the rule of Descartes the
equation has either three or one roots. Because on replacing 2 by —x the roots of the equation change
their signs, and on replacing « by x + h the roots are shifted by h, the number of negative roots, or
the roots greater than h can be estimated by the help of the rule of Descartes. In the given example
replacing z by —z yields z* — 22° — 22 — 52 — 1 = 0, i.e., the equation has at most one negative root.
Replacing x by z + 1 yields z* 4+ 623 + 1122 + 132 4+ 6 = 0, i.e., every positive root of the equation (one
or three) is smaller than 1.

3. Solution of Equations of Degree n

Usually equations with n > 4 can be solved only approximately. In practice, approximate methods are
also used to get solutions of equations of degree three or four (see 19.1.2.3, p. 954).

In order to determine certain real roots of an algebraic equation the general numerical procedures for
non-linear equations can be used (see 19.1, p. 949). In order to determine all roots, including the
complex roots of an algebraic equation of degree n the Brodetsky-Smeal method can be used (see [1.7],
[19.31]). In order to determine complex roots one can use the Bairstow method (see [19.31]).

1.6.4 Reducing Transcendental Equationsto Algebraic Equations

1.6.4.1 Definition
An equation F(z) = f(x) is transcendental if at least one of the functions F'(x) or f(z) is not algebraic.
B A: 3°=4""2.2° W B: 2log; (3z — 1) — log; (122 + 1) = 0, C: 3coshz =sinhz + 9,
5 5 . 1
HD: 22! =8"2_4*2 W E: sinz = cos’z — T B F: 2cosy =sina.

In some cases it is possible to reduce the solution of a transcendental equation to the solution of an
algebraic equation, for instance by appropriate substitutions. In general, transcendental equations
can be solved only approximately. In the following sections some special transcendental equations are
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discussed which can be reduced to algebraic equations.

1.6.4.2 Exponential Equations

Exponential equations can be reduced to algebraic equations in the following two cases, if the unknown

2 or a polynomial P(x) is only in the exponent of some quantities a, b, ¢, . .. :

a) If the powers a1 @) pP2(#) . are connected by multiplication or division, then the logarithm can

be taken on an arbitrary base.

2log 4

W 3" =4"2.2% zlog3 = (v — 2)logd +xlog2; 0 = ——
P08 (= 2)logd + xlog2; » log4 — log 3 + log 2

b) If a, b, c, . .. are integer (or rational) powers of the same number k, i.e., a = k", b=k" c=k', ...,
holds, then by substituting y = k* one can get an algebraic equation for y, and after solving it follows

1
the solution z = 27,
log k
1 oo - 2z 251 22::; . . - . 5 ) .
W2 =87 — 472, T 6 16 Substitution of y = 2% results in y* — 4y* — 32y = 0 and

=8, ys = —4,y3 = 0; 2" = 8,27 = —4 2" = (), so x; = 3 follows. There are no further real
roots.

1.6.4.3 Logarithmic Equations

Logarithmic equations can be reduced to algebraic equations in the following two cases, if the unknown
2 or a polynomial P(z) is only under the logarithm sign:

a) If the equation contains only the logarithm of the same expression, then by introducing this as a
new unknown, one can solve the equation with respect to it. The original unknown can be determined
by using the logarithm.

W mflog, P(x)]> +n = ay/[log, P(x)]2 + b. The substitution y = log, P(z) yields the equation my? +
n = ay/y? + b. After solving for y one gets the solution for  from the equation P(z) = a¥.

b) If the equation is a linear combination of logarithms of polynomials of x, on the same base a, with
integer coefficients m, n, ..., i.e., it has the form mlog, Pi(x) + nlog, P»(z) + ... = 0, then the left-
hand side can be written as the logarithm of a rational expression. (The original equation may contain
rational coefficients and rational expressions under the logarithm, or logarithms with different bases,
if the bases are rational powers of each other.)

(3z —1)? (3z —1)?
120 +1 122 +1
Substituting z; = 0 in the original equation gives negative values in the logarithm, i.e., this logarithm

is a complex value, so z = 0 is not a solution.

W 2log; (3z — 1) — logs(12z + 1) = 0, logs = logs 1, =1Lia =0,2 = 2.

1.6.4.4 Trigonometric Equations

Trigonometric equations can be reduced to algebraic equations if the unknown x or the expression nz+a
with integer n is only in the argument of the trigonometric functions. After using the trigonometric
formulas (see 2.7.2, p.81) the equation will contain only one unique function containing x, and after
replacing it by y an algebraic equation arises. The solution for z is obtained from the solutions for y,
naturally taking the multi-valuedness of the solution into consideration.

1 1 3
M siny = cos’w — 1 orsine = 1 —sin’z — 1 Substituting y = sinz yields y? + y — 1= 0 and
1

3 1
B=gok= g The result y, gives no real solution, because |sinz| < 1 for all real z; from y; = 3
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-
follows x = % + 2km and x = % + 2km with k = 1,2,3,....

1.6.4.5 Equations with Hyperbolic Functions

Equations with hyperbolic functions can be reduced to algebraic equations if the unknown x is only in the
argument of the hyperbolic functions. Rewriting the hyperbolic functions as exponential expressions,

then substituting y = e” and — = e, and the result is an algebraic equation for y. After solving this
Y

the solution is x = Iny.

3(e® ,— T o 2
B 3coshz =sinhz+9; (e ;L ):e zt +9;e"+2e—9=0;y+--9=0,42—9y+2=0;
Y
9++73 9++73 9— V73
ha= i = n% ~ 21716, 25 = In— == ~ —14784.



2 Functions

2.1 Notion of Functions
2.1.1 Definition of a Function
2.1.1.1 Function

If 2 and y are two variable quantities, and if there is a rule which assigns a unique value of y to a given
value of z, then y is called a function of x, using the notation

y=f(z). (2.1)
The variable z is called the independent variable or the argument of the function y. The values of x,
to which a value of y is assigned, form the domain D of the function f(x). The variable y is called the
dependent variable; the values of y form the range Wof the function f(z) . Functions can be represented
by the points (z,y) as curves, or graphs of the function.

2.1.1.2 Real Functions

If both the domain and the range contain only real numbers the function y = f(z) is called a real
function of a real variable.

W A: y=2% with D: —co<z<oo, W: 0<y<oo.

B B:y=zrwith D: 0<2 < oo, W:0<y<oo.

2.1.1.3 Functions of Several Variables

If the variable y depends on several independent variables xq, s, . . ., x,, then the notation
y:f(xlv‘r%"wxn) (22)

is used for a function of several variables (see 2.18, p. 118).

2.1.1.4 Complex Functions

If the dependent and independent variables are complez numbers w and z respectively, then w = f(z)
means a complex function of a complex variable, (see 14.1, p. 731). Complex-valued functions w(zx) are
called complex functions even if they have real arguments x .

2.1.1.5 Further Functions

In different fields of mathematics, for instance in vector analysis and in vector field theory (see 13.1,
p. 701), other types of functions are to be considered whose arguments and values are defined as follows:

1. The arguments are real — the function values are vectors.

B A: Vector functions (see 13.1.1, p. 701).
B B: Parameter representations of curves (see 3.6.2, p. 256).

2. The arguments are vectors — the function values are real numbers.

B Scalar fields (see 13.1.2, p. 702).

3. The arguments are vectors — the function values are vectors.

B A: Vector fields (see 13.1.3, p. 704). B B: Parametric representations or vector forms of surfaces
(see 3.6.3, p. 261).

2.1.1.6 Functionals

If a real number is assigned to every function x = x(t) of a given class of functions, then it is called a
Sfunctional.

b

W A: Ifz(t) isagiven function which is integrable on [a, b], then f(z) = / x(t) dt is alinear functional
defined on the set of continuous functions x integrable on [a, b] (see 12.5, p. 677).
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B B: Integral expressions in variational problems (see 10.1, p. 610).

2.1.1.7 Functions and Mappings
Suppose there are given two non-empty sets X and Y. A mapping, which is denoted by

f: X =Y, (2.3)
is a rule, by which a uniquely defined element y of Y is assigned to every element = of X. The element
y is called the image of x, as formula y = f(x). The set Y is called the image space or range of f, the
set X is called the original space or domain of f.
B A: If both the original and the image spaces are subsets of real numbers, i.e., X = D C R and
Y =W C Rhold, then (2.3) defines a real function y = f(z) of the real variable z.
B B: If fis a matrix A = (a;;) (i = 1,2,...,m;j = 1,2,...,n) of type (m,n) and X = R" and
Y = R™, then (2.3) defines a mapping from R" into R™. The rule (2.3) is given by the following
system of m linear equations:

Yi = an®y + Tz + -+ a1y

— Ax Yo = Ap1T1 + ATy + o+ GpTn

Yy or

Ym = Up1T1 + ATy + - + QpunTn
i.e. Ax means the product of the matrix A and the vector x.
Remarks:
1. The notion of mapping is a generalization of the notion of function. So, some mappings are some-
times called functions.
2. The important properties of mappings can be found in 5.2.3, 5. p. 333.
3. A mapping, which assigns to every element from an abstract space X a unique element usually from
a different abstract space Y, is called an operator. Here an abstract space usually means a function
space, since the most important spaces in applications consist of functions. Abstract spaces are for in-
stance linear spaces (see vector spaces 5.3.8, p. 365), metric spaces (see 12.2, p. 662) and normed spaces
(see 12.3, p. 669).

2.1.2 Methods for Defining a Real Function
2.1.2.1 Defining a Function

A function can be defined in several different ways, for instance by a table of values, by graphical rep-
resentation, i.e., by a curve, by a formula, which is called an analytic expression, or piece by piece with
different formulas. Only such values of the independent variable can belong to the domain of an an-
alytic expression for which the function makes sense, i.e., it takes a unique, finite real value. If the
domain is not otherwise defined, the domain is considered as the maximal set for which the definition
makes sense.

2.1.2.2 Analytic Representation of a Function
Usually the following three forms are in use:
1. Explicit Form:

y=f(z). (24)
By=+v1—-2% -—1<x<1, y>0.Herethegraph is the upper half of the unit circle centered at
the origin.

2. Implicit Form:

F(z,y) =0, (2.5)
in the case when there is a unique y which satisfies this equation, or it can be told which solution is
considered to be the value of the function.

W2+ y?-1=0—1<a<+1, y > 0. Here the graph is again the upper half of the unit
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circle centered at the origin. It should be emphasized that 2 + y* + 1 = 0 itself does not define a real
function.
3. Parametric Form:

=), y=1(t). (2.6)
The corresponding values of x and y are given as functions of an auxiliary variable ¢, which is called a
parameter. The functions (t) and 1 (¢) must have the same domain. This representation defines a real
function only if © = ¢(¢) defines a one-to-one correspondence between z and ¢.
W oe=9t), y=1¢() withe(t)=costand(t) =sint, 0 <t <. Here the graph is again the
upper half of the unit circle centered at the origin.
Remark: Functions given in parametric form sometimes do not have any explicit or implicit parameter-
free equation.
W oo=1+2sint =p(t), y=1t—cost =1(t).

Examples for Functions Given Piece by Piece:

Y y y=x-E(x) B A: y=FE@) = int(z) = [2] = nfor
5 — 1 n<z<n+1, ninteger.
4 y=E(Xx) — The function E(z) or int(z) (read “integer
3 — part of ”) means the greatest integer less
than or equal to z.
2 —
1= B B: The function y = frac(z) =« (]
(read “fractional part of 2”) gives the differ-
ol 1 234 5 6x 0l 1 2 3 4 5 x enceofw and [z] (Fig. 2.1b). Fig. 2.1a,b
shows the corresponding graphical repre-
a) b) sentations, where the arrow-heads mean
that the endpoints do not belong to the
Figure 2.1 curves.
z for z <0, .
y y BC:y= {LZ for 7 > 0, (Fig. 2.2a).
1 —1 for x <0,
B D:y = signz) = 0 for x =0,
0 X 0 X +1 for x > 0,
—-1 (Fig. 2.2b). By sign(z) (read “signum
a) b) 27), the sign function is denoted.
Figure 2.2
2.1.3 Certain Types of Functions y y
2.1.3.1 Monotone Functions /
If a function satisfies the relations T i 3 |
flwa) > f(w1) or  f(wa) < fa), (2.7a) ol X xX ol X1 XX
for arbitrary arguments z; and x5 with 25 > 1 inits do- a) b)
main, then it is called monotonically increasing or mo-
notonically decreasing (Fig. 2.3a,b). Figure 2.3

If one of the above relations (2.7a) does not hold for every x in the domain of the function, but it is valid,
e.g., in an interval or on a half-axis, then the function is called monotonic in this domain. Functions
satisfying the relations

f(xa) > f(x1) or flas) < f(z1), (2.2)
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i.e., when the equality never holds in (2.7a), are called strictly monotonically increasingor strictly mono-
tonically decreasing. In Fig. 2.3a there is a representation of a strictly monotonically increasing func-
tion; in Fig. 2.3b there is the graph of a monotonically decreasing function being constant between x4
and x,.

B y = ¢ * is strictly monotonically decreasing, y = Inx is strictly monotonically increasing.

2.1.3.2 Bounded Functions

A function is called bounded above if there is a number (called an upper bound) such that the values
of the function never exceed it. A function is called bounded below if there is a number (called a lower
bound) such that the values of the function are never less than this number. If a function is bounded
above and below, it simply is called bounded.

B A: y=1—2%is bounded above (y < 1). W B: y = ¢ is bounded below (y > 0).

4
B C: y =sinzis bounded (—1 <y < +1). HD:y= 12 is bounded (0 <y < 4).
z

2.1.3.3 Extreme Values of Functions

The function f(x) with domain D has an absolute or global mazimum at the point a, if for all z € D

fla) > f(z) (2.8a)

holds. The function f(z) has a relative or local mazimum at the point a, if the inequality (2.8a) holds
only in an environment of the point a, i.e. for allz witha —e <x <a-+e,e >0,z € D.

In analogy the definition of an absolute or global minimum as well as for a relative or local minimum can
be given, but the inequality (2.8a) is to be replaced by

f(@) < f(). (2.8b)
Remarks:
a) The notions maximum and minimum, are called the exztreme values, they are not coupled to the

differentiability of functions, i.e., they hold also for functions which are not differentiable in some points
of the domain. Examples are discontinuities of curves (see Figs.2.9, p. 58 and 6.10b,c, p. 443).

b) Criterions for the determination of extreme values of differentiable functions see in 6.1.5.2, p. 443.

2.1.3.4 Even Functions
Even functions (Fig. 2.4a) satisfy the relation y y
f(=2) = f(@). (292)
If D is the domain of f, then
(€ D)= (—z€D) (2.9b)
should hold. !/ 0 VX 0 X
W A: y=cosz, BB: y=2z*-32+1 a) b)
2.1.3.5 0Odd Functions Figure 2.4
Odd functions (Fig. 2.4b) satisfy the relation

f(=2) = —f(z). (2:10a)
If D is the domain of f, then

(re D)= (—xeD) (2.10b)
should hold.
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B A: y=siny, BB: y=2"—u.
2.1.3.6 Representation with Even and Odd Functions

If for the domain D of a function f the condition “from z € D it follows that —x € D” holds, then f
can be written as a sum of an even function g and an odd function u:

. 1 1
f(e) = gl@) +ule) with g@) = S[{@) + (o), u@) = S[@) - 0] (1)
g T 1 T —x 1 T —z\ _ , .

W fx)=¢"= 3 (8 +e ) t3 (e —e ) = coshz + sinhz (see 2.9.1, p. 89).
2.1.3.7 Periodic Functions y T
Periodic functions satisty the relation

fle+T) = f(z), T const, T #0. (2.12)
Obviously, if the above equality holds for some 7', it holds for ol Te—13 X
any integer multiple of 7". The smallest positive number 7" sat-
isfying the relation is called the period (Fig. 2.5). Figure 2.5

2.1.3.8 Inverse Functions

A function y = f(z) with domain D and range W assigns a unique y € W to every z € D. If reversed,
to every y € W there belongs only one x € D, then the inverse function of f can be defined. It is
denoted by ¢ or by f~1. Here f~! is a symbol for a function, not a power of f.
To find the inverse function of f, the variables x and y are interchanged in the formula of f, then y is
expressed from x = f(z) in order to get y = ¢(x). The representations y = f(z) and z = p(y) are
equivalent. The following important formulas come from this relation

fle(y) =y and o(f(z)) =z (2.13)
The graph of an inverse function y = () is obtained by reflection of the graph of y = f(z) with
respect to the line y = x (Fig. 2.6).
B The function y = f(z) =e* (D : —o0 < & < 00, W : y > 0) is equivalent Obviously, every strictly
monotonic function has an inverse function.

y
y y P
725 y=artsin x
—%_11 - y=sin x
15 X
S
: ‘ 2
a) b) c)
Figure 2.6
Examples of Inverse Functions:
WA y=f(r)=2? with D: 2 >0, W: y>0;
y=o¢(r) =z with D: x>0, W:y>0.
BB: y=f(z)=¢e" with D: —oo < x < oo, W:y>0;
y=¢(z)=Ihz with D: 2 >0, W: —o00 <y < oo.
BC: y=f(x)=sinz with D: —m/2<z<m/2, W: -1<y<I;
=p(r) =arcsinz  with D: —1<z <1, W: —r/2<y<mx/2
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Remarks:

1. Ifafunction f is strictly monotone in an interval I C D, then there is an inverse f! for this interval.
2. If a non-monotone function can be partitioned in strictly monotone parts, then the corresponding
inverse exists for each part.

2.1.4 Limits of Functions

2.1.4.1 Definition of the Limit of a Function
The function y = f(x) has the limit A at z = a

ilg{llf(l) =A or f(x)—=> A for z—a, (2.14)
if as x approaches the value a infinitely closely, the value of f(z) approaches the value A infinitely

closely. The function f(x) does not have to be defined at a, and even if defined, it does not matter
whether f(a) is equal to A.

Precise Definition: The limit (2.14) exists, if for any given positive number ¢ there is a positive
number 7 such that for every o # a belonging to the domain and satisfying the inequality

|z —a| <n, (2.15a)
the inequality

[f(z) = Al <¢ (2.15b) y
holds eventually with the exception of the point a (Fig. 2.7). Ate
If a is an endpoint of a connected region, then the inequality A
|& —a| < nisreduced either toa —n < zortox < a+rn (sece  A—e
also 2.1.4.5).

s - -N aa+

2.1.4.2 Definition by Limit of Sequences (see 0l amaam  x
7.1.2,p. 458) Figure 2.7
A function f(x) has the limit A at z = a if for every sequence
X1,T2,. .., Ty, ...of the values of z from the domain and converging to a (but being not equal to a), the
sequence of the corresponding values of the function f(z1), f(22), ..., f(xn),. .. converges to A.

2.1.4.3 Cauchy Condition for Convergence

A necessary and sufficient condition for a function f(z) to have a limit at x = a is that for any two
values 21 # a and xy # a belonging to the domain and being close enough to a, the values f(x;) and
f(x2) are also close enough to each other.

Precise Definition: A necessary and sufficient condition for a function f(z) to have a limit at = = a
is that for any given positive number ¢ there is a positive number 7 such that for arbitrary values x;
and x5 belonging to the domain and satisfying the inequalities

0<|z;—a|l<n and 0<|zy—al<mn, (2.16a)
the inequality

[f(z1) = fla2)] <e (2.16b)
holds.
2.1.4.4 Infinity as a Limit of a Function
The symbol

tim |/ (2)] = o (2.17)

means that as z approaches a, the absolute value | f(z)| does not have an upper bound.

Precise Definition: The equality (2.17) holds if for any given positive number K there is a positive
number 7 such that for any x # a from the interval

a—n<z<a+n (2.18a)
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the corresponding value of | f(x)] is larger than K:
[f(@)] > K. (2.18b)

If all the values of f(x) in the interval

a—n<z<a+n (2.18¢)
are positive, one writes
lim f(x) = +oo; (2.18d)

if they are negative, one writes

lim f(z) = —oco. (2.18e)

2.1.4.5 Left-Hand and Right-Hand Limit of a Function

A function f(z) has a left-hand limit A~ at & = a, if as = tends to a from the left, the value f(z) tends
to A™:

A” = lim f(z)= f(a—0). (2.19a)

z—a—0
Similarly, a function has a right-hand limit A" if as x tends to a from the right, the value f(z) tends to
AT
AT = lim f(x)= f(a+0). (2.19b)

z—a+0

The equality }13{5 f(x) = Ais valid only if the left-hand and

right-hand limits exist, and they are equal:

At = A" = A (2.19¢) 3
1 |
B The function f(z) = ———— tends to different values from !
1+es1 1
theleft and from theright forzz — 1: f(1-0) =1, f(140) =0
(Fig. 2.8). Figure 2.8

2.1.4.6 Limit of a Function as  Tends to Infinity

Case a) A number A is called the limit of a function f(z) as @ — +o00, and one writes
A= zll)llloc f(x) (2.20a)

if for any given positive number ¢ there is a number N > 0 such that for every z > N, the corresponding
value f(z)isin the interval A — e < f(z) < A + . Analogously

A= lim f(x) (2.20b)

is the limit of a function f(x) as © — —oo if for any given positive number e there is a positive number
N > 0such that for any z < —N the corresponding value of f(z) isin the interval A—e < f(z) < A+e.

r+1 r+1
BA: lm © * =1, B B: Ilim vt
zT—+00 xT T——00

=1, BC: lim " =0.
Tr—r—00

Case b) Assume that for any positive number K, there is a positive number N such that if z > N or
z < —N then the absolute value of the function is larger then K. In this case one writes

Jim [f(@)[ =00 or lim [f(z)] = oo. (2.20c)
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3 4
. z°—1 . T
B A: lim =+oo, B B: lim = —00,
o400 z—o00 g2
. 1— I3 . 1— I3
HC: lim =-oc0, HD: lim = +o00.
z+00 g2 ’ z——00 2

2.1.4.7 Theorems About Limits of Functions

lim A = A.

r—a

1. Limit of a Constant Function The limit of a constant function is the constant itself:
oo I

2. Limit of a Sum or a Difference If among a finite number of functions each has a limit, then the
limit of their sum or difference is equal to the sum or difference of their limits (if this last expression
does not contain co — 00):

lim [f(z) + ¢(2) — ¢(2)] = lim f(2) + lim o(z) — lim ¢(z). (2.22)

3. Limit of Products If among a finite number of functions each has a limit, then the limit of their
product is equal to the product of their limits (if this last expression does not contain a 0 - oo type):

ly [ (2) () (o) = [l /()] [t (o) [ty 02)

r—a

(2.23)

4. Limit of a Quotient The limit of the quotient of two functions is equal to the quotient of their
limits, in the case when both limits exist and the limit of the denominator is not equal to zero (and this
last expression is not an co/co type):

@) _ I (@)
I 2@~ meto (2.24)

Also if the denominator is equal to zero, usually one can tell if the limit exists or not, checking the sign
of the denominator (the indeterminate form is 0/0). Similarly, one can calculate the limit of a power
by taking a suitable power of the limit (if it is not a 0°, 1%, or oo” type).

5. Pinching If the values of a function f(z) lie between the values of the functions ¢(z) and ¢ (z),
Le., p(x) < f(z) <4(x), and if lim ¢(x) = A and lim )(z) = A hold, then f(z) has a limit, too, and
lim f(z) = A. (2.25)

2.1.4.8 Calculation of Limits

The calculation of the value of a limit can be made by using the 5 described theorems as well as some
transformations (see 2.1.4.7).

1. Suitable Transformations

For the calculation of limits the expression is to be transformed into a suitable form. There are several
types of recommended transformations in different cases; here are three of them as examples.

D S
B A: lim =lim (z° + 2 +1) = 3.
z—1 g — 1 z—1
VIt —-1 o (V1+oz-1)1+z+1) 1 1
N B: lim = lim = lim =_.
=0 T =0 z(V1+z+1) =0T+ +1 2
sin 22 2(sin 2z sin 2z
W C: lim el lim (sin2z) =2 Jim 222 — 9 Here one can refer to the well-known theorem

z—0 z—0 2x 20—0 21
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. sina
lim
a—0

2. Bernoulli-I’Hospital Rule

=1 (see (WA, 2149, p. 57)).

0 oo
In the case of indeterminate forms like 0 o

,0-00, 00— 00, 0% o0, 1 one often applies the
Bernoulli-I’Hospital rule (usually called [’"Hospital rule for short):
()

U(x)
the following conditions are fulfilled.
Suppose lim p(xz) = 0and lim P(z) =0or lim p(x) = oo and lim 1(x) = 0o, and suppose that there

0 oo
Case a) Indeterminate Forms 0 —or —: First, use the theorem only after checking if for f(z) =
0o

is an interval containing a such that the functions p(x) and ¢(z) are defined and differentiable in this

"(x
interval except perhaps at a, and ¢'(z) # 0 in this interval, and lim 99 (z) exists. Then
T—a U,(l)

’
lim f(z) = lim <p(x) = lim ¥ () . (2.26)
(a) e i)
Remark: If the limit of the ratio of the derivatives does not exist, it does not mean that the original
limit does not exist. Maybe it does, but one cannot tell this using I'Hospital’s rule.

E § is still an indeterminate form, and the numerator and denominator satisfy the assumptions

of the above theorem, I’'Hospital’s rule can be used again.

If hm

2cos2x 2
Insin 2z S 9o . 2tanx 0921 cos?2x
B lim - = lim %8821'(/ = lim = lim -CO5°L_ — iy =
z—0 Insinz z—0 z—0 tan 2x z—0 z—0 cos?xy
sinx cos22z

Case b) Indeterminate Form 0 - co: Having f(z) = ¢(z) ¢(z) and lim p(x) = 0and
lim 1(z) = oo, then in order to use 'Hospital’s rule for lim f (z) it is to be transformed into one of the
p(2)
b N
P(z) ()
™ — 22 . -2

B lim (7 —2z)tanz = lim = lim =2.
/2 z—m/2 cotw T=T/2 1

forms lim
r—a

Y(x) - . . 0 oo .
or lim {7 soitis reduced to an indeterminate form 0% % like in case a).
T—a o0

sin’x
Case c) Indeterminate Form oo —oco: If f() = ¢(x) — () and lim o(z) = 0o and lim ¢(z) = oo

. . . . 0 o0 . .
hold, then this expression can be transformed into the form — or — usually in several different ways;
00

. ‘ 1 1 o .

for instance as p — 1) = 7 — . Then it is to proceed as in case a).
b o
1 Inz — 1 0

B lim ( v —) = lim rmr—rtl) 0 . Applying I’'Hospital rule twice yields

z=1\z—1 Inux =1\ zlnz —Inx 0

1
tim (* Inz—xz+1 lim Inz —fim z _ 1 .
a1\ rlnz —Inx a1 1 i1 | 1T 1 2
Inzx+1-—— -+
x T

Case d) Indeterminate Forms 0°, 0o®, 1%°: If f(z) = ¢(z)"® and lim ¢(2) = +0and lim ¢/(z) =
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0 holds, then first the limit A of In f(z) = ¢ (2) Inp(x), is to be calculated, which has the form 0 - oo
(case b)), then lim f(z) = e holds.

The procedures in the cases 0o® and 1% are similar.
Inz

lim (—z) =0,ie., A=InX =0,

B lim 2"=X Inz*=zlnz, lim zlnz= lim — =
z—+0 ’ T 2—+0 z—+0 1 2—+0

so X =1, and finally lim 2% = 1.
—+0

3. Taylor Expansion

Besides I’'Hospital’s rule the expansion of functions of indeterminate form into Taylor series can be
applied (see 6.1.4.5, p. 442).

x3+x5

A R T .

31 5l _<1 z? ) 1
= lim 4.l ==

31 5l 6

. xr—sinz .
B lim - = lim -
x—0 x x—0 ;pd x—0

2.1.4.9 Order of Magnitude of Functions and Landau Order Symbols

Comparing two functions, often their mutual behavior with respect to a certain argument x = a is to
be considered. Tt is also convenient to compare the order of magnitude of the functions.

1. A function f(z) tends to infinity at a at a higher order (or faster rate) than a function g(z) at a, if
f(z)
g(x)
2. A function f(z) tends to zero at @ at a higher order than a function g(z) at a, if the absolute values

f(@)

the quotient

and the absolute values of f(z) exceed any limit as 2 tends to a.

of f(z), g(x) and the quotient tends to zero as z tends to a.

3. Two functions f(z) and g(z) tend to zero or to infinity at s at the same order of magnitude, if

f(z)

g(x)

are constants.

0<m< < M holds for the absolute value of their quotient as = tends to a, where M and m

4. Landau Order Symbols The mutual behavior of two functions at a point z = a can be described
by the Landau order symbols O (“big O”), or o (“small 0”) as follows: If z — a then

f(z) =0O(g(z)) means that iﬂ%% =A#0, A= const, (2.27a)

and

- f)
= ans that 1
f(z) =o(g(z)) means tha lim e
where @ = 400 is also possible. The Landau order symbols have meaning only by assuming x tends to
a given a.

=0, (2.27b)

B A: sinz = O(z) for &z — 0, because with f(z) = sinz and g(x) = 2 holds: }EILI[IJ y =1+#0,ie.,
sin # behaves like  in the neighborhood of z = 0.

B B: For f(z) =1—cosz and g(x) = sinz the function f(z) vanishes with a higher order than g(z):
f(x)
g(w

B C: f(v) and g(x) vanish by the same order for f(z) =1 — cosz, g(z) = 2*:

. 1—cosx
lim _—
z—0

z—0

- ‘ =0,1ie,1—cosz = o(sinz) for z — 0.
sin x
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1—cosz| 1
%‘zé,i.c.,lfcosw:()(x?) for z — 0.

5. Polynomial The order of magnitude of polynomials at +00 can be expressed by their degree. So
the function f(x) = z has order 1, a polynomial of degree n + 1 has an order higher by one than a
polynomial of degree n.

6. Exponential Function The exponential function e* tends faster to infinity for x — oo more
quickly to infinity than any high power 2™ (n is a fixed positive number):

et

= 00. (2.28a)
an

lim
T—>00

The proof follows by applying I'Hospital’s rule for a natural number n:
e e’ e’
lim — = lim —— = ... = lim — = oo. (2.28b)
=500 gn w00 pyn—1 z—o0 pl
7. Logarithmic Function The logarithm tends to infinity more slowly than any small positive power
x® (o is a fixed positive number):

log x

=0. (2.29)

lim
Tr—00
The proof is with the help of I'Hospital’s rule.

2.1.5 Continuity of a Function
2.1.5.1 Notion of Continuity and Discontinuity

Most functions occurring in practice are continuous, i.e., for small
changes of the argument = a continuous function y(z) changes
also only a little. The graphical representation of such a func-
tion results in a continuous curve. If the curve is broken at some
points, the corresponding function is discontinuous, and the val-
ues of the arguments where the breaks are, are the points of dis-
continuity. Fig. 2.9 shows the curve of a function, which is piece-
wise continuous. The points of discontinuity are A, B, C', D, E, F’
and G . The arrow-heads show that the endpoints do not belong
to the curve.

2.1.5.2 Definition of Continuity
A function y = f(z) is called continuous at the point = a if Figure 2.9

1. f(x) is defined at a;
2. the limit lim f(z) exists and is equal to f(a).

This is exactly the case if for an arbitrary ¢ > 0 there is a 6(¢) > 0 such that

[f(z) = f(a)| <& foreveryx with |z —a|l<§ (2.30)
holds.
Here also it is to talk about one-sided (left- or right-hand sided) continuity, if instead of lim f(z) = f(a)
only the one-sided limit im f(x) (or zggjro f(x))is to be considered and this is equal to the value f(a).

If afunction is continuous for every x in a given interval from a to b, then the function is called continuous
in this interval, which can be open, half-open, or closed (see 1.1.1.3, 3., p. 2). If a function is defined
and continuous at every point of the numerical axis, it is called continuous everywhere.

A function has a point of discontinuity at x = a, which is an interior point or an endpoint of its domain,
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if the function is not defined here, or f(a) is not equal to the limit lim f (x), or the limit does not exist.

If the function is defined only on one side of = a, e.g., ++/z for x = 0 and arccos z for z = 1, then it
is not a point of discontinuity but it is a termination.

A function f(z) is called piecewise continuous, if it is continuous at every point of an interval except at
a finite number of points, and at these points it has finite jumps.

2.1.5.3 Most Frequent Types of Discontinuities

1. Values of the Function Tend to Infinity

The most frequent discontinuity occurs if the function tends to oo (points B, C', and E in Fig. 2.9).
B A: f(z)=tanz, f (g - 0) =+o0, f (g + 0) = —o0. The type of discontinuity (see Fig. 2.34,
g. 57)2) is the same as at F in Fig. 2.9. For the meaning of the symbols f(a — 0), f(a + 0) see 2.1.4.5,
HB: f(z)= ﬁ , f(1=0) =400, f(1+0)=+oc. The type of discontinuity is the same as at
the point B in Fig. 2.9.

HC: f(z)= eﬁ , f(1=0) =0, f(1+0)=oc. The type of discontinuity is the same as at C' in
Fig. 2.9, with the difference that this function f(z) is not defined at = = 1.

2. Finite Jump

Passing through x = a the function f(z) jumps from a finite value to another finite value (like at the
points A, F', G in Fig. 2.9, p. 58): The value of the function f(z) for = a may not be defined here,
as at point G or it can coincide with f(a — 0) or with f(a + 0) (point F)); or it can be different from
f(a—0)and f(a+0) (point A).

WA f(5) = — 1 f(1-0) =1, f(1+0) =0 (Fig. 2.8,p. 54).
1+ex-1
B B: f(z) = E(x) (Fig. 2.1¢,p. 50) f(n—0) =n—1, f(n+0) =n (n integer).

B C: f(z)= lim f1-0)=1, f(14+0)=0, f(l):%.

T nSoo 1+ g2n ’

3. Removable Discontinuity

Assuming that }131{1] f(x) exists, i.e., f(a —0) = f(a+ 0) holds, but either the function is not defined
for @ = a or there is f(a) # }131; f(x) (point D in Fig. 2.9, p. 58). This type of discontinuity is called
removable, because defining f(a) = Jlnlil} f(x) the function becomes continuous here. The procedure

consists of adding only one point to the curve, or changing the place only of one point at D. The
different indeterminate expressions for x = a, which have a finite limit examined by I’'Hospital’s rule
or with other methods, are examples of removable discontinuities.

V1 -1 0 1
B f(z) = vitze-1 is an undetermined 0 expression for x = 0, but lin(l) flx) = 5 the function
€T T
1+zx—-1
vite-1 for z #£0
flz) = v
1
3 forz =0

is continuous.
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2.1.5.4 Continuity and Discontinuity of Elementary Functions

The elementary functions are continuous on their domains; the points of discontinuity do not belong
to their domain. The following theorems hold:

1. Polynomials are continuous everywhere.

P(x

2. Rational Functions % with polynomials P(z) and Q(z) are continuous everywhere except
T

the points z, where Q(z) = 0. If at = a, Q(a) = 0 and P(a) # 0, the function tends to oo on

both sides of a; this point is called a pole. The function also has a pole if P(a) = 0, but a is a root of

the denominator with higher multiplicity than for the numerator (see 1.6.3.1, 2., p. 43). Otherwise the

discontinuity is removable.

3. Irrational Functions Roots of polynomials are continuous for every x in their domain. At the end
of the domain they can terminate by a finite value if the radicand changes its sign. Roots of rational
functions are discontinuous for such values of x where the radicand is discontinuous.

4. Trigonometric Functions The functions sinx and cosz are continuous everywhere; tan x and

2n + 1)
sec z have infinite jumps at the points z = %; the functions cot x and cosec x have infinite
jumps at the points z = n7 (n integer).

5. Inverse Trigonometric Functions The functions arctanz and arccot z are continuous every-
where, arcsin 2 and arccos x terminate at the end of their domain because of —1 < x < 41, and they
are continuous here from one side.

6. Exponential Functions e” or a® with a > 0 They are continuous everywhere.
7. Logarithmic Function log « with Arbitrary Positive Base The function is continuous for all
positive x and terminates at * = 0 because of liIErlO logz = —oo by aright-sided limit.

T—r

8. Composite Elementary Functions The continuity is to be checked for every point x of every
elementary function containing in the composition (see also continuity of composite functions in 2.1.5.5,

2., p. 61). N

ex—2
rsinv/1 —x
1

1 1 1
infinite jump at = 2; for z = 2 also e=—2 has an infinite jump: (eﬂvﬁ) =0, (e-r*Z) = oo0.
2=2-0 @=2+0

1
B Find the points of discontinuity of the function y = The exponent p— has an
T —

The function y has a finite denominator at x = 2. Consequently, at = 2 there is an infinite jump of
the same type as at point C' in Fig. 2.9, p. 58.

For # = 0 the denominator is also zero, just like for the values of x, for which sin v/1 — z is equal to

zero. These last ones correspond to the roots of the equation v/1 —z = nm or z = 1 — n®7?, where n
is an arbitrary integer. The numerator is not equal to zero for these numbers, so at the points z = 0,
r=12=1+7%2=1+8r 2 =1=+277" ... the function has the same type of discontinuity as
the point E in Fig. 2.9, p. 58.

2.1.5.5 Properties of Continuous Functions

1. Continuity of Sum, Difference, Product and Quotient of Continuous Functions

If f(z) and g(x) are continuous on the interval [a, b], then f(x) &+ g(z), f(z) g(z) are also continuous,
f(z)
9()

and if g(x) # 0 on this interval, then is also continuous.
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2. Continuity of Composite Functions y = f(u(x))
If u(x) is continuous at & = a and f(u) is continuous at « = u(a) then the composite function y =
f(u(x)) is continuous at x = a, and

lim £ (u(e)) = f (Jim u(e) ) = F(u(a) (2.31)
is valid. This means that a continuous function of a continuous function is also continuous.
Remark: The converse sentence is not valid. It is possible that the composite function of discontinuous
functions is continuous.
3. Bolzano Theorem
If a function f(z) is continuous on a finite closed interval [a, b], and f(a) and f(b) have different signs,
then f(z) has at least one root in this interval, i.e., there exists at least one interior point of this interval
¢ such that:

fle)=0 with a<ec<b. (2.32)
The geometric interpretation of this statement is that the graph of a continuous function can go from
one side of the z-axis to the other side only if the curve has an intersection point with the z-axis.
4. Intermediate Value Theorem

If a function f(x) is continuous on an interval, and it has different values A and B, at the points a and
b of this interval, where a < b, i.e.,

fl)=A, f(b)=B, A#B, (2.33a)
then for any value C' between A and B there is at least one point ¢ between a and b such that
fley=C, (a<ec<b, A<C<Bor A>C>B). (2.33b)

In other words: The function f(z) takes every value between A and B on the interval (a,b) at least
once. Or: The continuous image of an interval is an interval.

5. Existence of an Inverse Function

If a one-to-one function is continuous on an inter-
val, it is strictly monotone on this interval.

If a function f(x) is continuous on a connected do-
main I, and it is strictly monotone increasing or de-
creasing, then for this f(z) there also exists a con-
tinuous, strictly monotone increasing or decreas-
ing inverse function ¢(z) (see also 2.1.3.8, p. 52),
which is defined on domain II given by the values

of f(z) (Fig. 2.10). Figure 2.10

.
&

Remark: Inorder to make sure that the inverse function of f(z) is continuous, f(z) must be continuous
on an interval. Supposing only that the function is strictly monotonic on an interval, and continuous
at an interior point ¢, and f(c) = C, then the inverse function exists, but may be not continuous at C'.
6. Theorem About the Boundedness of a Function
If a function f(x) is continuous on a finite, closed interval [a, b] then it is bounded on this interval, i.e.,
there exist two numbers m and M such that

m< fle) <M for a<xz<b. (2.34)

7. Weierstrass Theorem

If the function f(z) is continuous on the finite, closed interval [a, b] then f(xz) has an absolute mazimum
M and an absolute minimum m, i.e., there exists in this interval at least one point ¢ and at least one
point d such that for all x with a < x < b:

m = f(d) < f(z) < f(c) = M. (2.35)
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The difference between the greatest and smallest value of a continuous function is called its variation
in the given interval. The notion of variation can be extended to the case when the function does not
have any greatest or smallest value.

2.2 Elementary Functions

Elementary functions are defined by formulas containing a finite number of operations on the indepen-
dent variable and constants. The operations are the four basic arithmetical operations, taking powers
and roots, the use of an exponential or a logarithm function, or the use of trigonometric functions or
inverse trigonometric functions. To distinguish are algebraic and transcendental elementary functions.
As another type of function, can be defined the non-elementary functions (see for instance 8.2.5, p. 513).

2.2.1 Algebraic Functions

In an algebraic function the argument = and the function y are connected by an algebraic equation. It
has the form

po(x) + pi(2)y + pa(x)y® 4 ...+ pu(z)y” =0 (2.36)
where po, p1,. .., pn are polynomials in x.
B 37y —dry +2° —1=0,1e, po(x) = 2% — 1, pi(x) = —dx, pa(z) = 0, p3(x) = 3z.
If it is possible to solve an algebraic equation (2.36) for y, then there is one of the following types of the
simplest algebraic functions.
2.2.1.1 Polynomials
Performing only addition, subtraction and multiplication on the argument x then:

Y= ant" + a1 L+ ag. (2.37)

holds. In particular one can distinguish y = a as a constant, y = ax + b as a linear function, and
y = ax® + bx + c as a quadratic function.

2.2.1.2 Rational Functions
A rational function can always be written in the form of the ratio of two polynomials:

A" + ap 2"+ 4 ag

= . 2.38
Y bin @™ 4 bpp—12™ " 4L+ Do (2.38a)
The special case
ar+b
= 2.38b
y cr+d ( )

is called a homographic or linear fractional function.

2.2.1.3 Irrational Functions

Besides the operations enumerated for rational functions, the argument x also occurs under the radical
sign.

BA:y=v2x+3, BB: y=
2.2.2 Transcendental Functions

Transcendental functions cannot be given by an algebraic equation like (2.36). In the following para-
graphs the simplest elementary transcendental functions are introduced.

2.2.2.1 Exponential Functions

The variable x or an algebraic function of z is in the exponent of a constant base (see 2.6.1, p. 72).



2.3 Polynomials 63

H A: Y= e, H B: y = a”, H C: Y= 23:r2—5:1;_
2.2.2.2 Logarithmic Functions

The function is the logarithm with a constant base of the variable z or an algebraic function of z (see
2.6.2, p. 73).

HA:y=mhe, HB:y=Igz, B C: y = logy(5z? — 32).
2.2.2.3 Trigonometric Functions

The variable x or an algebraic function of x occurs under the symbols sin, cos, tan, cot, sec, cosec (see

2.7, p. 76).

W A: y=sinz, B B: y=cos(2x+3), B C: y=tan/x.

In general, the argument of a trigonometric function is not only an angle or a circular arc as in the

geometric definition, but an arbitrary quantity. The trigonometric functions can be defined in a purely

analytic way without any geometry. For instance one can represent them by an expansion in a series,
. . . . . . . .

or, e.g., the sin function as the solution of the differential equation TZ + y = 0 with the initial values

d . -
y = 0and TJ = 1 at 2 = 0. The numerical value of the argument of the trigonometric function is equal
axr
to the arc in units of radians. When dealing with trigonometric functions, the argument is considered
to be given in radian measure (see 3.1.1.5, p. 131).
2.2.2.4 Inverse Trigonometric Functions

The variable x or an algebraic function of z is in the argument of the inverse trigonometric functions
(see 2.8, p. 85) arcsin, arccos, etc.

B A: y=arcsinz, B B: y=arccosy1—z.
2.2.2.5 Hyperbolic Functions
(see 2.9, p. 89).

2.2.2.6 Inverse Hyperbolic Functions
(see 2.10, p. 93).

2.2.3 Composite Functions

Composite functions are all possible compositions of the above algebraic and transcendental functions,
i.e., if a function has another function as an argument.

. Inz 4+ Varcsinx
B A: y=Insinzg, BB:y=———————.
22 4 5e®

Such composition of a finite number of elementary functions again yields an elementary function. The
examples C in the previous types of functions are also composite functions.

2.3 Polynomials
2.3.1 Linear Function

The graph of the linear function
y=ar+b (2.39)

(polynomial of degree 1) is a line (Fig. 2.11a). The proportional factor is denoted by a, the crossing
point of the line and the axis of the ordinate by b.
For a > 0 the function is monotone increasing, for a < 0 it is monotone decreasing; for a = 0 it is a
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b
polynomial of degree zero, i.e., it is a constant function. The intercepts are at A <77, 0) and B(0,b)
a

(for details see 3.5.2.6, 1., p. 195). With b = 0 direct proportionality
y = az; (2.40)
holds, graphically it is a line running through the origin (Fig. 2.11b).

Y y y
] :
C
a) 0 A x B
B
y
ALA, A A)
0 \ / X / 0 \x
b) 0 x a) C b)
Figure 2.11 Figure 2.12
2.3.2 Quadratic Polynomial
The polynomial of second degree
y=ar’+br+c (2.41)
b
(quadratic polynomial) defines a parabola with a vertical axis of symmetry at x = —2—) (Fig. 2.12).
a

For a > 0 the function is first monotone decreasing, it has a minimum, then it is monotone increasing.
For a < 0 first it is monotone increasing, it has a maximum, then it is monotone decreasing. In the case

—b =+ Vb? — dac 0
2a ’

point B with the y-axis, is at (0,c¢). In the case b*> — dac = 0 there is one intersection point (contact

point) with the z-axis. In the case b*> — 4ac < 0 there is no intersection point. The extremum point of

b 4dac —b?
the curve is at C' (—2—) , u) (for more details about the parabola see 3.5.2.10, p. 204).

b? —4ac > 0: The intersection points Ay, A, with the 2-axis are ( ), the intersection

a 4a

Figure 2.13

2.3.3 Cubic Polynomials
The polynomial of third degree
y=az’® +ba® +cx+d (2.42)
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defines a cubic parabola (Fig. 2.13a,b,c). Both the shape of the curve and the behavior of the function
depend on a and the discriminant A = 3ac — b*. If A > 0 holds (Fig. 2.13a,b), then for a > 0 the
function is monotonically increasing, and for a < 0 it is decreasing. If A < 0 the function has exactly
one local minimum and one local maximum (Fig. 2.13c). For a > 0 the value of the function rises from
—oo until the maximum, then falls until the minimum, then it rises again to +oo; for a < 0 the value
of the function falls from +oo until the minimum, then rises until the maximum, then it falls again to
—00. The intersection points with the z-axis are at the values of the real roots of (2.42) for y = 0. The
function can have one, two (then there is a point where the z-axis is the tangent line of the curve) or
three real roots: A, Ay and Az. The intersection point with the y-axis is at B(0, d), the extreme points

CbEV=A A+ 20 — 9abe £ (Gac — 26°)v/— )

f the curve C' and D, if any, are at
of the curve C'and D, if any, drf‘d( 3a 27a?

. . . - . b 2% — 9abe
The inflection point which is also the center of symmetry of the curveisat £ | ——, ———— +d|.

3a’  27a?
d A
At this point the tangent line has the slope tan ¢ = Yy ==
dz ), 3a
Y& —nodd
- neven
b)
Figure 2.14 Figure 2.15

2.3.4 Polynomials of n-th Degree
The integral rational function of n-th degree

Y= pt" + ap 2" . ax+ag (2.43)
defines a curve of n-th degree or n-th order (see 3.5.2.5, p. 195) of parabolic type (Fig. 2.14).

Case 1, n odd: For a, > 0 the value of y changes continuously from —oo to +o0, and for a,, < 0
from 400 to —oo. The curve can intersect or contact the z-axis up to n times, and there is at least one
intersection point (for the solution of an equation of n-th degree see 1.6.3.1, p. 43 and 19.1.2, p. 952).
The function (2.43) has none or an even number up to n — 1 of extreme values, where minima and
maxima occur alternately; the number of inflection points is odd and is between 1 and n — 2. There
are no asymptotes or singularities.

Case 2, n even: For a, > 0 the value of y changes continuously from +oo through its minimum
until 400 and for a,, < 0 from —oo through its maximum until —oco. The curve can intersect or contact
the xz-axis up to n times, but it is also possible that it never does that. The number of extrema is odd,
and maxima and minima alternate; the number of inflection points is even, and it can also be zero.
There are no asymptotes or singularities.
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Before sketching the graph of a function, it is recommended first to determine the extreme points, the
inflection points, the values of the first derivative at these points, then to sketch the tangent lines at
these points, and finally to connect these points continuously.

2.3.5 Parabolaofn-th Degree

The graph of the function

y=az" (2.44)
where n > 0, integer, is a parabola of n-th degree, or of n-th order (Fig. 2.15).
1. Special Case a = 1: The curve y = 2™ goes through the point (0,0) and (1,1) and contacts or
intersects the x-axis at the origin. For even n the curve is symmetric with respect to the y-axis, and
with a minimum at the origin. For odd n the curve is symmetric with respect to the origin, and it has
an inflection point there. There is no asymptote.

2. General Case a #0: The curve of y = ax™ can be got from the curve of y = 2™ by stretching the
ordinates by the factor |a|. For a < 0 the curve y = |a|z" is to be reflected with respect to the z-axis.

2.4 Rational Functions

2.4.1 Special Fractional Linear Function (Inverse Proportionality)

The graph of the function
a

v=" (2.45)

is an equilateral hyperbola, whose asymptotes are the coordinate axes (Fig. 2.16). The point of dis-
continuity is at = 0 with y = £o00. If @ > 0 holds, then the function is strictly monotone decreasing
in the interval (—oo, 0) with values from 0 to —oo and also strictly monotone decreasing in the interval
(0, 400) with values from 400 to 0 (curve in the first and third quadrants). If @ < 0, then the func-
tion is increasing in the interval (—oo, 0) with values from 0 to 400 and also increasing in the interval
(0, +00) with values from —co to 0 (dotted curve in the second and fourth quadrants). The vertices A

and B are at (i lal, 44/ \a|) and (i‘/ lal, —/ |a|) with the same sign for a > 0 and with different sign

for a < 0. There are no extreme values (for more details about hyperbolas see 3.5.2.9, p. 201).

y
: y
A A A
~~~~~~~~~ C
0 e X 0
B\ | /B \B x
Figure 2.16 Figure 2.17
2.4.2 Linear Fractional Function
The graph of the function
T +b o ar by |
y= <a2¢o, A=|mh —albg—blaz#O) (2.46)




2.4 Rational Functions 67

is an equilateral hyperbola, whose asymptotes are parallel to the coordinate axes (Fig. 2.17).

b A
The center is at C' <7—2 , ﬂ) . The parameter a in the equality (2.45) corresponds here to —— with
a Qg a2
b i by £ 4/|A] a1 +4/|A
—|® (] The vertices of the hyperbola A # 0 and B are at ( 2 | ‘7 ! Gl and
g by s sy

by £ \/m ay — \/m
B as ’ as

) , where for A < 0 the same signs are taken, for A > 0 the different ones.

b . . a
The point of discontinuity is at z = —22 For A < 0 the values of the function are decreasing from -t
ay az

. ay . . . . . (451
to —oo and from 400 to —. For A > 0 the values of the function are increasing from — to +o00 and
an az
ay .
from —oo to — . There is no extremum.
az

2.4.3 Curves of Third Degree, Typel
The graph of the function

2
y:a+%+7% G%) (b#0, c#0) (2.47)

(Fig. 2.18) is a curve of third degree (type I). It has two asymptotes x = 0 and y = a and it has two
branches. One of them corresponds to the monotone changing of y while it takes its values between
a and 400 or —oo; the other branch goes through three characteristic points: the intersection point
c 2c b?
with the asymptote y = a at A (75 ,a,), an extreme point at B <7? Ja— 4—) and an inflection
c
. 3c 202 - .
point at C' - ,a— 9 ) The positions of the branches depend on the signs of b and ¢, and there
c
are four cases (Fig. 2.18). The intersection points D, E with the z-axis, if any, are for @ # 0 at
—b+Vb? — dac
2a
or none, depending on whether v? — 4ac > 0, = 0 or < 0 holds.

, 0) Jfora=0at (—g., a); their number can be two, one (the z-axis is a tangent line)

For b = 0 the function (2.47) becomes the function y = a + % (see (Fig. 2.21) the reciprocal power),
x

. . Lo . ax +b .
and for ¢ = 0 it becomes the homographic function y = ——— | as a special case of (2.46).
x

2.4.4 Curves of Third Degree, Type Il

The graph of the function

1
Yy=—F—" (a#0 2.48
Y= a1 ba+o (a70) (2.48)
b
is a curve of third degree (type 1I) which is symmetric about the vertical line z = ~%g and the z-axis is
a

its asymptote (Fig. 2.19), because Eg} y = 0. Its shape depends on the signs of @ and A = 4ac — b°.
@—ytoo
From the two cases a > 0 and a < 0 only the first one is considered, because reflecting the curve of

1 . .
y = ——————— with respect to the z-axis one gets the second one.
(—a)a? —br —c
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=
t
)
—
1

c) d)
Figure 2.18
Case a) A > 0: The function is positive and continuous for arbitrary values of  and it is increasing

. b . . . 4a . . - .
on the interval (—oo, 72—) Here it takes its maximum, N then it is decreasing again in the interval
a

b b 4da
(72— ,00). The extreme point A of the curve is at <72— , Ka) , the inflection points B and C' are at
a a
b VA 3a
-—— =+ ,— | ; and for the corresponding slopes of the tangent lines (angular coefficients ) we
( 2% * 203 A) ; ponding slop g (ang i )

3 3/2
get tan ¢ = Fa? (K) (Fig. 2.19a).
Case b) A = 0: The function is positive for arbitrary values of z, its value rises from 0 to +oo, at
b
T= o =W it has a point of discontinuity (a pole), where lgn y = 4o00. Then its value falls from
a 20

here back to 0 (Fig. 2.19b).

Case ¢) A < 0: The value of y rises from 0 to +o0, at the point of discontinuity it jumps to —oo,
and rises to the maximum, then falls back to —oo; at the other point of discontinuity it jumps to 400,

then it falls to 0. The extreme point A of the curve is at (72i R %a) . The points of discontinuity are
a
—b+vV-A
at 1 = ————— (Fig. 2.19c).
2a

2.4.5 Curves of Third Degree, Type II1
The graph of the function

y=— (a#0,b#0,c#0) (2.49)

ar? +bxr + ¢
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Figure 2.19

is a curve of third degree (type I1I) which goes through the origin, and has the z-axis (Fig. 2.20) as an
asymptote. The behavior of the function depends on the signs of a and of A = 4ac — b?, and for A < 0
also on the signs of the roots a and 3 of the equation az? + bz + ¢ = 0, and for A = 0 also on the sign
of b. From the two cases, a > 0 and a < 0, only the first one is considered because reflecting the curve

ofy = - with respect to the z-axis yields the second one.

(—a)z? —bx — ¢
Case a) A > 0: The function is continuous everywhere, its value falls from 0 to the minimum, then
rises to the maximum, then falls again to 0.

) ¢ —b+2y/ac . .
The extreme points of the curve, A and B, are at (:l:\/j , T) ; there are three inflection
a

points (Fig. 2.20a).
Case b) A = 0: The behavior of the function depends on the sign of b, so there are two cases. In both

b
cases there is a point of discontinuity at x = % ; both curves have one inflection point.
a

e b > 0: The value of the function falls from 0 to —oo, the function has a point of discontinuity, then the
value of the function rises from —oo to the maximum, then decreases to 0 (Fig. 2.20b;). The extreme

1
point A of the curve is at A <+\/§, m)

e b < 0: The value of the function falls from 0 to the minimum, then rises to +o0, running through the
origin, then the function has a point of discontinuity, then the value of the function falls from +o0o to 0

. . . c 1
(Fig. 2.20by). The extreme point A of the curve is at A ( \/;, N b>'
Case ¢) A < 0: The function has two points of discontinuity, at * = « and & = f; its behavior
depends on the signs of « and 3.
e The signs of « and 3 are different: The value of the function falls from 0 to —oo, jumps up to 400,
then falls again from +o0o to —oo, running through the origin, then jumps again up to +oo, then it falls
tending to 0 (Fig. 2.20c;). The function has no extremum.
e The signs of « and [ are both negative: The value of the function falls from 0 to —oo, jumps up
to 400, from here it goes through a minimum up to +o00 again, jumps down to —oo, then rises to a
maximum, then falls tending to 0 (Fig. 2.20c;).
The extremum points A and B can be calculated with the same formula as in case a) of 2.4.5.
e The signs of o and § are both positive: The value of the function falls from 0 until the minimum, then
rises to +00, jumps down to —oo, then it rises to the maximum, then it falls again to —oo, then jumps
up to oo and then it tends to 0 (Fig. 2.20c3).
The extremum points A and B can be calculated by the same formula as in case a) of 2.4.5.
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A>0
a)
Y Y
AYUEPN
. B
0 x \ | AO
A<0 A<0,0and B negative A<0, o and B positive
c1) c2) c3)
Figure 2.20

In all three cases the curve has one inflection point.

y

Figure 2.21 Figure 2.22

2.4.6 Reciprocal Powers
The graph of the function

(n >0, integer;a # 0) (2.50)

2] — a — T
y = ek
is a curve of hyperbolic type with the coordinate axes as asymptotes. The point of discontinuity is at
x =0 (Fig. 2.21).

Case a) For a > 0 and for even n the value of the function rises from 0 to +oc, then it falls tending
to 0, and it is always positive. For odd n it falls from 0 to —oo, it jumps up to +o0, then it falls tending
to 0.
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Case b) For a < 0 and for even n the value of the function falls from 0 to —oo, then it tends to 0, and
it is always negative. For odd n it rises from 0 up to +o00, jumps down to —oo, then it tends to 0.

The function does not have any extremum. The larger n is, the faster the curve approaches the x-axis,
and the slower it approaches the y-axis. For even n the curve is symmetric with respect to the y-axis,
for odd n it is center-symmetric and its center of symmetry is the origin. The Fig. 2.21 shows the cases
n=2andn=3fora=1.

2.5 Irrational Functions
2.5.1 Square Root of a Linear Binomial

The union of the curve of the two functions
y=+Var+b (a+#0) (2.51)
b .
is a parabola with the z-axis as the symmetry axis. The vertex A is at (77, 0) , the semifocal chord
a

(see 3.5.2.10, p. 204) is p = % . The domain of the function and the shape of the curve depend on the
sign of a (Fig. 2.22) (for more details about the parabola see 3.5.2.10, p. 204).

2.5.2 Square Root of a Quadratic Polynomial
The union of the graphs of the two functions
y=+Var2 +br+c (a#0, A=dac—b*#0) (2.52)

is for a < 0 an ellipse, for a > 0 a hyperbola (Fig. 2.23). One of the two symmetry axes is the r-axis,

the other one is the line x = %
b+ VA b [A
The vertices A, C' and B, D are at —)7, 0)and [ —=—, 4/ — |, where A = 4ac — b°.
2a 2a 4a
y B

Y
o

D

/]
/

a)  a<0,A<0 b) “1a>0,A50 9] a>0,A<0

Figure 2.23

The domain of the function and the shape of the curve depend on the signs of a and A (Fig. 2.23).
For a < 0 and A > 0 the function has only imaginary values, so no curve exists (for more details about
the ellipse and hyperbola see 3.5.2.8, p. 199 and 3.5.2.9, p. 201).

2.5.3 Power Function

The power function

+m/n

y=az® =ax (m, n integer, positive, coprime) (2.53)
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is to be discussed for & > 0 and for £ < 0 (Fig. 2.24, Fig. 2.25). The investigation here can be
restricted to the case a = 1, because for a # 1 the curve differs from the curve of y = 2* only by a
stretching in the direction of the y-axis by a factor |a|, and for a negative a by a reflection to the z-axis.

1/2 2
y y=X y 1/3 y y=x3
1 Y= 1
1
0 &x _40 1 x 0] 1 X
a) = 1/2 b) 0

Figure 2.24

Casea) k > 0, y = x™/™: The shape of the curve is represented in four characteristic cases
depending on the numbers m and n in Fig. 2.24. The curve goes through the points (0,0) and (1,1).
For k > 1 the z-axis is a tangent line of the curve at the origin (Fig. 2.24d), for k < 1 the y-axis is a
tangent line also at the origin(Fig. 2.24a,b,c). For even n the union of the graph of functions y = +z*
may be considered: it has two branches symmetric to the z-axis (Fig. 2.24a,d), for even m the curve
is symmetric to the y-axis (Fig. 2.24c¢). If m and n are both odd, the curve is symmetric with respect
to the origin (Fig. 2.24b). So the curves can have a vertex, a cusp or an inflection point at the origin
(Fig. 2.24). None of them has any asymptote.

y y
-1/3
y=x
1 1
ﬁo 1 X 0
a) b)
Figure 2.25
Case b) k < 0,y = x~™/™ The shape of the curve is represented in three characteristic cases

depending on m and n in Fig. 2.25. The curve is a hyperbolic type curve, where the asymptotes
coincide with the coordinate axes (Fig. 2.25). The point of discontinuity is at = 0. The greater |k|
is the faster the curve approaches the x-axis, and the slower it approaches the y-axis. The symmetry
properties of the curves are the same as above for k > 0; they depend on whether m and n are even or
odd. There is no extreme value.

2.6 Exponential Functions and Logarithmic Functions
2.6.1 Exponential Functions

The function

y=a"=e" (a>0, b=1Ina), (2.54)
is called the exponential function and its graphical representation the exponential curve (Fig. 2.26).
From (2.54) for a = e follows the function of the natural exponential curve

y=e". (2.55)
The function has only positive values. Its domain is the interval (—oco, +00). For a > 1, i.e., for b > 0,
the function is strictly monotone increasing and takes its values from 0 until co. For a < 1, i.e., for
b < 0, it is strictly monotone decreasing, its value falls from co until 0. The larger |b] is, the greater is
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the speed of growth and decay. The curve goes through the point (0, 1) and approaches asymptotically

the z-axis, for b > 0 on the right and for b < 0 on the left, and faster for greater values of |b]. The

functiony = a ¥ = (7> increases for ¢ < 1 and decreases for a > 1.
a

y=log,x=Ib x
y=log.x=In x
y=log,,x=lg x

Figure 2.26 Figure 2.27

2.6.2 Logarithmic Functions
The function

y=log,x (a>0, a#1) (2.56)
gives the logarithmic curve (Fig. 2.27); the curve is the reflection of the exponential curve with respect
to the line y = z. From (2.56) for a = e follows the curve of the natural logarithm

y=1Inx. (2.57)

The real logarithmic function is defined only for x > 0. For a > 1 it is strictly monotone increasing
and takes its values from —oo to +oo, for a < 1 it is strictly monotone decreasing, and takes its values
from 400 to —oo, and the greater | In a is, the faster the growth and decay. The curve goes through the
point (1,0) and approaches asymptotically the y-axis, for a > 1 down, for a < 1 up, and again faster
for larger values of |Inal.

2.6.3 Error Curve
The function

y = e (@) (2.58)
gives the error curve (Gauss error distribution curve) (Fig. 2.28). Since the function is even, the y-

axis is the symmetry axis of the curve and the larger |a| is, the faster it approaches asymptotically the
z-axis. It takes its maximum at zero, and it is equal to one, so the extreme point A of the curve is at

1 1
0, 1), the inflection points of the curve B,C are at | +——=, — |.
o ' ()
The slopes of the tangent lines are here tan ¢ = Fay/2/e.
A very important application of the error curve (2.58) is

the description of the normal distribution properties of the
observational error (see 16.2.4.1, p. 818.):

o) = - (2.50)
yi\pxia 27reXp 202 )" -

Figure 2.28
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2.6.4 Exponential Sum

The function

y= (lebz + Ccdr (260)
y y yz
y b,d>q y]
D_.lA
_’.?\B
— < X
=T : yz
Slgnasien ¢ sign a = sign ¢ sign a + sign c sign a+ sign ¢
sign b=sign d sign b + sign d sign b = sign d sign b= sign d
a) b) : |

Figure 2.29

is represented in Fig. 2.29 for the characteristic sign relations. The sum of the functions is got by
adding the ordinates of the curves, i.e., the summands are y; = ae®® and yo = ce®. The function is
continuous. If none of the numbers a, b, ¢, d is equal to 0, the curve has one of the four forms represented
in Fig. 2.29. Depending on the signs of the parameters it is possible, that the graphs are reflected over
a coordinate axis.

The intersection points A and B of the curve with the y-axis and with the a-axis are at (0, a + ¢), and

In(—a/c 1 b
t (% ,O) respectively, the extremum C'is at © = 0 In (—%), and the inflection point D
- - ¢

satr = ——1 —7() he case whe hey exis
1s at © n m th Se 1en they exist.
o 5 cai y

Case a) The parameters a and ¢, and b and d have the same signs: The function does not change its
sign, it is strictly monotone; its value is changing from 0 to +oo or to —oo or it is changing from +oo
or from —o0 to 0. There is no inflection point. The asymptote is the z-axis (Fig. 2.29a).

Case b) The parameters a and ¢ have the same sign, b and d have different signs: The function does
not change its sign and either comes from +o0o and arrives at 400 and has a minimum or comes from
—00, goes to —oo and has a maximum. There is no inflection point (Fig. 2.29b).

Case ¢) The parameters a and ¢ have different signs, b and d have the same signs: The function has
one extremum and it is strictly monotone before and after. It changes its sign once. Its value changes
whether from 0 until the extremum, then goes to +00 or —oo or it comes first from +oo or —oo, takes
the extremum, then approaches 0. The z-axis is an asymptote, the extreme point of the curve is at C'
and the inflection point at D (Fig. 2.29¢).

Case d) The parameters a and ¢ and also b and d have different signs: The function is strictly monotone,
its value rises from —oo to +oc or it falls from +o0 to —co. It has an inflection point D (Fig. 2.29d).

2.6.5 Generalized Error Function

The curve of the function

y = aexp(bz + cz®) = aexp <7%> exp (c (z + %) ) (c#0) (2.61)
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0 X
a) ¢>0 b) c<0

Figure 2.30
can be considered as the generalization of the error function (2.58); it results in a symmetric curve with

respect to the vertical line z = 30 it has no intersection point with the z-axis, and the intersection
c

point D with the y-axis is at (0, a) (Fig. 2.30a,b).
The shape of the curve depends on the signs of @ and ¢. Here only the case a > 0 is discussed, because
the curve for a < 0 is got by reflecting it in the z-axis.

Case a) ¢ > 0: The value of the function falls from +o00 until the minimum, and then rises again to
b b?

+00. It is always positive. The extreme point A of the curve is at (—2— , @ exp (4—)) and it corre-
c c

sponds to the minimum of the function; there is no inflection point or asymptote (Fig. 2.30a).

Case b) ¢ < 0: The z-axis is the asymptote. The extreme point A of the curve is at (—2—,
c

b? . .
aexp (—4— and it corresponds to the maximum of the function. The inflection points B and C'
c

are at

(—bj: VE oy (#@)) (Fig 2.30b),

2

2.6.6 Product of Power and Exponential Functions
The function

y = axbe™ (2.62)
is discussed here only in the case a > 0, because in the case a < 0 the curve is got by reflecting it in the
z-axis. For a non-integer b the function is defined only for > 0, and for an integer b the shape of the
curve for negative z can be deduced also from the following cases (Fig. 2.31).
Fig. 2.31 shows how the curve behaves for arbitrary parameters.
For b > 0 the curve passes through the origin. The tangent line at this point for b > 1 is the z-axis, for
b = 1theliney = z, for 0 < b < 1 the y-axis. For b < 0 the y-axis is an asymptote. For ¢ > 0 the
function is increasing and exceeds any value, for ¢ < 0 it tends asymptotically to 0. For different signs

. b . .
of b and ¢ the function has an extremum at x = —— (point A on the curve). The curve has either no or
c

b
(points C' and D see Fig. 2.31c,e,f,g).

one or two inflection points at x = —
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y y y y
0 0, b>1 0" 50,b=1 X 0’50, 0<b<1X 0" 0,b<0 X
a) b) c) d)
y y y

DJANC e
1A N A~

<0, b>1 x c<0, b=1 X Oc<0, 0<b<1™ 0 c<0,b<0 X
e) f) g) h)

Figure 2.31

2.7 Trigonometric Functions (Functions of Angles)

2.7.1 Basic Notions
2.7.1.1 Definition and Representation

1. Definition
The trigonometric functions are introduced by geometric considerations. So in their definition and also
in their arguments degree or radian measure is used (see 3.1.1.5, p. 131).

2. Sine
The standard sine function
y =sinz (2.63)

is a continuous curve with period 7' = 27 (see Fig. 2.32a).

Figure 2.32

The intersection points By, By, B_1, Ba, B_a,. .., with B, = (kx,0) (k = 0,41,+2,...) of the stan-
dard sine curve and the z-axis are the inflection points of the curve. Here the angle of slope of the tan-

gent line with the = axis is i—% . The extreme points of the curve are at Cy, C1, C_y, Cy, C_o, ... with
Cy = ((/C + Dm (—1)F) (k=0,41,42, .. ) For every value of the function y thereis —1 <y < 1.

The general sine function
y = Asin(wz + ¢o) (2.64)
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with an amplitude |A|, frequency w, and phase shift ¢ is represented in Fig. 2.32b.
Comparing the standard and the general sine curve (Fig. 2.32b) it can be seen that in the general
case the curve is stretched in the direction of y by a factor |Al, in the direction of it is compressed

1 ¢ 2
by a factor —, and it is shifted to the left by a segment @. The period is T' = " The intersection
w w w
. . . km — ©o .
points with the z-axis are B, = | ———,0] (k = 0,£1,£2,...). The extreme points are C}, =
w

1
me (k=0,41,%2,...).

3. Cosine
The standard cosine function

y = cosz = sin(x + g) (2.65)

is represented in Fig. 2.33.
The intersection points with the z-axis Figure 2.33

1
By, By, Bs, ..., By, = ((k + 5) , 0> (k=0,£1,42,...) are also the inflection points. The angle of
slope of the tangent line is :tg .

The extreme points are Cy, Cy, . .., C = (km, (—=1)%) (k=0,£1,42,...).

The general cosine function

y = Acos(wz + ¢p) (2.66a)
can be transformed into the form
y = Asin (wl + o + g) , (2.66b)

T
i.e., the general sine function shifted left by ¢ = 3

4. Tangent
The tangent function
y=tanz = S (2.67)
COoS T

1
has period T' = 7 and the asymptotes are © = <k + 5) m (k= 0,£1,%+2,...) (Fig. 2.34). The

function is monotone increasing in the intervals <7g + km, +g + k‘7r) (k=0,£1,42,...) and takes

values from —oo to +00. The curve has intersection points with the x-axis at Ay, Ay, A_1, As, Ao, ..,
A = (km,0) (k= 0,41,+2,...), these points are the inflection points and the angle of slope of the

... T
tangent line is 1

5. Cotangent
The cotangent function

0S8 T 1
y=cotx = st = —tan (J + E) (2.68)
sinz  tanzx 2
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Y |
T:ni
A/ LA - A \A N\ A,
Zr /10 X A\O \ K\Zn\ X
Figure 2.34 Figure 2.35

has a graph which is the tangent curve reflected with respect to the z-axis and shifted to the left by
g (Fig. 2.35). The asymptotes are # = kr (k = 0,£1,£2,...). Between 0 and 7 the function is
monotone decreasing and takes its values from +oo until —oo; the function has period T = 7. The

1
intersection points with the x-axis are at Ag, A1, A1, Ay, Ao, ... with A, = ((k + 5) , 0) (k=
0,4+1,42,...), they are the inflection points of the curve and here the angle of the tangent line is —% .

T

cosx

6. Secant y g b1 37 2n
The secant function 9o, 2 Ty
0 0 1o g
8 ZH A Y]
Yy =secx = (2.69) 0

1
has period 7" = 27, the asymptotes are z = (k + 5) T (k=

0,£1,+2,...); and obviously |y| > 1 holds. The extreme points
corresponding to the maxima of the function are Ay, A1, A_4,...

y y
X
, T=2m \T=2m;
B| E B, B
- i1 T 14N\ L
0 2 | x T L0l T 2 i
1 1 T X
A71 A0 A.1 AU HES] : O
R SHIRHI
O © % @ (¢] © O
0 90 180 270 360
Figure 2.36 Figure 2.37 Figure 2.38

with Ay = ((2k + 1)m,—1) (k = 0,£1,+2,...), the extreme points corresponding to the minima of
the function are By, By, B_1, ... with B, = (2kn, +1) (k=0,+1,£2,...) (Fig. 2.36).

7. Cosecant
The cosecant function

1

sinx

Y = cosecr =

(2.70)
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T
has a graph which is the graph of the secant shifted to the right by @ = 3" The asymptotes are

x = kr (k = 0,£1,42,...). The extreme points corresponding to the maxima of the function are

4k + 3
A, Ay, Ay, ... with Ay = ( 2+ m, 71) (k = 0,£1,42,...) and the the points corresponding
. . . 4k +1
to the minima of the function are By, By, B_y,... with B, = 5 ™ +1) (k= 0,4£1,£2,...)

(Fig. 2.37).
2.7.1.2 Range and Behavior of the Functions

1. Angle Domain 0 < z < 360°

The six trigonometric functions are represented together in Fig. 2.38 in all the four quadrants for a
complete domain of angles from 0° to 360° or for a complete domain of radians from 0 to 27.

In Table 2.1 there is areview of the domain and the range of these functions. The signs of the functions
depend on the quadrant where the argument is taken from, and these are reviewed in Table 2.2.

Table 2.1 Domain and range of trigonometric functions

Domain Range Domain Range
—1<sinz <1 x#(2k+1)g —00 < tanz < 0o
— <zr<
o= OC{ —1<cosz <1 r %k —o0 < cotr < o0

(k=0,4+1,42,..))

2. Function Values for Some Special Arguments (see Table 2.3)
3. Arbitrary Angle

Since the trigonometric functions are periodic (period 360° or 180°), the determination of their values
for an arbitrary argument x can be reduced by the following rules.

Argument z > 360° or > 180°: If the angle is greater than 360° or greater than 180°, then it is
to be reduced for a value a, for which 0 < o < 360° or 0 < v < 180° holds, in the following way (n
integer):

sin(360° - n + o) = sina, (2.71) cos(360° - n 4+ a) = cos ar, (2.72)
tan(180° - n+a) = tana,  (2.73) cot(180° - n+ a) = cot av. (2.74)

Table 2.2 Signs of trigonometric functions

Quadrant Angle sin cos tan cot sec csc
I from 0°to 90° + + + + + +

11 from 90° to 180° + - - - - +

111 from 180° to 270° - - + + - -

I\ from 270° to 360° — + — — + —

Argument x < 0: If the argument is negative, then the following formulas reduce the calculations to
functions for positive argument:

sin(—a) = —sina, (2.75) cos(—a) = cosar, (2.76)

tan(—a) = —tana, (2.77) cot(—a) = —cot av. (2.78)



80 2. Functions

Table 2.3 Values of trigonometric functions for 0°,30°,45°, 60° and 90°.

Angle | Radian | sin | cos | tan | cot | sec csc
0° 0 0 1 0 | Foo 1 Foo
1 L V3] V3 2v3
° = = | = | = e 2
30 " 1223 |V
1 2 2
| L 212 s
4 2 2
1 V3|1 V3 2V/3
o - Vo 1 Vo 9 2Vo
60 3" 195 | VA 3
1
90° §7T 1 0 |£oo| O +o0 1

Table 2.4 Reduction formulas and quadrant relations of trigonometric functions

Function | t =90°+a |2 =180°+a | 2 =270°+ a | z = 360° — «

sin x +cos Fsina — Cos —sina
oS T Fsina — Cos « +sina + cos
tanx Fcot v +tana Fcot o —tana
cotx Ftana +cota Ftana —cot av

Argument x for 90° < x < 360°: If 90° < x < 360° holds, then the arguments are to be reduced
for an acute angle a by the reduction formulas given in Table 2.4. The relations between the values
of the functions belonging to the arguments which differ from each other by 90°, 180° or 270° or which
complete each other to 90°, 180° or 270° are called quadrant relations.

The first and second columns of Table 2.4 give the complementary angle formulas, and the first and
third ones give the supplementary angle formulas. Because x = 90° — «v is the complementary angle
(see 3.1.1.2, p. 130) of a, the following relations

cosa = sinz = sin(90° — a), (2.79a) sina = cosz = cos(90° — ) (2.79b)
are called the complementary angle formulas.

For a + 2 = 180° the relations between the trigonometric functions for supplementary angles (see
3.1.1.2, p. 130)

sina = sinz = sin(180° — ), (2.80a) —cosa = cosz = cos(180° — «) (2.80b)

are called supplementary angle formulas.

Argument z for 0° < x < 90°: The values of trigonometric functions for acute angles (0° < z <
90°) have been taken formerly from tables, today calculators are used.

B sin(—1000°) = —sin 1000° = —sin(360° - 2 4 280°) = —sin 280° = + cos 10° = +0.9848.

4. Angles in Radian Measure

The arguments given in radian measure, i.e., in units of radians, can be easily converted by formula
(3.2) (see 3.1.1.5, p. 131).
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2.7.2 Important Formulas for Trigonometric Functions

Remark: Trigonometric functions with complex argument z are discussed in 14.5.2, p. 759.

2.7.2.1 Relations Between the Trigonometric Functions

sin®a + cos’a = 1, (2.81) sec’a —tan’a = 1, (2.82)
cosec’ a — cot’a =1, (2.83) sino - coseca =1, (2.84)
cosa-seca =1, (2.85) tana - cota =1, (2.86)
sma tan o, (2.87) C_OSO( = cota. (2.88)
cos & sin «

Some important relations are summarized in Table 2.5 for 0 < a < /2 in order to create an easy
survey. For other intervals in Table 2.5 the square roots are always considered with the sign which
corresponds to the quadrant where the argument is.

2.7.2.2 Trigonometric Functions of the Sum and Difference of Two Angles
(Addition Theorems)

sin(a=£ ) = sin « cos £ cos asin 3,(2.89) cos(axf) = cos a cos BFsin asin (,(2.90)

tan o + tan 3 cotacot B F 1

t +p)= ———— 2.91 t(a£ )= , 2.92
an(a % f) 1 Ftanatan’ ( ) cot(or £ ) cot fEtcotar ’ ( )
sin(a+ 8+ ) = sinacos f cosy + cos asin 5 cosy
+ cos acos Fsiny — sin asin 5 sin 7y, (2.93)
cos(a+ +7) = cosacos ff cosy — sinasin J cos y
—sinavcos Fsiny — cos asin sin . (2.94)
2.7.2.3 Trigonometric Functions of an Integer Multiple of an Angle
sin2a = 2sina cos a, (2.95) cos2a = cos® a —sin’ (2.97)
sin3a = 3sina — 4sin’ q, (2.96) cos3a = 4cos’ a — 3cosa, (2.98)
sinda = 8cos® asina — 4cosasina, (2.99) cosda = 8cos*a —8cos’a+ 1, (2.100)
2tan « cot?a — 1
tan2a = ———— 2.101 = /
M2 = ( ) cot 2a Soota (2.104)
3tana — tan® o cot® a — 3cot o
tan3a = ————, 2.102 ot3a = ——5—— .
an 3a 1 —3tana ( ) cot 3a Teofa_1 " (2.105)
4tan o — 4 tan® Lo — 2
tanda = — on @ —oAL @ (2.103) cotda = SO0 ZBCotTat Ly o)

1 — 6tan®a + tant o, 4cot’ a — 4dcota

For larger values of n in order to gain a formula for sin na and cos na the de Moivre formula is to be
used (see 1.5.3.5, p. 38).
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Using the binomial theorem (see 1.1.6.4, p. 12) gives:

n
- n\ . _ . -
cosna + isinna = ( )1’” cos" F asin® o = (cosa +isina)”

im0 \k
= cos" a +incos" T asina
n P (n P n 4.
- <2> cos" 2asin®a — 1(3) cos" P asin® a + (4) cos" tasinta+ ... . (2.107)

With this it follows:
, n ) . n 4 . n 6 .6
cosna = cos" o — <2> cos" 2 asin® o 4 (4) cos"* asin® o — <6> cos" Sasin®a+ ...,
(2.108)

n

5) cos" Pasin®a — ... . (2.109)

. _ . n P
sinno = ncos™ ' asina — (3) cos" P asin® o 4 (

™
Table 2.5 Relations between the trigonometric functions of the same argument in the interval 0 < o < )

« sin « Ccos v tan « cot av

sin av — V1 —cos?a

tan o 1
V1+tan?a | V1+cot?a

1 cot

COoS (v V1 —sin’a — -
V1i+tana | V14 cot?a
sin o V1 —cos?a 1

tan o —

V1 —sin?a cos & cot o

V1 —sin? a cos 1
cot av . -
sin v V1 —cos?a tan o

2.7.2.4 Trigonometric Functions of Half-Angles

In the following formulas the sign of the square root must be chosen positive or negative, according to
the quadrant where the half-angle is.

1 1
sin & = 5(1 —cosa), (2.110) cos% = 5(1+COSO¢), (2.111)
« 1—cosa 1—cosa sin «v
tan — = = — = , (2.112)
2 1+ cosa sin av 1+ cosa
cotg: 1+ cosa _ 1+-cosoz _ sin o ' (2.113)
2 1—cosa sin v 1—cosa
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2.7.2.5 Sum and Difference of Two Trigonometric Functions

B - &} -0
sina 4 sin f = 2sin TP s ® 7 ‘B, (2.114) sina—sin 8 = 2cos atl 5 —,  (2.115)
3 - -
cos a+cos 3 = 2 cos & ;— p cos & 5 5,(2.116) cosa — cos § = —2sin ath sin & 3 —, (2.117)
B} +
tana £ tan f = w, (2.118) cotatcot = iM, (2.119)
cos a.cos 3 sin asin 8
_ 5]
tana + cot 3 = M, (2.120) cota —tanf = M (2.121)
cosasin sin v cos 3
2.7.2.6 Products of Trigonometric Functions
1
sinasin § = 5[005((1 — B) — cos(a + B)], (2.122)
1
cosacos 3= 5[005(& — ) + cos(a + B)], (2.123)
. 1. .
sinacos 3 = E[sm(a — B) +sin(a + B)], (2.124)
S 1. .
sinasin siny = i[sm(a +B8—7)+sin(B+v—a)
+sin(y + a — f) —sin(a + 5 + 7)), (2.125)
. 1. .
sin avcos Jcosy = Z[sm((k +8—7)—sin(f+7—a)
+sin(y +a — §) +sin(a+ 5+ 7)), (2.126)
1
sinasin fcosy = Z[_ cos(a+ =)+ cos(f+v—a)
+cos(y+a — B) — cos(a+ B+ 7)], (2.127)
1
cosacos fcosy = Z[cos(oz + 6 —7) +cos(B+v— )
+cos(y 4+ a — ) + cos(a +  + 7)) (2.128)
2.7.2.7 Powers of Trigonometric Functions
L, 1 , 1
sin“ o = 5(1 — cos 2a), (2.129) cos” o = 5(1 + cos 2a), (2.130)
i3 Lo : 3 L
sin® o = 1(3 sina —sin3a),  (2.131) cos’ o = Z(COS 3a+3cosa), (2.132)

1 1
sin o = g(cos da — 4 cos2a + 3), (2.133) costa = g(cos da +4cos2a + 3). (2.134)
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For large values of n sin™ a and cos™ «v, can be expressd by applying the formulas for cos na and sin na
(see 2.7.2.3, p. 82).

2.7.3 Description of Oscillations
2.7.3.1 Formulation of the Problem
In engineering and physics one often meets quantities depending on time and given in the form

u(t) = Asin(wt + ¢). (2.135)
They are called also sinusoidal quantities. Their dependence on time results in a harmonic oscillation.
The graphical representation of (2.135) results in a general sine curve, as shown in Fig. 2.39.

u
T
<Ll o A
i \/ | b
[0)
® a
Figure 2.39 Figure 2.40

The general sine curve differs from the simple sine curve y = sin x:
a) by the amplitude A, i.e., the greatest distance between its points and the time axis ¢,

2
b) by the period T = —W, which corresponds to the wavelength (with w as the frequency of the oscilla-
w

tion, which is called the angular or radial frequency in wave theory),

c) by the initial phase or phase shift by the initial angle ¢ # 0.

The quantity u(t) can also be written in the form

u(t) = asinwt + bcoswt. (2.136)

b

Here for a and b A = v a? 4+ b? and tan ¢ = — holds. The quantities a, b, A and ¢ can be represented
a

as sides and angle of a right triangle (Fig. 2.40).

2.7.3.2 Superposition of Oscillations

In the simplest case the superposition of oscillations is
the addition of two oscillations with the same frequency.

}:‘ a Y It results again in a harmonic oscillation with the same
3 P frequency:
g A i [ 7 Ay sin(wt+p1)+ Ag sin(wt+p2) = Asin(wt+¢)(2.137a)
:g Az 4 i‘b ot| |3 with
u | A
S|~ | £ /d A= A2 + 457 + 24, A5 cos(ps — 1), (2.137h)
1!
v 3 Ajpsinp; + Ay sin g
t = 2.137

0" ¢ x 0 X any Ay cospy + Aycos iy’ ( )

a) b)

where the quantities A and ¢ can be determined by a
Figure 2.41 vector diagram (Fig. 2.41a).

A linear combination of several sine functions with the same frequency is also possible and yields a

general sine function (harmonic oscillation) with the same frequency:

> Aisin(wt + ;) = Asin(wt + ). (2.138)



2.8 Cyclometric or Inverse Trigonometric Functions 85

2.7.3.3 Vector Diagram for Oscillations

The general sine function (2.135, 2.136) can be represented easily by the polar coordinates p = A,
and by the Cartesian coordinates @ = a, y = b (see 3.5.2.1, p. 190) in a plane. The sum of two such
quantities then behaves as the sum of two summand vectors (Fig. 2.41a). Similarly the sum of several
vectors results in a linear combination of several general sine functions. This representation is called a
vector diagram.

The quantity u for a given time ¢ can be determined from the vector diagram with the help of Fig.
2.41b: First the time axis OP(t) has to be put through the origin O, which rotates clockwise around
O by a constant angular velocity w. At start ¢ = 0 the axes y and ¢ coincide. Then at any time ¢
the projection ON of the vector U onto the time axis is equal to the absolute value of the general sine
function u = Asin(wt + ¢). For time ¢ = 0 the value ug = Asing is the projection onto the y-axis
(Fig. 2.41Db).

2.7.3.4 Damping of Oscillations
The function u(t) = Ae™*sin(wt + o) (a, t > 0) (2.139)

u yields the curve of a damped oscillation
(Fig. 2.42).

The oscillation proceeds along the t-axis,
while the curve asymptotically approaches
the t-axis. The sine curve is enclosed by the
exponential curves u(t) = +Ae™, and it
contacts them in the points

1
(k+3)7 =
A, A Ay, Ay = | —r

w

=]

)

1
(k+g)m—s
(=) A exp | —a~—2

Figure 2.42 v
The intersection points with the coordinate axes are B = (0, Asin ¢y), Cy, C1, Ca, ..., C =
km — km — oo +
(M, 0) . The extrema Dy, Dy, Dy, ...areat t, = i 2 ; and the inflection points Ey, E1,
w w
km — o+ 2a
Ey,...areat t, = i <\ with tan o = 84
w a
Yi

™
The logarithmic decrement of the damping is 6 = In = a—, where y; and y;,1 are the ordinates
w

Yit+1
of two consecutive extrema.

2.8 Cyclometric or Inverse Trigonometric Functions

The cyclometric functions or arcus functions are the inverses of the trigonometric functions. For a
unequivocal definition the domain of the trigonometric functions is to be decomposed into monotony
intervals, to get an inverse function for every monotony interval. So, there are infinitely many such
intervals, and for each its inverse is to be defined. In order to distinguish them an index k is to be
assigned according to the corresponding interval. Obviously the trigonometric inverse functions are
monotony in these intervals.

2.8.1 Definition of the Inverse Trigonometric Functions

How to define the inverse trigonometric functions will be shown here for the inverse of the sin function
(Fig. 2.43). The usual notation for it is arcsin 2 . The domain of y = sin z will be split into monotony
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Figure 2.43 Figure 2.44 Figure 2.45 Figure 2.46

intervals km — g <z <km+ g with & = 0,£1,+2,.... Reflecting the curve of y = sinz in the line
y = x yields the curve of the inverse function
y = arc sinx (2.140a)

with the domains and ranges
1<z<+1 and kr— g <y<krt g where k=0,+1,+2,... . (2.140b)

The form y = arcy sin x has the same meaning as = = siny.
Similarly, one can get the other inverse trigonometric functions which are represented in Fig. 2.44—
2.46. The domains and ranges of the inverse functions can be found in Table 2.6.

2.8.2 Reduction to the Principal - Y

C
B i domaithe s tions e thesoced 0 %
arccot T\ o%

In their domain the arcus functions have the so-called
principal values for k = 0, written usually without an
index, g.e., as arcsinx = arcosinz. In Fig. 2.47 the
principal values of the inverse functions are presented.

NIia

The values of the different inverses can be calculated
from the principal values by the following formulas: -1 0 1 X

Is
arc, sinz = k —1)* arcsin = arctan 5
arcy sinz = km + (—1)" arcsin «. (2.141) /&@

(k+1)m — arccosz  (k odd), -1
km + arccos © (K even). (2.142)

arcy Cos x = {
Figure 2.47

arcy, tanz = k7 4 arctan . (2.143)
arcy, cot ¥ = km + arccot . (2.144)
B A: arcsin(0 =0, arc,sin0 = k7.

H B: arccotl = E. arcy cot 1 = % + k.

1 7i 1
HC: arccos 5 = %, arc, cos 5 = —g + (k+1)m for odd k,
T + km for even k.

3
Remark: Calculators give the principal values of the trigonometric inverses.
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Table 2.6 Domains and ranges of the inverses of trigonometric functions

Trigonometric
Inverse function Domain Range function with the
same meaning
arc sine m T R
. 1<z < r— — <y<km+— T = sing
y — arcy sinz } 1<z2<1 km 27y7k7r+2 x =siny
arc cosine
—1<z< <y <(k = COS 1
Y — arcy cos z } 1<z<1 kr<y<(k+ )7 T = cosy
arc tangent m m o
y = arcy tanz } —00 < <00 krr—2<y<k7r+2 r = tany
arc cotangent
¢ cotang } —00 < T < 00 kr<y<(k+1)m z = coty
Yy = arcy cot x
k =0,£1,£2,.... For k = 0 one gets the principal value of the inverse functions,
which is usually written without an index, e.g., arcsinx = arcg sin .

2.8.3 Relations Between the Principal Values

. T —arccosV1—a? (—1<z<0),
arcsinz = — — arccos x = arctan = (2.145)
2 — 22 arccos /1 — a2 0<z<1).
T . m—arcsiny1—22 (m—1<x<0),
arccosx = — — arcsinx = arccot = . (2.146)
2 — 2 arcsin /1 — a2 O0<z<1).
T x
arctanx = — — arccot r = arcsin ——. 2.147
2 tval + CL’2 ( )
1 1
arccot — — 7 (x < 0) T arceos or——s s (z<0),
arctanz = i‘n = 1 r (2.148)
arccot — x>0 arccos ——— >0
z ( ) V1+z? (z=0)
to =2 — arct ‘L' (2.149)
arccot r = — — arctan z = arccos —— . .
2 V14 a?

— arcsin

1 1
- ; s —— (2 <0),
arctan . +7 (z<0) B Ve ) .
1 (2.150)
Vize @20

arccot xz =

1 n .
arctan — (x>0) arcsin
x

2.8.4 Formulas for Negative Arguments

(2.151)
(2.152)

(2.153)
(2.154)

arccos(—x) = T — arccos .
arccot(—x) = 7 — arccot z.

arcsin(—xz) = — arcsin z.
arctan(—x) = — arctan z.
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2.8.5 Sum and Difference of arcsin  and arcsin y

arcsin x + arcsiny = arcsin (IM + y\/ﬁ) (zy <0or 2 +9> < 1), (2.155a)
= m — arcsin (xﬂ+ ym) (x>0,y>0, 2% +y*>1), (2.155b)
= —7 — arcsin (Tm-&- yﬂ) (x <0,y <0, 2% +5y*>>1). (2.155¢)
arcsin z — arcsin y = arcsin ( m - yﬁ) (zy > 0or2? +y* < 1), (2.156a)
=7 — arcsin (1\/@ - yx/ﬁ) (x>0,y<0, 22 +y*>>1), (2.156b)
= —7 — arcsin <IM7 yﬂ) (x<0,y>0, 2°+y*>1).(2.156¢)

2.8.6 Sum and Difference of arccos z and arccos y

arccos & + arccosy = arccos (xy —V1—a2/1— yz) (x+y >0), (2.157a)
= 27 — arccos (Iy —V1—a2%/1- y2> (x+y<0). (2.157b)
arccos T — arccosy = — arccos (CI?Z/+\/1 —x2/1— ) (x> y), (2.158a)
= arccos (1y+\/1712\/17y ) (x <y). (2.158Db)
2.8.7 Sum and Difference of arctan z and arctan y
arctan z + arctan y = arctan :1;:,— l (zy < 1), (2.159a)
=7 + arctan 11’ ty (x>0, zy > 1), (2.159Db)
-y
r+y
= —7 + arctan ;—— (<0, zy > 1). (2.159¢)
r—y
arctan o — arctan y = arctan (zy > —1), (2.160a)
1+ xy
=7+ arctan — 7 (x>0, 2y <—1) (2.160b)
- 1+ay o ’ ’
+arctan —2 (2 <0, 2y < —1) (2.160c)
= -7 arctan T —1). . o
1+ a2y ’ I ‘
2.8.8 Special Relations for arcsin x, arccos x, arctan x
1
S0 — ares 1 2 -
2arcsinz = arcsin (21 11—z ) <|x\ < ﬁ) , (2.161a)

=7 — arcsin (20v1 - 2?) (% z< 1) (2.161b)
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= —7 — arcsin (21'\/1 - xZ) <71 <z < 7%) . (2.161c)

2arccos x = arccos(22® — 1) (0 <z < 1), (2.162a)
=21 —arccos(22? — 1) (=1 <z <0). (2.162b)
. 3 ", Qx H

2arctanz = arctan 12 (lz| < 1), (2.163a)
+arctan —2— (3> 1) (2.163b)

=7+ arctan ——— , .

m+arctan T—sz (2 .

= —7 + arctan 1 _IIZ (z < —-1). (2.163¢)
cos(narccosz) =T, (z) (n>1), (2.164)

where n > 1 can also be a fractional number and T, () is given by the equation

e+ve? = 1) + (2= Va2 —1)"
T.(z) = ( ) 3 ( ) . (2.165)
For any integer n, T,,(x) is a polynomial of = (a Chebyshev polynomial). To study the properties of the
Chebyshev polynomials see 19.6.3, p. 988.

2.9 Hyperbolic Functions
2.9.1 Definition of Hyperbolic Functions

Hyperbolic sine, hyperbolic cosine and hyperbolic tangent are defined by the following formulas:

et —e " e’ +e " e’ —e "
sinhy = ———— . oshe = ———, (2. tanhz = — . (2.168
sinh 5 (2.166) cosh 5 (2.167) prp— ( )
The geometric definition (see 3.1.2.2, p. 132), is an analogy to the trigonometric functions.
Hyperbolic cotangent, hyperbolic secant and hyperbolic cosecant are defined as reciprocal values of the
above hyperbolic functions:

L e 1 2
cothz = = i, (2.169) seche = —— = ——— (2.170)
tanhz  e* —e® coshx e*+e®
1 2
cosechz = =— (2.171)

sinhx e*—e™®
The shapes of curves of hyperbolic functions are shown in Fig. 2.48—-2.52.
2.9.2 Graphical Representation of the Hyperbolic Functions
2.9.2.1 Hyperbolic Sine

y = sinh x (2.166) is an odd strictly monotone increasing function between —co and +oo (Fig. 2.49).
The origin is its symmetry center, the inflection point, and here the angle of slope of the tangent line is

™ .
p= 1 There is no asymptote.

2.9.2.2 Hyperbolic Cosine

y = coshz (2.167) is an even function, it is strictly monotone decreasing for x < 0 from +oco to 1, and
for z > 0 it is strictly monotone increasing from 1 until 400 (Fig. 2.50). The minimum is at = 0
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Figure 2.48 Figure 2.49 Figure 2.50
and it is equal to 1 (point A(0,1)); it has no asymptote. The curve is symmetric with respect to the

2
x
y-axis and it always stays above the curve of the quadratic parabolay = 1+ 5 (the broken-line curve).

Because the function demonstrates a catenary curve, the curve is called the catenoid (see 2.15.1, p. 107).

2.9.2.3 Hyperbolic Tangent

y = tanhz (2.168) is an odd function, for —oco < 2 < 400 strictly monotone increasing from —1 to +1

(Fig. 2.51). The origin is the center of symmetry, and the inflection point, and here the angle of slope
7r

of the tangent line is p = 1 The asymptotes are the lines y = +1.
Ay
4
3
y 2
,,,,,,,,,,, i,,,,/(p,,,,,,,,, 1
322=17101 2 3 x 4-32-1[0123 4x
7 _1 L
-2
-3
4
Figure 2.51 Figure 2.52

2.9.2.4 Hyperbolic Cotangent

y = cothz (2.169) is an odd function which is not continuous at x = 0 (Fig. 2.52). It is strictly
monotone decreasing in the interval —oo < 2 < 0 and it takes its values from —1 until —oco; in the
interval 0 < & < +o0 it is also strictly monotone decreasing with values from 400 to +1. It has no
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inflection point, no extreme value. The asymptotes are the lines z = 0 and y = £1.

2.9.3 Important Formulas for the Hyperbolic Functions

There are similar relations between the hyperbolic functions as between trigonometric functions. The
validity of the following formulas can be shown directly from the definitions of hyperbolic functions, or
considering the definitions and relations of these functions also for complex arguments, from (2.199)—
(2.206), they can be calculated from the formulas known for trigonometric functions.

2.9.3.1 Hyperbolic Functions of One Variable .
cosh? x — sinh®z = 1, (2.172) coth?z — cosech® z = 1, (2.173)
sech’r + tanh®z = 1, (2.174) tanha - cothz =1, (2.175)
sink s
ig;ﬁi = tanhz, (176) S ;'" = cothz. (2.177)

2.9.3.2 Expressing a Hyperbolic Function by Another One with the
Same Argument

The corresponding formulas are collected in Table 2.7.

2.9.3.3 Formulas for Negative Arguments

sinh(—z) = —sinhx, (2.178) cosh(—z) = coshuz, (2.180)
tanh(—2) = — tanhx, (2.179) coth(—z) = —cothx. (2.181)

Table 2.7 Relations between two hyperbolic functions with the same arguments for z > 0

sinh x cosh x tanh z cothx

: tanh x 1
sinh x - Veosh?z — 1

\/1 — tanh?® 2 \/c()th2 r—1

1 t
coshz | \/sinh®z +1 - cotT

1 — tanh®z coth?z — 1
v %

sinh z Veosh?z — 1 1

tanh z _
\/ sinh?z + 1 coshz coth z

\/sinh?z + 1 cosh x 1

cothx —

sinh z [cosh? 2 — 1 tanh x

2.9.3.4 Hyperbolic Functions of the Sum and Difference of Two Arguments
(Addition Theorems)

sinh(z £+ y) = sinh x coshy + cosh z sinh y, (2.182)

cosh(z £ y) = coshx coshy + sinh x sinh y, (2.183)
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tanh z + tanhy
tanh(z £y) = ————=— | 2.184) coth(z +y) =
h(z £ y) 1 £ tanhztanhy ’ (2.184) coth(z +y)

14 cothz cothy
cothx + cothy

2.9.3.5 Hyperbolic Functions of Double Arguments

tanh 22 — 2tanh x
sinh 2z = 2sinh z cosh , (2.186) AN St = 1+ tanh?z’
cosh 2z = sinh?  + cosh® z, (2.187) 1+ coth?x

coth2r = ———

2cothx

2.9.3.6 De Moivre Formula for Hyperbolic Functions

n
(cosha £ sinhz)" = (ei”) = e = coshnw + sinhna.

2.9.3.7 Hyperbolic Functions of Half-Argument

T 1 T 1
sinh% == 5((:()511:17 -1), (2.191) cosh% =\ §(c0shx +1),

The sign of the square root in (2.191) is positive for > 0 and negative for z < 0.

z  coshx —1 sinh x sinh x coshx + 1

tanh = = = 2.193) coth = = =
i 2 sinh x cosha +1’ ( ) co 2  coshzr—1 sinh x

2.9.3.8 Sum and Difference of Hyperbolic Functions

Tty TFy
3 ;

sinh x &+ sinh y = 2sinh cosh

Tty xr—y
cosh

cosh x + coshy = 2 cosh

coshz — coshy = 2sinh

:I;+ysinhx;y.

sinh(z =+ 1
tanh 2z + tanhy = m .
cosh x coshy

(2.185)

(2.188)

(2.189)

(2.190)

(2.192)

(2.194)

(2.195)
(2.196)

(2.197)

(2.198)

2.9.3.9 Relation Between Hyperbolic and Trigonometric Functions with

Complex Arguments z

sinz = —isinhiz, (2.199) sinh z = —isiniz,
cosz = coshiz, (2.200) cosh z = cosiz,
tanz = —itanhiz, (2.201) tanh z = —itaniz,
cot z = icothiz, (2.202) cothz = icotiz.

(2.203)
(2.204)
(2.205)
(2.206)

Every relation between hyperbolic functions, which contains 2 or az but not ax+b, can be derived from
the corresponding trigonometric relation with the substitution isinh 2 for sin @ and cosh x for cos a.

B A: cos’a+sina =1, cosh?z + i2sinh?z = 1 or cosh?z — sinh?z = 1.
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B B: sin2a = 2sinacos «, isinh 2z = 2isinh 2 cosh z or sinh 2z = 2sinh x cosh .

2.10 AreaFunctions
2.10.1 Definitions

The area functions are the inverse functions of the hyperbolic functions, i.e., the inverse hyperbolic
functions. The functions sinh 2, tanh z, and coth z are strictly monotone, so they have unique inverses
without any restriction; the function cosh z has two monotonic intervals so there are to consider two
inverse functions. The name area refers to the fact that the geometric definition of the functions is the
area of certain hyperbolic sectors (see 3.1.2.2, p. 132).

2.10.1.1 Area Sine
The function y = Arsinhx (2.207)

(Fig. 2.53) is an odd, strictly monotone increasing function, with domain and range given in Ta-
ble 2.8. (2.53) is equivalent to the expression x = sinhy. The origin is the center of symmetry and

b
the inflection point of the curve, where the angle of slope of the tangent line is ¢ = 1

2.10.1.2 Area Cosine
The functions y = Arcoshz and y = — Arcoshz (2.208)

(Fig. 2.54) or = coshy have the domain and range given in Table 2.8; they are defined only for
2z > 1. The function curve starts at the point A(1,0) with a vertical tangent line and the function
increases or decreases strictly monotonically respectively.

y=-Arcosh x

Figure 2.53 Figure 2.54

Table 2.8 Domains and ranges of the area functions

Area function Domain Range I‘{Nzgle ﬂiiﬁgé&iﬁ;ﬁg
area sine

y = Arsinh x —00 <z <00 | —00<y <00 x =sinhy
area cosine

= 3 <

Z:ériiz};;lx 1<z < o0 700025280 x = coshy
area tangent

y = Artanhx [z]<1 | —co<y <o z = tanhy
area cotangent

y = Arcothz [z]>1 | —o <y <0 z = cothy

0<y<oo
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2.10.1.3 Area Tangent
The function y = Artanhz (2.209)

(Fig. 2.55) or 2 = tanh y is an odd function, defined only for || < 1, with domain and range given in

Table 2.8. The origin is the center of symmetry and also the inflection point of the curve, and here the
. .. ™ . . .
angle of slope of the tangent line is ¢ = i . The asymptotes are vertical, their equations are x = +1.

2.10.1.4 Area Cotangent
The function y = Arcothx (2.210)

(Fig. 2.56) or x = cothy is an odd function, defined only for |z| > 1, with domain and range given in
Table 2.8. In the interval —oo < z < —1 the function is strictly monotone decreasing from 0 until —oo,
in the interval 1 < x < 400 it is strictly monotone decreasing from +o0o to 0. It has three asymptotes:
their equations are y = 0 and =z = £1.

2.10.2 Determination of AreaFunctions Using Natural Logarithm

From the definition of hyperbolic functions ((2.166)—(2.171), see 2.9.1, p. 89) follows that the area
functions can be expressed with the logarithm function:

Arsinhz = In (z + Va2 + 1), (2.211)

1
Arcoshz =In(z++v2? = 1) =In | ———— > 1), 2212
rcoshz = In (z + Va2 — 1) n(fi\/m> (x>1) ( )
1.1 1 1
Artanhz = gln 1 e (lz] < 1), (2.213) Arcothz = 5111 I+1 (lz] >1). (2.214)
— €T —

2.10.3 Relations Between Different Area Functions

/2?2 11
Arsinh @ = (signz) Arcosh Va2 + 1 = Artanh = Arcoth vl
x

Vaz+1
(Jz| <o),  (2.215)

N .
Arcoshx = Arsinh va? — 1 = Artanh ——— = Arcoth —— x>1), 2.216
rcosh z rsinh Va rtanh — o 1m (x>1), ( )

1
Artanh x = Arsinh % = Arcoth — = (signx) Arcosh
x

V1—a? (lz] < 1), (2.217)

1
V1—a?
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1 1
Arcothz = Artanh — = (sign ) Arsinh ——
5 = (signz) —
) ||
= (signz) Arcosh ——— z| >1). 2.218
(ign) Arcosh (s >1.  @213)

2.10.4 Sum and Difference of Area Functions
Arsinh z + Arsinhy = Arsinh (.’1;\/ 1+y?+yvV1+ 12) , (2.219)

Arcosh z + Arcoshy = Arcosh (wy +/(2? —1)(y* — 1)) , (2.220)

Artanh z + Artanhy = Artanh lxiixyy (2.221)
2.10.5 Formulas for Negative Arguments

Arsinh(—z) = — Arsinh z, (2.222)

Artanh(—z) = — Artanh z, (2.223) Arcoth(—z) = — Arcoth . (2.224)

The functions Arsinh, Artanh and Arcoth are odd functions, and Arcosh (2.212) is not defined for
arguments z < 1.

2.11 Curves of Order Three (Cubic Curves)

A curve is called an algebraic curve of order n if it can be written in the form of a polynomical equation
F(x,y) = 0 of two variables where the left-hand side is a poynomial expression of degree n.

B The cardioid with equation (22 +y?) (2% +y? — 2az) —a’*y? = 0 (a > 0) (see 2.12.2, p. 98) is a curve
of order four. The well-known conic sections (see 3.5.2.11, p. 206) result in curves of order two.

2.11.1 Semicubic Parabola
The equation y = az®? (a >0, z > 0) (2.225a)
or in parametric form 2z =12, y=at® (a >0, —0o <t < o0) (2.225Db)

gives the semicubic parabola (Fig. 2.57). It has a cuspidal point at the origin, it has no asymptote.

6a
The curvature K = m takes all the values between oo and 0. The arclength of the curve
T a?z)’

1 .
between the origin and the point P(x,y)is L = W[(ﬂx +9a%2)*? - §).
a
2.11.2 Witch of Agnesi

a 3

The equation -
4 y a? + x?

(a>0, —00 << 00) (2.226a)

determines the curve represented in Fig. 2.58, the witch of Agnesi. It has an asymptote with the

a
equation y = 0, it has an extreme point at A(0, a), where the radius of curvatureis r = 5 The inflection

3V3

3
points B and C are at (i% s f), where the angles of slope of the tangent lines are tan ¢ = :FT.
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Figure 2.57 Figure 2.58 Figure 2.59

The area of the region between the curve and its asymptote is equal to S = ma®. The witch of Agnesi
(2.226a) is a special case of the Lorentz or Breit—-Wigner curve

a
= >0,b#0). 2.226b
g (0>0070) (2.2260)
B The Fourier transform of the damped oscillation is the Lorentz or Breit—~Wigner curve (see 15.3.1.4,
p. 791).

Y

2.11.3 Cartesian Folium (Folium of Descartes)

The equation  2° 4 y® = 3azy (a >0) or (2.227a)
) .y 3at 3at? .
in parametric form  x = L y=-——> Wi
P v T v
t =tan ¥ POz (a>0,—o00o<t<—1and —1<t <o0) (2.227b)

gives the Cartesian folium curve represented in Fig. 2.59. The origin is a double point because the
curve passes through it twice, and here both coordinate axes are tangent lines. At the origin the radius

. 3a . .
of curvature for both branches of the curve is r = 5 The equation of the asymptote is x +y+a = 0.

3 3 . 3a?
The vertex A has the coordinates A (ga, §a). The area of the loop is S = % . The area S, between

the curve and the asymptote has the same value.

2.11.4 Cissoid

The equation ¢ = : (a>0), (2.228a)
a—z
i fric f at’ @ itk
or in parametric form ¢ = ——, y=—— wi
P 1+ 1
t =tan¥ POz (a>0,—00 <t < o0) (2.228b)
2
or with polar coordinates p = i 4 (a>0) (2.228c)
cos ¢

(Fig. 2.60) describes the locus of the points P for which
0P = MQ (2.229)
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a
is valid. Here M is the second intersection point of the line 0P with the drawn circle of radius > and
@ is the intersection point of the line 0P with the asymptote x = a. The area between the curve and

3
the asymptote is equal to S = Z?T(12.

y

Figure 2.60 Figure 2.61
2.11.5 Strophoide

Strophoide is the locus of the points Py and P,, which are on an arbitrary half-line starting at A (A is
on the negative z-axis) and for which the equalities

MP, = MPy,=0M (2.230)
are valid. Here M is the intersection point with the y-axis (Fig. 2.61). The equation of the strophoide
in Cartesian, and in polar coordinates, and in parametric form is:

5 . 5 24
y? = 22 (“ * x) (a>0), (2.231a) p=—a"222 (a>0), (2.231b)
a—x cos p
-1 -1
T=ag e U= atm with ¢ = tan ¥ POz (a > 0,—0c0 < t < 00). (2.231c)

The origin is a double point with tangent lines y = 2. The asymptote has the equation x = a. The

. 1 .
vertex is A(—a, 0). The area of the loop is S} = 2a% — iﬂaz, and the area between the curve and the

1
asymptote is Sy = 2a° + §7ra2.

2.12 Curves of Order Four (Quartics)

2.12.1 Conchoid of Nicomedes
The Conchoid of Nicomedes (Fig. 2.62) is the locus of the points P, for which

0P =0M +1 (2.232)
holds, where M is the intersection point of the line 02,0, with the asymptote z = a. The “+” sign
belongs to the right branch of the curve, the “—" sign belongs to the left one in relation to the asymptote.

The equations for the conchoid of Nicomedes are the following in Cartesian coordinates, in parametric
form and in polar coordinates:

(z—a)@®+y*) —P2>=0 (a>0,0>0), (2.233a)

r=a+lcosp, y=atanp+Ilsing

(a > 0, right branch: — g <p< g ,left branch: g <p< 3771'), (2.233b)
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p= +1 (“+” sign:right branch, “—” sign: left branch,) (2.233¢)
cos
Y y y
AP B
Pl M B e Pl ’
2 e P, )7
S$E LA DM Al 0
0[DXF X B, 0 X
C
—at—re | - a\ ] atee—]
C Y c
a) I<a b) I>a o) l=a
Figure 2.62

1. Right Branch: The asymptote is 2 = a. The vertex A is at (a + [, 0), the inflection points B, C'
have as z-coordinate the greatest root of the equation 2* — 3a%z + 2a(a* — I?) = 0. The area between
the right branch and the asymptote is S = co.

2. Left Branch: The asymptote is # = a. The vertex D is at (a — [,0). The origin is a singular
point, whose type depends on a and [:

Case a) Forl < a it is an isolated point (Fig. 2.62a). The curve has two further inflection points £
and F, whose abscissa is the second greatest root of the equation 23 — 3a2x + 2a(a? — ?) = 0.

Caseb) Forl > athe origin is a double point (Fig. 2.62b). The curve has a maximum and a minimum

+VI% —a?

value at 2 = a — Val?. At the origin the slopes of the tangent lines are tan @ = ————— . Here the
a
Wiz —a?

radius of curvature is ry = 2
a

Case ¢) For [ = a the origin is a cuspidal point (Fig. 2.62c).

2.12.2 General Conchoid

The conchoid of Nicomedes is a special case of the general conchoid. One gets the conchoid of a given
curve by elongating the length of the position vector of every point by a given constant segment =+/.
Considering a curve in a polar coordinate system with an equation p = f(¢), then the equation of its
conchoid is

p=flp) £l (2.234)
So, the conchoid of Nicomedes is the conchoid of the line.

2.12.3 Pascal’s Limagon

The conchoid of a circle is called the Pascal limagon (Fig. 2.63) if in (2.232) the origin is on the
perimeter of the circle, which is a further special case of the general conchoid (see 2.12.2, p. 98). The
equations in the Cartesian and in the polar coordinate systems and in parametric form are the following
(see also (2.246¢), p. 105):
(2® +y?* —ax)’ = P>+ %) (a>0,1>0), (2.235a)
p=acosp+1 (a>0,1>0) (2.235D)
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z=acos’p+lcosp, y=acospsing+lsing (a>0,1>0,0<¢<2n) (2.235¢)

with a as the diameter of the circle. The vertices A, B are at (a &1, 0). The shape of the curve depends
on the quantities a and [, as can be seen in Fig. 2.63 and Fig. 2.64.

a) Extreme Points and Inflection Points: For a > [ the curve has four extreme points C, D, E, F;

—l £+ V1% + 8a?
for a < [ it has two; they are at ((x)s = 474_“) For a < | < 2a there exist two inflection
a
2a% + 12
points G and H at [ cosg = — @t
3al
? 1V4a? — 12
b) Double Tangent: For [ < 2a, at the points I and K at <74— s :ti7> there is a double
a 4a

tangent.
c¢) Singular Points: The origin is a singular point: For a < [ it is an isolated point, for a > it is a

12 2a a<l<2a
a) b)

Figure 2.63

22

double point and the slopes of the tangent lines are tan v = + ¢ i , here the radius of curvature is
) |

ro = 5\/(12 —12.

For a = [ the origin is a cuspidal point; then the curve is called a cardioid (see also 2.13.3, p. 103).

2
a SR
The area of the limagon is S = % + ml?, where in the case a > [ (Fig. 2.63c) the area of the inside

loop is counted twice.

2.12.4 Cardioid
The cardioid (Fig. 2.64) can be defined in two different ways, as:

1. Special case of the Pascal limagon with
0P =0M +a, (2.236)
where a is the diameter of the circle.

2. Special case of the epicycloid with the same diameter a for the fixed and for the moving circle (see
2.13.3, p. 103). The equation is
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(22 +y*)? = 2ax(z® + ) = a*y* (a > 0), (2.237a)
and the parametric form, and the equation in polar coordinates are:
z =acosp(l+cosp), y=asinp(l+cosy)
(a>0,0<p<2m), (2.237b)
p=a(l+cosg) (a>0). (2.237¢)
The origin is a cuspidal point. The vertex A is at (2a, 0); extreme points

1 3 3v3
C'and D are at cosp = 3 with coordinates (Za , :I:%a). The area

= . 3 . o . . .
a=1 is S = 577(12, i.e., six times the area of a circle with diameter a. The

Figure 2.64 length of the curve is L = 8a.

2.12.5 Cassinian Curve

The locus of the points P, for which the product of the distances from two fixed points F; and Fy
with coordinates (c,0) and (—c,0) resp., is equal to a constant a® # 0, is called a Cassinian curve

(Fig. 2.65):

FP- TP =d. (2.238)
The equations in Cartesian and polar coordinates are:

(@ +y?)?—220@" —yP) =a* — ¢, (a>0,¢>0), (2.239a)

p? = cteos2p /et cos? 20 + (a* — ¢1)  (a > 0,¢>0). (2.239b)

a>ci2 c<a<c2’ a<c

a) b) Q)

Figure 2.65
The shape of the curve depends on the quantities @ and ¢ :
Case a > ¢v/2: For a > ¢v/2 the curve is an oval whose shape resembles an ellipse (Fig. 2.65a).
The intersection points A, C' with the z-axis are ( £+/a2 + ¢2, 0), the intersection points B, D with the
y-axis are (0, £v/a? — ¢?).
Case a = ¢v/2: For a = ¢y/2 the curve is of the same type with A, C' (+ ¢v/3, 0) and B, D (0, +c¢),
where the curvature at the points B and D is equal to 0, i.e., there is a narrow contact with the lines
y = *ec.
Case ¢ < a < ¢v/2: For ¢ < a < ¢v/2 the curve is a pressed oval (Fig. 2.65b). The intersection
points with the axes are the same as in the case a > ¢v/2, also the extreme points B, D, while there are

Vict —at a?
further extreme points £, G, K, I at (izi s i2—> and there are four inflection points P, L,
c c
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M, N at i\/l( ) i\/l( +n) | with at =t
L. Lo ith — f
s a B m n), 2 m n W n 302

Case a = c¢: For a = c there is the lemniscate.
Case a < c¢: For a < c there are two ovals (Fig. 2.65c). The intersection points A, C' and P, Q)
with the z-axis are at ( + va?+¢?, 0) and ( + V¢ —a?,0). The extreme points E, G, K, I are

Vet —at 2 i 202
at i#, :i:a— . The radius of curvature is r = Ly , where p satisfies the polar
2¢ 2¢ ct—at+3p*

coordinate representation.

2.12.6 Lemniscate

The lemniscate (Fig. 2.66) is the special case a = ¢ of the Cassinian curve satisfying the condition
=y 2
—_— = FF.
PP -FP = <%) , (2.240)

where the fixed points F, Fy are at (£a,0). The equation
in Cartesian coordinates is

(@*+y*)? —2a*(2* —y*) =0 (a>0) (2.241a)
and in polar coordinates

p=ay/2cos2¢ (a>0). (2.241b)

The origin is a double point and an inflection point at the
same time, where the tangents are y = +x. Figure 2.66

The intersection points A and C with the z-axis are at ( + ay/2,0) , the extreme points of the curve E,

av3 a
5

i§> The polar angle at these points is ¢ = ig . The radius of curvature is

G, K, I are at (i

2 2
r= 3i and the area of every loop is S = a?.
0

2.13 Cycloids
2.13.1 Common (Standard) Cycloid

The cycloid is a curve which is described by a point of the perimeter of a circle while the circle rolls
along a line without sliding (Fig. 2.67). The equation of the usual cycloid written in parametric form
is the following:

z =a(t —sint), y=a(l —cost)
(a>0, —oo<t<oo), (2.242a)

where a is the radius of the circle and ¢
is the angle ¥ PC' B in radian measure.
In Cartesian coordinates

x +1/y(2a — y) = aarcy cos a ; y

(a>0,k=0,+1,%£2,...) (2.242b)
holds. Figure 2.67
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The curve is periodic with period OyO; = 2wa. At Og, Oy, O, ..., Oy = (2k7a, 0) there are cusps, the
vertices are at Agp = ((2k+1)ma,2a (k= 0,%1,£2,...)). The arc length of Oy P is L = Sasin’(t/4),
the length of one arch is Loya,0, = 8a. The area of one arch is S = 3ma®. The radius of curvature
is r = 4asin %t, at the vertices r4 = 4a. The evolute of a cycloid (see 3.6.1.6, p. 254) is a congruent
cycloid, which is denoted in Fig. 2.67 by the broken line.

2.13.2 Prolate and Curtate Cycloids or Trochoids

Prolate and curtate cycloids or trochoids are curves described by a point, which is inside or outside of a
circle, fixed on a half-line starting from the center of the circle, while the circle rolls along a line without
sliding (Fig. 2.68).
The equation of the trochoid in parametric form is
x = a(t — \sint), (2.243a)
y=a(l— Acost), (2.243Db)

where a is the radius of the circle, ¢ is the angle ¥ PC; M, and Aa = C; P.

The case A > 1 gives the prolate cycloid and A < 1 the curtate one.

The period of the curve is OyO; = 2ma, the maximum points are at Ay, As, ..., A1 = ((2k+1)7a, (1+
A)a), the minimum points are at By, By, Ba, ..., By = (2k7a, (1 — X)a) (k = 0,£1,42,...). The

prolate cycloid has double points at Dy, Dy, Do, ..., Dy = [Zkﬂa N (1 — /A2 — 1‘,02) ] , where tg is the

smallest positive root of the equation t =
Asint.

The curtate cycloid has inflection points
at By, By, ..., B =

[a (arck cos A — A1 — )\2) ya(l— /\2)].
The calculation of the length of one cy-
cle can be done by the integral L =

2
u/ VI+ N —2\costdt. The shaded
0

area in Fig. 2.68 is S = ma?(2 + A\?).
The radius of , curvature
2 93\ cost)?
Mﬂ which has
A(cost — )
(1+N)?

isr=a

at the max-

(1- A2
A

the value ry = —a

ima and the value rz = a at the

Figure 2.68 minima.

2.13.3 Epicycloid

A curve is called an epicycloid, if it is described by a point of the perimeter of a circle while this circle
rolls along the outside of another circle without sliding (Fig. 2.69). The equation of the epicycloid in
parametric form is

+a

A
z = (A+a)cosp — acos ¢, y=(A+a)sing —asin ra

a ¢ (—o0 < <o0), (2.244)

where A is the radius of the fixed circle, a is the radius of the rolling one, and ¢ is the angle < C0z. The

A
shape of the curve depends on the quotient m = —.
a
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For m = 1 one gets the cardioid.

Figure 2.69

Figure 2.70

Case m integer: For an integer m the curve consists of m identically shaped branches surrounding the

2hm

m

fixed curve (Fig. 2.69a). The cusps Ay, Ay, ..., A, are at <p =A o= (k=0,1,...,m— 1)) ,

2m 1
the vertices By, Bs,..., B,, are at (p =A+2a ¢p=— (k + 5) >
m
Case m arational fraction: If m is a non-integer rational number, the identically shaped branches
follow each other around the fixed circle, overlapping the previous ones, until the moving point P re-
turns back to the starting-point after a finite number of circuits (Fig. 2.69b).

Case m an irrational: For an irrational m the number of round trips is infinite; the point P never

returns to the starting-point.

8(A+ a,)‘

The length of one branch is L, p,4, = For an integer m the total length of the closed

m

curve is Ligtal = 8(A + a). The area of the sector A; BiA»A; (without the sector of the fixed circle) is
3A+2 4a(A 4a(A

S:7ra2<3 X a) a(A+a) a +a)‘

in A2 ot the verti
S ——, al e vertices rp =
2a + A 2a B 2a+ A

. The radius of curvature isr =

2.13.4 Hypocycloid and Astroid

A curve is called a hypocycloid if it is described by a point of the perimeter of a circle, while this circle
rolls along the inside of another circle without sliding (Fig. 2.70). The equation of the hypocycloid,




104 2. Functions

the coordinates of the vertices, the cusps, the formulas for the arc-length, the area, and the radius of
curvature are similar to the corresponding formulas for the epicycloid, only “+a” is to be replaced by
“—a”. The number of cusps for integer, rational or irrational m is the same as for the epicycloid (now
m > 1 holds).
Case m = 2: For m = 2 the curve is actually the diameter of the fixed circle.
Case m = 3: For m = 3 the hypocycloid has three branches (Fig. 2.70a) with the equation

x = a(2cos g + cos 2p), y = a(2sin ¢ — sin 2¢) (2.245a)
and Lyotal = 16a, Spotar = 27a®.
Case m = 4: For m = 4 (Fig. 2.70b) the hypocycloid has four branches, and it is called an astroid
(or asteroid). Its equation in Cartesian coordinates and in parametric form is

2 PP = AP (2.245D) r=Acos’p, y=Asin®p (0<p<m) (2.245¢)

3
and Ligtal = 24a = 64, Sioral = gﬂ'Az-

2>1, a>0 b) a<l, a>0

Figure 2.71

Figure 2.72

2.13.5 Prolate and Curtate Epicycloid and Hypocycloid

The prolate and curtate epicycloid and the prolate and curtate hypocycloid, which are also called the
epitrochoid and hypotrochoid, are curves (Fig. 2.71 and Fig. 2.72) described by a point, which is inside
or outside of a circle, fixed on a half-line starting at the center of the circle, while the circle rolls around
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the outside (epitrochoid) or the inside (hypotrochoid) of another circle, without sliding.
The equation of the epitrochoid in parametric form is

A
ag&) , y = (A4 a)sinp — \asin <%g&> , (2.246a)

where A is the radius of the fixed circle and a is the radius of the rolling one. For the hypocycloid “+a”
is to be replaced by “—a”. For Aa = C'P one of the inequalities A > 1 or A < 1 is valid, depending on
whether the prolate or the curtate curve is considered.

A
IZ(A‘F(Z)COS(,O*/\(ZCOS( +

For A = 2a, and for arbitrary A # 1 the hypocycloid with equation

z=a(l+Ncosp, y=a(l—Nsing (0<¢p<2m) (2.246D)
describes an ellipse with semi-axes a(1 + A) and a(1 — ). For A = a it results in the Pascal limacon
(see also 2.12.3, p. 98):

z=a(2cosp — Acos2p), y=a(2sinp — Asin2p). (2.246¢)

Remark: For the Pascal limagon on 2.12.3, p. 98 the quantity denoted by a there is denoted by 2A\a
here, and the [ there is the diameter 2a here. Furthermore the coordinate system is different.

2.14 Spirals
2.14.1 Archimedean Spiral

An Archimedean spiralis a curve (Fig. 2.73) described by a point which is moving with constant speed
v on a ray, while this ray rotates around the origin at a constant angular velocity w. The equation of
the Archimedean spiral in polar coordinates is

p=alyl, a="2 (a>0,—00 < p<o0). (2.247)
w

Figure 2.73 Figure 2.74

The curve has two branches (¢ < 0, ¢ > 0) in a symmetric position with respect to the y-axis. Every
ray 0K intersects the curve at the points 0, Ay, As,... ,A,,...; their distance is A;A4;1; = 27a. The

- 2L
arclength OP is L = % (LpW,DQ + 1+ Arsinh <,9>, where for large ¢ the expression aToQ tends to 1. The
a2 . ) (9% +1)3/?
area of the sector P,0P, is S = E(pzd — Lpld). The radius of curvature is r = aﬁ and at the
1z

.. a
origm rg = 5 .

2.14.2 Hyperbolic Spiral

The equation of the hyperbolic spiral in polar coordinates is

p:ﬁ (a>0, —00<p<0,0<p<0). (2.248)
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The curve of the hyperbolic spiral (Fig. 2.74) has two branches (¢ < 0, > 0) in a symmetric
position with respect to the y-axis. The line y = a is the asymptote for both branches, and the origin is

2/ 1 2
an asymptotic point. The area of the sector P,0P, is S = @ (— - —), and lim S = 2“— is valid.

2 \p1 o P20 ©1
. VIte\?

The radius of curvature is r = @ <¢> .
© ©

%)

2.14.3 Logarithmic Spiral

The logarithmic spiralis a curve (Fig. 2.75) which intersects all the rays starting at the origin 0 at the
same angle a. The equation of the logarithmic spiral in polar coordinates is

p=ac™® (a>0, —00 <y <), (2.249)
where & = cota. The origin is the asymptotic point of the curve. The arclength PP is L =
V1+k? ~ VIt k2
%(/}2 — p1), the limit of the arclength 0P calculated from the origin is Ly = TJF/). The

radius of curvature is r = /1 + k%p = Lok.

Special case of a circle: For a = g holds k& = 0, and the curve is a circle.

2.14.4 Evolvent of the Circle

The evolvent of the circle is a curve (Fig. 2.76) which is described by the endpoint of a string while

rolling it off a circle, and always keeping it tight, so that AB= BP. The equation of the evolvent of the
circle is in parametric form

T =acosp+apsing, y=asing — apcosy, (2.250)

where a is the radius of the circle, and ¢ = ¢ BOz. The curve has two branches in symmetric position
with respect to the z-axis. It has a cusp at A(a,0), and the intersection points with the z-axis are at

- 1 .
P , where ¢ are the roots of the equation tan ¢ = ¢. The arclength of AP is L = §ag&2. The
€OS g

radius of curvature is r = ap = V2aL; the centre of curvature B is on the circle, i.e., the circle is the
evolute of the curve.

Figure 2.75 Figure 2.76 Figure 2.77
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2.14.5 Clothoid

The clothoidis a curve (Fig. 2.77) such that at every point the radius of curvature is inversely propor-
tional to the arclength between the origin and the considered point:

r=% (a>0). (2.251a)
S
The equation of the clothoid in parametric form is
s —~

e S0P (2.251b)

The integrals cannot be expressed in terms of elementary functions; but for any given value of the pa-
rameter t = fg, ty, ... it is possible to calculate them by numerical integration (see 19.3, p. 963), so the
clothoid can be drawn pointwise. About calculations with a computer see the literature.

t t
12 12
T = (Lﬁ/(i()s % dt, y= aﬁ/sin% dt  with =
0 0

The curve is centrosymmetric with respect to the origin, which is also the inflection point. At the inflec-
tion point the z-axis is the tangent line. At A and B the curve has asymptotic points with coordinates

<+a\/77r7+a W) and (77a\f77a

™
2 2 2
where the transition between a line and a circular arc is made by a clothoid segment.

>. The clothoid is applied, for instance in road construction,

2.15 Various Other Curves
2.15.1 Catenary Curve

The catenary curve is a curve wich has the shape of a homogeneous, flexible but inextensible heavy
chain hung at both ends (Fig. 2.78) represented by a continuous line. The equation of the catenary
curve is

T ev/a 4 gl
y =acosh— = e (a>0). (2.252)
a
The parameter a determines the vertex A at (0, a). The curve is symmetric to the y-axis, and is always

2
x
higher than the parabola y = a + % which is represented by the broken line in Fig. 2.78. The
a
tla _ ,—z/a
e e

5 . The area of the region 0APM has the value S =

arclength of AP is L = asinh T _ .
a

z y? x L?
a L = a®sinh = . The radius of curvature is r = == = acosh> = = a + — .
a a a a

Figure 2.78 Figure 2.79
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The catenary curve is the evolute of the tractrix (see 3.6.1.6, p. 254), so the tractrix is the evolvent (see
3.6.1.6, p. 255) of the catenary curve with vertex A at (0, a).

2.15.2 Tractrix

The tractriz (the thick line in Fig. 2.79) is a curve such that the length of the segment PM of the
tangent line between the point of contact P and the intersection point with a given straight line, here
the z-axis, is a constant a. Fasting one end of an inextensible string of length a to a material point P,
and dragging the other end along a straight line, here the z-axis, then P draws a tractrix. The equation
of the tractrix is

xfaArcoshf +/a? — y? A M L oy Fya?—y?* (a>0,0<y<a). (2.253)

The z-axis is the asymptote. The point A at (07 a) is a cusp. The curve is symmetric with respect to
- a

the y-axis. The arclength of AP is L = aln — . For increasing arclength L the difference L — 2 tends
Y

to the value a(1 — In2) ~ 0.307a, where x is the abscissa of the point P. The radius of curvature is

T [ _
r = acot = . The radius of curvature PC and the segment PE = b are inversely proportional: 7b = a?.
Y

The ovohitc (see 3.6.1.6, p. 254) of the tractrix, i.e., the geometric locus of the centers of circles of
curvature C| is the catenary curve (2.252), represented by the dotted line in Fig. 2.79.

2.16 Determination of Empirical Curves

2.16.1 Procedure
2.16.1.1 Curve-Shape Comparison

If there are only empirical data for a function y = f(z), it is possible to get an approximate formula in
two steps. First choose a formula for an approximation which contains free parameters. Then calculate
the values of the parameters. If there is no theoretical description for the type of formula, then first
choose the approximate formula which is the simplest among the possible functions, comparing their
curves with the curve of empirical data. Estimation of similarity by eye can be deceptive. Therefore,
after the choice of an approximate formula, and before the determination of the parameters, it is to
check whether it is appropriate.

2.16.1.2 Rectification

Supposing there is a definite relation between x and y and in the chosen approximate formula two
functions X = ¢(z,y) and Y = ¢(z,y) are introduced such that a linear relation of the form

Y =AX+1B (2.254)
holds, where A and B are constant. Calculating the corresponding X and Y values for the given x and
y values, and considering their graphical representation, it is easy to check if they are approximately
on a straight line, or not. Then it can be decided whether the chosen formula is appropriate.

x
B A: Ifthe approximate formulaisy =
ar+b

1 1
Another possible substitutionis X = —, Y = —. Then Y = a + bX follows.
x Yy

x
, then substituting X =z, Y = —, onegets Y = aX+b.
Y

B B: Using semi-logarithmic paper, 2.17.2.1, p. 116.
B C: Using double logarithmic paper, 2.17.2.2, p. 117.

In order to decide whether empirical data satisfy a linear relation Y = AX + B or not, one can use
linear regression or correlation (see 16.3.4, p. 839). The reduction of a functional relationship to a linear
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relation is called rectification. Examples of rectification of some formulas are given in 2.16.2, p. 109,
and for an example discussed in detail, see in 2.16, p. 114.

2.16.1.3 Determination of Parameters

The most important and most accurate method of determining the parameters is the least squares
method (see 16.3.4.2, p. 841). In several cases, however, even simpler methods can be used with success,
for instance the mean value method.

1. Mean Value Method

The mean value method uses the linear dependence of the “rectified” variables X and Y, ie., Y =
AX + B as follows: The conditional equations Y; = AX;+ B for the given values Y;, X; are to be divided
into two groups, which have the same size, or approximately the same size. By adding the equations
in the groups one gets two equations, from which A and B can be determined. Then replacing X and
Y by the original variables x and y again, one gets the connection between = and y, which is what one
was looking for.

If not all the parameters are to be determined, one can apply the mean value method again with a
rectification by other amounts X and Y (see, e.g., 2.16.2.11, p. 113).

Rectification and the mean value method are used above all when certain parameters occur in non-linear
relations in an approximate formula, as for instance in (2.267b), (2.267¢).

2. Least Squares Method

When certain parameters occur in non-linear relations in the approximation formula, the least squares
methodusually leads to a non-linear fitting problem. Their solution needs a lot of numerical calculations
and also a good initial approximation. These approximations can be determined by the rectification
and mean value method.

2.16.2 Useful Empirical Formulas

In this paragraph some of the simplest cases of empirical functional dependence are discussed, and
the corresponding graphs are presented. Each figure shows several curves corresponding to different
parameter values involved in the formula. The influence of the parameters upon the forms of the curves
is discussed in the following sections.

For the choice of the appropriate function, usually only that part of the corresponding graph is to be
considered, which is used for the reproduction of the empirical data. Therefore, e.g., one should not
think that the formula y = axz? + bx + c is suitable only in the case when the curve of the empirical
data have a maximum or minimum.

Y y y
0 X 0 X 0 X
Figure 2.80 Figure 2.81 Figure 2.82
2.16.2.1 Power Functions

1. Typey = ax":
Typical shapes of curve for different values of the exponent b

y = az® (2.255a)
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are shown in Fig. 2.80. The curves for different values of the exponent are also represented in Figs. 2.15,
2.21, 2.24, 2.25 and Fig. 2.26. The functions are discussed on pages 66, 70 and 71 for the formula
(2.44) as a parabola of order n, formula (2.45) as a reciprocal proportionality and formula (2.50) as a
reciprocal power function. The rectification is made by taking the logarithm

X =logz, Y =logy: Y =loga-+bX. (2.255b)
2. Typey =azb+c:
The formula

y=ar’+c (2.256a)
produces the same curve as in (2.255a), but it is shifted by ¢ in the direction of y (Fig. 2.82). If b is
given, the following rectification can be used:

X=2ab Y=y: Y=0aX+c (2.256b)
If b is not known first ¢ is to be determined, then the rectification can be done in accordance with
X =logz, Y =logly—c): Y =loga+bx. (2.256¢)
In order to determine a first approach of ¢, one can choose two arbitrary abscissae 1, x5 and a third
one, r3 = \/x129 as well as the corresponding ordinates y1, y2, y3, so that now
e Y28 (2.256d)
Y1+ Y2 — 2y3

holds. After having determined a and b, one can get a corrected ¢, namely as the average of the amounts
b
y — ax’.

y y

Figure 2.83 Figure 2.84

2.16.2.2 Exponential Functions
1. Typey = ae’™:
The characteristic shapes of the curves of the function

y = ac™ (2.257a)
are shown in Fig. 2.81. The discussion of the ezponential function (2.54) and its graph (Fig. 2.26) is
presented in 2.6.1, p. 72. For the rectification one takes

X=z Y=logy: Y =loga+bloge-X. (2.257Db)
2. Typey = ae®® +c:
The formula

y=ac"” +c (2.258a)
produce the same curve as (2.257a), but it is shifted by ¢ in the direction of y (Fig. 2.83). Begin with
the determination of a first approach ¢; for ¢ then the rectification by logarithm:

Y =logly—c1), X=ux: Y =loga+bloge-X. (2.258Db)
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. . . ) +
In order to determine ¢ as for (2.256d) two arbitrary abscissae x1, 24 are to be chosen and x3 = L 5 2
Y1yz — ys*
as well as the corresponding ordinates vy, ¥, y3 to get ¢ = ﬁ After having determined a
Y1t Y2~ 2Ys

and b one can get a corrected ¢, namely as the average of the amounts y — ax®.

2.16.2.3 Quadratic Polynomial
Possible shapes of curves of the quadratic polynomial
y=az’+br+c (2.259a)

are shown in Fig. 2.84. For the discussion of quadratic polynomials (2.41) and their curves Fig. 2.12
(see 2.3.2, p. 64). Usually the coefficients a, b and ¢ are determined by the least squares method; but
in this case also rectification is possible. Choosing an arbitrary point of data (1, y;) one rectifies

X =z, y=4"%, Y = (b+ax) + aX. (2.259Db)
Tr— I
If the given x values form an arithmetical sequence with a difference h, one rectifies
Y=Ay, X=ua: Y =(bh+ah? +2ahX. (2.259¢)
In both cases after the determination of @ and b from the equation

dy= (1,2:1;2 +b> x+nc (2.259d)
¢ is to be calculated; n is the number of the given x values, for which the sum is calculated.
2.16.2.4 Rational Linear Functions

The rational linear function

ar +b
= 2.260a
Y cr+d ( a)
is discussed in 2.4 with (2.46) and graphical representation Fig. 2.17 (see p. 66).
Choosing an arbitrary data point (21, y;) the rectification is done by the formulas

_ Tr — I
y—u’
After determining the values A and B the relation can be written in the form (2.260c). Sometimes
instead of (2.260a) the form (2.260d)is sufficient:

X=2: Y=A+BX. (2.260b)

T — T T 1
— T (2.260¢ - oy = .
yl+A+Bz' (2.260c) Y or 1 (2.260d)

1 - —_—
4 cr+d Y cr+d

1 1
Then in the first case the rectification can bemadeby X = —andY = —or X =zrandY = z and by
z Y Y

1
X =z and Y = — in the second case.
Y

2.16.2.5 Square Root of a Quadratic Polynomial
Several possible shapes of curves of the equation

Yy =az’ +bx+c (2.261)
are shown in Fig. 2.85. The discussion of the function (2.52) and its graph Fig. 2.23 (see p. 71).

If introducing the new variable Y = y?, the problem can be reduced to the case of the quadratic poly-
nomial in 2.16.2.3, p. 111.
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Figure 2.85 Figure 2.86

2.16.2.6 General Error Curve
The typical shapes of curves of the functions

Y= ae e o logy = loga + bxloge + cz’loge (2.262)

are shown in Fig. 2.86. The discussion of the function with equation (2.61) and its graph Fig. 2.31
(see p. 75).

Introducing the new variable Y = log y, the problem is reduced to the case of the quadratic polynomial
in 2.16.2.3, p. 111.

2.16.2.7 Curve of Order Three, Type II
The possible shapes of graphs of the function

1
ar? +br +c¢

are represented in Fig. 2.87. The discussion of the function with equation (2.48) and with graphs
Fig. 2.19 (see p. 67).

y= (2.263)

1
By introducing the new variable Y = — the problem is reduced to the case of the quadratic polynomial
Y
in 2.16.2.3, p. 111.
y y

Figure 2.87 Figure 2.88

2.16.2.8 Curve of Order Three, Type II1

Typical shapes of curves of functions of the type
x

y= ar? +bxr + ¢

(2.264)
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are represented in Fig. 2.88. The discussion of the function with equation (2.49) and with graphs
Fig. 2.20 (sce p. 68).

Introducing the new variable Y = z the problem can be reduced to the case of the quadratic polynomial
Yy
in 2.16.2.3, p. 111.
2.16.2.9 Curve of Order Three, Typel
Typical shapes of curves of functions of the type
b c
U=a—+— 4+ — 2.265
y=a e ( )

are represented in Fig. 2.89. The discussion of the function with equation (2.47) and with graphs
Fig. 2.18 (see p. 67).

1

Introducing the new variable X = — the problem can be reduced to the case of the quadratic polynomial
T

in 2.16.2.3, p. 111.

y y

Figure 2.89 Figure 2.90

2.16.2.10 Product of Power and Exponential Functions
Typical shapes of curves of functions of the type

y = azbeuu: (22663)
are represented in Fig. 2.90. The discussion of the function with equation (2.62) and with graphs
Fig. 2.31 (see p. 75).
If the empirical values of z form an arithmetical sequence with difference h, the rectification follows in
accordance with

Y =Alogy, X =Alogz: Y =hcloge+bX. (2.266b)
Here Alogy and A log x denote the difference of two subsequent values of log y and log x respectively.
If the x values form a geometric sequence with quotient g, then the rectification follows by

X =2 Y=Alogy: Y =blogqg+c(qg—1)Xloge. (2.266¢)
After b and ¢ are determined the logarithm of the given equation is taken, and the value of loga is
calculated like in (2.259d).
If the given x values do not form a geometric sequence, but one can choose pairs of two values of z such
that their quotient ¢ is the same constant, then the rectification is the same as in the case of a geometric
sequence of = values with the substitution Y = A; logy. Here Ay log y denotes the difference of the two
values of log y whose corresponding x values result in the constant quotient ¢ (see 2.16.2.12, p. 114).

2.16.2.11 Exponential Sum
Typical shapes of curves of the ezponential sum
y = ae’ + ce™ (2.267a)
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are represented in Fig. 2.91. The discussion of the function with equation (2.60) and with graphs
Fig. 2.29 (sce p. 74).

If the values of x form an arithmetical sequence with difference h, and y, 11, y» are any three consecutive
values of the given function, then the rectification is made by

Y= %, x=% y= (e 4+ e X — bt . e, (2.267Db)
Y Y
After b and d are determined, follows again a rectification by
Y=y X=el9: V=0X+ec (2.267¢)

2.16.2.12 Numerical Example

Find an empirical formula to describe the relation between x and y for given values in Table 2.9.
Choice of the Approximation Function: Comparing the graph prepared from the given data (Fig.
2.92) with the curves discussed before, one can see that formulas (2.264) or (2.266a) with curves in
Fig. 2.88 and Fig. 2.90 can fit the considered case.

Determination of Parameters: Using the formula (2.264) to rectify are A% and 2. The calculation
{

shows, however, the relationship between z and A= is far from linear. To verify whether the formula

(2.266a) is suitable one plots the graph of the relation between Alogz and Alogy for h = 0,1 in
Fig. 2.93, and also between A;logy and z for ¢ = 2 in Fig. 2.94. In both cases the points fit a
straight line well enough, so the formula y = az’e® can be used.

Table 2.9 For the approximate determination of an empirically given function relation

z Az lgz lgy Algz Algy Avlgy | Yerr
y y

0.1 | 1.78 | 0.056 | 0.007 | —1.000 | 0.250 | 0.301 0.252 0.252 1.78
0.2 [ 3.18| 0.063| 0.031 | —0.699 | 0.502 | 0.176 | +0.002 | —0.097 3.15
0.3 [3.19] 0.094 | 0.063 | —0.523 | 0.504 | 0.125 | —0.099 | —0,447 3.16
0.4 | 254 | 0157 | 0125 | —0.398 | 0.405 | 0.097 | —0.157 | —0.803 2.52
05 | 1.77 | 0.282 | 0.244 | —0.301 | 0.248 | 0.079 | —0.191 | —1.134 1.76
0.6 | 1.14 | 0.526 | 0.488 | —0.222 | 0.057 | 0.067 | —0.218 | —1.455 1.14

0.7 10.69 | 1.014 | 0.986 | —0.155 | —0.161 0.058 —0.237 — 0.70
0.8 | 0.40 | 2.000 | 1913 | —0.097 | —0.398 | 0.051 —0.240 — 0.41
09 023 3913 | 3.78 | —0.046 | —0.638 | 0.046 —0.248 - 0.23
1.0 1013 | 7.69 8.02 0.000 | —0.886 | 0.041 —0.269 — 0.13
1.1 1 0.07 | 15.71 | 14.29 0.041 | —1.155 | 0.038 —0.243 — 0.07
1.2 | 0.04 | 30.0 - 0.079 | —1.398 - - - 0.04

In order to determine the constants a, b and ¢, a linear relation between x and A; log ¥ is to be searched
by the method of mean values. Adding the conditional equations A; logy = blog 2 + cz log e in groups
of three equations each, yields

—0.292 = 0.903b 4 0.2606c, —3.392 = 0.903b + 0.6514c,

and from here b = 1.966 and ¢ = —7.932 holds. To determine a, the equations of the form logy =
loga + blogx + cloge - x are to be added, which yields —2.670 = 12loga — 6.529 — 26.87, so from
loga = 2.561, a = 364 follows. The values of y calculated from the formula y = 364219970322 ar¢
given in the last column of Table 2.9; they are denoted by v, as an approximation of y. The error
sum of squares is 0.0024.

Using the parameters determined by rectification as initial values for the iterative solution of the non-
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linear least squares problem (see 19.6.2.4, p. 987)

2:[11z azbe)? = min!

yields a = 396.601 986, b = 1.998 098, ¢ = —8.000 0916 with the small error sum of squares 0.000 0916.

2.17 Scales and Graph Paper
2.17.1 Scales

The base of a scale is a function y = f(x). The task is to construct a scale from this function so that
on a curve, e.g. on a line, the function values of y are to be inserted as the values of the argument z. A
scale can be considered as a one-dimensional representation of a table of values.
The scale equation for the function y = f(z) is:

y=Ulf(@) - (o)) (2.268)
The starting point of the scale is fixed at xo. The scale factor | takes into consideration that for a con-
crete scale there it is only one given scale length.

B A Logarithmic Scale: For [ = 10 cm and z = 1 the scale equation is
y=10{lgz —1g1] = 10lgx (in cm). For the table of values

e 1] 2 | 3] 45 |6 [ 7] 8] 9 |10
y=1Igz | 0030 0.48]0.60 | 0.70 | 0.78 | 0.85 | 0.90 | 0.9

one gets the scale shown in Fig. 2.95.
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B B Slide Rule: The most important application of the logarithmic scale, from a historical view-
point, was the slide rule. Here, for instance, multiplication and division were performed with the help
of two identically calibrated logarithmic scales, which can be shifted along each other.
From Fig. 2.96 one can read: y3 = y; + o, i.e. lgxg lgxy +1gxy = 1gx 29, hence k3 = 1 - 29; Yy =

T3
Y3 — Yo, 1.6, lgwy = lgwg — lgas = lg— SO0 x] =

T2 )

B C Volume Scale on the lateral 5urface of a conical shaped funnel: A scale is to be marked on the
funnel, so that the volume inside could be read from it. The data of the funnel are: Height H = 15 cm,
upper diameter D =10 cm.

1
Taking in mind Fig. 2.97a gives the scale equation as follows: Volume V' = grzﬂ*h, apothem s =

D/2 1
VRZ 72 tana = ’f = 7/ =3 From these h = 3r, s =10,V = (\/%)3 follows, so the scale

VW,

equation is s = = VV & 2.16vV. The following table of values contains the calibration marks on

the funnel as in the figure:

V0] 50 | 100 | 150 | 200 | 250 | 300 | 350
s | 0]796|10.03 | 11.48 | 12.63 | 13.61 | 14.46 | 15.22 |
300
1 Xq X3 10
I I 1
[P
i X, 10
[ | ]
2 d
Y3 b)
Figure 2.96 Figure 2.97

2.17.2 Graph Paper

The most useful graph paper is prepared so that the axes of a right-angle coordinate system are cali-
brated by the scale equations

o= Llg(u) — gluo),  y = bIf(v) - f(w0)] (2.269)
Here [, and [y are the scale factors; uy and vy are the initial points of the scale.
2.17.2.1 Semilogarithmic Paper
If the x-axis has an equidistant subdivision, and the y-axis has a logarithmic one, then one talks about
semilogarithmic paper or about a semilogarithmic coordinate system.
Scale Equations:

x =li{u—up] (linearscale), y=Ilgv—Igv] (logarithmic scale). (2.270)
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The Fig. 2.98 shows an example of semilogarithmic paper.

Representation of Exponential Functions: On semilogarithmic paper the graph of the exponential
function

y=ae®™ (a,B const) (2.271a)
is a straight line (see rectification in 2.16.2.2, p. 110). This property can be used in the following way:
If the measuring points, introduced on semilogarithmic paper, lie approximately on a line, it can be
supposed a relation between the variables as in (2.271a). With this line, estimated by eye, one can
determine the approximate values of a and 3: Considering two points P (z1,y1) and Py(xa,ys) from
this line one gets

- Iny, —Iny

/ s and, e.g., a =y (2.271b)
y A .
1 c~103

100 )

m

30

20 3 -
10 4

5 5

3 : P, P,

3 10

2 20 *

"0 5 10 15 20 25 % 0 10 20 30 40 50 3

Figure 2.98 Figure 2.99

2.17.2.2 Double Logarithmic Paper

If both axes of aright-angle x, y coordinate system are calibrated with respect to the logarithm function,
then one talks about double logarithmic paperor log-log paperor a double logarithmic coordinate system.
Scale Equations: The scale equations are

x = li[lgu — 1guol, y = blgv — lg v, (2.272)
where [, l5 are the scale factors and wug, vg are the initial points.
Representation of Power Functions (see 2.5.3, p. 71): Log-log paper has a similar arrangement
to semilogarithmic paper, but the z-axis also has a logarithmic subdivision. In this coordinate system
the graph of the power function

y=az’ (a, const) (2.273)
is a straight line (see rectification of a power function in 2.16.2.1, p. 109). This property can be used in
the same way as in the case of semilogarithmic paper.
2.17.2.3 Graph Paper with a Reciprocal Scale
The subdivisions of the scales on the coordinate axes follow from (2.45) for the function of inverse
proportionality (see 2.4.1, p. 66).

a a

Scale Equations: = =1lj[u —ug|, y=1 { } (a const), (2.274)

v v
where [; and [, are the scale factors, and wg, vy are the starting points.

B Concentration in a Chemical Reaction: For a chemical reaction, the concentration denoted by
¢ = ¢(t), has been measured as a function of the time ¢, giving the following results for ¢:
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t/mn | 5 | 10 | 20 | 40
¢-10°/mol/T | 15.53 | 11.26 | 7.27 | 4.25

It can be supposed that the reaction is of second order, i.e., the relation should be
c(t)y = %fokf (co, k const). (2.275)

1 1
Taking the reciprocal value of both sides, one gets — = — + kt, i.e., (2.275) can be represented as a
c o
line, if the corresponding graph paper has a reciprocal subdivision on the y-axis and a linear one on the
1
z-axis. The scale equation for the y-axis is, e.g., y = 10 - — cm.
v

It is obvious from the corresponding Fig. 2.99 that the measuring points lie approximately on a line,
i.e., the supposed relation (2.275) is acceptable.

From these points the approximate values of both parameters k (reaction rate) and ¢, (initial concen-
tration) can be determined. Choosing two points, e.g., P1(10,10) and P»(30,5), one gets:

e —1/c
T 1

2.17.2.4 Remark

There are several other possibilities for constructing and using graph papers. Although today in most
cases there are high-capacity computers to analyze empirical data and measurement results, in every-
day laboratory practice, when getting only a few data, graph papers are used quite often to show the
functional relations and approximate parameter values needed as initial data for applied numerical
methods (see the non-linear least squares method in 19.6.2.4, p. 987).

k ~ 0.005, ¢o~20-1075.

2.18 Functions of Several Variables
2.18.1 Definition and Representation

2.18.1.1 Representation of Functions of Several Variables
A variable value  is called a function of n independent variables x1, xa, . . . ,x,, if for given values of the
independent variables, u is a uniquely defined value. Depending on how many variables there are, two,
three, or n, one writes

u=f(z,y), u=f(x,y,2), u=f(r1,29,...,2,). (2.276)
Substituting given numbers for the n independent variables yields a value system of the variables, which
can be considered as a point of the n-dimensional space. The single independent variables are called
arguments; sometimes the entire n tuple together is called the argument of the function.
Examples of Values of Functions:
B A: u= f(z,y) = zy” has for the value system = 2, y = 3 the value f(2,3) =232 = 18.
B B: u= f(z,y,2,t) = z In(y — 2t) takes for the value system = = 3, y = 4, z = 3, t = 1 the value
£(3,4,3,1) =3m(4—3-1) = 0.

2.18.1.2 Geometric Representation of Functions of Several Variables
1. Representation of the Value System of the Variables

The value system of an argument of two variables = and y can be represented as a point of the plane
given by Cartesian coordinates x and y. A value system of three variables x, y, z corresponds to a point
given by the coordinates x, y, z in a three-dimensional Cartesian coordinate system. Systems of four
or more coordinates cannot be represented obviously in our three-dimensional imagination.

Similarly to the three-dimensional case the system of n variables x1, zs,. ..z, is to be considered as a
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point of the n-dimensional space given by Cartesian coordinates 1, Zs,. . .,,. In the above example
B, the four variables define a point in four-dimensional space, with coordinates x = 3,y =4, z = 3
and ¢t = 1.

u 2. Representation of the Function v = f(x,y) of Two

Variables

a) A function of two independent variables can be represented by a sur-

face in three-dimensional space, similarly to the graph representation

of functions of one variable (Fig. 2.100, see also 3.6.3, p. 261). Consid-

ering the values of the independent variables of the domain as the first

W two coordinates, and the value of the function u = f(z,y) as the third
coordinate of a point in a Cartesian coordinate system, these points

Figure 2.100 form a surface in three-dimensional space.

Examples of Surfaces of Functions:
WA:u=1- g — % represents a plane (Fig. 2.101a, see also 3.5.3.10, p. 218).

2 2
HB:u= % + UZ represents an elliptic paraboloid (Fig. 2.101b, see also 3.5.3.13, 5., p. 226).

B C: u= /16 — 22 — y? represents a hemisphere with r = 4 (Fig. 2.101c).

b) The shape of the surface of the function u = f(z,y) can be pictured with the help of intersection
curves, which can be get by intersecting the surface parallel to the coordinate planes. The intersection
curves u = const are called level curves.

B In Fig. 2.101b,c the level curves are ellipses or concentric circles (not denoted in the figure).
Remark: A function with an argument of three or more variables cannot be represented in three-
dimensional space. Similarly to surfaces in three-dimensional space also the notion of a hyper surface
in n-dimensional space is in use.

Figure 2.101

2.18.2 Different Domains in the Plane
2.18.2.1 Domain of a Function

The domain of definition of a function (or domain of a function) is the set of the system of values or points
which can be taken by the variables of the argument of the function. The domains defined in this way
can be very different. Mostly they are bounded or unbounded connected sets of points. Depending on
whether the boundary belongs to the domain or not, the domain is closed or open. An open, connected
set of points is called a domain. If the boundary belongs to the domain, it is called a closed domain, if
it does not, sometimes it is called an open domain.

2.18.2.2 Two-Dimensional Domains

Fig. 2.102 shows the simplest cases of connected sets of points of two variables and their notation. Do-
mains are represented here as the shaded part; closed domains, i.e., domains whose boundary belongs to
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them, are bounded by thick curves in the figures; open domains are bounded by dotted curves. Includ-
ing the entire plane there are only simply connected domains or simply connected regions in Fig. 2.102.

2.18.2.3 Three or Multidimensional Domains

These are handled similarly to the two-dimensional case. It concerns also the distinction between sim-
ply and multiply connected domains. Functions of more than three variables will be geometrically
represented in the corresponding n-dimensional space.

unbounded y
closed
domain

unbounded
open domain

bounded y
closed
domain

bounded
open domain

Figure 2.102

2.18.2.4 Methods to Determine a Function

1. Definition by Table of Values Functions of several variables can be defined by a table of values.
An example of functions of two independent variables are the tables of values of elliptic integrals (see
21.9, p. 1103). The values of the independent variables are denoted on the top and on the left-hand
side of the table. The required value of the function is in the intersection of the corresponding row and
column. It is called a table with double entry.

2. Definition by Formulas Functions of several variables can be defined by one or more formulas.

v+y forz>0,y>0,

r—y forx>0, y<o0,
—x 4y forz <0, y>0,
—r—y forx <0, y<0.
3. Domain of a Function Given by One Formula In the analysis mostly such functions are
considered which are defined by formulas. Here the union of all value systems for which the analytical
expression has a meaning is considered to be the domain, i.e., for which the expression has a unique,
finite, real value.
Examples for Domains:

W A: u=ay> C
B B: u=2zlIn(y— zt). WCu=

B A: u = 2%+ y* The domain is the entire plane.

1

HB:u= ﬁ The domain consists of all value systems x,y, satistying the inequality
/16 — 22—y

22 + y? < 16. Geometrically this domain is the interior of the circle in Fig. 2.103a, an open domain.

B C: u = arcsin(x + y): The domain consists of all value systems z, y, satisfying the inequality —1 <
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Figure 2.103

x4y < +1, i.e., the domain of the function is a closed domain, the stripe between the two parallel lines
in Fig. 2.103b.

B D: v = arcsin(2x — 1) + /1 — 3% + \/y + Inz: The domain consists of the value system x,, z,
satisfying the inequalities 0 < x < 1,0 < y < 1, z > 0, i.e., it consists of all points of the three
dimensional x, y, z space lying above a square with side-length 1 shown in Fig. 2.103c.

unbounded y
doubly
connected
domain

entire plane y
except
point A

bounded
doubly
connected
domain

—

\-\ V

\

triply quadrupl multiply
connected L connectec?f 7 connected
domain domain / A domain
2 /y//‘
b) 9 >

Figure 2.105

y
If from the interior of the considered part of the plane a point or a
bounded, simply connected point set is missing, as shown in Fig. 2.104,
it is called a doubly-connected domain or doubly-connected region. Mul-
tiply connected domains are represented in Fig. 2.105. A non-connected
g > region is shown in Fig. 2.106.

Figure 2.106

2.18.2.5 Various Forms for the Analytical Representation of a Function

Functions of several variables can be defined in different ways, just as functions of one variable.
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1. Explicit Representation
A function is given or defined in an explicit way if its value (the dependent variable) can be expressed
by the independent variables:

u= f(r1, T2, ...,2,). (2.277)

2. Implicit Representation
A function is given or defined in an implicit way if the relation between its value and the independent
variables is given in the form:

F(flany”w‘rnvu):Oy (2~278)
if there is a unique value of u satisfying this equality.
3. Parametric Representation
A function is given in parametric form if the n arguments and the function are defined by n new vari-
ables, the parameters, in an explicit way, supposing there is a one-to-one correspondence between the
parameters and the arguments. For a two-variable function, for instance

z=o(rs), y=¢(rs), u=x(rs), (2.279a)
and for a three-variable function
r=p(rst), y=uv(st), z=x(rst), u=r(rst) (2.279b)
ete.
4. Homogeneous Functions
A function f(x1,x9,...,x,) of several variables is called a homogeneous function if the relation
FOz1, Aze, .oy Awy) = A" f(x1, 20, ..., 2y) (2.280)

holds for arbitrary A\. The number m is the degree of homogeneity.
3

W A: Foru(v,y) = 2% — 3zy +y* + oy oy + - , the degree of homogeneity is m = 2.
)

T+ z . S
—, the degree of homogeneity is m = 0.

B B: For u(z,y) = % 3y

2.18.2.6 Dependence of Functions

1. Special Case of Two Functions
Two functions of two variables u = f(z,y) and v = @(z,y), with the same domain G, are called
dependent functions if one of them can be expressed as a function of the other one u = F(v). For every
point of the domain G of the functions the identity

fz,y) = Fle(z,y)) or &(f¢)=0 (2.281)
holds. If there is no such function F(p) or @(f, @), one speaks about independent functions.
B u(z,y) = (2?2 +92)?, v = /22 +y? are defined in the domain 2% + y*> > 0, i.e., in the whole z,y
plain, and they are dependent, because v = v* holds.
2. General Case of Several Functions
Similarly to the case of two functions, the m functions uy, ua,. . . , u,, of n variables x1, xs,. .., x, in their
common domain G are called dependent if one of them can be expressed as a function of the others,
i.e., if for every point of the domain G the identity

wp = fun, Uz, Uity Ui,y U)  OF P(Ur, Uy Uy) = 0 (2.282)
is valid. If there is no such functional relationship, they are independent functions.
B The functions u = 2y + a9+ +x,, v =21° + 22>+ -+ a2 and w = 2129 + 1123+ -+ T 12, +
ZoTy + -+ + T, 12, are dependent because v = u? — 2w holds.
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3. Analytical Conditions for Independence
Suppose every partial derivative mentioned below exists. Two functions u = f(z,y) and

v = @(z,y) are independent on a
of of domain (1]f th}e@r f%nction_al determi-
YRy D(f. D(u. nant or Jacobian determinant is not
gdb gy , short (.0 or (u,v) (2.283a) identically zero here. Analogously,
ri ﬁ D(z,y D(z,y in the case of n functions of n vari-
dr  Jy abécs u; = fl)(xl,...,zn),...,un =

oy, @)
of 0h 9h
Oz, Or, = Ox, {f the number m of -the fuﬁc—
EY ar ions Uy, Us, ..., Uy, is smaller
(')i a—h . afz — D(f1, fay- s [n) 9.9 than the number of variables

& L2 In | = D(wy, 29, ..., ) #0.(2.283b) Ty, Ty, ..., T, these functions
: : : : ’ ’ are independent if at least one
Ofn  Ofn Ofn subdeterminant of order m of
Or, Oxy = Om, the matrix (2.283c) is not iden-
tically zero:
ou;  Ouy Ouy The number of independent func-
8r, Oz =~ 0Oz, tions is equal to the rank r of the ma-
s Ouy Oty trix (2.283c) (see.4.l.47 7. p. 274).
. 9. B Here these functions are indepen-
! L2 T |- (2.283¢) dent, whose derivatives are the ele-
: : : : ments of the non-vanishing determi-
My, Oy, DUy, nant of order . If m > n holds, then
Ory,  Ora Oz among the given m functions at most

n can be independent.

2.18.3 Limits
2.18.3.1 Definition

A function of two variables « = f(z,y) has a limit A at z = a, y = b if when x and y are arbitrarily
close to a and b, respectively, then the value of the function f(z,y) approaches arbitrarily closely the
value A. Then one writes:

lim f(z,y) = A. (2.284)

y—b

The function may not be defined at (a,b), or if it is defined here, may not have the value A.

2.18.3.2 Exact Definition

y A function of two variables u = f(z,y) has at the point (a,b) a limit
A= lim f(z,y) (2.285a)
y—b

if for arbitrary positive £ there is a positive 7 such that (see Fig. 2.107)

[f(z,y) — Al <e (2.285h)
holds for every point (z,y) of the square
Figure 2.107 lv—al <n, |y—bl<n. (2.285¢)

2.18.3.3 Generalization for Several Variables

a) The notion of limit of a function of several variables can be defined analogously to the case of two
variables.
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b) The criteria for the existence of a limit of a function of several variables can be obtained by gener-

alization of the criterion for functions of one variable, i.e., by reducing to the limit of a sequence or by

applying the Cauchy condition for convergence (see 2.1.4.3, p. 53).

2.18.3.4 Iterated Limit

If for a function of two variables f(z,y) first the limit for z — a has been determined, i.e., lim f(z,y)
T—a

for constant y, then for the function obtained, which is now a function only of y, one determines the
limit for y — b, then the resulting number

B = lim (lim Sz, y)) (2.286a)
y—b \T—a
is called an iterated limit. Changing the order of calculations generally yields an other limit:
C=lim (m} fla, y)) . (2.286b)

In general B # C holds, even if both limits exist.

222 B
W For the function f(z,y) = # for x — 0,
T+ y
and C' = +1.

Remark: If the function f(x,y) has alimit A = lim f(z,y), and both B and C exist, then B=C = A

y—b

y — 0 one gets the iterated limits B = —1

is valid. The existence of B and C' does not follow from the existence of A. From the equality of the
limits B = C' the existence of the limit A does not follow.

2.18.4 Continuity
A function of two variables f(z,y) is continuous at © = a, y = b, i.e., at the point (a, b), if 1. the point
(a,b) belongs to the domain of the function and 2. the limit for z — a, y — b exists and is equal to the
value, i.e.,
lim f(z,y) = f(a,b). (2.287)
y—b
Otherwise the function has a discontinuity at x = a, y = b. If a function is defined and continuous at
every point of a connected domain, it is called continuous on this domain. Similarly can be defined the
continuity of functions of more than two variables.

2.18.5 Properties of Continuous Functions

2.18.5.1 Theorem on Zeros of Bolzano

If a function f(z,y) is defined and continuous in a connected domain, and at two points (z1, ;) and
(29, y2) of this domain the values have different signs, then there exists at least one point (3, y3) in this
domain such that f(z,y) is equal to zero there:

flasys) =0, i flzr,9) >0 and  f(a2,40) <0. (2.288)
2.18.5.2 Intermediate Value Theorem

If a function f(z,y) is defined and continuous in a connected domain, and at two points (z1,y1) and
(@2, yo) it has different values A = f(z1,y1) and B = f(xs,y2), then for an arbitrary value C' between
A and B there is at least one point (z3,ys) such that:

flas,ys) =C, A<C<B or B<C<A. (2.289)

2.18.5.3 Theorem About the Boundedness of a Function

If a function f(z,y) is continuous on a bounded and closed domain, it is bounded in this domain, i.e.,
there are two numbers m and M such that for every point (x,y) in this domain:

m < f(z,y) < M. (2.290)
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2.18.5.4 Weierstrass Theorem (About the Existence of Maximum and
Minimum)

If a function f(x,y) is continuous on a bounded and closed domain, then it takes its maximum and

minimum here, i.e., there is at least one point (2, y') such that all the values f(x,y) in this domain are

less than or equal to the value f(z’,y/), and there is at least one point (2”,y”) such that all the values

f(x,y) in this domain are greater than or equal to f(z”,y"): For any point (x,y) of this domain

@) = flz,y) = f@"y") (2.291)
is valid.

2.19 Nomography
2.19.1 Nomograms

Nomograms are graphical representations of a functional correspondence between three or more vari-
ables. From the nomogram, the corresponding values of the variables of a given formula — the key
formula —in a given domain of the variables can be immediately read directly. Important examples of
nomograms are net charts and alignment charts.

Nomograms are still used in laboratories, even in the computer age, for instance to get approximate
values or starting guesses for iterations.

2.19.2 Net Charts
To represent a correspondence between the variables x, y, z given by the equation

F(z,y,2z) =0 (2.292)
(or in many cases explicitly by z = f(z,y)), the variables can be considered as coordinates in space.
The equation (2.292) defines a surface which can be visualized on two-dimensional paper by its level
curves (see 2.18.1.2, p. 118). Here, a family of curves is assigned to each variable. These curves form a
net: The variables x and y are represented by lines parallel to the axis, the variable z is represented by
the family of level curves.
B Ohm’s law is U = R - I. The voltage U can be represented by its level curves depending on two
variables. If R and I are chosen as Cartesian coordinates, then the equation U = const for every con-
stant corresponds to a hyperbola (Fig. 2.108). By looking at the figure one can tell the corresponding
value of U for every pair of values R and I, and also I corresponding to every R, U, and also R corre-
sponding to every I and U. Of course, the investigation is always to be restricted to the domain which
is interpreted: In Fig. 2.108 holds 0 < R < 10,0 < I <10and 0 < U < 100.

Remarks:

1. By changing the calibration, the nomogram can be used for other domains. If, e.g., in (Fig. 2.108)
the domain 0 < I < 1 should be represented but R should remain the same, then the hyperbolas of U
are to be marked by U/10.

2. By application of scales (see 2.17.1, p. 115) it is possible to transform nomograms with complicated
curves into straight-line nomograms. Using uniform scales on the z and y axis, every equation of the
form

xzp(z) +y(z) + x(2) =0 (2.293)
can be represented by a nomogram consisting of straight lines. If function scales © = f(z2) and y =
g(z2) are used, the equation of the form

Flz2)e(z1) + g(22)¥(21) + x(21) = 0 (2.294)
has a representation for the variables 21, z5 and z3 as two families of curves parallel to the axis and an
arbitrary family of straight lines.

B By applying a logarithmic scale (see 2.17.1, p. 115), Ohm’s law can be represented by a straight-line
nomogram. Taking the logarithm of R - I = U gives log R + log I = logU . Substituting x = log R
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and y = log I results in x +y = log U , i.e., a special form of (2.294). The corresponding nomogram is
shown in Fig. 2.109.

2.19.3 Alignment Charts

A graphical representation of a relation between three variables z1, 25 and z3 can be given by assigning
a scale (see 2.17.1, p. 115) to each variable. The z; scale has the equation
The functions ¢; and v; are chosen in such a manner that the values of the three variables 2, 2o and

z3 satisfying the nomogram equation should lie on a straight line. To satisty this condition, the area of
the triangle, given by the points (x1, y1), (x2, y2) and (x3,y3) , must be zero (see (3.301), p. 195), i.e.,

zoyr L ei(an) Yi(en) 1
o Y2 1| = | pa(22) a(22) 1| =0 (2.296)
x3 Y3 1 @3(23) W3(23) 1

must hold. Every relation between three variables zq, 2o and z3, which can be transformed into the
form (2.296), can be represented by an alignment nomogram .
Next, follows the description of some important special cases of (2.296).

2.19.3.1 Alignment Charts with Three Straight-Line Scales Through a Point
If the zero point is chosen for the common point of the lines having the three scales z;, 23 or z3 , then
(2.296) has the form
p1(21) magpr(a1) 1
2(22) Mapa(22) 1
©3(23) maps(23) 1
since the equation of a line passing through the origin has the equation y = ma . Evaluating the
determinant (2.297), yields

My — M3 Mg — My M — Mo
1(z1) ©a(22) w3(z3)

=0, (2.297)

-0 (2.298a)
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or

G @y D g ith G+ Gt Gy =0, (2.208b)
@i1(z1)  palz2)  ps(zs)

Here C, Cy and Cy are constants.

1 1 2
B The equation — + 3= F is a special case of (2.298b) and it is an important relation, for instance in
a

optics or for the parallel connection of resistances. The corresponding alignment nomogram consists
of three uniformly scaled lines.

2.19.3.2 Alignment Charts with Two Parallel Inclined Straight-Line Scales
and One Inclined Straight-Line Scale

One of the scales is put on the y-axis, the other one on another line parallel to it at a distance d. The
third scale is put on a line y = ma. In this case (2.296) has the form

0 1[11(21) 1
d  y(z) 1| =0. (2.299)
©3(23) meps(z3) 1

Evaluation of the determinant by the first column yields

d(mepy(23) — i(21)) + 03(23) (Y1(21) — Ya(22)) = 0. (2.300a)
Consequently:
3(z3) —d
1 (z1) % — (¥2(22) —md) =0 oder f(z1)-g(z3) — h(z2) = 0. (2.300Db)
P3(z3
It is often useful to introduce measure scales F; and F» of the form
E-
E1f(21)fz!](23) — Eyh(z) = 0. (2.300¢)
1
Then, p3(z3) = + holds. The relation Es : Ey can be chosen so that the third scale is pulled
2
1- EU(Zs)

near a certain point or it is gathered. Substituting m = 0, then Esh(z2) = t02(22) and in this case,
the line of the third scale passes through both the starting points of the first and of the second scale.
Consequently, these two scales must be placed with a scale division in opposite directions, while the
third one will be between them.
B The relation between the Cartesian coordinates z and y of a point in the z, y plane and the corre-
sponding angle ¢ in polar coordinates is:

y? = 2’ tan’ p. (2.301)
The corresponding nomogram is shown in Fig. 2.110. The scale division is the same for the scales of 2
and y but they are oriented in opposite directions. In order to get a better intersection with the third
scale between them, their initial points are shifted by a suitable amount. The intersection points of the
third scale with the first or with the second one are marked by ¢ = 0 or ¢ = 90° respectively.
B For instance: © = 3 y = 3.5, gives p ~ 49.5°.
2.19.3.3 Alignment Charts with Two Parallel Straight Lines and a

Curved Scale

If one of the straight-line scales is placed on the y-axis and the other one is placed at a distance d from
it, then equation (2.296) has the form

0 'lL'l(Zl) 1
d a(z) 1| =0. (2.302)
©3(23) Y3(z3) 1
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Consequently:

993(23) _d ’1493(23) _
d—s(z3)  d—ps(zs)
Choosing the scale E for the first scale and E» for the second one, then (2.303a) is transformed into

¥1(21) + Pa(z2) (2.303a)

Elf(zl) + E29(22)%h(23> + Elk(z;;) =0, (2~303b)
where 11(z1) = E1f(21), ¥a(22) = Eag(22) and

_ dE\D(z) ) i L EyEsk(z3) :

p3(z3) = ot Bui(s) and  3(z3) = B+ Buh(z) (2.303¢)

holds.

B The reduced third-degree equation 2* + p*z + ¢* = 0 (see 1.6.2.3, p. 40) is of the form (2.303b).
After the substitutions Fy = E» = 1 and f(z1) = ¢*, g(22) = p*, h(z3) = 2, the formulas to calculate
3

d-z 2
the coordinates of the curved scale are © = ¢3(z) = H—z and y=13(z) = 7ﬁ .

In Fig. 2.111 the curved scale is shown only for positive values of z . The negative values one gets by
replacing z by —z and by the determination of the positive roots from the equation z* + p*z — ¢* = 0.
The complex roots u + iv can also be determined by nomograms. Denoting the real root, which always
exists, by 21, then the real part of the complex root is u = —z;/2, and the imaginary part v can be

3
determined from the equation 3u? — v? + p* = sz — vl 4 pt=0.
B For instance: y* + 2y — 5 =0, i.e., p* = 2,¢* = —5. One reads z; ~ 1.3.
2.19.4 Net Charts for More Than Three Variables

To construct a chart for formulas containing more than three variables, the expression is to decompose
by the help of auxiliary variables into several formulas, each containing only three variables. Here, every
auxiliary variable must be contained in exactly two of the new equations. Each of these equations is to
be represented by an alignment chart so that the common auxiliary variable has the same scale.



3 Geometry

3.1 Plane Geometry

3.1.1 Basic Notations
3.1.1.1 Point, Line, Ray, Segment

1. Point and Line

Points and straight lines are not defined in today’s mathematics. The relations between them are de-

termined only by axioms. The line is graphically imaginable as a trace of a point moving in a plane

along the shortest route between two different points without changing its direction.

A point is the intersection of two lines.

2. Closed Half-Line or Ray, and Segment

A rayis the set of points of a line which are exactly on one side of a given point O, including this point O.

A ray is imaginable as the trace of a point which starts at O and moves along the line without changing

its direction, like a beam of light after its emission until it is not led out of its way.

A segment AB is the set of points of a line lying between two given points A and B of this line, including

the points A and B. The segment is the shortest connection between the two points A and B in a
—

plane. The direction class of a segment is denoted by an arrowhead AB, or its direction starts at the

first mentioned point A, and ends at the second B.

3. Parallel and Orthogonal Lines

Parallel lines run in the same direction; they have no common points, i.e., they do not move off and do

not approach each other, and they do not have any intersection point. The parallelism of two lines g

and ¢ is denoted by g||¢’ .

Orthogonal lines form a right angle at their intersection, i.e., they are perpendicular to each other.

Orthogonality and parallelism are mutual positions of two lines.

3.1.1.2 Angle
b 1. Notion of Angle

B An angle is defined by two rays a and b starting at the same point S, so they can
be transformed into each other by a rotation (Fig. 3.1). If A is a point on the
S a ray a and B is on the ray b, then the angle in the direction given in Fig. 3.1 is
A denoted by the symbols (a, b) or by  ASB, or by a Greek letter. The point S is
Figure 3.1 called the verter, the rays a and b are called sides or legs of the angle.

In mathematics, an angle is called positive or negative depending on the rotation being counterclock-
wise or clockwise respectively. It is important to distinguish the angle ¢ ASB from the angle ¥ BSA.
Actually, ¥ ASB = — £ BSA (0 < ¥ ASB < 180°) and ¥ ASB = 360° — ¥ BSA (180° < ¥ ASB <
360°) holds.

Remark: In geodesy the positive direction of rotation is defined by the clockwise direction (see 3.2.2.1,
p. 144).

2. Names of Angles

Angles have different names according to the different positions of their legs. The names given in Ta-
ble 3.1 are used for angles « in the interval 0 < a < 360° (see also Fig. 3.2).

© Springer-Verlag Berlin Heidelberg 2015 129
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Table 3.1 Names of angles in degree and radian measure

[Names of angles| Degree | Radian [Names of angles| Degree | Radian |
round (full) angle [a® = 360°] « =27 [Jright angle a® = 90° a=m/2

convex angle a® > 180°|7 < a < 27||acute angle 0°<a®<90°0° <a<m/2
straight angle o = 180° a =7 |obtuse angle 90° <a<180°|n/2<a<m

s/ s_"\ K\ fsv\

>

acute angle right obtuse straight convex round (full)
angle angle angle angle angle
Figure 3.2

3.1.1.3 Angle Between Two Intersecting Lines

At the intersection point of two lines gy, g» there are four angles a, 3, 7,9 (Fig. 3.3). There are to be
distinguished adjacent angles, vertex angles, complementary angles, and supplementary angles.

1. Adjacent Angles are neighboring angles at the intersection point
of two lines with a common vertex S, and with a common leg; both non-
common legs are on the same line, they are rays starting from S but in
opposite directions, so adjacent angles sum to 180°.

B In Fig. 3.3 the pairs (o, 8), (8,7), (7,9) and («, §) are adjacent angles.
2. Vertex Angles are the angles at the intersection point of two lines,
opposite to each other, having the same vertex S but no common leg, and
being equal. They sum to 180° by the same adjacent angle.

B In Fig. 3.3 (o,7) and (3, 9) are vertex angles.

3. Complementary Angles are two angles summing to 90°.
4. Supplementary Angles are two angles summing to 180°.
B In Fig. 3.3 the pairs of angles («, 3) or (v, d) are supplementary angles.

3.1.1.4 Pairs of Angles with Intersecting Parallels

Intersecting two parallel lines py, po by a third one g yields eight angles
(Fig. 3.4). Besides the adjacent and vertex angles with the same vertex
S, alternate angles, opposite angles, and corresponding (exterior—interior)
angles are to be distinguished with different vertices.

81

(B /o)
W/s ) B

Figure 3.3

Figure 3.4

1. Alternate Angles have the same size. They are on the opposite sides of the intersecting line g
and of the parallel lines p;, p2. The legs of alternate angles are in pairs oppositely oriented.

B In Fig.3.4, e.g., (a1,72), (01, 02), (71, @2), (01, B2) are alternate angles.

2. Corresponding or Exterior—Interior Angles have the same size. They are on the same sides
of the intersecting line g and of the parallel lines py, po. The legs of corresponding angles are oriented

in pairs in the same direction.

B In Fig. 3.4 the pairs of angles (a1, az), (81, 52), (71,72), and (8, §2) are corresponding angles.
3. Opposite Angles are on the same side of the intersecting line g but on different sides of the
parallel lines py, po. They sum to 180°. One pair of legs has the same orientation, the other one is

oppositely oriented.

B In Fig. 3.4, e.g., the pairs of angles (a1, d2), (81,72), (71, B2), and (91, aa) are opposite angles.
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3.1.1.5 Angles Measured in Degrees and in Radians

In geometry, the measurement of angles is based on the division of the full angle into 360 equal parts
or 360° (degrees). This is called measure in degrees. Further division of degrees is not a decimal one,
it is sexagesimal: 1° = 60’ (minute, or sexagesimal minute), 1’ = 60” (second, or sexagesimal second).
For grade measure see 3.2.2.2; p. 146 and the remark below.

Besides measure in degrees the radian measure is used to define the size of an angle. The size of the
central angle o of an arbitrary circle (Fig. 3.5a) is given as the ratio of the corresponding arc-length
and the radius of the circle r:

a = £ (3.1) | 1rad =57°17"44.8" = 57.2958°,
r 1° =0.017453 rad,
The unit of radian measure is the radian (rad), i.e., the central | 1’ = 0.000291 rad,
angle belonging to an arc with arclength [ equal to the radius | 1”7 = 0.000005 rad.

r. In the table you will find approximate conversion values.
If the measure of the angle is a° in degrees and « in radian measure, then for conversion

180°
a® with p= 80. (3.2)
7r

a’

e ™

° = pa = 180°—, =—=—
oo = YT T 1
holds. In particular: 360° = 2w, 180° = 7, 90° = /2, 270° = 37/2, etc. Formulas (3.2) refer to
decimal fractions and the following examples show how to make calculations with minutes and seconds.

B A: Conversion of an angle given in degrees into radian measure:
52°37 23" = 52-0.017453 + 37 - 0.000291 + 23 - 0.000005 = 0.918447 rad .
B B: Conversion of an angle given in radians into degrees:
5.645rad = 323 - 0.017453 4 26 - 0.000291 + 5 - 0.000005 = 323° 26’ 05".
The result is getting from:
5.645:0.017453 = 323 + 0.007611
0.007611:0.000291 = 26 + 0.000025
0.000025:0.000005 = 5.
The notation rad is usually omitted if it is obvious from the text that the number refers to the radian
measure of an angle (see also p. 1055).
Remark: In geodesy a full angle is divided into 400 equal parts, called grades. This is called measure
in grades. A right angle is 100 gon. A gon is divided into 1000 mgon.
On calculators the notation DEG is used for degree, GRAD for grade, and RAD for radian. For con-
version between the different measures see Table 3.5, p. 146.

3.1.2 Geometrical Definition of Circular and Hyperbolic
Functions

3.1.2.1 Definition of Circular or Trigonometric Functions

1. Definition by the Unit Circle
The trigonometric functions of an an-
gle «v are defined for both the unit circle
with radius R = 1 and the acute angles
of a right-angled triangle (Fig. 3.5a,b)
with the help of the adjacent side b, op-
posite side a, and hypotenuse c. In the
unit circle the measurement of an angle
is made between a fixed radius OA (with

length 1) and a moving radius OC coun-
terclockwise (positive direction): Figure 3.5
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. . =~ a —— b
sine : sina = BC = - (3.3) cosine : cosa=0B= -, (3.4)
] ¢
a —— b
tangent: tana = AD = E s (35) cotangent: cota = EF = a s (36)
secant : seca = 0D = % , (3.7) cosecant:  csca = OF = 2 . (3.8)

2. Signs of Trigonometric Functions -
Depending in which quadrant of the unit circle (Fig. 3.5a) the moving radius OC' is, the functions
have well-defined signs which can be taken from Table 2.2 (see p. 79).

3. Definition of Trigonometric Functions by Area of Circular Sectors
The functions sin v, cos a, tan a, cot av are de-
fined by the segments BC, OB, AD of the
unit circle with R = 1 (Fig. 3.6), where the
argument is the central angle o = ¥ AOC.
For this definition one could use also the area
z of the sector COK, which is denoted in
Fig. 3.6 by the shaded area. With the cen-
tral angle 2o measured in radians, one gets

1.
T = §R22a = « for the area with R = 1.

Therefore, one has the same equations for
sinz = BC, cosz = OB, tanz = AD as
in (3.3, 3.4, 3.5). Figure 3.6 Figure 3.7

3.1.2.2 Definitions of the Hyperbolic Functions

In analogy with the definition of the trigonometric functions in (3.3), (3.4), (3.5) now instead of the
area of a sector of the unit circle with the equation 22 +y* = 1 here the corresponding area of the sector
of the hyperbola is used with the equation 22 — y? = 1 (only the right branch in Fig. 3.7). Denoting
by z the area of COK, the shaded area in Fig. 3.7, the defining equations of the hyperbolic functions
are:

sinhz = BC, (3.9) coshx = OB, (3.10) tanhz = AD. (3.11)
Calculating the area z by integration and expressing the results in terms of BC, OB, and AD yields
== _ . 1. 1+AD
# = W(BC + VBC* + 1) = (OB + VOB’ ~1) = ; In fﬁ , (3.12)
and so, from now on, the hyperbolic functions can be expressed in terms of exponential functions:

BC = % =sinhz, (3.13a) OB = H% = coshz, (3.13b)
AD = i = tanhz. (3.13¢)
e.l, + e*.l,

These equations represent the most popular definition of the hyperbolic functions.

3.1.3 Plane Triangles
3.1.3.1 Statements about Plane Triangles
1. The Sum of Two Sides of a plane triangle is greater than the third one (Fig. 3.8):
b+c>a. (3.14)
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2. The Sum of the Angles of a plane triangle is

a+f+v=180". (3.15)
3. Unique Determination of Triangles A triangle is uniquely determined by the following data:
e by three sides or
e by two sides and the angle between them or
e by one side and the two angles on it.
If two sides and the angle opposite one of them are given, then they define two, one or no triangle (see
the third basic problem in Table 3.4, p. 145).

Figure 3.8 Figure 3.9 Figure 3.10

4. Median of a Triangle is a line connecting a vertex of the triangle with the midpoint of the
opposite side. The medians of the triangle intersect each other at one point, at the center of gravity of
the triangle (Fig. 3.10), which divides them in the ratio 2 : 1 counting from the vertex.

5. Bisector of a Triangle is a line which divides one of the interior angles into two equal parts.
The bisectors intersect each other at one point.

6. Incircle is the circle inscribed in a triangle, i.e., all the sides are tangents of the circle. Its center
is the intersection point of the bisectors (Fig. 3.9). The radius of the inscribed circle is called the
apothem or the short radius.

7. Circumcircle is the circle drawn around a triangle, i.e., passing

through the vertices of the triangle (Fig. 3.11). Its center is the inter-

section point of the three right bisectors of the triangle. &) ‘

8. Altitude of a Triangle is the perpendicular line that starts at a “
vertex and is perpendicular to the opposite side. The altitudes intersect B

each other at one point, the orthocenter.

9. Isosceles Triangle In an isosceles triangle two sides have equal

length. The altitude, median, and bisector of the third side coincide. For a

triangle the equality of any two of these sides is enough to make it isosceles. Figure 3.11

10. Equilateral Triangle In an equilateral triangle with a = b = c the centers of the incircle and
the circumcircle, the center of gravity, and the orthocenter coincide.

11. Median is a line connecting two midpoints of sides of a triangle; it is parallel to the third side
and has the half of length as that side.

12. Right-Angled Triangle is a triangle that has a right angle (an angle of 90°) (Fig. 3.31, see
p. 142).

3.1.3.2 Symmetry

1. Central Symmetry

A plane figure is called center symmetric if by a rotation of the plane by 180° around the central point
or the center of symmetry S it exactly covers itself (Fig. 3.12). Because the size and shape of the
figure do not change during this transformation, it is called a congruent mapping. Also the sense class
or orientation class of the plane figure remains the same (Fig. 3.12). Because of the same sense class
such figures are called directly congruent.
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The orientation of a figure means the traverse of the boundary of a figure in a direction: positive direc-
tion, hence counterclockwise, negative direction, hence clockwise (Fig. 3.12, Fig. 3.13).

C rotation of the plane by 180° A’

Figure 3.12 Figure 3.13
2. Axial Symmetry

A plane figure is called azially symmetric if the corresponding points cover each other after a rotation in
space by 180° around a line g (Fig. 3.13). The corresponding points have the same distance from the
axis g, the axis of symmetry. The orientation of the figure is reversed for axial symmetry with respect
to the line g. Therefore, such figures are called indirectly congruent. This transformation is called a
reflection in g. Because the size and the shape of the figures do not change, it is also called a indirect
congruent mapping. The orientation class of the plane figure is reversed under this transformation
(Fig. 3.13).

Remark: For space figures hold the analogous statements.

3. Congruent Triangles, Congruence Theorems

a) Congruence: Plane figures are called congruent if their size and shape coincide. Congruent fig-
ures can be transformed into a position of superimposition by the following three transformations, by
translation, rotation, and reflection, and combinations of these.

It is to distinguish between directly congruent figures and indirectly congruent figures. Directly con-
gruent figures can be transformed into a covering position by translation and rotation. Because the
indirectly congruent figures have a reversed sense class, an axially symmetric transformation with re-
spect to a line is also needed to transform them into a covering position.

B Axially symmetric figures are indirectly congruent. To transform them into each other all three
transformations are needed.

b) Laws of Congruence for Triangles: Two triangles are congruent if they coincide for:

o three sides (SSS) or

e two sides and the angle between them (SAS), or

o one side and the interior angles on this side (ASA), or

e two sides and the interior angle being opposite to the longer one (SSA).

4. Similar Triangles, Similarity Theorems

Plane figures are called similar if they have the same shape without having the same size. For similar
figures there is a one-to-one mapping between their points such that every angle in one figure is the
same as the corresponding angle in the other figure. An equivalent definition is the following: In similar
figures the length of segments corresponding to each other are proportional.

a) Similarity of figures requires either the equality of all the corresponding angles or the equality of
the ratio of all corresponding segments.

b) Area The areas of similar plane figures are proportional to the square of the ratio of corresponding
linear elements such as sides, altitudes, diagonals, etc.

c) Laws of Similarity For triangles the following laws of similarity hold. Triangles are similar if they
coincide for:
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e two ratios of sides,

e two interior angles,

e the ratio of two sides and the interior angle between them,

e the ratio of two sides and the interior angle opposite of the longer one.

Because in the laws of similarity only the equality of ratios of sides is required and not the equality of
length of sides, therefore the laws of similarity require less than the corresponding laws of congruence.

5. Intercept Theorems

The intercept theorems are a consequence of the
laws of similarity of a triangle.

1. First Intercept Theorem If two rays start-
ing at the same point S are intersected by two par-
allels py, po, then the segments of one of the rays
(Fig. 3.14a) have the same ratio as the correspond-
ing segments on the other one:

‘ SP SP,
SQi| [SQ:
Consequently, every segment on one of the rays is

proportional to the corresponding segment on the
other ray. Figure 3.14

. (3.16)

2. Second Intercept Theorem If two rays starting at the same point .S are intersected by two par-
allels pq, p2, then the segments of the parallels have the same ratio as the corresponding segments on
the rays (Fig. 3.14a):

SPh| | PP SPy PP
SQi Q2 SQa|  [1Q2
The intercept theorems are also valid in the case of intersecting lines at the point S, if the point S is
between the parallels (Fig. 3.14b).

. (3.17)

3.1.4 Plane Quadrangles

3.1.4.1 Parallelogram
A quadrangle is called a parallelogram (Fig. 3.15) if it has the following properties:
e the sides opposite to each other have the same length,
e the sides opposite to each other are parallel,
e the diagonals intersect each other at their midpoints,
e the angles opposite to each other are equal.
Supposing only one of the previous properties for a quadrangle, or supposing the equality and the
parallelism of one pair of opposite sides, then all the other properties follow from it.
The relations between diagonals, sides, and area are the following:
&+ di=2(a*+1V?), (3.18) h =bsina, (3.19) S =ah. (3.20)

a a 3

Figure 3.15 Figure 3.16 Figure 3.17
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3.1.4.2 Rectangle and Square

A parallelogram is a rectangle (Fig. 3.16), if it has:

e only right angles, or

e the diagonals have the same length.

Only one of these properties is enough, because either of them follows from the other. It is sufficient
to show that one angle of the parallelogram is a right angle, then all the angles are right angles. If a
quadrangle has four right angles, it is a rectangle.

The perimeter U and the area S of a rectangle are:

U=2(a+b), (3.21a) S = ab. (3.21b)

If @ = b holds (Fig. 3.17), the rectangle is called a square, and the following formulas
2

d=aV2~1414a, (3.22) a= d? ~0.707d,  (3.23) S=a= % (3.24)

3.1.4.3 Rhombus

A rhombus (Fig. 3.18) is a parallelogram in which

e all the sides have the same length, or

e the diagonals are perpendicular to each other, or

o the diagonals are bisectors of the angles of the parallelogram.

Any of the previous properties is enough alone; all the others follow from it. For the rhombus

dy = 2acos % (3.25) dy = 2asin % (3.26) B+ & =4 (3.27)
did:
S =ah=d’sina = % . (3.28)

3.1.4.4 Trapezoid

A quadrangle is called trapezoid if it has two parallel sides (Fig. 3.19). The parallel sides are called
bases. With the notation a and b for the bases, h for the altitude and m for the median of the trapezoid
which connects the midpoints of the two non-parallel sides

(a+b)h

h(a+ 2b
(3.29) S:Tfmh, (3.30)  hs= (a )

3(a+b)

a+b

(3.31)

m =

The centroid is on the connecting segment of the midpoints of the parallel basis a and b, at a distance hg
(3.31) from the base a. For the calculation of the coordinates of the centroid by integration see 8.2.2.3,
p. 506.

For an isosceles trapezoid with d = ¢

S = (a—ccosy)csiny = (b+ ccosvy)csinry. (3.32)
C =
- Y
Figure 3.18 Figure 3.19 Figure 3.20

3.1.4.5 General Quadrangle

A closed plane figure bounded by four straight line segments is called a general quadrangle. 1If the
diagonals lie fully inside the quadrangle, it is convez, otherwise concave. The general quadrangle is
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divisible by two diagonals dy, ds in two triangles (Fig. 3.20). Therefore, in every quadrangle the sum
of the interior angles is 2 - 180° = 360°:

4
S a; = 360°. (3.33)
i=1

The length of the segment m connecting the midpoints of the diagonals (Fig. 3.20) is given by
a® + 0%+ + d* = di + di + AmP (3.34)
The area of the general quadrangle is

1
S = idldz sin av. (3.35)

3.1.4.6 Inscribed Quadrangle

A quadrangle which can be circumscribed by a circumcircle is called an inscribed quadrangle (Fig.
3.21a) and its sides are chords of this circle. A quadrangle is an inscribed quadrangle if and only if the
sus of its opposite angles are 180°:

a+vy=pF+0=180° (3.36)
Ptolemy’s theorem is valid for the insribed quadrangle:
ac + bd = dldQ. (337)
The radius of the circumecircle of an inscribed quadrangle is
a
1

4 R= e (ab+ cd)(ac + bd)(ad + cb) . (3.38)

The diagonals can be calculated by the formulas

_ [(ac + bd)(ab + cd) )
C d1 = W 5 (339(1)
b)
-+ bd)(ad + be
dy = w ) (3.39b)
Figure 3.21 ab+cd

. . . 1
The area can be expressed in terms of the half-perimeter of the quadrangle s = i(a +b+c+d):

S=/(s—a)(s —b)(s —c)(s —d). (3.40)
If the inscribed quadrangle is also a circumscribing quadrangle (see Fig. 3.21 and 3.1.4.7), then

S = Vabed . (3.41)
3.1.4.7 Circumscribing Quadrangle

If a quadrangle has an inscribed circle (Fig. 3.21b), then it is called a circumscribing quadrangle, and
the sides are tangents to the circle. A quadrangle has an inscribed circle if and only if the sum of the
lengths of the opposite sides are equal, and this sum is also equal to the half-perimeter s:

1
5= §(U,+b+(:+d) =a+c=0b+d. (3.42)

The area of the circumscribing quadrangle is
S=(a+c)yr=(0b+adr, (3.43)
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where 7 is the radius of the inscribed circle.

3.1.5 Polygonsinthe Plane
3.1.5.1 General Polygon

A closed plane figure bounded by straight-line segments as its sides, can be decomposed into n — 2
triangles (Fig. 3.22). The sums of the exterior angles 3;, and of the interior angles ~;, and the number
of diagonals D are

S8 =360°, (3.44) S =180°(n—2),  (3.45) p_mn=3)

3.46
i=1 i=1 2 ( )

V

b)
Figure 3.22 Figure 3.23

3.1.5.2 Regular Convex Polygons

Regular convex polygons (Fig. 3.23) have n equal sides and n equal angles. The intersection point of
the mid-perpendiculars of the sides is the center M of the inscribed and of the circumscribed circle with
radii » and R, respectively. The sides of these polygons are tangents to the inscribed circle and chords
of the the circumcircle. They form a circumscribing polygon or tangent polygon for the inscribed circle
and a inscribed polygon in the circumcircle. The decomposition of a regular convex n gon (regular
convex polygon) results in n isosceles congruent triangles around the center M.

° 2
Central Angle ¢, = 300 . (3.47) Base Angle a, = (1 — E) -90°. (3.48)
n
, 360° ) . .
Exterior Angle f,=-—. (3.49) Interior Angle ~, = 180° — ,,. (3.50)
n
1
Circumcircle Radius R= % , R*=r"+ Zai . (3.51)
2sin

p 180° 180°
= s —— .

Inscribed Circle Radius r=4 cot Rco (3.52)
n n
Side Length a, = 2/ R? — r? = 2Rsin % = 2rtan % .(3.53)  Perimeter U = na, . (3.54)
an\? a3
Side Length of the 2n gon Qgp = R\|2 —2¢/1— (2—") . Ay = Qopy |4 — (5;‘) . (3.55)

1 #n 1 : 1 p ¥n
Area of the n gon S, = Jhant = nr? tan % = 571]{2 sin p, = Z”ai cot % . (3.56)
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nR? [ 452 S2. .
Area of the 2n gon Sop = W 1-— Pyl Sp = Sont/1 — 2RI (3.57)

3.1.5.3 Some Regular Convex Polygons
The properties of some regular convex polygons are collected in Table 3.2.

The pentagon and the pentagram deserve special attention since it is presumed that Hippasos of Meta-
pontum (ca. 450 BC) recognized irrational numbers by the properties of these polygons (see 1.1.1.2,
p. 2). A discussion follows in the example:

B The diagonals of a regular pentagon (Fig. 3.24) form an inscribed

pentagram. Its sides enclose a regular pentagon again. In a regular pen- A

tagon, the proportion of a diagonal and a side is equal to the proportion m

of a side and the (diagonal minus side): ag: a; = a3 : (ap—ay) = a1 1 az, a, v
where ay = ag — a;. Bly NE
Considering smaller and smaller nested pentagons with az = a; —as, ay =

as —ag,...and ay < aj, a3 < as,ay < as...,yieldsag : a; = ay : ay =

as : az = ag : ag = ---. The Euclidean algorithm for ag and a; never a;
breaks off, since ag = 1-a; +ag, a1 = 1-as+as,as = 1-az+ay, ..., hence

g, = 1. The side a; and diagonal a of the regular pentagon are incom- C D
mensurable. The continued fraction determined by ag : a; is identical to

the golden section in l B, 1.1.1.4, 3., p. 4, i.e., it results in an irrational Figure 3.24
number.

3.1.6 The Circle and Related Shapes
3.1.6.1 Circle

The circle is the locus of the points in a plane which are at the same given distance from a given point,
the center of the circle. The distance itself, and also the line segment connecting the center with any
point of the circle, is called the radius. The circumference or periphery of the circle encloses the area of
the circle. A line segment connecting two points of the circle is called a chord. A line passing through
two points of a circle is called a secant. Lines having exactly one common point with the circle are called
tangent lines or tangents of the circle.

Chord Theorem (Fig. 3.26) AC-AD = AB - AE = r* —m”. (3.58)
Secant Theorem (Fig. 3.27) AB-AE = AC - AD = m* —r*. (3.59)
Secant-Tangent Theorem (Fig. 3.27) AT = AB-AE = AC - AD = m® — . (3.60)
Perimeter U=2rr~6,28r, U=nd~3,142d, U =2V7S~ 3,545VS. (3.61)

A

)
, . .
«.tm» G N
& R R

Figure 3.25 Figure 3.26 Figure 3.27
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Table 3.2 Properties of some regular polygons
2% R r Sn
as - 2 as R 1 (13
3gon |as=RV3=2rV/3 =§\/3=2r=§h = \/7_5,g \f_i
= %\/5 =3 = 37"1\/3
R 5 5 2
5 gon aS:E\/w—?\/g :%\/5o+1o\/5 = 22\/25 + 10v5 :1—5 25 + 10V5
R 5R?
=2r/5-2V5 | =r(v5-1) :Z(\/ngl) =5 10+2V5
=5r2\/5 — 2¢5
2 2
6gon | ag = 5’\/3 = gr\/g = g 3 3%\[ = —
= 272\[
8gon | as = Ry/2 -2 4+2v2 :%(\/5+1) 3V2+1)
R .
=2r(vV2-1) | =r/4-2V2 =5 242 =2R2\/2
=8r2(v/2-1)
R
10gon | a = 5(V5-1) :%(x/gﬂ) :% 5+2V5 f"’;w\/uzf
2 R 5}?
= ZVa5-10v5 | = Ly50 - 10v5 = Vi0+2v5 10— 2v/5
9 9
=2r2/25 — 10v/5
5 . d? . Ud
Area S =mr?a3,1422, S = WT ~ 07854, S =" (3.62)
. U
Radius r = 5~ 0.159U. (3.63) Diameter d=2r = 2ﬁ ~1.128V5.  (3.64)
™

For the following formulas with angles see the definition of the angle in 3.1.1.2, p. 129.

Angle of Circumference (Fig. 3.25)

A Special Case is the Theorem of Thales (see p. 142) ¢

1
Angle Between a Chord and a Tangent (Fig. 3.25) (= 5 AC: 3 ¥ COA.

Interior Angle (Fig. 3.26)

Exterior Angle (Fig. 3.27)

Angle Between Secant and Tangent (Fig. 3.27) 3 =

1~ —~
= (0B + ED) =

1 ~ —~
o= E(DE — BC) =

1~ 1 1
affBCfiéiBchya

= 180°, ie,

(TE TB) =

a=90°.

%(%{ BOC + ¥ EOD).

1(<y EOC — ¥ COB).

(3.65a)
(3.65D)

(3.66)
(3.67)
(3.68)

(<; TOE — ¥ BOT).(3.69)
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Inscribed Angle (Fig. 3.28), D and E are arbitrary points on the arcs to the left and to the right.
1, — o 1
o= i(BDC — CEB) = 5(%: BOC — ¥ C0B)

= J(860° — ¥ COB — ¥ COB) = 180° — ¥ COB. (3.70)

3.1.6.2 Circular Segment and Circular Sector
Defining quantities: Radius 7 and central angle o (Fig. 3.29). The amounts to determine are:

Chord a=2V2hr —h%=2r sin% . (3.71)

Central Angle a = 2arcsin 2(17 (v measured in degrees). (3.72)

Height of the Circular Segment h =71 —/r? — % =r (1 — cos %) = %tan% . (3.73)
2mro

Arc Length [ = 260 0.01745r (o in radian measure) (3.74a)

l%Sb;a or &\ a2+§h2‘

° A ZA

Figure 3.28 Figure 3.29 Figure 3.30

71'7’2(Y

5~ 0.00873r%a. (3.75)

Area of the Sector S =

3
. r? T 1 h
Area of Circular Segment S = 5 (— — sin (y) = 5[17‘ —a(r—"n)], S= E(G{L +8b). (3.76)

3.1.6.3 Annulus

Defining quantities of an annulus: Exterior radius R, interior radius r and central angle ¢ (Fig. 3.30).

Exterior Diameter D =2R. (3.77) Interior Diameter d=2r. (3.78)
. R+r
Mean Radius p=—5 (3.79) Breadth of the Annulus 0= R—r. (3.80)
Area of the Annulus S = 7(R? —1?) = %(D2 —d*) =27 pé. (3.81)
Area of an Annulus Sector for a Central Angle ¢ (shaded area in Fig. 3.30)
_PT (2 2\ PT 2 @2\ _ PT \ R
S, = 360 (R r ) = 1410 (D d ) = 180/}5 (pin radian measure). (3.82)
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3.2 Plane Trigonometry

3.2.1 Triangles
3.2.1.1 Calculations in Right-Angled Triangles in the Plane

1. Basic Formulas

Notation (Fig. 3.31):

¢ hypotenuse; a, b other sides, or legs of the right angle; o and 3
the angles opposite to the sides a and b respectively; h altitude;
P, q hypotenuse segments; S area.

Sum of Angles o+ 3+~ = 180° with v = 90°, (3.83)
Calculation of Sides a = csina = ccos 3

= btana = bceot 3, (3.84)
Pythagoras Theorem a®+ b = (3.85)

Thales Theorem The vertex angles of all triangles in a semicir-

cle with hypotenuse as the base are right angles, i.e., all angles b'

at circumference in this semicircle are right angles (see Fig. 3.32

and (3.65b), p. 140). ‘\
Euclidean Theorems h*=pgq, a°>=pc, b* =qc, (3.86) \

1) 2 2
Area S = % = %tanﬁ = %sin 24. (3.87) Figure 3.32

2. Calculation of Sides and Angles of a Right- Angled Triangle in the Plane

In a right-angled triangle among the . L . .
six defining quantities (three angles Table 3.3 Defining quantities of a right-angled triangle

a, B,7 and the sides opposite to them 11 the plane

a, b, ¢, which are not all independent, of
course), one angle, in Fig. 3.31 the an-

Given Calculation of the other quantities

gle 7y, is given as 90°. ) eg . a,a | f=90°—a|b=acota | c= -
A plane triangle can be determined by Sl o
three defining quantities but these can- ) —00° — _ _ b
not be given arbitrarily (see 3.1.3.1, g ba| f=900"—a|a=btana|c= cos o

p. 133). So, in the case of a right-angled
triangle only two more quantities can be
given. The remaining three quantities a_ _ @ 5 _ 000 _
can be determined from Table 3.3 and eg ab b tana ¢ sin av B=90°—a
(3.15) and (3.83).

3.2.1.2 Calculations in General (Oblique) Triangles in the Plane

1. Basic Formulas
Notation (Fig. 3.33): a, b, ¢ sides; a, 3, v the angles opposite to them; S area; R radius of the circum-

a+b+c
circle; r radius of the incircle; s = % half of the perimeter.

eg. c,a | f=90°—a |a=csina | b=ccosa

Cyclic Permutation
Because an oblique triangle has no distinguishing side or angle, from every formula containing the
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b/‘\a C
b
Kc/j hi
Y .
() A
" B p q
N c
Figure 3.33 Figure 3.34 Figure 3.35

sides and angles it is possible to get two further formulas by cyclic permutation the sides and angles

according to Fig. 3.34.

a sina b sinf ¢ sinn
B From — = —— (sine law) one gets by cyclic permutation: - = ——, — = —/
b sinf siny a sina
a b c
Sine Law —_— = =2R.

sinaw  sinf  siny

Projection Rule (see Fig. 3.35) ¢ =acosf +bcosa.

Cosine Law or Pythagoras Theorem in General Triangles ¢® = a* 4 b* — 2abcos~y .

Mollweide Equations
B

in ) — e @—-p o S a—f
((1+b)51112—(,cos< 5 >, (3.91a) (a b)cosQ-csm( 5 >

¢ a+

. an

Tangent Law ath =—2°7.
a

- By
b tan .
s—b)(s—c
Half-Angle Formulas tan a_ |=b(—0 )
2 s(s—a)
asin 3 asiny

Tangent Formula tana = = .
c—acosf  b—acosy

Additional Relations

Height Corresponding to the Side a he = bsiny = csinf3.
1
Median of the Side a Mg = 5\/ 0% + 2 + 2bccos v

2bccos &
Bisector of the Angle l, = -2
b+c

a b ¢

Radi f the Ci ircle R = = = .
adius of the Circumcircle Ssma  2smf  2sinn

(3.93)

(3.94)

(3.95b)
(3.96)
(3.97)
(3.98)

(3.99)
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Radius of the Incircle r = m = stan % tan g tan% (3.100)
S
— aRsin S sin D sin L. (3.101)
2 2 2
1
Area S = iabsinﬂ/ =2R?sinasin Bsiny =rs = \/S(S —a)(s—b)(s—c). (3.102)

The formula S = \/s(s —a)(s —b)(s — ¢) is called Heron’s formula.

2. Calculation of Sides, Angles, and Area in General Triangles
According to the congruence theorems (see 3.1.3.2, p. 134) a triangle is determined by three independent
quantities, among which there must be at least one side.

From here follow the four so-called basic problems. If from the six defining quantities (three angles
«, 3,7 and the sides opposite to them a, b, ¢) three independent quantities are given, one can calculate
the remaining three with the equations in Table 3.4, p. 145.
In contrast to spherical trigonometry (see the second basic problem, Table 3.9, p. 172) in a plane
triangle there is no way to get any side only from the angles.

3.2.2 Geodesic Applications
3.2.2.1 Geodesic Coordinates

In geometry usually right-handed coordinate systems are used to determine points in plane or space
(Fig. 3.170). In contrast with this, in geodesy left-handed coordinate systems are in use.

1. Geodesic Rectangular Coordinates

In a plane left-handed rectangular coordinate system (Fig. 3.37) the z-axis of abscissae is shown up-
ward, the y-axis of ordinates is shown to the right. A point P has coordinates yp, xp. The orientation
of the z-axis follows from practical reasons. When measuring long distances, for which mostly the
Soldner- or the Gauss-Krueger coordinate systems are in use (see 3.4.1.2, p. 162), the positive a-axis
points to grid North, the y-axis oriented to the right points to East. The enumeration of the quadrants
follows a clockwise direction in contrast with the usual practice in geometry (Fig. 3.37, Fig. 3.38).
If besides the position of a point in the plane also its altitude is to be considered, one can use a three-
dimensional left-handed rectangular coordinate system (y, z, z), where the z-axis points to the zenith
(Fig. 3.36).

X
Xp P
v I
Yr Y
111 II
Figure 3.36 Figure 3.37 Figure 3.38

2. Geodesic Polar Coordinates

In the left-handed plane polar coordinate system of geodesy (Fig. 3.38) a point P is given by the
directional (azimuthal) angle t between the axis of abscissae and the line segment s, and by the length of
the line segment s between the point and the origin (called the pole). In geodesy the positive orientation
of an angle is the clockwise direction.

To determine the altitude the zenith distance ¢ can be used or the vertical angle respectively the angle
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of tilt . In Fig. 3.36 is shown that in a three-dimensional rectangular left-handed coordinate system
(see also left and right-handed coordinate systems 3.5.3.1, 2., p. 209), the zenith distance is measured
between the zenith axis z and the line segment s, the angle of tilt between the line segment s and its
perpendicular projection on the y, x plane.

Table 3.4 Defining quantities of a general triangle, basic problems

Given Formulas for calculating the other quantities
 sin 3
1. 1side and 2 v =180°—«a — 3, b= w,
angles (a, a, 3) asiny s e
c=—" S=—absiny.
sin o 2
-p L —b v 1
2. 2sides and the tan a-r_d cot l., ath =90°— = ~;
angle between 2 a+b 2 2 2
them (a, b, ) a and f come from a + § and o — 3,
in~ 1
C:a§111 /, S=—absiny.
sin «v 2
. . bsin
3. 2sides and the sin 3 = .
angle opposite a ) ) ) .
one of them If a > b holds, then 3 < 90° and is uniquely determined. If
(a,b, @) a < b holds, the following cases occur:

1. 8 has two values for bsina < a (fy = 180° — /).
2. [ has exactly one value (90°) for bsina = a.

3. For bsina > a there is no such triangle.

siny 1
7 = 180° — (a + B), = a'sln’h = —absiny.
sin o 2
— s —b)(s—c
4. 3sides (a,b,¢) Y Gl Gl GO}
s
tan & — tanL R
2 s—a 2 s=b T2 s—c’

S=rs=\/s(s—a)(s—b)(s—c).

3. Scale
In cartography the scale factor M is the ratio of a segment sk in a coordinate system K; with respect
to the corresponding segment sk- in another coordinate system Ko .

1. Conversion of Segments With m as a modulus or scale and N as an index for the nature and K
as the index of the map holds:

M=1:m=sg:sn. (3.103a)
For two segments sk1, sxo with different moduli my, ms yields:
SK1 :SK2 = Mg I My. (3103b)

2. Conversion of Areas If the areas are calculated according to the formulas Fx = axby, Fy =
anby, then:

Fy = Frm?. (3.104a)




146 3. Geometry

For two areas Fy, F, with different moduli my, my :
Fii1 : Fieo = m3 :m?. (3.104b)
3.2.2.2 Angles in Geodesy

1. Grade or Gon Division

In geodesy, in contrast to mathematics (see 3.1.1.5, p. 131) the gon measure is in use as a unit for angles.
The perigon or full angle corresponds here to 400 grade or gon. The conversion between degrees and
gons can be performed by the formulas in Table 3.5:

Table 3.5 Grade and Gon Division

1 Full angle =360° =2rrad = 400gon
1right angle =90° = grad = 100 gon
1 gon = % rad = 1000 mgon

2. Directional Angle

The directional angle t at a point P gives the direction of an oriented line segment with respect to a
line passing through the point P parallel to the z-axis (see point A and the directional angle t4p in
Fig. 3.39). Because the measuring of angles in geodesy is made in a clockwise direction (Fig. 3.37,
Fig. 3.38), the quadrants are enumerated in the opposite order to the right-handed Cartesian coordi-
nate system of plane trigonometry (Table 3.6). The formulas of plane trigonometry are valid without
change.

Table 3.6 Directional angle in a segment with correct sign for arctan

Quadrant I II I1T v
Sign of numerator + - - +

Ay

- tan > 0 tan < 0 tan > 0 tan < 0
Az

Directional angle ¢ to gon | to+ 200 gon | ¢ + 200 gon | ¢ty + 400 gon

3. Coordinate Transformations

1. Calculation of Polar Coordinates from Rectangular Coordinates For two points A(y4, x4)
and B(yp, xp) in a rectangular coordinate system (Fig. 3.39) with the segment s 45 oriented from A
to B and the directional angles t 45, tpa the following formulas are valid:

Y —Ya Ayap

th—1a DAoap’ (3.105a) sap = \/AYip + Arhp, (3.105b)

Ayap
Azap’

tant g = (3.105¢) tpa = tap £ 200 gon. (3.105d)

Ay
The quadrant of the angle ¢ depends on the signs of Aysp and Azsp. If using a calculator A—J is
x
punched in with the correct signs for Ay and Az, then one gets an angle ¢y by pressing the arctan
button to which is to add the gon-value given in Table 3.6 according to the corresponding quadrant.
2. Calculation of Rectangular Coordinates from Distances and Angles In a rectangular co-
ordinate system are to determine the coordinates of a point C' by measuring in a local polar system

(Fig. 3.40).
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Given: ya,24;Yyp, vp. Measured: a,spc. Find: yo, zc.

Solution:
A
tantap = A8 (3.1064) tpo =tap+a+200gon,  (3.106b)
Aryp
Yo =Y + Spc sin tpo, (31060) To = Tp + Spo costpe. (3106(1)

If also sap is measured, then the difference between the locally measured distance and the distance
computed from the coordinates can be considered by multiplying with the scale factor q, where ¢ must
be very close to 1:

= calculated distance 1/ Ayip + A%y (3.1072)

measured distance SAB ’

Yo = YB + Spcq sin tB(j, (3107b) To = Tp + Spcq cos tB(j. (3107C)

X
Xg

Xa T

Figure 3.39 Figure 3.40

3. Coordinate Transformation Between Two Rectangular Coordinate Systems In order to
locate a given point on a country-map the local system 4/, 2’ is to be transformed into the system y, - of
coordinates of the map (Fig. 3.41). The system ¢/, 2’ is rotated into y, x by an angle ¢ and is translated
parallel by yo, 9. The directional angles in the system 1/, 2’ are denoted by ¥. The coordinates of A and
B are given in both systems and the coordinates of a point C' in the 2/, y/'~system. The transformation
is given by the following relations:

sap = \/Ayip + Arkp, (3.108a) shp =\ AYRs + Ax'3g, (3.108b)

_ SAB

g=-, (3.108c) 0 =1tsp —Vap, (3.108d)
SAB
AyAB Ayi{B
tant p = —— , 3.108 tant p = s 3.108f
antap Ay’ ( e) andp Aty ( )
Yo = Yya—qrasing —qyacosp, (3.108g) To = Ta+qyasinp—qracosyp, (3.108h)
Yo = ya + qsinp(zg — 2y) + qeosp(ye — yl), (3.1081)
ze = x4+ qeosplrg — ) — gsing(ye — yy). (3.108j)

Remark: The following two formulas can be used as a check.

Yo = ya+ashosin(p+iac), (3.108k) 2o = za+q5)ccos(p+Pac).  (3.108])
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If the segment AB is on the z'-axis, the formulas reduce to

Azyp

A
a= y/AB = gsinp, (3.109a) b 22 = gceosp, (3.109b)
Yp Tp
Yo =ya+arg + bye, (3.109¢) T =14+ bag — ayp, (3.109d)
Yo = Ayach — Az aca, (3.109¢) T = Az ach + Ayaca. (3.10f)
X A
X
Xg
Xc
Xa o
Xy
Yo o Ya \\yf Yo ¥ y
Ye Ve
cy
Figure 3.41 Figure 3.42

3.2.2.3 Applications in Surveying

The determination of the coordinates of a point N to be fixed by triangulation is a frequent measuring
problem in geodesy. The methods of solving it are intersection, three-point resection, arc intersection,
free stationing and traversing. The last two methods are not discussed here.

1. Intersection

1. Intersection of Two Oriented Lines or first fundamental problem of triangulation: To deter-
mine a point N by two given points A and B with the help of a triangle ABN (Fig. 3.42).

Given: ya,T4;yp, rp. Measured: «, (3, if it is possible also y or v = 200 gon —« — 3. Find: yy, zx.
Solution:

A
tantap = AZ/\B (3.110a) s.p = \/Ayig + Ax%p = |Ayapsintap| +|Azap costap|,(3.110b)

AB

sin av sin av sin sin 8
=Sap—— = Sap———, (3.110¢ N=8Ap—— = Sap————, (3.110d
SBN = SaB siny sABsin (a+p5)’ ( ) SAN = S4B siny s B in (a+B) ( )
tan =tap — Q, (3.110¢) tpy =tpa+ [ =tap+ B+ 200gon,(3.110f)
YN = Ya + Sansintay = yp + Spysintpgy, (3.110g)
YN =T+ SanCOStany = Tp + Spn COStpy. (3.110h)

2. Intersection Problem for Non-Visible B If the point B cannot be seen from A, the directional
angles t 4y and tpy are to be determined with respect to reference directions to other visible points D
and E whose coordinates are known (Fig. 3.43).

Given: ya,ra;Ys, T;Yp,Tp;Ye, vrp. Measured: § in A, € in B, and if it is possible, also 7 .

Find: yy,zn .
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Figure 3.43 Figure 3.44

Solution: Reducing to the first fundamental problem, calculating tant,p, according to (3.110b)
yields:

Ayap Aypp

tantap = 3.111 tantpp = 3.111b
antap Arap’ ( a) anlpp Arpn’ ( )

tan =tap + 90, (31116) tpny =tpp +¢€, (3111(1)

o =1lap 7tAN7 (3111C) ‘B:tBthBA-, (3111f)

Ayna Aynp
tant oy = 3.111 tantpy = , 3.111h
AN T AN Arna’ ( g) antipy N ( )
A tantan — tant .

v = Ypa + xatantay — xptantpy . (3.111i) yn = yp + (tx — zp) tantpy. (3.111))

tant oy —tantgy

2. Three-Point Resection

1. Snellius Problem of Three-Point Resection or to determine a point N by three given points
A, B, C; also called the second fundamental problem of triangulation (Fig. 3.44):

Given: ya,24;Yp, Z5; Yo, Tc . Measured: 61,0, in N. Find: yy, zx.

Solution:
tant e = iizz , (3.112a) tantpe = iziz , (3.112h)
_ Byac _ Atac (3.112¢) po Byse _ Atsc (3.112d)
sintgc  costac sintpc costpc
v =toa —tep =tac — tae, (3.112¢) % = 180" — # (3.112f)

The equality (3.112f) is a first condition to determine ¢ and . A second condition one gets from
(2.114) and (2.115), p. 83:

s%ngaJrs%mL' ctan PTY ot P (3.112g)
sin ¢ — sin 2 2
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With the sine law (3.88) follows

sin ¢ _ Scn sin ¢ SON

= R === 3.1121
sin 0, a sin 0y b ( )
putting into (3.112g) gives
— ) sing — siny ) bsind; — asind.
tan 2 :tan<p+u - s%ngo s'1n1/‘, :taanrv - s%n ! as‘m 2 (3.1121)
2 sin ¢ + sin ¥ 2 bsindy + asind,
From (3.112i) one gets v and together with (3.112f)
o+Y ey R A ) .
=t —, =—— . 3.112
b=t =" : (3-112j)
From here one can determine the following line segments and points:
[ b
SAN = sin(dy + @), 3.112k = —si ) .
San = o 5 sin(d1 + ) ( ) SBN = o 5 sin(dy + ), (3.1121)
¢ i b gny, (3112m)
SoN = singp = sine, (3.112m
N T sin o1 ¥ sin 0y
TN :.’IJA+SANCOStAN:fI}B-«—SBNCOStBN, (311211)
YN = Ya + Sansintay = yp + Spysintpy. (3.1120)

2. Three-Point Resection by Cassini

Given: ya,Ta;YB, Tp; Yo, vo. Measured: 1,9, in N. Find: yy, zy.

For this method two reference points P and @ are to be used, which are on the reference circles passing
through A, C, P and B, C, @ so that both are on a line containing N (Fig. 3.45). The centers of the

circles Hy and H, are at the intersection points of the mid perpendicular of AC and of BC with the
segments PC' and QC'. The angles 01, 0, measured at N appear also at P and @ as angles of circum-
ference.

Solution:
yp =ya+ (zc —x4)cotdy, (3.113a) zp=x4+ (yo —ya)cotdy, (3.113b)
Yo =yp + (rp — xc)cotdy,  (3.113c) 2o =xp+ (yp — Yo ) cot da,  (3.113d)
Aypq yo —yp + (¢ — xp) cotipg
ot tpg = —22 3.113e - ' L (3.113f
ovtra Azpg ( ) o= tantpg + cot tpg ( )
YN =yYp + (IN — Ip) tantpg (tan tpg < cot tp@), (3.1133’)
yn = yo — (zn — z¢) cot tpg (cottpg < tantpq), (3.113h)

Dangerous Circle: When choosing the points it is to be ensured that they do not lie on one circle,
because then there is no solution; one talks about a so-called dangerous circle. The closer the points
are near to the dangerous circle, the less gets the accuracy of the method.

3. Arc Intersection

With this method a so-called new point N is to be determined as intersection point of two arcs around
two points A and B with known coordinates and with measured radii san and spy (Fig. 3.46). The
unknown line segment s 45 is calculated and the angles are to be calculated from the now already known
three sides of the triangle ABN.

A second solution — not discussed here — starts from the decomposition of the general triangle into two
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X
X
tan
y y
Figure 3.45 Figure 3.46
right-angled triangles.
Given: ya,24 : yp,rp. Measured: say; spy. Find: sap,yn, Tn.
Solution:
2 2 _ Ayap
sap = \/Ayip + Avhy, (3.114a) tantap = ) (3.114b)
A(L’AB
tpa = tap + 200 gon, (3.1140)
2 2 2 2 L2 2
cosa = San + Sap = Spy . (3.1144) cos B = Spy T Sap — San (3.114e)
25ANSAB 25pNSaB
tAn = tAB —Q, (3114f) tBN =1lpa — “3, (3114g)
YN = Ya + San sintan, (3.114h) TN = TA+ San COStan, (3.1141)
yn = yp + spnsintgy, (3.114j) TN =g+ Spycostpy. (3.114k)
3.3 Stereometry
3.3.1 Lines and Planes in Space
4 1. Two Lines Two linesin the same plane have either one or no common
point. In the second case they are parallel. If there is no plane such that

it contains both lines, they are skew lines. The angle between two skew
lines is defined by the angle between two lines parallel to them and passing
through a common point (Fig. 3.47). The distance between two skew
lines is defined by the segment which is perpendicular to both of them.
(There is always a unique transversal line which is perpendicular to both

Figure 3.47 skew lines and intersects them, too.)

2. Two Planes Two planes intersect each other in a line or they have no common point. In this
second case they are parallel. If two planes are perpendicular to the same line or if both are parallel to

every intersecting pair of lines in the other, the planes are parallel.
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3. Line and Plane A line can be incident to a plane, it
can have one or no common point with the plane. In this last
case it is parallel to the plane. The angle between a line and a

plane is measured by the angle between the line and its orthog-
J ,,,,,, onal projection on the plane (Fig. 3.48). If this projection is
only a point, i.e., if the line is perpendicular to two different
intersecting lines in the plane, then the line is perpendicular or
Figure 3.48 orthogonal to the plane.

. 3.3.2 Edge, Corner, Solid Angle

D 1. Edge or dihedral angleis a figure formed by two infinite half-planes starting at the
same line (Fig.3.49). In everyday terminology the word edge is used for the intersec-
tion line of the two half-planes. As a measure of edges, one uses the edge-angle ABC,

C.%B the angle between two half-lines lying in the half-planes and being perpendicular to

74 the intersection line DF at a point B.

2. Corner or polyhedral angle 0ABCDE (Fig. 3.50) is a figure formed by several

E planes, the lateral faces, which go through a common point, the vertex 0, and intersect
each other at the lines 04, 0B, . ...

Two lines which bound the same lateral face form a plane angle, while neighboring

Figure 3.49 faces form a dihedral angle.

Polyhedra are equal to each other, i.e., they are congruent, if they are superposable. For this the corre-
sponding elements, i.e., the edges and plane angles at the vertex must be coincident. If the correspond-
ing elements at the vertex are equal, but they have an opposite order of sequence, the corners are not
superposable, and they are called symmetric corners, because they can be brought into a symmetric
position as shown in Fig. 3.51.

A convex polyhedral angle lies completely on one side of each of its faces.

The sum of the plane angles AOB + BOC + ...+ E0A (Fig. 3.50) is less than 360° for every convex
polyhedron.

3. Trihedral Angles are congruent if they coincide in the following elements:
e in two faces and the corresponding dihedral angle,
e in one face and both dihedral angles belonging to it,
e in three corresponding faces in the same order of sequence,
e in three corresponding dihedral angles in the same order of sequence.
4. Solid Angle A pencil of rays starting from the same point (and intersecting a closed curve) forms
a solid angle in space (Fig. 3.52). It is denoted by Q2 and calculated by the equality
S

Q= ot (3.115a)
Here S means the piece of the spherical surface cut out by the solid angle from a sphere whose radius is
r, and whose center is at the vertex of the solid angle. The unit of solid angle is the steradian (sr) (see
also p. 1055):

lsr = —, (3.115Db)

i.e., a solid angle of 1 sr cuts out a surface area of 1 m? of the unit sphere (r = 1m).
B A: The full solid angle is Q = 4772 /r? = 47.

B B: A cone with a vertex angle (also called an apex angle) a = 120° defines(determines) a solid angle
Q = 2mr2(1 — cos(a/2))/r* = 7, where the formula for a spherical cap (3.163)has been used.
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Figure 3.50 Figure 3.51 Figure 3.52 Figure 3.53
3.3.3 Polyeder or Polyhedron

In this paragraph the following notations are used : V' volume, S total surface, M lateral area, h alti-
tude, Ag base area.

1. Polyhedron is a solid bounded by plane polygons.
2. Prism (Fig. 3.53) is a polyhedron with two congruent bases, and having parallelograms as ad-
ditional faces. A right prism has edges perpendicular to the base, a reqular prism is a right prism with
a regular polygon as the base. For the prism

V = Agh, (3.116) M =pl, (3.117) S=M+2Aq. (3.118)
holds. Here p is the perimeter of the section perpendicular to the edges, and [ is the length of the edges.
If the edges are still parallel to each other but the bases are not, the lateral faces are trapezoids. If the
bases of a triangular prism are not parallel to each other, its volume can be calculated by the formula
(Fig. 3.54):
(a+b+0)Q

3 )
where @) is a perpendicular cut, a, b, and ¢ are the lengths of the parallel edges. If the bases of the prism
are not parallel, then its volume is

V=1Q, (3.120)

where [ is the length of the line segment BC connecting the centers of gravity of the bases, and @ is the

cross-cut perpendicular to this line.
T
// c
A’\ 7 d
N\ b
a

Figure 3.54 Figure 3.55 Figure 3.56

V= (3.119)

3. Parallelepiped is a prism with parallelograms as bases (Fig. 3.55), i.e., it is bounded by six
parallelograms. In a parallelepiped all the four body diagonals intersect each other at the same point,
the midpoint, and halve each other.

4. Rectangular Parallelepiped or block is a right parallelepiped with rectangles as bases. In a
block (Fig. 3.56) the body diagonals have the same length. If a, b, and ¢ are the edge lengths of the
block and d is the length of the diagonal, then
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d?=a®+ b2+ (3.121) V=abe, (3.122) S=2(ab+bc+ca). (3.123)
5. Cube (or regular hezahedron) is a block with equal edge lengths: a =b=c,
d? =3a’ (3.124) V=d*  (3.125) S =6a’ (3.126)

6. Pyramid (Fig. 3.57) is a polyhedron whose base is a polygon and its lateral faces are triangles
with a common point, the vertex. A pyramid is called right if the foot of the perpendicular from the
vertex to the base Ag is at the midpoint of the base. It is called regular if it is right and the base is a
regular polygon (Fig. 3.58), and n faced if the base is an n gon. Together with the base the pyramid
has (n + 1) faces. For the volume

A h
v="g ! (3.127)
holds. For the lateral area of the regular pyramid
1
M= §phS (3.128)

holds with p as the perimeter of the base and hg as the altitude of a face.

7. Frustum of a Pyramid or truncated pyramid is a pyramid whose vertex is cut away by a plane
parallel to the base (Fig. 3.57, Fig. 3.59). Denoting by S0 the altitude of the pyramid, i.e., the
perpendicular from the vertex to the base, then

54, §B, §C, S0,

== =...= =, 12
AMA BB CiC 0,0 (3.129)
Area ABCDEF [ 50\° (3.130)
Area AlBlchlElFl N %1 ’ ’

holds. If Ap and Ag are the upper and lower bases, resp., h is the altitude of the truncated pyramid,
i.e., the distance between the bases, and ap and ag are corresponding sides of the bases, then

1 1 ap (I,D>2
=-h|Ac+ A AgAp | = hAg |1+ — — 1. 131
Vv Sh[G+ b+ GDJ 3}1 G[+ac+<ac (3.131)
The lateral surface of a regular truncated pyramid is
M= I’DTJFPG;LS 7 (3.132)

where pp and pg are the perimeters of the bases, and h; is the altitude of the faces.

Figure 3.57 Figure 3.58 Figure 3.59



3.8 Stereometry 155

Figure 3.60 Figure 3.61 Figure 3.62

8. Tetrahedron is a triangular pyramid (Fig. 3.60). With the notation
0A=a, 0B=0b, 0C =¢, CA=q, BC =pand AB = r the following holds:

0 r?2q¢>a’l

1 20 p? b1
V27ﬁ Fpro 1. (3.133)

b2 0 1

11110

9. Obelisk is a polyhedron whose lateral faces are all trapezoids. In the special case in Fig. 3.61
the bases are rectangles, the opposite edges have the same inclination to the base but they do not have
a common point. If a, b and ay, b, are the sides of the bases of the obelisk and A is the altitude of it,
then:

V= % (20 + a1) b+ (2a1 +a) by] = % lab+ (a+ar) (b+by) + asb] (3.134)

10. Wedge is a polyhedron whose base is a rectangle, its lateral faces are two opposite isosceles
triangles and two isosceles trapezoids (Fig. 3.62). For the volume holds

V= (2(1 +a)bh. (3.135)
N>
BN
O hoeg

11. Regular Polyeder have congruent regular polyeders as faces and congruent regular corners.
The five possible regular polyheders are represented in Fig. 3.63; Table 3.7 shows the corresponding
data.
12. Euler’s Theorem on Polyeders If e is the number of vertices, f is the number of faces, and &k
is the number of edges of a convex polyhedron then

e—k+f=2. (3.136)
Examples are given in Table 3.7.
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Table 3.7 Regular polyeders with edge length a

Number and Number of Total area Volume
N fe f f:
ame orm ot faces Edges | Corners S/a? V/a?®
. V2
Tetrahedron 4 triangles 6 4 V3 =1.7321 12 =0.1179
Cube 6 squares 12 8 6 =6.0 1=1.0
. V2
Octahedron 8 triangles 12 6 2v/3 = 3.4641 5 =0.4714
15+ 7v5
Dodecahedron | 12 pentagons | 30 20 31/5(5 4 2V/5) = 20.6457 M = 7.6631
5(3 5
Icosahedron 20 triangles 30 12 5v/3 = 8.6603 (172@ = 2.1817

3.3.4 Solids Bounded by Curved Surfaces

In this paragraph the following notations are used: V' volume, S total surface, M lateral surface, h
altitude, Ag base.

1. Cylindrical Surface is a curved surface which can be got by parallel translation of a line, the
generating line or generator along a curve, the so-called directing curve (Fig. 3.64).

2. Cylinder is a solid bounded by a cylindrical surface with a closed directing curve, and by two
parallel bases cut out from two parallel planes by the cylindrical surface. For every arbitrary cylinder
(Fig. 3.65) with the base perimeter p, with the perimeter s of the cut perpendicular to the apothem,
whose area is (), and with the length [ of the apothem the following is valid:

V=Ach=0Ql, (3.137) M=ph=sl (3.138)

3. Right Circular Cylinder has a circle as base, and its apothems are perpendicular to the plane
of the circle (Fig. 3.66). With a base radius R

V =xR, (3.139) M =2rRh,  (3.140) S=2rR(R+h).  (3.141)
4. Obliquely Truncated Cylinder (Fig. 3.67)
V= rR? # (3.142) M =7R(hi + hs), (3.143)

hy — hy\’
S=rR h,1+h2+R+«R2+<%> . (3.144)

5. Ungula of the Cylinder With the notation of Fig. 3.68 and with ov = ¢ /2 in radians

_h s ) _hRP( . sin’a ,
V= o [(L(SR a’)+3R*(b R)()z] = |sina 3 acosa |, (3.145)
2RH
M= }Z Y1(b— R)a+a), (3.146)

where the formulas are valid even in the case b > R, ¢ > 7.
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generating line

directing curve

Figure 3.64 Figure 3.65 Figure 3.66 Figure 3.67

6. Hollow Cylinder With the notation R for the outside radius and r for the inside one, § = R —1r .

R
7 for the mean radius (Fig. 3.69)

for the difference of the radii, and o =

V=nh(R?>—1*) =nh§(2R—0) =nhé(2r + &) = 27 hp. (3.147)

Figure 3.68 Figure 3.69

7. Conical Surface arises by moving a line, the generating line, along a curve, the direction curve
so that it always goes through a fixed point, the vertex (Fig. 3.70).

8. Cone (Fig. 3.71) is bounded by a conical surface with a closed direction curve and a base cut
out from a plane by the surface. For an arbitrary cone

v o de (3.148)

3

directing curve
(s

Figure 3.70 Figure 3.71 Figure 3.72

9. Right Circular Cone has a circle as base and its vertex is right above the centre of the circle
(Fig. 3.72). With [ as the length of the apothem and R as the radius of the base

1
V=gnR’h, (3149) M=nRI=aRVR*+h?, (3150) S=mR(R+1). (3151)

10. Frustum of Right Cone or Truncated Cone (Fig. 3.73)
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A
/N
/N
/ \
/ 3

Figure 3.73

l=y/h?+ (R—r), (3.152)

_Thins o
vfﬁ(}z +r +Rr), (3.154)

11. Conic Sections see 3.5.2.11, p. 206.

Figure 3.74

M=nl(R+r), (3.153)

hr
R—

H=h+ (3.155)

12. Sphere (Fig. 3.74) with radius R and diameter D = 2R. Every plane section of it is a circle.
A plane section through the center results in a great circle (see 3.4.1.1, p. 160) with radius R. Only
one great circle can be fitted through two surface points of the sphere if they are not the endpoints of
the same diameter. The shortest connecting surface curve between two surface points is the arc of the

great circle between them (see 3.4.1.1, p. 160).

Formulas for the surface and for the volume of the sphere:

S =4mR*~ 1257 R?,

S =V36mV2~4.836VV2, (3.156¢c)

(3.156a)

3

D .
v =""" ~05236 D%,

(3.157b)

R= %\/g ~ 0.2821 V8, (3.158a)
13. Spherical Sector (Fig. 3.75)

S=mR(2h+a), (3.159)
14. Spherical Cap (Fig. 3.76)

a>=h(2R —h), (3.161)

M =27 Rh=r(a®+1?), (3.163)
15. Spherical Layer (Fig. 3.77)

2 72 p2\?2
R2=a2+<7a ;’h h’), (3.165)

M =27Rh, (3.167)

S = D=~ 3.142 D? (3.156b)

4 . .
V= gm ~ 4.189 R?, (3.157a)

1 3
V= 71/% ~ 0.09403V/S3,  (3.157c)

6
R={] ‘fTV ~ 0.6204 VV. (3.158D)
s
27 R?h
V=t (3.160)

_1 2 2 _1 2 ~
V—gﬂ'h(Sa +1?) = gmh* (3R~ 1h),(3.162)

S=n(2Rh+a?) =x(h*+24%).  (3.164)

V= éwh (3a>+3b%+1h?), (3.166)

S=m(2Rh+a*+0b%). (3.168)

If Vj is the volume of a truncated cone written in a spherical layer (Fig. 3.78) and [ is the length of its
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apothem, then

VoV = lwhﬂ (3.169)

Y B &Y,

Figure 3.75 Figure 3.76 Figure 3.77

16. Torus (Fig. 3.79) is the solid which can be generated by rotating a circle around an axis which
is in the plane of the circle but does not intersect it.

S =4’ Rr ~39.48 R, (3.170a) S=nDd~9870Dd, (3.170b)

V=2 Rr* =~ 19.74 Rr*,  (3.171a) V= iﬂ'QD(lz ~ 2467 Dd* (3.171b)

d
>

Figure 3.78 Figure 3.79 Figure 3.80

17. Barrel (Fig. 3.80) arises by rotation of a generating curve; a circular barrel by rotation of
a circular segment, a parabolic barrel by rotation of a parabolic segment. For the circular barrel the

following approximation formulas hold,
V ~0262h(2D%+d?) (3.172a) or V =~ 0.0873h(2 D + d)*, (3.172b)

and for the parabolic barrel

h 3 . .
V= 7;5 <2D2+Dd+ 24 ) ~ 0.05236h (8D + 4 D d +347).

(3.173)




160 3. Geometry

3.4 Spherical Trigonometry

For geodesic measures which extend over great distances the spherical shape of the Earth is taken into
consideration. Therefore the spherical geometry is necessary. In particular one needs formulas for
spherical triangles, i.e., triangles lying on a sphere. This was also realized by the ancient Greeks, so
besides the trigonometry of the plane the trigonometry of the sphere has been developed, and nowadays
Hipparchus (around 150 BC) is considered as the founder of spherical geometry.

3.4.1 Basic Concepts of Geometry on the Sphere
3.4.1.1 Curve, Arc, and Angle on the Sphere

1. Spherical Curves, Great Circle and Small Circle
Curves on the surface of a sphere are called spherical curves. Important spherical curves are great
circles and small circles. They are intersection circles of a plane passing through the sphere, the so-
called intersecting plane (Fig. 3.81):
If a sphere of radius R is intersected by a plane K at distance h from the center O of the sphere, then
for radius 7 of the intersection circle holds

r=vR*-—h? (0<h<R). (3.174)
For h = 0 the intersecting plane goes through the center of the sphere, and r takes the greatest possible
value. In this case the intersection circle g in the plane I' is called a great circle. Every other intersection
circle, with 0 < h < R, is called a small circle, for instance the circle k in Fig. 3.81. For h = R the
plane K has only one common point with the sphere. Then it is called a tangent plane.

Figure 3.81 Figure 3.82 Figure 3.83

B On the Earth the equatorand the meridians with their countermeridians — which are their reflections
with respect to the Earth’s axis — represent great circles. The parallels of latitude are small circles (see
also 3.4.1.2, p. 162).

2. Spherical Distance

Through two points A and B of the surface of the sphere, which are not opposite points, i.e., they are
not the endpoints of the same diameter, infinitely many small circles can be drawn, but only one great
circle (with the plane of the great circle g). Consider two small circles kq, ko through A and B and
turn them into the plane of the great circle passing through A and B (Fig. 3.82). The great circle has
the greatest radius and so the smallest curvature. So the shorter arc of the great circle is the shortest
connection between A and B. It is the shortest connection between A and B on the surface of the
sphere, and it is called the spherical distance.

3. Geodesic Lines

Gleodesic lines are the curves on a surface which are the shortest connections between two points of the
surface (see 3.6.3.6, p. 268).
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B In the plane the straight lines, on the sphere the great circles, are the geodesic lines (see also 3.4.1.2,
p. 162).

4. Measurement of the Spherical Distance

The spherical distance of two points can be expressed as a measure of length or as a measure of angle
(Fig. 3.83).

1. Spherical Distance as a Measure of Angle is the angle between the radii 04 and 05 measured
at the center 0. This angle determines the spherical distance uniquely, and hereafter it is denoted by a
lowercase Latin letter. The notation can be given at the center or on the great circle arc.

2. Spherical Distance as a Measure of Length is the length of the great circle arc between A

and B. It is denoted by AB (arc AB).

3. Conversions from Measure of Angle into Measure of Length and conversely can be done
by the formulas

AB= R arce = R% , (3.175a) ¢—AB % (3.175b)

Here e denotes the angle given in degrees and arc e denotes the angle in radian (see radian measure
3.1.1.5, p. 131). The conversion factor ¢ is equal to

180°
N ™

o= 1rad = 57.2958° = 3438 = 206265". (3.175¢)

The determinations of the distance as a measure of length or angle are equivalent but in spherical

trigonometry the spherical distances are given mostly as a measure of angle.

B A: For spherical calculations on the Earth’s surface usually a sphere is considered with the same
volume as the biaxial reference ellipsoid of Krassowski. This radius of the Earth is R = 6371.110 km,

and consequently holds 1° 2111.2 km, 1/ £ 1853.3m = 1 oldseamile. Today 1 seamile = 1852 m.

B B: The spherical distance between Dresden and St. Petersburg is AB = 1433 km or
57.3° = 12.89° = 12°53'.

L _ 1433 km
"~ 6371km

Figure 3.84

5. Intersection Angle, Course Angle, Azimuth

The intersection angle between spherical curves is the angle between their tangent lines at the intersec-
tion point Py. If one of them is a meridian, the intersection angle with the curve segment to the north
from P is called the course angle o in navigation. To distinguish the inclination of the curve to the east
or to the west, a sign is to be assigned to the course angle according to Fig. 3.84a,b restricting it to
the interval —90° < o < 90°. The course angle is an oriented angle, i.e., it has a sign. It is independent
of the orientation of the curve — of its sense.

The orientation of the curve from P; to P, as in Fig. 3.84c, can be described by the azimuth §: It is
the intersection angle between the northern part of the meridian passing through P, and the curve arc
from P, to P,. The azimuth is restricted to the interval 0° < § < 360°.
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Remark: In navigation the position coordinates are usually given in sexagesimal degrees; the spherical
distances and also the course angles and the azimuth are given in decimal degrees.

3.4.1.2 Special Coordinate Systems

1. Geographical Coordinates

To determine points P on the Earth’s surface geographical coordinates are in use (Fig. 3.85), i.e.,
spherical coordinates with the radius of the Earth, the geographical longitude X\ and the geographical
latitude .

To determine the degree of longitude the surface of the Earth is subdivided by half great circles from the
north pole to the south pole, by so-called meridians. The zero meridian goes through the observatory
of Greenwich. From here one counts the east longitude with the help of 180 meridians and the west
longitude with 180 meridians. At the equator they are at a distance of 111km of each other. East
longitudes are given as positive, west longitudes are given as negative values. So —180° < A\ < 180°.

+X
+X, Pl
Ax AX
+X4 PZ
—t
-y +y
geographic
. —X
longitud b)
Figure 3.85 Figure 3.86

To determine the degree of the latitude the Earth’s surface is divided by small circles parallel to the
equator. Starting from the equator 90 degrees of latitude are to be counted to the north, the northings,
and 90 southern latitudes. Northings are positive, southern latitudes are negative. So —90° < ¢ < 90°.
2. Soldner Coordinates
The right-angled Soldner coordinates and Gauss-Kriger coordinates are important in wide surface sur-
veys. To map parts of the curved Earth’s surface onto a right-angled coordinate system in a plane,
distance preserving in the ordinate direction, according to Soldner the z-axis is to be placed on a merid-
ian (it is called a central meridian), and the origin at a well-measured center point (Fig. 3.86a). The
ordinate y of a point P is the segment between P and the foot of the spherical orthogonal (great circle)
on the central meridian. The abscissa x of the point P is the segment of a circle between P and the
main parallel passing through the center, where the circle is in a parallel plane to the central meridian
(Fig. 3.86b).
Transferring the spherical abscissae and ordinates into the plane coordinate system the segment Az is
stretched and the directions are distorted. The coefficient of elongation a in the direction of the abscissa
is Az y?
T ar T
To moderate the stretching, the system may not be extended more than 64km on both sides of the
central meridian. A segment of 1 km length has an elongation of 0.05m at y = 64 km.
3. Gauss-Kriiger Coordinates
In order to map parts of the curved Earth’s surface onto the plane with an angle-preserving (conformal)
mapping, at Gauss-Kriger system first a partition into meridian zones is prepared. For Germany these
mid-meridians are at 6°,9°,12°, and 15° east longitude (Fig. 3.87a). The origin of every meridian
zone is at the intersection point of the mid-meridian and the equator. In the north-south direction the
total range is to be considered, in the east—west direction a 1°40" wide strip on both sides. In Germany
it amounts ca. 100 km. The overlap is 20, which is here nearly 20 km.

R = 6371km. (3.176)



3.4 Spherical Trigonometry 163

: y-elongation The coefficient of elongation a
rlg t vajue ,.h gh yalue | y e %i in the abscissa direction
AT x - elon- (Fig. 3.87b) is the same as in
estldngth A gation 1,0 Soldner system (3.176). To
"5 80 gPN\10° 11° X AxX' keep the mapping angle-preser-
Equator JL ving, the quantity b must be
added to the ordinates:
a) |+ 500 km-| b) ——r ¥
b=—"—. (3.177)
Figure 3.87 6 R?

3.4.1.3 Spherical Lune or Biangle

Suppose there are two planes I'y and I'y passing through the endpoints A and B of a diameter of the
sphere and enclosing an angle o (Fig. 3.88) and so defining two great circles g; and go. The part of
the surface of the sphere bounded by the halves of the great circles is called a spherical lune or biangle
or spherical digon. The sides of the spherical biangle are defined by the spherical distances between A
and B on the great circles. Both are 180°.

As the angles of the biangle one defines the angles between the tangents of the great circles ¢g; and gs at
the points A and B. They are the same as the so-called dihedral angle a between the planes I'y and I's.
If C'and D are the bisecting points of both great circle arcs A and B, the angle o can be expressed as
the spherical distance of C' and D. The area Ay, of the spherical biangle is proportional to the surface
area of the sphere just as the angle « to 360°. Therefore the area is

2 2

_Arla 2Ra 2 R?arca with the conversion factor  as in (3.175¢). (3.178)

Figure 3.88 Figure 3.89 Figure 3.90

3.4.1.4 Spherical Triangle

Consider three points A, B, and C on the surface of a sphere, not on the same great circle. Connecting
every two of them by a great circle yields a spherical triangle ABC' (Fig. 3.89).

The sides of the triangle are defined as the spherical distances of the points, i.e., they represent the
angles at the center between the radii 04, 05, and 0C. They are denoted by a, b, and ¢, and hereafter
they are given in angle measure, independently of whether they are denoted at the center as angles or
on the surface as great circle arcs. The angles of the spherical triangle are the angles between every two
planes of the great circles. They are denoted by «, 3, and ~.

The order of the notation of the points, sides, and angles of the spherical triangle follows the same
scheme as for triangles of the plane. A spherical triangle is called a right-sided triangle if at least one
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side is equal to 90°. There is an analogy with the right-angled triangles of the plane.
3.4.1.5 Polar Triangle

1. Poles and Polar The endpoints of a diameter P, and P, are called poles, and the great circle g
being perpendicular to this diameter is called polar (Fig. 3.90). The spherical distance between a pole
and any point of the great circle g is 90°. The orientation of the polar is defined arbitrarily: Traversing
the polar along the chosen direction there is a left pole to the left and a right pole to the right.

2. Polar Triangle A'B'C’ of a given spherical triangle ABC' is a spherical triangle such that the
vertices of the original triangle are poles for its sides (Fig. 3.91). For every spherical triangle ABC
there exists one polar triangle A’B'C". 1If the triangle A’B’C" is the polar triangle of the spherical
triangle ABC', then the triangle ABC' is the polar triangle of the triangle A’B’'C". The angles of a
spherical triangle and the corresponding sides of its polar triangle are supplementary angles, and the
sides of the spherical triangle and the corresponding angles of its polar triangle are supplementary
angles:

a =180° — a, b =180° — 3, ' =180° — 7, (3.179a)

o' =180° — a, B'=180° — b, v =180° — c. (3.179b)

Figure 3.91 Figure 3.92

3.4.1.6 Euler Triangles and Non-Euler Triangles

The vertices A, B, C' of a spherical triangle divide every great circle into two, usually different parts.
Consequently there are several different triangles with the same vertices, e.g., also the triangle with
sides @', b, ¢ and the shadowed surface in Fig. 3.92a. According to the definition of Euler one should
always choose the arc which is smaller than 180° as a side of the spherical triangle. This corresponds
to the definition of the sides as spherical distances between the vertices. Considering this, all spherical
triangles of whose sides and angles are less than 180° are called Euler triangles, otherwise they are called
non-Euler triangles. In Fig. 3.92b there is an Euler triangle and a non-Euler triangle.

3.4.1.7 Trihedral Angle

This is a three-sided solid formed by three edges s,, sp, S starting at a vertex O (Fig. 3.93a). The
angles a, b, ¢ are defined as sides of the trihedral angle, every of them is enclosed by two edges. The
regions between two edges are called the faces of the trihedral angle. The angles of the trihedral angle
are «, 3, and 7, the angles between the faces. If the vertex of a trihedral angle is at the center O of
a sphere, it cuts out a spherical triangle of the surface (Fig. 3.93b). The sides and the angles of the
spherical triangle and the corresponding trihedral angle are coincident, so every theorem derived for a
trihedral angle is valid for the corresponding spherical triangle, and conversely.
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Figure 3.93

3.4.2 Basic Properties of Spherical Triangles
3.4.2.1 General Statements

For an Euler triangle with sides a, b, ¢, whose opposite angles are a, /3,7, the following statements are
valid:
1. Sum of the Sides The sum of the sides is between 0° and 360°:

0° <a+b+c<360° (3.180)
2. Sum of two Sides The sum of two sides is greater than the third one, e.g.,
a+b>c. (3.181)

3. Difference of Two Sides The absolute value of the difference of two sides is smaller than the
third one, e.g.,

la—b| < e (3.182)
4. Sum of the Angles The sum of the angles is between 180° and 540°:

180° < v+ B+ v < 540°. (3.183)
5. Spherical Excess The difference

e=a+ [ +v—180° (3.184)

is called the spherical excess.
6. Sum of Two Angles The sum of two angles is less than the third one increased by 180°, e.g.,

o+ <y +180° (3.185)
7. Opposite Sides and Angles Opposite to a greater side there is a greater angle, and conversely.
8. Area The area At of a spherical triangle can be expressed by the spherical excess € and by the
radius of the sphere R with the formula

2

1;()0 = % = R? arce. (3.1864a)
Here g is the conversion factor (3.175¢). From the theorem of Girard, with Ag as the surface area of the
sphere, holds

As
v =S (3.186b)

If the sides are known and not the excess, then € can be calculated by the formula of L'Huilier (3.201).

Ap =€eR?.

3.4.2.2 Fundamental Formulas and Applications

The notation for the quantities of this paragraph corresponds to those of Fig. 3.89.
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1. Sine Law

sina  sina sinb  sinf3 sinc  sinvy

(3.187a) . (3.187b)

sinb  sinf’ sinc  sinvy sina _ sina (3.187c)
The equations from (3.187a) to (3.187¢) can also be written as proportions, i.e., in a spherical triangle

the sines of the sides are related as the sines of the opposite angles:
sina  sinb  sinc

= = . 3.187d
sina sinf  siny ( )
The sine law of spherical trigonometry corresponds to the sine law of plane trigonometry.
2. Cosine Law, or Cosine Law for Sides
cosa = cosbcosc+sinbsinccosa, (3.188a) cosb = cosccosa+sincsinacos f, (3.188b)
cosc = cosacosb + sinasinbcosy. (3.188c)

The cosine law for sides in spherical trigonometry corresponds to the cosine law of plane trigonometry.
From the notation one can see that the cosine law contains the three sides of the spherical triangle.
3. Sine-Cosine Law

sinacos § = cosbsin ¢ — sin b cos ¢ cos «, (3.189a)

sina cosy = cos csinb — sin ccosbcos a. (3.189b)

One can get four more equations by cyclic change of the quantities (Fig. 3.34).

The sine-cosine law corresponds to the projection rule of plane trigonometry. Because it contains five
quantities of the spherical triangle it is not used directly for solving problems of spherical triangles, but
it is used for the derivation of further equations.

4. Cosine Law for Angles of a Spherical Triangle

cos v = — cos J cosy + sin Fsiny cos a, (3.190a)
cos 3 = — cosy cos a + siny sin a cos b, (3.190b)
cosy = —cosacos 3+ sinasin § cosc. (3.190c)

This cosine rule contains the three angles of the spherical triangle and one of the sides. With this
law one can easily express an angle by the opposite side with the angles on it, or a side by the angles;
consequently every side can be expressed by the angles. Contrary to this, for plane triangles the third
angle is calculated from the sum of 180°.

Remark: It is not possible to determine any side of a plane triangle from the angles, because there are
infinitely many similar triangles.
5. Polar Sine-Cosine Law

sin avcos b = cos Fsiny + sin 5 cos y cos a, (3.191a)

sin acos ¢ = cosysin 3 + sin~y cos 3 cos a. (3.191b)

Four more equations can be get by cyclic change of the quantities (Fig. 3.34).
Just as for the cosine law for angles, also the polar sine-cosine law is not usually used for direct calcu-
lations for spherical triangles, but to derive further formulas.

6. Half-Angle Formulas

To determine an angle of a spherical triangle from the sides one can use the cosine law for sides. The
half-angle formulas allow us to calculate the angles by their tangents, similarly to the half-angle for-
mulas of plane trigonometry:

sin(s — b) sin(s — ¢) sin(s — ¢) sin(s — a)

, (3.192a) tan = = (3.192Db)

sin ssin(s — a) sin ssin(s — b)
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sin(s — a) sin(s — b), (3.192¢) st b+ ¢ (3.192d)

sin ssin(s — ¢) 2

If from the three sides of a spherical triangle all the three angles should be determined, then the follow-
ing calculations are useful:

o k 8 k
tan§ = m (3.193a) tan§ = m~ (3.19313)
B S )
g = sin(s — c) with (3.193¢)
sin(s — a) sin(s — b) sin(s — ¢ a+b+c
_ \/sln(s (1)5111('5 b) sin(s ()7 (3.193d) g atbte (3193)
sin s 2

7. Half-Side Formulas
With the half-side formulas it is possible to determine one side or all three sides of a spherical triangle
from its three angles:

o =[SO ) 1y b o Desle o) g,
2 cos o cos(o — a) 2 cos o cos(o — 3)
: (0 — a) cos(o — B+
(:()Té = Coi(o— a) COS((Z /j) (3.194c¢) o= M7 (3.194d)
cos o cos(o — ) 2
or
a K b k'
ot — = ——— .195a ot - = ———— 1951
cot 2" wsc—a) (3.195a) cot 5 P (3.195b)
¢ K
ot - = ———  witl .195¢
cot 5 P p— with (3.195¢)
W \/cos(o — a)cos(o — f3) cos(o — “/)7 (3.195d) o= LM (3.195¢)
—cos o 2

Since for the sum of the angles of a spherical triangle according to (3.183):

180° < 20 < 540° or 90° <o < 270° (3.196)
holds, cos o < 0 must always be valid. Because of the requirements for Euler triangles all the roots are
real.
8. Applications of the Fundamental Formulas of Spherical Geometry
With the help of the given fundamental formulas, for instance distances, the azimuth, and course angles
on the Earth can be determined.
B A: Determine the shortest distance between Dresden (A = 13°46’,p; = 51°16') and Alma Ata
(Mg = T6°55, pp = 43°18').
Solution: The geographical coordinates (A1, 1), (A2, o) and the north pole N (Fig. 3.94) result in
two sides of the triangle Py P,N a = 90° — ¢, and b = 90° — ¢, lying on meridians, and also the angle
between them v = Xy — Ay. For ¢ = e it follows from the cosine law (3.188a)

cosc = cosacosb+ sinasinbcosy,
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Figure 3.94 Figure 3.95

cose = cos(90° — 1) cos(90° — ¢q) + sin(90° — 1) sin(90° — 2) cos(Xa — A1)
= sin ) sin g + s 1 €os g cos(Aa — A1), (3.197)

ie., cose = 0.53498 + 0.20567 = 0.74065,e¢ = 42.213°. The great circle segment P, P, has length
4694 km using (3.175a).

B B: Calculate the course angles d; and d, at departure and at arrival, and also the distance in sea miles
of a voyage from Bombay (A\; = 72°48, ¢, = 19°00') to Dar es Saalam (A\y = 39°28', vy = —6°49')
along a great circle.

Solution: The calculation of the two sides a = 90° — p; = 71°00',b = 90° — py = 96°49 and the
enclosed angle v = A\; — Ay = 33°20/ in the spherical triangle P, P, N with the help of the geographical
coordinates (A1, ¢1), (A2, ¢2) (Fig. 3.95) and the cosine law (3.188¢) cosc = cose = cosacosb +

sinasinbcos v yields P Py= e = 41.777°, and because 1’ = 1sm follows P, Py~ 2507 sm.
With the cosine law for sides (3.188a)

cosa — cosbcosc cosb — cosacosc
a = arccos ————— = 51.248° and [ = arccos ————— = 125.018°.
sinbsin ¢ sinasin ¢

Therefore, the results are
01 =360° — 3 =234.982° and s = 180° + a = 231.248°.

Remark: It makes sense to use the sine law to determine sides and angles only if it is already obvious
from the problem that the angles are acute or obtuse.

3.4.2.3 Further Formulas

1. Delambre Equations

Analogously to the Mollweide formulas of plane trigonometry the corresponding formulas of Delambre
are valid for spherical triangles:

a—f Ca+b Ca—f o a—b
COS S S o}
2 = 2 (3.198) z -2 (3.198b)
S 5 Sin 5 cOos 5 S 5
a+f a+b Ca+f a—>b
cos coSs S CcOS
2 - 2 (3.198¢) 2 2 (3.198d)
S 5 cos 5 CcOos 5 cOos 5

Since for every equation two more equations e