

Encyclopedia of
Computer science
and technology

Revised Edition

harry henderson

ENCYCLOPEDIA OF COMPUTER SCIENCE and TECHNOLOGY, Revised Edition

Copyright © 2009, 2004, 2003 by Harry Henderson

All rights reserved. No part of this book may be reproduced or utilized in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any

information storage or retrieval systems, without permission in writing from the publisher.
For information contact:

Facts On File, Inc.
An imprint of Infobase Publishing

132 West 31st Street
New York NY 10001

Library of Congress Cataloging-in-Publication Data

Henderson, Harry, 1951–
 Encyclopedia of computer science and technology / Harry Henderson.—Rev. ed.

 p. cm.
 Includes bibliographical references and index.

 ISBN-13: 978-0-8160-6382-6
 ISBN-10: 0-8160-6382-6

 1. Computer science—Encyclopedias. 2. Computers—Encyclopedias. I. Title.
 QA76.15.H43 2008

004.03—dc22 2008029156

Facts On File books are available at special discounts when purchased in bulk quantities
for businesses, associations, institutions, or sales promotions. Please call our Special Sales

Department in New York at (212) 967-8800 or (800) 322-8755.

You can find Facts On File on the World Wide Web at http://www.factsonfile.com

Text design by Erika K. Arroyo
Cover design by Salvatore Luongo

lllustrations by Sholto Ainslie
Photo research by Tobi Zausner, Ph.D.

Printed in the United States of America

VB Hermitage 10 9 8 7 6 5 4 3 2 1

This book is printed on acid-free paper and contains
30 percent postconsumer recycled content.

In memory of my brother,

Bruce Henderson,

who gave me my first opportunity to explore

personal computing almost 30 years ago.

Acknowledgments
iv

introduction to the Revised Edition
v

A–Z Entries
1

Appendix I
Bibliographies and Web Resources

527

Appendix II
A Chronology of Computing

529

Appendix III
Some Significant Awards

542

Appendix IV
Computer-Related Organizations

553

Index
555

Contents

iv

I wish to acknowledge with gratitude the patient and thorough
management of this project by my editor, Frank K. Darmstadt. I can

scarcely count the times he has given me encouragement and nudges
as needed. I also wish to thank Tobi Zausner, Ph.D., for her ability and
efficiency in obtaining many of the photos for this book.

Acknowledgments

�

Chances are that you use at least one computer or com-
puter-related device on a daily basis. Some are obvi-

ous: for example, the personal computer on your desk or at
your school, the laptop, the PDA that may be in your brief-
case. Other devices may be a bit less obvious: the “smart”
cell phone, the iPod, a digital camera, and other essentially
specialized computers, communications systems, and data
storage systems. Finally, there are the “hidden” computers
found in so many of today’s consumer products—such as
the ones that provide stability control, braking assistance,
and navigation in newer cars.

Computers not only seem to be everywhere, but also
are part of so many activities of daily life. They bring
together willing sellers and buyers on eBay, allow you
to buy a book with a click on the Amazon.com Web site,
and of course put a vast library of information (of vary-
ing quality) at your fingertips via the World Wide Web.
Behind the scenes, inventory and payroll systems keep
businesses running, track shipments, and more problem-
atically, keep track of where people go and what they
buy. Indeed, the infrastructure of modern society, from
water treatment plants to power grids to air-traffic con-
trol, depends on complex software and systems.

Modern science would be inconceivable without com-
puters to gather data and run models and simulations.
Whether bringing back pictures of the surface of Mars or
detailed images to guide brain surgeons, computers have
greatly extended our knowledge of the world around us and
our ability to turn ideas into engineering reality.

The revised edition of the Facts On File Encyclopedia of
Computer Science and Technology provides overviews and
important facts about these and dozens of other applica-
tions of computer technology. There are also many entries
dealing with the fundamental concepts underlying com-
puter design and programming, the Internet, and other
topics such as the economic and social impacts of the infor-
mation society.

The book’s philosophy is that because computer tech-
nology is now inextricably woven into our everyday lives,
anyone seeking to understand its impact must not only
know how the bits flow, but also how the industry works
and where it may be going in the years to come.

New and Enhanced Coverage

The need for a revised edition of this encyclopedia becomes
clear when one considers the new products, technologies,
and issues that have appeared in just a few years. (Consider
that at the start of the 2000 decade, Ajax was still only a
cleaning product and blog was not even a word.)

The revised edition includes almost 180 new entries,
including new programming languages (such as C# and
Ruby), software development and Web design technologies
(such as the aforementioned Ajax, and Web services), and
expanded coverage of Linux and other open-source soft-
ware. There are also entries for key companies in software,
hardware, and Web commerce and services.

Many other new entries reflect new ways of using infor-
mation technology and important social issues that arise
from such use, including the following:

• � blogging and newer forms of online communication
that are influencing journalism and political cam-
paigns

• � other ways for users to create and share content, such
as file-sharing networks and YouTube

• � new ways to share and access information, such as
the popular Wikipedia

• � the ongoing debate over who should pay for Internet
access, and whether service providers or governments
should be able to control the Web’s content

• � the impact of surveillance and data mining on privacy
and civil liberties

Intr oduction to the
Re vised Edition

vi        Introduction to the Revised Edition

• � threats to data security, ranging from identity thieves
and “phishers” to stalkers and potential “cyberterror-
ists”

• � the benefits and risks of social networking sites (such
as MySpace)

• � the impact of new technology on women and minori-
ties, young people, the disabled, and other groups

Other entries feature new or emerging technology, such
as

• � portable media devices (the iPod and its coming suc-
cessors)

• � home media centers and the gradual coming of the
long-promised “smart house”

• � navigation and mapping systems (and their integra-
tion with e-commerce)

• � how computers are changing the way cars, appliances,
and even telephones work

• � “Web 2.0”—and beyond

Finally, we look at the farther reaches of the imagina-
tion, considering such topics as

• � nanotechnology

• � quantum computing

• � science fiction and computing

• � philosophical and spiritual aspects of computing

• � the ultimate “technological singularity”

In addition to the many new entries, all existing entries
have been carefully reviewed and updated to include the
latest facts and trends.

Getting the Most Out of This Book

This encyclopedia can be used in several ways: for example,
you can look up specific entries by referring from topics in
the index, or simply by browsing. The nearly 600 entries
in this book are intended to read like “mini-essays,” giving
not just the bare definition of a topic, but also developing its
significance for the use of computers and its relationship to
other topics. Related topics are indicated by small capital
letters. At the end of each entry is a list of books, articles,
and/or Web sites for further exploration of the topic.

Every effort has been made to make the writing acces-
sible to a wide range of readers: high school and college
students, computer science students, working computer
professionals, and adults who wish to be better informed
about computer-related topics and issues.

The appendices provide further information for refer-
ence and exploration. They include a chronology of sig-
nificant events in computing; a listing of achievements in
computing as recognized in major awards; an additional
bibliography to supplement that given with the entries;
and finally, brief descriptions and contact information for
some important organizations in the computer field.

This book can also be useful to obtain an overview of
particular areas in computing by reading groups of related
entries. The following listing groups the entries by cat-
egory.

AI and Robotics
artificial intelligence
artificial life
Bayesian analysis
Breazeal, Cynthia
Brooks, Rodney
cellular automata
chess and computers
cognitive science
computer vision
Dreyfus, Hubert L.
Engelberger, Joseph
expert systems
Feigenbaum, Edward
fuzzy logic
genetic algorithms
handwriting recognition
iRobot Corporation
knowledge representation
Kurzweil, Raymond C.
Lanier, Jaron
Maes, Pattie
McCarthy, John
Minsky, Marvin Lee
MIT Media Lab
natural language processing
neural interfaces
neural network
Papert, Seymour
pattern recognition
robotics
singularity, technological
software agent
speech recognition and synthesis
telepresence
Weizenbaum, Joseph

Business and E-Commerce Applications
Amazon.com
America Online (AOL)
application service provider (ASP)
application software
application suite
auctions, online
auditing in data processing
banking and computers
Bezos, Jeffrey P.
Brin, Sergey
business applications of computers
Craigslist
customer relationship management (CRM)
decision support system
desktop publishing (DTP)

Introduction to the Revised Edition        vii

enterprise computing
Google
groupware
home office
management information system (MIS)
middleware
office automation
Omidyar, Pierre
online advertising
online investing
online job searching and recruiting
optical character recognition (OCR)
Page, Larry
PDF (Portable Document Format)
personal health information management
personal information manager (PIM)
presentation software
project management software
smart card
spreadsheet
supply chain management
systems analyst
telecommuting
text editor
transaction processing
trust and reputation systems
word processing
Yahoo!

Computer Architecture
addressing
arithmetic logic unit (ALU)
bits and bytes
buffering
bus
cache
computer engineering
concurrent programming
cooperative processing
Cray, Seymour
device driver
distributed computing
embedded system
grid computing
parallel port
reduced instruction set computer (RISC)
serial port
supercomputer
USB (Universal Serial Bus)

Computer Industry
Adobe Systems
Advanced Micro Devices (AMD)
Amdahl, Gene Myron
Apple Corporation
Bell, C. Gordon
Bell Laboratories
benchmark

certification of computer professionals
Cisco Systems
compatibility and portability
computer industry
Dell, Inc.
education in the computer field
employment in the computer field
entrepreneurs in computing
Gates, William III (Bill)
Grove, Andrew
IBM
Intel Corporation
journalism and the computer industry
marketing of software
Microsoft Corporation
Moore, Gordon E.
Motorola Corporation
research laboratories in computing
standards in computing
Sun Microsystems
Wozniak, Steven

Computer Science Fundamentals
Church, Alonzo
computer science
computability and complexity
cybernetics
hexadecimal system
information theory
mathematics of computing
measurement units used in computing
Turing, Alan Mathison
von Neumann, John
Wiener, Norbert

Computer Security and Risks
authentication
backup and archive systems
biometrics
computer crime and security
computer forensics
computer virus
copy protection
counterterrorism and computers
cyberstalking and harassment
cyberterrorism
Diffie, Bailey Whitfield
disaster planning and recovery
encryption
fault tolerance
firewall
hackers and hacking
identity theft
information warfare
Mitnick, Kevin D.
online frauds and scams
phishing and spoofing
RFID (radio frequency identification)

viii        Introduction to the Revised Edition

risks of computing
Spafford, Eugene H.
spam
spyware and adware
Y2K Problem

Databases
CORBA (Common Object Request Broker Architecture)
data conversion
data dictionary
data mining
data security
data warehouse
database administration
database management system (DBMS)
database
hashing
information retrieval
Oracle Corporation
SAP
SOAP (Simple Object Access Protocol)
SQL

Data Communications and Networking
(General)
bandwidth
Bluetooth
broadband
cable modem
client-server computing
data acquisition
data communications
data compression
DSL (digital subscriber line)
error correction
fiber optics
file server
file transfer protocols
FireWire
local area network (LAN)
modem
network
satellite Internet service
Shannon, Claude E
synchronous/asynchronous operation
telecommunications
terminal
Wifi
wireless computing

Data Types and Algorithms
algorithm
array
binding
bitwise operations
Boolean operators
branching statements
characters and strings

class
constants and literals
data
data abstraction
data structures
data types
enumerations and sets
heap (data structure)
Knuth, Donald
list processing
numeric data
operators and expressions
sorting and searching
stack
tree
variable

Development of Computers
Aiken, Howard
analog and digital
analog computer
Atanasoff, John Vincent
Babbage, Charles
calculator
Eckert, J. Presper
history of computing
Hollerith, Hermann
Mauchly, John William
mainframe
minicomputer
Zuse, Konrad

Future Computing
bioinformation
Dertouzos, Michael
Joy, Bill
molecular computing
nanotechnology
quantum computing
trends and emerging technologies
ubiquitous computing

Games, Graphics, and Media
animation, computer
art and the computer
bitmapped image
codec
color in computing
computer games
computer graphics
digital rights management (DRM)
DVR (digital video recording)
Electronic Arts
film industry and computing
font
fractals in computing
game consoles
graphics card

Introduction to the Revised Edition        ix

graphics formats
graphics tablet
image processing
media center, home
multimedia
music and video distribution, online
music and video players, digital
music, computer
online gambling
online games
photography, digital
podcasting
PostScript
RSS (real simple syndication)
RTF (Rich Text Format)
sound file formats
streaming (video or audio)
Sutherland, Ivan Edward
video editing, digital
YouTube

Hardware Components
CD-ROM and DVD-ROM
flash drive
flat-panel display
floppy disk
hard disk
keyboard
monitor
motherboard
networked storage
optical computing
printers
punched cards and paper tape
RAID (redundant array of inexpensive disks)
scanner
tape drives

Internet and World Wide Web
active server pages (ASP)
Ajax (Asynchronous JavaScript and XML)
Andreessen, Marc
Berners-Lee, Tim
blogs and blogging
bulletin board systems (BBS)
Bush, Vannevar
cascading style sheets (CSS)
Cerf, Vinton G.
certificate, digital
CGI (common gateway interface)
chat, online
chatterbots
conferencing systems
content management
cookies
Cunningham, Howard (Ward)
cyberspace and cyber culture
digital cash (e-commerce)
digital convergence

domain name system (DNS)
eBay
e-books and digital libraries
e-commerce
e-mail
file-sharing and P2P networks
flash and smart mob
HTML, DHTML, and XHTML
hypertext and hypermedia
Internet
Internet applications programming
Internet cafes and “hot spots”
Internet organization and governance
Internet radio
Internet service provider (ISP)
Kleinrock, Leonard
Licklider, J. C. R.
mashups
Netiquette
netnews and newsgroups
online research
online services
portal
Rheingold, Howard
search engine
semantic Web
social networking
TCP/IP
texting and instant messaging
user-created content
videoconferencing
virtual community
Wales, Jimmy
Web 2.0 and beyond
Web browser
Web cam
Web filter
Webmaster
Web page design
Web server
Web services
wikis and Wikipedia
World Wide Web
XML

Operating Systems
demon
emulation
file
input/output (I/O)
job control language
kernel
Linux
memory
memory management
message passing
microsoft windows
MS-DOS
multiprocessing

�        Introduction to the Revised Edition

multitasking
operating system
OS X
system administrator
regular expression
Ritchie, Dennis
shell
Stallman, Richard
Torvalds, Linus
UNIX

Other Applications
bioinformatics
cars and computing
computer-aided design and manufacturing (CAD/CAM)
computer-aided instruction (CAI)
distance education
education and computers
financial software
geographical information systems (GIS)
journalism and computers
language translation software
law enforcement and computers
legal software
libraries and computing
linguistics and computing
map information and navigation systems
mathematics software
medical applications of computers
military applications of computers
scientific computing applications
smart buildings and homes
social sciences and computing
space exploration and computers
statistics and computing
typography, computerized
workstation

Personal Computer Components
BIOS (Basic Input-Output System)
boot sequence
chip
chipset
clock speed
CPU (central processing unit)
green PC
IBM PC
laptop computer
microprocessor
personal computer (PC)
PDA (personal digital assistant)
plug and play
smartphone
tablet PC

Program Language Concepts
authoring systems
automatic programming
assembler

Backus-Naur Form (BNF)
compiler
encapsulation
finite state machine
flag
functional languages
interpreter
loop
modeling languages
nonprocedural languages
ontologies and data models
operators and expressions
parsing
pointers and indirection
procedures and functions
programming languages
queue
random number generation
real-time processing
recursion
scheduling and prioritization
scripting languages
Stroustrup, Bjarne
template
Wirth, Niklaus

Programming Languages
Ada
Algol
APL
awk
BASIC
C
C#
C++
Cobol
Eiffel
Forth
FORTRAN
Java
JavaScript
LISP
LOGO
Lua
Pascal
Perl
PHP
PL/1
Prolog
Python
RPG
Ruby
Simula
Tcl
Smalltalk
VBScript

Social, Political, and Legal Issues
anonymity and the Internet
censorship and the Internet

Introduction to the Revised Edition        xi

computer literacy
cyberlaw
developing nations and computing
digital divide
disabled persons and computing
e-government
electronic voting systems
globalization and the computer industry
government funding of computer research
identity in the online world
intellectual property and computing
Lessig, Lawerence
net neutrality
philosophical and spiritual aspects of computing
political activism and the Internet
popular culture and computing
privacy in the digital age
science fiction and computing
senior citizens and computing
service-oriented architecture (SOA)
social impact of computing
Stoll, Clifford
technology policy
women and minorities in computing
young people and computing

Software Development and Engineering
applet
application program interface (API)
bugs and debugging
CASE (computer-aided software engineering)
design patterns
Dijkstra, Edsger
documentation of program code
documentation, user
document model
DOM (document Object Model)
error handling
flowchart
Hopper, Grace Murray
information design

internationalization and localization
library, program
macro
Microsoft .NET
object-oriented programming (OOP)
open source movement
plug-in
programming as a profession
programming environment
pseudocode
quality assurance, software
reverse engineering
shareware
Simonyi, Charles
simulation
software engineering
structured programming
systems programming
virtualization

User Interface and Support
digital dashboard
Engelbart, Doug
ergonomics of computing
haptic interface
help systems
installation of software
Jobs, Steven Paul
Kay, Alan
Macintosh
mouse
Negroponte, Nicholas
psychology of computing
technical support
technical writing
touchscreen
Turkle, Sherry
ser groups
user interface
virtual reality
wearable computers

A

�

abstract data type  See data abstraction.

active server pages  (ASP)
Many users think of Web pages as being like pages in
a book, stored intact on the server, ready to be flipped
through with the mouse. Increasingly, however, Web pages
are dynamic—they do not actually exist until the user
requests them, and their content is determined largely by
what the user requests. This demand for greater interactiv-
ity and customization of Web content tends to fall first on
the server (see client-server computing and Web server)
and on “server side” programs to provide such functions as
database access. One major platform for developing Web
services is Microsoft’s Active Server Pages (ASP).

In ASP programmers work with built-in objects that rep-
resent basic Web page functions. The RecordSet object can
provide access to a variety of databases; the Response object
can be invoked to display text in response to a user action;
and the Session object provides variables that can be used
to store information about previous user actions such as
adding items to a shopping cart (see also cookies).

Control of the behavior of the objects within the Web
page and session was originally handled by code written
in a scripting language such as VBScript and embedded
within the HTML text (see html and VBScript). How-
ever, ASP .NET, based on Microsoft’s latest Windows
class libraries (see Microsoft .net) and introduced in
2002, allows Web services to be written in full-fledged
programming languages such as Visual Basic .NET and

C#, although in-page scripting can still be used. This can
provide several advantages: access to software develop-
ment tools and methodologies available for established
programming languages, better separation of program
code from the “presentational” (formatting) elements of
HTML, and the speed and security associated with com-
piled code. ASP .NET also emphasizes the increasingly
prevalent Extensible Markup Language (see xml) for orga-
nizing data and sending those data between objects using
Simple Object Access Protocol (see soap).

Although ASP .NET was designed to be used with
Microsoft’s Internet Information Server (IIS) under Win-
dows, the open-source Mono project (sponsored by Novell)
implements a growing subset of the .NET classes for use on
UNIX and Linux platforms using a C# compiler with appro-
priate user interface, graphics, and database libraries.

An alternative (or complementary) approach that has
become popular in recent years reduces the load on the
Web server by avoiding having to resend an entire Web
page when only a small part actually needs to be changed.
See Ajax (asynchronous JavaScript and XML).

Further Reading
Bellinaso, Marco. ASP .NET 2.0 Website Programming: Problem—

Design—Solution. Indianapolis: Wiley Publishing, 2006.
Liberty, Jesse, and Dan Hurwitz. Programming ASP .NET. 3rd ed.

Sebastapol, Calif.: O’Reilly, 2005.
McClure, Wallace B., et al. Beginning Ajax with ASP .NET. India-

napolis: Wiley Publishing, 2006.
Mono Project. Available online. URL: http://www.mono-project.

com/Main_Page. Accessed April 10, 2007.

Ada
Starting in the 1960s, the U.S. Department of Defense
(DOD) began to confront the growing unmanageability of
its software development efforts. Whenever a new applica-
tion such as a communications controller (see embedded
system) was developed, it typically had its own special-
ized programming language. With more than 2,000 such
languages in use, it had become increasingly costly and
difficult to maintain and upgrade such a wide variety of
incompatible systems. In 1977, a DOD working group began
to formally solicit proposals for a new general-purpose pro-
gramming language that could be used for all applications
ranging from weapons control and guidance systems to bar-
code scanners for inventory management. The winning lan-
guage proposal eventually became known as Ada, named
for 19th-century computer pioneer Ada Lovelace see also
Babbage, Charles). After a series of reviews and revisions
of specifications, the American National Standards Institute
officially standardized Ada in 1983, and this first version of
the language is sometimes called Ada-83.

Language Features
In designing Ada, the developers adopted basic language
elements based on emerging principles (see structured
programming) that had been implemented in languages
developed during the 1960s and 1970s (see Algol and
Pascal). These elements include well-defined control
structures (see branching statements and loop) and
the avoidance of the haphazard jump or “goto” directive.

Ada combines standard structured language features
(including control structures and the use of subprograms)
with user-definable data type “packages” similar to the
classes used later in C++ and other languages (see class
and object-oriented programming). As shown in this
simple example, an Ada program has a general form similar
to that used in Pascal. (Note that words in boldface type are
language keywords.)

with Ada.Text_IO; use Ada.Text_IO;
procedure Get_Name is
Name : String (1..80);
Length : Integer;

begin
Put (“What is your first name?”);
Get_Line (Name, Length);
New_Line;
Put (“Nice to meet you,”);
Put (Name (1..Length));
end Get_Name;

The first line of the program specifies what “packages”
will be used. Packages are structures that combine data
types and associated functions, such as those needed for
getting and displaying text. The Ada.Text.IO package, for
example, has a specification that includes the following:

package Text_IO is
type File_Type is limited private;
type File_Mode is (In_File, Out_File, Append_File);

procedure Create (File : in out File_Type;
Mode : in File_Mode := Out_File;
Name : in String := “”);
procedure Close (File : in out File_Type);
procedure Put_Line (File : in File_Type;
Item : in String);
procedure Put_Line (Item : in String);
end Text_IO;

The package specification begins by setting up a data
type for files, and then defines functions for creating and
closing a file and for putting text in files. As with C++
classes, more specialized packages can be derived from
more general ones.

In the main program Begin starts the actual data pro-
cessing, which in this case involves displaying a message
using the Put function from the Ada.Text.IO function and
getting the user response with Get_Line, then using Put
again to display the text just entered.

Ada is particularly well suited to large, complex software
projects because the use of packages hides and protects the
details of implementing and working with a data type. A
programmer whose program uses a package is restricted to
using the visible interface, which specifies what parameters
are to be used with each function. Ada compilers are care-
fully validated to ensure that they meet the exact specifica-
tions for the processing of various types of data (see data
types), and the language is “strongly typed,” meaning that
types must be explicitly declared, unlike the case with C,
where subtle bugs can be introduced when types are auto-
matically converted to make them compatible.

Because of its application to embedded systems and real-
time operations, Ada includes a number of features designed
to create efficient object (machine) code, and the language
also makes provision for easy incorporation of routines writ-
ten in assembly or other high-level languages. The latest offi-
cial version, Ada 95, also emphasizes support for parallel
programming (see multiprocessing). The future of Ada is
unclear, however, because the Department of Defense no lon-
ger requires use of the language in government contracts.

Ada development has continued, particularly in areas
including expanded object-oriented features (including
support for interfaces with multiple inheritance); improved
handling of strings, other data types, and files; and refine-
ments in real-time processing and numeric processing.

Further Reading
“Ada 95 Lovelace Tutorial.” Available online. URL: http://www.

adahome.com/Tutorials/Lovelace/lovelace.htm. Accessed April
18, 2008.

Ada 95 On-line Reference Manual (hypertext) Available online.
URL: http://www.adahome.com/Resources/refs/rm95.html.
Accessed April 18, 2008.

Barnes, John. Programming in Ada 2005 with CD. New York: Pear-
son Education, 2006.

Dale, Nell, and John W. McCormick. Ada Plus Data Structures: An
Object-Oriented Approach. 2nd ed. Sudbury, Mass.: Jones and
Bartlett, 2006.

�        Ada

addressing
In order for computers to manipulate data, they must be
able to store and retrieve it on demand. This requires a way
to specify the location and extent of a data item in memory.
These locations are represented by sequential numbers, or
addresses.

Physically, a modern RAM (random access memory)
can be visualized as a grid of address lines that crisscross
with data lines. Each line carries one bit of the address,
and together, they specify a particular location in memory
(see memory). Thus a machine with 32 address lines can
handle up to 32 bits, or 4 gigabytes (billions of bytes) worth
of addresses. However the amount of memory that can be
addressed can be extended through indirect addressing,
where the data stored at an address is itself the address of
another location where the actual data can be found. This
allows a limited amount of fast memory to be used to point
to data stored in auxiliary memory or mass storage thus
extending addressing to the space on a hard disk drive.

Some of the data stored in memory contains the actual
program instructions to be executed. As the processor
executes program instructions, an instruction pointer
accesses the location of the next instruction. An instruc-
tion can also specify that if a certain condition is met the
processor will jump over intervening locations to fetch
the next instruction. This implements such control struc-
tures as branching statements and loops.

Addressing in Programs
A variable name in a program language actually references
an address (or often, a range of successive addresses, since
most data items require more than one byte of storage). For
example, if a program includes the declaration

Int Old_Total, New_Total;

when the program is compiled, storage for the variables
Old_Total and New_Total is set aside at the next available
addresses. A statement such as

New_Total = 0;

is compiled as an instruction to store the value 0 in the
address represented by New_Total. When the program later
performs a calculation such as:

New_Total = Old_Total + 1;

the data is retrieved from the memory location designated
by Old_Total and stored in a register in the CPU, where 1 is
added to it, and the result is stored in the memory location
designated by New_Total.

Although programmers don’t have to work directly with
address locations, programs can also use a special type of
variable to hold and manipulate memory addresses for more
efficient access to data (see pointers and indirection).

Further Reading
“Computer Architecture Tutorial.” Available online. URL: http://

www.cs.iastate.edu/~prabhu/Tutorial/title.html. Accessed April
10, 2007.

Murdocca, Miles J., and Vincent P. Heuring. Principles of Computer
Architecture. Upper Saddle River, N.J.: Prentice Hall, 2000.

Adobe Systems
Adobe Systems (NASDAQ symbol ADBE) is best known for
products relating to the formatting, printing, and display of
documents. Founded in 1982 by John Warnock and Charles
Geschke, the company is named for a creek near one of their
homes.

Adobe’s first major product was a language that describes
the font sizes, styles, and other formatting needed to print
pages in near-typeset quality (see PostScript). This was a
significant contribution to the development of software for
document creation (see desktop publishing), particularly on
the Apple Macintosh, starting in the later 1980s. Building on
this foundation, Adobe developed high-quality digital fonts
(called Type 1). However, Apple’s TrueType fonts proved to
be superior in scaling to different sizes and in the precise
control over the pixels used to display them. With the licens-
ing of TrueType to Microsoft for use in Windows, TrueType
fonts took over the desktop, although Adobe Type 1 remained
popular in commercial typesetting applications. Finally, in
the late 1990s Adobe, together with Microsoft, established a
new font format called OpenType, and by 2003 Adobe had
converted all of its Type 1 fonts to the new format.

Adobe’s Portable Document Format (see pdf) has become
a ubiquitous standard for displaying print documents. Adobe
greatly contributed to this development by making a free
Adobe Acrobat PDF reader available for download.

Virtual memory uses indirect addressing. When a program requests
data from memory, the address is looked up in a table that keeps
track of each block’s actual location. If the block is not in RAM, one
or more blocks in RAM are copied to the swap file on disk, and the
needed blocks are copied from disk into the vacated area in RAM.

Adobe Systems        �

Image Processing Software
In the mid-1980s Adobe’s founders realized that they could
further exploit the knowledge of graphics rendition that they
had gained in developing their fonts. They began to create
software that would make these capabilities available to illus-
trators and artists as well as desktop publishers. Their first
such product was Adobe Illustrator for the Macintosh, a vec-
tor-based drawing program that built upon the graphics capa-
bilities of their PostScript language.

In 1989 Adobe introduced Adobe Photoshop for the
Macintosh. With its tremendous variety of features, the
program soon became a standard tool for graphic artists.
However, Adobe seemed to have difficulty at first in antici-
pating the growth of desktop publishing and graphic arts
on the Microsoft Windows platform. Much of that market
was seized by competitors such as Aldus PageMaker and
QuarkXPress. By the mid-1990s, however, Adobe, fueled by
the continuing revenue from its PostScript technology, had
acquired both Aldus and Frame Technologies, maker of the
popular FrameMaker document design program. Meanwhile
PhotoShop continued to develop on both the Macintosh and
Windows platforms, aided by its ability to accept add-ons
from hundreds of third-party developers (see plug-ins).

Multimedia and the Web
Adobe made a significant expansion beyond document pro-
cessing into multimedia with its acquisition of Macromedia
(with its popular Flash animation software) in 2005 at a cost
of about $3.4 billion. The company has integrated Macrome-
dia’s Flash and Dreamweaver Web-design software into its
Creative Suite 3 (CS3). Another recent Adobe product that
targets Web-based publishing is Digital Editions, which inte-
grated the existing Dreamweaver and Flash software into a
powerful but easy-to-use tool for delivering text content and
multimedia to Web browsers. Buoyed by these developments,
Adobe earned nearly $2 billion in revenue in 2005, about
$2.5 billion in 2006, and $3.16 billion in 2007.

Today Adobe has over 6,600 employees, with its head-
quarters in San Jose and offices in Seattle and San Francisco
as well as Bangalore, India; Ottawa, Canada; and other loca-
tions. In recent years the company has been regarded as a
superior place to work, being ranked by Fortune magazine
as the fifth best in America in 2003 and sixth best in 2004.

Further Reading
“Adobe Advances on Stronger Profit.” Business Week Online, Decem

ber 18, 2006. Available online. URL: http://www.business-
week.com/investor/content/dec2006/pi20061215_986588.
htm. Accessed April 10, 2007.

Adobe Systems Incorporated home page. Available online. URL:
http://www.adobe.com. Accessed April 10, 2007.

“Happy Birthday Acrobat: Adobe’s Acrobat Turns 10 Years Old.”
Print Media 18 (July–August 2003): 21.

Advanced Micro Devices  (AMD)
Sunnyvale, California-based Advanced Micro Devices, Inc.,
(NYSE symbol AMD) is a major competitor in the market
for integrated circuits, particularly the processors that are

at the heart of today’s desktop and laptop computers (see
microprocessor). The company was founded in 1969 by a
group of executives who had left Fairchild Semiconductor.
In 1975 the company began to produce both RAM (mem-
ory) chips and a clone of the Intel 8080 microprocessor.

When IBM adopted the Intel 8080 for its first personal
computer in 1982 (see Intel Corporation and IBM PC),
it required that there be a second source for the chip. Intel
therefore signed an agreement with AMD to allow the latter
to manufacture the Intel 9806 and 8088 processors. AMD
also produced the 80286, the second generation of PC-com-
patible processors, but when Intel developed the 80386 it
canceled the agreement with AMD.

A lengthy legal dispute ensued, with the California
Supreme Court finally siding with AMD in 1991. However,
as disputes continued over the use by AMD of “microcode”
(internal programming) from Intel chips, AMD eventually
used a “clean room” process to independently create func-
tionally equivalent code (see reverse engineering). How-
ever, the speed with which new generations of chips was
being produced rendered this approach impracticable by
the mid-1980s, and Intel and AMD concluded a (largely
secret) agreement allowing AMD to use Intel code and pro-
viding for cross-licensing of patents.

In the early and mid-1990s AMD had trouble keeping up
with Intel’s new Pentium line, but the AMD K6 (introduced
in 1997) was widely viewed as a superior implementation of
the microcode in the Intel Pentium—and it was “pin com-
patible,” making it easy for manufacturers to include it on
their motherboards.

Today AMD remains second in market share to Intel.
AMD’s Athlon, Opteron, Turion, and Sempron processors
are comparable to corresponding Intel Pentium processors,
and the two companies compete fiercely as each introduces
new architectural features to provide greater speed or pro-
cessing capacity.

In the early 2000s AMD seized the opportunity to beat
Intel to market with chips that could double the data band-
width from 32 bits to 64 bits. The new specification stan-
dard, called AMD64, was adopted for upcoming operating
systems by Microsoft, Sun Microsystems, and the develop-
ers of Linux and UNIX kernels. AMD has also matched
Intel in the latest generation of dual-core chips that essen-
tially provide two processors on one chip. Meanwhile,
AMD strengthened its position in the high-end server mar-
ket when, in May 2006, Dell Computer announced that it
would market servers containing AMD Opteron processors.
In 2006 AMD also moved into the graphics-processing field
by merging with ATI, a leading maker of video cards, at
a cost of $5.4 billion. Meanwhile AMD also continues to
be a leading maker of flash memory, closely collaborat-
ing with Japan’s Fujitsu Corporation (see flash drive). In
2008 AMD continued its aggressive pursuit of market share,
announcing a variety of products, including a quad-core
Opteron chip that it expects to catch up to if not surpass
similar chips from Intel.

�        Advanced Micro Devices (AMD)

Further Reading
AMD Web site. Available online. URL: http://www.amd.com/us-

en/. Accessed April 10, 2007.
Rodengen, Jeffrey L. The Spirit of AMD: Advanced Micro Devices. Ft.

Lauderdale, Fla.: Write Stuff Enterprises, 1998.
Tom’s Hardware [CPU articles and charts]. Available online. URL:

http://www.tomshardware.com/find_by_topic/cpu.html.
Accessed April 10, 2007.

advertising, online  See online advertising.

agent software  See software agent.

AI  See artificial intelligence.

Aiken, Howard
(1900–1973)
American
Electrical Engineer

Howard Hathaway Aiken was a pioneer in the development
of automatic calculating machines. Born on March 8, 1900,
in Hoboken, New Jersey, he grew up in Indianapolis, Indi-
ana, where he pursued his interest in electrical engineering
by working at a utility company while in high school. He
earned a B.A. in electrical engineering in 1923 at the Uni-
versity of Wisconsin.

By 1935, Aiken was involved in theoretical work on
electrical conduction that required laborious calculation.
Inspired by work a hundred years earlier (see Babbage,
Charles), Aiken began to investigate the possibility of build-
ing a large-scale, programmable, automatic computing device
(see calculator). As a doctoral student at Harvard, Aiken
aroused interest in his project, particularly from Thomas
Watson, Sr., head of International Business Machines (IBM).
In 1939, IBM agreed to underwrite the building of Aiken’s
first calculator, the Automatic Sequence Controlled Calcula-
tor, which became known as the Harvard Mark I.

Mark I and Its Progeny
Like Babbage, Aiken aimed for a general-purpose program-
mable machine rather than an assembly of special-pur-
pose arithmetic units. Unlike Babbage, Aiken had access
to a variety of tested, reliable components, including card
punches, readers, and electric typewriters from IBM and
the mechanical electromagnetic relays used for automatic
switching in the telephone industry. His machine used dec-
imal numbers (23 digits and a sign) rather than the binary
numbers of the majority of later computers. Sixty registers
held whatever constant data numbers were needed to solve
a particular problem. The operator turned a rotary dial to
enter each digit of each number. Variable data and program
instructions were entered via punched paper tape. Calcula-
tions had to be broken down into specific instructions simi-

lar to those in later low-level programming languages such
as “store this number in this register” or “add this number
to the number in that register” (see assembler). The results
(usually tables of mathematical function values) could be
printed by an electric typewriter or output on punched
cards. Huge (about 8 feet [2.4 m] high by 51 feet [15.5 m]
long), slow, but reliable, the Mark I worked on a variety
of problems during World War II, ranging from equations
used in lens design and radar to the designing of the implo-
sive core of an atomic bomb.

Aiken completed an improved model, the Mark II, in
1947. The Mark III of 1950 and Mark IV of 1952, however,
were electronic rather than electromechanical, replacing
relays with vacuum tubes.

Compared to later computers such as the ENIAC and
UNIVAC, the sequential calculator, as its name suggests,
could only perform operations in the order specified. Any
looping had to be done by physically creating a repetitive
tape of instructions. (After all, the program as a whole was
not stored in any sort of memory, and so previous instruc-
tions could not be reaccessed.) Although Aiken’s machines
soon slipped out of the mainstream of computer develop-
ment, they did include the modern feature of parallel pro-
cessing, because different calculation units could work on
different instructions at the same time. Further, Aiken rec-
ognized the value of maintaining a library of frequently
needed routines that could be reused in new programs—
another fundamental of modern software engineering.

Aiken’s work demonstrated the value of large-scale auto-
matic computation and the use of reliable, available tech-
nology. Computer pioneers from around the world came to
Aiken’s Harvard computation lab to debate many issues that
would become staples of the new discipline of computer
science. The recipient of many awards including the Edison
Medal of the IEEE and the Franklin Institute’s John Price
Award, Howard Aiken died on March 14, 1973, in St. Louis,
Missouri.

Further Reading
Cohen, I. B. Howard Aiken: Portrait of a Computer Pioneer. Cam-

bridge, Mass.: MIT Press, 1999.
Cohen, I. B., R. V. D. Campbell, and G. Welch, eds. Makin’ Num-

bers: Howard Aiken and the Computer. Cambridge, Mass.: MIT
Press, 1999.

Ajax  (Asynchronous JavaScript and XML)
With the tremendous growth in Web usage comes a chal-
lenge to deliver Web-page content more efficiently and with
greater flexibility. This is desirable to serve adequately the
many users who still rely on relatively low-speed dial-up
Internet connections and to reduce the demand on Web
servers. Ajax (asynchronous JavaScript and XML) takes
advantage of several emerging Web-development technolo-
gies to allow Web pages to interact with users while keep-
ing the amount of data to be transmitted to a minimum.

In keeping with modern Web-design principles, the
organization of the Web page is managed by coding in
XHTML, a dialect of HTML that uses the stricter rules and

Ajax        �

grammar of the data-description markup language XML
(see html, dhtml, and xhtml and xml). Alternatively,
data can be stored directly in XML. A structure called
the DOM (Document Object Model; see dom) is used to
request data from the server, which is accessed through an
object called httpRequest. The “presentational” information
(regarding such matters as fonts, font sizes and styles, justi-
fication of paragraphs, and so on) is generally incorporated
in an associated cascading style sheet (see cascading style
sheets). Behavior such as the presentation and processing
of forms or user controls is usually handled by a scripting
language (for example, see JavaScript). Ajax techniques tie
these forms of processing together so that only the part of
the Web page affected by current user activity needs to be
updated. Only a small amount of data needs to be received
from the server, while most of the HTML code needed to
update the page is generated on the client side—that is, in
the Web browser. Besides making Web pages more flexible
and interactive, Ajax also makes it much easier to develop
more elaborate applications, even delivering fully functional
applications such as word processing and spreadsheets over
the Web (see application service provider).

Some critics of Ajax have decried its reliance on Java
Script, arguing that the language has a hard-to-use syntax
similar to the C language and poorly implements objects
(see object-oriented programming). There is also a need
to standardize behavior across the popular Web browsers.
Nevertheless, Ajax has rapidly caught on in the Web devel-
opment community, filling bookstore shelves with books
on applying Ajax techniques to a variety of other languages
(see, for example, php).

Ajax can be simplified by providing a framework of
objects and methods that the programmer can use to set up
and manage the connections between server and browser.
Some frameworks simply provide a set of data structures
and functions (see application program interface), while
others include Ajax-enabled user interface components such
as buttons or window tabs. Ajax frameworks also vary in

how much of the processing is done on the server and how
much is done on the client (browser) side. Ajax frameworks
are most commonly used with JavaScript, but also exist for
Java (Google Web Toolkit), PHP, C++, and Python as well as
other scripting languages. An interesting example is Flap-
jax, a project developed by researchers at Brown University.
Flapjax is a complete high-level programming language that
uses the same syntax as the popular JavaScript but hides
the messy details of sharing and updating data between cli-
ent and server.

Drawbacks and Challenges
By their very nature, Ajax-delivered pages behave differ-
ently from conventional Web pages. Because the updated
page is not downloaded as such from the server, the
browser cannot record it in its “history” and allow the
user to click the “back” button to return to a previous
page. Mechanisms for counting the number of page views
can also fail. As a workaround, programmers have some-
times created “invisible” pages that are used to make the
desired history entries. Another problem is that since con-
tent manipulated using Ajax is not stored in discrete pages
with identifiable URLs, conventional search engines can-
not read and index it, so a copy of the data must be pro-
vided on a conventional page for indexing. The extent
to which XML should be used in place of more compact
data representations is also a concern for many devel-
opers. Finally, accessibility tools (see disabled persons
and computers) often do not work with Ajax-delivered
content, so an alternative form must often be provided to
comply with accessibility guidelines or regulations.

Despite these concerns, Ajax is in widespread use and
can be seen in action in many popular Web sites, including
Google Maps and the photo-sharing site Flickr.com.

Further Reading
Ajaxian [news and resources for Ajax developers]. Available

online. URL: http://ajaxian.com/. Accessed April 10, 2007.
Crane, David, Eric Pascarello, and Darren James. Ajax in Action.

Greenwich, Conn.: Manning Publications, 2006.
“Google Web Toolkit: Build AJAX Apps in the Java Language.”

Available online. URL: http://code.google.com/webtoolkit/.
Accessed April 10, 2007.

Holzner, Steve. Ajax for Dummies. Hoboken, N.J.: Wiley, 2006.
Jacobs, Sas. Beginning XML with DOM and Ajax: From Novice to

Professional. Berkeley, Calif.: Apress, 2006.

Algol
The 1950s and early 1960s saw the emergence of two high-
level computer languages into widespread use. The first was
designed to be an efficient language for performing scien-
tific calculations (see fortran). The second was designed
for business applications, with an emphasis on data pro-
cessing (see cobol). However many programs continued to
be coded in low-level languages (see assembler) designed
to take advantages of the hardware features of particular
machines.

In order to be able to easily express and share meth-
ods of calculation (see algorithm), leading programmers

Ajax is a way to quickly and efficiently update dynamic Web
pages—formatting is separate from content, making it easy to
revise the latter.

�        Algol

began to seek a “universal” programming language that
was not designed for a particular application or hardware
platform. By 1957, the German GAMM (Gesellschaft für
angewandte Mathematik und Mechanik) and the American
ACM (Association for Computing Machinery) had joined
forces to develop the specifications for such a language. The
result became known as the Zurich Report or Algol-58, and
it was refined into the first widespread implementation of
the language, Algol-60.

Language Features
Algol is a block-structured, procedural language. Each vari-
able is declared to belong to one of a small number of kinds
of data including integer, real number (see data types),
or a series of values of either type (see array). While the
number of types is limited and there is no facility for defin-
ing new types, the compiler’s type checking (making sure a
data item matches the variable’s declared type) introduced a
level of security not found in most earlier languages.

An Algol program can contain a number of separate
procedures or incorporate externally defined procedures
(see library, program), and the variables with the same
name in different procedure blocks do not interfere with
one another. A procedure can call itself (see recursion).
Standard control structures (see branching statements
and loop) were provided.

The following simple Algol program stores the numbers
from 1 to 10 in an array while adding them up, then prints
the total:

begin
integer array ints[1:10];
integer counter, total;
total := 0;
for counter :=1 step 1 until counter > 10
do

begin
ints [counter] := counter;
total := total + ints[counter];

end;
printstring “The total is:”;
printint (total);
end

Algol’s Legacy
The revision that became known as Algol-68 expanded
the variety of data types (including the addition of bool-
ean, or true/false values) and added user-defined types
and “structs” (records containing fields of different types
of data). Pointers (references to values) were also imple-
mented, and flexibility was added to the parameters that
could be passed to and from procedures.

Although Algol was used as a production language in
some computer centers (particularly in Europe), its rela-
tive complexity and unfamiliarity impeded its acceptance,
as did the widespread corporate backing for the rival lan-
guages FORTRAN and especially COBOL. Algol achieved
its greatest success in two respects: for a time it became
the language of choice for describing new algorithms for

computer scientists, and its structural features would be
adopted in the new procedural languages that emerged in
the 1970s (see Pascal and c).

Further Reading
“Algol 68 Home Page.” URL: http://www.algol68.org. Accessed

April 10, 2007.
Backus, J. W., and others. “Revised Report on the Algorithmic Lan-

guage Algol 60.” Originally published in Numerische Mathema-
tik, the Communications of the ACM, and the Journal of the British
Computer Society. Available online. URL: http://www.masswerk.
at/algol60/report.htm. Accessed April 10, 2007.

algorithm
When people think of computers, they usually think of
silicon chips and circuit boards. Moving from relays to
vacuum tubes to transistors to integrated circuits has
vastly increased the power and speed of computers, but
the essential idea behind the work computers do remains
the algorithm. An algorithm is a reliable, definable proce-
dure for solving a problem. The idea of the algorithm goes
back to the beginnings of mathematics and elementary
school students are usually taught a variety of algorithms.
For example, the procedure for long division by succes-
sive division, subtraction, and attaching the next digit is
an algorithm. Since a bona fide algorithm is guaranteed to
work given the specified type of data and the rote following
of a series of steps, the algorithmic approach is naturally
suited to mechanical computation.

Algorithms in Computer Science
Just as a cook learns both general techniques such as how
to sauté or how to reduce a sauce and a repertoire of specific
recipes, a student of computer science learns both general
problem-solving principles and the details of common algo-
rithms. These include a variety of algorithms for organizing
data (see sorting and searching), for numeric problems
(such as generating random numbers or finding primes),
and for the manipulation of data structures (see list pro-
cessing and queue).

A working programmer faced with a new task first tries
to think of familiar algorithms that might be applicable to
the current problem, perhaps with some adaptation. For
example, since a variety of well-tested and well-understood
sorting algorithms have been developed, a programmer is
likely to apply an existing algorithm to a sorting problem
rather than attempt to come up with something entirely
new. Indeed, for most widely used programming languages
there are packages of modules or procedures that imple-
ment commonly needed data structures and algorithms (see
library, program).

If a problem requires the development of a new algo-
rithm, the designer will first attempt to determine whether
the problem can, at least in theory, be solved (see comput-
ability and complexity). Some kinds of problems have
been shown to have no guaranteed answer. If a new algo-
rithm seems feasible, principles found to be effective in the
past will be employed, such as breaking complex problems

algorithm        �

down into component parts or building up from the sim-
plest case to generate a solution (see recursion). For exam-
ple, the merge-sort algorithm divides the data to be sorted
into successively smaller portions until they are sorted, and
then merges the sorted portions back together.

Another important aspect of algorithm design is choosing
an appropriate way to organize the data (see data struc-
tures). For example, a sorting algorithm that uses a branch-
ing (tree) structure would probably use a data structure that
implements the nodes of a tree and the operations for adding,
deleting, or moving them (see class).

Once the new algorithm has been outlined (see pseudo-
code), it is often desirable to demonstrate that it will work
for any suitable data. Mathematical techniques such as the
finding and proving of loop invariants (where a true asser-
tion remains true after the loop terminates) can be used to
demonstrate the correctness of the implementation of the
algorithm.

Practical Considerations
It is not enough that an algorithm be reliable and cor-
rect, it must also be accurate and efficient enough for its
intended use. A numerical algorithm that accumulates too
much error through rounding or truncation of intermediate
results may not be accurate enough for a scientific applica-
tion. An algorithm that works by successive approximation
or convergence on an answer may require too many itera-
tions even for today’s fast computers, or may consume too
much of other computing resources such as memory. On
the other hand, as computers become more and more pow-
erful and processors are combined to create more power-
ful supercomputers (see supercomputer and concurrent
programming), algorithms that were previously consid-
ered impracticable might be reconsidered. Code profiling
(analysis of which program statements are being executed
the most frequently) and techniques for creating more effi-
cient code can help in some cases. It is also necessary to
keep in mind special cases where an otherwise efficient
algorithm becomes much less efficient (for example, a tree
sort may work well for random data but will become badly
unbalanced and slow when dealing with data that is already
sorted or mostly sorted).

Sometimes an exact solution cannot be mathematically
guaranteed or would take too much time and resources to
calculate, but an approximate solution is acceptable. A so-
called “greedy algorithm” can proceed in stages, testing at
each stage whether the solution is “good enough.” Another
approach is to use an algorithm that can produce a rea-
sonable if not optimal solution. For example, if a group of
tasks must be apportioned among several people (or com-
puters) so that all tasks are completed in the shortest pos-
sible time, the time needed to find an exact solution rises
exponentially with the number of workers and tasks. But
an algorithm that first sorts the tasks by decreasing length
and then distributes them among the workers by “dealing”
them one at a time like cards at a bridge table will, as dem-
onstrated by Ron Graham, give an allocation guaranteed to
be within 4/3 of the optimal result—quite suitable for most
applications. (A procedure that can produce a practical,

though not perfect solution is actually not an algorithm but
a heuristic.)

An interesting approach to optimizing the solution to
a problem is allowing a number of separate programs to
“compete,” with those showing the best performance sur-
viving and exchanging pieces of code (“genetic material”)
with other successful programs (see genetic algorithms).
This of course mimics evolution by natural selection in the
biological world.

Further Reading
Berlinksi, David. The Advent of the Algorithm: The Idea That Rules

the World. New York: Harcourt, 2000.
Cormen, T. H., C. E. Leiserson, R. L. Rivest, and Clifford Stein.

Introduction to Algorithms. 2nd ed. Cambridge, Mass.: MIT
Press, 2001.

Knuth, Donald E. The Art of Computer Programming. Vol. 1: Funda-
mental Algorithms. 3rd ed. Reading, Mass.: Addison-Wesley,
1997. Vol. 2: Seminumerical Algorithms. 3rd ed. Reading, Mass.:
Addison-Wesley, 1997. Vol. 3: Searching and Sorting. 2nd ed.
Reading, Mass.: Addison-Wesley, 1998.

ALU  See arithmetic logic unit.

Amazon.com
Beginning modestly in 1995 as an online bookstore, Ama-
zon.com became one of the first success stories of the early
Internet economy (see also e-commerce).

Named for the world’s largest river, Amazon.com was
the brainchild of entrepreneur Jeffrey Bezos (see Bezos,
Jeffrey P.). Like a number of other entrepreneurs of the
early 1990s, Bezos had been searching for a way to market
to the growing number of people who were going online.
He soon decided that books were a good first product, since
they were popular, nonperishable, relatively compact, and
easy to ship.

Several million books are in print at any one time,
with about 275,000 titles or editions added in 2007 in
the United States alone. Traditional “brick and mortar”
(physical) bookstores might carry a few thousand titles
up to perhaps 200,000 for the largest chains. Bookstores
in turn stock their shelves mainly through major book
distributors that serve as intermediaries between publish-
ers and the public.

For an online bookstore such as Amazon.com, however,
the number of titles that can be made available is limited
only by the amount of warehouse space the store is willing
to maintain—and no intermediary between publisher and
bookseller is needed. From the start, Amazon.com’s busi-
ness model has capitalized on this potential for variety and
the ability to serve almost any niche interest. Over the years
the company’s offerings have expanded beyond books to
34 different categories of merchandise, including software,
music, video, electronics, apparel, home furnishings, and
even nonperishable gourmet food and groceries. (Amazon.
com also entered the online auction market, but remains a
distant runner-up to market leader eBay).

�        ALU

Expansion and Profitability
Because of its desire to build a very diverse product line,
Amazon.com, unusually for a business startup, did not
expect to become profitable for about five years. The grow-
ing revenues were largely poured back into expansion.
In the heated atmosphere of the Internet boom of the
late 1990s, many other Internet-based businesses echoed
that philosophy, and many went out of business follow-
ing the bursting of the so-called dot-com bubble of the
early 2000s. Some analysts questioned whether even the
hugely popular Amazon.com would ever be able to con-
vert its business volume into an operating profit. How-
ever, the company achieved its first profitable year in 2003
(with a modest $35 million surplus). Since then growth
has remained steady and generally impressive: In 2005,
Amazon.com earned $8.49 billion revenues with a net
income of $359 million. By then the company had about
12,000 employees and had been added to the S&P 500
stock index.

In 2006 the company maintained its strategy of invest-
ing in innovation rather than focusing on short-term prof-
its. Its latest initiatives include selling digital versions of
books (e-books) and magazine articles, new arrangements
to sell video content, and even a venture into moviemaking.
By year end, annual revenue had increased to $10.7 billion.

In November 2007 Amazon announced the Kindle, a
book reader (see e-books and digital libraries) with a
sharp “paper-like” display. In addition to books, the Kindle
can also subscribe to and download magazines, content
from newspaper Web sites, and even blogs.

As part of its expansion strategy, Amazon.com has
acquired other online bookstore sites including Borders.com
and Waldenbooks.com. The company has also expanded
geographically with retail operations in Canada, the United
Kingdom, France, Germany, Japan, and China.

Amazon.com has kept a tight rein on its operations even
while continually expanding. The company’s leading mar-
ket position enables it to get favorable terms from publishers
and manufacturers. A high degree of warehouse automation
and an efficient procurement system keep stock moving
quickly rather than taking up space on the shelves.

Information-Based Strategies
Amazon.com has skillfully taken advantage of information
technology to expand its capabilities and offerings. Exam-
ples of such efforts include new search mechanisms, cul-
tivation of customer relationships, and the development of
new ways for users to sell their own goods.

Amazon’s “Search Inside the Book” feature is a good
example of leveraging search technology to take advantage
of having a growing amount of text online. If the publisher
of a book cooperates, its actual text is made available for
online searching. (The amount of text that can be displayed
is limited to prevent users from being able to read entire
books for free.) Further, one can see a list of books citing
(or being cited by) the current book, providing yet another
way to explore connections between ideas as used by dif-
ferent authors. Obviously for Amazon.com, the ultimate
reason for offering all these useful features is that more

potential customers may be able to find and purchase books
on even the most obscure topics.

Amazon.com’s use of information about customers’
buying histories is based on the idea that the more one
knows about what customers have wanted in the past, the
more effectively they can be marketed to in the future
through customizing their view of the site. Users receive
automatically generated recommendations for books or
other items based on their previous purchases (see also
customer relationship management). There is even a
“plog” or customized Web log that offers postings related
to the user’s interests and allows the user to respond.

There are other ways in which Amazon.com tries to
involve users actively in the marketing process. For exam-
ple, users are encouraged to review books and other prod-
ucts and to create lists that can be shared with other users.
The inclusion of both user and professional reviews in turn
makes it easier for prospective purchasers to determine
whether a given book or other item is suitable. Authors are
given the opportunity through “Amazon Connect” to pro-
vide additional information about their books. Finally, in
late 2005 Amazon replaced an earlier “discussion board”
facility with a wiki system that allows purchasers to cre-
ate or edit an information page for any product (see wikis
and Wikipedia).

The company’s third major means of expansion is to
facilitate small businesses and even individual users in
the marketing of their own goods. Amazon Marketplace,
a service launched in 2001, allows users to sell a variety of
items, with no fees charged unless the item is sold. There
are also many provisions for merchants to set up online
“storefronts” and take advantage of online payment and
other services.

Another aspect of Amazon’s marketing is its referral net-
work. Amazon’s “associates” are independent businesses
that provide links from their own sites to products on Ama-
zon. For example, a seller of crafts supplies might include
on its site links to books on crafting on the Amazon site. In
return, the referring business receives a commission from
Amazon.com.

Although often admired for its successful business plan,
Amazon.com has received criticism from several quar-
ters. Some users have found the company’s customer ser-
vice (which is handled almost entirely by e-mail) to be
unresponsive. Meanwhile local and specialized bookstores,
already suffering in recent years from the competition of
large chains such as Borders and Barnes and Noble, have
seen in Amazon.com another potent threat to the survival
of their business. (The company’s size and economic power
have elicited occasional comparisons with Wal-Mart.)
Finally, Amazon.com has been criticized by some labor
advocates for paying low wages and threatening to termi-
nate workers who sought to unionize.

Further Reading
Amazon.com Web site. Available online. URL: http://www.amazon.

com. Accessed August 28, 2007.
Daisey, Mike. 21 Dog Years: Doing Time @ Amazon.com. New York:

The Free Press, 2002.
Marcus, James. Amazonia. New York: New Press, 2005.

Amazon.com        �

Shanahan, Francis. Amazon.com Mashups. New York: Wrox/Wiley,
2007.

Spector, Robert. Amazon.com: Get Big Fast: Inside the Revolutionary
Business Model That Changed the World. New York: Harper-
Business, 2002.

Amdahl, Gene Myron
(1922– )
American
Inventor, Entrepreneur

Gene Amdahl played a major role in designing and develop-
ing the mainframe computer that dominated data process-
ing through the 1970s (see mainframe). Amdahl was born
on November 16, 1922, in Flandreau, South Dakota. After
having his education interrupted by World War II, Amdahl
received a B.S. from South Dakota State University in 1948
and a Ph.D. in physics at the University of Wisconsin in
1952.

As a graduate student Amdahl had realized that fur-
ther progress in physics and other sciences required better,
faster tools for computing. At the time there were only a few
computers, and the best approach to getting access to sig-
nificant computing power seemed to be to design one’s own
machine. Amdahl designed a computer called the WISC
(Wisconsin Integrally Synchronized Computer). This com-
puter used a sophisticated procedure to break calculations
into parts that could be carried out on separate processors,
making it one of the earliest examples of the parallel com-
puting techniques found in today’s computer architectures.

Designer for IBM
In 1952 Amdahl went to work for IBM, which had commit-
ted itself to dominating the new data processing industry.
Amdahl worked with the team that eventually designed the
IBM 704. The 704 improved upon the 701, the company’s
first successful mainframe, by adding many new internal
programming instructions, including the ability to per-
form floating point calculations (involving numbers that
have decimal points). The machine also included a fast,
high-capacity magnetic core memory that let the machine
retrieve data more quickly during calculations. In Novem-
ber 1953 Amdahl became the chief project engineer for
the 704 and then helped design the IBM 709, which was
designed especially for scientific applications.

When IBM proposed extending the technology by build-
ing a powerful new scientific computer called STRETCH,
Amdahl eagerly applied to head the new project. However,
he ended up on the losing side of a corporate power strug-
gle, and did not receive the post. He left IBM at the end of
1955.

In 1960 Amdahl rejoined IBM, where he was soon
involved in several design projects. The one with the most
lasting importance was the IBM System/360, which would
become the most ubiquitous and successful mainframe com-
puter of all time. In this project Amdahl further refined his
ideas about making a computer’s central processing unit
more efficient. He designed logic circuits that enabled the

processor to analyze the instructions waiting to be executed
(the “pipeline”) and determine which instructions could be
executed immediately and which would have to wait for the
results of other instructions. He also used a cache, or special
memory area, in which the instructions that would be needed
next could be stored ahead of time so they could be retrieved
immediately when needed. Today’s desktop PCs use these
same ideas to get the most out of their chips’ capabilities.

Amdahl also made important contributions to the
further development of parallel processing. Amdahl cre-
ated a formula called Amdahl’s law that basically says that
the advantage gained from using more processors gradu-
ally declines as more processor are added. The amount of
improvement is also proportional to how much of the cal-
culation can be broken down into parts that can be run in
parallel. As a result, some kinds of programs can run much
faster with several processors being used simultaneously,
while other programs may show little improvement.

In the mid-1960s Amdahl helped establish IBM’s
Advanced Computing Systems Laboratory in Menlo Park,
California, which he directed. However, he became increas-
ingly frustrated with what he thought was IBM’s too rigid
approach to designing and marketing computers. He
decided to leave IBM again and, this time, challenge it in
the marketplace.

Creator of “clones”
Amdahl resolved to make computers that were more power-
ful than IBM’s machines, but that would be “plug compati-
ble” with them, allowing them to use existing hardware and
software. To gain an edge over the computer giant, Amdahl
was able to take advantage of the early developments in
integrated electronics to put more circuits on a chip with-
out making the chips too small, and thus too crowded for
placing the transistors.

Thanks to the use of larger scale circuit integration,
Amdahl could sell machines with superior technology to
that of the IBM 360 or even the new IBM 370, and at a
lower price. IBM responded belatedly to the competition,
making more compact and faster processors, but Amdahl
met each new IBM product with a faster, cheaper alterna-
tive. However, IBM also countered by using a sales tech-
nique that opponents called FUD (fear, uncertainty, and
doubt). IBM salespersons promised customers that IBM
would soon be coming out with much more powerful and
economical alternatives to Amdahl’s machines. As a result,
many would-be customers were persuaded to postpone pur-
chasing decisions and stay with IBM. Amdahl Corporation
began to falter, and Gene Amdahl gradually sold his stock
and left the company in 1980.

Amdahl then tried to repeat his success by starting a
new company called Trilogy. The company promised
to build much faster and cheaper computers than those
offered by IBM or Amdahl. He believed he could accomplish
this by using the new, very-large-scale integrated silicon
wafer technology in which circuits were deposited in layers
on a single chip rather than being distributed on separate
chips on a printed circuit board. But the problem of dealing
with the electrical characteristics of such dense circuitry,

10        Amdahl, Gene Myron

as well as some design errors, somewhat crippled the new
computer design. Amdahl was forced to repeatedly delay
the introduction of the new machine, and Trilogy failed in
the marketplace.

Amdahl’s achievements could not be overshadowed by
the failures of his later career. He has received many indus-
try awards, including Data Processing Man of the Year by
the Data Processing Management Association (1976), the
Harry Goode Memorial Award from the American Federa-
tion of Information Processing Societies, and the SIGDA Pio-
neering Achievement Award (2007).

Further Reading
“Gene Amdahl.” Available online. URL: http://www.thocp.net/

biographies/amdahl_gene.htm. Accessed April 10, 2007.
Slater, Robert. Portraits in Silicon. Cambridge, Mass.: MIT Press,

1987.

America Online  (AOL)
For millions of PC users in the 1990s, “going online” meant
connecting to America Online. However, this once domi-
nant service provider has had difficulty adapting to the
changing world of the Internet.

By the mid-1980s a growing number of PC users were
starting to go online, mainly dialing up small bulletin board
services. Generally these were run by individuals from their
homes, offering a forum for discussion and a way for users
to upload and download games and other free software and
shareware (see bulletin board systems). However, some
entrepreneurs saw the possibility of creating a commercial
information service that would be interesting and useful
enough that users would pay a monthly subscription fee
for access. Perhaps the first such enterprise to be successful
was Quantum Computer Services, founded by Jim Kimsey
in 1985 and soon joined by another young entrepreneur,
Steve Case. Their strategy was to team up with personal
computer makers such as Commodore, Apple, and IBM to
provide special online services for their users.

In 1989 Quantum Link changed its name to America
Online (AOL). In 1991 Steve Case became CEO, taking over
from the retiring Kimsey. Case’s approach to marketing AOL
was to aim the service at novice PC users who had trouble
mastering arcane DOS (disk operating system) commands
and interacting with text-based bulletin boards and primi-
tive terminal programs. As an alternative, AOL provided a
complete software package that managed the user’s connec-
tion, presented “friendly” graphics, and offered point-and-
click access to features.

Chat rooms and discussion boards were also expanded
and offered in a variety of formats for casual and more for-
mal use. Gaming, too, was a major emphasis of the early
AOL, with some of the first online multiplayer fantasy role-
playing games such as a version of Dungeons and Dragons
called Neverwinter Nights (see online games). A third pop-
ular application has been instant messaging (IM), including
a feature that allowed users to set up “buddy lists” of their
friends and keep track of when they were online (see also
texting and instant messaging).

Internet Challenge
By 1996 the World Wide Web was becoming popular (see
World Wide Web). Rather than signing up with a proprie-
tary service such as AOL, users could simply get an account
with a lower-cost direct-connection service (see Internet
service provider) and then use a Web browser such as
Netscape to access information and services. AOL was slow
in adapting to the growing use of the Internet. At first, the
service provided only limited access to the Web (and only
through its proprietary software). Gradually, however, AOL
offered a more seamless Web experience, allowing users to
run their own browsers and other software together with
the proprietary interface. Also, responding to competition,
AOL replaced its hourly rates with a flat monthly fee ($19.95
at first).

Overall, AOL increasingly struggled with trying to ful-
fill two distinct roles: Internet access provider and content
provider. By the late 1990s AOL’s monthly rates were higher
than those of “no frills” access providers such as NetZero.
AOL tried to compensate for this by offering integration of
services (such as e-mail, chat, and instant messaging) and
news and other content not available on the open Internet.

AOL also tried to shore up its user base with aggressive
marketing to users who wanted to go online but were not
sure how to do so. Especially during the late 1990s, AOL
was able to swell its user rolls to nearly 30 million, largely
by providing millions of free CDs (such as in magazine
inserts) that included a setup program and up to a month of
free service. But while it was easy to get started with AOL,
some users began to complain that the service would keep
billing them even after they had repeatedly attempted to
cancel it. Meanwhile, AOL users got little respect from the
more sophisticated inhabitants of cyberspace, who often
complained that the clueless “newbies” were cluttering
newsgroups and chat rooms.

In 2000 AOL and Time Warner merged. At the time, the
deal was hailed as one of the greatest mergers in corporate

America Online (AOL) was a major online portal in the 1990s,
but has faced challenges adapting to the modern world of the
Web.  (Screen image credit: AOL)

America Online        11

history, bringing together one of the foremost Internet com-
panies with one of the biggest traditional media companies.
The hope was that the new $350 billion company would
be able to leverage its huge subscriber base and rich media
resources to dominate the online world.

From Service to Content Provider
By the 2000s, however, an increasing number of people
were switching from dial-up to high-speed broadband Inter-
net access (see broadband) rather than subscribing to ser-
vices such as AOL simply to get online. This trend and the
overall decline in the Internet economy early in the decade
(the “dot-bust”) contributed to a record loss of $99 billion
for the combined company in 2002. In a shakeup, Time-
Warner dropped “AOL” from its name, and Steve Case was
replaced as executive chairman. The company increasingly
began to shift its focus to providing content and services
that would attract people who were already online, with
revenue coming from advertising instead of subscriptions.

In October 2006 the AOL division of Time-Warner
(which by then had dropped the full name America Online)
announced that it would provide a new interface and soft-
ware optimized for broadband users. AOL’s OpenRide
desktop presents users with multiple windows for e-mail,
instant messaging, Web browsing, and media (video and
music), with other free services available as well. These
offerings are designed to compete in a marketplace where
the company faces stiff competition from other major Inter-
net presences who have been using the advertising-based
model for years (see Yahoo! and Google).

Further Reading
AOL Web site. Available online. URL: http://www.aol.com.

Accessed August 28, 2007.
Kaufeld, John. AOL for Dummies. 2nd ed. Hoboken, N.J.: Wiley,

2004.
Klein, Alec. Stealing Time: Steve Case, Jerry Levin, and the Collapse

of AOL Time Warner. New York: Simon & Schuster, 2003.
Mehta, Stephanie N. “Can AOL Keep Pace?” Fortune, August 21,

2006, p. 29.
Swisher, Kara. AOL.COM: How Steve Case Beat Bill Gates, Nailed the

Netheads, and Made Millions in the War for the Web. New York:
Times Books, 1998.

analog and digital
The word analog (derived from Greek words meaning “by
ratio”) denotes a phenomenon that is continuously vari-
able, such as a sound wave. The word digital, on the other
hand, implies a discrete, exactly countable value that can be
represented as a series of digits (numbers). Sound recording
provides familiar examples of both approaches. Recording
a phonograph record involves electromechanically transfer-
ring a physical signal (the sound wave) into an “analogous”
physical representation (the continuously varying peaks
and dips in the record’s surface). Recording a CD, on the
other hand, involves sampling (measuring) the sound level
at thousands of discrete instances and storing the results in
a physical representation of a numeric format that can in
turn be used to drive the playback device.

Virtually all modern computers depend on the manipu-
lation of discrete signals in one of two states denoted by the
numbers 1 and 0. Whether the 1 indicates the presence of
an electrical charge, a voltage level, a magnetic state, a pulse
of light, or some other phenomenon, at a given point there
is either “something” (1) or “nothing” (0). This is the most
natural way to represent a series of such states.

Digital representation has several advantages over ana-
log. Since computer circuits based on binary logic can be
driven to perform calculations electronically at ever-increas-
ing speeds, even problems where an analog computer better
modeled nature can now be done more efficiently with digi-
tal machines (see analog computer). Data stored in digi-
tized form is not subject to the gradual wear or distortion of
the medium that plagues analog representations such as the
phonograph record. Perhaps most important, because digi-
tal representations are at base simply numbers, an infinite
variety of digital representations can be stored in files and
manipulated, regardless of whether they started as pictures,
music, or text (see digital convergence).

Converting between Analog and
Digital Representations
Because digital devices (particularly computers) are the
mechanism of choice for working with representations of
text, graphics, and sound, a variety of devices are used to
digitize analog inputs so the data can be stored and manip-
ulated. Conceptually, each digitizing device can be thought
of as having three parts: a component that scans the input
and generates an analog signal, a circuit that converts the
analog signal from the input to a digital format, and a com-
ponent that stores the resulting digital data for later use. For
example, in the ubiquitous flatbed scanner a moving head
reads varying light levels on the paper and converts them to

Most natural phenomena such as light or sound intensity are ana-
log values that vary continuously. To convert such measurements
to a digital representation, “snapshots” or sample readings must be
taken at regular intervals. Sampling more frequently gives a more
accurate representation of the original analog data, but at a cost in
memory and processor resources.

12        analog and digital

a varying level of current (see scanner). This analog signal
is in turn converted into a digital reading by an analog-to-
digital converter, which creates numeric information that
represents discrete spots (pixels) representing either levels
of gray or of particular colors. This information is then
written to disk using the formats supported by the operat-
ing system and the software that will manipulate them.

Further Reading
Chalmers, David J. “Analog vs. Digital Computation.” Available

online. URL: http://www.u.arizona.edu/~chalmers/notes/ana-
log.html. Accessed April 10, 2007.

Hoeschele, David F. Analog-to-Digital and Digital-to-Analog Conver-
sion Techniques. 2nd ed. New York: Wiley-Interscience, 1994.

analog computer
Most natural phenomena are analog rather than digital in
nature (see analog and digital). But just as mathematical
laws can describe relationships in nature, these relation-
ships in turn can be used to construct a model in which
natural forces generate mathematical solutions. This is the
key insight that leads to the analog computer.

The simplest analog computers use physical components
that model geometric ratios. The earliest known analog
computing device is the Antikythera Mechanism. Con-
structed by an unknown scientist on the island of Rhodes
around 87 b.c., this device used a precisely crafted differen-
tial gear mechanism to mechanically calculate the interval
between new moons (the synodic month). (Interestingly,
the differential gear would not be rediscovered until 1877.)

Another analog computer, the slide rule, became the
constant companion of scientists, engineers, and students

until it was replaced by electronic calculators in the 1970s.
Invented in simple form in the 17th century, the slide rule’s
movable parts are marked in logarithmic proportions,
allowing for quick multiplication, division, the extraction
of square roots, and sometimes the calculation of trigono-
metric functions.

The next insight involved building analog devices that
set up dynamic relationships between mechanical move-
ments. In the late 19th century two British scientists, James
Thomson and his brother Sir William Thomson (later Lord
Kelvin) developed the mechanical integrator, a device
that could solve differential equations. An important new
principle used in this device is the closed feedback loop,
where the output of the integrator is fed back as a new
set of inputs. This allowed for the gradual summation or
integration of an equation’s variables. In 1931, Vannevar
Bush completed a more complex machine that he called a
“differential analyzer.” Consisting of six mechanical inte-
grators using specially shaped wheels, disks, and servo-
mechanisms, the differential analyzer could solve equations
in up to six independent variables. As the usefulness and
applicability of the device became known, it was quickly
replicated in various forms in scientific, engineering, and
military institutions.

These early forms of analog computer are based on fixed
geometrical ratios. However, most phenomena that scien-
tists and engineers are concerned with, such as aerodynam-
ics, fluid dynamics, or the flow of electrons in a circuit,
involve a mathematical relationship between forces where
the output changes smoothly as the inputs are changed. The
“dynamic” analog computer of the mid-20th century took
advantage of such force relationships to construct devices
where input forces represent variables in the equation, and

Converting analog data to digital involves several steps. A sensor (such as the CCD, or charge-coupled device in a digital camera) creates
a varying electrical current. An amplifier can strengthen this signal to make it easier to process, and filters can eliminate spurious spikes or
“noise.” The “conditioned” signal is then fed to the analog-to-digital (A/D) converter, which produces numeric data that is usually stored in a
memory buffer from which it can be processed and stored by the controlling program.

analog computer        13

nature itself “solves” the equation by producing a resulting
output force.

In the 1930s, the growing use of electronic circuits
encouraged the use of the flow of electrons rather than
mechanical force as a source for analog computation. The
key circuit is called an operational amplifier. It generates
a highly amplified output signal of opposite polarity to the
input, over a wide range of frequencies. By using compo-
nents such as potentiometers and feedback capacitors, an
analog computer can be programmed to set up a circuit in
which the laws of electronics manipulate the input voltages
in the same way the equation to be solved manipulates its
variables. The results of the calculation are then read as a
series of voltage values in the final output.

Starting in the 1950s, a number of companies mar-
keted large electronic analog computers that contained
many separate computing units that could be harnessed
together to provide “real time” calculations in which the
results could be generated at the same rate as the actual
phenomena being simulated. In the early 1960s, NASA set
up training simulations for astronauts using analog real-
time simulations that were still beyond the capability of
digital computers.

Gradually, however, the use of faster processors and
larger amounts of memory enabled the digital computer to

surpass its analog counterpart even in the scientific pro-
gramming and simulations arena. In the 1970s, some hybrid
machines combined the easy programmability of a digital
“front end” with analog computation, but by the end of that
decade the digital computer had rendered analog computers
obsolete.

Further Reading
“Analog Computers.” Computer Museum, University of Amster-

dam. Available online. URL: http://www.science.uva.n/
museum/AnalogComputers.html. Accessed April 18, 2007.

Hoeschele, David F., Jr. Analog-to-Digital and Digital-to-Analog
Conversion Techniques. 2nd ed. New York: John Wiley, 1994.

Vassos, Basil H., and Galen Ewing, eds. Analog and Computer Elec-
tronics for Scientists. 4th ed. New York: John Wiley, 1993.

Andreessen, Marc
(1971– )
American
Entrepreneur, Programmer

Marc Andreessen brought the World Wide Web and its
wealth of information, graphics, and services to the desk-
top, setting the stage for the first “e-commerce” revolution
of the later 1990s. As founder of Netscape, Andreessen also

Completed in 1931, Vannevar Bush’s Differential Analyzer was a triumph of analog computing. The device could solve equations with up to
six independent values.  (MIT Museum)

14        Andreessen, Marc

created the first big “dot-com,” or company doing business
on the Internet.

Born on July 9, 1971, in New Lisbon, Wisconsin,
Andreessen grew up as part of a generation that would
become familiar with personal computers, computer games,
and graphics. By seventh grade Andreessen had his own PC
and was programming furiously. He then studied computer
science at the University of Illinois at Urbana-Champaign,
where his focus on computing was complemented by a wide-
ranging interest in music, history, literature, and business.

By the early 1990s the World Wide Web (see World
Wide Web and Berners-Lee, Tim) was poised to change
the way information and services were delivered to users.
However, early Web pages generally consisted only of
linked pages of text, without point-and-click navigation or
the graphics and interactive features that adorn Web pages
today.

Andreessen learned about the World Wide Web shortly
after Berners-Lee introduced it in 1991. Andreessen thought
it had great potential, but also believed that there needed
to be better ways for ordinary people to access the new

medium. In 1993, Andreessen, together with colleague Eric
Bina and other helpers at the National Center for Supercom-
puting Applications (NCSA), set to work on what became
known as the Mosaic Web browser. Since their work was
paid for by the government, Mosaic was offered free to
users over the Internet. Mosaic could show pictures as well
as text, and users could follow Web links simply by click-
ing on them with the mouse. The user-friendly program
became immensely popular, with more than 10 million
users by 1995.

After earning a B.S. in computer science, Andreessen left
Mosaic, having battled with its managers over the future of
Web-browsing software. He then met Jim Clark, an older
entrepreneur who had been CEO of Silicon Graphics. They
founded Netscape Corporation in 1994, using $4 million
seed capital provided by Clark.

Andreessen recruited many of his former colleagues at
NCSA to help him write a new Web browser, which became
known as Netscape Navigator. Navigator was faster and
more graphically attractive than Mosaic. Most important,
Netscape added a secure encrypted facility that people could
use to send their credit card numbers to online merchants.
This was part of a two-pronged strategy: First, attract the
lion’s share of Web users to the new browser, and then sell
businesses the software they would need to create effective
Web pages for selling products and services to users.

By the end of 1994 Navigator had gained 70 per-
cent of the Web browser market. Time magazine named
the browser one of the 10 best products of the year, and
Netscape was soon selling custom software to companies
that wanted a presence on the Web. The e-commerce boom
of the later 1990s had begun, and Marc Andreessen was one
of its brightest stars. When Netscape offered its stock to the
public in summer 1995, the company gained a total worth
of $2.3 billion, more than that of many traditional blue-
chip industrial companies. Andreessen’s own shares were
worth $55 million.

Battle with Microsoft
Microsoft (see Microsoft and Gates, Bill) had been slow
to recognize the growing importance of the Web, but by the
mid-1990s Gates had decided that the software giant had to
have a comprehensive “Internet strategy.” In particular, the
company had to win control of the browser market so users
would not turn to “platform independent” software that
could deliver not only information but applications, with-
out requiring the use of Windows at all.

Microsoft responded by creating its own Web browser,
called Internet Explorer. Although technical reviewers gen-
erally considered the Microsoft product to be inferior to
Netscape, it gradually improved. Most significantly, Micro-
soft included Explorer with its new Windows 95 operating
system. This “bundling” meant that PC makers and con-
sumers had little interest in paying for Navigator when they
already had a “free” browser from Microsoft. In response
to this move, Netscape and other Microsoft competitors
helped promote the antitrust case against Microsoft that
would result in 2001 in some of the company’s practices
being declared an unlawful use of monopoly power.

Marc Andreessen, Chairman of Loudcloud, Inc., speaks at Fortune
magazine’s “Leadership in Turbulent Times” conference on Novem-
ber 8, 2001, in New York City.  (Photo by Mario Tama/Getty
Images)

Andreessen, Marc        15

Andreessen tried to respond to Microsoft by focusing
on the added value of his software for Web servers while
making Navigator “open source,” meaning that anyone was
allowed to access and modify the program’s code (see open
source). He hoped that a vigorous community of program-
mers might help keep Navigator technically superior to
Internet Explorer. However, Netscape’s revenues began to
decline steadily. In 1999 America Online (AOL) bought the
company, seeking to add its technical assets and Webcenter
online portal to its own offerings (see America Online).

After a brief stint with AOL as its “principal technical
visionary,” Andreessen decided to start his own company,
called LoudCloud. The company provided Web-site devel-
opment, management, and custom software (including e-
commerce “shopping basket” systems) for corporations that
had large, complex Web sites. However, the company was
not successful; Andreessen sold its Web-site-management
component to Texas-based Electronic Data Systems (EDS)
while retaining its software division under the new name
Opsware. In 2007 Andreessen scored another coup, selling
Opsware to Hewlett-Packard (HP) for $1.6 billion.

In 2007 Andreessen launched Ning, a company that
offers users the ability to add blogs, discussion forums, and
other features to their Web sites, but facing established com-
petitors such as MySpace (see also social networking). In
July 2008 Andresseen joined the board of Facebook.

While the future of his recent ventures remains uncer-
tain, Marc Andreessen’s place as one of the key pioneers of
the Web and e-commerce revolution is assured. His inven-
tiveness, technical insight, and business acumen made him
a model for a new generation of Internet entrepreneurs.
Andreessen was named one of the Top 50 People under the
Age of 40 by Time magazine (1994) and has received the
Computerworld/Smithsonian Award for Leadership (1995)
and the W. Wallace McDowell Award of the IEEE Computer
Society (1997).

Further Reading
Clark, Jim. Netscape Time: The Making of the Billion-Dollar Startup

That Took on Microsoft. New York: St. Martin’s Press, 1999.
Guynn, Jessica. “Andreessen Betting Name on New Ning.” San

Francisco Chronicle, February 27, 2006, p. D1, D4.
Payment, Simone. Marc Andreessen and Jim Clark: The Founders of

Netscape. New York: Rosen Pub. Group, 2006.
Quittner, Joshua, and Michelle Slatala. Speeding the Net: The Inside

Story of Netscape and How It Challenged Microsoft. New York:
Atlantic Monthly Press, 1998.

animation, computer
Ever since the first hand-drawn cartoon features entertained
moviegoers in the 1930s, animation has been an important
part of the popular culture. Traditional animation uses a
series of hand-drawn frames that, when shown in rapid
succession, create the illusion of lifelike movement.

Computer Animation Techniques
The simplest form of computer animation (illustrated in
games such as Pong) involves drawing an object, then eras-
ing it and redrawing it in a different location. A somewhat

more sophisticated approach can create motion in a scene
by displaying a series of pre-drawn images called sprites—
for example, there could be a series of sprites showing a
sword-wielding troll in different positions.

Since there are only a few intermediate images, the use
of sprites doesn’t convey truly lifelike motion. Modern
animation uses a modern version of the traditional drawn
animation technique. The drawings are “keyframes” that
capture significant movements by the characters. The key-
frames are later filled in with transitional frames in a pro-
cess called tweening. Since it is possible to create algorithms
that describe the optimal in-between frames, the advent of
sufficiently powerful computers has made computer anima-
tion both possible and desirable. Today computer animation
is used not only for cartoons but also for video games and
movies. The most striking use of this technique is morph-
ing, where the creation of plausible intermediate images
between two strikingly different faces creates the illusion of
one face being transformed into the other.

Algorithms that can realistically animate people, ani-
mals, and other complex objects require the ability to create
a model that includes the parts of the object that can move
separately (such as a person’s arms and legs). Because the
movement of one part of the model often affects the posi-
tions of other parts, a treelike structure is often used to
describe these relationships. (For example, an elbow moves
an arm, the arm in turn moves the hand, which in turn
moves the fingers). Alternatively, live actors performing a
repertoire of actions or poses can be digitized using wear-
able sensors and then combined to portray situations, such
as in a video game.

Less complex objects (such as clouds or rainfall) can be
treated in a simpler way, as a collection of “particles” that
move together following basic laws of motion and gravity.
Of course when different models come into contact (for
example, a person walking in the rain), the interaction
between the two must also be taken into consideration.

While realism is always desirable, there is inevitably
a tradeoff between the resources available. Computation-
ally intensive physics models might portray a very realistic
spray of water using a high-end graphics workstation, but
simplified models have to be used for a program that runs
on a game console or desktop PC. The key variables are the
frame rate (higher is smoother) and the display resolution.
The amount of available video memory is also a consider-
ation: many desktop PCs sold today have 256MB or more of
video memory.

Applications
Computer animation is used extensively in many fea-
ture films, such as for creating realistic dinosaurs (Juras-
sic Park) or buglike aliens (Starship Troopers). Computer
games combine animation techniques with other tech-
niques (see computer graphics) to provide smooth
action within a vivid 3D landscape. Simpler forms of ani-
mation are now a staple of Web site design, often written
in Java or with the aid of animation scripting programs
such as Adobe Flash.

16        animation, computer

The intensive effort that goes into contemporary com-
puter animation suggests that the ability to fascinate the
human eye that allowed Walt Disney to build an empire is
just as compelling today.

Further Reading
“3-D Animation Workshop.” Available online. URL: http://www.

webreference.com/3d/indexa.html. Accessed April 12, 2007.
Comet, Michael B. “Character Animation: Principles and Prac-

tice.” Available online. URL: http://www.comet-cartoons.
com/toons/3ddocs/charanim. Accessed April 12, 2007.

Hamlin, J. Scott. Effective Web Animation: Advanced Techniques for
the Web. Reading, Mass.: Addison-Wesley, 1999.

O’Rourke, Michael. Principles of Three-Dimensional Computer Ani-
mation: Modeling, Rendering, and Animating with 3D Computer
Graphics. New York: Norton, 1998.

Parent, Rick. Computer Animation: Algorithms and Techniques. San
Francisco: Morgan Kaufmann, 2002.

Shupe, Richard, and Robert Hoekman. Flash 8: Projects for Learn-
ing Animation and Interactivity. Sebastapol, Calif.: O’Reilly
Media, 2006.

anonymity and the Internet
Anonymity, or the ability to communicate without disclos-
ing a verifiable identity, is a consequence of the way most
Internet-based e-mail, chat, or news services were designed
(see e-mail, chat, texting and instant messaging, and
netnews and newgroups). This does not mean that mes-
sages do not have names attached. Rather, the names can
be arbitrarily chosen or pseudonymous, whether reflecting
development of an online persona or the desire to avoid
having to take responsibility for unwanted communications
(see spam).

Advantages
If a person uses a fixed Internet address (see tcp/ip), it may
be possible to eventually discover the person’s location and
even identity. However, messages can be sent through anon-
ymous remailing services where the originating address is
removed. Web browsing can also be done “at arm’s length”
through a proxy server. Such means of anonymity can argu-
ably serve important values, such as allowing persons living
under repressive governments (or who belong to minority
groups) to express themselves more freely precisely because
they cannot be identified. However, such techniques require
some sophistication on the part of the user. With ordinary
users using their service provider accounts directly, gov-
ernments (notably China) have simply demanded that the
user’s identity be turned over when a crime is alleged.

Pseudonymity (the ability to choose names separate
from one’s primary identity) in such venues as chat rooms
or online games can also allow people to experiment with
different identities or roles, perhaps getting a taste of how
members of a different gender or ethnic group are perceived
(see identity in the online world).

Anonymity can also help protect privacy, especially in
commercial transactions. For example, purchasing some-
thing with cash normally requires no disclosure of the pur-
chaser’s identity, address, or other personal information.

Various systems can use secure encryption to create a cash
equivalent in the online world that assures the merchant
of valid payment without disclosing unnecessary informa-
tion about the purchaser (see digital cash). There are also
facilities that allow for essentially anonymous Web brows-
ing, preventing the aggregation or tracking of information
(see cookies).

Problems
The principal problem with anonymity is that it can allow
the user to engage in socially undesirable or even criminal
activity with less fear of being held accountable. The com-
bination of anonymity (or the use of a pseudonym) and the
lack of physical presence seems to embolden some people
to engage in insult or “flaming,” where they might be inhib-
ited in an ordinary social setting. A few services (notably
The WELL) insist that the real identity of all participants
be available even if postings use a pseudonym.

Spam or deceptive e-mail (see phishing and spoof-
ing) takes advantage both of anonymity (making it hard
for authorities to trace) and pseudonymity (the ability
to disguise the site by mimicking a legitimate business).
Anonymity makes downloading or sharing files easier
(see file-sharing and P2P networks), but also makes
it harder for owners of videos, music, or other content to
pursue copyright violations. Because of the prevalence of
fraud and other criminal activity on the Internet, there
have been calls to restrict the ability of online users to
remain anonymous, and some nations such as South Korea
have enacted legislation to that effect. However, civil lib-
ertarians and privacy advocates believe that the impact on
freedom and privacy outweighs any benefits for security
and law enforcement.

The database of Web-site registrants (called Whois)
provides contact information intended to ensure that
someone will be responsible for a given site and be will-
ing to cooperate to fix technical or administrative prob-
lems. At present, Whois information is publicly available.
However, the Internet Corporation for Assigned Names
and Numbers (ICANN) is considering making the contact
information available only to persons who can show a
legitimate need.

Further Reading
Lessig, Lawrence. Code: Version 2.0. New York: Basic Books, 2006.
Rogers, Michael. “Let’s See Some ID, Please: The End of Anonym-

ity on the Internet?” The Practical Futurist (MSNBC), Decem-
ber 13, 2005. Available online. URL: http://www.msnbc.msn.
com/ID/10441443/. Accessed April 10, 2007.

Wallace, Jonathan D. “Nameless in Cyberspace: Anonymity on the
Internet.” CATO Institute Briefing Papers, no. 54, December
8, 1999. Available online. URL: http://www.cato.org/pubs/
briefs/bp54.pdf. Accessed April 10, 2007.

AOL  See America Online.

API  See applications program interface.

API        17

APL  (a programming language)
This programming language was developed by Harvard
(later IBM) researcher Kenneth E. Iverson in the early 1960s
as a way to express mathematical functions clearly and
consistently for computer use. The power of the language
to compactly express mathematical functions attracted a
growing number of users, and APL soon became a full gen-
eral-purpose computing language.

Like many versions of BASIC, APL is an interpreted lan-
guage, meaning that the programmer’s input is evaluated
“on the fly,” allowing for interactive response (see inter-
preter). Unlike BASIC or FORTRAN, however, APL has
direct and powerful support for all the important mathe-
matical functions involving arrays or matrices (see array).

APL has over 100 built-in operators, called “primitives.”
With just one or two operators the programmer can per-
form complex tasks such as extracting numeric or trigono-
metric functions, sorting numbers, or rearranging arrays
and matrices. (Indeed, APL’s greatest power is in its ability
to manipulate matrices directly without resorting to explicit
loops or the calling of external library functions.)

To give a very simple example, the following line of APL
code:

X [D X]

sorts the array X. In most programming languages this
would have to be done by coding a sorting algorithm in a
dozen or so lines of code using nested loops and temporary
variables.

However, APL has also been found by many program-
mers to have significant drawbacks. Because the language
uses Greek letters to stand for many operators, it requires
the use of a special type font that was generally not available
on non-IBM systems. A dialect called J has been devised to
use only standard ASCII characters, as well as both simpli-
fying and expanding the language. Many programmers find
mathematical expressions in APL to be cryptic, making
programs hard to maintain or revise. Nevertheless, APL
Special Interest Groups in the major computing societies
testify to continuing interest in the language.

Further Reading
ACM Special Interest Group for APL and J Languages. Available

online. URL: http://www.acm.org/sigapl/. Accessed April 12,
2007.

“APL Frequently Asked Questions.” Available from various sites
including URL: http://home.earthlink.net/~swsirlin/apl.faq.
html. Accessed May 8, 2007.

Gilman, Leonard, and Allen J. Rose. APL: An Interactive Approach.
3rd ed. (reprint). Malabar, Fla.: Krieger, 1992.

“Why APL?” Available online. URL: http://www.acm.org/sigapl/
whyapl.htm. Accessed.

Apple Corporation
Since the beginning of personal computing, Apple has had
an impact out of proportion to its relatively modest market
share. In a world generally dominated by IBM PC-compat-
ible machines and the Microsoft DOS and Windows operat-
ing systems, Apple’s distinctive Macintosh computers and

more recent media products have carved out distinctive
market spaces.

Headquartered in Cupertino, California, Apple was
cofounded in 1976 by Steve Jobs, Steve Wozniak, and Ron-
ald Wayne (the latter sold his interest shortly after incor-
poration). (See Jobs, Steve, and Wozniak, Steven.) Their
first product, the Apple I computer, was demonstrated to
fellow microcomputer enthusiasts at the Homebrew Com-
puter Club. Although it aroused considerable interest, the
hand-built Apple I was sold without a power supply, key-
board, case, or display. (Today it is an increasingly valuable
“antique.”)

Apple’s true entry into the personal computing mar-
ket came in 1977 with the Apple II. Although it was more
expensive than its main rivals from Radio Shack and Com-
modore, the Apple II was sleek, well constructed, and fea-
tured built-in color graphics. The motherboard included
several slots into which add-on boards (such as for printer
interfaces) could be inserted. Besides being attractive to
hobbyists, however, the Apple II began to be taken seri-
ously as a business machine when the first popular spread-
sheet program, VisiCalc, was written for it.

By 1981 more than 2 million Apple IIs (in several varia-
tions) had been sold, but IBM then came out with the IBM
PC. The IBM machine had more memory and a somewhat
more powerful processor, but its real advantage was the
access IBM had to the purchasing managers of corporate
America. The IBM PC and “clone” machines from other
companies such as Compaq quickly displaced Apple as
market leader.

The Macintosh
By the early 1980s Steve Jobs had turned his attention to
designing a radically new personal computer. Using tech-
nology that Jobs had observed at the Xerox Palo Alto
Research Center (PARC), the new machine would have a
fully graphical interface with icons and menus and the abil-
ity to select items with a mouse. The first such machine,
the Apple Lisa, came out in 1983. The machine cost almost
$10,000, however, and proved a commercial failure.

In 1984, however, Apple launched a much less expen-
sive version (see Macintosh). Viewers of the 1984 Super
Bowl saw a remarkable Apple commercial in which a female
figure runs through a group of corporate drones (represent-
ing IBM) and smashes a screen. The “Mac” sold reasonably
well, particularly as it was given more processing power and
memory and was accompanied by new software that could
take advantage of its capabilities. In particular, the Mac
came to dominate the desktop publishing market, thanks to
Adobe’s PageMaker program.

In the 1990s Apple diversified the Macintosh line with
a portable version (the PowerBook) that largely set the
standard for the modern laptop computer. By then Apple
had acquired a reputation for stylish design and superior
ease of use. However, the development of the rather similar
Windows operating system by Microsoft (see Microsoft
Windows) as well as constantly dropping prices for IBM-
compatible hardware put increasing pressure on Apple and
kept its market share limited. (Apple’s legal challenge to

18        APL

Microsoft alleging misappropriation of intellectual property
proved to be a protracted and costly failure.)

Apple’s many Macintosh variants of the later 1990s
proved confusing to consumers, and sales appeared to bog
down. The company was accused of trying to rely on an
increasingly nonexistent advantage, keeping prices high,
and failing to innovate.

However, in 1997 Steve Jobs, who had been forced out of
the company in an earlier dispute, returned to the company
and brought with him some new ideas. In hardware there
was the iMac, a sleek all-in-one system with an unmistak-
able appearance that restored Apple to profitability in 1998.
On the software side, Apple introduced new video-edit-
ing software for home users and a thoroughly redesigned
UNIX-based operating system (see OS X). In general, the
new incarnation of the Macintosh was promoted as the ideal
companion for a media-hungry generation.

Consumer Electronics
Apple’s biggest splash in the new century, however, came
not in personal computing, but in the consumer electronics
sector. Introduced in 2001, the Apple iPod has been phe-
nomenally successful, with 100 million units sold by 2006.
The portable music player can hold thousands of songs and
easily fit into a pocket (see also music and video play-
ers, digital). Further, it was accompanied by an easy-to-
use interface and an online music store (iTunes). (By early
2006, more than a billion songs had been purchased and
downloaded from the service.) Although other types of por-
table MP3 players exist, it is the iPod that defined the genre
(see also podcasting). Later versions of the iPod include
the ability to play videos.

In 2005 Apple announced news that startled and perhaps
dismayed many long-time users. The company announced
that future Macintoshes would use the same Intel chips
employed by Windows-based (“Wintel”) machines like the
IBM PC and its descendants. The more powerful machines
would use dual processors (Intel Core Duo). Further, in
2006 Apple released Boot Camp, a software package that
allows Intel-based Macs to run Windows XP. Jobs’s new
strategy seems to be to combine what he believed to be a
superior operating system and industrial design with indus-
try-standard processors, offering the best user experience
and a very competitive cost. Apple’s earnings continued
strong into the second half of 2006.

In early 2007 Jobs electrified the crowd at the Mac-
world Expo by announcing that Apple was going to “rein-
vent the phone.” The product, called iPhone, is essentially
a combination of a video iPod and a full-featured Inter-
net-enabled cell phone (see smartphone). Marketed by
Apple and AT&T (with the latter providing the phone ser-
vice), the iPhone costs about twice as much as an iPod but
includes a higher-resolution 3.5-in. (diagonal) screen and a
2 megapixel digital camera. The phone can connect to other
devices (see Bluetooth) and access Internet services such
as Google Maps. The user controls the device with a new
interface called Multitouch.

Apple also introduced another new media product, the
Apple TV (formerly the iTV), allowing music, photos, and

video to be streamed wirelessly from a computer to an exist-
ing TV set. Apple reaffirmed its media-centered plans by
announcing that the company’s name would be changed from
Apple Computer Corporation to simply Apple Corporation.

In the last quarter of 2006 Apple earned a record-
breaking $1 billion in profit, bolstered mainly by very
strong sales of iPods and continuing good sales of Macin-
tosh computers.

Apple had strong Macintosh sales performance in the
latter part of 2007. The company has suggested that its
popular iPods and iPhones may be leading consumers to
consider buying a Mac for their next personal computer.

Meanwhile, however, Apple has had to deal with ques-
tions about its backdating of stock options, a practice by
which about 200 companies have, in effect, enabled execu-
tives to purchase their stock at an artificially low price.
Apple has cleared Jobs of culpability in an internal investi-
gation, and in April 2007 the Securities and Exchange Com-
mission announced that it would not take action against the
company.

Further Reading
Carlton, Jim. Apple: The Inside Story of Intrigue, Egomania and Busi-

ness Blunders. New York: Random House, 1997.
Deutschman, Alan. The Second Coming of Steve Jobs. New York:

Broadway Books, 2000.
Hertzfeld, Andy. Revolution in the Valley. Sebastapol, Calif.:

O’Reilly, 2005.
Kunkel, Paul. AppleDesign: The Work of the Apple Industrial Design

Group. New York: Graphis, 1997.
Levy, Steven. Insanely Great: The Life and Times of Macintosh, The

Computer that Changed Everything. New York: Penguin Books,
2000.

Linzmayer, Owen W. Apple Confidential 2.0: The Definitive History
of the World’s Most Colorful Company. 2nd ed. San Francisco,
Calif.: No Starch Press, 2004.

applet
An applet is a small program that uses the resources of a
larger program and usually provides customization or addi-
tional features. The term first appeared in the early 1990s
in connection with Apple’s AppleScript scripting language
for the Macintosh operating system. Today Java applets rep-
resent the most widespread use of this idea in Web develop-
ment (see Java).

Java applets are compiled to an intermediate repre-
sentation called bytecode, and generally are run in a Web
browser (see Web browser). Applets thus represent one
of several alternatives for interacting with users of Web
pages beyond what can be accomplished using simple text
markup (see html; for other approaches see Javascript,
php, scripting languages, and ajax).

An applet can be invoked by inserting a reference to
its program code in the text of the Web page, using the
HTML applet element or the now-preferred object element.
Although the distinction between applets and scripting
code (such as in PHP) is somewhat vague, applets usually
run in their own window or otherwise provide their own
interface, while scripting code is generally used to tailor
the behavior of separately created objects. Applets are also

applet        19

rather like plug-ins, but the latter are generally used to
provide a particular capability (such as the ability to read
or play a particular kind of media file), and have a stan-
dardized facility for their installation and management (see
plug-in).

Some common uses for applets include animations of
scientific or programming concepts for Web pages support-
ing class curricula and for games designed to be played
using Web browsers. Animation tools such as Flash and
Shockwave are often used for creating graphic applets.

To prevent badly or maliciously written applets from
affecting user files, applets such as Java applets are gen-
erally run within a restricted or “sandbox” environment
where, for example, they are not allowed to write or change
files on disk.

Further Reading
“Java Applets.” Available online. URL: http://en.wikibooks.org/

wiki/Java_Programming/Applets. Accessed April 10, 2007.
McGuffin, Michael. “Java Applet Tutorial.” Available online. URL:

http://www.realapplets.com/tutorial/. Accessed April 10, 2007.

application program interface  (API)
In order for an application program to function, it must
interact with the computer system in a variety of ways, such
as reading information from disk files, sending data to the
printer, and displaying text and graphics on the monitor
screen (see user interface). The program may need to find
out whether a device is available or whether it can have
access to an additional portion of memory. In order to pro-
vide these and many other services, an operating system
such as Microsoft Windows includes an extensive applica-
tion program interface (API). The API basically consists of
a variety of functions or procedures that an application pro-
gram can call upon, as well as data structures, constants, and
various definitions needed to describe system resources.

Applications programs use the API by including calls to
routines in a program library (see library, program and
procedures and functions). In Windows, “dynamic link
libraries” (DLLs) are used. For example, this simple func-
tion puts a message box on the screen:

MessageBox (0, “Program Initialization Failed!”,
“Error!”, MB_ICONEXCLAMATION | MB_OK | MB_
SYSTEMMODAL);

In practice, the API for a major operating system such as
Windows contains hundreds of functions, data structures,
and definitions. In order to simplify learning to access the
necessary functions and to promote the writing of readable
code, compiler developers such as Microsoft and Borland
have devised frameworks of C++ classes that package related
functions together. For example, in the Microsoft Founda-
tion Classes (MFC), a program generally begins by deriving
a class representing the application’s basic characteristics
from the MFC class CWinApp. When the program wants to
display a window, it derives it from the CWnd class, which
has the functions common to all windows, dialog boxes,
and controls. From CWnd is derived the specialized class

for each type of window: for example, CFrameWnd imple-
ments a typical main application window, while CDialog
would be used for a dialog box. Thus in a framework such
as MFC or Borland’s OWL, the object-oriented concept of
encapsulation is used to bundle together objects and their
functions, while the concept of inheritance is used to relate
the generic object (such as a window) to specialized ver-
sions that have added functionality (see object-oriented
programming and encapsulation inheritance).

In recent years Microsoft has greatly extended the reach
of its Windows API by providing many higher level functions
(including user interface items, network communications,
and data access) previously requiring separate software com-
ponents or program libraries (see Microsoft.net).

Programmers using languages such as Visual Basic can
take advantage of a further level of abstraction. Here the
various kinds of windows, dialogs, and other controls are
provided as building blocks that the developer can insert
into a form designed on the screen, and then settings can
be made and code written as appropriate to control the
behavior of the objects when the program runs. While the
programmer will not have as much direct control or flex-
ibility, avoiding the need to master the API means that use-
ful programs can be written more quickly.

Further Reading
“DevCentral Tutorials: MFC and Win32.” Available online. URL:

http://devcentral.iftech.com/learning/tutorials/submfc.asp.
Accessed April 12, 2007.

Modern software uses API calls to obtain interface objects such as
dialog boxes from the operating system. Here the application calls
the CreateDialog API function. The operating system returns a
pointer (called a handle) that the application can now use to access
and manipulate the dialog.

20        application program interface

Petzold, Charles. Programming Windows: the Definitive Guide to the
Win32 API. 5th ed. Redmond, Wash.: Microsoft Press, 1999.

“Windows API Guide.” Available online. URL: http://www.vbapi.
com/. Accessed April 12, 2007.

application service provider  (ASP)
Traditionally, software applications such as office suites are
sold as packages that are installed and reside on the user’s
computer. Starting in the mid-1990s, however, the idea of
offering users access to software from a central repository
attracted considerable interest. An application service pro-
vider (ASP) essentially rents access to software.

Renting software rather than purchasing it outright has
several advantages. Since the software resides on the pro-
vider’s server, there is no need to update numerous desktop
installations every time a new version of the software (or a
“patch” to fix some problem) is released. The need to ship
physical CDs or DVDs is also eliminated, as is the risk of
software piracy (unauthorized copying). Users may be able
to more efficiently budget their software expenses, since
they will not have to come up with large periodic expenses
for upgrades. The software provider, in turn, also receives a
steady income stream rather than “surges” around the time
of each new software release.

For traditional software manufacturers, the main con-
cern is determining whether the revenue obtained by pro-
viding its software as a service (directly or through a third
party) is greater than what would have been obtained by
selling the software to the same market. (It is also possible
to take a hybrid approach, where software is still sold, but
users are offered additional features online. Microsoft has
experimented with this approach with its Microsoft Office
Live and other products.)

Renting software also has potential disadvantages. The
user is dependent on the reliability of the provider’s servers
and networking facilities. If the provider’s service is down,
then the user’s work flow and even access to critical data
may be interrupted. Further, sensitive data that resides on a
provider’s system may be at risk from hackers or industrial
spies. Finally, the user may not have as much control over
the deployment and integration of software as would be
provided by outright purchase.

The ASP market was a hot topic in the late 1990s, and
some pundits predicted that the ASP model would eventu-
ally supplant the traditional retail channel for mainstream
software. This did not happen, and more than a thousand
ASPs were among the casualties of the “dot-com crash” of
the early 2000s. However, ASP activity has been steadier if
less spectacular in niche markets, where it offers more eco-
nomical access to expensive specialized software for appli-
cations such as customer relationship management, supply
chain management, and e-commerce related services—for
example, Salesforce.com. The growing importance of such
“software as a service” business models can be seen in
recent offerings from traditional software companies such
as SAS. By 2004, worldwide spending for “on demand”
software had exceeded $4 billion, and Gartner Research
has predicted that in the second half of the decade about

a third of all software will be obtained as a service rather
than purchased.

Web-Based Applications and Free Software
By that time a new type of application service provider
had become increasingly important. Rather than seeking
to gain revenue by selling online access to software, this
new kind of ASP provides the software for free. A striking
example is Google Pack, a free software suite offered by the
search giant (see Google). Google Pack includes a variety
of applications, including a photo organizer and search and
mapping tools developed by Google, as well as third-party
programs such as the Mozilla Firefox Web browser, Real-
Player media player, the Skype Internet phone service (see
voip), and antivirus and antispyware programs. The soft-
ware is integrated into the user’s Windows desktop, pro-
viding fast index and retrieval of files from the hard drive.
(Critics have raised concerns about the potential violation
of privacy or misuse of data, especially with regard to a
“share across computers” feature that stores data about user
files on Google’s servers.) America Online has also begun to
provide free access to software that was formerly available
only to paid subscribers.

This use of free software as a way to attract users to
advertising-based sites and services could pose a major
threat to companies such as Microsoft that rely on software
as their main source of revenue. In 2006 Google unveiled
a Google Docs & Spreadsheets, a program that allows
users to create and share word-processing documents and
spreadsheets over the Web. Such offerings, together with
free open-source software such as Open Office.org, may
force traditional software companies to find a new model
for their own offerings.

Microsoft in turn has launched Office Live, a service
designed to provide small offices with a Web presence and
productivity tools. The free “basic” level of the service is
advertising supported, and expanded versions are available
for a modest monthly fee. The program also has features
that are integrated with Office 2007, thus suggesting an
attempt to use free or low-cost online services to add value
to the existing stand-alone product line.

By 2008 the term cloud computing had become a popular
way to describe software provided from a central Internet
site that could be accessed by the user through any form
of computer and connection. An advantage touted for this
approach is that the user need not be concerned with where
data is stored or the need to make backups, which are
handled seamlessly.

Further Reading
Chen, Anne. “Office Live Makes Online Presence Known.” eWeek,

November 2, 2006. Available online. URL: http://www.eweek.
com/article2/0,1759,2050580,00.asp. Accessed May 22, 2007.

Focacci, Luisa, Robert J. Mockler, and Marc E. Gartenfeld. Appli-
cation Service Providers in Business. New York: Haworth,
2005.

Garretson, Rob. “The ASP Reincarnation: The Application Ser-
vice Provider Name Dies Out, but the Concept Lives on
among Second-Generation Companies Offering Software as
a service.” Network World, August 29, 2005. Available online.

application service provider        21

URL: http://www.networkworld.com/research/2005/082905-
asp.html. Accessed May 22, 2007.

“Google Spreadsheets: The Soccer Mom’s Excel.” eWeek, June 6,
2006. Available online. URL: http://www.eweek.com/arti-
cle2/0,1759,1972740,00.asp. Accessed May 22, 2007.

Schwartz, Ephraim. “Applications: SaaS Breaks Down the Wall:
Hosted Applications Continue to Remove Enterprise Objec-
tions.” Infoworld, January 1, 2007. Available online. URL:
http://www.infoworld.com/article/07/01/01/01FEtoyapps_
1.html. Accessed May 22, 2007.

application software
Application software consists of programs that enable com-
puters to perform useful tasks, as opposed to programs that
are concerned with the operation of the computer itself (see
operating system and systems programming). To most
users, applications programs are the computer: They deter-
mine how the user will accomplish tasks.

The following table gives a selection of representative
applications:

Developing and Distributing Applications
Applications can be divided into three categories based
on how they are developed and distributed. Commercial
applications such as word processors, spreadsheets, and
general-purpose Database Management Systems (DBMS)
are developed by companies specializing in such software
and distributed to a variety of businesses and individual
users (see word processing, spreadsheet, and database
management system). Niche or specialized applications
(such as hospital billing systems) are designed for and mar-

keted to a particular industry (see medical applications
of computers). These programs tend to be much more
expensive and usually include extensive technical support.
Finally, in-house applications are developed by program-
mers within a business or other institution for their own
use. Examples might include employee training aids or a
Web-based product catalog (although such applications
could also be developed using commercial software such as
multimedia or database development tools).

While each application area has its own needs and pri-
orities, the discipline of software development (see soft-
ware engineering and programming environment) is
generally applicable to all major products. Software devel-
opers try to improve speed of development as well as pro-
gram reliability by using software development tools that
simplify the writing and testing of computer code, as well
as the manipulation of graphics, sound, and other resources
used by the program. An applications developer must also
have a good understanding of the features and limitations of
the relevant operating system. The developer of commercial
software must work closely with the marketing department
to work out issues of feature selection, timing of releases,
and anticipation of trends in software use (see marketing
of software).

Further Reading
“Business Software Buyer’s Guide.” Available online. URL: http://

businessweek.buyerzone.com/software/business_software/
buyers_guide1.html. Accessed April 12, 2007.

ZDnet Buyer’s Guide to Computer Applications. Available online.
URL: http://www.zdnet.com/computershopper/edit/howto-
buy/. Accessed April 12, 2007

General Area	A pplications	E xamples

Business Operations	 payroll, accounts receivable, 	 specialized business software, general spreadsheets and
	 inventory, marketing	 databases
Education	 school management, curriculum 	 attendance and grade book management, drill-and-practice
	 reinforcement, reference aids, 	 software for reading or arithmetic, CD or online encyclo-
	 curriculum expansion or 	 pedias, educational games or simulations, collaborative
	 supplementation, training	 and Web-based learning, corporate training programs
Engineering	 design and manufacturing	� computer-aided design (CAD), computer-aided manufacturing

(CAM)
Entertainment	 games, music, and video	� desktop and console games, online games, digitized music

distribution (MP3 files), streaming video (including movies)
Government	 administration, law enforcement, 	 tax collection, criminal records and field support for police,
	 military	 legal citation databases, combat information and weapons
		 control systems
Health Care	 hospital administration, health care 	 hospital information and billing systems, medical records
	 delivery	� management, medical imaging, computer-assisted treatment

or surgery
Internet and World 	 web browser, search tools, 	 browser and plug-in software for video and audio, search
Wide Web	 e-commerce	 engines, e-commerce support and secure transactions
Libraries	 circulation, cataloging, reference	� automated book check-in systems, cataloging databases, CD

or online bibliographic and full-text databases
Office Operations 	 e-mail, document creation 	 e-mail clients, word processing, desktop publishing
Science	 statistics, modeling, data analysis	� mathematical and statistical software, modeling of molecules,

gene typing, weather forecasting

22        application software

application suite
An application suite is a set of programs designed to be
used together and marketed as a single package. For exam-
ple, a typical office suite might include word processing,
spreadsheet, database, personal information manager, and
e-mail programs.

While an operating system such as Microsoft Windows
provides basic capabilities to move text and graphics from
one application to another (such as by cutting and pasting),
an application suite such as Microsoft Office makes it easier
to, for example, launch a Web browser from a link within a
word processing document or embed a spreadsheet in the
document. In addition to this “interoperability,” an applica-
tion suite generally offers a consistent set of commands and
features across the different applications, speeding up the
learning process. The use of the applications in one package
from one vendor simplifies technical support and upgrad-
ing. (The development of comparable applications suites
for Linux is likely to increase that operating system’s accep-
tance on the desktop.)

Applications suites have some potential disadvan-
tages as compared to buying a separate program for each
application. The user is not necessarily getting the best
program in each application area, and he or she is also
forced to pay for functionality that may not be needed or
desired. Due to their size and complexity, software suites
may not run well on older computers. Despite these prob-
lems, software suites sell very well and are ubiquitous in
today’s office.

(For a growing challenge to the traditional standalone
software suite, see application service provider.)

Further Reading
Villarosa, Joseph. “How Suite It Is: One-Stop Shopping for Soft-

ware Can Save You Both Time and Money.” Available online.
Forbes magazine online. URL: http://www.forbes.com/buyers/
070.htm. Accessed April 12, 2007.

arithmetic logic unit  (ALU)
The arithmetic logic unit is the part of a computer system
that actually performs calculations and logical comparisons
on data. It is part of the central processing unit (CPU), and
in practice there may be separate and multiple arithmetic
and logic units (see cpu).

The ALU works by first retrieving a code that represents
the operation to be performed (such as ADD). The code also
specifies the location from which the data is to be retrieved
and to which the results of the operation are to be stored.
(For example, addition of the data from memory to a num-
ber already stored in a special accumulator register within
the CPU, with the result to be stored back into the accumu-
lator.) The operation code can also include a specification
of the format of the data to be used (such as fixed or float-
ing-point numbers)—the operation and format are often
combined into the same code.

In addition to arithmetic operations, the ALU can also
carry out logical comparisons, such as bitwise operations
that compare corresponding bits in two data words, corre-

sponding to Boolean operators such as AND, OR, and XOR
(see bitwise operations and Boolean operators).

The data or operand specified in the operation code is
retrieved as words of memory that represent numeric data,
or indirectly, character data (see memory, numeric data,
and characters and strings). Once the operation is per-
formed, the result is stored (typically in a register in the
CPU). Special codes are also stored in registers to indicate
characteristics of the result (such as whether it is positive,
negative, or zero). Other special conditions called excep-
tions indicate a problem with the processing. Common
exceptions include overflow, where the result fills more bits
than are available in the register, loss of precision (because
there isn’t room to store the necessary number of decimal
places), or an attempt to divide by zero. Exceptions are
typically indicated by setting a flag in the machine status
register (see flag).

The Big Picture
Detailed knowledge of the structure and operation of the
ALU is not needed by most programmers. Programmers
who need to directly control the manipulation of data in
the ALU and CPU write programs in assembly language
(see assembler) that specify the sequence of operations to
be performed. Generally only the lowest-level operations
involving the physical interface to hardware devices require
this level of detail (see device driver). Modern compilers
can produce optimized machine code that is almost as effi-
cient as directly-coded assembler. However, understanding
the architecture of the ALU and CPU for a particular chip
can help predict its advantages or disadvantages for various
kinds of operations.

Further Reading
Kleitz, William. Digital and Microprocessor Fundamentals: Theory

and Applications. 4th ed. Upper Saddle River, N.J.: Prentice
Hall, 2002.

Stokes, Jon. “Understanding the Microprocessor.” Ars Technica.
Available online. URL: http://arstechnica.com/paedia/c/cpu/
part-1/cpu1-1.html. Accessed May 22, 2007.

array
An array stores a group of similar data items in consecutive
order. Each item is an element of the array, and it can be
retrieved using a subscript that specifies the item’s location
relative to the first item. Thus in the C language, the state-
ment

int Scores (10);

sets up an array called Scores, consisting of 10 integer val-
ues. The statement

Scores [5] = 93;

stores the value 93 in array element number 5. One subtlety,
however, is that in languages such as C, the first element of
the array is [0], so [5] represents not the fifth but the sixth
element in Scores. (Many version of BASIC allow for setting
either 0 or 1 as the first element of arrays.)

array        23

In languages such as C that have pointers, an equivalent
way to access an array is to declare a pointer and store the
address of the first element in it (see pointers and indi-
rection):

int * ptr;
ptr = &Scores [0];

(See pointers and indirection.)
Arrays are useful because they allow a program to work

easily with a group of data items without having to use sep-
arately named variables. Typically, a program uses a loop to
traverse an array, performing the same operation on each
element in order (see loop). For example, to print the cur-
rent contents of the Scores array, a C program could do the
following:

int index;
for (index = 0; i < 10; i++)

printf (“Scores [%d] = %d \n”, index,
Scores [index]);

This program might print a table like this:

Scores [0] = 22
Scores [1] = 28
Scores [2] = 36

and so on. Using a pointer, a similar loop would increment
the pointer to step to each element in turn.

An array with a single subscript is said to have one
dimension. Such arrays are often used for simple data lists,
strings of characters, or vectors. Most languages also sup-

port multidimensional arrays. For example, a two-dimen-
sional array can represent X and Y coordinates, as on a
screen display. Thus the number 16 stored at Colors[10][40]
might represent the color of the point at X=10, Y=40 on a
640 by 480 display. A matrix is also a two-dimensional
array, and languages such as APL provide built-in support
for mathematical operations on such arrays. A four-dimen-
sional array might hold four test scores for each person.

Some languages such as FORTRAN 90 allow for defin-
ing “slices” of an array. For example, in a 3 × 3 matrix, the
expression MAT(2:3, 1:3) references two 1 × 3 “slices” of the
matrix array. Pascal allows defining a subrange, or portion
of the subscripts of an array.

Associative Arrays
It can be useful to explicitly associate pairs of data items
within an array. In an associative array each data element
has an associated element called a key. Rather than using
subscripts, data elements are retrieved by passing the key
to a hashing routine (see hashing). In the Perl language, for
example, an array of student names and scores might be set
up like this:

%Scores = (“Henderson” => 86, “Johnson” => 87, “Jack-
son” => 92);

The score for Johnson could later be retrieved using the
reference:

$Scores (“Johnson”)

Associative arrays are handy in that they facilitate look-up
tables or can serve as small databases. However, expanding
the array beyond its initial allocation requires rehashing all
the existing elements.

Programming Issues
To avoid error, any reference to an array must be within
its declared bounds. For example, in the earlier example,
Scores[9] is the last element, and a reference to Scores[10]
would be out of bounds. Attempting to reference an out-
of-bounds value gives an error message in some languages
such as Pascal, but in others such as standard C and C++, it
simply retrieves whatever happens to be in that location in
memory.

Another issue involves the allocation of memory for the
array. In a static array, such as that used in FORTRAN 77,
the necessary storage is allocated before the program runs,
and the amount of memory cannot be changed. Static arrays
use memory efficiently and reduce overhead, but are inflex-
ible, since the programmer has to declare an array based
on the largest number of data items the program might be
called upon to handle. A dynamic array, however, can use a
flexible structure to allocate memory (see heap). The pro-
gram can change the size of the array at any time while it
is running. C and C++ programs can create dynamic arrays
and allocate memory using special functions (malloc and
free in C) or operators (new and delete in C++).

A two-dimensional array can be visualized as a grid, with the
array subscripts indicating the row and column in which a par-
ticular value is stored. Here the value 4 is stored at the location
(1,2), while the value at (2,0), which is 8, is assigned to N. As
shown, the actual computer memory is a one dimensional line
of successive locations. In most computer languages the array is
stored row by row.

24        array

In the early days of microcomputer programming, arrays
tended to be used as an all-purpose data structure for stor-
ing information read from files. Today, since there are more
structured and flexible ways to store and retrieve such data,
arrays are now mainly used for small sets of data (such as
look-up tables).

Further Reading
Jensen, Ted. “A Tutorial on Pointers and Arrays in C.” Available

online. URL: http://pw2.netcom.com/~tjensen/ptr/pointers.
htm. Accessed April 12, 2007.

Sebesta, Robert W. Concepts of Programming Languages. 8th ed.
Boston: Addison-Wesley, 2008.

art and the computer
While the artistic and technical temperaments are often
viewed as opposites, the techniques of artists have always
shown an intimate awareness of technology, including the
physical characteristics of the artist’s tools and media. The
development of computer technology capable of generating,
manipulating, displaying, or printing images has offered a
variety of new tools for existing artistic traditions, as well
as entirely new media and approaches.

Computer art began as an offshoot of research into image
processing or the simulation of visual phenomena, such as
by researchers at Bell Labs in Murray Hill, New Jersey, dur-
ing the 1960s. One of these researchers, A. Michael Noll,
applied computers to the study of art history by simulat-
ing techniques used by painters Piet Mondrian and Bridget
Riley in order to gain a better understanding of them. In
addition to exploring existing realms of art, experiment-
ers began to create a new genre of art, based on the ideas of
Max Bense, who coined the terms “artificial art” and “gen-
erative esthetics.” Artists such as Manfred Mohr studied
computer science because they felt the computer could pro-
vide the tools for an esthetic strongly influenced by math-
ematics and natural science. For example, Mohr’s P-159/A
(1973) used mathematical algorithms and a plotting device
to create a minimalistic yet rich composition of lines. Other
artists working in the minimalist, neoconstructivist, and
conceptual art traditions found the computer to be a com-
pelling tool for exploring the boundaries of form.

By the 1980s, the development of personal computers
made digital image manipulation available to a much wider
group of people interested in artistic expression, including
the more conventional realms of representational art and
photography. Programs such as Adobe Photoshop blend art
and photography, making it possible to combine images
from many sources and apply a variety of transformations
to them. The use of computer graphics algorithms make
realistic lighting, shadow, and fog effects possible to a much
greater degree than their approximation in traditional
media. Fractals can create landscapes of infinite texture
and complexity. The computer has thus become a standard
tool for both “serious” and commercial artists.

Artificial intelligence researchers have developed pro-
grams that mimic the creativity of human artists. For exam-
ple, a program called Aaron developed by Harold Cohen

can adapt and extend existing styles of drawing and paint-
ing. Works by Aaron now hang in some of the world’s most
distinguished art museums.

An impressive display of the “state of the computer art”
could be seen at a digital art exhibition that debuted in
Boston at the SIGGRAPH 2006 conference. More than 150
artists and researchers from 16 countries exhibited work
and discussed its implications. Particularly interesting
were dynamic works that interacted with visitors and the
environment, often blurring the distinction between digi-
tal arts and robotics. In the future, sculptures may change
with the season, time of day, or the presence of people in
the room, and portraits may show moods or even converse
with viewers.

Implications and Prospects
While traditional artistic styles and genres can be repro-
duced with the aid of a computer, the computer has the
potential to change the basic paradigms of the visual arts.
The representation of all elements in a composition in digi-
tal form makes art fluid in a way that cannot be matched

Air, created by Lisa Yount with the popular image-editing program
Adobe Photoshop, is part of a group of photocollages honoring the
ancient elements of earth, air, water, and fire. The “wings” in the
center are actually the two halves of a mussel shell.  (Lisa Yount)

art and the computer        25

by traditional media, where the artist is limited in the abil-
ity to rework a painting or sculpture. Further, there is no
hard-and-fast boundary between still image and anima-
tion, and the creation of art works that change interactively
in response to their viewer becomes feasible. Sound, too,
can be integrated with visual representation, in a way far
more sophisticated than that pioneered in the 1960s with
“color organs” or laser shows. Indeed, the use of virtual
reality technology makes it possible to create art that can be
experienced “from the inside,” fully immersively (see vir-
tual reality). The use of the Internet opens the possibility
of huge collaborative works being shaped by participants
around the world.

The growth of computer art has not been without mis-
givings. Many artists continue to feel that the intimate
physical relationship between artist, paint, and canvas can-
not be matched by what is after all only an arrangement of
light on a flat screen. However, the profound influence of
the computer on contemporary art is undeniable.

Further Reading
Computer-Generated Visual Arts (Yahoo). Available online. URL:

http://dir.yahoo.com/Arts/Visual_Arts/Computer_Generated/.
Accessed April 13, 2007.

Ashford, Janet. Arts and Crafts Computer: Using Your Computer as
an Artist’s Tool. Berkeley, Calif.: Peachpit Press, 2001.

Kurzweil Cyber Art Technologies homepage. Available online.
URL: http://www.kurzweilcyberart.com/index.html. Accessed
May 22, 2007.

Popper, Frank. Art of the Electronic Age. New York: Thames &
Hudson, 1997.

Rush, Michael. New Media in Late 20th-Century Art. New York:
Thames & Hudson, 1999.

SIGGRAPH 2006 Art Gallery. “Intersections.” Available online.
URL: http://www.siggraph.org/s2006/main.php?f=conference
&p=art. Accessed May 22, 2007.

artificial intelligence
The development of the modern digital computer follow-
ing World War II led naturally to the consideration of the
ultimate capabilities of what were soon dubbed “thinking
machines” or “giant brains.” The ability to perform cal-
culations flawlessly and at superhuman speeds led some
observers to believe that it was only a matter of time before
the intelligence of computers would surpass human levels.
This belief would be reinforced over the years by the devel-
opment of computer programs that could play chess with
increasing skill, culminating in the match victory of IBM’s
Deep Blue over world champion Garry Kasparov in 1997.
(See chess and computers.)

However, the quest for artificial intelligence would face
a number of enduring challenges, the first of which is a
lack of agreement on the meaning of the term intelligence,
particularly in relation to such seemingly different entities
as humans and machines. While chess skill is considered
a sign of intelligence in humans, the game is deterministic
in that optimum moves can be calculated systematically,
limited only by the processing capacity of the computer.
Human chess masters use a combination of pattern recogni-
tion, general principles, and selective calculation to come

up with their moves. In what sense could a chess-playing
computer that mechanically evaluates millions of positions
be said to “think” in the way humans do? Similarly, com-
puters can be provided with sets of rules that can be used to
manipulate virtual building blocks, carry on conversations,
and even write poetry. While all these activities can be per-
ceived by a human observer as being intelligent and even
creative, nothing can truly be said about what the computer
might be said to be experiencing.

In 1950, computer pioneer Alan M. Turing suggested
a more productive approach to evaluating claims of artifi-
cial intelligence in what became known as the Turing test
(see Turing, Alan). Basically, the test involves having a
human interact with an “entity” under conditions where he
or she does not know whether the entity is a computer or
another human being. If the human observer, after engag-
ing in teletyped “conversation” cannot reliably determine
the identity of the other party, the computer can be said to
have passed the Turing test. The idea behind this approach
is that rather than attempting to precisely and exhaustively
define intelligence, we will engage human experience and
intuition about what intelligent behavior is like. If a com-
puter can successfully imitate such behavior, then it at least
may become problematic to say that it is not intelligent.

Computer programs have been able to pass the Tur-
ing test to a limited extent. For example, a program called
ELIZA written by Joseph Weizenbaum can carry out what
appears to be a responsive conversation on themes chosen
by the interlocutor. It does so by rephrasing statements
or providing generalizations in the way that a nondirec-
tive psychotherapist might. But while ELIZA and similar
programs have sometimes been able to fool human inter-
locutors, an in-depth probing by the humans has always
managed to uncover the mechanical nature of the response.

Although passing the Turing test could be considered
evidence for intelligence, the question of whether a com-
puter might have consciousness (or awareness of self) in
the sense that humans experience it might be impossible to
answer. In practice, researchers have had to confine them-
selves to producing (or simulating) intelligent behavior, and
they have had considerable success in a variety of areas.

Top-Down Approaches
The broad question of a strategy for developing artificial
intelligence crystallized at a conference held in 1956 at Dart-
mouth College. Four researchers can be said to be founders
of the field: Marvin Minsky (founder of the AI Laboratory at
MIT), John McCarthy (at MIT and later, Stanford), and Her-
bert Simon and Allen Newell (developers of a mathematical
problem-solving program called Logic Theorist at the Rand
Corporation, who later founded the AI Laboratory at Carn-
egie Mellon University). The 1950s and 1960s were a time
of rapid gains and high optimism about the future of AI (see
Minsky, Marvin and Mccarthy, John).

Most early attempts at AI involved trying to specify rules
that, together with properly organized data, can enable the
machine to draw logical conclusions. In a production system
the machine has information about “states” (situations) plus
rules for moving from one state to another—and ultimately,

26        artificial intelligence

to the “goal state.” A properly implemented production sys-
tem cannot only solve problems, it can give an explanation
of its reasoning in the form of a chain of rules that were
applied.

The program SHRDLU, developed by Marvin Minsky’s
team at MIT, demonstrated that within a simplified “micro-
world” of geometric shapes a program can solve problems
and learn new facts about the world. Minsky later developed
a more generalized approach called “frames” to provide the
computer with an organized database of knowledge about
the world comparable to that which a human child assimi-
lates through daily life. Thus, a program with the appropri-
ate frames can act as though it understands a story about
two people in a restaurant because it “knows” basic facts
such as that people go to a restaurant to eat, the meal is
cooked for them, someone pays for the meal, and so on.

While promising, the frames approach seemed to founder
because of the sheer number of facts and relationships
needed for a comprehensive understanding of the world.
During the 1970s and 1980s, however, expert systems were
developed that could carry out complex tasks such as deter-
mining the appropriate treatment for infections (MYCIN)
and analysis of molecules (DENDRAL). Expert systems
combined rules of inference with specialized databases of
facts and relationships. Expert systems have thus been able
to encapsulate the knowledge of human experts and make it
available in the field (see expert systems and knowledge
representation).

The most elaborate version of the frames approach has
been a project called Cyc (short for “encyclopedia”), devel-
oped by Douglas Lenat. This project is now in its third
decade and has codified millions of assertions about the
world, grouping them into semantic networks that repre-
sent dozens of broad areas of human knowledge. If success-
ful, the Cyc database could be applied in many different
domains, including such applications as automatic analysis
and summary of news stories.

Bottom-Up Approaches
Several “bottom-up” approaches to AI were developed in
an attempt to create machines that could learn in a more
humanlike way. The one that has gained the most prac-
tical success is the neural network, which attempts to
emulate the operation of the neurons in the human brain.
Researchers believe that in the human brain perceptions or
the acquisition of knowledge leads to the reinforcement of
particular neurons and neural paths, improving the brain’s
ability to perform tasks. In the artificial neural network a
large number of independent processors attempt to perform
a task. Those that succeed are reinforced or “weighted,”
while those that fail may be negatively weighted. This leads
to a gradual improvement in the overall ability of the sys-
tem to perform a task such as sorting numbers or recogniz-
ing patterns (see neural network).

Since the 1950s, some researchers have suggested that
computer programs or robots be designed to interact with
their environment and learn from it in the way that human
infants do. Rodney Brooks and Cynthia Breazeal at MIT
have created robots with a layered architecture that includes

motor, sensory, representational, and decision-making ele-
ments. Each level reacts to its inputs and sends information
to the next higher level. The robot Cog and its descendant
Kismet often behaved in unexpected ways, generating com-
plex responses that are emergent rather than specifically
programmed.

The approach characterized as “artificial life” adds a
genetic component in which the successful components
pass on program code “genes” to their offspring. Thus, the
power of evolution through natural selection is simulated,
leading to the emergence of more effective systems (see
artificial life and genetic algorithms).

In general the top-down approaches have been more
successful in performing specialized tasks, but the bottom-
up approaches may have greater general application, as well
as leading to cross-fertilization between the fields of arti-
ficial intelligence, cognitive psychology, and research into
human brain function.

Application Areas
While powerful artificial intelligence is not yet ubiquitous
in everyday computing, AI principles are being successfully
used in a number of application areas. These areas, which
are all covered separately in this book, include

• � devising ways of capturing and representing knowl-
edge, making it accessible to systems for diagnosis and
analysis in fields such as medicine and chemistry (see
knowledge representation and expert systems)

• � creating systems that can converse in ordinary lan-
guage for querying databases, responding to customer
service calls, or other routine interactions (see natu-
ral language processing)

• � enabling robots to not only see but also “understand”
objects in a scene and their relationships (see com-
puter vision and robotics)

• � improving systems for voice and face recognition, as
well as sophisticated data mining and analysis (see
speech recognition and synthesis, biometrics,
and data mining)

• � developing software that can operate autonomously,
carrying out assignments such as searching for and
evaluating competing offerings of merchandise (see
software agent)

Prospects
The field of AI has been characterized by successive waves
of interest in various approaches, and ambitious projects
have often failed. However, expert systems and, to a lesser
extent, neural networks have become the basis for viable
products. Robotics and computer vision offer a significant
potential payoff in industrial and military applications. The
creation of software agents to help users navigate the com-
plexity of the Internet is now of great commercial interest.
The growth of AI has turned out to be a steeper and more
complex path than originally anticipated. One view sug-
gests steady progress. Another, shared by science fiction

artificial intelligence        27

writers such as Vernor Vinge, suggests a breakthrough, per-
haps arising from artificial life research, might someday
create a true—but truly alien—intelligence (see singular-
ity, technological).

Further Reading
American Association for Artificial Intelligence. “Welcome to AI

Topics.” Available online. URL: http://www.aaai.org/Pathfinder/
html/welcome.html. Accessed April 13, 2007.

“An Introduction to the Science of Artificial Intelligence.” Available
online. URL: http://library.thinkquest.org/2705/. Accessed
April 13, 2007.

Feigenbaum, E. A. and J. Feldman, eds. Computers and Thought.
New York: McGraw-Hill, 1963.

Henderson, Harry. Artificial Intelligence: Mirrors for the Mind. New
York: Facts On File, 2007.

Jain, Sanjay, et al. Systems that Learn: An Introduction to Learning
Theory. 2nd ed. Cambridge, Mass: MIT Press, 1999.

Kurzweil, Ray. The Age of Spiritual Machines: When Computers
Exceed Human Intelligence. New York: Viking, 1999.

McCorduck, Pamela. Machines Who Think. 25th Anniversary
update. Notick, Mass.: A. K. Peters, 2004.

Shapiro, Stuart C. Encyclopedia of Artificial Intelligence. 2nd ed.
New York: Wiley, 1992.

artificial life  (AL)
This is an emerging field that attempts to simulate the
behavior of living things in the realm of computers and
robotics. The field overlaps artificial intelligence (AI) since
intelligent behavior is an aspect of living things. The design
of a self-reproducing mechanism by John von Neumann in
the mid-1960s was the first model of artificial life (see von
Neumann, John). The field was expanded by the devel-
opment of cellular automata as typified in John Conway’s
Game of Life in the 1970s, which demonstrated how simple
components interacting according to a few specific rules
could generate complex emergent patterns. A program by
Craig Reynolds uses this principle to model the flocking
behavior of simulated birds, called “boids” (see cellular
automata).

The development of genetic algorithms by John Holland
added selection and evolution to the act of reproduction.
This approach typically involves the setting up of numerous
small programs with slightly varying code, and having them
attempt a task such as sorting data or recognizing patterns.
Those programs that prove most “fit” at accomplishing the
task are allowed to survive and reproduce. In the act of
reproduction, biological mechanisms such as genetic muta-
tion and crossover are allowed to intervene (see genetic
algorithms). A rather similar approach is found in the
neural network, where those nodes that succeed better at
the task are given greater “weight” in creating a composite
solution to the problem (see neural network).

A more challenging but interesting approach to AL is to
create actual robotic “organisms” that navigate in the physi-
cal rather than the virtual world. Roboticist Hans Moravec
of the Stanford AI Laboratory and other researchers have
built robots that can deal with unexpected obstacles by
improvisation, much as people do, thanks to layers of soft-
ware that process perceptions, fit them to a model of the

world, and make plans based on goals. But such robots,
built as full-blown designs, share few of the characteristics
of artificial life. As with AI, the bottom-up approach offers
a different strategy that has been called “fast, cheap, and
out of control”—the production of numerous small, simple,
insectlike robots that have only simple behaviors, but are
potentially capable of interacting in surprising ways. If a
meaningful genetic and reproductive mechanism can be
included in such robots, the result would be much closer to
true artificial life (see robotics).

The philosophical implications arising from the pos-
sible development of true artificial life are similar to those
involved with “strong AI.” Human beings are used to view-
ing themselves as the pinnacle of a hierarchy of intelligence
and creativity. However, artificial life with the capability
of rapid evolution might quickly outstrip human capabili-
ties, perhaps leading to a world like that portrayed by sci-
ence fiction writer Gregory Benford, where flesh-and-blood
humans become a marginalized remnant population.

Further Reading
“ALife Online 2.0.” Available online. URL: http://alife.org/.

Accessed April 13, 2007.
“Karl Sims Retrospective.” Available online. URL: http://www.

biota.org/ksims/. Accessed April 13, 2007.
Langton, Christopher G., ed. Artificial Life: an Overview. Cam-

bridge, Mass.: MIT Press, 1995.
Levy, Stephen. Artificial Life: the Quest for a New Creation. New

York: Pantheon Books, 1992.
Tierra homepage. Available online. URL: http://www.his.atr.jp/

çray/tierra. Accessed.

ASP  See application service provider.

assembler
All computers at bottom consist of circuits that can perform
a repertoire of mathematical or logical operations. The ear-
liest computers were programmed by setting switches for
operations and manually entering numbers in working stor-
age, or memory. A major advance in the flexibility of com-
puters came with the idea of stored programs, where a set of
instructions could be read in and held in the machine in the
same way as other data. These instructions were in machine
language, consisting of numbers representing instructions
(operations to be performed) and other numbers represent-
ing the address of data to be manipulated (or an address
containing the address of the data, called indirect address-
ing—see addressing). Operations include basic arithmetic
(such as addition), the movement of data between storage
(memory) and special processor locations called registers,
and the movement of data from an input device (such as a
card reader) and an output device (such as a printer).

Writing programs in machine code is obviously a
tedious and error-prone process, since each operation must
be specified using a particular numeric instruction code
together with the actual addresses of the data to be used. It
soon became clear, however, that the computer could itself
be used to keep track of binary codes and actual addresses,

28        artificial life

allowing the programmer to use more human-friendly
names for instructions and data variables. The program
that translates between symbolic language and machine
language is the assembler.

With a symbolic assembler, the programmer can give
names to data locations. Thus, instead of saying (and hav-
ing to remember) that the quantity Total will be in location
&H100, the program can simply define a two-byte chunk of
memory and call it Total:

Total DB

The assembler will take care of assigning a physical mem-
ory location and, when instructed, retrieving or storing the
data in it.

Most assemblers also have macro capability. This means
that the programmer can write a set of instructions (a pro-
cedure) and give it a name. Whenever that name is used in
the program, the assembler will replace it with the actual
code for the procedure and plug in whatever variables are
specified as operands (see macro).

Applications
In the mainframe world of the 1950s, the development of
assembly languages represented an important first step
toward symbolic programming; higher-level languages such
as FORTRAN and COBOL were developed so that program-
mers could express instructions in language that was more
like mathematics and English respectively. High-level lan-
guages offered greater ease of programming and source
code that was easier to understand (and thus to maintain).
Gradually, assembly language was reserved for systems pro-
gramming and other situations where efficiency or the need

to access some particular hardware capability required the
exact specification of processing (see systems program-
ming and device driver).

During the 1970s and early 1980s, the same evolution
took place in microcomputing. The first microcomputers
typically had only a small amount of memory (perhaps
8–64K), not enough to compile significant programs in a
high-level language (with the partial exception of some ver-
sions of BASIC). Applications such as graphics and games in
particular were written in assembly language for speed. As
available memory soared into the hundreds of kilobytes and
then megabytes, however, high level languages such as C
and C++ became practicable, and assembly language began
to be relegated to systems programming, including device
drivers and other programs that had to interact directly
with the hardware.

While many people learning programming today receive
little or no exposure to assembly language, some under-
standing of this detailed level of programming is still useful
because it illustrates fundamentals of computer architec-
ture and operation.

Further Reading
Abel, Peter. IBM PC Assembly Language and Programming. 5th ed.

Upper Saddle River, N.J.: Prentice Hall, 2001.
Duntemann, Jeff. Assembly Language Step by Step: Programming

with DOS and Linux. 2nd ed. New York: Wiley, 2000.
Miller, Karen. An Assembly Language Introduction to Computer

Architecture Using the Intel Pentium. New York: Oxford Uni-
versity Press, 1999.

asynchronous JavaScript and XML  See ajax.

In this assembly language example, the “define byte” (.db) directive is used to assign one memory byte to each of the symbolic names (vari-
ables) firstnum, secondnum, and total. The two mov commands then load 2 and 3 into firstnum and secondnum, respectively. Firstnum is
then loaded into the processor’s accumulator (a), and secondnum is then added to it. Finally, the sum is moved into the memory location
labeled total.

asynchronous JavaScript and XML        29

Atanasoff, John Vincent
(1903–1995)
American
Computer Engineer

John V. Atanasoff is considered by many historians to be
the inventor of the modern electronic computer. He was
born October 4, 1903, in Hamilton, New York. As a young
man, Atanasoff showed considerable interest in and a talent
for electronics. His academic background (B.S. in electrical
engineering, Florida State University, 1925; M.S. in mathe-
matics, Iowa State College, 1926; and Ph.D. in experimental
physics, University of Wisconsin, 1930) well equipped him
for the design of computing devices. He taught mathemat-
ics and physics at Iowa State until 1942, and during that
time, he conceived the idea of a fully electronic calculating
machine that would use vacuum tubes for its arithmetic cir-
cuits and would store binary numbers on a rotating drum
memory that used high and low charges on capacitors.
Atanasoff and his assistant Clifford E. Berry built a suc-

cessful computer called ABC (Atanasoff-Berry computer)
using this design in 1942. (By that time he had taken a war-
time research position at the Naval Ordnance Laboratory in
Washington, D.C.)

The ABC was a special-purpose machine designed for
solving up to 29 simultaneous linear equations using an
algorithm based on Gaussian elimination to eliminate
a specified variable from a pair of equations. Because of
inherent unreliability in the system that punched cards to
hold the many intermediate results needed in such calcula-
tions, the system was limited in practice to solving sets of
five or fewer equations.

Despite its limitations, the ABC’s design proved the fea-
sibility of fully electronic computing, and similar vacuum
tube switching and regenerative memory circuits were
soon adopted in designing the ENIAC and EDVAC, which
unlike the ABC, were general-purpose electronic computers.
Equally important was Atanasoff’s use of capacitors to store
data in memory electronically: The descendent of his capaci-
tors can be found in the DRAM chips in today’s computers.

When Atanasoff returned to Iowa State in 1948, he dis-
covered that the ABC computer had been dismantled to
make room for another project. Only a single memory drum
and a logic unit survived. Iowa State granted him a full
professorship and the chairmanship of the physics depart-
ment, but he never returned to that institution. Instead, he
founded the Ordnance Engineering Corporation in 1952,
which grew to a 100-person workforce before he sold the
firm to Aerojet General in 1956. He then served as a vice
president at Aerojet until 1961.

Atanasoff then semi-retired, devoting his time to a vari-
ety of technical interests (he had more than 30 patents to
his name by the time of his death). However, when Sperry
Univac (owner of Eckert and Mauchly’s computer patents)
began demanding license fees from competitors in the mid-
1960s, the head lawyer for one of these competitors, Hon-
eywell, found out about Atanasoff’s work on the ABC and
enlisted his aid as a witness in an attempt to overturn the
patents. After prolonged litigation, Judge Earl Richard Lar-
son ruled in 1973 that the two commercial computing pio-
neers had learned key ideas from Atanasoff’s apparatus and
writings and that their patent was invalid because of this
“prior art.”

Atanasoff received numerous awards for his work for the
Navy on acoustics and for his pioneering computer work.
These awards included the IEEE Computer Pioneer Award
(1984) and the National Medal of Technology (1990). In
addition, he had both a hall at Iowa State University and
an asteroid (3546-Atanasoff) named in his honor. John
Atanasoff died on June 15, 1995, in Monrovia, Maryland.

Further Reading
Burks, A. R., and A. W. Burks. The First Electronic Computer: the

Atanasoff Story. Ann Arbor, Mich: University of Michigan
Press, 1988.

Lee, J. A. N. Computer Pioneers. Los Alamitos, Calif.: IEEE Com-
puter Society Press, 1995.

“Reconstruction of the Atanasoff-Berry Computer (ABC).” Avail-
able online. URL: http://www.scl.ameslab.gov/ABC/ABC.
html. Accessed April 13, 2007.

According to a federal court it was John Atanasoff, not John
Mauchly and Presper Eckert, who built the first digital computer.
At any rate the “ABC” or Atanasoff-Berry computer represented
a pioneering achievement in the use of binary logic circuits for
computation.  (Iowa State University)

30        Atanasoff, John Vincent

auctions, online
By the late 1990s, millions of computer users had discov-
ered a new way to buy and sell an immense variety of items
ranging from traditional collectibles to the exotic (such as a
working German Enigma encoding machine).

Since its founding in 1995, leading auction site eBay has
grown to 78 million users in mid-2006, with revenue of
about $7.6 billion in 2007 (see eBay). (Two other e-com-
merce giants, Amazon.com and Yahoo!, also entered the
online auction market, but with much more modest results.)

Procedures
Online auctions differ from traditional auctions in several
ways. Traditional auction firms generally charge the seller
and buyer a commission of around 10 percent of the sale or
“hammer” price. Online auctions charge the buyer nothing,
and the seller typically pays a fee of about 3–5 percent of the
amount realized. Online auctions can charge much lower
fees because unlike traditional auctions, there is no live
auctioneer, no catalogs to produce, and little administra-
tion, since all payments pass from buyer to seller directly.

An online auction is like a mail bid auction in that bids
can be posted at any time during the several days a typi-
cal auction runs. A buyer specifies a maximum bid and if
he or she becomes the current high bidder, the high bid is
adjusted to a small increment over the next highest bid. As
with a “live” auction, however, bidders can revise their bids
as many times as they wish until the close of the auction.
An important difference between online and traditional live
auctions is that a traditional auction ends as soon as no
one is willing to top the current high bid. With an online
auction, the bidding ends at the posted ending time. This
has led to a tactic known as “sniping,” where some bidders
submit a bid just over the current high bid just before the
auction ends, such that the previous high bidder has no
time to respond.

Future and Implications
Online auctions have become very popular, and an increas-
ing number of people run small businesses by selling items
through auctions. The markets for traditional collectibles
such as coins and stamps have been considerably affected
by online auctions. Knowledgeable buyers can often obtain
items for considerably less than a dealer would charge, or
sell items for more than a dealer would pay. However, many
items are overpriced compared to the normal market, and
faked or ill-described items can be a significant problem.
Attempts to hold the auction service legally responsible
for such items are met with the response that the auction
service is simply a facilitator for the seller and buyer and
does not play the role of traditional auctioneers who catalog
items and provide some assurance of authenticity. If courts
or regulators should decide that online auctions must bear
this responsibility, the cost of using the service may rise or
the variety of items that can be offered may be restricted.

Further Reading
Cohen, Adam. The Perfect Store: Inside eBay. Boston: Little, Brown,

2002.

Encell, Steve, and Si Dunn. The Everything Online Auctions Book:
All You Need to Buy and Sell with Success—on eBay and Beyond.
Avon, Mass.: Adams Publishing Group, 2006.

Kovel, Ralph M., and Terry H. Kovel. Kovels’ Bid, Buy, and Sell
Online: Basic Auction Information and Tricks of the Trade. New
York: Three Rivers Press, 2001.

auditing in data processing
The tremendous increase in the importance and extent of
information systems for all aspects of commerce and indus-
try has made it imperative that businesses be able to ensure
the accuracy and integrity of their accounting systems and
corporate databases. Errors can result in loss of revenue
and even exposure to legal liability.

Auditing involves the analysis of the security and accu-
racy of software and the procedures for using it. For exam-
ple, sample data can be extracted using automated scripts
or other software tools and examined to determine whether
correct and complete information is being entered into the
system, and whether the reports on which management
relies for decision making are accurate. Auditing is also
needed to confirm that data reported to regulatory agencies
meets legal requirements.

In addition to confirming the reliability of software and
procedures, auditors must necessarily also be concerned
with issues of security, since attacks or fraud involving
computer systems can threaten their integrity or reliability
(see computer crime and security). The safeguarding of
customer privacy has also become a sensitive concern (see
privacy in the digital age). To address such issues, the
auditor must have a working knowledge of basic psychol-
ogy and human relations, particularly as they affect large
organizations.

Auditors recommend changes to procedures and prac-
tices to minimize the vulnerability of the system to both
human and natural threats. The issues of backup and
archiving and disaster recovery must also be addressed
(see backup and archive systems). As part accountant
and part systems analyst, the information systems auditor
represents a bridging of traditional practices and rapidly
changing technology.

Further Reading
Cannon, David L., Timothy S. Bergmann, and Brady Pamplin.

CISA: Certified Information Systems Auditor Study Guide. Indi-
anapolis: Wiley Publishing, 2006.

Champlain, Jack. Auditing Information Systems. Hoboken, N.J.:
Wiley, 2003.

Information Systems Audit and Control Association. Available
online. URL: http://www.isaca.org/. Accessed May 22, 2007.

Pathak, Jagdish. Information Systems Auditing: An Evolving Agenda.
New York: Springer-Verlag, 2005.

authentication
This process by which two parties in a communication
or transaction can assure each other of their identity is a
fundamental requirement for any transaction not involv-
ing cash, such as the use of checks or credit or debit cards.
(In practice, for many transactions, authentication is “one

authentication        31

way”—the seller needs to know the identity of the buyer
or at least have some way of verifying the payment, but the
buyer need not confirm the identity of the seller—except,
perhaps in order to assure proper recourse if something
turns out to be wrong with the item purchased.)

Traditionally, authentication involves paper-based iden-
tification (such as driver’s licenses) and the making and
matching of signatures. Since such identification is rela-
tively easy to fake, there has been growing interest in the
use of characteristics such as voice, facial measurements,
or the patterns of veins in the retina that can be matched
uniquely to individuals (see biometrics). Biometrics, how-
ever, requires the physical presence of the person before a
suitable device, so it is primarily used for guarding entry
into high-security areas.

Authentication in Online Systems
Since many transactions today involve automated systems
rather than face-to-face dealings, authentication systems
generally involve the sharing of information unique to the
parties. The PIN used with ATM cards is a common exam-
ple: It protects against the physical diversion of the card by
requiring information likely known only to the legitimate
owner. In e-commerce, there is the additional problem of
safeguarding sensitive information such as credit card num-
bers from electronic eavesdroppers or intruders. Here a sys-
tem is used by which information is encrypted before it is
transmitted over the Internet. Encryption can also be used
to verify identity through a digital signature, where a mes-
sage is transformed using a “one-way function” such that it is
highly unlikely that a message from any other sender would
have the same encrypted form (see encryption). The most
widespread system is public key cryptography, where each
person has a public key (known to all interested parties) and
a private key that is kept secret. Because of the mathematical
relationship between these two keys, the reader of a message
can verify the identity of the sender or creator.

The choice of technology or protocol for authentication
depends on the importance of the transaction, the vulner-
ability of information that needs to be protected, and the
consequences of failing to protect it. A Web site that is pro-
viding access to a free service in exchange for information
about users will probably not require authentication beyond
perhaps a simple user/password pair. An online store, on the
other hand, needs to provide a secure transaction environ-
ment both to prevent losses and to reassure potential custom-
ers that shopping online does not pose an unacceptable risk.

Authentication ultimately depends on a combination
of technological and social systems. For example, crypto-
graphic keys or “digital certificates” can be deposited with
a trusted third party such that a user has reason to believe
that a business is who it says it is.

Further Reading
Ratha, Nalini, and Ruud Bolie, eds. Automatic Fingerprint Recogni-

tion Systems. New York: Springer-Verlag, 2004.
Smith, Richard E., and Paul Reid. User Authentication Systems and

Role-Based Security. Upper Saddle River, N.J.: Pearson Custom
Publishing, 2004.

Tung, Brian. Kerberos: A Network Authentication System. Reading,
Mass.: Addison-Wesley, 1999.

authoring systems
Multimedia presentations such as computer-based-training
(CBT) modules are widely used in the corporate and educa-
tional arenas. Programming such a presentation in a high-
level language such as C++ (or even Visual Basic) involves
writing code for the detailed arrangement and control of
graphics, animation, sound, and user interaction. Authoring
systems offer an alternative way to develop presentations or
courses. The developer specifies the sequence of graphics,
sound, and other events, and the authoring system gener-
ates a finished program based on those specifications.

Authoring systems can use a variety of models for orga-
nizing presentations. Some use a scripting language that
specifies the objects to be used and the actions to be per-
formed (see scripting languages). A scripting language
uses many of the same features as a high-level program-
ming language, including the definition of variables and the
use of control structures (decision statements and loops).
Programs such as the once ubiquitous Hypercard (for the
Macintosh) and Asymetrix Toolbook for Windows organize
presentations into segments called “cards,” with instruc-
tions fleshed out in a scripting language.

As an alternative, many modern authoring systems
such as Discovery Systems’ CourseBuilder use a graphical
approach to organizing a presentation. The various objects
(such as graphics) to be used are represented by icons, and
the icons are connected with “flow lines” that describe
the sequence of actions, serving the same purpose as con-
trol structures in programming languages. This “iconic”
type of authoring system is easiest for less experienced
programmers to use and makes the creation of small pre-
sentations fast and easy. Such systems may become more
difficult to use for lengthy presentations (due to the num-
ber of symbols and connectors involved), and speed of the
finished program can be a problem. Other popular mod-
els for organizing presentations include the “timeline” of
Macromedia Flash, which breaks the presentation into
“movies” and specifies actions for each frame, as well as
providing multiple layers to facilitate animation. With the
migration of many presentations to the Internet, the abil-
ity of authoring systems to generate HTML (or DHTML)
code is also important.

Further Reading
Makedon, Fillia, and Samuel A. Rebelsky, ed. Electronic Multimedia

Publishing: Enabling Technologies and Authoring Issues. Boston:
Kluwer Academic, 1998.

“Multimedia Authoring Systems FAQ.” Available online. URL:
http://fags.cs.uu.nl/na-dir/multimedia/authoring-systems/
part1.html. Accessed August 8, 2007.

Murray, T. “Authoring Intelligent Tutoring Systems: An analysis of
the state of the art.” International J. of Artificial Intelligence in
Education 10 (1999): 98–129.

Wilhelm, Jeffrey D., Paul Friedman, and Julie Erickson. Hyper-
learning: where Projects, Inquiry, and Technology Meet. York,
Me.: Stenhouse, 1998.

32        authoring systems

automatic programming
From the beginning of the computer age, computer sci-
entists have grappled with the fact that writing programs
in any computer language, even relatively high-level ones
such as FORTRAN or C, requires painstaking attention to
detail. While language developers have responded to this
challenge by trying to create more “programmer friendly”
languages such as COBOL with its English-like syntax,
another approach is to use the capabilities of the com-
puter to automate the task of programming itself. It is true
that any high-level language compiler does this to some
extent (by translating program statements into the under-
lying machine instructions), but the more ambitious task
is to create a system where the programmer would specify
the problem and the system would generate the high-level
language code. In other words, the task of programming,
which had already been abstracted from the machine code
level to the assembler level and from that level to the high-
level language, would be abstracted a step further.

During the 1950s, researchers began to apply artificial
intelligence principles to automate the solving of mathemat-
ical problems (see artificial intelligence). For example,
in the 1950s Anthony Hoare introduced the definition of
preconditions and postconditions to specify the states of
the machine as it proceeds toward an end state (the solution
of the problem). The program Logic Theorist demonstrated
that a computer could use a formal logical calculus to solve
problems from a set of conditions or axioms. Techniques
such as deductive synthesis (reasoning from a set of pro-
grammed principles to a solution) and transformation (step-
by-step rules for converting statements in a specification
language into the target programming language) allowed for
the creation of automated programming systems, primarily
in mathematical and scientific fields (see also prolog).

The development of the expert system (combining a
knowledge base and inference rules) offered yet another
route toward automated programming (see expert sys-
tems). Herbert Simon’s 1963 Heuristic Compiler was an
early demonstration of this approach.

Applications
Since many business applications are relatively simple in
logical structure, practical automatic principles have been
used in developing application generators that can cre-
ate, for example, a database management system given a
description of the data structures and the required reports.
While some systems output code in a language such as C,
others generate scripts to be run by the database manage-
ment software itself (for example, Microsoft Access).

To simplify the understanding and specification of prob-
lems, a visual interface is often used for setting up the appli-
cation requirements. Onscreen objects can represent items
such as data files and records, and arrows or other connect-
ing links can be dragged to indicate data relationships.

The line between automated program generators and
modern software development environments is blurry. A
programming environment such as Visual Basic encapsu-
lates a great deal of functionality in objects called controls,

which can represent menus, lists, buttons, text input boxes,
and other features of the Windows interface, as well as
other functionalities (such as a Web browser). The Visual
Basic programmer can design an application by assembling
the appropriate interface objects and processing tools, set
properties (characteristics), and write whatever additional
code is necessary. While not completely automating pro-
gramming, much of the same effect can be achieved.

Further Reading
Andrews, James H. Logic Programming: Operational Semantics and

Proof Theory. New York: Cambridge University Press, 1992.
“Automatic Programming Server.” Available online. URL: http://

www.cs.utexas.edu/users/novak/cgi/apserver.cgi. Accessed
April 14, 2007.

“Programming and Problem Solving by Connecting Diagrams.”
Available online. URL: http://www.cs.utexas.edu/users/novak/
cgi/vipdemo.cgi. Accessed April 14, 2007.

Tahid, Walid, ed. Semantics, Applications and Implementation of
Program Generation. New York: Springer-Verlag, 2000.

awk
This is a scripting language developed under the UNIX
operating system (see scripting languages) by Alfred V.
Aho, Brian W. Kernighan, and Peter J. Weinberger in 1977.
(The name is an acronym from their last initials.) The lan-
guage builds upon many of the pattern matching utilities
of the operating system and is designed primarily for the
extraction and reporting of data from files. A number of
variants of awk have been developed for other operating
systems such as DOS.

As with other scripting languages, an awk program con-
sists of a series of commands read from a file by the awk
interpreter. For example the following UNIX command
line:

awk -f MyProgram > Report

reads awk statements from the file MyProgram into the
awk interpreter and sends the program’s output to the file
Report.

Language Features
An awk statement consists of a pattern to match and an
action to be taken with the result (although the pattern can
be omitted if not needed). Here are some examples:

{print $1} # prints the first field of every
	 # line of input (since no pattern
	 # is specified)
/debit/ {print $2} # print the second field of
	 # every line that contains the
	 # word “debit”
if (Code == 2) # if Code equals 2,
print $3 	# print third field
	 # of each line

Pattern matching uses a variety of regular expressions famil-
iar to UNIX users. Actions can be specified using a limited
but adequate assortment of control structures similar to

awk        33

those found in C. There are also built-in variables (including
counters for the number of lines and fields), arithmetic func-
tions, useful string functions for extracting text from fields,
and arithmetic and relational operators. Formatting of out-
put can be accomplished through the versatile (but some-
what cryptic) print function familiar to C programmers.

Awk became popular for extracting reports from data
files and simple databases on UNIX systems. For more
sophisticated applications it has been supplanted by Perl,

which offers a larger repertoire of database-oriented fea-
tures (see Perl).

Further Reading
Aho, Alfred V., Brian Kernighan, and Peter J. Weinberger. The

Awk Programming Language. Reading, Mass.: Addison-Wesley,
1998.

Goebel, Greg. “An Awk Primer.” Available online. URL: http://
www.vectorsite.net/tsawk.html. Accessed May 22, 2007.

34        awk

35

Babbage, Charles
(1791–1871)
British
Mathematician, Inventor

Charles Babbage made wide-ranging applications of math-
ematics to a variety of fields including economics, social
statistics, and the operation of railroads and lighthouses.
Babbage is best known, however, for having conceptualized
the key elements of the general-purpose computer about a
century before the dawn of electronic digital computing.

As a student at Trinity College, Cambridge, Babbage
was already making contributions to the reform of calcu-
lus, championing new European methods over the New-
tonian approach still clung to by British mathematicians.
But Babbage’s interests were shifting from the theoretical
to the practical. Britain’s growing industrialization as well
as its worldwide interests increasingly demanded accurate
numeric tables for navigation, actuarial statistics, inter-
est rates, and engineering parameters. All tables had to be
hand-calculated, a long process that inevitably introduced
numerous errors. Babbage began to consider the possibil-
ity that the same mechanization that was revolutionizing
industries such as weaving could be turned to the auto-
matic calculation of numeric tables.

Starting in 1820, Babbage began to build a mechani-
cal calculator called the difference engine. This machine
used series of gears to accumulate additions and sub-
tractions (using the “method of differences”) to gener-
ate tables. His small demonstration model worked well,
so Babbage undertook the full-scale “Difference Engine

Number One,” a machine that would have about 25,000
moving parts and would be able to calculate up to 20 dec-
imal places. Unfortunately, Babbage was unable, despite
financial support from the British government, to over-
come the difficulties inherent in creating a mechanical
device of such complexity with the available machining
technology.

Undaunted, Babbage turned in the 1830s to a new design
that he called the Analytical Engine. Unlike the Difference
Engine, the new machine was to be programmable using
instructions read in from a series of punch cards (as in the
Jacquard loom). A second set of cards would contain the
variables, which would be loaded into the “store”—a series
of wheels corresponding to memory in a modern computer.
Under control of the instruction cards, numbers could be
moved between the store and the “mill” (corresponding to a
modern CPU) and the results of calculations could be sent
to a printing device.

Collaborating with Ada Lovelace (who translated his lec-
ture transcripts by L. F. Menebrea) Babbage wrote a series
of papers and notes that explained the workings of the pro-
posed machine, including a series of “diagrams” (programs)
for performing various sorts of calculations.

Building the Analytical Engine would have been a far
more ambitious task than the special-purpose Difference
Engine, and Babbage made little progress in the actual con-
struction of the device. Although Babbage’s ideas would
remain obscure for nearly a century, he would then be rec-
ognized as having designed most of the key elements of the
modern computer: the central processor, memory, instruc-
tions, and data organization. Only in the lack of a capability

B

to manipulate memory addresses did the design fall short of
a modern computer.

Further Reading
“The Analytical Engine: the First Computer.” Available online. URL:

http://www.fourmilab.ch/babbage/. Accessed April 20, 2007.
Babbage, Henry Prevost, ed. Babbage’s Calculating Engines: A Col-

lection of Papers. With a new introduction by Allan G. Brom-
ley. Los Angeles: Tomash, 1982.

Campbell-Kelly, M., ed. The Works of Charles Babbage. 11 vols.
London: Picerking and Chatto, 1989.

“Who Was Charles Babbage?” Charles Babbage Institute. Avail-
able online. URL: http://www.cbi.umn.edu/exhibits/cb.html.
Accessed April 20, 2007.

Swade, Doron D. “Redeeming Charles Babbage’s Mechanical Com-
puter.” Scientific American, February 1993.

backup and archive systems
The need to create backup copies of data has become increas-
ingly important as dependence on computers has grown and

the economic value of data has increased. Potential threats
to data include bugs in the operating system or software
applications, malicious acts such as the introduction of
computer viruses, theft, hardware failure (such as in hard
disk drives), power outages, fire, and natural disasters such
as earthquakes and floods.

A variety of general principles must be considered in
devising an overall strategy for creating and maintaining
backups:

Reliability: Is there assurance that the data is stored accu-
rately on the backup medium, and will automatic back-
ups run reliably as scheduled? Can the data be accurately
retrieved and restored if necessary?

Physical storage: Is the backed-up data stored securely and
organized in a way to make it easy to retrieve particular
disks or tapes? Is the data stored at the site where it is to
be used, or off-site (guarding against fire or other disas-
ter striking the workplace).

If it had been built, Charles Babbage’s Analytical Engine, although
mechanical rather than electrical, would have had most of the
essential features of modern computers. These included input,
(via punched cards), a processor, a memory (store), and a printer.
A reproduction of part of the early Difference Engine is shown
here.  (Photo Researchers, Inc.)

The daughter of poet Lord Byron, Lady Ada Lovelace (1815–52)
acquired mathematical training usually denied to her gender.
When she met Charles Babbage and learned about his com-
puter design, she translated his work and wrote the world’s first
computer programs.  (Photo Researchers, Inc. / Science
Photo Library)

36        backup and archive systems

Ease of Use: To the extent backups must be set up or initi-
ated by human operators, is the system easy to under-
stand and use with minimal training? Ease of use both
promotes reliability (because users will be more likely
to perform the backups), and saves money in training
costs.

Economy: How does a given system compare to others in
terms of the cost of the devices, software, media (such
as tapes or cartridges), training, and administration?

The market for storage and backup software and ser-
vices has grown rapidly in the mid-2000s, driven in part by
a new awareness of the need of corporations to protect their
vital data assets from natural disasters or possible terrorist
attacks (see cyberterrorism and disaster planning and
recovery). In many corporations the amount of data that
needs to be backed up or archived grows at a rate of 50 per-
cent per year or more.

Choice of Methods
The actual choice of hardware, software, and media depends
considerably on how much data must be backed up (and
how often) as well as whether the data is being generated
on individual PCs or being stored at a central location. (See
file server, data warehouse.)

Backups for individual PCs can be accomplished using
the backup software that comes with various versions of
Microsoft Windows or through third-party software.

In addition to traditional tapes, the media used include
CDs or DVDs (for very small backups), tiny USB “flash
drives” (generally up to a few gigabytes of data), cartridge
drives (up to 70 gigabytes or more), or even compact exter-
nal USB hard drives that can store hundreds of gigabytes.
(see cd and dvd rom, flash drive, hard drive, tape
drive, and usb.)

In addition to backing up documents or other data gener-
ated by users, the operating system and applications software
is often backed up to preserve configuration information
that would otherwise be lost if the program were reinstalled.
There are utilities for Microsoft Windows and other operat-
ing systems that simplify the backing up of configuration
information by identifying and backing up only those files
(such as the Windows Registry) that contain information
particular to the installation.

The widespread use of local area networks makes it eas-
ier to back up data automatically from individual PCs and
to store data at a central location (see local area net-
work and file server). However, having all data eggs in
one basket increases the importance of building reliability
and redundancy into the storage system, including the use
of RAID (multiple disk arrays), “mirrored” disk drives, and
uninterruptible power supplies (UPS). Despite such mea-
sures, the potential risk in centralized storage has led to
advocacy of a “replication” system, preferably at the operat-
ing system level, that would automatically create backup
copies of any given object at multiple locations on the net-
work.

Another alternative of growing interest is the use of the
Internet to provide remote (off-site) backup services.

By 2005 Gartner Research was reporting that about
94 percent of corporate IT managers surveyed were using
or considering the use of “managed backup” services.
IDC has estimated that the worldwide market for online
backup services would reach $715 million by 2011. Online
backup offers ease of use (the backups can be run auto-
matically, and the service is particularly handy for laptop
computer users on the road) and the security of off-site
storage, but raise questions of privacy and security of sen-
sitive information, particularly if encryption is not built
into the process. Online data storage is also provided to
individual users by a variety of service providers such as
Google. Application Service Providers (ASPs) have a natu-
ral entry into the online storage market since they already
host the applications their users use to create data (see
application service provider).

A practice that still persists in some mainframe installa-
tions is the tape library, which maintains an archive of data
on tape that can be retrieved and mounted as needed.

Archiving
Although using much of the same technology as making
backups, archiving of data is different in its objectives and
needs. An archive is a store of data that is no longer needed
for routine current use, but must be retrievable upon
demand, such as the production of bank records or e-mail
as part of a legal process. (Data may also be archived for
historical or other research purposes.) Since archives may
have to be maintained for many years (even indefinitely),
the ability of the medium (such as tape) to maintain data
in readable condition becomes an important consideration.
Besides physical deterioration, the obsolescence of file for-
mats can also render archived data unusable.

Management Considerations
If backups must be initiated by individual users, the users
must be trained in the use of the backup system and moti-
vated to make backups, a task that is easy to put off to
another time. Even if the backup is fully automated, sample
backup disks or tapes should be checked periodically to
make sure that data could be restored from them. Backup
practices should be coordinated with disaster recovery and
security policies.

Further Reading
Backup Review. Available online. URL: http://www.backupreview.

info/index.php. Accessed April 22, 2007.
Jacobi, Jon L. “Online Backup Services Come of Age.” PC World

Online, July 28, 2005. Available online. URL: http://www.
pcworld.com/article/id,121970-page,1-c,utilities/article.html.
Accessed April 22, 2007.

Jackson, William. “Modern Relics: NIST and Others Work on How
to Preserve Data for Later Use.” Available online. URL: http://
www.gcn.com/print/25_16/41069-1.html. Accessed April 22,
2007.

Storage Search. Available online. URL: http://www.storagesearch.
com/. Accessed April 22, 2007.

Preston, W. Curtis. Backup & Recovery. Sebastapol, Calif.: O’Reilly
Media, 2006.

backup and archive systems        37

Backus-Naur form
As the emerging discipline of computer science struggled
with the need to precisely define the rules for new program-
ming languages, the Backus-Naur form (BNF) was devised
as a notation for describing the precise grammar of a com-
puter language. BNF represents the unification of separate
work by John W. Backus and Peter Naur in 1958, when they
were trying to write a specification for the Algol language.

A series of BNF statements defines the syntax of a lan-
guage by specifying the combinations of symbols that con-
stitute valid statements in the language.

Thus in a hypothetical language a program can be
defined as follows:

<program> ::= program
<declaration_sequence>

begin
<statements_sequence>

end;
Here the symbol ::= means “is defined as” and items in
brackets <> are metavariables that represent placeholders
for valid symbols. For example, <declaration_sequence>
can consist of a number of different statements defined else-
where.

Statements in square brackets [] indicate optional ele-
ments. Thus the If statement found in most programming
languages is often defined as:

<if_statement> ::= if >boolean_expression> then
<statement_sequence>

[else
<statement_sequence>]

end if ;

This can be read as “an If statement consists of a boolean_
expression (something that evaluates to “true” or “false”)
followed by one or more statements, followed by an optional
else that in turn is followed by one or more statements, fol-
lowed by the keywords end if.” Of course each item in angle
brackets must be further defined—for example, a Boolean_
expression.

Curly brackets {} specify an item that can be repeated
one or more times. For example, in the definition

<identifier> ::= <letter> { <letter> | <digit> }

An identifier is defined as a letter followed by one or more
instances of either a letter or a digit.

An extended version of BNF (EBNF) offers operators
that make definitions more concise yet easier to read. The
preceding definition in EBNF would be:

Identifier = Letter

{Letter | Digit}

EBNF statements are sometimes depicted visually in
railroad diagrams, so called because the lines and arrows
indicating the relationship of symbols resemble railroad
tracks. The definition of <identifier> expressed in a railroad
diagram is depicted in the above figure.

BNF and EBNF are useful because they can provide
unambiguous definitions of the syntax of any computer lan-
guage that is not context-dependent (which is to say, nearly
all of them). It can thus serve as a reference for introduc-
tion of new languages (such as scripting languages) and for
developers of parsers for compilers.

Further Reading
Garshol, Lars Marius. “BNF and EBNF: What Are They and How

Do They Work?” Available online. URL: http://www.garshol.
priv.no/download/text/bnf.html. Accessed April 23, 2007.

Jensen, K., N. Wirth et al. Pascal User Manual and Report: ISO Pas-
cal Standard. New York: Springer-Verlag, 1985.

Sebesta, Robert W. Concepts of Programming Languages. 9th ed.
Boston: Addison-Wesley, 2008.

bandwidth
In its original sense, bandwidth refers to the range of fre-
quencies that a communications medium can effectively
transmit. (At either end of the bandwidth, the transmission
becomes too attenuated to be received reliably.) For a stan-
dard voice telephone, the bandwidth is about 3kHz.

In digital networks, bandwidth is used in a rather differ-
ent sense to mean the amount of data that can be transmit-
ted in a given time—what is more accurately described as
the information transfer rate. A common measurement is
Mb/sec (megabits per second). For example, a fast Ethernet
network may have a bandwidth of 100 Mb/sec while a home
phone-line network might have a bandwidth of from 1 to 10
Mb/sec and a DSL or cable modem runs at about 1 Mb/sec.
(By comparison, a typical dial-up modem connection has a
bandwidth of about 28–56 kb/sec, roughly 20 times slower
than even a slow home network.)

The importance of bandwidth for the Internet is that it
determines the feasibility of delivering new media such as
sound (MP3), streaming video, and digital movies over the
network, and thus the viability of business models based on
such products. The growth of high-capacity access to the
Internet (see broadband) is changing the way people use
the network.

Further Reading
Benedetto, Sergio, and Ezio Biglieri. Principles of Digital Transmis-

sion: With Wireless Applications. New York: Springer, 1999.
Smith, David R. Digital Transmission Systems. 3rd ed. New York:

Kluwer Academic Publishers, 2003.

This “railroad diagram” indicates that an identifier must begin
with a letter, which can be followed by a digit or another letter.
The tracks curving back indicate that an element can appear more
than once.

38        Backus-Naur form

banking and computers
Beginning in the 1950s, banks undertook extensive auto-
mation of operations, starting with electronic funds trans-
fer (EFT) systems. Check clearing (the sending of checks
for payment to the bank on which they are drawn) was
facilitated by the development of magnetic ink character
recognition (MICR) that allowed checks to be automati-
cally sorted and tabulated. Today an automated clearing
house (ACH) network processes checks and other payments
through regional clearinghouses.

Starting in the 1960s, the use of credit cards became an
increasingly popular alternative to checks, and they were
soon joined by automatic teller machine (ATM) networks
and the use of debit cards (cards for transferring funds from
a checking account at the point of sale).

Direct deposit of payroll and benefit checks has also
been promoted for its safety and convenience. Credit card,
ATM, and debit card systems rely upon large data process-
ing facilities operated by the issuing financial institution.
Because of the serious consequences of system failure both
in immediate financial loss and customer goodwill, these
fund transfer systems must achieve a high level of reliabil-
ity and security. Reliability is promoted through the use
of fault-tolerant hardware (such as redundant systems that
can take over for one another in the event of a problem).
The funds transfer messages must be provided a high level
of security against eavesdropping or tampering through the
use of algorithms such as the long-established DES (Data
Encryption Standard)—see encryption. Designers of
EFT systems also face the challenge of providing a legally
acceptable paper trail. Electronic signatures are increas-
ingly accepted as an alternative to written signatures for
authorizing fund transfers.

Online Banking
The new frontier of electronic banking is the online bank,
where customers can access many banking functions via
the Internet, including balance queries, transfers, automatic
payments, and loan applications. For the consumer, online
banking offers greater convenience and access to informa-
tion than even the ATM, albeit without the ability to obtain
cash.

From the bank’s point of view, online banking offers a
new way to reach and serve customers while relieving the
strain on the ATM hardware and network. However, use of
the Internet increases vulnerability to hackers and raises
issues of privacy and the handling of personal information
similar to those found in other e-commerce venues (see
computer crime and security and privacy in the digi-
tal age). In 2006 a Pew Center survey found that 43 per-
cent of Internet users were banking online—a total of about
63 million American adults. Other surveys have found
about a third of Internet users now pay bills online. There
are also a relatively small but growing number of Internet-
only banks, many of which are affiliated with traditional
banks. A particularly attractive feature of online banking is
the ability to integrate bank services with popular personal
finance software such as Quicken.

As impressive as it has been, the growth in online bank-
ing may have been inhibited by a perceived lack of security.
A 2006 Gartner Research survey reported that nearly half
of adults surveyed said that concerns over the potential for
information theft and computer attacks had affected their
use of online services such as banking and e-commerce
transactions. Gartner translates this to an estimated 33 mil-
lion U.S. adults who do not bank online because of such
concerns. (Banks are frequently impersonated in deceptive
emails and Web sites—see phishing and spoofing.)

In response, government regulations (FFIEC or Federal
Financial Institutions Examination Council) guidelines
issued in October 2005 required banks by the end of 2006
to provide detailed risk assessments and mitigation plans
for dealing with data breaches. Large banks spent about $15
million each on this process in 2006. Much greater expenses
are likely as banks find themselves compelled to purchase
and install more-secure user authentication software. They
face the multiple challenge of securing their systems while
reassuring their users and not forcing them to go through
complicated, hard-to-remember log-in procedures.

Credit card issuers are also starting to turn to the Inter-
net to provide additional services. According to the com-
Score service 524 million credit card bills were paid online
in 2006. By 2007 about 70 percent of all credit card holders
had logged on to their accounts at least once. Many custom-
ers have responded to incentives to discontinue receiving
paper statements.

Further Reading
Fox, Susannah, and Jean Beier. “Online Banking 2006: Surfing

to the Bank.” Pew Internet & American Life Project, June
14, 2006. Available online. URL: http://www.pewinternet.
org/pdfs/PIP_Online_Banking_2006.pdf. Accessed April 23,
2007.

Macklin, Ben. “Trust Has Value in E-Commerce,” November 30,
2006. Available online. URL: http://www.emarketer.com/
Article.aspx?1004323. Accessed April 23, 2007.

BASIC
The BASIC (Beginner’s All-purpose Symbolic Instruction
Code) language was developed by J. Kemeny and T. Kurtz
at Dartmouth College in 1964. At the time, the college was
equipped with a time-shared computer system linked to
terminals throughout the campus, an innovation at a time
when most computers were programmed from a single loca-
tion using batches of punch cards. John G. Kemeny and
Thomas Kurtz wanted to take advantage of the interactivity
of their system by providing an easy-to-learn computer lan-
guage that could compile and respond immediately to com-
mands typed at the keyboard. This was in sharp contrast to
the major languages of the time, such as COBOL, Algol, and
FORTRAN in which programs had to be completely written
before they could be tested.

Unlike the older languages used with punch cards,
BASIC programs did not have to have their keywords typed
in specified columns. Rather, statements could be typed
like English sentences, but without punctuation and with
a casual attitude toward spacing. In general, the syntax for

BASIC        39

decision and control structures is simpler than other lan-
guages. For example, a for loop counting from 1 to 10 in C
looks like this:

for (i = 1; i <= 10; i++)
printf(“%d”, i);

The same loop in BASIC reads as follows:

for i = 1 to 10
print i

next i

Basic and Microcomputers
During the 1960s and 1970s BASIC was used on a growing
number of time-sharing computers. The language’s simplic-
ity and ease of use made it useful for writing short utility
programs and for teaching basic principles of computing,
particularly to noncomputer science majors. When the first
personal computers became widely available in the early
1980s, they typically had memory capacities of 8KB–64KB,
not enough to run the editor, compiler, and other utilities
needed for a language such as C. However, a simple inter-
preter version of BASIC could be put on a read-only memory
(ROM) chip, as was done with the Apple II, the early IBM
PC, and dozens of other microcomputers. More advanced
versions of BASIC (including compilers) could be loaded
from tape (the first sales by a young entrepreneur named
Bill Gates consisted of such products).

As a consequence of the adopting of BASIC for a variety
of microcomputers, numerous dialects of the language came
into existence. Commands for generating simple graphics
and for manipulating memory and hardware directly (PEEK
and POKE) made many BASIC programs platform specific.

Gradually, as microcomputers gained in memory capac-
ity and processing power, languages such as Pascal (espe-
cially with the integrated development environment created
at the University of California at San Diego) and C (from
the UNIX community) began to supplant BASIC for the
development of more complex microcomputer software.

Critique and Prospects
Most versions of BASIC used line numbers (a legacy of the
early text editors that worked on a line-by-line basis) and
a Goto statement could be used to make program control
jump to a given line. While the language had simple subrou-
tines (reached by a Gosub statement), it lacked the ability to
explicitly pass variables to a procedure as in Pascal and C.
Indeed, all variables were global, meaning that they could
be accessed from anywhere in the program, leading to the
danger of their values being unintentionally changed.

As interest in the principles of structured programming
grew (see structured programming), BASIC’s structural
shortcomings made it poorly regarded among computer sci-
entists, who preferred Pascal as a teaching language and C
for systems programming. In 1984, BASIC’s original devel-
opers responded to what they saw as the problems of “street
Basic” by introducing True BASIC, a modern, well-structured
version of the language, and the 1988 ANSI BASIC stan-
dard incorporated similar features. These efforts had only
limited impact. However, Microsoft introduced new BASIC

development systems (Quick BASIC in the 1980s and Visual
Basic in the 1990s) that also featured improved control
structures and data types and that dispensed with the need
for cumbersome line numbers. Visual Basic in particular
has achieved considerable success, offering a combination
of the interactivity of traditional BASIC and access to pow-
erful pre-packaged “controls” that provide menus, dialog
boxes, and other features of the Windows user interface.
Recent versions of Visual Basic have become increasingly
object-oriented, using classes similar to those in C++.

While BASIC in its newer forms continues to have a
significant following, it can be argued that what was most
distinctive about the original BASIC (the quick, interactive
approach to programming) is no longer much in evidence.
The writing of short utility programs is now more likely to
be undertaken in any of a variety of scripting languages.

Further Reading
Brin, David. “Why Johnny Can’t Code,” September 14, 2006.

Available online. URL: http://www.salon.com/tech/feature/
2006/09/14/basic/print.html. Accessed April 24, 2007.

Kemeny, J. G., and Thomas E. Kurtz. Back to Basic: The History, Cor-
ruption, and Future of the Language. Reading, Mass.: Addison-
Wesley, 1985.

Lomax, Paul, and Ron Petrusha. VB and VBA in a Nutshell: The
Languages. Sebastopol, Calif.: O’Reilly, 1998.

Neuberg, Matt. REALbasic: The Definitive Guide. 2nd ed. Sebasta-
pol, Calif.: O’Reilly, 2001.

Sempf, Bill. Visual Basic 2008 for Dummies. Hoboken, N.J.: Wiley,
2008.

basic input/output system  See bios.

Bayesian analysis
Formerly obscure topics in mathematics have a way of sud-
denly becoming relevant in the information age. For exam-
ple, the true/false algebraic logic invented by George Boole
in the 19th century turned out to perfectly map the opera-
tion of electronic on/off in computer circuits.

The Reverend Thomas Bayes (1701?–1761) was another
formerly obscure British mathematician who discovered a
completely different way of looking at probability. Classical
probability assumes that one can make no prior assump-
tions about the events to be tested. That is, when throwing
a die, one does not base the probability that it will come up
with a six on the results of any prior throws. Of course that
approach is correct in that probability of a six is always 1 in
6 (as long as the dice are honest).

In some situations, however, what has already hap-
pened does influence the probability of a future event.
Consider a blackjack player who wants to know the prob-
ability that the next card drawn will be a face card. If the
deck has been properly shuffled, that probability starts out
as 12/52 (or 3/13), since there are 12 face cards in the deck
of 52 cards.

But suppose that, of the six cards dealt to three players in
the first hand, two are face cards. When the dealer deals the
next hand, the probability that any card will be a face card

40        basic input/output system

has changed. There are now two fewer face cards (12 - 2 = 10)
and four fewer non-face cards (40 - 4 = 36), so the probability
that a given card is a face card becomes 10/36 or 5/18.

While this is pretty straightforward, in many situations
one cannot easily calculate the shifting probabilities. What
Bayes discovered was a more general formula:

P(T|E) =
P(E|T) * P(T)

 P(E)

In this formula T is a theory or hypothesis about a
future event. E represents a new piece of evidence that
tends to support or oppose the hypothesis. P(T) is an esti-
mate of the probability that T is true, before considering the
evidence represented by E. The question then becomes: If
E is true, what happens to the estimate of the probability
that T is true? This is called a conditional probability, rep-
resented by the left side of the equation, P(T|E), which is
read “the probability of T, given E.” The right side of Bayes’s
equation considers the reverse probability—that E will be
true if T turns out to be true. This is represented by P(E|T),
multiplied by the prior probability of T and divided by the
independent probability of E.

Practical Applications
In the real world one generally has imperfect knowledge
about the future, and probabilities are seldom as clear cut
as those available to the card counter at the blackjack table.
However, Bayes’s formula makes it possible to continually
adjust or “tune” estimates based upon the accumulating
evidence. One of the most common applications of Bayes-
ian analysis is in e-mail filters (see spam). Bayesian spam
filters work by having the user identify a sample of mes-
sages as either spam or not spam. The filter then looks for
patterns in the spam and non-spam messages and calcu-
lates probabilities that a future message containing those
patterns will be spam. The filter then blocks future mes-
sages that are (above some specified threshold) probably
spam. While it is not perfect and does require work on the
part of the user, this technique has been quite effective in
blocking spam.

A Bayesian algorithm’s effectiveness can be expressed in
terms of its rate of false positives (in the spam example, this
would be the percentage of messages that have been mistak-
enly classified as spam). If the rate of “true positives” is
too low, the algorithm is not effective enough. However, if
the rate of false positives is too high, the negative effects
(blocking wanted e-mail) might outweigh the positive
ones (blocking unwanted spam).

Further Reading
Kantor, Andrew. “Bayesian Spam Filters Use Math that Works

Like Magic.” USA Today online, September 17, 2004. Avail-
able online. URL: http://www.usatoday.com/tech/columnist/
andrewkantor/2004-09-17-kantor_x.htm. Accessed March
15, 2007.

Lee, Peter M. Bayesian Statistics: An Introduction. 3rd ed. New
York: Wiley, 2004.

Sivia, D. S. Data Analysis: A Bayesian Tutorial. 2nd ed. New York:
Oxford University Press, 2006.

“Thomas Bayes, 1702–1761.” St. Andrews University Mac Tutor.
Available online. URL: http://www-history.mcs.st-andrews.
ac.uk/Mathematicians/Bayes.html. Accessed March 15, 2007.

BBS  See bulletin board system.

Bell, C. Gordon
(1934– )
American
Engineer, Computer Designer

Chester Gordon Bell (also known as Gordon Bennet Bell)
was born August 19, 1934, in Kirksville, Missouri. As a
young boy Bell worked in his father’s electrical contracting
business, learning to repair appliances and wire circuits.
This work led naturally to an interest in electronics, and
Bell studied electrical engineering at MIT, earning a B.S. in
1956 and an M.S. in 1957. After graduation and a year spent
as a Fulbright Scholar in Australia, Bell worked in the MIT
Speech Computation Laboratory (see speech recognition
and synthesis). In 1960 he was invited to join the Digital
Equipment Corporation (DEC) by founders Ken Olsen and
Harlan Anderson.

Bell was a key architect of DEC’s revolutionary PDP
series (see minicomputer), particularly as designer of the
input/output (I/O) hardware in the PDP-1 and the multi-
tasking PDP-6. Bell left DEC to teach computer science at
Carnegie Mellon University (1966–72), but then returned to
DEC until his retirement in 1983 following a heart attack.
During this time Bell developed a deployment plan for the
new VAX series minicomputers, which were data-process-
ing workhorses in many organizations during the 1970s
and 1980s.

As a close observer of the computer industry, Bell formu-
lated “Bell’s Law of Computer Classes” in 1972. It basically
states that as new technologies (such as the microproces-
sor) emerge, they result about once a decade in the emer-
gence of new “classes” or computing platforms, each being
generally cheaper and being perceived as a distinct product
with new applications. Within a given class, price tends to
hold constant while performance increases. Examples thus
far include mainframes, minicomputers, personal comput-
ers and workstations, networks, cluster or grid comput-
ing, and today’s ubiquitously connected wireless, portable
devices. Bell has indeed suggested that the trend to ubiqui-
tous computing will continue (see ubiquitous computing
and wearable computers).

After retirement Bell soon became active again. He
founded Encore Computer, a company that specialized in
multiprocessor computers, and later was a founding member
of Ardent Computer as well as participating in the estab-
lishment of the Microelectronics and Computer Technology
Corporation, a consortium that attempted to be America’s
answer to a surging competitive threat from Japanese com-
panies. Bell was also active in debates over technology pol-
icy, playing an instrumental role as an assistant director
in the National Science Foundation’s computing initiatives

Bell, C. Gordon        41

and the early adoption of the Internet. In 1987 Bell estab-
lished the Gordon Bell Prize for achievements in parallel
processing.

Bell began the 1990s in a new role, helping Microsoft
develop a research group, where he was still working as of
2008. Here Bell has developed what amounts to a new para-
digm for managing personal data, a project called MyLife-
Bits. Its main idea is that pictures, e-mails, documents, and
other materials that are important to a person’s life and
work should be organized according to their chronological
and other relationships so they can be retrieved naturally
and virtually automatically, eschewing the often arbitrary
conventions of traditional file systems and interfaces. In
1992 Bell presciently told a Computer World interviewer
that “twenty-five years from now . . . computers will be
exactly like telephones. They are probably going to be com-
municating all the time.”

Bell also retains a strong interest in the history of com-
puting. He cofounded the Computer History Museum in
Boston in 1979 and was also a founder of its successor, the
Computer History Museum in Mountain View, California.

Bell is a distinguished member of the American Acad-
emy of Arts and Sciences, American Association for the
Advancement of Science, the Association for Computing
Machinery (ACM), and the Institute of Electrical and Elec-
tronic Engineering (IEEE). His awards include the IEEE
Von Neumann Medal, the AEA Inventor Award, and the
National Medal of Technology (1991).

Further Reading
Gordon Bell Home Page. Microsoft Bay Area Research Center.

Available online. URL: http://research.microsoft.com/users/
gbell/. Accessed April 30, 2007.

Slater, Robert. Portraits in Silicon. Boston: MIT Press, 1987.
“Vax Man: Gordon Bell.” Computerworld, June 22, 1992, p. 13.

Available online. URL: http://research.microsoft.com/~gbell//
CGB%20Files/Computerworld%20Vax%20Ma n%20920622%
20c.pdf. Accessed April 30, 2007.

Bell Laboratories
Bell Telephone Laboratories was established in 1925 in
Murray Hill, New Jersey: It was intended to take over the
research arm of the Western Electric division of American
Telephone and Telegraph (AT&T) and was jointly admin-
istered by the two companies. The organization’s principal
task was to design and develop telephone switching equip-
ment, but there was also research in facsimile (fax) trans-
mission and television.

The research that would have the greatest impact,
however, would come from a relative handful of Bell scien-
tists who were given resources to undertake fundamental
research. In the 1930s Bell scientist Karl Jansky, investi-
gating interference with long-range radio transmissions,
discovered that radio waves were arriving from space,
leading to the development of radio astronomy. Other Bell
Labs developments of the 1930s and 1940s included the
vocoder, an early electronic speech synthesizer, and the
photovoltaic cell, with its potential application to solar
power systems.

Several Bell Labs technologies would have a direct
impact on the computer field. The transistor, developed
by Bell Labs researchers John Bardeen, Walter Brattain,
and William Shockley, would make a new generation of
more compact and reliable computers possible. Informa-
tion theory (see information theory and Shannon,
Claude) would revolutionize telecommunications, signal
processing, and data transfer. Work on the laser in the
1960s would eventually lead to the compact disc (see cd-
rom and dvd-rom). Other hardware contributions include
the charge-coupled device (CCD) that would revolutionize
astronomical and digital photography and fiber-optic cables
for high-volume data communications.

In software engineering the most important achieve-
ments of Bell researchers were the development of the C
programming language and the UNIX operating system in
the early 1970s (see c; Ritchie, Dennis; and unix). The
elegant design of the modular UNIX system is still admired
today, and versions of UNIX and Linux power many servers
and networks.

New Corporate Direction
Perhaps ironically, AT&T’s near monopolistic position in
the telecommunications industry both provided substan-
tial revenue for fundamental research and shielded the lab
from competitive pressure and the need to tie research to
the development of commercial products. As a result, Bell
Labs arguably became the most important private research
institution in the 20th century. By the end of the 1980s,
however, court decisions had reshaped the landscape of the
communications field, and Bell Labs became a victim of the
company’s change from monopolist to competitor.

In 1996 AT&T divested Bell Labs along with its main
equipment manufacturing facilities into a new company,
Lucent Technologies. A smaller group of researchers were
retained and reorganized as AT&T Laboratories. As the 2000s
began these researchers made new achievements, including
tiny transistors whose size is measured in atoms, optical
data routing (see optical computing) and nanotechnology,
DNA-based computing (see molecular computing), and
other esoteric but potentially momentous fields.

In recent years, however, the organization has largely
changed its focus from long-term research in fundamental
topics to the search for projects that can be quickly turned
into commercial products—in essence the requirement that
the Labs become a profit center. The merger of Lucent and
another communications giant, Alcatel, in 2006 has led to
renewed concerns that consolidation and even tighter inte-
gration of the Labs with corporate goals might come at the
expense of the kind of research culture that has inspired
the Labs’ greatest breakthroughs.

Further Reading
Alcatel-Lucent Bell Laboratories. Available online. URL: http://

www.alcatel-lucent.com. Accessed May 2, 2007.
Bell Labs Technical Journal. Available online. URL: http://www3.

interscience.wiley.com. Accessed May 2, 2007.
Gehani, Narain. Bell Labs: Life in the Crown Jewel. Summit, N.J.:

Silicon Press, 2003.

42        Bell Laboratories

benchmark
A benchmark is a tool used to evaluate or compare the
performance of computer software or systems. Typically,
this involves the design of a program (or suite of programs)
that performs a series of operations that mimic “real world”
activities. For example, computer processors (CPUs) can be
given calculations in floating-point arithmetic, yielding a
result in “flops” (floating point operations per second). Sim-
ilarly, several different C-language compilers can be given
the same files of source code and rated according to how
quickly they produce the executable code, as well as the
code’s compactness, speed, or efficiency.

Some examples of computer industry benchmarks
include:

• � Dhrystone and Whetstone for integer and floating
point arithmetic, respectively

• �M IPS (millions of instructions per second) and
MFLOPS (millions of floating point instructions per
second) for microprocessors

• � FPS (frames per second) for various types of graphics

• � 3DMark for three-dimensional graphics

• � test suites using Linpack and LAPACK for super-
computers

The devising of appropriate benchmarks is impor-
tant because they can help prospective purchasers decide
which competing CPU, program development tool, data-
base system, or Web server to buy. Often the aspects
of systems that are highlighted in advertising are not
those that are most relevant to determining their actual
utility. For example, CPUs are often compared according
to clock speed, but a chip with a superior architecture
and algorithm for handling instructions might actually
outperform chips with faster clock speeds. By putting
chips through their paces using the same arithmetic, data
transfer, or graphics instructions, the benchmark pro-
vides a more valid comparison.

The most relevant benchmarks tend to focus on re-cre-
ating real-world use. Thus database systems can be com-
pared in their speed of retrieval or update of data records.
Real-world benchmarks also help guard against manufac-
turers “tweaking” their systems to create artificially high
benchmark results. Nevertheless, benchmarks cannot be
used mechanically. While a given industry may have an
“industry standard” benchmark, and a given product may
be the highest performer using that test, the user must con-
sider how well that benchmark reflects the actual work for
which the system or program is being purchased. Perfor-
mance, however well benchmarked, is usually only one key
consideration, with environment (such as network connec-
tions), reliability, security, ease of use, and of course cost
being other considerations.

Further Reading
comp.benchmarks (USENET newsgroup).
Jones, Capers. Software Assessments, Benchmarks, and Best Prac-

tices. Boston: Addison-Wesley, 2000.

Netlib [repository for mathematical benchmarking software].
Available online. URL: http://www.netlib.org/. Accessed May
10, 2007.

Berners-Lee, Tim
(1955– )
British
Computer Scientist

A graduate of Oxford University, Tim Berners-Lee created
what would become the World Wide Web in 1989 while
working at CERN, the giant European physics research
institute. At CERN, he struggled with organizing the doz-
ens of incompatible computer systems and software that
had been brought to the labs by thousands of scientists
from around the world. With existing systems each requir-
ing a specialized access procedure, researchers had little
hope of finding out what their colleagues were doing or of
learning about existing software tools that might solve their
problems.

Berners-Lee’s solution was to bypass traditional data-
base systems and to consider text on all systems as “pages”
that would each have a unique address, a universal docu-
ment identifier (later known as a uniform resource locator,
or URL). He and his assistants used existing ideas of hyper-
text to link words and phrases on one page to another page
(see hypertext and hypermedia), and adapted existing
hypertext editing software for the NeXT computer to create
the first World Wide Web pages, a server to provide access
to the pages and a simple browser, a program that could be
used to read pages and follow the links as the reader desired
(see Web server and Web browser). But while existing
hypertext systems were confined to browsing a single file
or at most, the contents of a single computer system, Bern-
ers-Lee’s World Wide Web used the emerging Internet to
provide nearly universal access.

Between 1990 and 1993, word of the Web spread
throughout the academic community as Web software was
written for more computer platforms (see World Wide
Web). As demand grew for a body to standardize and shape
the evolution of the Web, Berners-Lee founded the World
Wide Web Consortium (W3C) in 1994 and continues as
its director. Together with his colleagues, he has struggled
to maintain a coherent vision of the Web in the face of tre-
mendous growth and commercialization, the involvement
of huge corporations with conflicting agendas, and conten-
tious issues of censorship and privacy. His general approach
has been to develop tools that would empower the user to
make the ultimate decision about the information he or she
would see or divulge.

Berners-Lee now works as a senior researcher at the
Massachusetts Institute of Technology Computer Science
and Artificial Intelligence Laboratory. In his original vision
for the Web, users would create Web pages as easily as they
could read them, using software no more complicated than
a word processor. While there are programs today that hide
the details of HTML coding and allow easier Web page cre-
ation, Berners-Lee feels the Web must become even easier to

Berners-Lee, Tim        43

use if it is to be a truly interactive, open-ended knowledge
system. He is also interested in developing software that
can take better advantage of the rich variety of information
on the Web, creating a “semantic” Web of meaningful con-
nections that would allow for logical analysis and permit
human beings and machines not merely to connect, but to
actively collaborate (see semantic Web and xml).

In the debate over a possible tiered Internet service (see
Internet access policy) Berners-Lee has spoken out for
“net neutrality,” the idea that priority given to material
passing over the Internet should not depend on its content
or origin. He describes equal treatment to be a fundamental
democratic principle, given the primacy of the Net today.

Berners-Lee has garnered numerous awards and honor-
ary degrees. In 1997 he was made an Officer of the British
Empire, and in 2001 he became a Fellow of the British Royal
Society. Berners-Lee also received the Japan Prize in 2002
and in that same year shared the Asturias Award with fel-
low Internet pioneers Lawrence Roberts, Robert Kahn, and
Vinton Cerf. In 2007 Berners-Lee received the Charles Stark
Draper Prize of the U.S. National Academy of Engineering.

Further Reading
Berners-Lee, Tim. Home page with biography and links: Avail-

able online. URL: http://www.w3.org/People/Berners-Lee/.
Accessed April 20, 2007.

———. Papers on Web design issues. Available online. URL:
http://www.w3.org/DesignIssues/.

———. “Proposal for the World Wide Web, 1989.” Available
online. URL: http://www.w3.org/History/1989/proposal.html.

Berners-Lee, Tim, and Mark Fischetti. Weaving the Web. San Fran-
cisco: HarperSanFrancisco, 1999.

Henderson, Harry. Pioneers of the Internet. San Diego, Calif.:
Lucent Books, 2002.

Markoff, John. “ ‘Neutrality’ Is New Challenge for Internet Pioneer.”
New York Times, September 27, 2006. Available online. URL:
http://www.nytimes.com/2006/09/27/technology/circuits/
27neut.html. Accessed April 25, 2007.

Bezos, Jeffrey P.
(1964– )
American
Entrepreneur

With its ability to display extensive information and interact
with users, the World Wide Web of the mid-1990s clearly
had commercial possibilities. But it was far from clear how
traditional merchandising could be adapted to the online
world, and how the strengths of the new medium could be
translated into business advantages. In creating Amazon.
com, “the world’s largest bookstore,” Jeff Bezos would show
how the Web could be used to deliver books and other mer-
chandise to millions of consumers.

Jeff Bezos was born on January 12, 1964, and grew up
in Miami, Florida. He would be remembered as an intense,
strong-willed boy who was fascinated by gadgets but also
liked to play football and other sports. His uncle, Pres-
ton Gise, a manager for the Atomic Energy Commission,
encouraged young Bezos’s interest in technology by giving
him electronic equipment to dismantle and explore. Bezos

also liked science fiction and became an enthusiastic advo-
cate for space colonization.

Bezos entered Princeton University in 1982. At first he
majored in physics, but later switched to electrical engi-
neering, graduating in 1986 with highest honors. By then
Bezos had become interested in business software applica-
tions, particularly financial networks. At the age of only
23, he led a project at Fitel, a financial communications
network, managing 12 programmers and commuting each
week between the company’s New York and London offices.

As a vice president at Bankers Trust, a major Wall Street
firm in the late 1980s, Bezos became very enthusiastic about
the use of computer networking and interactive software for
providing timely information for managers and investors.
However, he found that the “old line” Wall Street firms
resisted his efforts and declined to invest in these new uses
of information technology.

In 1990, however, Bezos was working at the D.E. Shaw
Company and his employer asked him to research the com-
mercial potential of the Internet, which was starting to grow
(even though the World Wide Web would not reach most
consumers for another five years). Bezos ranked the top 20
possible products for Internet sales. They included computer
software, office supplies, clothing, music—and books.

Analyzing the publishing industry, Bezos identified
ways in which he believed it was inefficient. Even large
bookstores could stock only a small portion of the avail-
able titles, while on the other hand many books that were
in stock stayed on the shelves for months, tying up money
and space. Bezos believed that by combining a single huge
warehouse with an extensive tracking database, an online
ordering system, and fast shipping, he could satisfy many
more customers while keeping costs low.

Bezos pitched his idea to D.E. Shaw. When the company
declined to invest in the venture, Bezos decided to put his
promising corporate career on hold and start his own online
business. By then it was the mid-1990s and the World Wide
Web was just starting to become popular, thanks to the new
graphical Web browsers such as Netscape.

Jeff Bezos, founder and CEO of Amazon.com, poses for a portrait
in the Internet retailer’s distribution center.  (© Jack Kurtz/The
Image Works)

44        Bezos, Jeffrey P.

Looking for a place to set up shop, Bezos decided on Seat-
tle, partly because the state of Washington had a relatively
small population (the only customers who would have to
pay sales tax) yet had a growing pool of technically trained
workers, thanks to the growth of Microsoft and other com-
panies in the area. After several false starts he decided to
call his store Amazon, deciding that the name of the Earth’s
biggest river would be suited to earth’s biggest bookstore.
Amazon’s first headquarters was a converted garage.

Bezos soon decided that the existing software for mail-
order businesses was too limited and set a gifted program-
mer named Shel Kaphan to work creating a custom program
that could keep track not only of each book in stock, but
how long it would take to get more copies from the pub-
lisher or book distributor.

By mid-1995 Amazon.com was ready go online from a
new Seattle office using $145,553 contributed by Bezos’s
mother from the family trust. As word about the store
spread through Internet chat rooms and a listing on Yahoo!,
the orders began to pour in and Bezos had to struggle to
keep up. Despite the flood of orders, the business was los-
ing money as expenses piled up even more quickly.

Bezos went to Silicon Valley in search of venture capital.
Bezos’s previous experience as a Wall Street “star,” together
with his self-confidence, enabled him to raise $1 million.
Bezos believed that momentum was the key to long-term
success. The company’s motto became “get big fast.” Rev-
enue was poured back into the business, expanding sales
into other product lines such as music, video, electronics,
and software. The other key element of Bezos’s growth strat-
egy was to take advantage of the vast database that Amazon
was accumulating—not only information about books and
other products, but about what products a given individ-
ual or type of customer was buying. Once a customer has
bought something from Amazon, he or she is greeted by
name and given recommendations for additional purchases
based upon what items other customers who had bought
that item had also purchased. Customers are encouraged
to write reviews of books and other items so that each cus-
tomer gets the sense of being part of a virtual peer group.

By 1997, the year of its first public stock offering, Ama-
zon seemed to be growing at an impressive rate. A year
later the stock was worth almost $100 a share, and by 1999
Jeff Bezos’s personal wealth neared $7.5 billion. Bezos and
Amazon proved to be one of the few Internet businesses
to weather the “dot-bust” collapse of 2000 and 2001. In
2003 Amazon.com chalked up its first annual profit, and
the company’s stock prices tripled during that time.

Bezos gained a reputation as a very demanding CEO,
insisting on recruiting top talent, then demanding that proj-
ects set bold goals and complete them ahead of schedule.
The pressure resulted in high turnover of top executives,
but Bezos has also been quick to encourage and reward
initiative. (The company’s “Just Do It” program encourages
managers to start projects without asking permission of
their superiors.)

Aside from Amazon.com, Bezos has maintained his
interest in space travel. In 2002 he founded a company
called Blue Origin, whose spaceship project has remained

shrouded in secrecy. However, in January 2007 the com-
pany released video of the first successful (albeit brief) test
of a prototype suborbital passenger craft.

Bezos has written a new chapter in the history of retail-
ing, making him a 21st-century counterpart to such pio-
neers as Woolworth and Montgomery Ward. Time magazine
acknowledged this by making him its 1999 Person of the
Year, while Internet Magazine put Bezos on its list of the 10
persons who have most influenced the development of the
Internet.

Further Reading
Blue Origin website. Available online. URL: http://public.blueori-

gin.com/index.html. Accessed April 10, 2007.
Byers, Ann. Jeff Bezos: The Founder of Amazon.com. New York:

Rosen Publishing Group, 2006.
Marcus, James. Amazonia: Five Years at the Epicenter of the Dot.

Com Juggernaut. New York: New Press, 2004.
Spector, Robert. Amazon.com: Get Big Fast: Inside the Revolution-

ary Business Model that Changed the World. New York: Harper
Business, 2000.

binding
Designers of program compilers are faced with the question
of when to translate a statement written in the source lan-
guage into final instructions in machine language (see also
assembler). This can happen at different times depending
on the nature of the statement and the decision of the com-
piler designer.

Many programming languages use formal data types
(such as integer, floating point, double, string, and so on)
that result in allocation of an exact amount of storage space
to hold the data (see data types). A statement that declares
a variable with such a type can be effectively bound imme-
diately (that is, a final machine code statement can be gen-
erated). This is also called compile-time binding.

However, there are a variety of statements for which
binding must be deferred until more information becomes
available. For example, it is common for programmers to use
libraries of precompiled routines. A statement that calls such
a routine cannot be turned immediately into machine lan-
guage because the compiler doesn’t know the actual address
where the routine will be embedded in the final compiled
program. (That address will be determined by a program
called a linker that links the object code from the source
program to the library routines called upon by that code.)

Another aspect of binding arises when there is more
than one object in a program with the same name. In lan-
guages such as C or Pascal that use a nested block struc-
ture, lexical binding can determine that a name refers to the
closest declaration of that name—that is, the smallest scope
that contains that name (see variable). In a few languages
such as Lisp, however, the reference for a name depends on
how (or for what) the function is being called, so binding
can be done only at run time.

Binding and Object-Oriented Languages
The use of polymorphism in object-oriented languages such
as C++ raises a similar issue. Here there can be a base class

binding        45

and a hierarchy of derived classes. A function in the base
class can be declared to be virtual, and versions of the same
function can be declared in the derived classes. In this case
a statement containing a pointer to the function in the base
class cannot be bound until run time, because only then
will it be known which version of the virtual function is
being called. However, compilers for object-oriented lan-
guages can be written so they do early binding on state-
ments for which it is safe (such as those involving static
data types), but do dynamic binding when necessary.

From the point of view of efficiency, early binding is bet-
ter because memory can be allocated efficiently. Dynamic
binding provides greater flexibility, however, and facilitates
debugging—for example, because the name of a variable
is normally lost once it is bound and the machine code is
generated.

Further Reading
Aho, Alfred V., et al. Compilers: Principles, Techniques, and Tools.

2nd ed. Reading, Mass.: Addison-Wesley, 2006.
Scott, Michael L. Programming Language Pragmatics. 2nd ed. San

Francisco: Morgan Kaufmann, 2005.

bioinformatics
Broadly speaking, bioinformatics (and the related field of
computational biology) is the application of mathematical
and information-science techniques to biology. This under-
taking is inherently difficult because a living organism rep-
resents such a complex interaction of chemical processes.
Understanding any one process in isolation gives little
understanding of the role it plays in physiology. Similarly,
as more has been learned about the genome of humans
and other organisms, it has become increasingly clear that
the “programs” represented by gene sequences are “inter-
preted” through complex interactions of genes and the envi-
ronment. Given this complexity, the great strides that have
been made in genetics and the detailed study of metabolic
and other biological processes would have been impossible
without advances in computing and computer science.

Application to Genetics
Since information in the form of DNA sequences is the heart
of genetics, information science plays a key role in under-
standing its significance and expression. The sequences of
genes that determine the makeup and behavior of organ-
isms can be represented and manipulated as strings of sym-
bols using, for example, indexing and search algorithms.
It is thus natural that the advent of powerful computer
workstations and automated lab equipment would lead to
the automation of gene sequencing (determining the order
of nucleotides), comparing or determining the relation-
ship between corresponding sequences, and identifying
and annotating regions of interest. The completion of the
sequencing of the human genome well ahead of schedule
was thus a triumph of computer science as much as biology.
Today the systematic search for genetic and metabolic inter-
actions has been greatly sped up by the use of microarrays,
silicon chips with grids of tiny holes that each contain a

specified material that can be automatically tested for reac-
tion to a given sample.

Evolutionary Biology
The ability to compare genes and to account for the effects
of mutation has also established evolutionary biology on a
firm foundation. Given a good estimate of the mutation rate
(a “molecular clock”) in mitochondrial DNA, the chronol-
ogy of species and common ancestors can be determined
with considerable accuracy using statistical methods and
appropriate data structures (see tree). The results of such
research have cast intriguing if sometimes controversial
light on such issues in paleontology as the relationship
between early modern humans and Neanderthals. Com-
putational genetics can also measure the biodiversity of a
present-day ecosystem and predict the likely future of par-
ticular species in it.

From Genes to Proteins
Gene sequences are only half of many problems in biol-
ogy. Computational techniques are also being increasingly
applied to the analysis and simulation of the many intricate

A scientist observes an experiment performed by robotic
equipment.  (Andrei Tchernov/iStockphoto)

46        bioinformatics

chemical steps that link genetic information to expression
in the form of a particular protein and its three-dimensional
structure in the process known as protein folding. Already
molecular simulations and predictive techniques are being
used to determine which of thousands of possible molec-
ular configurations might have promising pharmaceutical
applications. The development of better algorithms and
more powerful computing architectures for such analysis
can further speed up research, avoid wasteful “dead ends,”
and bring effective treatments for cancer and other serious
diseases to market sooner. Recently, the unlikely platform
of a Sony PlayStation 3 and its powerful new processor has
been harnessed to turn gamers’ idle time to the processing
of protein-folding data in the Folding@Home project.

Simulation
A variety of other types of biological computer simula-
tion have been employed. Examples include the chemical
components (metabolites and enzymes) that are respon-
sible for metabolic activity in organisms, the structure of
the nervous system and the brain (see neural network),
and the interaction of multiple predators and food sources
in an ecosystem. Simulations can also incorporate algo-
rithms first devised by artificial intelligence researchers
(see genetic algorithms and artificial life). Simula-
tions are combined with sophisticated graphics to enable
researchers to visualize structure. Such visualization can

provide insight and encourage intuitive “leaps” that might
be missed when working only with formulas. Visualiza-
tion algorithms developed for biomedical research can also
be applied to the development of advanced MRI and other
scans for use in diagnosis and therapy.

A Fruitful Relationship
Bioinformatics has been one of the “hottest” areas in com-
puting in recent years, often following trends in the broader
“biotech” sector. This challenging field involves such diverse
subjects as genetics, biochemistry, physiology, mathemat-
ics (structural and statistical), database analysis and search
techniques (see data mining), simulation, modeling, graph-
ics, and image analysis. Major projects often involve close
cooperation between bioinformatics specialists and other
researchers. Many computer scientists may find it profitable
to study biology just as biologists will need to learn about
and master the latest software tools. Researchers must also
consider how the availability of ever-increasing computing
power might make previously impossible projects feasible
(see supercomputer and grid computing). (The National
Institutes of Health (NIH) currently funds seven biomedi-
cal computation centers, including the National Center for
Physics-based Simulation of Biological Structures at Stan-
ford University.)

The relationship between biology and computer science
seems destined to be even more fruitful in coming years. As
software tools allow researchers to probe ever more deeply
into biological processes and to bridge the gap between
physics, biochemistry, and the emergent behavior of living
organisms, understanding of those processes may in turn
inspire the creation of new architectures and algorithms in
areas such as artificial intelligence and robotics.

Further Reading
Bader, David A. “Computational Biology and High-Performance

Computing.” Communications of the ACM 47, 11 (2004): 34–41.
Brent, Roger, and Jehoshua Bruck. “Can Computers Help to

Explain Biology?” Nature 440 (March 23, 2006): 416.
Campbell, A. Malcolm, and Laurie J. Heyer. Discovering Genomics,

Proteomics, and Bioinformatics. 2nd ed. San Francisco: Benja-
min Cummings, 2006.

Claverie, Jean-Michel, and Cedric Notredame. Bioinformatics for
Dummies. 2nd ed. Indianapolis: Wiley, 2006.

Cohen, Jacques. “Computer Science and Bioinformatics.” Commu-
nications of the ACM 48 (2005): 72–78.

“Just the Facts: A Basic Introduction to the Science Underlying
NCBI Resources: Bioinformatics.” National Center for Bio-
technology Information. Available online. URL: http://www.
ncbi.nlm.nih.gov/About/primer/bioinformatics.html. Accessed
April 24, 2007.

biometrics
The earliest use of biometrics was probably the development
by Alphonse Bertillon in 1882 of anthropometry, a system
of classification by physical measurements and description.
While this was soon supplanted by the discovery that fin-
gerprints could serve as an easier to use means of unique
identification of persons, the need for a less invasive means
of physical identification has led to the development of a

Computers can create detailed representations that give scientists
unprecedented ability to visualize nature’s most intricate structures.
This is a computer model of trypanathione Reductase, a protein
crystal.  (NASA photo; Marshall Space Flight Center
Image Exchange)

biometrics        47

variety of biometric scanners that take Bertillon’s ideas to a
much more detailed level.

Technologies
In general, biometric scanning involves four steps: the
capture of an image using a camera or other device, the
extraction of key features from the image, the creation of
a template that uniquely characterizes the person being
scanned, and the matching of the template to stored tem-
plates in order to identify the person.

There are several possible targets for biometric scan-
ning, including the following areas:

Facial Scanning
Facial scanning uses cameras and image analysis software
that looks at areas of the human face that change little
during the course of life and are not easily alterable, such
as the upper outline of the eye sockets and the shape of
the cheekbones. Researchers at MIT developed a series of
about 125 grayscale images called eigenfaces from which
features can be combined to characterize any given face.
The template resulting from a scan can be compared with
the one on file for the claimed identity, and coefficients
expressing the degree of similarity are calculated. Variance
above a specified level results in the person being rejected.
Facial scanning is often viewed as less intrusive than the
use of fingerprints, and it can also be applied to surveil-
lance images.

Finger Scanning
Finger scanning involves the imaging and automatic analy-
sis of the pattern of ridges on one or more fingertips. Unlike
traditional fingerprinting, the actual fingerprint is not
saved, but only enough key features are retained to provide
a unique identification. This information can be stored in a
database and also compared with full fingerprints stored in
existing databases (such as that maintained by the Federal
Bureau of Investigation). Finger scanning can meet with
resistance because of its similarity to fingerprinting and the
association of the latter with criminality.

Hand Geometry
This technique measures several characteristics of the
hand, including the height of and distance between the
fingers and the shape of the knuckles. The person being
scanned places the hand on the scanner’s surface, aligning
the fingers to five pegs. Hand-scanning is reasonably accu-
rate in verifying an individual compared to the template
on file, but not accurate enough to identify a scan from an
unknown person.

Iris and Retina Scanning
These techniques take advantage of many unique individ-
ual characteristics of these parts of the eye. The scanned
characteristics are turned into a numeric code similar to a
bar code. Retina scanning can be uncomfortable because it
involves shining a bright light into the back of the eye, and
has generally been used only in high-security installations.

However, iris scanning involves the front of the eye and is
much less intrusive, and the person being scanned needs
only to look into a camera.

Voice Scanning
Voice scanning and verification systems create a “voice-
print” from a speech sample and compare it to the voice
of the person being verified. It is a quick and nonintrusive
technique that is particularly useful for remote transactions
such as telephone access to banking information.

Behavioral Biometrics
Biometrics are essentially invariant patterns, and these can
be found in behavior as well as in physical features. One of
the most promising techniques (recently patented) analyzes
the pace or rhythm of a person’s typing on a keyboard and
generates a unique numeric code. A similar approach might
be applicable to mouse usage.

Applications of Biometrics
Due to the expense of the equipment and the time involved
in scanning, biometrics were originally used primarily in
verifying identity for people entering high-security installa-
tions. However, the development of faster and less intrusive
techniques, combined with the growing need to verify users
of banking (ATM) and other networks has led to a growing

A portable iris recognition scanner being demonstrated at the Bio-
metrics 2004 exhibition and conference in London.  (Ian Waldie/
Getty Images)

48        biometrics

interest in biometrics. For example, a pilot program in the
United Kingdom has used iris scanning to replace the PIN
(personal identification number) as a means of verifying
ATM users.

The general advantage of biometrics is that it does not
rely on cards or other artifacts that can be stolen or other-
wise transferred from one person to another, and in turn,
a person needing to identify him or herself doesn’t have
to worry about forgetting or losing a card. However, while
workers at high-security installations can simply be required
to submit to biometric scans, citizens and consumers have
more choice about whether to accept techniques they may
view as uncomfortable, intrusive, or threatening to privacy.

Recent heightened concern about the stealing of per-
sonal identification and financial information (see identity
theft) may promote greater acceptance of biometric tech-
niques. For example, a built-in fingerprint reader (already
provided on some laptop computers) could be used to
secure access to the hard drive or transmitted to authenti-
cate an online banking customer.

Of course every security measure has the potential for
circumvention or misuse. Concerns about the stealing and
criminal use of biometric data (particularly online) might
be addressed by a system created by Emin Martinian of the
Mitsubishi Electric Research Laboratories in Cambridge,
Massachusetts. The algorithm creates a unique code based
on a person’s fingerprint data. The data itself is not stored,
and the code cannot be used to re-create it, but only to
match against the actual finger.

The growing use of biometrics by government agencies
(such as in passports and border crossings) is of concern
to privacy advocates and civil libertarians. When com-
bined with surveillance cameras and central databases, bio-
metrics (such as face analysis and recognition) could aid
police in catching criminals or terrorists, but could also
be used to strip the anonymity from political protesters.
The technology is thus double-edged, with the potential
both to enhance the security of personal information and to
increase the effectiveness of surveillance.

Further Reading
Ashborn, Julian D. M. Biometrics: Advanced Identity Verification,

the Complete Guide. New York: Springer-Verlag, 2000.
“Biometrics Overview.” Available online. URL: http://www.biometric

group.com/a_bio1/_technology/research_a_technology.htm.
Accessed April 20, 2007.

Biometrics Research Homepage at Michigan State University. Avail-
able online. URL: http://biometrics.cse.msu.edu/. Accessed
April 24, 2007.

“Biometrics: Who’s Watching You?” Electronic Frontier Founda-
tion. Available online. URL: http://www.eff.org/Privacy/Sur-
veillance/biometrics/. Accessed April 24, 2007.

Harreld, Heather. “Biometrics Points to Greater Security.” Fed-
eral Computer Week, July 22, 1999. Available online. URL:
http://www.cnn.com/TECH/computing/9907/22/biometrics.
idg/index.html.

Jain, Anil, Ruud Bolle, and Sharath Pankanti. Biometrics: Personal
Identification in Networked Society. Norwell, Mass.: Kluwer
Academic Publishers, 1999.

Woodward, John D., Nicholas M. Orlans, and Peter T. Higgins.
Biometrics: Identity Assurance in the Information Age. New
York: McGraw-Hill, 2002.

BIOS (Basic Input-Output System)
With any computer system a fundamental design problem
is how to provide for the basic communication between the
processor (see cpu) and the devices used to obtain or dis-
play data, such as the video screen, keyboard, and parallel
and serial ports.

In personal computers, the BIOS (Basic Input-Output
System) solves this problem by providing a set of routines
for direct control of key system hardware such as disk
drives, the keyboard, video interface, and serial and par-
allel ports. In PCs based on the IBM PC architecture, the
BIOS is divided into two components. The fixed code is
stored on a PROM (programmable read-only memory) chip
commonly called the “ROM BIOS” or “BIOS chip.” This
code handles interrupts (requests for attention) from the
peripheral devices (which can include their own special-
ized BIOS chips). During the boot sequence the BIOS code
runs the POST (power-on self test) and queries various
devices to make sure they are functional. (At this time the
PC’s screen will display a message giving the BIOS manu-
facturer, model, and other information.) Once DOS is run-
ning, routines in the operating system kernel can access
the hardware by making calls to the BIOS routines. In turn,
application programs can call the operating system, which
passes requests on to the BIOS routines.

The BIOS scheme has some flexibility in that part of
the BIOS is stored in system files (in IBM PCs, IO.SYS and
IBMIO.COM). Since this code is stored in files, it can be
upgraded with each new version of DOS. In addition, sepa-
rate device drivers can be loaded from files during system
startup as directed by DEVICE commands in CONFIG.SYS,
a text file containing various system settings.

For further flexibility in dealing with evolving device
capabilities, PCs also began to include CMOS (complemen-
tary metal oxide semiconductor) chips that allow for the
storage of additional parameters, such as for the configura-
tion of memory and disk drive layouts.

In modern PCs the BIOS setup screen also allows users
to specify the order of devices to be used for loading system
startup code. This, for example, might allow a potentially
corrupted hard drive to be bypassed in favor of a bootable
CD or DVD with disk repair tools. Another scenario would
allow users to boot from a USB memory stick (see flash
drive) and use a preferred operating system and working
files without disturbing the PC’s main setup.

The data on these chips is maintained by a small on-
board battery so settings are not lost when the main system
power is turned off.

Additionally, modern PC BIOS chips use “flash memory”
(EEPROM or “electrically erasable programmable read-only
memory”) to store the code. These chips can be “flashed” or
reprogrammed with newer versions of the BIOS, enabling the
support of newer devices without having to replace any chips.

Beyond the Bios
While the BIOS scheme was adequate for the earliest PCs,
it suffered from a lack of flexibility and extensibility. The
routines were generic and thus could not support all the
functions of newer devices. Because BIOS routines for

BIOS        49

such tasks as graphics tended to be slow, applications pro-
grammers often bypassed the BIOS and dealt with devices
directly or created device drivers specific to a particular
model of device. This made the life of the PC user more
complicated because programs (particularly games) may
not work with some video cards, for example, or at least
required an updated device driver.

While both the main BIOS and the auxiliary BIOS chips
on devices such as video cards are still essential to the
operation of the PC, modern operating systems, such as
Microsoft Windows and applications written for them, gen-
erally do not use BIOS routines and employ high perfor-
mance device drivers instead. (By the mid-1990s BIOSes
included built-in support for “Plug and Play,” a system for
automatically loading device drivers as needed. Thus, the
BIOS is now usually of concern only if there is a hardware
failure or incompatibility.)

Further Reading
“System BIOS Function and Operation.” Available online. URL:

http://www.pcguide.com/ref/mbsys/bios/func.htm. Accessed
April 20, 2007.

bitmapped image
A bitmap is a series of bits (within a series of bytes in
memory) in which the bits represent the pixels in an image.
In a monochrome bitmap, each pixel can be represented by
one bit, with a 1 indicating that the pixel is “on.” For gray-
scale or color images several bits must be used to store the
information for each pixel. The pixel value bits are usually
preceded by a data structure that describes various charac-
teristics of the image.

For example, in the Microsoft Windows BMP format,
the file for an image begins with a BITMAPFILEHEADER
that includes a file type, size, and layout. This is followed
by a BITMAPINFOHEADER that gives information about
the image itself (dimensions, type of compression, and
color format). Next comes a color table that describes each

color found in the image in terms of its RGB (red, green,
blue) components. Finally comes the consecutive bytes rep-
resenting the bits in each line of the image, starting from
lower left and proceeding to the upper right.

The actual number of bits representing each pixel
depends on the dimensions of the bitmap and the num-
ber of colors being used. For example, if the bitmap has a
maximum of 256 colors, each pixel value must use one byte
to store the index that “points” to that color in the color
table. However, an alternative format stores the actual RGB
values of each pixel in three consecutive bytes (24 bits),
thus allowing for a maximum of 24 (16,777,216) colors (see
color in computing).

Shortcomings and Alternatives
The relationship between number of possible colors and
amount of storage needed for the bitmap means that the
more realistic the colors, the more space is needed to store
an image of a given size, and generally, the more slowly the
bitmap can be displayed. Various techniques have been used
to shrink the required space by taking advantage of redun-
dant information resulting from the fact that most images
have areas of the same color (see data compression).

Vector graphics offer an alternative to bitmaps, particu-
larly for images that can be constructed from a series of lines.
Instead of storing the pixels of a complete image, vector graph-
ics provides a series of vectors (directions and lengths) plus
the necessary color information. This can make for a much
smaller image, as well as making it easy to scale the image to
any size by multiplying the vectors by some constant.

Further Reading
Artymiak, Jacek. Dynamic Bitmap Graphics with PHP and Gd. 2nd

ed. Lublin, Poland: devGuide.net, 2007.
“Microsoft Windows Bitmap File Format Summary.” FileFormat-

Info. Available online. URL: http://www.fileformat.info/format/
bmp/egff.htm. Accessed May 10, 2007.

Slaybaugh, Matt. Professional Web Graphics. Boston: Course Tech-
nology, 2001.

bits and bytes
Computer users soon become familiar with the use of bits
(or more commonly bytes) as a measurement of the capac-
ity of computer memory (RAM) and storage devices such
as disk drives. They also speak of such things as “16-bit
color,” referring to the number of different colors that can
be specified and generated by a video display.

In the digital world a bit is the smallest discernable
piece of information, representing one of two possible states
(indicated by the presence or absence of something such as
an electrical charge or magnetism, or by one of two voltage
levels). Bit is actually short for “binary digit,” and a bit cor-
responds to one digit or place in a binary (base 2) number.
Thus an 8-bit value of

11010101

corresponds, from right to left, to (1 * 20) + (0 * 21) + (1 *
22) + (0 * 23) + (1 * 24) + (0 * 25) + (1 * 26) + (1 * 27), or 213
in terms of the familiar decimal system.

In a monochrome bitmapped image, a 1 is used to represent a pixel
that is turned on, while the empty pixels are represented by zeroes.
Color bitmaps must use many more bits per pixel to store color
numbers.

50        bitmapped image

With regard to computer architectures the number
of bits is particularly relevant to three areas: (1) The size
of the basic “chunk” of data or instructions that can be
fetched, processed, or stored by the central processing unit
(CPU); (2) The “width” of the data bus over which data is
sent between the CPU and other devices—given the same
processor speed, a 32-bit bus can transfer twice as much
data in a given time as a 16-bit bus; and (3) The width of the
address bus (now generally 32 bits), which determines how
many memory locations can be addressed, and thus the
maximum amount of directly usable RAM.

The first PCs used 8-bit or 16-bit processors, while
today’s PC processors and operating systems often use 32-
bits at a time, with 64-bit processors now entering the mar-
ket. Besides the “width” of data transfer, the number of bits
can also be used to specify the range of available values.
For example, the range of colors that can be displayed by
a video card is often expressed as 16 bit (65,536 colors) or
32 bit (16,777,777,216 colors, because only 24 of the bits are
used for color information).

Since multiple bits are often needed to specify meaningful
information, memory or storage capacity is often expressed

in terms of bytes. A byte is 8 bits or binary digits, which
amounts to a range of from 0 to 255 in terms of decimal (base
10) numbers. A byte is thus enough to store a small inte-
ger or a character code in the standard ASCII character set
(see character). Common multiples of a byte are a kilobyte
(thousand bytes), megabyte (million bytes), gigabyte (billion
bytes), and occasionally terabyte (trillion bytes). The actual
numbers represented by these designations are actually some-
what larger, as indicated in the accompanying table.

Further Reading
“How Bits and Bytes work.” Available online. URL: http://www.

howstuffworks.com/bytes.htm. Accessed April 22, 2007.

bitwise operations
Since each bit of a number (see bits and bytes) can hold
a truth value (1 = true, 0 = false), it is possible to use indi-
vidual bits to specify particular conditions in a system, and
to compare individual pairs of bits using special operators
that are available in many programming languages.

Bitwise operators consist of logical operators and shift
operators. The logical operators, like Boolean operators in
general (see Boolean operators), perform logical compar-
isons. However, as the name suggests, bitwise logical opera-
tors do a bit-for-bit comparison rather than comparing the
overall value of the bytes. They compare the corresponding
bits in two bytes (called source bits) and write result bits
based on the type of comparison.

The AND operator compares corresponding bits and
sets the bit in the result to one if both are one. Otherwise, it
sets it to zero.

Example: 10110010 AND 10101011 = 10100010

The OR operator compares corresponding bits and sets
the bit in the result to one if either or both of the bits are
ones.

Example: 10110110 OR 10010011 = 10110111

The XOR (“exclusive OR”) operator works like OR
except that it sets the result bit to one only if either (not
both) of the source bits are ones.

Example: 10110110 XOR 10010011 = 00100101

The COMPLEMENT operator switches all the bits to
their opposites (ones for zeroes and zeroes for ones).

Example: COMPLEMENT 11100101 = 00011010

One byte in memory can store an 8-bit binary number. Just as each
place to the left in a decimal number represents the next higher
power of 10, the places in the byte increase as powers of 2. Here the
places with 1 in them add up to a total decimal value of 213.

Measurement	 Number of Bytes	E xamples of Use

byte	 1	 small integer, character
kilobyte	 210   1,024	 RAM (PCs in the 1980s)
megabyte	 220   1,048,576	 hard drive (PCs to mid-1990s)
		 RAM (modern PCs)
gigabyte	 230   1,073,741,824	 hard drive (modern PCs)
		 RAM (latest PCs)
terabyte	 240   1,099,511,627,776	 large drive arrays

bitwise operations        51

The shift operators simply shift all the bits left (LEFT
SHIFT) or right (RIGHT SHIFT) by the number of places
specified after the operator. Thus

00001011 LEFT SHIFT 2 = 00101100

and

00001011 RIGHT SHIFT 2 = 00000010 (bits that shift off
the end of the byte simply “drop off” and are replaced with
zeroes).

While we have used words in our general description of
these operators, actual programming languages often use
special symbols that vary somewhat with the language. The
operators used in the C language are typical:

& AND

| OR

^ Exclusive OR

~ Complement

>> Right Shift

<< Left Shift

Masking
There are a number of programming tasks where the
contents of individual bits must be read or manipulated.
Operating systems and network protocols often have data
structures where several separate pieces of information are
stored in a single byte in order to save space. (For exam-
ple, in IBM architecture PC’s interrupts are often enabled
or disabled by setting particular bits in a mask register.)
Operations using bitmapped images can also involve bit
manipulation.

Suppose the right three bits of a byte contain a desired
piece of information. The byte is ANDed with a prepared
byte called a mask in which the desired bits are set to one
and the rest of the bits are zero: in this case it would be
00000111. Thus if the byte contains 11010110:

11010110 AND 00000111 = 000000110

The result contains only the value of the right three bits.
Similarly, if one wants to set a particular bit to zero, one
simply ANDs the byte with a byte that has a zero in that
position and ones in the rest of the byte. Thus to “zero out”
the second bit from the left in 11010110:

11010110 AND 10111111 = 10010110

Further Reading
“Bitwise Operators in C and C++.” Available online. URL: http://

www.cprogramming.com/tutorial/bitwise_operators.html.
Accessed September 17, 2007.

“Java Lesson 7: Bitwise Operations with Good Examples.” Avail-
able online. URL: http://www.javafaq.nu/java-article402.
html. Accessed September 17, 2007.

“Logic and Bitwise Operators in PHP.” Available online. URL:
http://theopensourcery.com/phplogic.htm. Accessed Septem-
ber 17, 2007.

blogs and blogging
As the 20th century drew to a close, a new form of per-
sonal self-expression began to appear on the Web. Called
“Web logs” but soon universally shortened to blogs, this new
type of online journal caught on rapidly, being adopted not
only by Web-savvy designers and writers, but by millions of
ordinary users wanting to express opinions on the news of
the day, critique music or restaurants, analyze technological
developments, or just keep relatives informed about family
doings. (By 2006 the Pew Internet and American Life project
was reporting that about 16 percent of the American popu-
lation—around half of all Internet users—was writing or
at least reading blogs.) Additionally, today’s blogs can have
institutional as well as personal roles. They have created
a new form of journalism that challenges the mainstream
media, have kept researchers in touch with new develop-
ments, and have provided a new way for corporations to
communicate with customers or prospective investors.

Formats and Software
The “classic” blog resembles a diary or journal. The writer
simply adds a new entry either on a regular basis such as
daily or weekly, or when there is something new to be said
or responded to. Indeed, what makes blogs different from
traditional journals is two things: linkage and interactivity.
When a “blogger” writes about something such as a news
story, he or she almost always includes a Web link that can
take the reader directly to the source in question. The inter-
activity comes in readers having the opportunity to click a
button and write their own response—either to the original
journal entry or to someone’s earlier response.

In order for blogging to become ubiquitous, there needed
to be software that anyone could use without knowing any-
thing about Web design or HTML coding. Most commonly,
the software is hosted on a Web site, and users only need a
Web browser to create and manage their blogs. One of the
first popular blogging applications was developed in the late
1990s by David Winer of Userland Software. Google’s Blog-
ger.com is another popular choice. Many blogging applica-
tions are free and open source, such as Drupal, Mephisto,
and WordPress (which can be used stand-alone or as a
hosted service). Today anyone can start and maintain a blog
with just a few clicks.

As blogs proliferated, the value of a search engine
devoted specifically to finding blogs and blog entries became
evident. While a general search engine can find blog entries
that match keywords, the results generally do not show the
context or the necessary links to follow the threads of dis-
cussion. In addition to such services as Bloglines, general
search engines such as Google include options for search-
ing the burgeoning “blogosphere.”

As with many other Web developments, what began as
primarily a textual medium soon embraced multimedia.
The availability of inexpensive cameras makes it easy for
bloggers to engage in “video blogging.” Anyone who wants
to see these videos regularly can “subscribe” and have them
downloaded automatically to their PC or portable player
(see podcasting).

52        blogs and blogging

Blogging can also be seen as part of a larger trend toward
Web users taking an active role in expressing and sharing
opinion and resources (see user-created content, file-
sharing and p2p networks, and YouTube).

Social and Economic Impact
Blogs first emerged in popular consciousness as a new way
in which people caught in the midst of a tragedy such as the
September 11, 2001, attacks could reassure friends about
their safety while describing often harrowing accounts. The
Iraq war that began in 2003 was the first war to be blogged
on a large scale. Like their journalistic counterparts, blog-
gers, whether American or Iraqi, were “embedded” in the
often-violent heart of the protracted conflict, but they were
also effectively beyond the control of government or mil-
itary authorities. (See also political activism and the
Internet.)

Blogs are also being used widely in business. Within a
company, a blog can highlight ongoing activities and relevant
resources that might otherwise be overlooked in a large cor-
porate network. Software developers can also report on the
progress of bug fixes or enhancements and solicit comments
from end users. There has been some concern, however, that
corporate blogs are not sufficiently supervised to prevent
the dissemination of sensitive information or the posting of
libelous or inflammatory material. (For the collaborative cre-
ation of large bodies of structured knowledge, see wikis and
Wikipedia.)

Blogs have provided an outlet where other means of
expression are unavailable because of war (as in Iraq),
disaster (Hurricane Katrina), or government censorship—
although China in particular has hired hundreds of censors
to remove offending postings as well as requiring blog pro-
viders such as MSN to police their content (see censorship
and the Internet).

Further Reading
Blogger. Available online. URL: http://www.bloger.com. Accessed

September 2, 2007.
Bloglines. Available online. URL: http://www.bloglines.com. Accessed

April 10, 2007.
Blood, Rebecca. The Weblog Handbook: Practical Advice on Creating

and Maintaining Your Blog. Cambridge, Mass.: Perseus, 2002.
Burden, Matthew Currier. The Blog of War: Front-Line Dispatches

from Soliders in Iraq and Afghanistan. New York: Simon &
Schuster, 2006.

Dedman, Jay. Videoblogging. New York: Wiley, 2006.
Farber, Dan. “Reflections on the First Decade of Blogging.” Febru-

ary 25. 2007. Available online. URL: http://blogs.zdnet.com/
BTL/?p=4541&tag=nl.e539. Accessed April 10, 2007.

Hasin, Hayder. WordPress Complete: Set Up, Customize, and Market
Your Blog. Birmingham, U.K.: Packt Publishing, 2006.

Radio Userland. Available online. URL: http://radio.userland.com.
Accessed September 2, 2007.

Rebecca’s Pocket. Available online. URL: http://www.rebeccablood.
net/. Accessed April 10, 2007.

Technorati. Available online. URL: http://www.technorati.com.
Accessed April 10, 2007.

WordPress. Available online. URL: http:// www.wordpress.com.
Accessed April 10, 2007.

Bluetooth
Loosely named after a 10th-century Danish king, Bluetooth
is a wireless data communications and networking system
designed for relatively short-range operation (generally
within the same room, although it can be used over longer
distances up to several hundred feet [tens of meters]). The
radio transmission is in the 2.4-GHz band and is typically
low power, making it suitable for battery-powered devices
such as laptops.

Applications
Bluetooth was originally developed by Ericsson Corpora-
tion to provide a wireless connection for mobile telephone
headsets. Today it is often used to “sync” (update data)
between a PDA such as a Blackberry or Palm (see PDA)
with a Bluetooth-equipped laptop or desktop. Many cell
phones are also equipped with Bluetooth, allowing them to
be dialed from a PDA, although the growing use of phones
that combine telephony and PDA functions is making this
scenario less common (see smartphone). Bluetooth can
also be used for wireless keyboards, mice, or printers.

It is possible to connect PDAs or PCs to the Internet and
local area networks using a Bluetooth wireless access point
(WAP) attached to a router, but faster and longer range Wifi
(802.11) wireless connections are much more widely used
for this application (see Wifi).

Bluetooth connections between devices are specified
using profiles. Profiles have been developed for common
kinds of devices, specifying how data is formatted and
exchanged. For example, there are profiles for controlling
telephones, printers and faxes, digital cameras, and audio
devices. Most modern operating systems (including Win-
dows Mobile, Linux, Palm OS, and Mac OS X) include sup-
port for basic Bluetooth profiles. Functions fundamental to
all Bluetooth operations are found in Bluetooth Core Speci-
fications (version 2.1 as of August 2007). Planned future
enhancements include accommodation for ultra-wide band
(UWB) radio technology, allowing for data transfer up to
480 megabits per second. At the same time, Bluetooth is
extending the ultra-low-power modes that are particularly
important for wearable or implanted medical devices.

Further Reading
“Bluetooth.” Wikipedia. Available online. URL: http://en.wikipedia.

org/wiki/Bluetooth. Accessed July 20, 2007.
Bluetooth Special Interest Group. Available online. URL: http://

www.bluetooth.com/bluetooth/. Accessed July 20, 2007.
Layton, Julia, and Curt Franklin. “How Bluetooth Works.” Avail-

able online. URL: http://www.howstuffworks.com/bluetooth.
htm. Accessed September 3, 2007.

Boolean operators
In 1847, British mathematician George Boole proposed a
system of algebra that could be used to manipulate proposi-
tions, that is, assertions that could be either true or false. In
his system, called propositional calculus or Boolean Alge-
bra, propositions can be combined using the “and” and “or”

Boolean operators        53

operators (called Boolean operators), yielding a new propo-
sition that is also either true or false. For example:

“A cat is an animal” AND “The sun is a star” is true
because both of the component propositions are true.

“A square has four sides” AND “The Earth is flat” is false
because only one of the component propositions is true.

However “A square has four sides” OR “The Earth is
flat” is true, because at least one of the component proposi-
tions is true.

A chart called a truth table can be used to summarize
the AND and OR operations. Here 1 means true and 0
means false, and you read across from the side and down
from the top to see the result of each combination.

AND table

		 0	 1
	 0	 0	 0
	 1	 0	 1

OR table

		 0	 1
	 0	 0	 1
	 1	 1	 1

A variant of the OR operator is the “exclusive OR,”
sometimes called “XOR” operator. The XOR operator yields
a result of true (1) if only one of the component propositions
is true:

XOR table

		 0	 1
	 0	 0	 1
	 1	 1	 0

Additionally, there is a NOT operator that simply
reverses the truth value of a proposition. That is, NOT 1 is
0 and NOT 0 is 1.

Applications
Note the correspondence between the two values of Boolean
logic and the binary number system in which each digit can
have only the values of 1 or 0. Electronic digital computers
are possible because circuits can be designed to follow the
rules of Boolean logic, and logical operations can be har-
nessed to perform arithmetic calculations.

Besides being essential to computer design, Boolean
operations are also used to manipulate individual bits in
memory (see bitwise operations), storing and extracting
information needed for device control and other purposes.
Computer programs also use Boolean logic to make deci-
sions using branching statements such as If and loop state-
ments such as While. For example, the Basic loop

While (Not Eof()) OR (Line = 50)
Read (Line$)
Print (Line$)
Line = Line + 1

Endwhile

will read and print lines from the previously opened file
until either the Eof (end of file) function returns a value of
True or the value of Line reaches 50. (In some programming
languages different symbols are used for the operators. In
C, for example, AND is &&, OR is ||, and NOT is !.)

Users of databases and Web search engines are also
familiar with the use of Boolean statements for defining
search criteria. In many search engines, the search phrase
“computer science” AND “graduate” will match sites that
have both the phrase “computer science” and the word
“graduate,” while sites that have only one or the other will
either not be listed or will be listed after those that have
both (see search engine).

Further Reading
University at Albany Libraries. “Boolean Searching on the Inter-

net.” Available online. URL: http://www.albany.edu/library/
internet/boolean.html.

Whitesitt, J. E. Boolean Algebra and Its Applications. New York:
Dover, 1995.

boot sequence
All computers are faced with the problem that they need
instructions in order to be able to read in the instructions
they need to operate. The usual solution to this conundrum
is to store a small program called a “loader” in a ROM
(read-only memory) chip. When the computer is switched
on, this chip is activated and runs the loader. The loader
program has the instructions needed to be able to access
the disk containing the full operating system. This process
is called booting (short for “bootstrapping”).

Booting a PC
While the details of the boot sequence vary with the hard-
ware and operating system used, a look at the booting of a
“Wintel” machine (IBM architecture PC running DOS and
Microsoft Windows) can serve as a practical example.

When the power is turned on, a chip called the BIOS
(basic input-output system) begins to execute a small pro-
gram (see bios). The first thing it does is to run a rou-
tine called the POST (power-on self test) that sends a
query over the system bus (see bus) to each of the key
devices (memory, keyboard, video display, and so on) for
a response that indicates it is functioning properly. If an
error is detected, the system generates a series of beeps,
the number of which indicates the area where the problem
was found, and then halts.

Assuming the test runs successfully (sometimes indi-
cated by a single beep), the BIOS program then queries the
devices to see if they have their own BIOS chips, and if so,
executes their programs to initialize the devices, such as
the video card and disk controllers. At this point, since the
video display is available, informational and error messages
can be displayed as appropriate. The BIOS also sets various
parameters such as the organization of the disk drive, using
information stored in a CMOS chip. (There is generally
a way the user can access and change these information
screens, such as when installing additional memory chips.)

54        boot sequence

The BIOS now looks for a disk drive that is bootable—
that is, that contains files with the code needed to load the
operating system. This is generally a hard drive, but could
be a floppy disk or even a CD-ROM or USB device. (The
order in which devices are checked can be configured.) On
a hard drive, the code needed to start the operating system
is found in a “master boot record.”

The booting of the operating system (DOS) involves the
determination of the disk structure and file system and the
loading of the operating system kernel (found in files called
IO.SYS and MSDOS.SYS), and a command interpreter (COM-
MAND.COM). The latter can then read the contents of the
files AUTOEXEC.BAT and CONFIG.SYS, which specify sys-
tem parameters, device drivers, and other programs to be
loaded into memory at startup. If the system is to run Micro-
soft Windows, that more elaborate operating system will then
take over, building upon or replacing the foundation of DOS.

Further Reading
PC Guide. “System Boot Sequence.” Available online. URL: http://

www.pcguide.com/_ref/mbsys/bios/bootSequence-c.html.
Accessed April 10, 2008.

branching statements
The simplest calculating machines (see calculator)
could only execute a series of calculations in an unalter-
able sequence. Part of the transition from calculator to full
computer is the ability to choose different paths of execu-
tion according to particular values—in some sense, to make
decisions.

Branching statements (also called decision statements
or selection statements) give programs the ability to choose
one or more different paths of execution depending on the
results of a logical test. The general form for a branching
statement in most programming languages is

if (Boolean expression)

statement

else statement

For example, a blackjack game written in C might have a
statement that reads:

if ((Card_Count + Value(This_Card)) > 21)
printf (“You’re busted!”);

Here the Boolean expression in parenthesis following the if
keyword is evaluated. If it is true, then the following state-
ment (beginning with printf) is executed. (The Boolean
expression can be any combination of expressions, function
calls, or even assignment statements, as long as they evalu-
ate to true or false—see also boolean operators.)

The else clause allows the specification of an alternative
statement to be executed if the Boolean expression is not
true. The preceding example could be expanded to:

if (Card_Count + Value (This_Card) > 21)
printf (“You’re busted!”);

else
printf(“Do you want another card?”);

In most languages if statements can be nested so that a
second if statement is executed only if the first one is true.
For example:

if (Turn > Max_Turns)
{
if (Winner())

PrintScore();
}

Here the first if test determines whether the maximum
number of turns in the game has been exceeded. If it has,
the second if statement is executed, and the Winner() func-
tion is called to determine whether there is a winner. If
there is a winner, the PrintScore() function is called. This
example also illustrates the general rule in most languages
that wherever a single statement can be used a block of
statements can also be used. (The block is delimited by
braces in the C family of languages, while Pascal uses
Begin . . . End.)

The switch or case statement found in many languages
is a variant of the if statement that allows for easy testing of
several possible values of a condition. One could write:

if (Category = = “A”)
AStuff();

else if (Category = = “B”)
BStuff();

else if (Category = = “C”)
CStuff();

else
printf “(None of the above\n”);

However, C, Pascal, and many other languages provide a
more convenient multiway branching statement (called
switch in C and case in Pascal). Using a switch statement,
the preceding test can be rewritten in C as:

switch (Category) {
case “A”:

AStuff();
break;

case “B”:
BStuff();
break;

case “C”
CStuff();
break;

default:
printf (“None of the above\n”);

}

(Here the break statements are needed to prevent execution
from continuing on through the other alternatives when
only one branch should be followed.)

Further Reading
Sebesta, Robert W. Concepts of Programming Languages. 8th ed.

Boston: Addison-Wesley, 2008.

branching statements        55

Breazeal, Cynthia
(1968– )
American
Roboticist

Born in Albuquerque, New Mexico, in 1968, Cynthia
Breazeal (pronounced like “Brazil”) grew up in Califor-
nia. Her father was a mathematician and her mother was a
computer scientist at the Lawrence Livermore Laboratory.
When she was only eight, Breazeal saw the 1970s film Star
Wars and became intrigued with the “droids.”

Besides robots, as a student the young Breazeal was also
fascinated by medicine and astronomy. When she attended
the University of California at Santa Barbara, Breazeal con-
sidered a future career in NASA. UC also had a robotics
center, and Breazeal encountered there the possibility of
building planetary robot rovers.

After getting her undergraduate degree in electrical and
computer engineering, Breazeal applied for graduate school
to the Massachusetts Institute of Technology. The MIT
robotics lab, headed by Rodney Brooks, was developing a
new generation of small, agile robotic rovers based in part
on observing how insects moved. Breazeal’s work on two
such robots, named Attila and Hannibal, helped prove the
feasibility of mobile robots for planetary exploration while
furnishing her a topic for her master’s thesis.

Besides its implications for space research, Breazeal’s
work with Attila and Hannibal demonstrated the feasibil-
ity of building robots that were controlled by hundreds of
small, interacting programs that detected and responded to

specified conditions or “states.” It gave concrete reality to
Brooks’s and Breazeal’s belief that robots, like living organ-
isms, grew by building more complex behaviors on top of
simpler ones, rather than depending on some single top-
down design.

Brooks then announced that he was starting a new proj-
ect: to make a robot that could interact with people in much
the same way people encounter one another socially. The
result of the efforts of Brooks, Breazeal, and their colleagues
was the creation of a robot called Cog. Cog attempted to
replicate the sense perceptions and reasoning skills of a
human infant. Cog had eyes that focused like those of a
person. Like an infant, Cog could pick up on what people
nearby were doing, and what they were focused on.

Breazeal had done much of the work in designing Cog’s
stereovision system. She and another graduate student also
programmed many of the interacting feedback routines that
allowed Cog to develop its often-intriguing behavior. Cog
could focus on and track moving objects and sound sources.
Eventually, the robot gained the kind of hand-eye coordina-
tion that enabled it to throw and catch a ball and even play
rhythms on a snare drum.

For her doctoral research, Breazeal decided to design
a robot unlike the 6-foot, 5-inch (1.96 m) Cog; one that
instead would be more child-sized and childlike. She named
the new robot Kismet, from the Turkish word for fate or for-
tune. Kismet looks a bit like the alien from the film ET: The
Extra-Terrestrial. The robot is essentially a head without
arms or legs. With big eyes (including exaggerated eye-
brows), pink ears that can twist, and bendable surgical tub-
ing for lips that can “smile,” Kismet has a “body language”
that conveys a kind of brush-stroked essence of response
and emotion. Kismet has a variety of hardware and software
features that support its interaction with humans.

Like Cog, Kismet’s camera “eyes” function much like
the human eye. However, the vision system is more sophis-
ticated than that in the earlier robot. Kismet looks for col-
orful objects, which are considered to be toys, for potential
play activities. An even higher priority is given to potential
playmates, which are recognized by certain facial features,
such as eyes, as well as the presence of flesh tones. Kismet
does not actually understand the words spoken to it; how-
ever, it perceives the intonation and rhythms of human
speech and identifies them as corresponding to emotional
states. If a visitor addresses Kismet with tones of friendly
praise (as perhaps one might a baby, or a dog), the robot
moves to a “happy” emotional state. On the other hand, a
harsh, scolding tone moves Kismet toward an “unhappy”
condition.

Kismet’s “emotions” are not just simple indicators of
what state the software decides the robot should be in,
based on cues it picks up from humans. Rather, the robot
has been so carefully “tuned” in its feedback systems that
it establishes a remarkably natural rhythm of vocalization
and visual interaction. Kismet reacts to the human, which
in turn elicits further human responses.

Kismet’s successor is called Leonardo. Unlike Kismet,
Leonardo has a full torso with arms and legs and looks
rather like a furry little Star Wars alien. With the aid of arti-

MIT researcher Cynthia Breazeal, shown here with her robot
“Leonardo,” specializes in “sociable” robots that can interact
and learn much like human children.  (Sam Ogden / Photo
Researchers, Inc.)

56        Breazeal, Cynthia

ficial skin and an array of 32 separate motors, Leonardo’s
facial expressions are much more humanlike than Kismet’s.
Body language now includes shrugs. The robot can learn
new concepts and tasks both by interacting with a human
teacher and by imitating what it sees people do, starting
with facial expressions and simple games.

Breazeal’s group at MIT is currently investigating ways
in which computers can use “body language” to communi-
cate with users and even encourage better posture. “RoCo”
is a computer whose movable “head” is a monitor screen.
Using a camera, RoCo can sense the user’s posture and
emotional state.

Breazeal has also created “responsive” robots in new
forms, and for venues beyond the laboratory. In 2003 the
Cooper-Hewitt National Design Museum in New York
hosted a “cyberfloral installation” designed by Breazeal. It
featured “flowers” of metal and silicone that exhibit behav-
iors such as swaying and glowing in bright colors when a
person’s hand comes near.

Besides earning her a master’s degree (1993) and doc-
toral degree (2000) from MIT, Breazeal’s work has brought
her considerable acclaim and numerous appearances in the
media. She has been widely recognized as being a signifi-
cant young inventor or innovator, such as by Time magazine
and the Boston Business Forward. Breazeal is one of 100
“young innovators” featured in MIT’s Technology Review.

Further Reading
Bar-Cohen, Yoseph, and Cynthia Breazeal. Biologically Inspired

Intelligent Robots. Bellingham, Wash.: SPIE Press, 2003.
Biever, Celeste. “Robots Like Us: They Can Sense Human Moods.”

San Francisco Chronicle, May 6, 2007. Available online. URL:
http://www.sfgate.com/cgi-bin/article.cgi?f=/c/a/2007/05/06/
ING9GPK9U51.DTL. Accessed May 7, 2007.

Breazeal, Cynthia. Designing Sociable Robots. Cambridge, Mass.:
MIT Press, 2002.

Brooks, Rodney. Flesh and Machines: How Robots Will Change Us.
New York: Pantheon Books, 2002.

Dreifus, Claudia. “A Passion to Build a Better Robot, One with
Social Skills and a Smile.” New York Times, June 10, 2003, p.
F3.

Henderson, Harry. Modern Robotics: Building Versatile Machines.
New York: Chelsea House, 2006.

Robotic Life Group (MIT Media Lab). Available online. URL:
http://robotic.media.mit.edu/. Accessed May 1, 2007.

Brin, Sergey
(1973– )
Russian-American
Entrepreneur

Cofounder and current president of technology at Google,
Sergey Brin has turned the needs of millions of Web users
to find information online into a gigantic and pervasive
enterprise.

Brin was born in Moscow, Russia, on August 21, 1973
to a Jewish family (his father, Michael, was a mathema-
tician and economist). However, the family immigrated
to the United States in 1979, settling in Maryland. Brin’s
father supplemented his education, particularly in math-

ematics. Brin graduated with honors from the University
of Maryland in 1993, earning a bachelor’s degree in com-
puter science and mathematics. Brin then went to Stanford,
receiving his master’s degree in computer science in 1995.
Along the way to his Ph.D., however, Brin was “sidetracked”
by his growing interest in the Internet and World Wide
Web, particularly in techniques for searching for and iden-
tifying data (see also data mining).

Search Engines and Google
The year 1995 was pivotal for Brin because he met fel-
low graduate student Larry Page (see Page, Larry). Page
shared Brin’s interests in the Web, and they collaborated
on a seminal paper titled “The Anatomy of a Large-Scale
Hypertextual Web Search Engine.” This work (including
the key “PageRank” algorithm) would form the basis for the
world’s most widely used search engine (see Google and
search engine).

In 1998 Brin took a leave of absence from the Ph.D. pro-
gram. The fall of that year Brin and Page launched Google.
The search engine was much more useful and accurate than
existing competitors, and received a Technical Excellence
Award from PC magazine in 1999. Google soon appeared
near the top of many analysts’ lists of “companies to watch.”
In 2004 the company went public, and Brin’s personal net
worth is now estimated to be more than $16 billion. (Brin
and Page remain closely involved with Google, promot-
ing innovation such as the aggregation and presentation of
information including images and maps.)

Besides Google, Brin’s diverse interests include movie-
making (he was an executive producer of the film Broken
Arrow) and innovative transportation (he is an investor in
Tesla Motors, makers of long-range electric vehicles). In
2005 Brin was named as one of Time magazine’s 100 most
influential people. In 2007 Brin was named by PC World as
number one on their list of the 50 most important people
on the Web.

Further Reading
Brin, Sergey, and Lawrence Page. “The Anatomy of a Large-Scale

Hypertextual Web Search Engine.” Available online. URL:
http://infolab.stanford.edu/~backrub/google.html. Accessed
September 3, 2007.

“The Founders of Google.” NPR Fresh Air interview, October 14,
2003 [audio]. Available online. URL: http://www.npr.org/
templates/story/story.php?storyId=1465274. Accessed Septem
ber 3, 2007.

Sergey Brin’s Home Page. Available online. URL: http://infolab.
stanford.edu/~sergey/. Accessed September 3, 2007.

“Sergey Brin Speaks with UC Berkeley Class” [video]. Available
online. URL: http://video.google.com/videoplay?docid=75829
02000166025817. Accessed September 3, 2007.

broadband
Technically, broadband refers to the carrying of multiple
communications channels in a single wire or cable. In the
broader sense used here, broadband refers to high-speed
data transmission over the Internet using a variety of tech-
nologies (see data communications and telecommu-

broadband        57

nications). This can be distinguished from the relatively
slow (56 Kbps or slower) dial-up phone connections used by
most home, school, and small business users until the late
1990s. A quantitative change in speed results in a qualita-
tive change in the experience of the Web, making continu-
ous multimedia (video and sound) transmissions possible.

Broadband Technologies
The earliest broadband technology to be developed consists
of dedicated point-to-point telephone lines designated T1,
T2, and T3, with speeds of 1.5, 6.3, and 44.7 Mbps respec-
tively. These lines provide multiple data and voice chan-
nels, but cost thousands of dollars a month, making them
practicable only for large companies or institutions.

Two other types of phone line access offer relatively
high speed at relatively low cost. The earliest, ISDN (Inte-
grated Services Digital Network) in typical consumer form
offers two 64 Kbps channels that can be combined for 128
Kbps. (Special services can combine more channels, such as
a 6 channel 384 Kbps configuration for videoconferencing.)
The user’s PC is connected via a digital adapter rather than
the usual analog-to-digital modem.

The most common telephone-based broadband system
today is the digital subscriber line (see DSL). Unlike ISDN,
DSL uses existing phone lines. A typical DSL speed today
is 1–2 Mbps, though higher speed services up to about 5
Mbps are now being offered. The main drawback of DSL is
that the transmission rate falls off with the distance from
the telephone company’s central office, with a maximum
distance of about 18,000 feet (5,486.4 m).

The primary alternative for most consumers uses exist-
ing television cables (see cable modem). Cable is generally
a bit faster (1.5–3 Mbps) than DSL, with premium service
of up to 8 Mbps or so available in certain areas. However,
cable speed slows down as more users are added to a given
circuit. With both DSL and cable upload speeds (the rate
at which data can be sent from the user to an Internet site)
are generally fixed at a fraction of download speed (often
about 128 kbps). While this “throttling” of upload speed
does not matter much for routine Web surfing, the growing
number of applications that involve users uploading videos
or other media for sharing over the Internet (see user-cre-
ated content) has led to some pressure for higher upload
speeds.

Ultra Broadband
Rather surprisingly, the country that brought the world the
Internet has fallen well behind many other industrialized
nations in broadband speed. In Japan, DSL speeds up to
40 Mbps are available, and at less cost than in the United
States. South Korea also offers “ultra broadband” speeds of
20 Mbps or more. American providers, on the other hand,
have tended to focus on expanding their networks and
competing for market share rather than investing in higher
speed technologies. However, this situation is beginning to
improve as American providers ramp up their investment
in fiber networks (see fiber optics). For example, in 2005
Verizon introduced Fios, a fiber-based DSL service that can

reach speeds up to 15 Mbps. However, installing fiber net-
works is expensive, and as of 2007 it was available in only
about 10 percent of the U.S. market.

Cable and phone companies typically offer Internet and
TV as a package—many are now including long-distance
phone service (and even mobile phone service) in a “triple
play” package. (For long-distance phone carried via Inter-
net, see voip).

Wireless Broadband
The first wireless Internet access was provided by a wireless
access point (WAP), typically connected to a wired Internet
router. This is still the most common scenario in homes
and public “hot spots” (see also Internet cafés and
“hot spots”). However, with many people spending much
of their time with mobile devices (see laptop, PDA, and
smartphone), the need for always-accessible wireless con-
nectivity at broadband speeds has been growing. The larg-
est U.S. service, Nextlink, offered wireless broadband in 37
markets in 2007 (including many large and mid-sized cit-
ies) at speeds starting at 1.5 Mbps. An alternative is offered
by cell phone companies such as Verizon and Sprint, which
“piggy back” on the existing infrastructure of cell phone
towers. However, the speed of this “3G” service is slower,
from 384 kbps up to 2 Mbps.

Yet another alternative beginning to appear is WiMAX,
a technology that is conceptually similar to Wifi but has
much greater range because its “hot spots” can be many
miles in diameter. WiMAX offers the possibility of covering
entire urban areas with broadband service, although ques-
tions about its economic viability have slowed implementa-
tion as of 2008.

Satellite Internet services have the advantage of being
available over a wide area. The disadvantage is that there is
about a quarter-second delay for the signal to travel from a
geostationary satellite at an altitude of 22,300 km. (Lower-
altitude satellites can be used to reduce this delay, but then
more satellites are needed to provide continuous coverage.)

Adoption and Applications
By mid-2007, 53 percent of adult Americans had a broad-
band connection at home. This amounts to 72 percent of
home Internet users. (About 61 percent of broadband con-
nections used cable and about 37 percent DSL.)

With dial-up connections declining to less than 25
percent, Web services are increasingly designed with the
expectation that users will have broadband connections.
This, however, has the implication that users such as rural
residents and the inner-city poor may be subjected to a
“second class” Web experience (see also digital divide).
Meanwhile, as with connection speed, many other coun-
tries now surpass the United States in the percentage of
broadband users.

Broadband Internet access is virtually a necessity for
many of the most innovative and compelling of today’s
Internet applications. These include downloading media
(see podcasting, streaming, and music and video dis-
tribution, online), uploading photos or videos to sites

58        broadband

such as Flickr and YouTube, using the Internet as a substi-
tute for a traditional phone line (see voip), and even gaming
(see online games). Broadband is thus helping drive the
integration of many forms of media (see digital conver-
gence) and the continuous connectivity that an increasing
number of people seem to be relying on (see ubiquitous
computing).

Further Reading
Bates, Regis. Broadband Telecommunications Handbook. 2nd ed.

New York: McGraw-Hill, 2002.
Bertolucci, Jeff. “Broadband Expands.” PC World (August 2007):

77–90.
Cybertelecom. “Statistics: Broadband.” Available online. URL:

http://www.cybertelecom.org/data/broadband.htm. Accessed
July 17, 2007.

Gaskin, James E. Broadband Bible. New York: Wiley, 2004.
Hellberg, Chris, Dylan Greene, and Truman Boyes. Broadband

Network Architectures: Designing and Deploying Triple-Play
Services. Upper Saddle River, N.J.: Prentice Hall, 2007.

Brooks, Rodney
(1954– )
Australian, American
Roboticist

Rodney Brooks’s ideas about robots have found their way
into everything from vacuum cleaners to Martian rovers.
Today, as director of the Artificial Intelligence Labora-
tory at the Massachusetts Institute of Technology, Brooks
has extended his exploration of robot behavior into new
approaches to artificial intelligence.

Brooks was born in Adelaide, Australia, in 1954. As
a boy he was fascinated with computers, but it was still
the mainframe era, and he had no access to them. Brooks
decided to build his own logic circuits from discarded
electronics modules from the defense laboratory where his
father worked. Brooks also came across a book by Grey
Walter, inventor of the “cybernetic tortoise” in the late
1940s. He tried to build his own and came up with “Nor-
man,” a robot that could track light sources while avoiding
obstacles. In 1968, when young Brooks saw the movie 2001:
A Space Odyssey, he was fascinated by the artificial intel-
ligence of its most tragic character, the computer HAL 9000
(see artificial intelligence and robotics).

Brooks majored in mathematics at Flinders University
in South Australia, where he designed a computer language
and development system for artificial intelligence projects.
He also explored various AI applications such as theorem
solving, language processing, and games. He was then able
to go to Stanford University in Palo Alto, California, in 1977
as a research assistant.

While working for his Ph.D. in computer science,
awarded in 1981, Brooks met John McCarthy, one of the
“elder statesmen” of AI in the Stanford Artificial Intelli-
gence Lab (SAIL). He also joined in the innovative projects
being conducted by researchers such as Hans Moravec, who
were revamping the rolling robot called the Stanford Cart
and teaching it to navigate around obstacles.

In 1984 Brooks moved to the Massachusetts Institute
of Technology. For his Ph.D. research project, Brooks and
his fellow graduate students equipped a robot with a ring
of sonars (adopted from a camera rangefinder) plus two
cameras. The cylindrical robot was about the size of R2D2
and was connected by cable to a minicomputer. However,
the calculations needed to enable a robot to identify objects
as they appear at different angles were so intensive that the
robot could take hours to find its way across a room.

Brooks decided to take a lesson from biological evolu-
tion. He realized that as organisms evolved into more com-
plex forms, they could not start from scratch each time they
added new features. Rather, new connections (and ways of
processing them) would be added to the existing structure.
For his next robot, called Allen, Brooks built three “layers”
of circuits that would control the machine’s behavior. The
simplest layer was for avoiding obstacles: If a sonar signal
said that something was too close, the robot would change
direction to avoid a collision. The next layer generated a
random path so the robot could “explore” its surroundings
freely. Finally, the third layer was programmed to identify
specified sorts of “interesting” objects. If it found one, the
robot would head in that direction.

Each of these layers or behaviors was much simpler
than the complex calculations and mapping done by a tradi-
tional AI robot. Nevertheless, the layers worked together in
interesting ways. The result would be that the robot could
explore a room, avoiding both fixed and moving obstacles,
and appear to “purposefully” search for things.

In the late 1980s, working with Grinell More and a
new researcher, Colin Angle, Brooks built an insectlike
robot called Genghis. Unlike Allen’s three layers of behav-
ior, Genghis had 51 separate, simultaneously running com-
puter programs. These programs, called “augmented finite
state machines,” each kept track of a particular state or
condition, such as the position of one of the six legs. It is
the interaction of these small programs that creates the
robot’s ability to scramble around while keeping its balance.
Finally, three special programs looked for signals from the
infrared sensors, locked onto any source found, and walked
in its direction.

Brooks’s new layered architecture for “embodied” robots
offered new possibilities for autonomous robot explorers.
Brooks’s 1989 paper, “Fast, Cheap, and Out of Control: A
Robot Invasion of the Solar System,” envisaged flocks of
tiny robot rovers spreading across the Martian surface,
exploring areas too risky when one has only one or two
very expensive robots. The design of the Sojourner Mars
rover and its successors, Spirit and Opportunity, would par-
tially embody the design principles developed by Brooks
and his colleagues.

In the early 1990s Brooks and his colleagues began
designing Cog, a robot that would embody human eye
movement and other behaviors. Cog’s eyes are mounted
on gimbals so they can easily turn to track objects, aided
by the movement of the robot’s head and neck (it has no
legs). Cog also has “ears”—microphones that can help it
find the source of a sound. The quest for more humanlike
robots continued in the late 1990s with the development of

Brooks, Rodney        59

Kismet, a robot that includes dynamically changing “emo-
tions.” Brooks’s student Cynthia Breazeal would build her
own research career on Kismet and what she calls “sociable
robots” (see Breazeal, Cynthia).

By 1990, Brooks wanted to apply his ideas of behavior-
based robotics to building marketable robots that could
perform basic but useful tasks, and he enlisted two of his
most innovative and hard-working students, Colin Angle
and Helen Greiner (see iRobot Corporation). The com-
pany is best known for the Roomba robotic vacuum cleaner.
Brooks remains the company’s chief technical officer.

Meanwhile Brooks has an assured place as one of the
key innovators in modern robotics research. He is a Found-
ing Fellow of the American Association for Artificial Intel-
ligence and a Fellow of the American Association for the
Advancement of Science. Brooks received the 1991 Com-
puters and Thought Award of the International Joint Con-
ference on Artificial Intelligence. He has participated in
numerous distinguished lecture series and has served as an
editor for many important journals in the field, including
the International Journal of Computer Vision.

Further Reading
Brockman, John. “Beyond Computation.” Edge 2000. Available

online. URL: http://www.edge.org/3rd_culture/brooks_
beyond/beyond_index.html. Accessed May 3, 2007.

———. “The Deep Question: A Talk with Rodney Brooks.” Edge
29 (November 19, 1997). Available online. URL: http://www.
edge.org/documents/archive/edge29.html. Accessed May 3,
2007.

Brooks, Rodney. Flesh and Machines: How Robots Will Change Us.
New York: Pantheon Books, 2002.

Computer Science and Artificial Intelligence Laboratory (CSAIL),
MIT. Available online. URL: http://www.csail.mit.edu/index.
php. Accessed May 3, 2007.

Henderson, Harry. Modern Robotics: Building Versatile Machines.
New York: Chelsea House, 2006.

O’Connell, Sanjida. “Cog—Is It More than a Machine?” London
Times (May 6, 2002): 10. Rodney Brooks [homepage]. CSAIL.
Available online. URL: http://people.csail.mit.edu/brooks/.
Accessed May 3, 2007.

“Rodney Brooks—The Past and Future of Behavior Based Robot-
ics” [Podcast]. Available online. URL: http://lis.epfl.ch/
resources/podcast/mp3/TalkingRobots-RodneyBrooks.mp3.
Accessed May 3, 2007.

buffering
Computer designers must deal with the way different parts
of a computer system process data at different speeds. For
example, text or graphical data can be stored in main mem-
ory (RAM) much more quickly than it can be sent to a
printer, and in turn data can be sent to the printer faster
than the printer is able to print the data. The solution to
this problem is the use of a buffer (sometimes called a
spool), or memory area set aside for the temporary storage
of data. Buffers are also typically used to store data to be
displayed (video buffer), to collect data to be transmitted
to (or received from) a modem, for transmitting audio or
video content (see streaming) and for many other devices
(see input/output). Buffers can also be used for data that
must be reorganized in some way before it can be further

processed. For example, character data is stored in a com-
munications buffer so it can be serialized for transmission.

Buffering Techniques
The two common arrangements for buffering data are the
pooled buffer and the circular buffer. In the pool buffer,
multiple buffers are allocated, with the buffer size being
equal to the size of one data record. As each data record is
received, it is copied to a free buffer from the pool. When it
is time to remove data from the buffer for processing, data
is read from the buffers in the order in which it had been
stored (first in, first out, or FIFO). As a buffer is read, it is
marked as free so it can be used for more incoming data.

In the circular buffer there is only a single buffer, large
enough to hold a number of data records. The buffer is set
up as a queue (see queue) to which incoming data records
are written and from which they are read as needed for pro-
cessing. Because the queue is circular, there is no “first” or
“last” record. Rather, two pointers (called In and Out) are
maintained. As data is stored in the buffer, the In pointer is
incremented. As data is read back from the buffer, the Out
pointer is incremented. If either pointer reaches around
back to the beginning, it begins to wrap around. The soft-
ware managing the buffer must make sure that if the In
pointer goes past the Out pointer, then the Out pointer
must not go past In. Similarly, if Out goes past In, then In
must not go past Out.

The fact that programmers sometimes fail to check for
buffer overflows has resulted in a seemingly endless series
of security vulnerabilities, such as in earlier versions of the
UNIX sendmail program. In one technique, attackers can
use a too-long value to write data, or worse, commands
into the areas that control the program’s execution, possibly
taking over the program (see also computer crime and
security).

Buffering is conceptually related to a variety of other
techniques for managing data. A disk cache is essentially a
special buffer that stores additional data read from a disk in
anticipation that the consuming program may soon request
it. A processor cache stores instructions and data in antici-
pation of the needs of the CPU. Streaming of multimedia
(video or sound) buffers a portion of the content so it can be
played smoothly while additional content is being received
from the source.

Depending on the application, the buffer can be a part
of the system’s main memory (RAM) or it can be a separate
memory chip or chips onboard the printer or other device.
Decreasing prices for RAM have led to increases in the
typical size of buffers. Moving data from main memory
to a peripheral buffer also facilitates the multitasking fea-
ture found in most modern operating systems, by allowing
applications to buffer their output and continue processing.

Further Reading
Buffer Overflow [articles]. Available online. URL: http://doc.bug-

hunter.net/buffer-overflow/. Accessed May 23, 2007.
Grover, Sandeep. “Buffer Overflow Attacks and Their Counter-

measures.” Linux Journal, March 3, 2003. Available online.
URL: http://www.linuxjournal.com/article/6701. Accessed
May 23, 2007.

60        buffering

bugs and debugging
In general terms a bug is an error in a computer program
that leads to unexpected and unwanted behavior. (Lore has
it that the first “bug” was a burnt moth found in the relays
of the early Mark I computer in the 1940s; however, as early
as 1878 Thomas Edison had referred to “bugs” in the design
of his new inventions.)

Computer bugs can be divided into two categories: syn-
tax errors and logic errors. A syntax error results from
failing to follow a language’s rules for constructing state-
ments, or from using the wrong symbol. For example, each
statement in the C language must end with a semicolon.
This sort of syntax error is easily detected and reported by
modern compilers, so fixing it is trivial.

A logic error, on the other hand, is a syntactically valid
statement that does not do what was intended. For example,
if a C programmer writes:

if Total = 100

instead of

if Total == 100

the programmer may have intended to test the value of Total
to see if it is 100, but the first statement actually assigns the
value of 100 to Total. That’s because a single equals sign in
C is the assignment operator; testing for equality requires
the double equals sign. Further, the error will result in the
if statement always being true, because the truth value of an
assignment is the value assigned (100 in this case) and any
nonzero value is considered to be “true” (see branching
statements).

Loops and pointers are frequent sources of logical errors
(see loop and pointers and indirection). The boundary
condition of a loop can be incorrectly specified (for exam-
ple, < 10 when < = 10 is wanted). If a loop and a pointer or
index variable are being used to retrieve data from an array,
pointing beyond the end of the array will retrieve whatever
data happens to be stored out there.

Errors can also be caused in the conversion of data of
different types (see data types). For example, in many lan-
guage implementations the compiler will automatically con-
vert an integer value to floating point if it is to be assigned
to a floating point variable. However, while an integer can
retain at least nine decimal digits of precision, a float may
only be able to guarantee seven. The result could be a loss
of precision sufficient to render the program’s results unre-
liable, particularly for scientific purposes.

Debugging Techniques
The process of debugging (identifying and fixing bugs) is
aided by the debugging features integrated into most mod-
ern programming environments. Some typical features
include the ability to set a breakpoint or place in the code
where the running program should halt so the values of key
variables can be examined. A watch can be set on specified
certain variables so their changing values will be displayed
as the program executes. A trace highlights the source code
to show what statements are being executed as the program

runs. (It can also be set to follow execution into and through
any procedures or subroutines called by the main code.)

During the process of software development, debugging
will usually proceed hand in hand with software testing.
Indeed, the line between the two can be blurry. Essentially,
debugging deals with fixing problems so that the program
is doing what it intends to do, while testing determines
whether the program’s performance adequately meets the
needs and objectives of the end user.

Further Reading
Agans, David J. Debugging: The Nine Indispensable Rules for Finding

Even the Most Elusive Software and Hardware Problems. New
York: AMACOM, 2002.

Robbins, John. Debugging Applications. Redmond, Wash.: Micro-
soft Press, 2000.

Rosenberg, Jonathan B. How Debuggers Work: Algorithms, Data
Structures, and Architecture. New York: Wiley, 1996.

bulletin board systems  (BBS)
An electronic bulletin board is a computer application that
lets users access a computer (usually with a modem and
phone line) and read or post messages on a variety of top-
ics. The messages are often organized by topic, resulting
in threads of postings, responses, and responses to the
responses. In addition to the message service, many bul-
letin boards provide files that users can download, such
as games and other programs, text documents, pictures, or
sound files. Some bulletin boards expect users to upload
files to contribute to the board in return for the privilege of
downloading material.

The earliest form of bulletin board appeared in the late
1960s in government installations and a few universities par-
ticipating in the Defense Department’s ARPANET (the ances-
tor to the Internet). As more universities came online in the
early 1970s, the Netnews (or Usenet) system offered a way to
use UNIX file-transfer programs to store messages in topi-
cal newsgroups (see netnews and newsgroups). The news
system automatically propagated messages (in the form of a
“news feed”) from the site where they were originally posted
to regional nodes, and from there throughout the network.

By the early 1980s, a significant number of personal
computer users were connecting modems to their PCs. Bul-
letin board software was developed to allow an operator
(called a “sysop”) to maintain a bulletin board on his or
her PC. Users (one or a few at a time) could dial a phone
number to connect to the bulletin board. In 1984, program-
mer Tom Jennings developed the Fido BBS software, which
allowed participating bulletin boards to propagate postings
in a way roughly similar to the distribution of UNIX Net-
news messages.

Decline of the BBS
In the 1990s, two major developments led to a drastic decline
in the number of bulletin boards. The growth of major ser-
vices such as America Online and CompuServe (see online
services) offered users a friendlier user interface, a com-
prehensive selection of forums and file downloads, and

bulletin board systems        61

richer content than bulletin boards with their character-
based interface and primitive graphics. An even greater
impact resulted from the development of the World Wide
Web and Web browsing software, which offered access to
a worldwide smorgasbord of services in which each Web
home page had the potential of serving as a virtual bulletin
board and resource center (see World Wide Web and Web
browser). As the 1990s progressed, increasingly rich mul-
timedia content became available over the Internet in the
form of streaming video, themed “channels,” and the shar-
ing of music and other media files.

Traditional bulletin boards are now found mostly in
remote and underdeveloped areas (where they can provide
users who have only basic phone service and perhaps obso-
lescent PCs with an e-mail gateway to the Internet). How-
ever the BBS contributed much to the grassroots online
culture, providing a combination of expansive reach and
a virtual small-town atmosphere (see also virtual com-
munity). Venues such as The Well (see conferencing sys-
tems) retain much of the “feel” of the traditional bulletin
board system.

Further Reading
“The BBS Corner.” Available online. URL: http://www.dmine.com/

bbscorner/. Accessed August 14, 2007.
Byrant, Alan D. Growing and Maintaining a Successful BBS: The

Sysop’s Handbook. Reading, Mass.: Addison-Wesley, 1995.
The BBS History Library. Available online. URL: http://www.

bbshistory.org/. Accessed May 23, 2007.
O’Hara, Robert. Commodork: Sordid Tales from a BBS Junkie. Mor-

risville, N.C.: Lulu.com, 2006.
Sanchez, Julian. “The Prehistory of Cyberspace: How BBSes Paved

the Way for the Web.” Reason 37 (December 1, 2005): 61
ff. Available online. URL: http://www.reason.com/news/
show/36324.html. Accessed May 23, 2007.

bus
A computer bus is a pathway for data to flow between the
central processing unit (CPU), main memory (RAM), and
various devices such as the keyboard, video, disk drives,
and communications ports. Connecting a device to the bus
allows it to communicate with the CPU and other compo-
nents without there having to be a separate set of wires for
each device. The bus thus provides for flexibility and sim-
plicity in computer architecture.

Mainframe computers and large minicomputers typi-
cally have proprietary buses that provide a wide multipath
connection that allows for data transfer rates from about 3
MB/s to 10 MB/s or more. This is in keeping with the use of
mainframes to process large amounts of data at high speeds
(see mainframe).

Microcomputer Buses
The bus played a key role in the development of the mod-
ern desktop computer in the later 1970s and 1980s. In the
microcomputer, the bus is fitted with connectors called
expansion slots, into which any expansion card that meets
connection specifications can be inserted. Thus the S-100
bus made it possible for microcomputer pioneers to build

a variety of systems with cards to expand the memory and
add serial and parallel ports, disk controllers, and other
devices. (The Apple II had a similar expansion capability.)
In 1981, when IBM announced its first PC, it also defined an
8-bit expansion bus that became known as the ISA (Indus-
try Standard Architecture) as other companies rushed to
“clone” IBM’s hardware.

In the mid-1980s, IBM advanced the industry with the
AT (Advanced Technology) machine, which had the 16-bit
Intel 80286 chip and an expanded bus that could trans-
mit data at up to 2 MB/s. The clone manufacturers soon
matched and exceeded these specifications, however. IBM
responded by trying both to improve the microcomputer
bus and to define a proprietary standard that it could con-
trol via licensing. The result was called the Micro-Chan-
nel Architecture (MCA), which increased data throughput
to 20 MB/s with full 32-bit capability. This bus had other
advanced features such as a direct connection to the video
system (Video Graphics Array) and the ability to config-
ure cards in software rather than having to set physical
switches. In addition, cards could now incorporate their
own processors and memory in a way similar to that of
their powerful mainframe counterparts (this is called bus
mastering). Despite these advantages, however, the propri-
etary nature of the MCA and the fact that computers using
this bus could not use any of the hundreds of ISA cards led
to a limited market share for the new systems.

Instead of paying IBM and adopting the new standard,
nine major clone manufacturers joined to develop the EISA
(Extended ISA) bus. EISA was also a 32-bit bus, but its maxi-
mum transfer rate of 33 MB/s made it considerably faster
than the MCA. It was tailored to the new Intel 80386 and
80486 processors, which supported the synchronous trans-
fer of data in rapid bursts. The EISA matched and exceeded
the MCA’s abilities (including bus mastering and no-switch
configuration), but it also retained the ability to use older ISA
expansion cards. The EISA soon became the industry stan-
dard as the Pentium family of processors were introduced.

However, the endless hunger for more data-transfer
capability caused by the new graphics-oriented operating
systems such as Microsoft Windows led to the development

A Standard ISA bus PC expansion card. This “open architecture”
allowed dozens of companies to create hundreds of add-on devices
for IBM-compatible personal computers.

62        bus

of local buses. A local bus is connected to the processor’s
memory bus (which typically runs at half the processor’s
external speed rather than the much slower system bus
speed), a considerable advantage in moving data (such as
graphics) from main memory to the video card.

Two of these buses, the VESA (or VL) bus and the PCI
bus came into widespread use in higher-end machines, with
the PCI becoming dominant. The PCI bus runs at 33 MHz
and supports features such as Plug and Play (the ability to
automatically configure a device, supported in Windows 98
and later) and Hot Plug (the ability to connect or reconnect
devices while the PC is running). The PCI retains compat-
ibility with older 8-bit and 16-bit ISA expansion cards. At
the end of the 1990s, PC makers were starting to introduce
even faster buses such as the AGP (accelerated graphics
port), which runs at 66 MHz.

Two important auxiliary buses are designed for the con-
nection of peripheral devices to the main PC bus. The older
SCSI (Small Computer Systems Interface) was announced in
1986 (with the expanded SCSI-2 in 1994). SCSI is primarily
used to connect disk drives and other mass storage devices
(such as CD-ROMs), though it can be used for scanners and
other devices as well. SCSI-2 can transfer data at 20 MB/s
over a 16-bit path, and SCSI-3 (still in development) will
offer a variety of high-speed capabilities. SCSI was adopted
as the standard peripheral interface for many models of
Apple Macintosh computers as well as UNIX workstations.
On IBM architecture PCs SCSI is generally used for servers
that require large amounts of mass storage. Multiple devices
can be connected in series (or “chained”).

The newer USB (Universal Serial Bus) is relatively slow
(12 MB/s) but convenient because a simple plug can be
inserted directly into a USB socket on the system board
or the socket can be connected to a USB hub to which sev-
eral devices can be connected. In 2002, USB 2.0 entered
the marketplace. It offers 480 MB/s data transfer speed.
(See usb.)

It is uncertain whether the next advance will be the adop-
tion of a 64-bit PCI bus or the development of an entirely dif-
ferent bus architecture. The latter is attractive as a way to get
past certain inherent bottlenecks in the PCI design, but the
desire for downward compatibility with the huge number of
existing ISA, EISA, and PCI devices is also very strong.

Further Reading
PC Guide. “System Buses.” Available online. URL: http://www.

pcguide.com/ref/mbsys/_buses/index.htm. Accessed May 23,
2007.

Bush, Vannevar
(1890–1974)
American
Engineer and Inventor

Vannevar Bush, grandson of two sea captains and son of a
clergyman, was born in Everett, Massachusetts, just outside
of Boston. Bush earned his B.S. and M.S. degrees in engineer-
ing at Tufts University, and received a joint doctorate from

Harvard and MIT in 1916. He went on to full professorship at
MIT and became dean of its Engineering School in 1932.

Bush combined an interest in mathematics with the
design of mechanical devices to automate calculations.
During his undergraduate years he invented an automatic
surveying machine using two bicycle wheels and a record-
ing instrument. His most important invention was the dif-
ferential analyzer, a special type of computer that used
combinations of rotating shafts and cams to incrementally
add or subtract the differences needed to arrive at a solution
to the equation (see also analog computer). His improved
model (Rockefeller Differential Analyzer, or RDA2) replaced
the shafts and gears with an electrically-driven system, but
the actual integrators were still mechanical. Several of these
machines were built in time for World War II, when they
served for such purposes as calculating tables of ballistic
trajectories for artillery.

Later, Bush turned his attention to problems of infor-
mation processing. Together with John H. Howard (also of
MIT), he invented the Rapid Selector, a device that could
retrieve specific information from a roll of microfilm by
scanning for special binary codes on the edges of the film.
His most far-reaching idea, however, was what he called the
“Memex”—a device that would link or associate pieces of
information with one another in a way similar to the asso-
ciations made in the human brain. Bush visualized this as
a desktop workstation that would enable its user to explore
the world’s information resources by following links, the
basic principle of what would later become known as hyper-
text (see hypertext and hypermedia).

In his later years, Bush wrote books that became influen-
tial as scientists struggled to create large-scale research teams
and to define their roles and responsibilities in the cold war
era. He played the key role in establishing the National Sci-
ence Foundation in 1950, and served on its advisory board
from 1953 to 1956. He then became CEO of the drug company
Merck (1955–1962) as well as serving as chairman (and then
honorary chairman) of the MIT Corporation (1957–1974).

Bush would receive numerous honorary degrees and
awards that testified to the broad range of his interests and
achievements not only in electrical and mechanical engi-
neering, but also in social science. In 1964, he received the
National Medal of Science. Bush died on June 28, 1974, in
Belmont, Massachusetts.

Further Reading
Bush, Vannevar. Pieces of the Action. New York: William Morrow,

1970.
———. Science: The Endless Frontier. Washington, D.C.: U.S. Gov-

ernment Printing Office, 1945.
Nyce, J. M., and P. Kahn. From Memex to Hypertext: Vannevar Bush

and the Mind’s Machine. Boston: Academic Press, 1991. [Includes
two essays by Bush: “As We May Think” and “Memex II.”]

Zachary, G. Pascal. Endless Frontier: Vannevar Bush, Engineer of the
American Century. Cambridge, Mass.: MIT Press, 1999.

business applications of computers
Efficient and timely data processing is essential for businesses
of all sizes from corner shop to multinational corporation.

business applications of computers        63

Business applications can be divided into the broad catego-
ries of Administration, Accounting, Office, Production, and
Marketing and Sales.

Administrative applications deal with the organization
and management of business operations. This includes per-
sonnel-related matters (recruiting, maintenance of person-
nel records, payroll, pension plans, and the provision of
other benefits such as health care). It also includes manage-
ment information or decision support systems, communi-
cations (from simple e-mail to teleconferencing), and the
administration of the data processing systems themselves.

The Accounting category includes databases of accounts
receivable (money owed to the firm) and payable (such
as bills from vendors). While this software is decidedly
unglamorous, in a large corporation small inefficiencies can
add up to significant costs or lost revenue. (For example,
paying a bill before it is due deprives the firm of the “float”
or interest that can be earned on the money, while paying a
bill too late can lead to a loss of discounts or the addition of
penalties.) A variety of reports must be regularly generated
so management can spot such problems and so taxes and
regulatory requirements can be met.

The Office category involves the production and track-
ing of documents (letters and reports) as required for the
day-to-day operation of the business. Word processing,
desktop publishing, presentation and other software can be
used for this purpose (see application suite, word pro-
cessing, spreadsheet, and presentation software).

Production is a catchall term for the actual product or
service that the business provides. For a manufacturing
business this may require specialized design and manufac-
turing programs (see computer-aided design and manu-
facturing CAD/CAM) as well as software for tracking and
scheduling the completion of tasks. For a business that
markets already produced goods the primary applications
will be in the areas of transportation (tracking the shipping
of goods [see also supply chain management]), inventory
and warehousing, and distribution. Service businesses will
need to establish accounts for customers and keep track of
the services performed (on an hourly basis or otherwise).

Marketing and Sales includes market research, adver-
tising, and other programs designed to make the public
aware of and favorably disposed to the product or service
(see customer relationship management). Once people
come to the store to buy something, the actual retail trans-
action must be provided for, including the point-of-sale ter-
minal (formerly “cash register”) with its interface to the
store inventory system and the verification of credit cards
or other forms of payment.

Changing Role of Computers
Computer support for business functions can be provided
in several forms. During the 1950s and 1960s (the era of

mainframe dominance), only the largest firms had their
own computer facilities. Many medium- to small-sized
businesses contracted with agencies called service bureaus
to provide computer processing for such functions as pay-
roll processing. Service bureaus and in-house data process-
ing facilities often developed their own software (typically
using the COBOL language).

The development of the minicomputer (and in the 1980s,
the desktop microcomputer) allowed more businesses to
undertake their own data processing, in the expectation
(not always fulfilled) that they would be able both to save
money and to create systems better tailored to their needs.
Areas such as payroll and accounts payable/receivable gen-
erally still relied upon specialized software packages. How-
ever, the growing availability of powerful database software
(such as dBase and its descendants) as well as spreadsheet
programs enabled businesses to maintain and report on a
variety of information.

During the 1980s, the daily life of the office began to
change in marked ways. The specialized word processing
machines gave way to programs such as WordStar, Word-
Perfect, and Microsoft Word running on desktop comput-
ers. Advanced word processing and desktop publishing
software moved more of the control of the appearance of
documents into the hands of office personnel. The local
area network (LAN) made it possible to share resources
(such as the new laser printers and databases on a power-
ful file server PC) as well as providing for communication
in the form of e-mail.

As the Internet and the World Wide Web came into
prominence in the later 1990s, another revolution was soon
under way. Every significant organization is now expected
to have its own Web site or sites. These Web pages serve
a Janus-like function. On the one hand, they present the
organization’s face to the world, providing announcements,
advertising, catalogs, and the capability for online purchas-
ing (e-commerce). On the other hand, many organizations
now put their databases and other records on Web sites (in
secured private networks) so that employees can readily
access and update them. The growth in mobile comput-
ing and readily available Internet connections (including
wireless services) increasingly enables traveling business-
persons to effectively take the office and its resources with
them on the road.

Further Reading
Bodnar, George H,. and William S. Hopwood. Accounting Infor-

mation Systems. Upper Saddle River, N.J.: Prentice Hall,
2000.

Cortada, James W. 21st Century Business: Managing and Working in
the New Digital Economy. Upper Saddle River, N.J.: Prentice
Hall, 2000.

O’Brien, James A. Introduction to Information Systems. New York:
McGraw-Hill, 2000.

64        business applications of computers

65

C
The C programming language was developed in the early
1970s by Dennis Ritchie, who based it on the earlier lan-
guages BCPL and B. C was first used on DEC PDP-11
computers running the newly developed UNIX operating
system, where the language provided a high-level alterna-
tive to the use of PDP Assembly language for develop-
ment of the many utilities that give UNIX its flexibility.
Since the 1980s, C and its descendent, C++, have become
the most widely used programming languages.

Language Features
Like the earlier Algol and the somewhat later Pascal, C
is a procedural language that reflects the philosophy of
programming that was gradually taking shape during
the 1970s (see structured programming). In general,
C’s approach can be described as providing the neces-
sary features for real world computing in a compact and
efficient form. The language provides the basic control
structures such as if and switch (see branching state-
ments) and while, do, and for (see loop). The built-in
data types provide for integers (int, short, and long),
floating-point numbers (float and double), and characters
(char). An array of any type can be declared, and a string
is implemented as an array of char (see data types and
characters and strings).

Pointers (references to memory locations) are used for a
variety of purposes, such as for storing and retrieving data
in an array (see pointers and indirection). While the
use of pointers can be a bit difficult for beginners to under-

stand, it reflects C’s emphasis as a systems programming
language that can “get close to the hardware” in manipulat-
ing memory.

Data of different types can be combined into a record
type called a struct. Thus, for example:

struct Employee_Record {
char [10] First_Name;
char [1] Middle_Initial;
char [20] Last_Name;
int Employee_Number;

} ;

(There is also a union, which is a struct where the same
structure can contain one of two different data items.)

The standard mathematical and logical comparison
operators are available. There are a couple of quirks: the
equals comparison operator is = =, while a single equal sign
= is an assignment operator. This can create a pitfall for the
wary, since the condition

if (Total = 10)
printf (“Finished!”);

always prints Finished, since the assignment Total = 10
returns a value of 10 (which not being zero, is “true” and
satisfies the if condition).

C also features an increment ++ and decrement - - oper-
ator, which is convenient for the common operation of rais-
ing or lowering a variable by one in a counting loop. In C
the following statements are equivalent:

C

Total = Total + 1;
Total += 1;
Total ++;

Unlike Pascal’s two separate kinds of procedures (func,
or function, which returns a value, and proc, or proce-
dure, which does not), C has only functions. Arguments are
passed to functions by value, but can be passed by reference
by using a pointer. (See procedures and functions.)

Sample Program
The following is a brief example program:

#include <stdio.h>
float Average (void);
main () {
printf (“The average is: %f”, Average());
}
float Average (void) {
int NumbersRead = 0;
int Number;
int Total = 0;
while (scanf(“%d\n”, &Number) == 1)

{
Total = Total + Number;
NumbersRead = NumbersRead + 1;

}
return (Total / NumbersRead);
}
}

Statements at the beginning of the program that begin
with # are preprocessor directives. These make changes to
the source code before it is compiled. The #include directive
adds the specified source file to the program. Unlike many
other languages, the C language itself does not include
many basic functions, such as input/output (I/O) state-
ments. Instead, these are provided in standard libraries.
(The purpose of this arrangement is to keep the language
itself simple and portable while keeping the implementa-
tion of functions likely to vary on different platforms sepa-
rate.) The stdio.h file here is a “header file” that defines
the I/O functions, such as printf() (which prints formatted
data) and scanf() (which reads data into the program and
formats it).

The next part of the program declares any functions that
will be defined and used in the program (in this case, there
is only one function, Average). The function declaration
begins with the type of data that will be returned by the
function to the calling statement (a floating point value in
this case). After the function name comes declarations for
any parameters that are to be passed to the function by the
caller. Since the Average function will get its data from user
input rather than the calling statement, the value (void) is
used as the parameter.

Following the declaration of Average comes the main()
function. Every C program must have a main function. Main
is the function that runs when the program begins to exe-
cute. Typically, main will call a number of other functions
to perform the necessary tasks. Here main calls Average

within the printf statement, which will print the average as
returned by that function. (Calling functions within other
statements is an example of C’s concise syntax.)

Finally, the Average function is defined. It uses a loop
to read in the data numbers, which are totaled and then
divided to get the average, which is sent back to the calling
statement by the return statement.

A programmer could create this program on a UNIX
system by typing the code into a source file (test.c in this
case) using a text editor such as vi. A C compiler (gcc in
this case) is then given the source code. The source code is
compiled, and linked, creating the executable program file
a.out. Typing that name at the command prompt runs the
program, which asks for and averages the numbers.

% gcc test.c
% a.out
5
7
9
.

The average is: 7.000000

Success and Change
In the three decades after its first appearance, C became one
of the most successful programming languages in history.
In addition to becoming the language of choice for most
UNIX programming, as microcomputers became capable of
running high-level languages, C became the language of
choice for developing MS-DOS, Windows, and Macintosh
programs. The application programming interface (API) for
Windows, for example, consists of hundreds of C functions,
structures, and definitions (see application programming
interface and Microsoft Windows).

However, C has not been without its critics among
computer scientists. Besides containing idioms that can
encourage cryptic coding, the original version of C (as
defined in Kernighan and Ritchie’s The C Programming
Language) did not check function parameters to make
sure they matched the data types expected in the func-
tion definitions. This problem led to a large number of
hard-to-catch bugs. However, the development of ANSI
standard C with its stricter requirements, as well as type
checking built into compilers has considerably amelio-
rated this problem. At about the same time, C++ became
available as an object-oriented extension and partial rec-
tification of C. While C++ and Java have considerably
supplanted C for developing new programs, C program-
mers have a relatively easy learning path to the newer
languages and the extensive legacy of C code will remain
useful for years to come.

Further Reading
Kernighan, B. W., and D. M. Ritchie. The C Programming Language,

2nd ed. Upper Saddle River, N.J.: Prentice-Hall, 1988.
Prata, Stephen. C Primer Plus. 5th ed. Indianapolis: SAMS, 2004.
Ritchie, D. M. “The Development of the C Language,” in History of

Programming Languages II, ed. T. J. Bergin and R. G. Gibson,
678–698. Reading, Mass.: Addison-Wesley, 1995.

66        C

C#
Introduced in 2002, C# (pronounced “C sharp”) is a pro-
gramming language similar to C++ and Java but simplified
in several respects and tailored for use with Microsoft’s
latest programming platform (see Microsoft.net). C# is
a general-purpose language and is thoroughly object-
oriented—all functions must be declared as members of
a class or “struct,” and even fundamental data types are
derived from the System.Object class (see class and object-
oriented programming).

Compared with C++, C# is stricter about the use and
conversion of data types, not allowing most implicit con-
versions (such as from an enumeration type to the cor-
responding integer—see data structures). Unlike C++,
C# does not permit multiple inheritance (where a type can
be derived from two or more base types), thereby avoid-
ing an added layer of complexity in class relationships in
large software projects. (However, a similar effect can be
obtained by declaring multiple “interfaces” or specified
ways of accessing the same class.)

Unlike Java (but like C++), C# includes pointers (and
a safer version called “delegates”), enumerations (enum
types), structs (treated as lightweight classes), and over-
loading (multiple definitions for operators). The latest ver-
sion of the language, C# 3.0 (introduced in 2007), provides
additional features for list processing and functional pro-
gramming (see functional languages).

The canonical “Hello World” program looks like this in
C#:

using System;
// A “Hello World!” program in C#
namespace HelloWorld
{

class Hello
{

static void Main()
{

System.Console.WriteLine(“Hello World!”);
}

}
}

Essentially all program structures must be part of a
class. The first statement brings in the System class, from
which are derived basic interface methods. A program can
have one or more namespaces, which are used to organize
classes and other structures to avoid ambiguity. This pro-
gram has only one class (Hello), which includes a Main
function (every program must have one and only one). This
function calls the Console member of the System class, and
in turn uses the WriteLine method to display the text.

C++ and Microsoft Development
C# is part of a family of languages (including C++, J#
[an equivalent version of Java], and Visual Basic.NET). All
these languages compile to a common intermediate lan-
guage (IL). The common class framework, Microsoft.NET,
has replaced earlier frameworks for Windows program-

ming and, increasingly, for modern Web development (see
also Ajax).

Although it has been primarily associated with Micro-
soft development and Windows, the Mono and Dot GNU
projects provide C# and an implementation of the Com-
mon Language Infrastructure, and many (but not all) of the
.NET libraries for the Linux/UNIX environment.

Further Reading
“The C# Language.” MSDN. Available online. URL: http://msdn2.

microsoft.com/en-us/vcsharp/aa336809.aspx. Accessed April
28. 2007.

Davis, Stephen Randy. C# for Dummies. New York: Hungry Minds,
2002.

Hejlsberg, Andres, Scott Wiltamuth, and Peter Golde. The C# Pro-
gramming Language. 2nd ed. Upper Saddle River, N.J.: Addi-
son-Wesley, 2006.

C++
The C++ language was designed by Bjarne Stroustrup at
AT&T’s Bell Labs in Murray Hill, New Jersey, starting in
1979. By that time the C language had become well estab-
lished as a powerful tool for systems programming (see
C). However Stroustrup (and others) believed that C’s lim-
ited data structures and function mechanism were proving
inadequate to express the relationships found in increas-
ingly large software packages involving many objects with
complex relationships.

Consider the example of a simple object: a stack onto
which numbers can be “pushed” or from which they can be
“popped” (see stack). In C, a stack would have to be imple-
mented as a struct to hold the stack data and stack pointer,
and a group of separately declared functions that could
access the stack data structure in order to, for example
“push” a number onto the stack or “pop” the top number
from it. In such a scheme there is no direct, enforceable
relationship between the object’s data and functions. This
means, among other things, that parts of a program could
be dependent on the internal structure of the object, or
could directly access and change such internal data. In a
large software project with many programmers working on
the code, this invites chaos.

An alternative paradigm already existed (see object-
oriented programming) embodied in a few new languages
(see Simula and Smalltalk). These languages allow for the
structuring of data and functions together in the form of
objects (or classes). Unlike a C struct, a class can contain
both the data necessary for describing an object and the
functions needed for manipulating it (see class). A class
“encapsulates” and protects its private data, and communi-
cates with the rest of the program only through calls to its
defined functions.

Further in object-oriented languages, the principle of
inheritance could be used to proceed from the most gen-
eral, abstract object to particular versions suited for specific
tasks, with each object retaining the general capabilities
and revising or adding to them. Thus, a “generic” list foun-
dation class could be used as the basis for deriving a variety
of more specialized lists (such as a doubly-linked list).

C++        67

While attracted to the advantages of the object-ori-
ented approach, Stroustrup also wanted to preserve the C
language’s ability to precisely control machine behavior
needed for systems programming. He thus decided to build
a new language on C’s familiar syntax and features with
object-oriented extensions. Stroustrup wrote the first ver-
sion, called “C with Classes” as his Ph.D. thesis at Cam-
bridge University in England. This gradually evolved into
C++ through the early 1980s.

C++ Features
The fundamental building block of C++ is the class. A class
is used to create objects of its type. Each object contains
a set of data and can carry out specified functions when
called upon by the program. For example, the following
class defines an array of integers and declares some func-
tions for working with the array. Typically, it would be put
in a header file (such as stack.h):

const int Max_size=20; // maximum elements
in Stack

class Stack { // Declare the Stack class
public: // These functions are available

outside
Stack(); // Constructor to create Stack

objects
void push (int); // push int on Stack
int pop(); // remove top element
private: // This data can only be used in

class
int index;
int Data[Max_size];
};

Next, the member functions of the Stack class are
defined. The definitions can be put in a source file Stack.
cpp:

#include “Stack.h” // bring in the declarations
Stack::Stack() { index=0;} // set zero for

new stack
void Stack::push (int item) { // put a num-

ber on stack
Data[index++] = item;
}
int Stack::pop(){ // remove top number
return Data [index–];
}

Now a second source file (Stacktest.cpp) can be written.
It includes a main() function that creates a Stack object and
tests some of the class functions:

#include “Stack.cpp” // include the Stack
class

#include <iostream.h> // include standard I/O
library

main() {
Stack S; // Create a Stack object called S
int index;

for (index = 1; index <= 5; index++)
S.push(index); // put numbers 1–5 on stack

for (index = 1; index <=5; index++)
cout < S.pop(); // print the stack

}

The stack implementation is completely separate from
any program code that uses stack objects. Thus, a program-
mer could revise the stack class (perhaps using an improved
algorithm or generalizing it to work with different data
types). As long as the required parameters for the member
functions aren’t changed, programs that use stack objects
won’t need to be changed.

In addition to classes and inheritance, C++ has some
other important features. The data types for function param-
eters can be fully defined, and types checked automatically
(although programmers can bypass this type checking if
they really want or need to). New operators can be added
to a class by defining special operator functions, and the
same operator can be given different meanings when work-
ing with different data types. (This is called overloading.)
Thus, the + operator can be defined with a String class to
combine (concatenate) two strings. The operator will still
mean “addition” when used with numeric data.

An abstract object (one with no actual implementation)
can be used as the basis for virtual functions. These func-
tions can be redefined in each derived object so that when-
ever an object of that type is encountered the compiler will
automatically search “downward” from the base class and
find the correct derived class function.

Later versions of C++ include a related concept called
templates. A template is an abstract specification that can
be used to generate class definitions for data types passed
to it (see template). Thus, a list template could be passed a
vector and a 2D array and it will create a list class definition
for each of these types. Templates are generally used when
there is no hierarchical inheritance relationship between
the types (in that case the virtual base class is a better
approach).

C++ provides object-oriented alternatives to the stan-
dard libraries. For example, input/output uses a stream
model, and I/O operators can be overloaded so they’ll work
with new classes. There is also an improved error-handling
mechanism using appropriate objects.

Growth of C++
During the late 1980s and 1990s, C++ became a very popu-
lar language for a variety of applications ranging from sys-
tems programming to business applications and games. The
growth of the language coincided with the development
of more powerful desktop computers and the release of
inexpensive, easy-to-use but powerful development envi-
ronments from Microsoft, Borland, and others. Since these
compilers could also handle traditional C code, program-
mers could “port” existing code and use the object-oriented
techniques of C++ as they mastered them. By the late 1990s,
however, C++, although still dominant in many areas, was
being challenged by Java, a language that simplified some
of the more complex features of C++ and that was designed

68        C++

particularly for writing software to run on Web servers and
browsers (see Java). For an alternative approach to creating
a somewhat more “streamlined” C-type language, see c#.

Further Reading
“C++ Archive.” Available online. URL: http://www.austinlinks.

com/CPlusPlus/. Accessed May 24, 2007.
“Complete C++ Language Tutorial.” Available online. URL:

http://www.cplusplus.com/_doc/tutorial/. Accessed May
24, 2007.

Prata, Stephen. C++ Primer Plus. 5th ed. Indianapolis: SAMS,
2004.

Stroustrup, Bjarne. “A History of C++: 1979–1991.” In History of
Programming Languages II, edited by Thomas J. Bergin, Jr.,
and Richard G. Gibson, Jr. New York: ACM Press; Reading,
Mass.: Addison-Wesley, 1996, 699–755.

———. The C++ Programming Language. Special 3rd ed. Reading,
Mass.: Addison-Wesley, 2000.

cable modem
One of the most popular ways to connect people to the
Internet takes advantage of the cable TV infrastructure that
already exists in most communities. (For another pervasive
alternative, using telephone lines, see DSL.)

Cable systems offer high-speed access (see broadband)
up to about 6 megabits/second (Mb/s), at least 20 times
faster than an ordinary telephone modem and generally
suitable for receiving today’s multimedia offerings, includ-
ing streaming video. (Upload speeds are usually “throttled”
to 384 kb/s or fewer.)

In a typical installation, a splitter is used to separate the
signal used for cable TV from the one used for data trans-
mission. The data cable is then connected to the modem.
The modem can then either be connected directly to a com-
puter using a standard Ethernet “Cat 5” cable, or connected
to a switch (or more commonly, a router) that will in turn
provide the Internet connection to computers on the local
network. (If the cable modem is connected directly to a
computer, additional security against intrusions should also
be provided. See firewall.)

A typical cable TV system has from 60 channels to sev-
eral hundred, most of which are used for TV programming.
A few channels are dedicated to providing Internet service.
Users in a given division of the cable network (typically a
small neighborhood) thus share a fixed pool of bandwidth,
which can reduce speed at times of high usage. The cable
system can adjust by reallocating channels from TV to data
or by adding new channels.

DOCSIS (Data Over Cable Service Interface Specifica-
tion) is the industry standard for cable modems in North
America.

Marketing Considerations
As of 2007 there were about 30 million households in North
America with cable Internet service. Monthly service fees
are $40–$60, though cable providers generally try to bun-
dle their cable TV and Internet services. Increasingly they
are also offering telephone service over the cable network,
using voice over Internet protocol (see voip).

In turn, telephone companies compete with cable com-
panies by offering DSL Internet access. Although “tradi-
tional” DSL is generally somewhat slower than cable
modems, Verizon in 2005 announced a new, much faster
fiber-based form of DSL called fios, with speeds of up to
15 Mb/s (see also fiber optics). And just as cable compa-
nies can now offer phone service over the Internet, phone
companies can offer video content, potentially competing
with cable TV services. (Verizon has announced its own
Internet-based television network, IPTV.) In general there is
likely to be increased competition and more (if sometimes
perplexing) choices for consumers.

Further Reading
Cable Industry Insider. Available online. URL: http://www.light-

reading.com/cdn/. Accessed May 10, 2007.
Cable Modem Information Network. Available online. URL: http://

www.cable-modem.net/. Accessed May 10, 2007.
Dominick, Joseph R., Barry L. Sherman, and Fritz J. Messere.

Broadcasting, Cable, the Internet and Beyond: An Introduction
to Electronic Media. 6th ed. New York: McGraw-Hill, 2007.

Dutta-Roy, Amitava. Cable Modem: Technology and Applications.
New York: Wiley-Interscience, 2007.

cache
A basic problem in computer design is how to optimize
the fetching of instructions or data so that it will be ready
when the processor (CPU) needs it. One common solution
is to use a cache. A cache is an area of relatively fast-access
memory into which data can be stored in anticipation of its
being needed for processing. Caches are used mainly in two
contexts: the processor cache and the disk cache.

CPU Cache
The use of a processor cache is advantageous because
instructions and data can be fetched more quickly from
the cache (static memory chips next to or within the CPU)
than they can be retrieved from the main memory (usu-
ally dynamic RAM). An algorithm analyzes the instruc-
tions currently being executed by the processor and tries
to anticipate what instructions and data are likely to be
needed in the near future. (For example, if the instructions
call for a possible branch to one of two sets of instruc-
tions, the cache will load the set that has been used most
often or most recently. Since many programs loop over
and over again through the same instructions until some
condition is met, the cache’s prediction will be right most
of the time.)

These predicted instructions and data are transferred
from main memory to the cache while the processor is
still executing the earlier instructions. If the cache’s predic-
tion was correct, when it is time to fetch these instructions
and data they are already waiting in the high-speed cache
memory. The result is an effective increase in the CPU’s
speed despite there being no increase in clock rate (the rate
at which the processor can cycle through instructions).

The effectiveness of a processor cache depends on two
things: the mix of instructions and data being processed and

cache        69

the location of the cache memory. If a program uses long
sequences of repetitive instructions and/or data, caching will
noticeably speed it up. A cache located within the CPU itself
(called an L1 cache) is faster (albeit more expensive) than an
L2 cache, which is a separate set of chips on the motherboard.

Changes made to data by the CPU are normally written
back to the cache, not to main memory, until the cache is
full. In multiprocessor systems, however, designers of pro-
cessor caches must deal with the issue of cache coherency.
If, for example, several processors are executing parts of the
same code and are using a shared main memory to commu-
nicate, one processor may change the value of a variable in
memory but not write it back immediately (since its cache
is not yet full). Meanwhile, another processor may load the
old value from the cache, unaware that it has been changed.
This can be prevented by using special hardware that can
detect such changes and automatically “write through” the
new value to the memory. The processors, having received
a hardware or software “signal” that data has been changed,
can be directed to reread it.

Disk Cache
A disk cache uses the same general principle as a proces-
sor cache. Here, however, it is RAM (either a part of main
memory or separate memory on the disk drive) that is the
faster medium and the disk drive itself that is slower. When
an application starts to request data from the disk, the cache
reads one or more complete blocks or sectors of data from the
disk rather than just the data record being requested. Then, if
the application continues to request sequential data records,
these can be read from the high-speed memory on the cache
rather than from the disk drive. It follows that disk caching
is most effective when an application, for example, loads a
database file that is stored sequentially on the disk.

Similarly, when a program writes data to the disk, the
data can be accumulated in the cache and written back to
the drive in whole blocks. While this increases efficiency,
if a power outage or other problem erases or corrupts the
cache contents, the cache will no longer be in synch with
the drive. This can cause corruption in a database.

Microsoft’s Windows Vista introduced an ingenious
type of cache at the system level. The “ReadyBoost” features
allows many inexpensive USB flash drives to be used auto-
matically as disk caches to store recently used data that had
been paged out of main RAM memory.

Network Cache
Caching techniques can be used in other ways. For exam-
ple, most Web browsers are set to store recently read pages
on disk so that if the user directs the browser to go back to
such a page it can be read from disk rather than having to
be retransmitted over the Internet (generally a slower pro-
cess). Web servers and ISPs (such as cable services) can also
cache popular pages so they can be served up quickly.

Further Reading
Nottingham, Mark. “Caching Tutorial for Web Authors and Web-

masters.” Available online. URL: http://www.wdvl.com/
Internet/Cache/index._html. Accessed May 24, 2007.

“System Cache.” Available online. URL: http://www.pcguide.com/
ref/mbsys/cache/. Accessed April 14, 2008.

Peir, J.-K., W. Hsu, and A. J. Smith. “Implementation Issues in
Modern Cache Memories.” IEEE Transactions on Computers,
48, 2 (1998): 100–110.

calculator
The use of physical objects to assist in performing calcula-
tions begins in prehistory with such practices as count-
ing with pebbles or making what appears to be counting
marks on pieces of bone. Nor should such simple manipula-
tions be despised: In somewhat more sophisticated form it
yielded the abacus, whose operators regularly outperformed
mechanical calculators until the advent of electronics.

Generally, however, the term calculator is used to refer
to a device that is able to store a number, add it to another
number, and mechanically produce the result, taking care
of any carried digits. In 1623, astronomer Johannes Kepler
commissioned such a machine from Wilhelm Schickard.
The machine combined a set of “Napier’s bones” (slides
marked with logarithmic intervals, the ancestor of the slide
rule) and a register consisting of a set of toothed wheels that
could be rotated to displays the digits 0 to 9, automatically
carrying one place to the left. This ingenious machine was
destroyed in a fire before it could be delivered to Kepler.

In 1642, French philosopher and mathematician Blaise
Pascal invented an improved mechanical calculator. Its
mechanism used a carry mechanism with a weight that
would drop when a carry was reached, pulling the next
wheel into position. This avoided having to use excessive
force to carry a digit through several places. Pascal pro-
duced a number of his machines and tried to market them
to accountants, but they never really caught on.

Schikard’s and Pascal’s calculators could only add, but
in 1674 German mathematician Gottfried Wilhelm Leibniz
invented a calculator that could work with all the digits of
a number at once, rather than carrying from digit to digit.
It worked by allowing a variable number of gear teeth to
be engaged in each digit wheel. The operator could, for
example, set the wheels to a number such as 215, and then
turn a crank three times to multiply it by three, giving a
result of 645. This mechanism, gradually improved, would
remain fundamental to mechanical calculators for the next
three centuries.

The first calculator efficient enough for general business
use was invented by an American, Dorr E. Felt, in 1886.
His machine, called a Comptometer, used the energy trans-
mitted through the number-setting mechanism to perform
the addition, considerably speeding up the calculating pro-
cess. Improved machines by William Burroughs and oth-
ers would replace the arm of the operator with an electric
motor and provide a printing tape for automatically record-
ing input numbers and results.

Electronic Calculators
The final stage in the development of the calculator would
be characterized by the use of electronics to replace
mechanical (or electromechanical) action. The use of logic

70        calculator

circuits to perform calculations electronically was first seen
in the giant computers of the late 1940s, but this was obvi-
ously impractical for desktop office use. By the late 1960s,
however, transistorized calculators comparable in size to
mechanical desktop calculators came into use. By the 1970s,
the use of integrated circuits made it possible to shrink the
calculator down to palm-size and smaller. These calculators
use a microprocessor with a set of “microinstructions” that
enable them to perform a repertoire of operations ranging
from basic arithmetic to trigonometric, statistical, or busi-
ness-related functions.

The most advanced calculators are programmable by
their user, who can enter a series of steps (including per-
haps decisions and branching) as a stored program, and
then apply it to data as needed. At this point the calculator
can be best thought of as a small, somewhat limited com-
puter. However, even these limits are constantly stretched:
During the 1990s it became common for students to use
graphing calculators to plot equations. Calculator use is
now generally accepted in schools and even in the taking of
the Scholastic Aptitude Test (SAT). However, some educa-
tors are concerned that overdependence on calculators may
be depriving students of basic numeracy, including the abil-
ity to estimate the magnitude of results.

Further Reading
Aspray, W., ed. Computing Before Computers. Ames: Iowa State

University Press, 1989.
The Old Calculator Museum. Links to Interesting Calculator-Related

Sites. Available online. URL: http://www.oldcalculatormuseum.
com/links.html. Accessed May 25, 2007.

cars and computing
Development of automotive technology has tended to be
incremental rather than revolutionary. The core “hardware”
such as the engine and drive train has changed little over
several decades, other than the replacement of carburetors
with fuel injection systems, and some improvements in
areas such as brake design. On the other hand there have
been significant improvements in safety features such as
seat belts, air bags, and improved crash absorption barriers.

In recent years, however, the incorporation of comput-
ers in automobile design (see also embedded system) has
led to a number of significant advances in areas such as
fuel efficiency, traction/stability, crash response, and driver
information and navigation. Put simply, cars are becoming
“smarter” and are making driving easier and safer.

Hybrid cars (such as gas/electric systems) depend on
computers to sense how the car is being driven and when
to augment electric power with the gas engine, as well as
controlling the feeding of power back into the batteries (as
in regenerative braking). In all cars, a general-purpose com-
puting platform (such as one that has been developed by
Microsoft) can keep drivers up to date on everything from
road conditions to regular maintenance reminders. Many
purchasers of higher-end vehicles are purchasing services
such as OnStar that provide a variety of communication,
navigation, and security and safety features. An example of

the latter includes the automatic sending of a signal when
air bags are deployed. An operator then tries to determine if
assistance is needed, and contacts local dispatchers. Drivers
who lock themselves out accidentally can also have their
cars unlocked remotely.

Another promising approach is to build systems that
can monitor the driver’s condition or behavior. For exam-
ple, by analyzing images of the driver’s eyes, facial features,
and posture (such as slumping), the car may be able to tell
when the driver has a high probability of being impaired
(sleepy, drunk, or sick) and take appropriate action. (Of
course many drivers may object to having their car “watch”
them all the time.)

Ultimate Smart Cars
Much future progress in car computing will depend on creat-
ing integrated networking between vehicles and the road. An
advanced navigation system could take advantage of real-time
information being transmitted by the surrounding vehicles.
For example, a stalled car would transmit warning messages
to other drivers about the impending obstacle. Vehicles that
sense an oil slick, ice, or other road hazard could also “mark”
the location so it can be avoided by subsequent drivers. Data
about the speed and spacing of traffic could provide real-time
information about traffic jams, possibly routing vehicles into
alternative lanes or other roads to reduce congestion and
travel time (see mapping and navigation systems).

For many futurists, the ultimate “smart car” is one that
can drive itself with little or no input from its human occu-
pant. Such cars (with appropriate infrastructure) could
eliminate most accidents, use roads more efficiently, and
maintain mobility for a rapidly aging population. Such events
as the annual DARPA automated vehicle challenge show con-
siderable progress being made: Automated cars are already
driving cross-country, with the human driver or follow-on
vehicle serving only as a safety backup. In 2005 for the first
time some competitors actually made it across the finish
line. “Stanley,” a robotic Volkswagen Touareg designed by
Stanford University, won the race over an arduous 131-mile

This Mercedes Benz has an integrated navigation system—a fea-
ture appearing increasingly in other higher-end cars.  (© Wolf-
gang Meier / Visum / The Image Works)

cars and computing        71

Mojave Desert course, navigating by means of a camera, laser
range finders, and radar. In 2007 the contest entered a more
difficult arena, where the robot vehicles had to deal with
simulated urban traffic, negotiate intersections and traffic
circles, and merge with traffic, all while obeying traffic laws.

Meanwhile efforts continue for developing a practical
automated system that could be used for everyday driving. A
“tethered” system using magnetic or radio frequency guides
embedded in the road would reduce the complexity of the
on-board navigation system, but would probably require ded-
icated roads. A “free” system linked only wirelessly would be
much more flexible, but would require the ability to visual-
ize and assess a constantly changing environment and, if
necessary, make split-second decisions to avoid accidents.
Such systems may also feature extensive automatic commu-
nication, where cars can provide each other with information
about road conditions as well as their intended maneuvers.

The biggest obstacles to implementation of a fully auto-
mated highway system may be human rather than techni-
cal: the cost of the infrastructure, the need to convince the
public the system is safe and reliable, and concerns about
potential legal liability.

Ironically, just as information technology is making cars
safer, such activities as cell phone use, text messaging, and
use of in-car entertainment systems seem to be making
drivers more distracted. Whether cars will get smart fast
enough to compensate for increasingly inattentive drivers
remains an open question.

Further Reading
DARPA Grand Challenge. Available online. URL: http://www.

darpa.mil/grandchallenge/index.asp. Accessed May 18, 2007.
Edwards, John. “Robotic Cars Get Street Smart.” Electronic Design

55 (June 29, 2007): 89 ff.
Shladover, Steven E. “What if Cars Could Drive Themselves?” Avail-

able online. URL: http://faculty.washington.edu/jbs/itrans/
ahspath.htm. Accessed May 18, 2007.

Whelan, Richard. Smart Highways, Smart Cars. Boston: Artech
House, 1995.

cascading style sheets  (CSS)
Most word processor users are familiar with the use of styles
in formatting text. Using a built-in style or defining one’s
own, particular characteristics can be assigned to the struc-
tural parts of a document, such as headings, lead and body
paragraphs, quotations, references, and so on. There are sev-
eral advantages to using styles. Once a style is associated
with an element, the formatting attached to that style can
automatically be applied to all instances of the element. If the
writer decides that, for example, level two headings should
be in italics rather than normal font, a simple change to the
“head2” style will change all level two headings to italics.

Cascading style sheets (CSS) extend this idea to the
creation of Web pages. The style sheet defines the structural
elements of the document and applies the desired format-
ting. Instead of the main text of the document being filled
with formatting directives (see html), a style sheet is asso-
ciated with the document. When a compatible Web browser
loads the page, it also loads the associated style sheet and

uses it to determine how the page will be displayed. In
other words, the structure of the document is separated
from the details of its presentation. This not only makes
it easier to change styles (as with word processing), but it
also means that different style sheets can be used to tailor
the document to different viewing situations (for example,
viewing in a browser on a handheld PDA).

CSS uses a standard “box model” for laying out the pre-
sentation of a page. From outside in, the areas are defined
as outer edge, margin, border, padding, inner edge, and the
content area. Styles are applied in an order that depends
on the relationship of the affected elements. For example,
a style defined for the text body will be inherited by the
paragraph, which can then redefine one or more of its ele-
ments. Similarly, an emphasis style used within a sentence
might override the paragraph style in turn. It is this flowing
of definitions down through the hierarchy of styles that cre-
ates the “cascading” part of CSS.

As CSS developed further, separate specifications have
been provided for different media that can be included in
a Web page: speech (to be read by a speech synthesizer),
Braille (for a tactile Braille system), Emboss (for Braille
printing), Handheld (for PDAs and other devices with lim-
ited display space), Print, Projection (for computer projec-
tion or transparencies), Screen, Tty (teletype-like displays
with fixed-width characters), and TV.

Further Reading
“CSS From the Ground Up.” Web Page Design. Available online.

URL: http://www.wpdfd.com/editorial/basics/index.html.
Accessed May 19, 2007.

Lie, Hakon Wium, and Bert Ros. Cascading Style Sheets: Designing
for the Web. 3rd ed. Addison-Wesley Professional, 2005.

Cascading Style sheets enable the appearance and formatting of a
Web page to be handled separately from the page contents. Specifi-
cations provided in one sheet can be inherited or modified by other
sheets.

72        cascading style sheets

Meyer, Eric A. CSS: The Definitive Guide. 3rd ed. Sebastapol, Calif.:
O’Reilly, 2007.

“Zen Garden: The Beauty of CSS Design.” Available online. URL:
http://www.csszengarden.com. Accessed May 19, 2007.

CASE  (computer-aided software engineering)
During the late 1950s and 1960s, software rapidly grew more
complex—especially operating system software and large
business applications. With the typical program consist-
ing of many components being developed by different pro-
grammers, it became difficult both to see the “big picture”
and to maintain consistent procedures for transferring data
from one program module to another. As computer scien-
tists worked to develop sounder principles (see structured
programming) it also occurred to them that the power of
the computer to automate procedures could be used to cre-
ate tools for facilitating program design and managing the
resulting complexity. CASE, or computer-aided software
engineering, is a catchall phrase that covers a variety of such
tools involved with all phases of development.

Design Tools
The earliest design tool was the flowchart, often drawn
with the aid of a template that could be used to trace the
symbols on paper (see flowchart). With its symbols for
the flow of execution through branching and looping, the
flowchart provides a good tool for visualizing how a pro-
gram is intended to work. However large and complex pro-
grams often result in a sea of flowcharts that are hard to
relate to one another and to the program as a whole. Start-
ing in the 1960s, the creation of programs for manipulating
flow symbols made it easier both to design flowcharts and
to visualize them in varying levels of detail.

Another early tool for program design is pseudocode, a
language that is at a higher level of abstraction than the tar-
get programming language, but that can be refined by add-
ing details until the actual program source code has been
specified (see pseudocode). This is analogous to a writer
outlining the main topics of an essay and then refining
them into subtopics and supporting details. Attempts were
made to create a well-defined pseudocode that could be
automatically parsed and transformed into compilable lan-
guage statements, but they met with only limited success.

During the 1980s and 1990s, the graphics capabilities
of desktop computers made it attractive to use a visual
rather than linguistic approach to program design. Symbols
(sometimes called “widgets”) represent program functions
such as reading data from a file or creating various kinds
of charts. A program can be designed by connecting the
widgets with “pipes” representing data flow and by setting
various characteristics or properties.

CASE principles can also be seen in mainstream pro-
gramming environments such as Microsoft’s Visual Basic
and Visual C++, Borland’s Delphi and Turbo C++, and oth-
ers (see also programming environment). The design
approach begins with setting up forms and placing objects
(controls) that represent both user interface items (such as
menus, lists, and text boxes) and internal processing (such

as databases and Web browsers). However these environ-
ments do not in themselves provide the ability of full CASE
tools to manage complex projects with many components.

Analysis Tools
Once a program has been designed and implementation is
under way, CASE tools can help the programmers maintain
consistency across their various modules. One such tool
(now rather venerable) is the data dictionary, which is a
database whose records contain information about the defi-
nition of data items and a list of program components that
use each item (see data dictionary). When the definition
of a data item is changed, the data dictionary can provide
a list of affected components. Database technology is also
applied to software design in the creation of a database of
objects within a particular program, which can be used to
provide more extensive information during debugging.

Integration and Trends
A typical CASE environment integrates a variety of tools
to facilitate the flow of software development. This pro-
cess may begin with design using visual flowcharting,

Many tools are used today to aid the complex endeavor of software
engineering. Design tools include the traditional flowchart, pseudo-
code, and design specifications document. Additionally, many sys-
tems today use interactive, visual layout tools. During the coding
and debugging phase, a data dictionary and/or class database can
be used to describe and verify relationships and characteristics of
objects in the program. Once the code is “built,” a version control
system keeps track of what was changed, and various automatic
documentation features can be used to obtain listings of classes,
functions, and other program elements.

CASE        73

“rapid prototyping,” or other design tools. Once the over-
all design is settled, the developer proceeds to the detailed
specification of objects used by the program and perhaps
creates a data dictionary or other databases with informa-
tion about program objects. During the coding process,
source control or versioning facilities help log and keep
track of the changes to code and the succession of new
versions (“builds”). While testing the program, an inte-
grated debugger (see bugs and debugging) can use infor-
mation from the program components database to help
pinpoint errors. As the code is finished, other tools can
automatically generate documentation and other support-
ing materials (see technical writing and documenta-
tion of program code).

Just as some early proponents of the English-like
COBOL language proclaimed that professional program-
mers would no longer be needed for generating busi-
ness applications, CASE tools have often been hyped as a
panacea for all the ills of the software development cycle.
Rather than causing the demise of the programmer, how-
ever, CASE tools have played an important role in keeping
software development viable.

In recent years, tools for managing or debugging code
have been supplemented with tools to aid the design pro-
cess itself (see modeling languages). There are also tools
to aid in refactoring, or the process of reorganizing and
clarifying code to make it easier to maintain.

In a broader sense, CASE can also include tools for man-
aging the programming team and its efforts. Even social
networking tools (see blogs and blogging and wikis and
Wikipedia) can play a part in keeping programmers in
touch with issues and concerns relating to many different
aspects of a project.

Further Reading
Carnegie Mellon Software Engineering Institute. “What Is a CASE

Environment?” Available online. URL: http://www.sei.cmu.
edu/legacy/case/case_whatis.html. Accessed May 18, 2007.

CASE Tool Index. Available online. URL: http://www.cs.queensu.
ca/Software-Engineering/tools.html. Accessed May 18,
2007.

Stahl, Thomas, and Markus Voelter. Model-Driven Software Devel-
opment: Technology, Engineering, Management. New York:
Wiley, 2006.

CD-ROM and DVD-ROM
CD-ROM (compact disk read-only memory) is an optical
data storage system that uses a disk coated with a thin layer
of metal. In writing data, a laser etches billions of tiny pits
in the metal. The data is encoded in the pattern of pits and
spaces between them (called “lands”). Unlike the case with
a magnetic hard or floppy disk, the data is written in a
single spiral track that begins at the center of the disk. The
CD-ROM drive uses another laser to read the encoded data
(which is read from the other side as “bumps” rather than
pits). The drive slows down as the detector (reading head)
moves toward the outer edge of the disk. This maintains a
constant linear velocity and allows for all sectors to be the
same size. This system was adapted from the one used for

the audio CDs that largely supplanted phonograph records
during the 1980s.

A CD can hold about 650 MB of data. By the early 1990s,
the CD had become inexpensive and ubiquitous, and it has
now largely replaced the floppy disk as the medium of soft-
ware distribution. The relatively large capacity meant that
one CD could replace multiple floppies for a distribution
of products such as Microsoft Windows or Word, and it
also made it practical to give users access to the entire text
of encyclopedias and other reference works. Further, the
CD was essential for the delivery of multimedia (graphics,
video, and sound) to the desktop, since such applications
require far more storage than is available on 1.44-MB floppy
disks. CD drives declined in price from several hundred
dollars to about $50, while their speeds have increased by a
factor of 30 or more, allowing them to keep up with games
and other software that needs to read data quickly from the
disk.

Recordable CDs
In the late 1990s, a new consumer technology enabled users
to create their own CDs with data or audio tracks. The
cheapest kind, CD-R (Compact Disk Recordable) uses a
layer of a dyed material and a thin gold layer to reflect the
laser beam. Data is recorded by a laser beam hitting the dye
layer in precise locations and marking it (in one of several
ways, depending on technology). The lengths of marked
(“striped”) track and unmarked track together encode the
data.

A more versatile alternative is the CD-RW (Compact
Disk, Readable/Writeable), which can be recorded on,
erased, and re-recorded many times. These disks have a
layer made from a mixture of such materials as silver, anti-
mony, and rare earths such as indium and tellurium. The

Schematic of the components of a CD drive. The tracking drive
and tracking motor move the laser pickup assembly across the
spinning disk drive to position it to the correct track. The laser
beam hits the disk surface, reflecting differently from the pits and
flat areas (lands). This pattern of differences encodes the data as
ones and zeros.

74        CD-ROM and DVD-ROM

mixture forms many tiny crystals. To record data, an infra-
red laser beam is directed at pinpoint spots on the layer.
The heat from the beam melts the crystals in the target
spot into an amorphous mass. Because the amorphous state
has lower reflectivity than the original crystals, the reading
laser can distinguish the marked “pits” from the surround-
ing lands. Because of a special property of the material, a
beam with a heat level lower than the recording beam can
reheat the amorphous material to a point at which it will,
upon cooling, revert to its original crystal form. This per-
mits repeated erasing and re-recording.

DVD-ROM
The DVD (alternatively, Digital Video Disc or Digital Ver-
satile Disc) is similar to a CD, but uses laser light with a
shorter wavelength. This means that the size of the pits and
lands will be considerably smaller, which in turns means
that much more data can be stored on the same size disk. A
DVD disk typically stores up to 4.7 GB of data, equivalent to
about six CDs. This capacity can be doubled by using both
sides of the disk.

The high capacity of DVD-ROMs (and their record-
able equivalent, DVD-RAMs) makes them useful for stor-
ing feature-length movies or videos, very large games and
multimedia programs, or large illustrated encyclopedias.
The development of high-definition television (HDTV)
standards spurred the introduction of higher capacity
DVD formats. The competition between Sony’s Blu-Ray
and HD-DVD (backed by Toshiba and Microsoft, among
others) was resolved by 2008 in favor of the former. Blu-
Ray offers high capacity (25GB for single layer discs, 50GB
for dual layer).

Further Reading
About.com “Home Recording: Burning CDs.” Available online. URL:

http://homerecording.about.com/cs/burningcds/. Accessed May
10, 2007.

Taylor, Jim. DVD Demystified. 3rd ed. New York: McGraw-Hill,
2006.

White, Ron, and Timothy Edward Downs. How Computers Work.
8th ed. Indianapolis: Que, 2005.

cellular automata
In the 1970s, British mathematician John H. Conway
invented a pastime called the Game of Life, which was pop-
ularized in Martin Gardner’s column in Scientific American.
In this game (better termed a simulation), each cell in a grid
“lived” or “died” according to the following rules:

	 1. � A living cell remains alive if it has either two or
three living neighbors.

	 2. � A dead cell becomes alive if it has three living
neighbors.

	 3. � A living cell dies if it has other than two or three
living neighbors.

Investigators created hundreds of starting patterns of liv-
ing cells and simulated how they changed as the rules were
repeatedly applied. (Each application of the rules to the
cells in the grid is called a generation.) They found, for

example, that a simple pattern of three living cells in a row
“blinked” or switched back and forth between a horizon-
tal and vertical orientation. Other patterns, called “glider
guns” ejected smaller patterns (gliders or spaceships) that
traveled across the grid.

The Game of Life is an instance of the general class
called cellular automata. Each cell operates like a tiny com-
puter that takes as input the states of its neighbors and
produces its own state as the output. (See also finite state
machine.) The cells can be arranged in one (linear), two
(grid), or three dimensions, and a great variety of sets of
rules can be applied to them, ranging from simple variants
of Life to exotic rules that can take into account how long a
cell has been alive, or subject it to various “environmental”
influences.

Applications
Cellular automata theory has been applied to a variety of
fields that deal with the complex interrelationships of com-
ponents, including biology (microbe growth and popula-
tion dynamics in general), ecology (including forestry), and
animal behavior, such as the flight of birds. (The cues that a
bird identifies in its neighbors are like the input conditions
for a cell in a cellular automaton. The “output” would be the
bird’s flight behavior.)

The ability of cellular automatons to generate a rich
complexity from simple components and rules mimics the
development of life from simple components, and thus cel-
lular automation is an important tool in the creation and
study of artificial life. This can be furthered by com-
bining a set of cellular automation rules with a genetic
algorithm, including a mechanism for inheritance of
characteristics. Cellular automation principles can also be
applied to engineering in areas such as pattern or image
recognition.

A screen from a Game of Life simulator called Mirek’s Celebration.
(This version runs as a Web browser–accessible Java applet.) This
and other programs make it easy to experiment with a variety of
Life patterns and track them across hundreds of “generations.”

cellular automata        75

In 2002, computer scientist and mathematician Stephen
Wolfram (developer of the Mathematica program) published
a book titled A New Kind of Science that undertakes the
modest project of explaining the fundamental structure and
behavior of the universe using the principles of cellular
automation. Time will tell whether this turns out to be
simply an idiosyncratic (albeit interesting) approach or a
generally useful paradigm.

Further Reading
Gutowitz, Howard, ed. Cellular Automata. Cambridge, Mass.: MIT

Press, 1991.
“Patterns, Programs, and Links for Conway’s Game of Life.”

Available online. URL: http://www.radicaleye.com/lifepage/.
Accessed May 28, 2007.

Wojtowicz, Mirek. “Welcome to Mirek’s Celebration.: 1D and
2D Cellular Automation Explorer.” Available online. URL:
http://www.mirwoj.opus.chelm.pl/ca/. Accessed May 28,
2007.

Wolfram, S. A New Kind of Science. Champaign, Ill.: Wolfram
Media, 2002.

———. Theory and Applications of Cellular Automata. Singapore:
World Scientific, 1986.

censorship and the Internet
Governments have always to varying degrees concerned
themselves with the content of public media. The grow-
ing use of the Internet for expressive activities (see blogs
and blogging and journalism and computers) has
prompted authoritarian governments such as that of China
to attempt to block “objectionable” material both through
filtering techniques (see Web filter) and through pressure
on service providers. Further, users identified as creators of
banned content may be subjected to prosecution. However
because of the Internet’s decentralized structure and the
ability of users to operate relatively anonymously, Internet
censorship tends to be only partially effective (see ano-
nymity and the Internet).

In the democratic West, Internet censorship generally
applies to only a few forms of content. Attempts to crimi-
nalize the online provision of pornography to minors in the
1996 Communications Decency Act have generally been
overturned by the courts as excessively infringing on the
right of adults to access such content. However, a succession
of bills seeking to require schools and libraries to install
Web-filtering software culminated in the Children’s Inter-
net Protection Act, which was upheld by the U.S. Supreme
Court in 2003.

Another area of potential censorship involves the rights
of bloggers and other nontraditional journalists to post or
link to documents that might be involved with a legal case.

Although the term “censorship” is sometimes lim-
ited to government action under criminal law, there are
other ways in which Internet content may be restricted.
For example, content providers seek to protect their work
from unauthorized copying or distribution (see intellec-
tual property and computing). Civil sanctions can be
brought to bear on violators of copyright or in cases of

libel. However, as with other forms of censorlike activity
on the Internet, the targeted behavior can be curtailed only
to a limited extent.

Censorship in China
China has played a central role in the debate over cen-
sorship. The rapidly growing Chinese economy offers
seemingly unlimited market potential for Internet-based
businesses and sellers of software and hardware. However
the Chinese government’s desire to closely control the
spread of “subversive” ideas has brought it into collision
with the liberal ideas shared by many of the Internet’s most
important developers.

Human rights organizations such as Amnesty Interna-
tional have criticized online service providers such as Yahoo,
Google, and Microsoft for providing the Internet addresses
of users who have then been arrested. The companies have
been accused of putting the potential profits of China’s huge
market ahead of ensuring free access to information. Gener-
ally, the companies say they have no choice but to comply
with all local laws and legal demands for information about
users. However, critics charge that the technology compa-
nies have often gone well beyond mere compliance to the
provision of sophisticated filtering software for Web sites,
blogs, and online chat and discussion groups.

The actual extent of censorship in China seems to vary
considerably, depending on shifting political consider-
ations. The nation’s increasingly sophisticated users often
find ways around the censorship, such as through using
“proxy servers” that are inside the “Great Firewall” but can
connect to the outside Internet. (Encrypted protocols such
as VPN [virtual private networks] and SSH [secure shell]
can also be used, because their content is not detected by
monitoring and filtering software.)

Although generally not as highly organized, Internet
censorship can also be found in countries such as Burma
(Myanmar), North Korea, Iran, and Syria and to a lesser
extent in South Korea and Saudi Arabia.

While Internet censorship can be viewed as being ulti-
mately a political problem, technical realities limit its effec-
tiveness, and curtailing the free exchange of information
and open-ended communication that the Net affords is
likely to have economic costs as well.

Further Reading
Amnesty International. Available online. URL: http://www.

amnestyusa.org. Accessed May 22, 2007.
Axelrod-Contrada, Joan. Reno v. ACLU: Internet Censorship. New

York: Benchmark Books, 2006.
Chase, Michael. You’ve Got Dissent! Chinese Dissident Use of the

Internet and Beijing’s Counter-Strategies. Santa Monica, Calif.:
RAND Corporation, 2002.

Herumin, Wendy. Censorship on the Internet: From Filters to Free-
dom of Speech. Berkeley Heights, N.J.: Enslow, 2004.

Reporters without Borders. Handbook for Bloggers and Cyber-
Dissidents. Available online. URL: http://www.rsf.org/
rubrique.php3?id_rubrique=542. Accessed May 8, 2007.

Ringmar, Erik. A Blogger’s Manifesto: Free Speech and Censorship in
the Age of the Internet. London: Anthem Press, 2007.

76        censorship and the Internet

While some parents and many schools use filtering software to block Web sites considered to be inappropriate for children, another approach is to
provide a site with “child friendly” material and links.  (Image courtesy of the estate of Keith Haring, www.haringkids.com)

censorship and the Internet        77

central processing unit  See CPU.

Cerf, Vinton D.
(1943– )
American
Computer Scientist

Vinton (Vint) Cerf is a key pioneer in the development of
the packet-switched networking technology that is the basis
for the Internet. In high school, Cerf distinguished himself
from his classmates by wearing a jacket and a tie and car-
rying a large brown briefcase, which he later described as
“maybe a nerd’s way of being different.” He has a lifelong
love for fantasy and science fiction, both of which explore
difference. Finally, Cerf was set apart by being hearing-
impaired as a result of a birth defect. He would overcome
this handicap through a combination of hearing aids and
communications strategies. And while he was fascinated by
chemistry and rocketry, it would be communications, math,
and computer science that would form his lifelong interest.

After graduating from Stanford in 1965 with a B.S. in
mathematics, Cerf worked at IBM as an engineer on its
time-sharing systems, while broadening his background in
computer science. At UCLA he earned on M.S. and then a
Ph.D. in computer science while working on technology
that could link one computer to another. Soon he was work-
ing with Len Kleinrock’s Network Measurement Center to
plan the ARPA network, a government-sponsored computer
link. In designing software to simulate a network that as
yet existed only on paper, Cerf and his colleagues had to
explore the issues of network load, response time, queuing,
and routing, which would prove fundamental for the real-
world networks to come.

By the summer of 1968, four universities and research
sites (UCLA, UC Santa Barbara, the University of Utah, and
SRI) as well as the firm BBN (Bolt Beranek and Newman)
were trying to develop a network. At the time, a custom
combination of hardware and software had to be devised
to connect each center’s computer to the other. The hard-
ware, a refrigerator-sized interface called an IMP, was still
in development.

By 1970, the tiny four-node network was in operation,
cobbled together with software that allowed a user on one
machine to log in to another. This was a far cry from a
system that would allow any computer to seamlessly com-
municate with another, however. What was needed on the
software end was a universal, consistent language—a pro-
tocol—that any computer could use to communicate with
any other computer on the network.

In a remarkable display of cooperation, Cerf and his
colleagues in the Network Working Group set out to design
such a system. The fundamental idea of the protocol is that
data to be transmitted would be turned into a stream of
“packets.” Each packet would have addressing information
that would enable it to be routed across the network and
then reassembled back into proper sequence at the desti-
nation. Just as the Post Office doesn’t need to know what’s
in a letter to deliver it, the network doesn’t need to know

whether the data it is handling is e-mail, a news article, or
something else entirely. The message could be assembled
and handed over to a program that would know what to do
with it.

With the development of what eventually became TCP/
IP (Transmission Control Protocol/Internet Protocol) Vint
Cerf and Bob Kahn essentially became the fathers of the
Internet we know today (see TCP/IP). As the online world
began to grow in the 1980s, Cerf worked with MCI in the
development of its electronic mail system, and then set up
systems to coordinate Internet researchers.

In later years, Cerf undertook new initiatives in the
development of the Internet. He was a key founder and the
first president of the Internet Society in 1992, serving in that
post until 1995 and then as chairman of the board, 1998–
1999. This group seeks to plan for expansion and change
as the Internet becomes a worldwide phenomenon. Cerf’s
interest in science fiction came full circle in 1998 when he
joined an effort at the Jet Propulsion Laboratory (JPL) in
Pasadena, California. There they are designing an “inter-
planetary Internet” that would allow a full network connec-
tion between robot space probes, astronauts, and eventual
colonists on Mars and elsewhere in the solar system.

In 2005 Cerf joined Google as its “chief Internet evan-
gelist,” where he has the opportunity to apply his imagina-
tion to network applications and access policies. Cerf also
served as chairman of the board of the Internet Corporation
for Assigned Names and Numbers (ICANN), a position that
he left in 2007.

Cerf has received numerous honors, including the IEEE
Kobayashi Award (1992), International Telecommunications
Union Silver Medal (1995), and the National Medal of Tech-
nology (1997). In 2005 Cerf (along with Robert Kahn) was
awarded the Presidential Medal of Freedom, the nation’s
highest civilian award.

Further Reading
“Cerf’s Up.” Personal Perspectives. Available online. URL: http://

global.mci.com/ca/resources/cerfs_up/personal_perspective/.
Accessed May 28, 2007.

Hafner, Katie and Matthew Lyon. Where Wizards Stay Up Late: the
Origins of the Internet. New York: Simon & Schuster, 1996.

Henderson, Harry. Pioneers of the Internet. San Diego, Calif.:
Lucent Books, 2002.

certificate, digital
The ability to use public key encryption over the Inter-
net makes it possible to send sensitive information (such
as credit card numbers) to a Web site without electronic
eavesdroppers being able to decode it and use it for crimi-
nal purposes (see encryption and computer crime and
security). Any user can send information by using a per-
son or organization’s public key, and only the owner of the
public key will be able to decode that information.

However, the user still needs assurance that a site actu-
ally belongs to the company that it says it does, rather
than being an imposter. This assurance can be provided
by a trusted third party certification authority (CA), such
as VeriSign, Inc. The CA verifies the identity of the appli-

78        central processing unit

cant and then provides the company with a digital certifi-
cate, which is actually the company’s public key encrypted
together with a key used by the CA and a text message.
(This is sometimes called a digital signature.) When a user
queries the Web site, the user’s browser uses the CA’s pub-
lic key to decrypt the certificate holder’s public key. That
public key is used in turn to decrypt the accompanying
message. If the message text matches, this proves that the
certificate is valid (unless the CA’s private key has somehow
been compromised).

The supporting technology for digital certification is
included in a standard called Secure Sockets Layer (SSL),
which is a protocol for sending encrypted data across the
Internet. SSL is supported by leading browsers such as
Microsoft Internet Explorer and Netscape. As a result, digi-
tal certification is usually transparent to the user, unless
the user is notified that a certificate cannot be verified.

Digital certificates are often attached to software such as
browser plug-ins so the user can verify before installation
that the software actually originates with its manufacturer
and has not been tampered with (such as by introduction of
a virus).

The use of digital certification is expanding. For exam-
ple, VeriSign and the federal General Services Administra-
tion (GSA) have begun an initiative called ACES (Access
Certificates for Electronic Services) that will allow citizens
a secure means to send information (such as loan applica-
tions) and to view benefits records. The IRS has a pilot

program for accepting tax returns that are digitally certified
and signed.

Further Reading
Altreya, Mohan, et al. Digital Signatures. Berkeley, Calif.: Osborne/

McGraw-Hill, 2002.
Brands, Stefan A. Rethinking Public Key Infrastructures and Digital

Certificates. Cambridge, Mass.: MIT Press, 2000.
Feghhi, Jalal, and Peter Williams. Digital Certificates: Applied

Internet Security. Reading, Mass.: Addison-Wesley, 1998.

certification of computer professionals
Unlike medicine, the law, or even civil engineering, the
computer-related fields do not have legally required certi-
fication. Given society’s critical dependence on computer
software and hardware for areas such as infrastructure
management and medical applications, there have been
persistent attempts to require certification or licensing of
software engineers. However, the fluid nature of the infor-
mation science field would make it difficult to decide which
application areas should have entry restrictions.

At present, a variety of academic degrees, professional
affiliations, and industry certificates may be considered in
evaluating a candidate for a position in the computing field.

Academic and Professional Credentials
The field of computer science has the usual levels of aca-
demic credentials (baccalaureate, master’s, and doctoral
degrees), and these are often considered prerequisites for
an academic position or for industry positions that involve
research or development in areas such as robotics or arti-
ficial intelligence. For business-oriented IT positions, a
bachelor’s degree in computer science or information sys-
tems may be required or preferred, and candidates who
also have a business-oriented degree (such as an MBA) may
be in a stronger position. However, degrees are generally
viewed only as a minimum qualification (or “filter”) before
evaluating experience in the specific application or platform
in question. While not a certification, membership in the
major professional organizations such as the Association
for Computing Machinery (ACM) and Institute for Electri-
cal and Electronic Engineers (IEEE) can be viewed as part
of professional status. Through special interest groups and
forums, these organizations provide computer professionals
with a good way to track emerging technical developments
or to broaden their knowledge.

In the early years of computing and again, in the micro-
computer industry of the 1980s, programming experience
and ability were valued more highly than academic creden-
tials. (Bill Gates, for example, had no formal college train-
ing in computer science.) In general, degree or certification
requirements tend to be imposed as a sector of the informa-
tion industry becomes well defined and established in the
corporate world. For example, as local area networks came
into widespread use in the 1980s, certifications were devel-
oped by Microsoft, Novell, and others. In turn, colleges
and trade schools can train technicians, using the certifi-
cate examinations to establish a curriculum, and numerous
books and packaged training courses have been marketed.

Digital certification relies upon public key cryptography and the
existence of a trusted third party, the Certificate Authority (CA).
First a business properly identifies itself to the CA and receives a
digital certificate. A consumer can obtain a copy of the business’s
digital certificate and use it to obtain the business’s public key from
the CA. The consumer can now send encrypted information (such
as a credit card number) to the business.

certification of computer professionals        79

In a newly emerging sector there is less emphasis on
credentials (which are often not yet established) and more
emphasis on being able to demonstrate knowledge through
having actually developed successful applications. Thus, in
the late 1990s, a high demand for Web page design and pro-
gramming emerged, and a good portfolio was more impor-
tant than the holding of some sort of certificate. However as
e-commerce and the Web became firmly established in the
corporate world, the cycle is beginning to repeat itself as
certification for webmastering and e-commerce applications
is developed.

Industry Certifications
Several major industry certifications have achieved wide-
spread acceptance.

Since 1973, the Institute for Certification of Computing
Professionals (ICCP) has offered certification based on gen-
eral programming and related skills rather than mastery of
particular platforms or products. The Associate Computing
Professional (ACP) certificate is offered to persons who have
a basic general knowledge of information processing and
who have mastered one major programming language. The
more advanced Certified Computing Professional (CCP) cer-
tificate requires several years of documented experience in
areas such as programming or information systems manage-
ment. Both certificates also require passing an examination.

A major trade group, the Computing Technology Indus-
try Association (CompTIA) offers the A+ Certificate for
computer technicians. It is based on passing a Core Service
Technician exam focusing on general hardware-related skills
and a DOS/Windows Service Technician exam that empha-
sizes knowledge of the operating system. The exams are
updated regularly based on required job skills as assessed
through industry practices.

Networking vendor Novell offers the Certified NetWare
Engineer (CNE) certificate indicating mastery of the instal-
lation, configuration, and maintenance of its networking
products or its GroupWise messaging system. The Certified
NetWare Administrator (CNA) certificate emphasizes sys-
tem administration.

Microsoft offers a variety of certificates in its networking
and applications development products. The best known
is the Microsoft Certified System Engineer (MCSE) certifi-
cate. It is based on a series of required and elective exams
that cover the installation, management, configuration, and
maintenance of Windows 2000 and other Microsoft net-
works.

A number of other vendors including Cisco Systems and
Oracle offer certification in their products. Given the ever-
changing marketplace, it is likely that most computer pro-
fessionals will acquire multiple certificates as their career
advances.

Further Reading
CompTIA Certification Page. Available online. URL: http://www.

comptia.org/. Accessed May 28, 2007.
Institute for Certification of Computing Professionals. Available

online. URL: http://www.iccp.org. Accessed May 28, 2007.
“MCSE Guide.” Available online. URL: http://www.mcseguide.com/

Novell Education Page. Available online. URL: http://www.novell.
com/training/certinfo/howdoi.htm. Accessed May 28, 2007.

CGI  (common gateway interface)
By itself, a Web page coded in HTML is simply a “static”
display that does not interact with the user (other than for
the selection of links). (See html, dhtml, and xhtm.) Many
Web services, including online databases and e-commerce
transactions, require that the user be able to interact with
the server. For example, an online shopper may need to
browse or search a catalog of CD titles, select one or more
for purchase, and then complete the transaction by provid-
ing credit card and other information. These functions are
provided by “gateway programs” on the server that can
access databases or other facilities.

One way to provide interaction with (and through) a Web
page is to use the CGI (common gateway interface). CGI is a
facility that allows Web browsers and other client programs
to link to and run programs stored on a Web site. The stored
programs, called scripts, can be written in various languages
such as JavaScript or PHP (see scripting languages) and
placed in a cgi-bin folder on the Web server.

The CGI script is referenced by an HTML hyperlink on
the Web page, such as

<A HREF=“http://www.MyServer.com/cgi-bin/
MyScript”>MyScript

Or more commonly, it is included in an HTML form
that the user fills in, then clicks the Submit button. In
either case, the script executes. The script can then pro-
cess the information the user provided on the form, and
return information to the user’s Web browser in the form

CGI or Common Gateway Interface allows a program linked to
a Web page to obtain data from databases and use it to generate
forms to be shown on users’ Web browsers. For example, a CGI
program can link a Web user to a “shopping cart” and inventory
system for online purchases.

80        CGI

of an HTML document. The script can perform additional
functions such as logging the user’s query for marketing
purposes.

The complexity of Web features and the heavy load on
servers have prompted a number of strategies for serving
dynamic content more efficiently. Traditionally, each time
a CGI request is passed to the URL for a script, the appro-
priate language interpreter must be loaded and initialized.
However, modern Web servers such as Apache have built-in
modules for commonly used scripting languages such as
PHP, Perl, Python, and Ruby. This allows the Web server
to run the script directly without the overhead of starting a
new interpreter process.

A more fundamental shift in implementation is the
development of methods to tie together DHTML and XML
with a document model and scripting languages to allow
for dynamic changes in page content without having to
reload the page (see Ajax).

Note: the acronym CGI can also stand for “computer-
generated imagery” (see computer graphics).

Further Reading
“A Guide to HTML and CGI Scripts.” Available online. URL: http://

snowwhite.it.brighton.ac.uk/~mas/mas/courses/html/html.
html. Accessed May 30, 2007.

Hamilton, Jacqueline D. CGI Programming 101. Houston, Tex.:
CGI101.com, 2000. (First six chapters are available free
online at URL: http://www.cgi101.com/book/.) Accessed
August 12, 2007.

“The Most Simple Intro to CGI.” Available online. URL: http://
bignosebird.com/prcgi.shtml. Accessed August 12, 2007.

characters and strings
While the attention of the first computer designers focused
mainly on numeric calculations, it was clear that much of
the data that business people and others would want to
manipulate with the new machines would be textual in
nature. Billing records, for example, would have to include
customer names and addresses, not just balance totals.

The “natural” representation of data in a computer is as
a series of two-state (binary) values, interpreted as binary
numbers. The solution for representing text (letters of the
alphabet, punctuation marks, and other special symbols) is
to assign a numeric value to each text symbol. The result is
a character code, such as ASCII (American Standard Code
for Information Interchange), which is the scheme used
most widely today. (Another system, EBCDIC (Extended
Binary-Coded Decimal Interchange Code) was used during
the heyday of IBM mainframes, but is seldom used today.)

The seven-bit ASCII system is compact (using one byte
of memory to store each character), and was quite suit-
able for early microcomputers that required only the basic
English alphabet, punctuation, and a few control charac-
ters (such as carriage return). In an attempt to use charac-
ters to provide simple graphics capabilities, an “extended
ASCII” was developed for use on IBM-compatible PCs.
This used eight bits, increasing the number of charac-
ters available from 128 to 256. However, the use of bit-
mapped graphics in Windows and other operating systems

made this version of ASCII unnecessary. Instead, the ANSI
(American National Standards Institute) eight-bit charac-
ter set used the additional character positions to store a
variety of special symbols (such as fractions and the copy-
right symbol) and various accent marks used in European
languages.

Table of 7-Bit ASCII Character Codes

The following are control (nonprinting) characters:
0	 Null (nothing)
7	 Bell (rings on an old teletype; beeps on most PCs)
8	 Backspace
9	 Tab
10	� Line feed (goes to next line without changing column

position)
13	 Carriage return (positions to beginning of next line)
26	 End of file
27	 [Esc] (Escape key)

The characters with codes from 32 to 127 produce printable
characters.

32	 [space]	 64	 @	 96	 `
33	 !	 65	 A	 97	 a
34	 “	 66	 B	 98	 b
35	 #	 67	 C	 99	 c
36	 $	 68	 D	 100	 d
37	 %	 69	 E	 101	 e
38	 &	 70	 F	 102	 f
39	 ‘	 71	 G	 103	 g
40	 (72	 H	 104	 h
41)	 73	 I	 105	 i
42	 *	 74	 J	 106	 j
43	 +	 75	 K	 107	 k
44	 ‘	 76	 L	 108	 l
45	 -	 77	 M	 109	 m
46	 .	 78	 N	 110	 n
47	 /	 79	 O	 111	 o
48	 0	 80	 P	 112	 p
49	 1	 81	 Q	 113	 q
50	 2	 82	 R	 114	 r
51	 3	 83	 S	 115	 s
52	 4	 84	 T	 116	 t
53	 5	 85	 U	 117	 u
54	 6	 86	 V	 118	 v
55	 7	 87	 W	 119	 w
56	 8	 88	 X	 120	 x
57	 9	 89	 Y	 121	 y
58	 :	 90	 Z	 122	 z
59	 ;	 91	 [123	 {
60	 <	 92	 \	 124	 |
61	 =	 93]	 125	 }
62	 >	 94	 ^	 126	 ~
63	 ?	 95	 -	 127	 [delete]

characters and strings        81

As computer use became more widespread internation-
ally, even 256 characters proved to be inadequate. A new
standard called Unicode can accommodate all of the world’s
alphabetic languages including Arabic, Hebrew, and Japa-
nese (Kana Unicode schemes can also be used to encode
ideographic languages (such as Chinese) and languages
such as Korean that use syllabic components. At present
each ideograph has its own character code, but Unicode 3.0
includes a scheme for describing ideographs through their
component parts (radicals). Most modern operating systems
use Unicode exclusively for character representation. How-
ever, support in software such as Web browsers is far from
complete, though steadily improving. Unicode also includes
many sets of internationally used symbols such as those
used in mathematics and science. In order to accommodate
this wealth of characters, Unicode uses 16 bits to store each
character, allowing for 65,535 different characters at the
expense of requiring twice the memory storage.

Programming with Strings
Before considering how characters are actually manipulated
in the computer, it is important to realize that what the
binary value such as 1000001 (decimal 65) stored in a byte
of memory actually represents depends on the context given
to it by the program accessing that location. If the program
declares an integer variable, then the data is numeric. If the
program declares a character (char) value, then the data will
be interpreted as an uppercase “A” (in the ASCII system).

Most character data used by programs actually repre-
sents words, sentences, or longer pieces of text. Multiple
characters are represented as a string. For example, in tradi-
tional BASIC the statement:

NAME$ = “Homer Simpson”

declares a string variable called NAME$ (the $ is a suffix
indicating a string) and sets its value to the character string
“Homer Simpson.” (The quotation marks are not actually
stored with the characters.)

Some languages (such as BASIC) store a string in mem-
ory by first storing the number of characters in the string,
followed by the characters, with one in each byte of mem-
ory. In the family of languages that includes C, however,
there is no string type as such. Instead, a string is stored as
an array of char. Thus, in C the preceding example might
look like this:

char Name [20] = “Homer Simpson”;

This declares Name as an array of up to 20 characters, and
initializes it to the string literal “Homer Simpson.”

An alternative (and equivalent) form is:

char * Name = “Homer Simpson”;

Here Name is a pointer that returns the memory location
where the data begins. The string of characters “Homer
Simpson” is stored starting at that location.

Unlike the case with BASIC, in the C languages, the
number of characters is not stored at the beginning of the
data. Rather, a special “null” character is stored to mark the
end of the string.

Programs can test strings for equality or even for greater
than or less than. However, programmers must be careful
to understand the collating sequence, or the order given to
characters in a character set such as ASCII. For example the
test

If State = “CA”

will fail if the current value of State is “ca.” The lowercase
characters have different numeric values than their upper-
case counterparts (and indeed must, if the two are to be
distinguished). Similarly, the expression:

“Zebra” < “aardvark”

is true because uppercase Z comes before lowercase “a” in
the collating sequence.

Programming languages differ considerably in their
facilities for manipulating strings. BASIC includes built-in
functions for determining the length of a string (LEN) and
for extracting portions of a string (substrings). For example
given the string Test consisting of the text “Test Data,” the
expression Right$ (Test, 4) would return “data.”

Following their generally minimalist philosophy, the
C and C++ languages contains no string facilities. Rather,
they are provided as part of the standard library, which can
be included in programs as needed. In the following little
program:

#include <iostream.h>
#include <string.h>
void main ()
{
char String1[20];
char String2[20];
strcpy (String1, “Homer”);
strcpy (String2, “Simpson”);
//Concatenate string2 to the end of string1
strcat (String1, String2);
cout String1 <<endl;
}

Here the strcpy function is used to initialize the two strings,
and then the strcat (string concatenate) function is used to
combine the two strings and store the result back in string1,
which is then sent to the output.

As an alternative, one can take advantage of the object
orientation of C++ and define a string class. The addition
operator (+) can then be extended, or “overloaded” so that
it will concatenate strings. Then, the preceding program,
instead of using the strcat function, can use the more natu-
ral syntax:

cout << String1 + String2

to display the combined strings.

String-Oriented Languages
Sophisticated string processing (such as parsing and pat-
tern matching) tends to be awkward to express in tradi-
tional number-oriented programming languages. Several
languages have been designed especially for manipulating
textual data. Snobol, designed in the early 1960s, is best

82        characters and strings

known for its sophisticated pattern-matching and pattern
processing capabilities. A similar language, Icon, is widely
used for specialized string-processing tasks today. Many
programmers working with textual data in the UNIX envi-
ronment have found that the awk and Perl languages are
easier to use than C for extracting and manipulating data
fields. (See awk and Perl.)

Further Reading
Gillam, Richard. Unicode Demystified: A Practical Programmer’s

Guide to the Encoding Standard. Reading, Mass.: Addison-
Wesley, 2002.

Korpela, Jukka. Unicode Explained. Sebastapol, Calif.: O’Reilly,
2006.

A Tutorial on Character Code Issues. Available online. URL: http://
www.cs.tut.fi/~jkorpela/chars.html. Accessed May 31, 2007.

Unicode Consortium. Unicode Standard, Version 5.0. 5th ed. Read-
ing, Mass.: Addison-Wesley, 2006.

chat, online
In general terms, to “chat” is to communicate in real time
by typing messages to other online users who can immedi-
ately type messages in reply. It is this conversational imme-
diacy that distinguishes chat services from conferencing
systems or bulletin boards.

Commercial Services
Many PC users have become acquainted with chatting
through participating in “chat rooms” operated by online
services such as America Online (AOL). A chat room is
a “virtual space” in which people meet either to social-
ize generally or to discuss particular topics. At their best,
chat rooms can develop into true communities whose par-
ticipants develop long-term friendships and provide one
another with information and emotional support (see vir-
tual community).

However, the essentially anonymous character of chat
(where participants often use “handles” rather than real
names) that facilitates freedom of expression can also pro-
vide a cover for mischief or even crime. Chat rooms have
acquired a rather lurid reputation in the eyes of the general
public. There has been considerable public concern about
children becoming involved in inappropriate sexual con-
versation. This has been fueled by media stories (sometimes
exaggerated) about children being recruited into face-to-
face meetings with pedophiles. AOL and other online ser-
vices have tried to reduce such activity by restricting online
sex chat to adults, but there is no reliable mechanism for
a service to verify its user’s age. A chat room can also be
supervised by a host or moderator who tries to prevent
“flaming” (insults) or other behavior that the online service
considers to be inappropriate.

Distributed Services
For people who find commercial online services to be too
expensive or confining, there are alternatives available for
just the cost of an Internet connection. The popular Inter-
net Relay Chat (IRC) was developed in Finland by Jarkko
Oikarinen in the late 1980s. Using one of the freely avail-

able client programs, users connect to an IRC server, which
in turn is connected to one of dozens of IRC networks.
Users can create their own chat rooms (called channels).
There are thousands of IRC channels with participants all
over the world. To participate, a user simply joins a chan-
nel and sees all messages currently being posted by other
users of the channel. In turn, the user’s messages are posted
for all to see. While IRC uses only text, there are now
enhanced chat systems (often written in Java to work with a
Web browser) that add graphics and other features.

There are many other technologies that can be used
for conversing via the Internet. Some chat services (such
as Cu-SeeMe) enable participants to transmit their images
(see videoconferencing and Web cam). Voice can also
be transmitted over an Internet connection (see voip). For a
very pervasive form of “ad hoc” textual communication, see
texting and instant messaging.

Further Reading
McDonald, Wayne. Chat Rooms in Wonderland. Frederick, Md.:

PublishAmerica, 2005.
Ploch, Nicolas. “A Short IRC Primer.” Available online. URL: http://

www.irchelp.org/irchelp/ircprimer.html. Accessed June 1,
2007.

Wasuki, Dennis D. Self-Games and Body-Play: Personhood in Online
Chat and Cybersex. Bern: Peter Lang, 2003.

Weverka, Peter. Mastering ICQ: the Official Guide. Dulles, Va.: ICQ
Press, 2001.

chatterbots
The famous Turing test (see Turing, Alan M.) proposes
that if a human is unable to reliably distinguish mes-
sages from a computer from those of another person, the
computer program involved can at least be provisionally
declared to be “intelligent.” The advent of textual commu-
nication via the Internet (see texting and instant mes-
saging) has afforded a variety of ways to attempt to meet
this challenge. Programs that mimic human conversational
styles have come to be known as “chatterbots.”

The prototypical chatterbot was ELIZA, developed by
Joseph Weizenbaum in the mid-1960s (see Weizenbaum,
Joseph). ELIZA mimicked a form of nondirective psychother-
apy in which the therapist echoes or plays off of the client’s
statements as a form of gentle encouragement and validation.
Thus if one types, “My father didn’t really like me,” ELIZA
might reply, “Tell me more about your father.” Although
primitive, ELIZA once inadvertently fooled an executive into
thinking he was exchanging messages with Weizenbaum.
Other classic chatterbots include Parry, designed to mimic a
paranoid, and the story-generating Racter.

The first online chatterbot, Julia, was created by Michael
Mauldin in 1994. (Mauldin also coined the term chatterbot.)
More sophisticated chatterbots include Jabberwocky, which
includes learning algorithms, and ELLA, which applies
linguistic principles to produce more realistic speech (see
natural language processing). On a negative note, some
chatterbots have been designed to enter chat rooms and
spew advertising (spambots) or even to elicit personal infor-
mation (see identity theft and phishing and spoofing).

chatterbots        83

One of the best known and most versatile modern chatter-
bots is ALICE (Artificial Linguistic Internet Computer Entity),
developed by Richard Wallace. ALICE does much more than
simply echo statements; it includes an elaborate parser and
sentence generator and specialized scripts for initiating or
responding to conversational gambits. ALICE can even tell
lies and spread “gossip” that it learns from other users.

In the following dialog ALICE seems to be able to
respond appropriately:

Human: Are you intelligent?

ALICE: I am highly intelligent. I have many intellectual functions.

Human: How do you know you are intelligent?

ALICE: By introspection.

However the illusion breaks down as the matter is
pressed further and the bot uses a “deflection” strategy:

Human: What were you thinking while you said that?

ALICE: I was minding my own business.

Human: How do you feel about being interrogated in this way?

ALICE: The opposite of not being interrogated in this way.

Still, with more than 25,000 conversation templates
stored in XML files that are modifiable by the user, ALICE
has repeatedly won the Loebner Contest, a modern version
of the Turing test.

Although many are created as programming exercises
or for amusement, chatterbots embody principles that are
important in artificial intelligence research, including natu-
ral language processing and machine learning (see arti-
ficial intelligence). Techniques first developed with
chatterbots can contribute to the creation of programs
designed to provide answers to users’ questions or other
forms of assistance (see software agent).

Further Reading
A.L.I.C.E. Artificial Intelligence Foundation. Available online.

URL: http://www.alicebot.org/. Accessed April 27, 2007.
Chatterbot Central (The Simon Laven Page). Available online.

URL: http://www.simonlaven.com/. Accessed April 27, 2007.
Loebner Prize. Available online. URL: http://www.loebner.net/

Prizef/loebner-prize.html. Accessed April 27, 2007.

chess and computers
With simple rules but endless permutations, chess has fas-
cinated millions of players for hundreds of years. When
mechanical automatons became fashionable in the 18th
century, onlookers were intrigued by “the Turk,” a chess-
playing automaton. While the Turk was eventually shown
to be a hoax (a human player was hidden inside), the devel-
opment of the electronic digital computer in the mid-20th
century provided the opportunity to create a true automatic
chess player.

In 1950 Claude Shannon outlined the two basic strate-
gies that would be used by future chess-playing programs.
The “brute force” strategy would examine the possible

moves for the computer chess player, the possible replies
of the opponent to each move, the possible next moves by
the computer, and so on for as many half moves or “plies”
as possible. The moves would be evaluated by a “minimax”
algorithm that would find the move that best improves the
computer’s position despite the opponent’s best play.

The fundamental problem with the brute force is the
“combinatorial explosion”: Looking ahead just three moves
(six plies) would involve evaluating more than 700,000,000
positions. This was impractical given the limited comput-
ing power available in the 1950s. Shannon realized this
and decided that a successful chess program would have to
incorporate principles of chess strategy that would enable it
to quickly recognize and discard moves that did not show
a likelihood of gaining material or improving the position
(such as by increasing control of center squares). As a result
of this “pruning” approach, only the more promising initial
moves would result in the program looking ahead—but
those moves could be analyzed much more deeply.

The challenge of the pruning approach is the need to
identify the principles of good play and codify them in such
a way that the program can use them reliably. Progress
was slow at first—programs of the 1950s and 1960s could
scarcely challenge an experienced amateur human player,
let alone a master. A typical program would play a mix-
ture of reasonable moves, odd-looking but justifiable moves,
and moves that showed the chess version of “nearsighted-
ness.” By the 1970s, however, computing power was rapidly
increasing, and a new generation of programs such as Chess
4.0 from Northwestern University abandoned most pruning
techniques in favor of brute-force searches that could now
extend further ahead. In practice, each programmer chose a
particular balance between brute force and pruning-selection

In the 18th century the Turk, a mechanical chess player, astonished
onlookers. Although the original Turk was a fraud (a small human
player was hidden inside), the modern computer chess program
Fritz 9 pays its homage by simulating its predecessor.  (Fritz 9,
Chessbase GmbH, www.chessbase.com)

84        chess and computers

techniques. An ever-increasing search base could be com-
bined with evaluation of particularly important positional
features (such as the possibility of creating a “passed pawn”
that could be promoted to a queen).

By the end of the 1970s, International Master David
Levy was still beating the best chess programs of the time
(defeating Chess 4.7 in 1978). A decade later, however, Levy
was defeated in 1989 by Deep Thought, a program that
ran on a specially designed computer that could examine
hundreds of millions of positions per move. That same year
World Champion Garry Kasparov decisively defeated the
machine. In 1996, however, the successor program Deep
Blue (sponsored by IBM) shocked the chess world by beat-
ing Kasparov in the first game of their match. Kasparov
went on to win the match, but the following year an updated
version of Deep Blue defeated Kasparov 3 1/2–2 1/2. A com-
puter had arguably become the strongest chess player in the
world. As a practical matter, the match brought IBM invalu-
able publicity as a world leader in supercomputing.

Chess and AI
The earliest computer chess theorists such as Claude Shan-
non and Alan Turing saw the game as one potential way
to demonstrate true machine intelligence. Ironically, by
the time computers had truly mastered chess, the artificial
intelligence (AI) community had concluded that mastering
the game was largely irrelevant to their goals. AI pioneers
Herbert Simon and John McCarthy have referred to chess
as “the Drosophila of AI.” By this they mean that, like the
ubiquitous fruit flies in genetics research, chess became an
easy way to measure computer prowess. But what was it
measuring? The dominant brute-force approach was more
a measure of computing power than the application of such
AI techniques as pattern recognition. (There is, however,
still some interest in writing chess programs that “think”
more like a human player.) In recent years there has been
some interest in programming computers to play the Asian
board game Go, where positional and structural elements
play a greater role than in chess. However, even the latest
generation of Go programs seem to be relying more on a
statistical approach than a deep conceptual analysis.

Further Reading
Computer History Museum. “Mastering the Game: A History

of Computer Chess.” Available online. URL: http://www.
computerhistory.org/chess/. Accessed April 28, 2007.

Hsu, Feng-Hsiung. Behind Deep Blue: Building the Computer That
Defeated the World Chess Champion. Princeton, N.J.: Princ-
eton University Press, 2004.

Levy, David, and Monty Newborn. How Computers Play Chess.
New York: Computer Science Press, 1991.

Shannon, Claude E. “Programming a Computer for Playing
Chess.” Philosophical Magazine 41 (1950): 314. Available from
Computer History Museum. Available online. URL: http://
archive.computerhistory.org. Accessed April 27, 2007.

chip
As early as the 1930s, researchers had begun to investi-
gate the electrical properties of materials such as silicon

and germanium. Such materials, dubbed “semiconductors,”
were neither a good conductor of electricity (such as cop-
per) nor a good insulator (such as rubber). In 1939, one
researcher, William Shockley, wrote in his notebook “It has
today occurred to me that an amplifier using semiconduc-
tors rather than vacuum [tubes] is in principle possible.” In
other words, if the conductivity of a semiconductor could
be made to vary in a controlled way, it could serve as an
electronic “valve” in the same way that a vacuum tube can
be used to amplify a current or to serve as an electronic
switch.

The needs of the ensuing wartime years made it evi-
dent that a solid-state electronic device would bring many
advantages over the vacuum tube: compactness, lower
power usage, higher reliability. Increasingly complex elec-
tronic equipment, ranging from military fire control sys-
tems to the first digital computers, further underscored the
inadequacy of the vacuum tube.

In 1947, William Shockley, along with John Bardeen
and Walter Brattain, invented the transistor, a solid-state
electronic device that could replace the vacuum tube for
most low-power applications, including the binary switch-
ing that is at the heart of the electronic digital computer.
But as the computer industry strove to pack more process-
ing power into a manageable volume, the transistor itself
began to appear bulky.

Starting in 1958, two researchers, Jack Kilby of Texas
Instruments and Robert Noyce of Fairchild Semiconduc-
tor, independently arrived at the next stage of electronic
miniaturization: the integrated circuit (IC). The basic idea
of the IC is to make semiconductor resistors, capacitors,
and diodes, combine them with transistors, and assemble
them into complete, compact solid-state circuits. Kilby did
this by embedding the components on a single piece of ger-
manium called a substrate. However, this method required
the painstaking and expensive hand-soldering of the tiny
gold wires connecting the components. Noyce soon came
up with a superior method: Using a lithographic process, he
was able to print the pattern of wires for the circuit onto a
board containing a silicon substrate. The components could
then be easily connected to the circuit. Thus was born the
ubiquitous PCB (printed circuit board). This technology
would make the minicomputer (a machine that was roughly
refrigerator-sized rather than room-sized) possible during
the 1960s and 1970s. Besides the PCBs being quite reli-
able compared to hand-soldered connections, a failed board
could be easily “swapped out” for a replacement, simplify-
ing maintenance.

From IC to Chip
The next step to the truly integrated circuit was to form the
individual devices onto a single ceramic substrate (much
smaller than the printed circuit board) and encapsulate
them in a protective polymer coating. The device then func-
tioned as a single unit, with input and output leads to con-
nect it to a larger circuit. However, the speed of this “hybrid
IC” is limited by the relatively large distance between com-
ponents. The modern IC that we now call the “computer
chip” is a monolithic IC. Here the devices, rather than being

chip        85

attached to the silicon substrate, are formed by altering the
substrate itself with tiny amounts of impurities (a process
called “doping”). This creates regions with an excess of
electrons (n-type, for negative) or a deficit (p-type for posi-
tive). The junction between a p and an n region functions
as a diode. More complex arrangements of p and n regions
form transistors. Layers of transistors and other devices can
be formed on top of one another, resulting in a highly com-
pact integrated circuit. Today this is generally done using
optical lithography techniques, although as the separation
between components approaches 100 nm (nanometers, or
billionths of a meter) it becomes limited by the wavelength
of the light used.

In computers, the IC chip is used for two primary func-
tions: logic (the processor) and memory. The microproces-
sors of the 1970s were measured in thousands of transistor
equivalents, while chips such as the Pentium and Athlon
being marketed by the late 1990s are measured in tens
of millions of transistors (see microprocessor). Mean-
while, memory chips have increased in capacity from the
4K and 16K common around 1980 to 256 MB and more.
In what became known as “Moore’s law,” Gordon Moore
has observed that the number of transistors per chip has
doubled roughly every 18 months.

Future Technologies
Although Moore’s law has proven to be surprisingly resil-
ient, new technologies will be required to maintain the
pace of progress.

In January 2007, Intel and IBM separately announced a
process for making transistors out of the exotic metal haf-
nium. It turns out that hafnium is much better than the tra-
ditional silicon at preventing power leakage (and resulting
inefficiency) through layers that are only about five atoms
thick. Hafnium transistors can also be packed more closely
together and/or run at a higher speed.

Another approach is to find new ways to connect the
transistors so they can be placed closer together, allow-
ing signals to travel more quickly and thus provide faster
operation. Hewlett-Packard (HP) is developing a way to
place the connections on layers above the transistors them-
selves, thus reducing the space between components. The
scheme uses two layers of conducting material separated by
a layer of insulating material that can be made to conduct
by having a current applied to it. Although promising, the
approach faces difficulties in making the wires (only about
100 atoms thick) reliable enough for applications such as
computer memory or microprocessors.

Ultimately, direct fabrication at the atomic level (see
nanotechnology) will allow for the maximum density
and efficiency of computer chips.

Further Reading
Baker, R. Jacob, Harry W. Li, and David E. Boyce. CMOS Circuit

Design, Layout and Simulation. New York: IEEE Press, 1998.
Saint, Christopher and Judy Saint. IC Layout Basics. New York:

McGraw-Hill, 2001.
Semiconductor Industry Association. Available online. URL:

http://www.sia-online.org/home.cfm. Accessed August 13,
2007.

Thompson, J. M. T., ed. Visions of the Future: Physics and Electron-
ics. New York: Cambridge University Press, 2001.

chipset
In personal computers a chipset is a group of integrated
circuits that together perform a particular function. System
purchasers generally think in terms of the processor itself
(such as a Pentium III, Pentium IV, or competitive chips
from AMD or Cyrix). However they are really buying a
system chipset that includes the microprocessor itself (see
microprocessor) and often a memory cache (which may be
part of the microprocessor or a separate chip—see cache)
as well as the chips that control the memory bus (which
connects the processor to the main memory on the moth-
erboard—see bus.) The overall performance of the system
depends not just on the processor’s architecture (including
data width, instruction set, and use of instruction pipe-
lines) but also on the type and size of the cache memory,
the memory bus (RDRAM or “Rambus” and SDRAM) and
the speed with which the processor can move data to and
from memory.

In addition to the system chipset, other chipsets on the
motherboard are used to support functions such as graphics
(the AGP, or Advanced Graphics Port, for example), drive
connection (EIDE controller), communication with exter-
nal devices (see parallel port, serial port, and USB), and
connections to expansion cards (the PCI bus).

At the end of the 1990s, the PC marketplace had chip-
sets based on two competing architectures. Intel, which
originally developed an architecture called Socket 7, has
switched to the more complex Slot-1 architecture, which
is most effective for multiprocessor operation but offers
the advantage of including a separate bus for accessing the
cache memory. Meanwhile, Intel’s main competitor, AMD,
has enhanced the Socket 7 into “Super Socket 7” and is
offering faster bus speeds. On the horizon may be com-
pletely new architecture. In choosing a system, consumers
are locked into their choice because the microprocessor pin
sockets used for each chipset architecture are different.

Further Reading
Intel. “Desktop Chipsets.” Available online. URL: http://www.

intel.com/products/desktop/chipsets/. Accessed June 6, 2007.
“Motherboards.” Available online. URL: http://www.motherboards.

org/index.html. Accessed June 6, 2007.
Walrath, Josh. “Chipsets Today and Tomorrow.” ExtremeTech.

Available online. URL: http://www.extremetech.com/article2/
0,1697,1845493,00.asp. Accessed June 6, 2007.

Church, Alonzo
(1903–1995)
American
Mathematician

Born in Washington, D.C., mathematician and logician
Alonzo Church made seminal contributions to the funda-
mental theory of computation. Church was mentored by
noted geometer Oswald Veblen and graduated from Prince-

86        chipset

ton with an A.B. in mathematics in 1924. Veblen encouraged
Church to devote his graduate thesis to the investiga-
tion of the fundamental problem of computability. At the
time, mathematician David Hilbert and his followers were
attempting to create a formal way to express mathematical
propositions.

In 1927, Church received his Ph.D. from Princeton for
a dissertation on the axiom of choice in set theory. During
the 1930s, Church developed the lambda calculus, which
provided rules for substituting bound variables in generat-
ing mathematical functions. The Church thesis (also called
the Church-Turing thesis, because Alan Turing [see Tur-
ing, Alan] approached the same conclusion from a differ-
ent angle) stated that every calculable function in number
theory could be defined in lambda calculus and was also
computable in Turing’s sense (see computability and com-
plexity). This provided the theoretical confidence that given
appropriate technology, computers could tackle a variety of
problems reliably. At the same time, another of Church’s
achievements, the Church theorem, proved that there were
theorems that could not be proven by any computer.

Church’s lambda calculus became important for the
design and verification of computer languages, and the lisp
language in particular was based on lambda expressions.
Computer scientists working with problems in list pro-
cessing and the use of recursion also have owed much to
Church’s pioneering work.

Church taught at Princeton for many years. In 1961,
he received the title of Professor of Mathematics and Phi-
losophy. In 1967, he took the same position at UCLA, where
he was active until 1990. He received numerous honorary
degrees, and in 1990 an international symposium was held
in his honor at the State University of New York at Buffalo.

Further Reading
Barendregt, H. “The Impact of the Lambda Calculus in Logic and

Computer Science.” The Bulletin of Symbolic Logic 3: 181–215.
Church, Alonzo. Introduction to Mathematical Logic. Princeton,

N.J.: Princeton University Press, 1956.
Copeland, Jack. “The Church-Turing Thesis.” AlanTuring.net.

Available online. URL: http://www.alanturing.net/turing_
archive/pages/Reference%20Articles/The%20Turing-Church
%20Thesis.html. Accessed June 6, 2007.

Davis, M. The Undecidable: Basic Papers on Undecidable Proposi-
tions, Unsolvable Problems, and Computable Functions. Hack-
ett, N.Y.: Raven Press, 1965.

Cisco Systems
Cisco Systems (NASDAQ symbol: CSCO) builds much of
the physical infrastructure of the Internet—the routers and
switches that direct the streams of data between Web serv-
ers and millions of users, as well as specialized networking,
security, and storage devices.

Cisco was founded in 1984 by Leo Bosack and Sandy
Lerner, a married couple who worked in computer opera-
tions at Stanford University. (The name “Cisco” is from
“San Francisco,” and the company’s logo is a stylized ver-
sion of the Golden Gate Bridge.)

The company focused on networking at a time when
that sector of the computer industry was still rather small.
They were able to build one of the first routers that could
link otherwise incompatible computers over the Internet.
(Eventually, when the protocol was standardized (see tcp/
ip), routers could focus on the burgeoning traffic in IP
packets.)

As the market for basic hardware became relatively sat-
urated, Cisco began to emphasize the development of more
intelligent “application aware” routing solutions as well
as equipment geared for distributed processing (see grid
computing).

Cisco grew along with the Internet/Web boom of the
late 1990s. In 2000 Cisco was for a time the most valu-
able company in the world, with a market capitalization of
more than half a trillion dollars. (Today that has shrunk to
a “mere” $180 billion or so—still one of the world’s most
valuable companies.)

The “Last Mile”
In the telecommunications industry, “the last mile” refers to
the connections and equipment that actually bring content
to users’ homes and businesses. One source of Cisco’s con-
tinued growth in the 2000 decade is the way it has addressed
the consumer sector through strategic acquisitions. In 2003,
Cisco acquired Linksys, maker of home Internet routers and
wireless access points. In 2005, Scientific Atlanta—maker
of cable modems, digital cable boxes, and other consumer
equipment—also became a Cisco company.

The company has also entered the area of Internet tele-
phony (see voip) by teaming up with Skype to build a cord-
less phone that can connect to a computer to make phone
calls over the Internet.

Moving from hardware into software, Cisco in 2007
purchased Utah Street Networks, a San Francisco–based
maker of software to link online communities (see also
social networking) and operator of the Tribe.net Web
site. Around the same time, Cisco made a much larger buy,
acquiring WebEx, maker of online collaboration software,
for $3.2 billion.

In 2007 Cisco had revenue of $35 billion, with more
than 63,000 employees.

Further Reading
Burrows, Peter. “Microsoft and Cisco: Product Promises: The Tech

Giants’ New Spirit of Cooperation Is Promising, but CEOs
Ballmer and Chambers Say Making the Alliance Work Will
Be Difficult.” Business Week Online, August 20, 2007. Avail-
able online. URL: http://www.businessweek.com/technol-
ogy/content/aug2007/tc20070820_282297.htm?chan=search.
Accessed September 3, 2007.

Cisco Corporation Web site. Available online. URL: http://www.
cisco.com/. Accessed September 3, 2007.

Paulson, E. Inside Cisco: The Real Story of Sustained M&A Growth.
New York: Wiley, 2001.

Stauffer, Davide. Nothing but Net: Business the Cisco Way. Milford,
Conn.: Capstone Publishing, 2000.

Velte, Toby J., and Anthony T. Velte. Cisco: A Beginner’s Guide. 4th
ed. New York: McGraw-Hill, 2007.

Waters, John K. John Chambers and the Cisco Way: Navigating
through Volatility. New York: Wiley, 2002.

Cisco Systems        87

class
A class is a data type that combines both a data structure
and methods for manipulating the data. For example, a
string class might consist of an array to hold the charac-
ters in the string and methods to compare strings, combine
strings, or extract portions of a string (see characters
and strings).

As with other data types, once a class is declared,
objects (sometimes called instances) of the class can be
created and used. This way of structuring programs is
called object-oriented programming because the class
object is the basic building block (see object-oriented
programming).

Object-oriented programming and classes provide sev-
eral advantages over traditional block-structured languages.
In a traditional BASIC or even Pascal program, there is
no particular connection between the data structure and
the procedures or functions that manipulate it. In a large
program one programmer might change the data structure
without alerting other programmers whose code assumes
the original structure. On the other hand, someone might
write a procedure that directly manipulates the internal
data rather than using the methods already provided. Either
transgression can lead to hard-to-find bugs.

With a class, however, data and procedures are bound
together, or encapsulated. This means that the data in a
class object can be manipulated only by using one of the
methods provided by the class. If the person in charge
of maintaining the class decides to provide an improved
implementation of the data structure, as long as the data
parameters expected by the class methods do not change,
code that uses the class objects will continue to function
properly.

Most languages that use classes also allow for inheri-
tance, or the ability to create a new class that derives data
and methods from a “parent” class and then modifies or
extends them. For example, a class that provides support
for 3D graphics could be derived from an existing class for
2D graphics by adding data items such as a third (Z) coor-
dinate and replacing a method such as “line” with a version
that works with three coordinates instead of two.

In designing classes, it is important to identify the
essential features of the physical situation you are trying to
model. The most general characteristics can be put in the
“base class” and the more specialized characteristics would
be added in the inherited (derived) classes.

Classes and C++
Classes first appeared in the Simula 67 language, which
introduced the terms class and object (see Simula). As the
name suggests, the language was used mainly for simu-
lation and modeling, but its object-oriented ideas would
prove influential. The Smalltalk language developed at
Xerox PARC in the 1970s ran on the Alto computer, which
pioneered the graphic user interface that would become
popular with the Macintosh in the 1980s. Smalltalk used
classes to build a seamless and extensible operating system
and environment (see Smalltalk).

However it was Bjarne Stroustrup’s C++ language that
brought classes into the programming mainstream (see
c++). C++ essentially builds its classes by extending the
C struct so that it contains both methods (class functions)
and data. An access mechanism allows class variables to be
designated as completely accessible (public), which is rare,
accessible only by derived classes (protected), or accessible
only within the class itself (private). The creation of a new
object of the class is specified by a constructor function,
which typically allocates memory for the object and sets
initial default values. The corresponding destructor func-
tion frees up the memory when the object no longer exists.

C++ allows for multiple inheritance, meaning that a class
can be derived from more than one parent or base class.
The language also provides two powerful mechanisms for
extending functionality. The first, called virtual functions,
allows a base class and its derived classes to have functions
based on the same interface. For example, a base graph-
ics class might have virtual line, circle, setcolor, and other
functions that would be implemented in derived classes for
3D objects, 3D solid objects, and so on. When the program
calls a method in a virtual class, the compiler automatically
searches the class’s “family tree” until it finds the class that
corresponds to the actual data type of the object.

A template specifies how to create a class definition
based on the type of data to be used by the class. In other
words, where a regular procedure takes and manipulates
data parameters and returns data, a template takes data
parameters and returns a definition of a class for working
with that data (see template).

Other languages of the 1980s and later have embraced
classes. Examples include descendants of the Algol family
of languages (see Pascal, Ada, c++’s close cousin—Java),
and Microsoft’s Visual Basic. (There is even a version of
COBOL with classes.)

A class encapsulates (or hides) its internal information from the
rest of the program. When the program calls MyCircle.GetPosition,
the GetPosition member function of the MyCircle Circle class object
retrieves the private Position data and sends it back to the calling
statement, where it is assigned to the variable P. Private data can-
not be directly accessed or changed by an outside caller.

88        class

The use of class frameworks, such as the Microsoft
Foundation Classes (MFC), the C++ STL (Standard Tem-
plate Library) and various Java implementations, has pro-
vided a superior way to organize the complexities of data
access and operating system functions.

Further Reading
Sebesta, Robert W. Concepts of Programming Languages. 8th ed.

Boston: Addison-Wesley, 2007.
Stroustrup, Bjarne. The C++ Programming Languages. Special 3rd

ed. Reading, Mass.: Addison-Wesley, 2000.

clean room  See reverse engineering.

client-server computing
It is often more efficient to have a large, relatively expen-
sive computer provide an application or service to users on
many smaller, inexpensive computers that are linked to it
by a network connection. The term server can apply to both
the application providing the service and the machine run-
ning it. The program or machine that receives the service is
called the client.

A familiar example is browsing the Web. The user runs
a Web browser, which is a client program. The browser
connects to the Web server that hosts the desired Web site.
Another example is a corporate server that runs a database.
Users’ client programs connect to the database over a local
area network (LAN). Many retail transactions are also han-
dled using a client-server arrangement. Thus, when a travel
or theater booking agent sells a ticket, the agent’s client pro-
gram running on a PC or terminal connects to the server
containing the database that keeps track of what seats are
available (see terminal).

There are several advantages to using the client-server
model. Having most of the processing done by one or
more servers means that these powerful and more costly
machines can be used to the greatest efficiency. If more
processing capacity is needed, more servers can be brought
online without having to revamp the whole system. Users,
on the other hand, only need PCs (or terminals) that are
powerful enough to run the smaller client program to con-
nect to the server.

Keeping the data in a central location helps ensure its
integrity: If a database is on a server, transactions can be
committed in an orderly way to ensure that, for example, the
same ticket isn’t sold to two people. A client-server model
also offers flexibility to users. Any client program that
meets the standards supported by the server can be used
to make a connection. (The marketplace generally decides
which clients will be supported: for example most Web sites
today support both Microsoft Internet Explorer and Firefox,
although they may cater to some features unique to one or
the other and other browsers will also work to some extent.)

Client-server computing does have potential disadvan-
tages. If there is only one server, a failure of the server
(whether from a hardware failure, a bug, or a hacker attack)
brings the whole system to a halt, since the client has no

ability to complete transactions on its own. The clients’
access to the server is also dependent on the network that
connects them. A network failure or traffic bottleneck will
also prevent the client from getting any work done.

Extending the Model
One way used in larger organizations to improve the effi-
ciency of the client-server model is to introduce an interme-
diary between the client and the server. The intermediary
program can cache frequently requested data so it can be
supplied immediately rather than having to be retrieved
from the server (see cache). The intermediary can also act
as a “traffic cop” to route client requests to the server that
currently has the least load or the fastest network access.

Another design consideration is the distribution of pro-
cessing between the client and the server. At one extreme is
the “thin client,” where the client machine may only display
forms and transmit information to and display information
from the server. A POS (point of sale) terminal typifies this
approach. On the other hand, a “fat client” running on a
full-featured desktop PC may perform functions such as
verifying the completeness and validity of data before send-
ing it to the server, or use information from the server to
generate graphics (this is typical with online games, where
limiting the amount of information that must be sent over
the network can be crucial to speed).

The ultimate extension of the client-server model is
“distributed object computing.” This is an application of
object-oriented programming principles to the organiza-
tion of the resources needed for data processing. In this
model each object (such as a database table) is accessible
throughout the network by all other objects, regardless of
their physical location. This scheme provides the ultimate
in flexibility, because objects can be moved freely among
physical machines in order to even out the load. For one
popular implementation of distributed object computing is
CORBA (Common Object Request Broker Architecture—see
corba). For Windows-based programs, Microsoft has devel-
oped the DCOM (Distributed Component Object Model),
which allows controls (that is, objects with functional inter-
faces) written using ActiveX to communicate with each
other in a networked environment. (For example, an Excel
spreadsheet in an ActiveX control can be embedded in a
Word document, and instructed to update itself regularly
by obtaining data from a Microsoft Access database table
on another machine.) The Microsoft.NET initiative is also
geared toward creating applications that can fluidly inter-
operate over the Internet (see Microsoft .NET).

Further Reading
Fox, Dan. Building Distributed Applications with Visual Basic .NET.

Indianapolis: Sams, 2002.
Goodyear, Mark, ed. Enterprise System Architectures. Grand Rap-

ids, Mich.: CRC Press, 1999.
Graham, Steve [and others]. Building Web Services with Java: Mak-

ing Sense of XML, SOAP, WSDL and UDDI. 2nd ed. Indianapo-
lis: Sams, 2004.

“Network Design Manual: Client-Server Fundamentals.” Available
online. URL: http://www.networkcomputing.com/netdesign/
1005part1a.html. Accessed January 25, 2008.

client-server computing        89

Sinclair, Joseph T., and Mark S. Merkow. Thin Clients Clearly
Explained. San Francisco: Morgan Kaufmann, 2000.

clock speed
The transfer of data within the microprocessor and between
the microprocessor and memory must be synchronized to
ensure that the data needed to execute each instruction is
available when the flow of execution has reached an appro-
priate point. This synchronization is accomplished by mov-
ing data in intervals that correspond to the pulses of the
system clock (a quartz crystal). This is done by sending
control signals that tell the components of the processor
and memory when to send or wait for data. Thus, if the
microprocessor is the heart of the computer, the clock is the
heart’s pacemaker. Because most devices cannot run at the
same pace as the processor, circuits in various parts of the
motherboard create secondary control signals that run at
various ratios of the actual system clock speed.

The following table shows the speed of various system
components in relation to the system clock rate. Although
the example uses a 600-MHz clock, the ratios will generally
hold for faster processors.

Device	S peed	R elationship

Processor	 600	 System bus * 4.5
System
(Memory) Bus	 133	 (depends on multiplier)
Level 2 Cache	 300	 Processor / 2
AGP	 66	 System bus / 2
PCI bus	 33	 System bus / 4

Microprocessors are rated according to the frequency
(that is, number of pulses per second) of their associated
clock. For example, a 1.2-GHz Pentium IV processor has
1.2 billion (giga-) pulses per second. It follows that all other
things being equal, the higher a processor’s clock frequency,
the more instructions it can process per second. An alterna-
tive way to rate processors is according to the number of a
standard type of instruction that it can process per second,
hence MIPS (millions of instructions per second).

The relationship between clock speed and processor
performance is not as simple as the preceding might imply,
however. Each processor is designed with circuits that can
move data at a certain rate. In some cases a processor can
be run at a higher clock rate than specified (this is called
overclocking), but then reliability comes into question.
Also, the actual processing power of a processor depends
on many other factors. If a processor implements instruc-
tions in its microcode that are more efficient for handling
certain operations (such as floating point math or graphics
rendering), applications that depend on these operations
may run faster on one processor than on another, even if
the two processors run at the same clock speed. The speed
of the system bus (which connects the processor to the
RAM memory) also affects the speed at which data can be
fetched, processed, and stored. A processor with a clock
speed of 733 MHz should perform better on a motherboard

with a bus speed of 133 MHz than on one with a bus speed
of only 100 MHz.

Speed is “sexy” in marketing terms, so the major chip
manufacturers always tout their fastest chips. However, the
difference in speed between, for example, a 2.2-GHz version
of a processor and a 2.0-GHz version may be unnoticeable
to the user of all but the most processor-intensive applica-
tions (such as image processing). Indeed, if the system with
the slower chip has a faster bus, faster memory (such as
RDRAM), or a larger processor cache (see cache) it may
well outperform the one with a faster chip.

Another reason for caution in interpreting clock speed
is that many recent PCs have two or even four proces-
sors (see multiprocessing). Performance in such systems
is likely to depend at least as much on optimization of the
operating system and applications as on any multiple of raw
clock speed. This trend to multicore CPUs is also seen as an
alternative to any substantial increase in processor speed,
because higher speeds bring increasing concerns about heat
and power usage.

In PCs the term “clock” can also refer to the battery-pow-
ered “real-time” clock that provides a timing interval that
can be accessed by the operating system and applications.

Further Reading
Clock speed resources. TechRepublic. Available online. URL:

http://search.techrepublic.com.com/search/clock+speed.
html?t=11& s=0&o=0. Accessed June 6, 2007.

“Understanding System Memory and CPU Speeds.” Available online.
URL: http://www.directron.com/fsbguide.html. Accessed June
6, 2007.

“What Is CPU Overclocking?” Available online. URL: http://www.
webopedia.com/DidYouKnow/Computer_Science/2005/over
clocking.asp. Accessed June 6, 2007.

COBOL
Common Business-Oriented Language was developed under
the impetus of a 1959 Department of Defense initiative to
create a common language for developing business applica-
tions that centered on the processing of data from files. (The
military, after all, was a “business” whose inventory control
and accounting needs dwarfed those of all but the largest
corporations.) At the time, the principal business-oriented
language for mainframe computers was FLOW-MATIC, a
language developed by Grace Hopper’s team at Remington-
Rand UNIVAC and limited to that company’s computers
(see Hopper, Grace Murray). The first COBOL compil-
ers became available in 1960, and the American National
Standards Institute (ANSI) issued a standard specification
for the language in 1968. Expanded standards were issued
in 1974 and 1985 (COBOL-74 and COBOL-85) with a new
standard issued in 2002.

The committee that outlined the language that would
become COBOL focused on making program statements
resemble declarative English sentences rather than the
mathematical expressions used by FORTRAN for scientific
programming. COBOL’s designers hoped that accountants,
managers, and other business professionals could quickly
master the language, reducing if not removing the need for

90        clock speed

professional programmers. (This theme of “programming
without programmers” would recur with regard to other
languages such as RPG, BASIC, and various database sys-
tems, always with limited success.)

Program Structure
A COBOL program as a whole resembles a business form in
that it is divided into specific sections called divisions, each
with required and optional items.

The Identification division simply identifies the pro-
grammer and gives some information about the program:

IDENTIFICATION DIVISION.
PROGRAM-ID WEEKLY REPORT.
AUTHOR JAMES BRADLEY.
DATE-WRITTEN DECEMBER 10, 2000.
DATE-COMPILED DECEMBER 12, 2000.
REMARKS THIS IS AN EXAMPLE PROGRAM.

The Environment division contains specifications about
the environment (hardware) for which the program will
be compiled. In some cases (for example, microcomputer
versions of COBOL) it may not be needed. In other cases, it
might simply have a Configuration section that specifies the
machine to be used:

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER IBM-370.
OBJECT-COMPUTER IBM-370.

(The reason for the separate source and object computers is
that programs were sometimes compiled on one computer
for use on another, often smaller, one.)

In some cases, the Environment Division must also
include an Input-Output section that specifies devices and
files that will be used by the program. For example:

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT STUDENT-FILE ASSIGN TO READER
SELECT STUDENT-LISTING ASSIGN TO LOCAL-
PRINTER

The Data division gives a description of the data records
and other items that will be processed by the program.
It is roughly comparable to the declarations of variables
in languages such as Pascal, C, or BASIC. Since COBOL
focuses on the processing of file records and the format-
ting of reports, it tends to have fewer data types than many
other languages, but it makes it easier to describe the kinds
of data structures commonly used in business applications.
For example, it is easy to describe records that have fields
and subfields by using level numbers to indicate the rela-
tionship:

DATA DIVISION.
FILE SECTION.
FD INFILE

LABEL RECORDS ARE OMITTED.	

01 STUDENT-DATA.

02 STUDENT-ID PIC 999999.
02 STUDENT-NAME.

03 LAST-NAME PIC X(15).
03 INITIAL PIC X.
03 FIRST-NAME PIC X(10).

02 GPA PIC 9.99

The “PIC” or picture clause specifies the type of data
(using 9’s and a decimal point for numbers and X for text)
and the length. In addition to specifying the input records,
the Data division often includes items that specify the for-
mat of the lines of output that are to be printed.

The Procedure division provides the statements that
perform the actual data manipulation. Procedures can be
organized as subroutines (roughly equivalent to procedures
or functions on other languages). Some sample procedure
statements are:

READ STUDENT-DATA INTO STUDENT-WORK-RECORD
AT END MOVE ‘E’ TO PROC-FLAG-ST

GO TO EXIT-PRINT
ADD 1 TO TOTAL-STUDENT-RECORDS

Mathematical expressions can be computed using a
Compute statement:

COMPUTE GPA = TOTAL-GRADES / CLASSES

Branching (if) statements are available, and looping is
provided by the Perform statement, for example:

PERFORM 100-PRINT-LINE
UNTIL LINES-FL IS EQUAL TO ‘E’

(As with older versions of BASIC, subroutines are numbered.)

Impact and Prospects
From the 1960s through the 1980s, COBOL became the
workhorse language for business applications for main-
frame and mid-size computers, and it is still widely used
today. (The concerns about possible problems at the end
of the century often involved older programs written in
COBOL, see y2k problem.) The main line of programming
language evolution bypassed COBOL and went through
Algol (a contemporary of COBOL) and on into Pascal, C,
and other block-structured languages (see also structured
programming).

Some modern versions of COBOL have incorporated
later developments in structured programming (such as
modularization) and even object-oriented design. COBOL
has also shown considerable versatility in accommodating
modern development frameworks, including Microsoft.NET
as well as processing now-ubiquitous XML data. Neverthe-
less, usage of COBOL continues to decline slowly as devel-
opers increasingly turn to languages such as C++, scripting
languages, or database development systems.

Further Reading
Bivar de Oliveria, Rui. The Power of COBOL: For Systems Developers

of the 21st Century. Charleston, S.C.: BookSurge, 2006.
COBOL Portal. Available online. URL: http://www.cobolportal.

com. Accessed June 8, 2007.

COBOL        91

Murcah, Mike, Anne Prince, and Raul Menendez. Murach’s Main-
frame COBOL. Fresno, Calif.: Murach and Associates, 2004.

Sammet, J. E. “The Early History of COBOL,” in History of Pro-
gramming Languages. Wexelblat, R. L., ed., 199–276. New
York: Academic Press, 1985.

codec
Short for “coder/decoder,” a codec is essentially an algo-
rithm for encoding (and compressing) a stream of data for
transmission, and then decoding and decompressing it at
the receiving end. Usually the data involved represents
audio or video content (see streaming). Typically the data
is being downloaded from a Web site to be played on a
personal computer or portable player (see multimedia and
music and video players, digital).

A codec is described as “lossy” if some of the origi-
nal information is lost in the compression process. It then
becomes a question of whether the loss in quality is per-
ceived by the user as significant. A codec that preserves all
the information needed to re-create the original file is “loss-
less.” For most purposes, the much greater size of the loss-
less version of a file is not worth the (often imperceptible)
increase in quality or fidelity.

A codec is usually used in connection with a “container
format” that specifies how the encoded data is to be stored

in a file. Often a container can hold more than one data
stream and even more than one kind of media (such as
video and audio). When one refers to a Windows WAV file,
for example, one is actually referring to a container.

Most of the popular codecs and file formats are propri-
etary, which creates something of a dilemma for users who
prefer open-source solutions. However, while most Linux
distributions do not include support for formats such as
MP3 out of the box, distributions such as Ubuntu are now
making it easier for users to choose nonsupported propri-
etary codecs if desired.

The preceding table lists some codecs likely to be
encountered by program developers and consumers.

Further Reading
Audio Files. Available online. URL: http://www.fileinfo.net/

filetypes/audio. Accessed September 3, 2007.
Harte, Lawrence. Introduction to MPEG. Fuquay Varina, N.C.:

Althos Publishing, 2006.
Rathbone, Andy. MP3 for Dummies. 2nd ed. New York: Hungry

Minds, 2001.
Richardson, Iain E. G. Video Codec Design: Developing Image and

Video Compression Systems. New York: Wiley, 2002.
Roberts-Breslin, Jan. Making Media: Foundations of Sound and

Image Production. Boston: Focal Press, 2003.
Thurott, Paul. PC Magazine Windows XP Digital Media Solutions.

Indianapolis: Wiley, 2005.
Video Files. Available online. URL: http://www.fileinfo.net/

filetypes/video. Accessed September 3. 2007.

cognitive science
Cognitive science is the study of mental processes such as
reasoning, memory, and the processing of perception. It
is necessarily an interdisciplinary approach that includes
fields such as psychology, linguistics, and neurology. The
importance of the computer to cognitive science is that it
offers a potential nonhuman model for a thinking entity.
The attempts at artificial intelligence over the past 50 years
have used the insights of cognitive science to help devise
artificial means of reasoning and perception. At the same
time, the models created by computer scientists (such as
the neural network and Marvin Minsky’s idea of “multiple
intelligent agents”) have in turn been applied to the study
of human cognition (see Minsky, Marvin Lee and neural
network).

Since the late 19th century, technological metaphors
have been used to describe the human mind. The neurons
and synapses of the brain were compared to the multi-
tude of switches in a telephone company central office. The
invention of digital computers seemed to offer an even more
compelling correspondence between neurons and their elec-
trochemical states and the binary state of a vacuum tube or
transistor. It is only a small further step to assert that human
mental processes can be reduced in principle to computa-
tion, albeit a very complex tapestry of computation. Various
schools of popular psychology and personal improvement
have offered simplistic images of the human mind suffering
from “bad programming” that can be debugged or manipu-
lated through various processes. The simulation of some
forms of reasoning and language construction by AI pro-

Codec	C ontainer Description

AAC	� advanced audio coding; developed as a
 � successor to MP3 and especially used

by Apple (iTunes, iPod, iPhone, etc.)
AIFF	� audio interchange file format; audio

 � container format for transferring content
between applications

ALAC	 Apple lossless audio codec
AVI	� audio video interleave; video and movies

  container format
FLACC	� free lossless audio codec; music, open

  source, lossless
MP3	� actually MPEG-3, probably the most

  common music codec
MPEG	� Moving Picture Experts Group; video,

 � movies, audio (four layers MPEG-1
through MPEG-4)

Ogg Vorbis	� music, open source (often used on Linux
  systems)

Quick Time	� Apple multimedia
Real Audio and	 developed by RealNetworks for many
  and RealVideo	  platforms
RIFF	� resource interchange file format; container

  format
Vorbis	� free, open-source audio codec (often used

  in Linux)
WAV	� Windows audio format (usually

  uncompressed)
WMA	 Windows media audio
WMV	 Windows media video

92        codec

grams certainly suggests that there are fruitful analogies
between human and machine cognition, but construction
of a detailed model that would be applicable to both human
and artificial intelligences seemed almost as distant in the
science fictional year of 2001 as it was when Alan Turing
and other AI pioneers first considered such questions in the
early 1950s (see Turing, Alan Mathison).

Symbolists and Connectionists	
Unlike standard computer memory cells, neurons can have
hundreds of potential connections (and thus states). If a
human being is a computer, it must be to a considerable
extent an analog computer, with input in the form of levels of
various chemicals and electrical impulses. Yet in the 1980s,
Allen Newell and Herbert Simon suggested that the “output”
of human mental experience can be effectively mapped as
relationships between symbols (words, images, and so forth)
that correspond to physical states (this is called the Physical
Symbol System Hypothesis). If so, then such a symbol sys-
tem would be “computable” in the Turing-Church sense (see
computability and complexity). Working from the com-
puter end, AI researchers have created a variety of programs
that seem to “understand” restricted universes of discourse
such as a table with variously shaped blocks upon it or
“story frames” based upon common human activities such
as eating in a restaurant. Thus, symbol manipulators can at
least appear to be intelligent.

The “connectionists,” however, argue that it is not sym-
bolic representations that are significant, but the structure
within the mind that generates them. By designing neu-
ral networks (or distributed processor networks) the con-
nectionists have been able to create systems that produce
apparently intelligent behavior (such as pattern recogni-
tion) without any reference to symbolic representation.

Critiques have also come from philosophers. Herbert
Dreyfus has pointed out that computers lack the body,
senses, and social milieu that shape human thought. That
machines can generate symbolic representations according
to some sort of programmed rules doesn’t make the machine
truly intelligent, at least not in the way experienced by
human beings. John Searle responded to the famous Turing
test (which states that if a human being can’t distinguish a
computer’s conversation from a human’s, the computer is
arguably intelligent). Searle’s “Chinese Room” imagines a
room in which an English-speaking person who knows no
Chinese is equipped with a program that lets him manipu-
late Chinese words in such a way that a Chinese observer
would think he knows Chinese. Similarly, Searle argues,
the computer might act “intelligently,” but it doesn’t really
understand what it is doing.

Advances in cognitive science will both influence and
depend on developments in brain research (especially the
connection between physical states and cognition) and in
artificial intelligence.

Further Reading
Bechtel, William, and Adele Abrahamson. Connectionism and the

Mind: Parallel Processing, Dynamics, and Evolution in Net-
works. 2nd ed. Cambridge, Mass.: Blackwell, 2000.

“Cognitive Science.” Stanford Encyclopedia of Philosophy. Avail-
able online. URL: http://plato.stanford.edu/entries/cognitive-
science/. Accessed June 10, 2007.

Horgan, Terence, and John Tienson. Connectionism and the Philoso-
phy of Psychology. Cambridge, Mass.: MIT Press, 1996.

Sobel, Carolyn. Cognitive Science: An Interdisciplinary Approach.
New York: McGraw-Hill, 2001.

Thagard, Paul. Mind: Introduction to Cognitive Science. 2nd ed.
Cambridge, Mass.: MIT Press, 2005.

color in computing
With the exception of a few experimental systems, color
graphics first became widely available only with the begin-
nings of desktop computers in the late 1970s. The first
microcomputers were able to display only a few colors
(some, indeed, displayed only monochrome or grayscale).
Today’s PC video hardware has the potential to display
millions of colors, though of course the human eye cannot
directly distinguish colors that are too close together. There
are several important schemes that are used to define a
“color space”—that is, a range of values that can be associ-
ated with physical colors.

RGB
One of the simplest color systems displays colors as varying
intensities of red, green, and blue. This corresponds to the
electronics of a standard color computer monitor, which
uses three electron guns that bombard red, green, and blue
phosphors on the screen. A typical RGB color scheme uses
8 bits to store each of the red, green, and blue components
for each pixel, for a total of 24 bits (16,777,216 colors). The
32-bit color system provides the same number of colors but
includes 8 bits for alpha, or the level of transparency. The
number of bits per pixel is also called the bit depth or color
depth.

CMYK
CMYK stands for cyan, magenta, yellow, and black. This
four component color system is standard for most types of
color printing, since black is an ink color in printing but is
simply the absence of color in video. One of the more diffi-
cult tasks to be performed by desktop publishing software
is to properly match a given RGB screen color to the cor-
responding CMYK print color. Recent versions of Microsoft
Windows and the Macintosh operating system include a
CMS (color matching system) to support color matching.

Palettes
Although most color schemes now support thousands or
millions of colors, it would be wasteful and inefficient to
use three or four bytes to store the color of each pixel in
memory. After all, any given application is likely to need
only a few dozen colors. The solution is to set up a palette,
which is a table of (usually 256) color values currently in
use by the program. (A palette is also sometimes called a
CLUT, or color lookup table.) The color of each pixel can
then be stored as an index to the corresponding value in the
palette.

color in computing        93

The user of a paint program can select a palette from
the full range of colors available from the operating system.
Many color graphics image formats such as GIF (graphic
interchange format) store a palette of the colors used by
the image. When converting an image that has more colors
that the palette can hold, various algorithms can be used to
choose a palette that preserves as much of the color range
as possible.

Further Reading
“Color” Webopedia. Available online. URL: http://www.webopedia.

com/Graphics/Color/. Accessed June 10, 2007.
Drew, John, and Sarah Meyer. Color Management: A Comprehensive

Guide for Graphic Designers. East Sussex, U.K.: RotoVision,
2005.

“Introduction to Color and Color Management Systems.” Apple
Computer Developer Connection. Available online. URL:
http://developer.apple.com/documentation/mac/ACI/ACI46.
html. Accessed June 10, 2007.

Koren, Norman. “Color Management and Color Science: Introduc-
tion.” Available online. URL: http://www.normankoren.com/
color_management.html. Accessed June 10, 2007.

COM  (common object model)  See Microsoft
.net.

common gateway interface  See cgi.

common object request broker architecture   
See corba.

compatibility and portability
The computers of the 1940s were each hand built and
unique. When the first commercial models were developed,
such as the UNIVAC and the first IBM mainframes, the
question of compatibility was born. Broadly speaking, com-
patibility is the degree to which a program or hardware
device designed for one system can work with or run on
another.

The designers of high-level languages usually intend that
a source program written using the proper language syntax
will compile and run on any system for which a compiler is
available. However, there are many factors that can destroy
compatibility. For example, if one machine stores the bytes
of a numeric value from least significant to most significant
while another does it in the opposite order, program code
that depends on directly referencing memory locations will
give the wrong results on one machine or another. Simi-
larly, standard data sizes such as “integer” might be 16 bits
on one system and 32 bits on another.

Language designers can minimize such problems by
separating hardware-related issues from the language itself,
as is the case with C and C++. A program is then linked
with standard libraries implemented for each hardware or
operating system environment.

Manufacturers often design newer models of their com-
puters so they are “upwardly compatible” with existing
models. This means that a program written for the smaller
machine should run correctly on the new, larger one. This
is of obvious benefit to users who do not want to have
to rewrite their software every time they upgrade their
machine. Often, however, such systems are not “down-
wardly compatible”—a program written for the new, larger
machine may rely on features or architectural characteris-
tics that are not available on the older, smaller machines.
Sometimes a “compatibility mode” can be specified for a
compiler or operating system. This restricts the use of fea-
tures to those available on the older system.

Compatibility is also important with regard to software.
Generally speaking, a newer version of a program such as a
word processor will be able to read files that were originally
created by a previous version, although this may not be true
for more than a few versions back. However, files saved from
the newest version may well be incompatible with older ver-
sions, because they contain formatting or other information
that is not understandable by the earlier version. Sometimes
an intermediate format (for example, see rtf, or Rich Text
Format) can be used to transfer files between otherwise
incompatible systems.

Compatibility between vendors can be an important
competitive issue. If a developer wants to enter a market
where one or two products are viewed as industry stan-
dards, the new product will have to be compatible with at
least most files created by the dominant products. A techni-
cally superior product can thus be a market disaster if it is
not compatible with the industry standard. In areas (such

A color lookup table (CLUT) or palette can be used to store the col-
ors actually being used by an image. Here up to 256 colors can be
selected out of millions of possibilities.

94        COM

as graphics file formats) where there are many alternatives
in widespread use, most programs will support multiple
formats.

Portability
Portability is the ability to adapt software or hardware to
a wide variety of platforms (that is, computer systems or
operating systems). Developers want their products to be
portable so they can adapt to an often rapidly changing
marketplace. A typical strategy for portability is to choose
a language that is in widespread use and a compiler that
is certified as meeting the ANSI or other standard for the
language. The program should be written in such a way that
it makes as few assumptions as possible about hardware-
dependent matters such as how data is stored in memory. It
is also sometimes possible to use standard frameworks that
provide the same functions in several different operating
systems such as Windows, Macintosh, and UNIX.

However, there is a tradeoff: The more “generic” a pro-
gram is made in order to be portable, the less optimized it
will be for any given hardware or operating environment.
The program will also not be able to take advantage of the
special features of a given operating system, which may put
it at a competitive disadvantage compared to the “native
version” of a program. (This is particularly true with Win-
dows, given that operating system’s dominance in personal
computing.)

The Internet has in general been a force for portability.
The Java language, in particular, is designed to be platform-
independent. A Java program is compiled into an interme-
diate language called byte code, which is interpreted or
compiled by a “virtual machine” program running on each
platform. Thus, the same Java program should run in a
browser under Windows, Macintosh, or UNIX (see java).

Further Reading
Hakuta, Mitsuari, and Masato Ohminami. “A Study of Software

Portability Evaluation.” Journal of Systems and Software 38
(August 1997): 145–154.

Robinson, John. “Delivering on Standards: Balancing Portabil-
ity and Performance.” Available online. URL: http://ipdps.
cc.gatech.edu/1999/papers/it2.pdf. Accessed August 11, 2007.

“Software Portability Home Page.” Available online. URL: http://
www.cs.wvu.edu/~jdm/research/portability/home.html.
Accessed June 11, 2007.

compiler
A compiler is a program that takes as input a program
written in a source language and produces as output an
equivalent program written in another (target) language.
Usually the input program is in a high-level language such
as C++ and the output is in assembly language for the target
machine (see assembler).

Compilers are useful because programming directly
in low-level machine instructions (as had to be done with
the first computers) is tedious and prone to errors. Use of
assembly language helps somewhat by allowing substitu-
tion of symbols (variable names) for memory locations and
the use of mnemonic names for operations (such as “add”

for addition, rather than some binary instruction code). An
assembler is essentially a compiler that needs to make only
relatively simple translations, because assembly language is
still at a relatively low level.

Moving to higher-level languages with relatively Eng-
lish-like statements makes programming easier and makes
programs easier to read and maintain. However, the task
of translating high-level statements to machine-level code
becomes a more complex multistep process.

The Compilation Process
Compilers are traditionally thought of as having a “front
end” that analyzes the source code (high-level language
statements) and a “back end” that generates the appropriate
low-level code. The front end processing begins with lexical
analysis. The compiler scans the source program looking for
matches to valid tokens as defined by the language. A token
is any word or symbol that has meaning in the language,

A parse tree showing how an assignment statement in Pascal can
be broken down into its component parts. Here ID stands for a vari-
able name, or identifier. An expression can be broken all the way
down to a single number.

compiler        95

such as a keyword (reserved word) such as if or while.
Next, the tokens are parsed or grouped according to the
rules of the language. The result of parsing is a “parse tree”
that resolves statements into their component parts. For
example, an assignment statement may be parsed into an
identifier, an assignment operator (such as =), and a value to
be assigned. The value in turn may be an arithmetic expres-
sion that consists of operators and operands.

Parsing can be done either “bottom up” (finding the
individual components of the statement and then linking
them together) or “top down” (identifying the type of state-
ment and then breaking it down into its component parts).
A set of grammatical rules specifies how each construct
(such as an arithmetic expression) can be broken into (or
built up from) its component parts.

The next step is semantic analysis. During this phase the
parsed statements are analyzed further to make sure they
don’t violate language rules. For example, most languages
require that variables must be declared before they are ref-
erenced by the program. Many languages also have rules for
which data types may be converted to other types when the
two types are used in the same operation.

The result of front-end processing is an intermediate rep-
resentation somewhere between the source statements and
machine-level statements. The intermediate representation
is then passed to the back end.

Code Generation and Optimization
The process of code generation usually involves multiple
passes that gradually substitute machine-specific code and
data for the information in the parse tree. An important
consideration in modern compilers is optimization, which
is the process of substituting equivalent (but more efficient)
constructs for the original output of the front end. For
example, an optimizer can replace an arithmetic expression
with its value so that it need not be repeatedly calculated
while the program is running. It can also “hoist out” an
invariant expression from a loop so that it is calculated only
once before the loop begins. On a larger scale, optimiza-
tion can also improve the communication between different
parts (procedures) of the program.

The compiler must attempt to “prove” that the change it
is making in the program will never cause the program to
operate incorrectly. It can do this, for example, by tracing
the possible paths of execution through the program (such
as through branching and loops) and verifying that each
possible path yields the correct result. A compiler that is
too “aggressive” in making assumptions can produce subtle
program errors. (Many compilers allow the user to control
the level of optimization, and whether to optimize for speed
or for compactness of program size.) During development,
a compiler is often set to include special debugging code in
the output. This code preserves potentially important infor-
mation that can help the debugging facility better identify
program bugs. After the program is working correctly, it
will be recompiled without the debugging code.

The final code generation is usually accomplished by
using templates that match each intermediate construc-
tion with a construction in the target (usually assembly)

language, plugging items in as specified by the template.
Often a final step, called peephole optimization, examines
the assembly code and identifies redundancies or, if pos-
sible, replaces a memory reference so that a faster machine
register is used instead.

In most applications the assembly code produced by
the compiler is linked to code from other source files. For
example, in a C++ applications class definitions and code
that use objects from the classes may be compiled sepa-
rately. Also most languages (such as C and C++) have oper-
ating system-specific libraries that contain commonly used
support functions.

Compilation is a multistep process. Lexical analysis breaks state-
ments down into tokens, which are then parsed and subjected to
semantic analysis. The resulting intermediate representation can be
optimized before the final object code is generated.

96        compiler

As an alternative to bringing the external code into the
final application file, code can be “dynamically linked” to
libraries that will be accessed only while the program is
being run. This eliminates the waste that would occur if
several running applications are all using the same stan-
dard library code (see library, program).

In mainframes compilers were usually invoked as part of
a batch file using some form of JCL (job control language).
With operating systems such as UNIX and MS-DOS a pro-
gram called make is typically used with a file that specifies
the compiler, linker, and other options to be used to com-
pile the program. Modern visually oriented development
environments (such as those provided by products such as
Visual C++) allow options to be set via menus or simply by
selecting from a variety of typical configurations.

Compiler design has become a highly complex field.
A modern compiler is developed using a variety of tools
(including packaged parsers and lexical analyzers), and
involves a large team of programmers. Nevertheless, the
principles of compiler design are emphasized in the gen-
eral computer science curriculum because when a student
understands even a simplified compiler in detail, he or she
has become acquainted both with important ideas (such
as language grammar, parsing, and optimization) and with
many levels of understanding computer architecture.

Further Reading
Aho, Alfred V., Ravi Sethi, and Jeffrey D. Ullman. Compiler Design:

Principles, Techniques, and Tools. 2nd ed. Reading, Mass.:
Addison-Wesley, 2006.

“Compiler Connection: A Resource for Compiler Developers and
Those Who Use Their Products and Services.” Available
online. URL: http://www.compilerconnection.com/. Accessed
August 12, 2007.

Grune, Dick, et al. Modern Compiler Design. New York: Wiley, 2000.

component object model  (Microsoft)  See
Microsoft .net.

computability and complexity
Interestingly, one of the important discoveries of 20th-cen-
tury mathematics is that certain kinds of problems were
not computable. The Turing machine and Alonzo Church’s
lambda calculus provided equivalent models that could be
used to determine what was computable (see Turing, Alan
Mathison, and Church, Alonzo). Thus far, the equiva-
lence between the Turing machine and actual computers
has held. That is, any decision problem (a problem with a
“yes” or “no” answer) that can in theory be solved with a
Turing machine can in theory be solved by any actual com-
puter. Conversely, if a problem can’t be solved by a Turing
machine, it cannot be solved by a computer, no matter how
powerful.

The Halting Problem
The Halting problem is a classic example of an undecidable
problem (or proposition). The problem is this: Given any

computer program, can you determine whether the pro-
gram will halt (end) given any input? There are specific
programs that can be shown to halt on particular inputs.
For example, this program:

If Input = 99 then end.

will obviously halt on an input of 99. But to decide whether
a determination can be made for any program for any input,
it is only necessary to construct a logical paradox. Assume
that there is a program P that halts if and only if it receives
input D. (Further assume that the program can print some-
thing to let you know that it has halted.)

Since the input can be anything, you can let it be a copy
of the program itself. The question then becomes: Will the
program halt if it is given a copy of itself? Create a proce-
dure (or subroutine) called HaltTest, and define it as:

If P halts then print “Halted”
else print “Didn’t Halt.”

Now create another program called Main. It calls Halt-
Test and is programmed to do the opposite of what HaltTest
indicates.

If HaltTest (Main) prints “Yes” then loop
forever else halt;

But what happens when Main is run? It calls HaltTest,
giving itself (Main) as input. If HaltTest halts, then Main
loops forever. But if HaltTest doesn’t halt, then Main halts.
But this means that Main halts if it doesn’t halt, and doesn’t
halt if it halts. This paradox shows that whether Main halts
is undecidable.

The undecidability of the Halting problem has some
interesting implications. For example, it means that there
is no way a computer can reliably determine that a program
does not contain an infinite loop. Also, because a math-
ematical function f(x) is equivalent to a computer program
with input x, similar proofs by contradiction can be written
to show that it can’t be decided whether a program will halt
on all inputs (which is equivalent to f(x) being defined for
all x.) Nor can it be decided whether two different programs
(or mathematical functions) are equivalent for all x.

It is important to realize that a program (or function)
being undecidable in all cases doesn’t necessarily mean that
it can’t be decided for some cases (or inputs). Indeed, the
answer of the Halting Problem for any given input can be
determined by feeding that particular input to the program,
which will either halt or run forever.

Complexity
If a problem turns out to be computable, we then enter
the realm of complexity—the analysis of how much com-
putation will be required (see algorithm). Sometimes a
designer can devise a significantly faster algorithm for a
given problem (such as finding prime factors or sorting).
However, other problems appear to have complexity based
on an exponential expression, meaning that they become
more complex much more rapidly as the input increases.
An example is the Traveling Salesman Problem, which is to

computability and complexity        97

find the most efficient route for a person traveling to a num-
ber of cities to visit each of the cities.

Mathematicians therefore categorize the complexity of
problems as P (solvable in a polynomial period of time),
EXP (requiring an exponential time), or an intermediate
class NP, which means “nondeterministic polynomial.” An
NP problem is one that can be solved in polynomial time if
one is able to guess (and then verify) the answer. The Trav-
eling Salesman Problem is believed to be in the NP class.

While abstruse, the study of computability and complex-
ity has important implications for practical applications.
For example, determining the complexity of a crypto-
graphic algorithm can help determine whether the resulting
encryption is strong enough to withstand the efforts of a
feasible attacker.

Further Reading
Boolos, George S., John P. Burgess, and Richard C. Jeffrey. Comput-

ability and Logic. 4th ed. New York: Cambridge University
Press, 2002.

Jones, Neil D. Computability and Complexity: From a Programming
Perspective. Cambridge, Mass.: MIT Press, 1997.

Sipser, Michael. Introduction to the Theory of Computation. 2nd ed.
Boston: Thomson Course Technology, 2006.

computer-aided design and manufacturing
(CAD/CAM)
The use of computers in the design and manufacturing of
products revolutionized industry in the last quarter of the
20th century. Although computer-aided design (CAD) and
computer-aided manufacturing (CAM) are different areas
of activity, they are now so closely integrated that they are
often discussed together as CAD/CAM.

Computer-Aided Design
In 1950, science fiction writer Robert Heinlein had his
future inventor create “Drafting Dan,” an automated draft-
ing system that would enable designers to turn their ideas
into manufacturing plans in a fraction of the time required
for the hand preparation of schematics and parts lists. By
the 1960s, engineers had developed the first computer-
assisted design programs, running on terminals attached to
mainframe computers.

The activity of a CAD workstation centers on the cre-
ation of geometrical models (first 2D, then 3D). With the
aid of models, a virtual representation of the product being
designed can be built up. With its knowledge of geometrical
and physical relationships, routines in the CAD system can
perform not only measurement of dimensions and mass but
also structural analysis. (In some cases CAD can be inter-
faced with systems that provide full-blown simulation of
the effects of stresses, heat, and other factors.)

The growth of desktop computing power in the 1980s
and 1990s moved CAD from the mainframe to the high-end
workstation (such as those built by Sun Microsystems) and
even to high-end personal computers. The growing pro-
cessing power also meant that the geometric models could
become more sophisticated, including solid models with

realistically rendered surfaces rather than just wireframes.
The model of surfaces can include such factors as reflectiv-
ity, friction, or even aerodynamic characteristics. In design-
ing a product (or a subsystem of a product), engineers can
now use simulation software to determine how well a group
of parts in a complex assembly (such as a car’s steering
mechanism) will perform. The ability to get detailed data in
real time means that the CAD operator can work in a feed-
back loop in which the design is incrementally refined until
the required parameters are met.

This growing modeling capability has been combined
with the use of detailed databases containing the stan-
dard parts used in a particular industry or application.
Libraries of templates allow the designer to “plug in” stan-
dard assemblies of parts and then modify them. The data-
bases can also be used with algorithms that can assist the
designer in optimizing the design for some desired char-
acteristic, such as strength, light weight, or lower cost.
Recent systems even have the capability to set “strategic”
design goals for a whole family of products and to identify
particular optimizations that would help each part or sub-
system achieve those goals.

Computer-aided Manufacturing
The automated fabricating of products on the factory floor
originally developed independently of computer-aided
design. Numerically controlled machine tools and lathes can
be programmed using specialized languages such as APT
(Automatically Programmed Tool) or more recently, through
a system that uses a graphical interface. Advances in pattern
recognition and other artificial intelligence techniques have
been used to improve the ability of the automatic tool to
identify particular features (such as holes into which bolts
are to be inserted) and to properly orient surfaces. At some
point the programmability and flexibility of the system with
regard to its ability to manipulate the environment gives it
the characteristics of a robot (see robotics).

Integration of CAD and CAM
As CAD systems became more capable, it soon became evi-
dent that there could be substantial benefits to be gained
from integrating the design and manufacturing process.

The CAD software can also output detailed parts and
assembly specifications that can be fed into the CAM pro-
cess. In turn, manufacturing considerations can be applied
to the selection of parts during the design process.

The integration of design, simulation, and manu-
facturing continues. The goal is to give the engineer a
seamless way to “tweak” a design and have a number of
simulation modules automatically depict the effects of the
design change. In essence, the designer or engineer would
be working in a virtual world that accurately reflects the
physical constraints that the product will face in the real
world.

The automation of the design and manufacturing process
has been mainly responsible for the increasing productivity
of modern factories. Factories using traditional methods in
producing complex products such as automobiles or con-

98        computer-aided design and manufacturing

sumer electronics have generally had to refit for CAD/CAM
in order to remain competitive. Low-skill but relatively high-
paying factory jobs characteristic of the earlier industrial era
have given way to smaller numbers of more technical jobs.
This has meant a greater emphasis on education and special-
ized training for the industrial workforce.

Further Reading
Amirouche, Farid M. Principles of Computer Aided Design and Manu-

facturing. 2nd ed. Upper Saddle River, N.J.: Prentice Hall, 2003.
CADLAB (MIT). Available online. URL: http://cadlab.mit.edu/.

Accessed June 12, 2007.
“Computer-Aided Design” [outline and knowledge base]. Comp-

info.ws. Available online. URL: http://www.compinfo-center.
com/cad/cad.htm. Accessed June 12, 2007.

Duggal, Vijay. CADD Primer: A General Guide to Computer Aided
Design and Drafting. New York: Mailmax Publications, 2000.

computer-aided instruction  (CAI)
Also called computer based training (CBT), computer-aided
instruction (CAI) is the use of computer programs to pro-
vide instruction or training. (See education and com-
puters for a more comprehensive discussion of the use of
computers for teaching and learning.)

The American reaction to Soviet space achievements
led to many attempts to modernize the educational sys-
tem. While the high cost and limited capabilities of
1950s computing technology allowed only for theoreti-
cal research by IBM and some universities, by the 1960s
more powerful solid-state computers were starting to
make what were then called “teaching machines” practi-
cable. The first large-scale initiative was the PLATO teach-
ing system designed by the Computer-based Educational
Research Laboratory at the University of Illinois, Urbana.
PLATO used a large timesharing system to provide edu-
cational software to about a thousand users at terminals
throughout the university. PLATO pioneered the use of
graphics and what would later be called multimedia, and
was eventually marketed by Control Data Corporation, a
leading manufacturer of high-end mainframe computers.
Stanford University also began a large-scale initiative to
deliver computerized instruction.

The early CAI systems required expensive hardware,
however, and generally could be sustained only by research
funding or where they met the growing training needs of
the military, the aerospace industry, or other specialized
users. However, the advent of the personal computer in the
late 1970s provided both a new technology for delivering
educational software and a potential market. With its color
graphics and astute marketing the Apple II had became a
staple of classrooms by the mid-1980s, when its succes-
sor, the Macintosh, brought more advanced graphics (see
Macintosh) and a program called Hypercard that made it
easy for educators to create simple interactive presentations
(see hypertext and hypermedia). The Intel-based IBM PC
and its “clones” also gained a foothold in the classroom, and
Microsoft Windows brought a graphical interface similar to
that on the Macintosh.

Applications
The simplest (and probably least interesting) form of CAI is
often called “drill and practice” programs. Such programs
(usually found in the elementary grades) repetitively pres-
ent math problems, reading vocabulary, or other exercises
and test the user’s understanding. (Teaching keyboard skills
to young students is another common application.) In an
attempt to hold the student’s interest, many such programs
provide a gamelike atmosphere and offer periodic rewards
or reinforcement for success.

More sophisticated programs allow the student more
creative scope, such as by letting the student program and
test virtual “robots” as a means of mastering a program-
ming language. Many computer games, while not designed
explicitly for instruction, provide simulations that exercise
thinking and planning skills (see computer games). (For
example, the strategy game Civilization incorporates con-
cepts such as resource management, labor allocation, and
a balanced economy.) Even more sophisticated programs
use advanced programming (see artificial intelligence)
to interact with students in ways similar to those used by
human teachers. For example, a program called Cognitive
Tutor, now used in many schools, can recognize different
“styles” of learning and approaches to solving, for example,
an algebra problem. The program can also identify a stu-
dent’s specific weaknesses and tailor practice and supple-
mental instruction accordingly. These programs can teach
and reinforce reasoning skills rather than just imparting
specific knowledge.

Industry remains a large market for computer-based train-
ing. A variety of CBT packages are available for introducing
and teaching programming languages such as C++ and Java
as well as for preparing students to earn industry certificates
such as the A+ certificate for computer technicians.

Trends
Two continuing trends in CAI are the growing use of
graphics and multimedia, including video or movies, and
the increasing delivery of training via the Internet. Some
training software can be accessed directly over the Internet
through a Web browser, without requiring special software
on the user’s PC. Increasingly, even products delivered on
CD and run from the user’s PC include links to supplemen-
tal material on the Web.

Further Reading
Horton, William. E-Learning by Design. San Francisco: Pfeiffer,

2006.
Ko, Suasan Schor and Steve Rossen. Teaching On-line: A Practical

Guide. 2nd ed. Boston: Houghton Mifflin, 2003.
Rosenberg, Marc J. E-Learning: Strategies for Delivering Knowledge

in the Digital Age. New York: McGraw-Hill, 2001.
Viadero, Debra. “New Breed of Digital Tutors Yielding Learning

Gains.” Education Week, April 2, 2007. Available online. URL:
http://www.edweek.org/ew/articles/2007/04/02/31intelligent.
h26.html. Accessed June 13, 2007.

Watkins, Ryan, and Michael Corry. E-Learning Companion: A
Student’s Guide to Online Success. Boston: Houghton Mifflin,
2004.

Web-Based Training Information Center. Available online. URL:
http://wbtic.com. Accessed June 12, 2007.

computer-aided instruction        99

computer crime and security
The growing economic value of information, products, and
services accessible through computer systems has attracted
increased attention from opportunistic criminals. In par-
ticular, the many potential vulnerabilities of online systems
and the Internet have made computer crime attractive and
pose significant challenges to professionals whose task it is
to secure such systems.

The motivations of persons who use computer systems
in unauthorized ways vary. Some hackers primarily seek
detailed knowledge of systems, while others (often teenag-
ers) seek “bragging rights.” Other intruders have the more
traditional criminal motive of gaining access to information
such as credit card numbers and personal identities that
can be used to make unauthorized purchases (see identity
theft). Computer access can also be used to intimidate (see
cyberstalking and harassment), as well as for extortion,
espionage, sabotage, or terrorism (see cyberterrorism).
Attacking and defending information infrastructure is now
a vital part of military and homeland security planning (see
information warfare).

According to the federal Internet Crime Complaint Cen-
ter, in 2006 the most commonly reported computer-related
crime was auction-related fraud (44.9 percent), followed by
nondelivery of goods (19 percent)—these no doubt reflect
the high volume of auction and e-commerce transactions.
Various forms of financial fraud (including identity theft)
make up most of the rest.

The new emphasis on the terrorist threat following Sep-
tember 11, 2001, has included some additional attention to
cyberterrorism, or the attack on computers controlling key
infrastructure (including banks, water and power systems,
air traffic control, and so on). So far ideologically inspired
attacks on computer systems have mainly amounted to
simple electronic vandalism of Web sites. Internal systems
belonging to federal agencies and the military tend to be
relatively protected and isolated from direct contact with
the Internet. However, the possibility of a crippling attack
or electronic hijacking cannot be ruled out. Commercial
systems may be more vulnerable to denial-of-service attacks
(see below) that cause economic losses by preventing con-
sumers from accessing services.

Forms of Attack
Surveillance-based attacks involve scanning Internet traffic
for purposes of espionage or obtaining valuable informa-
tion. Not only businesses but also the growing number of
Internet users with “always-on” Internet connections (see
broadband) are vulnerable to “packet-sniffing” software
that exploits vulnerabilities in the networking software or
operating system. The main line of defense against such
attacks is the software or hardware firewall, which both
“hides” the addresses of the main computer or network and
identifies and blocks packets associated with the common
forms of attack (see firewall).

In the realm of harassment or sabotage, a “denial of ser-
vice” (DOS) attack can flood the target system with packets
that request acknowledgment (an essential feature of net-
work operation). This can tie up the system so that a Web

server, for example, can no longer respond to user requests,
making the page inaccessible. More sophisticated DOS
attacks can be launched by first using viruses to insert pro-
grams in a number of computers (a so-called botnet), and
then instructing the programs to simultaneously launch
attacks from a variety of locations.

Computer viruses can also be used to randomly vandal-
ize computers, impeding operation or destroying data (see
computer virus). But a virus can also be surreptitiously
inserted as a “Trojan horse” into a computer’s operating sys-
tem where it can intercept passwords and other information,
sending them to the person who planted the virus. Viruses
were originally spread through infected floppy disks (often
“bootleg” copies of software). Today, however, the Internet
is the main route of access, with viruses embedded in e-mail
attachments. This is possible because many e-mail and other
programs have the ability to execute programs (scripts) that
they receive. The main defense against viruses is regular
use of antivirus software, turning off scripting capabili-
ties unless absolutely necessary, and making a policy of not
opening unknown or suspicious-looking e-mail attachments
as well as messages that pretend to be from reputable banks
or other agencies (see phishing and spoofing).

Computer Security
Because there are a variety of vulnerabilities of computer
systems and of corresponding types of attacks, computer
security is a multifaceted discipline. The vulnerability of
computer systems is not solely technical in nature. Some-
times the weakest link in a system is the human link.
Hackers are often adept at a technique they call “social
engineering.” This involves tricking computer operators
into giving out sensitive information (such as passwords)
by masquerading as a colleague or someone else who might
have a legitimate need for the information.

Since computer crimes and attacks can take so many
forms, the best defense is layered or in depth. It includes
appropriate software (firewalls and antivirus programs,
and network monitoring programs for larger installations).
It emphasizes proper training of personnel, ranging from
security investigators to clerical users. Finally, if informa-
tion is compromised, the use of strong encryption can make
it much less likely to be usable (see encryption).

While the flexibility and speed of the Internet can aid
attackers, it can also facilitate defense. Emergency response
networks and major vendors of antivirus software can
quickly disseminate protective code or “patches” that close
vulnerabilities in operating systems or applications.

The growing concern about vulnerability to computer
intrusion and information theft has also been reflected in
attempts to make operating systems inherently more secure.
The introduction of new security features in Microsoft Win-
dows Vista has received mixed reviews. Some features, such
as User Account Control, make it harder for viruses or
other automated attacks to access critical system resources,
but also annoy users by constant requests for permission to
carry out common tasks. This reflects a fundamental truth:
Security features that make everyday computing more
tedious tend to be turned off or bypassed by users.

100        computer crime and security

Once a computer-based crime is detected, a system-
atic approach to evidence gathering and investigation is
required (see computer forensics). This is because evi-
dence in computer crimes tends to be technical, intangi-
ble, and transient, and thus difficult to explain properly to
judges and juries.

Individual consumers can reduce their vulnerability by
ensuring that they do not give out personal information
without verifying both the requester and the need for the
data. Use of secure Web sites for credit card transactions
has become standard. Generally speaking, vulnerability
to computer crime is inversely proportional to the degree
of privacy individuals have with regard to their personal
information (see privacy in the digital age). Public con-
cern about privacy and security has led to recent laws and
initiatives aimed at disclosure of organizations’ privacy
policy and limiting the redistribution of information once
collected.

Further Reading
Balkin, J. M. Cybercrime: Digital Cops in a Networked Environment.

New York: New York University Press, 2007.
CERT Coordination Center, Carnegie-Mellon University. Available

online. URL: http://www.cert.org. Accessed August 12, 2007.
Easttom, Chuck. Computer Security Fundamentals. Upper Saddle

River, N.J.: Prentice Hall, 2005.
McQuade, Sam C. Understanding and Managing Cybercrime. Bos-

ton: Allyn & Bacon, 2005.
Mitnick, Kevin, and William L. Simon. The Art of Intrusion. New

York: Wiley, 2005.

computer engineering
Computer engineering involves the design and implemen-
tation of all aspects of computer systems. It is the prac-
tical complement to computer science, which focuses on
the study of the theory of the organization and processing
of information (see computer science). Because hardware
requires software (particularly operating systems) in order
to be useful, computer engineering overlaps into software
design, although the latter is usually considered to be a
separate field (see software engineering).

To get an idea of the scope of computer engineering, con-
sider the range of components commonly found in today’s
desktop computers:

Processor
The design of the microprocessor includes the number and
width of registers, method of instruction processing (pipe-
lining), the chipset (functions to be integral to the package
with the microprocessor), the amount of cache, the con-
nection to memory bus, the use of multiple processors, the
order in which data will be moved and stored in memory
(low or high-order byte first?), and the clock speed. (See
microprocessor, chipset, cache, bus, multiprocessing,
memory, and clock speed.)

Memory
The design of memory includes the type (static or dynamic)
and configuration of RAM, the maximum addressable mem-

ory, and the use of parity for error detection (see memory,
addressing, and error correction). Besides random-
access memory, other types of memory include ROM (read-
only memory) and CMOS (rewritable persistent memory).

Motherboard
The motherboard is the platform and data transfer infra-
structure for the computer system. It includes the main data
bus and secondary buses (such as for high-speed connec-
tion between the processor and video subsystem—see bus).
The designer must also decide which components will be
integral to the motherboard, and which provided as add-
ons through ports of various kinds.

Peripheral Devices
Peripheral devices include fixed and removable disk drives;
CD and DVD-ROM drives, tape drives, scanners, printers,
and modems.

Device Control
Each peripheral device must have an interface circuit that
receives commands from the CPU and returns data (see
graphics card).

Input/Output and Ports
A variety of standards exist for connecting external devices
to the motherboard (see parallel port, serial port, and
usb). Designers of devices in turn must decide which con-
nections to support.

There are also a variety of input devices to be handled,
including the keyboard, mouse, joystick, track pad, graph-
ics tablet, and so on.

Of course this discussion isn’t limited to the desktop PC;
similar or analogous components are also used in larger com-
puters (see mainframe, minicomputer, and workstation).

Networking
Networking adds another layer of complexity in controlling
the transfer of data between different computer systems,
using various typologies and transport mechanisms (such
as Ethernet); interfaces to connect computers to the net-
work; routers, hubs, and switches (see network).

Other Considerations
In designing all the subsystems of the modern computer and
network, computer engineers must consider a variety of fac-
tors and tradeoffs. Hardware devices must be designed with
a form factor (size and shape) that will fit efficiently into a
crowded computer case. For devices that require their own
source of power, the capacity of the available power supply
and the likely presence of other power-consuming devices
must be taken into account. Processors and other circuits
generate heat, which must be dissipated. (In an increasingly
energy-conscious world the reduction of energy consump-
tion, such as through standby or “hibernation” modes, is
also an important consideration—see green pc.) Heat and
other forms of stress affect reliability. And in terms of how

computer engineering        101

a device processes input data or commands, the applicable
standards must be met. Finally, cost is always an issue.

Moving beyond hardware to operating system (OS)
design, computer engineers must deal with many additional
questions, including the file system, how the OS will com-
municate with devices (or device drivers), and how applica-
tions will obtain data from the OS (such as the contents of
input buffers). Today’s operating systems include hundreds
of system functions. Since the 1980s, the provision of all
the objects needed for a standard user interface (such as
windows, menus, and dialog boxes) has been considered
to be part of the OS design. Finally, the building of secu-
rity features into both hardware and operating systems has
become an integral part of computer engineering (see, for
example, biometrics and encryption).

Trends
In the early days of mainframe computing (and again at
the beginning of microcomputing) many distinctive system
architectures entered the market in rapid succession. For
example, the Apple II (1977), IBM PC (1981), and Apple
Macintosh (1984) (see ibm pc and Macintosh). Because
architectures are now so complex (and so much has been
invested in legacy hardware and software), wholly new
architectures seldom emerge today. Because of the com-
plexity and cost involved in creating system architectures,
development tends to be incremental, such as adding PCI
card slots to the IBM PC architecture while retaining older
ISA slots, or replacing IDE controllers with EIDE.

The growing emphasis on networks in general and the
Internet in particular has probably diverted some effort and
resources from the design of stand-alone PCs to network
and telecommunications engineering. At the same time,
new categories of personal computing devices have emerged
over the years, including the suitcase-size “transportable”
PC, the laptop, the book-sized notebook PC, the handheld
PDA (personal digital assistant), as well as network-ori-
ented PCs and “appliances.” (See portable computers and
smartphone.)

As computing capabilities are built into more traditional
devices (ranging from cars to home entertainment centers),
computer engineering has increasingly overlapped other
fields of engineering and design. This often means thinking
of devices in nontraditional ways: a car that is able to plan
travel, for example, or a microwave that can keep track of
nutritional information as it prepares food (see embedded
system). The computer engineer must consider not only the
required functionality but the way the user will access the
functions (see user interface).

Further Reading
IEEE Computer Society. Available online. URL: http://www.com-

puter.org
Patterson, D. A. and J. L. Hennessy. Computer Organization and

Design. 3rd ed. San Francisco: Morgan Kaufmann, 2004.
“PC Guide.” Available online. URL: www.pcguide.com. Accessed

June 18, 2007.
Stokes, John. Inside the Machine: An Illustrated Introduction to

Microprocessors and Computer Architecture. San Francisco: No
Starch Press, 2007.

computer forensics
Computer forensics is the process of uncovering, docu-
menting, analyzing, and preserving criminal evidence that
has been stored on (or created using) a computer system.
(For the use of computers by police, see law enforcement
and computers.)

In general, computer forensics involves both adher-
ence to legal evidentiary standards and the use of sophis-
ticated technical tools. The legal standards require
practices similar to those used in obtaining other types
of criminal evidence (observing expectations of privacy,
knowing when a warrant is needed to search and seize
evidence, and so on).

Once there is a go-ahead for a search, the first step is to
document the layout and nature of the equipment (gener-
ally by photographing it) and to identify both devices that
might be problematic or notes or other materials that might
reveal passwords for encrypted data.

If the system is running it may be viewed or scanned to
determine what applications are running and what network
connections may be active. However, this has to be done as
unobtrusively as possible, since some machines can detect
physical intrusions.

Step by step, the forensic technician must document
each software program or other tool used, and why it is
justified (such as the possibility that simply shutting down
the system might lead to loss of data in RAM). There are a
variety of such tools, particularly for UNIX/Linux environ-
ments, some of which have been ported to Windows. (In
some cases a Linux “live” CD might be booted and used to
explore a Windows file system.)

The next step is to collect the evidence from storage
media in such a way as to ensure that it is accurately and
completely preserved. A running machine must generally
first be shut down in such a way as to prevent trigger-
ing any “trip wire” or intrusion-detection or self-destruct
mechanism that may have been installed.

As a practical matter, once the system has been properly
shut down or immobilized, it is usually taken to the foren-
sic laboratory for extraction, copying, and documenting of
the evidence (such as files on a hard drive or other storage
device).

Once the data has been collected, each file or document
must be analyzed to determine if it is relevant to the crimi-
nal investigation and what key information it contains. For
example, e-mail headers may be analyzed to determine the
source and routing of the message.

Some Typical Cases
Computer-based evidence may be relevant for almost any
type of crime, but certain kinds of crimes are more likely to
involve computer forensics. These include:

• � financial crimes, such as embezzlement

• � corporate crimes such as insider trading, where e-
mails may reveal who knew what and when

• � data or identity theft, including online scams or
phishing

102        computer forensics

• � stalking or harassment, particularly involving chat
rooms or social networks

• � child pornography, particularly distribution of images

In recent years many law enforcement agencies have
become aware of the importance of proper investigation and
treatment of evidence in our digital society, and demand
for trained computer forensic specialists is expected to
increase.

Further Reading
Britz, Marjie T. Computer Forensics and Cyber Crime: An Introduc-

tion. Upper Saddle River, N.J.: Prentice Hall, 2003.
Carrier, Brian. File System Forensic Analysis. Upper Saddle River,

N.J.: Addison-Wesley Professional, 2005.
“Searching and Seizing Computers and Obtaining Electronic

Evidence in Criminal Investigations.” U.S. Dept. of Justice,
July 2002. Available online. URL: http://www.usdoj.gov/
criminal/cybercrime/s&smanual2002.htm. Accessed Sep-
tember 3, 2007.

Steel, Chad. Windows Forensics: The Field Guide for Conducting
Corporate Computer Investigations. Indianapolis: Wiley, 2006.

Vacca, John R. Computer Forensics: Computer Crime Scene Investi-
gation. 2nd ed. Hingham, Mass.: Charles River Media, 2005.

computer games
Today, playing games is one of the most popular computing
activities. In the early days of computing, games offered a
way to test AI techniques (see artificial intelligence).
Games have also encouraged the development of more
sophisticated graphics (see computer graphics) and ways
of interacting with the machine (see user interface).

Games and AI
Although modern computer games may draw upon several
genres, several recognizably distinct types of games have
been developed over the past half century or so. The first
were computer versions of existing board games. “Deter-
ministic” games (where there is no element of chance) such
as tick-tack-toe and, more important, checkers and chess
offered a challenge to the first computer scientists who were
seeking to learn how to make machines perform tasks that
are usually attributed to human intelligence. For example,
Alan Turing and Claude Shannon both developed chess-
playing programs, although Turing’s came at a time when
computers were still too primitive to handle the volume of
calculations required, and was thus carried out by hand. By
the time a computer program (Deep Blue) had defeated the
world champion in 1997, the AI field had long since left the
game behind (see chess and computers).

Simulation Games
Military planners had devised war games since the 19th
century, but the complexity of modern warfare (including
logistics as well as tactics) cried out for the help of the com-
puter. By 1955 the U.S. military was running large-scale
global cold war simulations pitting NATO against the USSR
and the Eastern bloc. Unlike deterministic games such as
chess, war games generally use complex rules to capture

the many interacting factors such as the morale, experi-
ence, and firepower of a military unit or the performance
of an air defense system against different types of targets.
The results will be more or less realistic depending on how
many factors are properly accounted for—often only later
combat experience will tell.

The use of game theory (the mathematics of competitive
situations) and economics also proved to be fruitful areas
for the use of computer simulations. In 1959 Carnegie Tech
(later Carnegie-Melon University) introduced a simulation
called “The Management Game.” Until the 1980s, however,
lack of inexpensive computing power kept sophisticated
simulations limited to large institutions such as the mili-
tary, government, universities, and major corporations.

Today simulation games are popular in both the educa-
tional and consumer markets. They include flight simula-
tors, a variety of sports including baseball, football, soccer,
and golf, and games in which the player strives to build a
19th-century railroad empire or run a modern city. Indeed
some games, such as the popular kingdom-building simula-
tor Civilization or the complex Sim City, while marketed pri-
marily as entertainment, can easily fit into a social studies
curriculum.

Arcade and Graphic Games
Starting in the 1960s, CRT (television-like) displays gave
the new minicomputers the means to display simple graph-
ics. In 1962, an intrepid band of game hackers at MIT cre-
ated Spacewar, the first interactive graphic game and the
forerunner of the arcade boom of the 1970s. When the
first home computers from Apple, Commodore, Atari, and
IBM hit the market in the late 1970s and early 1980s, they
included rudimentary (but often colorful) graphics capa-
bilities. Many amateur programmers used the comput-
ers’ built-in BASIC language to create games such as lunar
lander simulators and Star Trek–style space battles. Around

A scene from the computer strategy game Civilization. Some games
specialize in realistic physical simulation, while others (such as this
one) embody sophisticated economic and strategic considerations.

computer games        103

the same time, the home game cartridge machine was intro-
duced by Atari and other companies, while the arcade game
Pac-Man became a phenomenal success in 1980 (see game
consoles).

Role-playing, Real-time, and Social Worlds
Around the time of the first home computers, a noncom-
puter game called Dungeons and Dragons became extremely
popular. “D&D” and other role-playing games allowed play-
ers to create and portray characters, with elaborate rules
being used to resolve events such as battles. Role-play-
ing games soon began to appear on PCs—early examples
include the Wizardry and Ultima series. Meanwhile, text-
based adventure games were becoming popular on early
computer networks, particularly at universities. These
evolved into MUDs (Multi-User Dungeons) where players’
characters could interact with each other. Eventually many
of these programs went beyond their adventuring roots to
create a variety of social worlds in a sort of text-based vir-
tual reality.

By the 1990s, the typical PC had a special circuit (see
graphics card) capable of displaying millions of colors,
together with video memory (now 256 MB or more) that
could hold the complex images needed for high-resolution
animation. Computer game graphics have become increas-
ingly complex (see computer graphics), including real-
istic textures, shading and light, smooth animation, and
special effects rivaling Hollywood. (Compare, for example,
early wireframe graphics in games such as the Wizardry of
1980 with games such as Diablo II and Warcraft with ani-
mated characters moving in a richly textured world.)

The way players interact with the game world has also
significantly changed. The first computer games tended to
be divided into turn-based strategy and role-playing games
and real-time arcade-style “shoot ’em ups.” Today, however,
most games, regardless of genre, run as RTS (real-time sim-
ulations) in which players must interact continuously with
the game situation.

By the late 1990s gaming was no longer a solitary pur-
suit. The Internet made it possible to offer game worlds in
which thousands of players could participate simultane-
ously (see online games). Games such as Everquest and
Asheron’s Call have thousands of devoted players who spend
many hours developing their characters’ skills, while open-
ended worlds such as Second Life seem to no longer be
games at all, but a virtual, parallel universe with a full
range of social interaction. However, the increased real-
ism of modern games has also heightened the controversy
about in-game violence and other antisocial behavior, as
in the Grand Theft Auto series. (Although there is a rating
system for games similar to that for movies, its effectiveness
in keeping adult-themed games out of the hands of young
children seems to be limited.)

Game Development
The emphasis on state-of-the-art animation and graphics
and multiplayer design has changed the way game develop-
ment is done. The earliest home computer games were typi-
cally the product of a single designer’s vision, such as Chris

Crawford’s Balance of Power and Richard Garriott (“Lord
British”) in the Ultima series. Today, however, commercially
competitive games are the product of teams that include
graphics, animation, and sound specialists, actors and voice
talent, and other specialists in addition to the game design-
ers. While earlier games might be compared to books with
single authors, modern game developers often compare
their industry to the movie industry with its dominant stu-
dios. And, as with the movie industry, critics have argued
that the high cost of development and of access to the mar-
ket has led to much imitation of successful titles and less
innovation.

On the other hand, a variety of modern programming
environments (such as Visual Basic or even Macromedia
Flash) make it easy for young programmers to get a taste
of game programming, and for amateur programmers to
create games that can be distributed via the Internet (see
shareware and freeware). Although computer science
programs have been slow to recognize the attraction and
value of game programming, a variety of academic pro-
grams are now emerging. These range from computer arts,
graphics, and animation programs to a full-fledged four-
year degree program in game design at the University of
California, Santa Cruz. This program includes not only
courses in game design and programming, but also courses
on the game business and even ethics.

Further Reading
Aronson, Sean. “School Fills Need for Game Designers.” Medi-

anews, June 18, 2007. Available online. URL: http://www.
insidebayarea.com/sanmateocountytimes/localnews/ci_
6168502. Accessed June 20, 2007.

Chaplain, Heather, and Aaron Ruby. Smartbomb: The Quest for
Art, Entertainment, and Big Bucks in the Videogame Revolution.
Chapel Hill, N.C.: Algonquin Books, 2005.

Crawford, Chris. Chris Crawford on Game Design. Indianapolis:
New Riders, 2003.

———. Chris Crawford on Interactive Storytelling. Berkeley, Calif.:
New Riders, 2005.

Game Developer. [magazine] Available online. URL: http://www.
gdmag.com/homepage.htm. Accessed June 23, 2007.

Howland, Geoff. “How Do I Make Games? A Path to Game Devel-
opment.” Available online. URL: http://www.gamedev.net/
reference/design/features/makegames/. Accessed June 23, 2007.

Moore, Michael E., and Jennifer Sward. Introduction to the Game
Industry. Upper Saddle River, N.J.: Prentice Hall, 2006.

computer graphics
Most early mainframe business computers produced out-
put only in the form of punched cards, paper tape, or text
printouts. However, system designers realized that some
kinds of data were particularly amenable to a graphical rep-
resentation. In the early 1950s, the first systems using the
cathode ray tube (CRT) for graphics output found special-
ized application. For example, the MIT Whirlwind and the
Air Force’s SAGE air defense system used a CRT to display
information such as the location and heading of radar tar-
gets. By 1960, the new relatively inexpensive minicomput-
ers such as the DEC PDP series were being connected to
CRTs by experimenters, who among other things created
Spacewar, the first interactive video game.

104        computer graphics

By the late 1970s, the microcomputers from Apple, Radio
Shack, Commodore, and others either included CRT moni-
tors or had adapters that allowed them to be hooked up
to regular television sets. These machines generally came
with a version of the BASIC language that included com-
mands for plotting lines and points and filling enclosed
figures with color. While crude by modern standards, these
graphics capabilities meant that spreadsheet programs
could provide charts while games and simulations could
show moving, interacting objects. Desktop computers that
showed pictures on television-like screens seemed less for-
bidding than giant machines spitting out reams of printed
paper (see graphics card).

Research at the Xerox PARC laboratory in the 1970s
demonstrated the advantages of a graphical user interface
based on visual objects, including menus, windows, dialog
boxes, and icons (see user interface). The Apple Macin-
tosh, introduced in 1984, was the first commercially via-
ble computer in which everything displayed on the screen
(including text) consisted of bitmapped graphics. Micro-
soft’s similar Windows operating environment became
dominant on IBM architecture PCs during the 1990s.
Today Apple, Microsoft, and UNIX-based operating sys-
tems include extensive graphics functions. Game and mul-
timedia developers can call upon such facilities as Apple
QuickDraw and Microsoft DirectX to create high resolu-
tion, realistic graphics (see also game console).

Basic Graphics Principles
The most basic capabilities needed for computer graphics are
the ability to control the display of pixels (picture elements)
on the screen and a way to specify the location of the spots
to be displayed. A CRT screen is essentially a grid of pixels
that correspond to phosphors (or groups of colored phos-
phors) that can be lit up by the electron beam(s). The first
IBM PCs, for example, often displayed graphics on a 320
(horizontal) by 200 (vertical) grid, with 4 available colors.

A memory buffer is set up whose bytes correspond to the
video display. (A simple monochrome display needs only
one bit per pixel, but color displays must use additional
space to store the color for each pixel.) A screen image is
set up by writing the data bytes to the buffer, which then
is sent to the video system. The video system uses the data
to control the display device so the corresponding pixels
are shown (in the case of a CRT, this means lighting up the
“on” pixels with the electron gun[s]).

In most cases screen locations are defined in coordi-
nates where point 0,0 is the upper left corner of the screen.
The coordinates of the lower right corner depend on the
screen resolution, At 320 by 200, the lower right corner
would be 319,199.

For example, many versions of BASIC use statements
such as the following:

PSET 50,50 ’ draws a dot at X=50, Y=50
LINE (100,50)-(150,100), B ’ draw square

with UL
’ corner at 100,50 and LR
’ corner at 150,100

CIRCLE (100,150), 50, 4 ’ draw a circle of
radius 50

’ with center at 200,200 and
’ color 4 (red)

Languages such as C, C++ and Java don’t have built-in
graphics commands, but functions can be provided in pro-
gram libraries (see library, program). They would be used
much like the BASIC commands given above.

More commonly, however, programmers use language-
independent graphics platforms (see api). With Windows,
this usually means DirectX, which includes Direct2D for
3D graphics, as well as a variety of multimedia libraries
for sound, user interfacing, and networking. A competitor
that is particularly popular in the Mac and UNIX/Linux
worlds is OpenGL (Open Graphics Library). Both DirectX
and OpenGL run on a wide variety of supported hardware.

Graphics Models and Engines
Modern applications (such as drawing programs and games)
go well beyond simple two-dimensional objects. Indeed,
multimedia developers typically use graphics engines
designed to work with C++ or Java. A graphics engine
provides a way to define and model 2D and 3D polygons.
(Curves can be constructed by specifying “control points”
for bicubic curves.)

Complex objects can be built up by specifying hierar-
chies (for example, a human figure might consist of a head,
neck, upper torso, arms, hands, lower torso, legs, feet, and

Some example figures plotted by BASIC graphics statements using
screen coordinates.

computer graphics        105

so on). By creating a hierarchy of arm, hand, fingers a trans-
formation (scaling or rotation) of one object can be propa-
gated to its dependent objects (see animation). In many
cases graphics are created from real-world objects that have
been digitally photographed or scanned, and then manipu-
lated (see image processing).

In most scenes the relationships between graphical
objects are also important. Modern graphics modeling pro-
grams use a virtual “camera” to indicate the position and
angle from which the graphics are to be viewed. In render-
ing the scene, the Painter’s Algorithm can be used to sort
objects and draw closer surfaces on top of farther ones, as
a painter might paint over the background. Alternatively,
the Z-buffer algorithm stores depth information for each
pixel to determine which ones are drawn. This technique
requires less calculation (because surfaces don’t need to
be sorted), but more memory, since the depth of each pixel
must be stored.

Within a scene, the effects of light (and its absence,
shadows) must be realistically rendered. A simple tech-
nique can be used to calculate an overall light level for an
object based on its angle in relation to the light source,
plus a factor to account for ambient and diffuse light in the
environment. The Gouraud shading technique can be used
to smooth out the artifacts caused by the simple flat shad-
ing method. Another technique, Phong shading, can more
realistically reproduce highlights (the sharp image of a light
source being reflected within a surface). But the most realis-
tic lighting effects are provided through ray tracing, which
involves tracing how representative vectors (representing
rays of light) reflect from or refract through various sur-
faces. However, ray tracing is also the most computationally
intensive lighting technique.

Several techniques can be used to give objects more
realistic surfaces. Texture mapping can be used to “paint”
a realistic texture (perhaps scanned from a real-world
object) onto a surface. For example, pieces in a chess game
could be given a realistic wood grain or marble texture.
This can be further refined through bump mapping, which
calculates variations in the texture at each point based on
light reflections.

Applications and Tradeoffs
The most graphics-intensive applications today are games,
multimedia programs, and scientific visualization or mod-
eling applications. Because of the impact graphics have on
users’ perception of games and multimedia programs, devel-
opers spend a high proportion of their resources on graph-
ics. Critics often complain that this is at the expense of
core program functions. The software in turn places a high
demand on user hardware: The contemporary “multime-
dia-ready” PC has a video card that includes special “video
accelerator” hardware to speed up the display of graphics
data and a video memory buffer of 256 MB or more.

Complex 3D graphics with lighting, shading, and tex-
tures may have to be displayed at a relatively low resolution
(such as 640 × 480) because of the limitations of the main
processor (which performs necessary calculations) and the
video card. However as processor speed and memory capac-

ity continue to increase, many computer graphics now rival
video and even film in realistic detail.

Further Reading
ACMSIGGRAPH. [graphics special interest group] Available

online. URL: http://www.siggraph.org/. Accessed June 24,
2007.

Computer Graphics World. [magazine] Available online. URL:
http://www.cgw.com/ME2/Default.asp. Accessed June 24,
2007.

Govil-Pai, Shalini. Principles of Computer Graphics: Theory and
Practice Using OpenGL and Maya. New York: Springer, 2005.

Jones, Wendy. Beginning DirectX 10 Game Programming. Boston:
Thomson Course Technology PTR, 2007.

computer industry
The U.S. computer industry began with the marketing of the
Univac, designed by J. Presper Eckert and John Mauchly in
the early 1950s. The first computers were made one at a time
and only as ordered, and the market for the huge, expensive
machines was thought to be limited to government agencies
and the largest corporations. However, astute marketing by
Sperry-Univac, Burroughs, and particularly, International
Business Machines (see ibm) convinced a growing number
of companies that modern data processing facilities would
be essential for managing their growing and increasingly
complex business (see mainframe).

The mainframe market was controlled by a handful of
vendors who typically provided the complete computer sys-
tem (including peripherals such as printers) and a long-term
service contract. (Eventually, third-party vendors began to
make compatible peripherals.) Companies that could not
afford their own computers began to contract with service
bureaus for their data processing needs, such as payroll
processing.

By the 1960s, transistorized circuitry was replacing
the vacuum tube, and somewhat smaller machines became
practicable (see minicomputer). While these computers
were the size of a desk, not a desktop, models such as Digi-
tal Equipment Corporation’s PDP series and competition
from companies such as Data General provided computing
power for engineers and scientists to use in factories and
laboratories. During the 1970s, the dedicated word pro-
cessing machine marketed by the Wang Corporation began
the digital transformation of the office. By the end of that
decade, the first general-purpose desktop microcomputers
were marketed. The Apple II made a modest inroad into
business, fueled by VisiCalc, the first spreadsheet program.

This new market attracted the attention of IBM, viewed
by many microcomputer enthusiasts as a dinosaurlike relic
of the mainframe age. Uncharacteristically, IBM manage-
ment gave the developers of their personal computer (PC)
project free rein, and the result was the IBM PC introduced
in 1981. The machine had two major advantages. One was
the IBM name itself, which was comforting to executives
contemplating a bewildering new technology. The other
was that IBM (again, uncharacteristically) had followed
Apple’s lead in designing their PC with an “open architec-
ture,” meaning that third-party manufacturers could mar-

106        computer industry

ket a variety of expansion cards to increase the machine’s
capabilities. By 1990, about 10 million PCs worth about $80
billion were being sold annually (see ibm pc).

Although IBM tried to prevent other manufacturers from
“cloning” the IBM chipset itself, it was unable to prevent
companies such as Compaq from creating “IBM compatible”
PCs that often surpassed the capabilities of the IBM mod-
els. (IBM introduced its microchannel architecture in the
late 1980s in an unsuccessful attempt to regain proprietary
advantage.) By the 1990s the IBM-compatible PCs (some-
times called “Wintel,” for the Microsoft Windows operat-
ing system and Intel-compatible processor) had become
an industry standard and a commodity manufactured and
marketed by everything from the big name brands such
as Dell and Gateway down to the corner computer store’s
backroom operation.

The announcement of Apple’s Macintosh computer in
1984 made a vivid impression on the public (see Macin-
tosh). With its fully graphical user interface, mouse, draw-
ing program, and fonts, it seemed light-years ahead of the
text-based IBM PCs. However, the Mac’s slow speed, rela-
tively high price, and closed architecture limited its pen-
etration into the business market. The Mac did attract an
enthusiastic minority of consumer users and achieved a
lasting niche presence in education and among graphics
and video professionals. Gradually, as Microsoft’s graphical
Windows operating system improved in the early 1990s,
the Mac’s advantages over the IBM-compatible machines
diminished.

During the 1990s, desktop computers came with a
series of increasingly powerful series of Pentium proces-
sors, matched by offerings from AMD and Cyrix. Multime-
dia (including high-end graphics and sound capabilities)
became a standard feature, particularly on consumer PCs.
Increasingly, the business PC was being connected to a
local area network, and both business and consumer PCs
included modems or broadband access to online services
and the Internet. The need to manage network files and ser-
vices (such as Web servers) led to the development of server
PCs featuring high-capacity mass storage. At the same time,
high-end PCs also challenged the graphics workstations
made by companies such as Sun. The traditional minicom-
puter and high performance workstation category began
to melt away. By 2002, an estimated 600 million personal
computers were in use worldwide, with about half of them
in homes.

The personal computer also grew smaller. The suitcase-
sized “luggable” computers of the 1980s gave way to a range
of laptop, notebook-sized, and palm-sized computers. Today
wireless networking technology allows users of diminutive
machines to access the full resources of the World Wide
Web and local networks.

The idea of “appliance computing” has also been a
recurrent theme among industry pundits. Proponents argue
that there are still many people who feel intimidated by a
standard computer interface but have become comfortable
with other consumer electronic products such as televi-
sions, CD players, or microwaves. If computer functions
could be built into such devices, people might use them

comfortably. For example, WebTV is a box that allows the
user to surf the Web from the same armchair where he or
she watches TV, using controls little more complicated than
those found on a regular TV remote. Kitchen appliances
might be transformed, with the microwave providing reci-
pes and the refrigerator keeping an inventory and automati-
cally ordering from the grocery store. However, as with the
fully automated “wired home,” featured in Sunday news-
paper supplements, the appliance computer has remained
difficult to market to consumers (see smart buildings and
homes).

The Software Industry
Hardware is useless without software. Since the operating
system (OS) is the software that enables all other software
to access the computer, the OS market is a key part of the
computer industry. Through a historical accident, a young
programmer-entrepreneur named Bill (William) Gates
and his Microsoft Corporation received the contract to
develop the operating system for the first IBM PC. Micro-
soft bought and adapted an existing operating system to
create MS-DOS (also called PC-DOS). Until the end of the
1980s, DOS was the dominant operating system for IBM-
compatible PCs (see ms-dos). In the early 1990s, Microsoft
introduced Windows 3.0, the first successful version of its
graphical operating environment (see Microsoft Win-
dows). The dominance of Windows became so complete
that a federal antitrust case against Microsoft resulted in
the company having to provide competitors greater access
to the operating system.

The source of emerging challenges to Windows comes
not from another desktop vendor but from the Internet,
where Java offers the potential of delivering applications
through the user’s Web browser, regardless of whether that
user is running Windows, the Macintosh OS, or Linux, a
variant of UNIX that has been embraced by many enthu-
siasts. However, Java applications and Linux still represent
only a tiny fraction of the market share held by Windows
(see Java and Linux).

The 1990s saw considerable consolidation in the office
software arena. Microsoft’s Office software suite over-
whelmed once formidable competitors such as WordPerfect
and Corel. Packages such as Microsoft Office create their
own mini-industries where developers create templates and
add-ins. However, the widespread use of high-speed Inter-
net access (see broadband) has made it practicable to offer
many office software functions online, providing workers
with convenient access from any location. The most signifi-
cant offering here has been Google Apps, which includes
calendar and communications features as well as Google
Docs & Spreadsheets. In turn, Microsoft has been prompted
to offer added-value online features to Microsoft Office.

Outside the office there is considerably more competi-
tion in the software industry. Today’s consumers can choose
from a wide variety of software that fills utility or other niche
needs, including shareware (“try before you buy”) offerings.
In educational software and games some once-major innova-
tors have been bought out or consolidated, but there is no
one dominant company. Thousands of specialized software

computer industry        107

packages serve scientific, manufacturing, and business
needs. While the general public is unaware of such pro-
grams, they make up much of the strength of the software
industry.

Other Products and Services
By the 2000s there were many new niches in the computer
industry landscape. Powerful dedicated game machines
such as the Microsoft Xbox 360 and the Sony PlayStation
3 make for a vigorous software industry that potentially
goes beyond games (see game consoles). Portable media
players such as Apple’s iPod are ubiquitous (see music and
video players, digital). The personal digital assistant (see
pda) and the cell phone have largely merged and morphed
(see smartphone), capable of running a variety of soft-
ware including e-mail, Web browsing, games, and music.
Meanwhile, digital cameras have virtually replaced film for
all but the most high-end and specialized applications (see
photography, digital). The convergence and proliferation
of all of these devices is continuing at a rapid pace, and
competition is fierce.

The services sector of the computer industry lacks the
visibility of new hardware products, but provides most
of the industry’s employment and much of its economic
impact. In addition to the hundreds of thousands of pro-
grammers who provide business-related, consumer, and
specialized software, there are the legions of help desk
employees, computer and network technicians, creators of
software development tools, writers of technical books and
training products, industry investment analysts, reporters,
and many others whose livelihood depends on the com-
puter industry.

International Computing
The computing industry came of age mainly in the United
States. By the 1960s IBM had extended its dominant posi-
tion to Britain and Europe despite the efforts of indigenous
companies and government initiatives. Japan was consider-
ably more successful in developing a competitive electron-
ics and computer industry under the long-term guidance of
MITI (Ministry of International Trade and Industry). The
Japanese became dominant in industrial robotics and strong
in consumer electronics, including game machines (Sony),
digital cameras (Sony and Fujitsu), and laptop computers
(Toshiba). They have been less successful in desktop com-
puters, Internet-related technology, and commercial soft-
ware. China has become an increasingly important player
in the components and peripherals industry. The growing
importance of Asia in the international computer industry
is also underscored by the large number of programmers,
engineers, and support personnel being trained in India
(see globalism and the computer industry).

Major Internet industry players such as Google and
Yahoo! as well as hardware giant Dell have become heavily
involved in the Chinese market, which boasted about 100
million users in 2006, second only to the United States.

A number of initiatives are helping spread computing
even in the limited economies of many countries in Africa,

Asia, and Latin America (see developing nations and
computing). While illicit copying has hindered the mar-
keting of commercial software in many countries, the alter-
native model of open-source software and very inexpensive
laptops (the One Laptop Per Child initiative) may offer a
viable path to the true globalization of computing.

Emerging Trends
As the 2000 decade has progressed, a number of trends
continue to reshape the computer industry. These include:

• � The recovery from the “bust” years of 2001–3 was fol-
lowed by more modest but significant growth, with
rapid growth in particular sectors such as mobile
devices, Web applications (see Web 2.0), and security.

• � Desktop PC sales were strong through 2005 (about
200 million that year) but now appear to be stagnat-
ing (in the United States at least) in favor of laptops,
smaller portable computers, and smart phones.

• � Although a new generation of multicore proces-
sors and the resource-hungry Microsoft Windows
Vista operating system may eventually speed up the
replacement of older PCs, businesses have been tend-
ing to keep slightly obsolescent machines and operat-
ing systems longer.

• � Free or lower-cost alternative software and operating
systems (see open source and Linux) are attracting
considerable publicity, but it is unclear how much
penetration they will achieve in the mainstream home
and small-business computing sectors.

• � Besides cost consciousness and other priorities (such
as networking and security), the trend toward Web-
based applications may be shifting sales away from
hardware and traditional operating systems and soft-
ware suites. (See application service provider.)

• � Outsourcing of many IT functions is continuing,
including network administration, managed backup
and storage, and even security. Meanwhile, there has
been concern about lack of sufficient U.S. graduates
in computer science and engineering.

While the computer hardware, software, and service
industries are likely to continue growing vigorously, the
boundaries between sectors and applications are blurring,
making it harder to consider the industry as a whole
as opposed to specific sectors and applications (see
e-commerce).

Further Reading
Chandler, Alfred D., Jr. Inventing the Electronic Century: The Epic

Story of the Consumer Electronics and Computer Industries.
New ed. Cambridge, Mass.: Harvard University Press, 2005.

Computer Industry Almanac. Available online. URL: http://www.
c-i-a.com/. Accessed June 24, 2007.

Computerworld. Available online. URL: http://www.computer
world.com/. Accessed June 24, 2007.

Infoworld. Available online. URL: http://www.infoworld.com/.
Accessed June 24, 2007.

International Data Corporation. Available online. URL: http://
www.idc.com/. Accessed June 24, 2007.

108        computer industry

PC World. Available online. URL: http://www.pcworld.com.
Accessed June 24, 2007.

Plunkett’s Info Tech, Computers & Software Industry. Avail-
able online. URL: http://www.plunkettresearch.com/
Industries/InfoTechComputersSoftware/tabid/152/Default.
aspx. Accessed June 24, 2007.

Yost, Jeffrey R. The Computer Industry. Westport, Conn.: Green-
wood Press, 2005.

ZDNet. Available online. URL: http://www.zdnet.com/. Accessed
June 24, 2007.

computer literacy
As computers became integral to business, industry, trades,
and professions, educators and parents became increas-
ingly concerned that young people acquire a basic under-
standing of computers and master the related skills. The
term computer literacy suggested that computer skills were
now as important as the traditional skills of reading, writ-
ing, and arithmetic. However, there has been disagreement
about the emphasis for a computer literacy curriculum.
Some educators, such as Seymour Papert, computer sci-
entist and inventor of the Logo language, believe that stu-
dents can and should understand the concepts underlying
computing, and be able to write and appreciate a variety of
computer programs (see logo). By gaining an understand-
ing of what computers can (and cannot) do, students will
be able to think critically about how to appropriately use
the machines, rather than simply mastering route skills.
Indeed, by gaining a good grasp of general principles, the
student should be able to easily master specific skills.

An opposing view emphasizes the practical skills that
most people (who will not become programmers) will need
in everyday life and work. This sort of curriculum focuses
on learning how to identify the parts of a computer and
their functions, how to run popular applications such
as word processors, spreadsheets, and databases, how to
connect to the Internet and use its services, and so on.
Computer literacy can also be broadened to include under-
standing the impact that computers are having on daily
life and social issues that arise from computer use (such as
security, privacy, and inequality).

Today computer literacy is an important part of every
elementary and high school curriculum. Most students in
middle-class or higher income brackets now have access to
computers at home, and many thus gain considerable com-
puter literacy outside of school. In addition, adult education
and vocational schools often emphasize computer skills as
a route to employment or career advancement. People also
have the opportunity to learn on their own through books
and videos.

The approach to computer literacy will vary with the
background and resources of a given community. For exam-
ple, programs for young people in developed countries can
take advantage of the fact that many young people already
have considerable experience with using computers, includ-
ing related devices such as game consoles and music/video
players. On the other hand, a program targeted at a poor or
minority community must cope with the likelihood that
many members of the community have had little opportu-

nity to interact with computers (see digital divide). Pro-
grams for poor and developing countries may have to focus
first on providing the basic infrastructure, as in the One
Laptop Per Child Program.

Further Reading
Gookin, Dan. PCs for Dummies. 10th ed. New York: Wiley, 2005.
Jan’s Illustrated Computer Literacy 101. Available online. URL:

http://www.jegsworks.com/Lessons/index.html. Accessed June
24, 2007.

Parsons, June, and Dan Oja. Practical Computer Literacy and Skills.
Boston: Thomson Course Technology, 2004.

White, Ron. How Computers Work. 8th ed. Indianapolis: Que,
2005.

computer science
Most generally, computer science is the study of methods
for organizing and processing data in computers. The fun-
damental questions of concern to computer scientists range
from foundations of theory to strategies for practical imple-
mentation.

Fundamental Theory
• � What problems are susceptible to solving through an

automated procedure? (See computability and com-
plexity.)

• �G iven that a problem is solvable, can it be solved
without too much expenditure of time or computing
resources?

• � Can a step-by-step procedure be devised for solving
a given problem? (See algorithm.) How do different
procedures (such as for sorting data) compare in effi-
ciency and reliability? (See sorting and searching.)

• � What methods of organizing data are most useful?
(See data structures.) What are the advantages and
drawbacks of particular forms of organization? (See
array, list processing, and queue.)

• � Which structures are best for representing the data
needed for a given application? What is the best way
to relate data to the procedures needed to manipulate
it? (See encapsulation, class, and procedures and
functions.)

The Tools of Computing
• � How can programs be structured so they are easier to

read and maintain? (See structured programming
and object-oriented programming.)

• � Can programmers keep up with growth of operating
systems and application programs that have millions
of lines of code? (See software engineering and
quality assurance, software.)

• � How can multiple simultaneous tasks (or even mul-
tiple processors) be coordinated to bring greater
computing power to bear on problems? (See multi-
tasking and multiprocessing.)

computer science        109

• � What is the best way to design an operating system,
including the arrangement of different layers of the
operating system such as the hardware-specific driv-
ers, kernel (essential functions), and interfaces (shells
or visual environments)? (See operating system,
kernel, device driver, and shell.)

• � What should be emphasized in designing a program-
ming language? How does one specify the grammar
of statements the declaration and handling of data
types, and the mechanism for handling functions or
procedures? (See Backus-Naur form, data types,
and procedures and functions.)

• � What considerations should be emphasized in design-
ing a compiler for a given language? (See compiler.)

• � How should a network be organized, and what pro-
tocols should be used for transferring data? (See
network, Internet, data communications, tele-
communications, and tcp/ip.)

Specific Application Areas
The general principles and tools must then be applied to a
variety of application areas including:

• � text processing (see word processor, text editor,
and font)

• � graphics (see computer graphics and image pro-
cessing)

• � database management, including file structures and
file access (such as indexing and hashing), and data-
base architecture (relational databases) (see database
management system, sql, and xml).

• � business data processing issues, including the design
of MIS (management information systems) and deci-
sion support systems

• � web applications, including commercial applications
(see e-commerce), multimedia, database access, inte-
gration of Web services (see bioinformatics service-
oriented architecture, mashups, and web 2.0 and
beyond), and appropriate programming techniques
(see Ajax and scripting languages.)

• � scientific programming issues, including data acqui-
sition, maintaining accuracy in calculations, and
creating visualizations driven by the data (see data
acquisition, numeric data and scientific comput-
ing applications.)

• � user interface design (designing the interaction
between human beings and the operating system or
application) (see user interface)

• � the broad area of artificial intelligence, which affects
ways of representing information and modeling rea-
soning processes (see artificial intelligence, neu-
ral network, expert systems, and knowledge
representation.)

• � robotics and control systems (an older term, “cyber-
netics,” has also been used for this field) (see robot-
ics and cybernetics.)

Clearly the concerns of computer science overlap a num-
ber of related fields. The design of computer hardware is
often considered to be computer engineering, but designers
of hardware must be familiar with the algorithms that will
be used to operate it (see also computer engineering).
Both artificial intelligence and user interface design are
affected by cognitive science (or psychology), the study of
human thought processes. Biology both inspires and is illu-
minated by artificial life simulations, genetic algorithms,
and neural networks. The most abstract questions of infor-
mation processing touch on the field of information science
(or information theory).

History of the Field
The early computer pioneers such as Alan Turing, J. Pre-
sper Eckert, and John Mauchly brought backgrounds in
mathematics or engineering (see Turing, Alan; Eckert,
J. Presper; and Mauchly, John). By the 1960s, however,
a discipline and curriculum for computer science began to
emerge. By the late 1990s more than 175 departments in
American and Canadian universities offered a doctorate in
computer science, with about a thousand new Ph.D.s being
granted each year. However, in the following decade the
number of students majoring in computer science declined
by about 50 percent. (See education in the computer
field for more details.)

The traditional computer science field emphasizes the
theory of data representation, algorithms, and system archi-
tecture. In recent years a more practically oriented cur-
riculum has emerged as an alternative. Under the titles of
“Information Technology” or “Information Systems,” this
curriculum emphasizes application areas such as manage-
ment information systems, database management, system
administration, and Web development.

Further Reading
Association for Computing Machinery (ACM). Available online.

URL: http://www.acm.org. Accessed June 24, 2007.
Biermann, Alan W. Great Ideas of Computer Science with JAVA.

Cambridge, Mass.: MIT Press, 2001.
Computer Science [resources]. University of Albany Libraries.

Available online. URL: http://library.albany.edu/subject/csci.
htm. Accessed June 24, 2007.

Dale, Nell, and John Lewis. Computer Science Illuminated. 3rd ed.
Sudbury, Mass.: Jones & Bartlett, 2006.

Hillis, Daniel W. The Pattern on the Stone: The Simple Ideas That
Make Computers Work. New York: Basic Books, 1998.

IEEE Computer Society. Available online. URL: http://www.com-
puter.org/portal/site/ieeecs/index.jsp. Accessed June 24,
2007.

computer virus
A computer virus is a program that is designed to copy
itself into other programs. When the other programs are
run, they carry out the virus’s instructions, either instead of
or in addition to their own. Since one of the primary tasks

110        computer virus

programmed into a virus is to reproduce itself, a virus pro-
gram can spread rapidly. Viruses are generally programmed
to seek out program files that are likely to be executed in
the near future, such as those used by the operating system
during the startup process. The result is a copy that can
in turn generate an additional copy, and so on. (A virus
disguised as an innocuous program is sometimes called
a Trojan, short for “Trojan horse.” A distinction is some-
times made between viruses and worms. A worm generally
uses flaws in a networking system to send copies to other
machines, without needing to insert code into a program.)

Appearing in the 1980s, the first computer viruses were
generally spread by infecting programs on floppy disks,
which were often passed between users. Today, viruses gen-
erally have instructions that enable them to gain access to
network facilities (such as e-mail) to facilitate their spread-
ing to other systems on a local network or on the Internet.
The spread of viruses is complicated by the fact that operat-
ing systems (particularly Microsoft Windows) and appli-
cations (such as Microsoft Office) have the ability to run
scripts or “macros” that are attached to documents. This
facility can be useful for tasks such as sophisticated docu-
ment formatting or form-handling, but it also means that
viruses can attach themselves to scripts or macros and run
whenever a document containing them is opened. Since
modern e-mail programs have the ability to include doc-
uments as attachments to messages, this means that the
unsuspecting recipient of a message can trigger a virus sim-
ply by opening a message attachment.

In today’s Web-centric world, viruses are often spread
using links in e-mail that either entices or frightens the
reader into clicking on a link to a Web site, which can
be made to closely resemble that of a legitimate institu-
tion such as a bank or e-commerce site (see phishing and
spoofing). Once connected to the site, the user’s computer
can be infected with a virus or with some other form of
“malware” (see spyware and adware). This route of infec-
tion is particularly dangerous because normal antivirus
programs scan e-mail but not data being downloaded from
a Web site, and firewalls are generally set to allow normal
Web requests.

Once installed, a virus can be used for a variety of pur-
poses according to the “payload” of instructions that are
set to execute. Sensitive information such as credit card
details can be stolen (see identity theft). Sometimes the
infected computer can appear to be unaffected, but has had
a stealthy “bot” (robot) program inserted. Thousands of
bots can be linked into a “botnet” and later commanded to
trigger large-scale “distributed denial of service” (DDOS)
attacks to flood targeted Web sites with requests, crashing
or disabling the site.

Viruses can be further disguised by programming them
to remain dormant until a certain date, time, or other con-
dition is reached. (Such a virus is sometimes called a logic
bomb.) For example, a disgruntled programmer who is
about to be dismissed might insert a virus that will wipe
out payroll data at the beginning of the next month. A
famous example of the time-triggered virus was the Michel-
angelo virus, so named because it was triggered to run on

the artist’s birthday, March 6, 1992. (See computer crime
and security.)

Viruses can be overtly destructive (such as by reformat-
ting a computer’s hard drive, wiping out its data). Other
viruses can simply tie up system resources. The most infa-
mous example of this was the “Internet Worm” introduced
onto the network on November 2, 1988, by Robert Morris,
Jr. This program was intended to reproduce slowly, plant-
ing its “segments” on networked computers by exploiting a
flaw in the UNIX sendmail program. Unfortunately, Morris
made an error that caused the worm to spread much more
rapidly. Before the coordinated efforts of system adminis-
trators at affected sites came up with countermeasures, the
worm had cost somewhere in the hundreds of thousands of
dollars in lost computer and programmer time.

Countermeasures
The only certain defense of a computer system from viruses
would be through abstaining from contact between it and
any other computers, either directly through a network or
indirectly through exchange of programs on floppy disks
or other removable media. In today’s highly networked
world, this is usually impractical. A more practical defense
is to install antivirus software. Antivirus programs work
by comparing the contents of files (either those already on
the disk or entering via the Internet) with “signatures” or
patterns of data found in known viruses. More sophisti-
cated antivirus programs include the ability to recognize
program code that is similar to that found in known viruses
or that attempts suspicious operations (such as attempts to
reformat a disk or bypass the operating system and write
directly to disk). If an antivirus program recognizes a virus,
it warns the user and can be told to actually remove the
virus. Because dozens of new viruses are identified each
week, virus programs must be updated frequently with new
virus signature files in order to remain effective. Many anti-
virus programs can update themselves by periodically link-
ing to a Web site containing the update files.

Modern operating systems (such as Microsoft Windows
Vista) have attempted to make it harder for unauthorized
programs to access critical system files, such as by limit-
ing default access permissions or prompting the user to
approve various activities. Such operating systems also
include an updating feature that can automatically down-
load and install security “patches”—a vital task, as can be
seen from the volume and variety of such updates that seem
to appear every month. Indeed the use of “blended” threats
(including more than one potential infection mechanism)
and the development of new “exploits” for hundreds of dif-
ferent data file formats make system protection an ongoing
challenge.

Reducing user temptation and enhancing user aware-
ness is also important. Since unsolicited e-mail (see spam)
is often a source of potentially malicious links and attach-
ments, running a spam-blocking program can help pro-
tect the computer. There are also programs that can detect
and block “phishing” messages and their related Web sites.
Since none of these programs can completely keep up with
the rapid appearance of new threats, caution and common

computer virus        111

sense on the part of the user remain an important last line
of defense.

Further Reading
Antivirus Software Buying Guide. PC World. Available online. URL:

http://www.pcworld.idg.com.au/index.php/id;316975074.
Accessed June 24, 2007.

CERT Coordination Center. Available online. URL: http://www.
cert.org. Accessed June 24, 2007.

Gregory, Peter H. Computer Viruses for Dummies. Indianapolis:
Wiley, 2004.

Henderson, Harry. Computer Viruses. Detroit: Lucent Books/Thom-
son-Gale, 2006.

McAfee Corporation. Available online. URL: http://www.mcafee.
com. Accessed June 24, 2007.

Symantec Corporation. Available online. URL: http://www.
symantec.com. Accessed June 24, 2007.

computer vision
In the biological world, vision is the process of receiving
light signals from the environment through the eyes and
optic nerves, from which the brain can extract patterns
that contain useful information (such as recognizing food
or a potential predator). Computer vision (also known as
machine vision) is the analogous process by which light
is received by a sensor system (such as a digital camera).
The light is then analyzed for meaningful patterns. Thus, a
robot might be able to recognize the identity and positions
of various parts on an assembly line.

Because computer vision involves pattern recognition, it
is part of the discipline of artificial intelligence (see artifi-
cial intelligence and pattern recognition). The chal-
lenge is not in getting information about a visual scene from
the camera and turning it into digital information (a grid of
pixels). Rather, it is the ability to recognize meaningful pat-
terns in fragmented images, something human infants learn
to do almost from birth when they encounter human faces.

One way to approach the problem is to constrain the
kinds of images the computer (or robot) has to deal with.
If you can guarantee that a robot’s field of vision will con-
tain only a few fixed objects (a hopper, perhaps, or a con-
veyer belt) plus one or more distinctively shaped parts, it
is relatively easy to program the dimensions of the possible
objects into the vision system so that the robot can identify
objects by comparing them with stored templates. However,
if the robot encounters an object it isn’t prepared for, such
as a stray bit of packing material, it will be unable to iden-
tify (or properly deal) with the object.

Vision is also complicated by the problem of parsing
three-dimensional objects in the visual field. Seen head-
on, the side of a cube appears to be a two-dimensional
square. Seen at an angle, it appears to be a three-dimen-
sional assemblage with some faces visible and some not.
To interpret these and more complicated objects, the robot
might be programmed with rules that help it infer that an
object is really a cube, that all cubes have six equal sides,
and so on. Another strategy is to give the robot more than
one “eye” so that images can be compared, much as humans
do unconsciously with binocular vision. Finally, the robot
can be given the ability to move its head and eyes in order

to find a viewpoint that yields more information about an
ambiguous object.

Human infants, of course, are not born with a fully
developed understanding of the types of objects in their
world. They are always learning new ways to distinguish,
for example, a stuffed teddy bear from a live dog. Robot
vision systems, too, can be programmed to learn (or at least,
refine their ability to recognize objects). A statistical tech-
nique can be used to “sample” objects in the environment
and find which characteristics most reliably “predict” the
true nature of an object. Characteristics can be resampled
from different viewpoints to see which ones remain invari-
ant (unchanged). For example, a cube will always have four
edges on each face. Another approach is to use a neural net-
work, where the visual information is processed by a grid of
nodes that are reinforced to the extent they are successful
in identifying features (such as edges).

Applications
Computer vision is a problem of great theoretical interest
because it engages so many questions about perception,
the ability to build models of the world, and the ability to
learn. The field also has considerable practical potential.
Currently, most robots are fixed to stations on factory floors
where they work with a limited number of objects (parts)
in a highly constrained, stable environment. However “ser-
vice robots” have been gradually developed to work in a
much less constrained environment (such as carrying sup-
plies down hospital corridors or even serving as mobile
assistants to astronauts in the weightless environment of
the International Space Station). These robots would benefit
greatly by having robust vision systems so that they can, for
example, recognize individual human faces or detect poten-
tially dangerous situations.

Of course computer vision systems find many applica-
tions besides robotics. These include automatic quality con-
trol or inventory management systems, advanced medical
imaging and computer-assisted surgery, as well as security,
surveillance, and criminal investigation/forensics.

Further Reading
Davies, E. R. Machine Vision: Theory, Algorithms, Practicalities. 3rd

ed. San Francisco: Morgan Kaufmann, 2004.
Henderson, Harry. Modern Robotics: Building Versatile Machines.

New York: Chelsea House Publishers, 2006.
Hornberg, Alexander, ed. Handbook of Machine Vision. Weinheim,

Germany: Wiley-VCH, 2006.
Machine Vision Online. Automated Imaging Association. Avail-

able online. URL: http://www.machinevisiononline.org/.
Accessed June 24, 2007.

Shapiro, Linda G., and George Stockman. Computer Vision. Upper
Saddle River, N.J.: Prentice Hall, 2001.

concurrent programming
Traditional computer programs do only one thing at a time.
Execution begins at a specified point and proceeds accord-
ing to decision statements or loops that control the process-
ing. This means that a program generally cannot begin one
step until a previous step ends.

112        computer vision

Concurrent programming is the organization of pro-
grams so that two or more tasks can be executed at the
same time. Each task is called a thread. Each thread is itself
a traditional sequentially ordered program. One advantage
of concurrent programming is that the processor can be
used more efficiently. For example, instead of waiting for
the user to enter some data, then performing calculations,
then waiting for more data, a concurrent program can have
a data-gathering thread and a data-processing thread. The
data-processing thread can work on previously gathered
data while the data-gathering thread waits for the user to
enter more data. The same principle is used in multitasking
operating systems such as UNIX or Microsoft Windows.
If the system has only a single processor, the programs
are allocated “slices” of processor time according to some
scheme of priorities. The result is that while the proces-
sor can be executing only one task (program) at a time, for
practical purposes it appears that all the programs are run-
ning simultaneously (see multitasking).

Multiprocessing involves the use of more than one proces-
sor or processor “core.” In such a system each task (or even
each thread within a task) might be assigned its own proces-
sor. Multiprocessing is particularly useful for programs that
involve intensive calculations, such as image processing or
pattern recognition systems (see multiprocessing).

Programming Issues
Regular programs written for operating systems such as
Microsoft Windows generally require no special code
to deal with the multitasking environment, because the
operating system itself will handle the scheduling. (This
is true with preemptive multitasking, which has generally
supplanted an earlier scheme where programs were respon-
sible for yielding control so the operating system could give
another program a turn.)

Managing threads within a program, however, requires
the use of programming languages that have special state-
ments. Depending on the language, a thread might be
started by a fork statement, or it might be coded in a way
similar to a traditional subroutine or procedure. (The dif-
ference is that the main program continues to run while the
procedure runs, rather than waiting for the procedure to
return with the results of its processing.)

The coordination of threads is a key issue in concur-
rent programming. Most problems arise when two or more
threads must use the same resource, such as a processor
register (at the machine language level) or the contents
of the same variable. Let’s say two threads, A and B, have
statements such as: Counter = Counter + 1. Thread A gets
the value of Counter (let’s say it’s 10) and adds one to it.
Meanwhile, thread B has also fetched the value 10 from
Counter. Thread A now stores 11 back in counter. Thread
B, now adds 1 and stores 11 back in Counter. The result is
that Counter, which should be 12 after both threads have
processed it, contains only 11. A situation where the result
depends on which thread gets to execute first is called a
race condition.

One way to prevent race conditions is to specify that
code that deals with shared resources have the ability to

“lock” the resource until it is finished. If thread A can lock
the value of Counter, thread B cannot begin to work with it
until thread A is finished and releases it. In hardware terms,
this can be done on a single-processor system by disabling
interrupts, which prevents any other thread from gaining
access to the processor. In multiprocessor systems, an inter-
lock mechanism allows one thread to lock a memory loca-
tion so that it can’t be accessed by any other thread. This
coordination can be achieved in software through the use
of a semaphore, a variable that can be used by two threads
to signal when it is safe for the other to resume process-
ing. In this scheme, of course, it is important that a thread
not “forget” to release the semaphore, or execution of the
blocked thread will halt indefinitely.

A more sophisticated method involves the use of mes-
sage passing, where processes or threads can send a variety
of messages to one another. A message can be used to pass
data (when the two threads don’t have access to a shared
memory location). It can also be used to relinquish access
to a resource that can only be used by one process at a time.
Message-passing can be used to coordinate programs or
threads running on a distributed system where different
threads may not only be using different processors, but run-
ning on separate machines (a cluster computing facility).

Programming language support for concurrent pro-
gramming originally came through devising new dialects
of existing languages (such as Concurrent Pascal), building
facilities into new languages (such as Modula-2), or creating
program libraries for languages such as C and C++.

However, in recent years concurrent programming lan-
guages and techniques have been unable to keep up with
the growth in multiprocessor computers and distributed
computing (such as “clusters” of coordinated machines).
With most new desktop PCs having two or more process-
ing cores, there is a pressing need to develop new programs
that can carry out tasks (such as image processing) using
multiple streams of execution. Meanwhile, in very high-
performance machines (see supercomputer), the Defense
Advanced Research Projects Agency (DARPA) has been try-
ing to work with manufacturers to develop languages to
work better with computers that may have hundreds of
processors as well as distributed systems or clusters. Such
languages include Sun’s Fortress, intended as a modern
replacement for Fortran for scientific applications.

The new generation of concurrent languages tries to
automate much of the allocation of processing, allowing
programmers to focus on their algorithms rather than
implementation issues. For example, program structures
such as loops can be automatically “parallelized,” such as
by assigning them to separate cores.

Further Reading
Anthes, Gary. “Languages for Supercomputing Get ‘Suped’ Up.”

Computerworld.com, March 12, 2007. Available online. URL:
http://www.computerworld.com/action/article.do?comma
nd=viewArticleBasic&articleId=283477&intsrc=hm_list.
Accessed June 24, 2007.

Ben-Ari, M. Principles of Concurrent & Distributed Programming.
2nd ed. Reading, Mass.: Addison-Wesley, 2006.

concurrent programming        113

Feldman, Michael. “Our Manycore Future.” HPCWire. Available
online. URL: http://www.hpcwire.com/hpc/1295541.html.
Accessed June 24, 2007.

Lea, Douglas. Concurrent Programming in Java: Design Principles
and Patterns. 3rd ed. Reading, Mass.: Addison-Wesley Profes-
sional, 2006.

Merritt, Rick. “Where Are the Programmers? Enrollment Wanes
Just as Computer Scientists Grapple with Problem of Paral-
lelism.” IEEE Times, March 12, 2007. Available online. URL:
http://www.eetimes.com/showArticle.jhtml?articleID=197801
653. Accessed June 24, 2007.

Steele, Guy, and Jan-Willem Maessen. “Fortress Programming
Language Tutorial Slides.” Sun Microsystems. Available
online. URL: http://research.sun.com/projects/plrg/PLDITu-
torialSlides9Jun2006.pdf. Accessed June 11, 2007.

conferencing systems
Conferencing systems are online communications facilities
that allow users to log in and participate in discussions on
a variety of topics. Although this is a rather amorphous cat-
egory of software, some distinguishing characteristics can
be identified. Conferencing is distinguished from chat or
instant messaging systems because the messages are asyn-
chronous (that is, one person at a time leaves a message,
and there is no real-time interaction between participants).
Unlike Netnews newsgroups, conferencing systems such as
San Francisco Bay Area–based The Well tend to have users
who are committed to long-term discussions in conferences
(topical discussion areas) that tend to persist for weeks,
months, or even years. Conferencing systems are often
grouped under the umbrella term of Computer-Mediated
Communications (CMC).

History
In the 1960s, researcher Murray Turoff at the Institute for
Defense Analysis decided to adopt for computer use a dis-
cussion method called Delphi, developed at RAND corpora-
tion. This method was a collective process by which new
ideas were discussed and voted on by a panel of experts.
After he implemented Delphi as a system of messages passed
via computer, he began to generalize his work into a more
general method of facilitating online discussions. His Elec-
tronic Information Exchange System (EIES, pronounced
“eyes”) was designed to facilitate discussion within research
communities of 10–50 members.

The emergence of topical online discussions can be seen
in the development of the Usenet (or Netnews) newsgroups
in the early 1980s, the development of communications
or memo systems within large offices (particularly within
the government), and the emergence of bulletin boards and
online services for personal computer users. Most early
news and bulletin board software had only rudimentary
facilities for linking topics and responses. A more sophisti-
cated approach to conferencing emerged within the PLATO
educational computing network in the 1970s, in the form of
Plato Notes. This system began as a simple way for users to
leave messages or help requests in a text file, and evolved
into a structure of “base notes” and linked response notes, a
topic-and-response structure that became the general model
for conferencing systems.

In the mid-1980s, the Well (Whole Earth ’Lectronic
’Link) began to provide online conferencing to anyone who
subscribed. It used a text-based system called Picospan.
With its improbable eclectic mix well salted with Grate-
ful Dead fans and computer “nerds,” the Well became a
sort of petri dish for cultivating community (see virtual
community). Long-term friendships (and feuds) and occa-
sional romances have been nurtured by such conferencing
systems.

Typical Structure
A typical text-based conferencing system is divided into
conferences, which are generally devoted to relatively broad
subjects, such as UNIX, pop music, or politics. Each confer-
ence is further divided into topics, which usually reflect
particular aspects of the general subject (such as a particu-
lar UNIX version, a pop music group, or a political issue).
Most conferencing systems have a person or persons who
act as a moderator (sometimes called a “host”) who tries
to encourage new users, keep discussions more or less on
topic, and discourage personal attacks or vehement state-
ments (“flames”).

A user signs onto the system and “joins” one or more
conferences. Each time the user visits a conference that he
or she has joined, any topics (or responses in existing top-
ics) that were posted since the last visit are presented. The
user can read the postings and, if desired, enter a reply that
becomes part of the thread of messages. (Users are also gen-
erally allowed to start new topics of their own.)

Web-based Conferencing
Text-based systems such as Picospan are driven by the user
entering command letters or words. While this paradigm
is familiar to people who have experience with operating
systems such as UNIX or MS-DOS, it can be more diffi-
cult for users who are used to the point-and-click approach
of Windows programs and the World Wide Web. Many
new conferencing systems use Web pages to present confer-
ence topics and messages, with buttons replacing text com-
mands. (The Well continues to offer both the text-based
Picospan and the Web-based Engaged.)

Although the Well and other conferencing systems such
as The River continue in operation, conferencing systems
have been largely supplanted by newer forms of online
expression (see blogs and blogging, social network-
ing, and wikis and Wikipedia). (Note that “conferenc-
ing system” can also refer to video-based software such as
Microsoft Live Meeting for facilitating meetings between
geographically dispersed participants.)

Further Reading
Hafner, Katie. The Well: A Story of Love, Death & Real Life in the

Seminal Online Community. New York: Carroll & Graf, 2001.
Rheingold, Howard. The Virtual Community: Homesteading on the

Electronic Frontier. Rev. ed. Cambridge, Mass.: MIT Press,
2000.

Thurlow, Crispin, Laura Lengel, and Alice Tomic. Computer Medi-
ated Communication. Thousand Oaks, Calif.: SAGE Publica-
tions, 2004.

114        conferencing systems

Web Conferencing Review. Available online. URL: http://thinkofit.
com/webconf/index.htm. Accessed June 25, 2007.

The Well. Available online. URL: http://www.well.com. Accessed
June 25, 2007.

constants and literals
Constants and literals are ways of describing data that does
not change while a program runs. For example, a statement
in C such as

const float pi = 3.14159;

expresses a value that will be used in calculations, but
not changed. Constants can be of any data type, including
character strings as well as numbers. String constants are
usually enclosed in single or double quotes:

char * Greeting = “Hello, World”;

Actual strings and numerals found in programs are some-
times called literals, meaning that they are to be accepted
exactly as given (literally) rather than standing for some
other value. Thus 3.14159 and Hello, World as given
above can be considered to be numeric and string literals
respectively.

Because many languages consider a value of 1 as rep-
resenting a “true” result for a branch or loop test, and 0 as
representing “false,” programs in languages such as C often
include declarations such as:

const True = 1;
const False = 0;

This lets you later have a loop construction such as

while (True) {
’ body of program
} ;

which is a more readable way to code an endless loop than:

while (1) {
’ body of program
} ;

However languages such as Pascal and C++ have a special
boolean data type (bool in C++) that allows for constants or
variables that will have one of two values, true or false.

Some languages provide a way to set up an ordered
group of constant values (see enumerations and sets).

Constants vs. Variables
The difference between a constant and a variable is that a
variable represents a quantity that can change (and is often
expected to). For example, in the statement

int Counter = 0;

Counter is set to a starting value of zero, but will presum-
ably be increased as whatever is to be counted is counted.

Most compilers will issue an error message if they detect
an attempt to change the value of a constant. Thus the
sequence of statements:

const float Tax_Rate = 8.25;
Tax_Rate = Tax_Rate + Surtax;

would be illegal, since Tax_Rate was declared as a constant
rather than as a variable.

Many compilers, as part of code optimization, can
discover values or expressions that will remain constant
throughout the life of the program, even if they include
variables. Such constants can be “propagated” or substi-
tuted for variables. This can speed up execution because
unlike a variable, a constant does not need to be retrieved
from memory (see compiler).

Further Reading
Sebesta, Robert W. Concepts of Programming Languages. 8th ed.

Reading, Mass.: Addison-Wesley, 2007.

content management
Content management is the process of creating, maintain-
ing, and archiving data such as text and images to be used
for a project such as a book, magazine, or Web site. Nor-
mally such projects involve a number of different people:
content creators (such as writers or photographers), edi-
tors, reviewers, designers, and so on. A large project will
often have many documents in various stages—early drafts,
material approved for publication, existing publications in
need of revision, older material ready to be archived, and
so on.

The purpose of content management is to make sure
every piece of a project has its status tracked, including
who has worked on it and what has been done (or needs to
be done). Because more than one person may want to work
on a given piece at the same time, some form of “version
control” (as with program code) must be used to either
“lock” the material while one person is using it, or to merge
their separate work into a new version of the document.
Naturally there must also be a way for members of the team
to communicate with each other in connection with specific
parts of the project, and all members must be kept informed
of key developments.

Work Flow
A key measurement of the effectiveness of a content man-
agement system (CMS) is how well it facilitates work flow,
or the movement of documents through the production pro-
cess. Work flow begins with the importing of material such
as text documents or multimedia resources into the system.
At this time the key users and their roles (such as editor or
reviewer) are identified, and the system can then route the
material to the next person automatically after each task is
completed. Often messages are generated and sent to man-
agers to keep them informed of progress or to alert them to
problems.

Today Web sites are the most common large informa-
tion-related projects, and managing them can be quite
challenging. Usually multimedia material is included well
beyond that found in printed projects, such as audio, video,
animations, and information feeds (see rss). Web sites,

content management        115

unlike most traditional publications, are under constant
revision and review.

Once created, material will often be reused or repurposed
for different projects. Thus an important part of most con-
tent management systems is the repository, which makes the
material easily searchable and retrievable for later use. Mate-
rial that is less likely to be used but still must be retained
(such as for legal reasons) may be stored in a separate archive
(see backup and archive systems). Note: The term digital
asset management is also sometimes used for such systems.

Software
Content management Systems are usually built upon a
framework or programming interface (see application
program interface), often using languages such as Java,
Perl, Python, or PHP. There are many products to choose
from, including free and open-source alternatives.

An interesting alternative for some projects is to use
a wiki as a content management system (see wikis and
Wikipedia). Especially for textual content, wikis offer the
advantage of already having revision tracking built in, and
full-scale wikis such as MediaWiki have many additional
features or plug-ins to aid in content management.

Further Reading
Boiko, Bob. Content Management Bible. 2nd ed. Indianapolis:

Wiley, 2005.
CMS Matrix. Available online. URL: http://www.cmsmatrix.org/.

Accessed September 4, 2007.
CMS Review. Available online. URL: http://www.cmsreview.com/.

Accessed September 4, 2007.
Hackos, JoAnn T. Content Management for Dynamic Web Delivery.

New York: Wiley, 2001.

cookies
Cookies are simply tiny text files that a Web server sends
to the browser and retrieves each time the user accesses the
Web site. The purpose is to maintain a sort of profile of the
user containing such things as preferences as to how the
user wants to view or use the site, shopping cart selections
from previous sessions, and so on. In short, cookies enable a
Web site to provide a more customized or personalized form
of service and minimize the amount of repetitive data entry
on the part of the user. (This type of cookie is called persis-
tent, since it survives across sessions. There can also be tem-
porary cookies that apply only to the current session.)

However, cookies also have benefits for the Web site
owner. They can be used to track which pages or items the
user has looked at in the past. This information can then be
used (see data mining) to create generic user profiles that
can help with marketing or targeting advertising. In the
case of some companies (notably Amazon.com) much more
elaborate profiles associated with the cookie’s identity can
be used to create personalized recommendations, in effect
continually directing targeted advertising at the user.

Security and Privacy Concerns
There are many popular misconceptions about cookies.
Cookies contain only data, not executable code. This means

they cannot function as worms or viruses or otherwise
interact with the user’s system. However, while cookies do
not in themselves represent a security threat, they do have
privacy implications. Although most profiles created using
cookies are anonymous (containing no personal identifying
data), an unscrupulous site could attach such data (such as
addresses or credit card numbers entered by the user) to a
profile and sell it for purposes ranging from spamming to
identity theft.

Another risk comes from “third party” cookies such as
are often included in advertisements (see online advertis-
ing). Potentially, these could be used to create a much more
comprehensive profile of a user based on his or her actions
on multiple Web sites.

Users do have some control over how cookies are stored.
Most browsers allow the user to reject all cookies, accept or
reject cookies from certain sites, or store cookies only tem-
porarily. However, sites may in turn refuse services to users
who do not accept cookies, and at any rate the user would
see only a generic rather than a personalized view.

There has been a certain amount of government regula-
tion of Web cookies. The U.S. government has strict rules
for the use of cookies on federal Web sites. The European
Union also has recommended (but not fully implemented)
regulations that require that users be told how the stored
data will be used and be given the opportunity to opt out.

Further Reading
Kuner, Christopher. European Data Privacy Laws and Online Busi-

ness. New York: Oxford University Press, 2003.
Kymin, Jennifer. “What are HTTP Cookies?” Available online. URL:

http://webdesign.about.com/cs/cookies/a/aa082498a.htm.
Accessed September 4, 2007.

Levine, John R., Ray Everett-Church, and Gregg Stebben. Internet
Privacy for Dummies. New York: Wiley, 2002.

cooperative processing
Historically there have been two basic ways to bring greater
computer power to bear on a task. One is to build more
powerful single computers (see supercomputer). The other
is to link one or more computers or processors together and
tightly coordinate them to process the data (see grid com-
puting). Both of these approaches require great expertise
and considerable expense.

However, there is another quite interesting ad hoc
approach to cooperative processing that first appeared with
the SETI@Home project launched in 1999. The basic idea is
to take advantage of the fact that millions of computer users
are already connected via the Internet. The typical PC has
many processing cycles to spare—idle time when the user is
doing nothing and the operating system is doing very little.

A program like SETI@Home is designed to be down-
loaded to volunteer users. The program can run only when
no other applications are being used (one way to ensure
this is to make the program a screen saver), or it can run
continuously but only use cycles not being requested by
another program.

 The data to be analyzed (signals from space in this case)
is broken up into chunks or “work units” that are parceled

116        cookies

out to the volunteers. When a given unit has been analyzed
by the program on the user’s machine, the results are sent
back to the central server and a new work unit is sent.

Although no evidence of extraterrestrial intelligence
had been found as of mid-2008, SETI@Home’s more than 5
million participants have contributed more than 2 million
years of CPU time, and can process at the collective rate of
256 TeraFLOPS (trillion floating point operations per sec-
ond), comparable with the fastest single supercomputers.

There are currently a number of other cooperative dis-
tributed computing projects underway. Many of them are
part of the Berkeley Open Infrastructure for Network Com-
puting (BOINC), which includes SETI@Home, Proteins@
home (protein folding), and the World Community Grid
(humanitarian projects).

Ad hoc cooperative processing is not suitable for all
types of projects. There must be a way to break the data
into batches that can be separately processed. The project
is also dependent on the number of volunteers and their
degree of commitment.

Cooperative processing can be seen as part of a spec-
trum of emerging ways in which the line between produc-
ers and consumers of data is being blurred. Other examples
include media-sharing services such as Gnutella (see file-
sharing and p2p networks). Cooperative programs can
also be used to gather information about software use and
bugs from thousands of users to allow for faster debugging
and optimization.

People can do more than passively share their com-
puter’s processors—they can add their own brains to
the effort. Some of the most effective spam filters (see
spam) use the “collective intelligence” of users by having
them identify and mark spam messages, which can then
be used by the software as a template for automatically
rejecting similar messages. Another interesting applica-
tion by the Carnegie Mellon Human Computation pro-
gram uses a computer game where a pair of randomly
selected volunteers assigns keywords to an image. For
the players, the object of the game is to come up with
matching keywords, thereby scoring points. However, the
real work that is being accomplished is that thousands of
previously uncategorized images are receiving appropri-
ate keywords to enable them to be retrieved. In effect,
the system is taking advantage of an image-recognition
device that is far more capable than any computer algo-
rithm—the human brain! (One might call this synergistic
human–computer processing.)

Further Reading
Berkeley Open Infrastructure for Network Computing. Available

online. URL: http://boinc.berkeley.edu/. Accessed September
4, 2007.

DeHon, Andre, et al. “Global Cooperative Computing.” Avail-
able online. URL: http://www.ai.mit.edu/projects/iiip/colab/
gcc-abstract.html. Accessed September 4, 2007.

Gomes, Lee. “Computer Scientists Pull a Tom Sawyer.” Wall
Street Journal (June 27, 2007): p. B1. Available online. URL:
http://online.wsj.com/article/SB118288538741648871.html.
Accessed September 4, 2007.

SETI@Home. Available online. URL: http://setiathome.berkeley.
edu/. Accessed September 4, 2007.

Shankland, Stephen. “Cooperative Computing Finds Top Prime
Number.” ZDNet. Available online. URL: http://news.zdnet.
com/2100-9584_22-5112827.html. Accessed September 4,
2007.

Taylor, Ian J. From P2P to Web Services and Grids: Peers in a Client/
Server World. New York: Springer, 2004.

copy protection
Companies that produce software have had to cope with
software that is expensive to develop, while the disks on
which it is distributed are inexpensive to reproduce. The
making and swapping of “pirated” copies of software is
just about as old as the personal computer itself. Software
piracy has taken a number of forms, ranging from teenaged
hackers making extra copies of games to factories (often in
Asia) that stamp out thousands of bogus copies of Windows
operating systems and programs that would cost hundreds
of dollars apiece if legitimate (see software piracy and
counterfeiting).

To prevent such copying, software producers in the
1980s often recorded the programs on floppy disks in a spe-
cial format that made them hard to copy successfully. One
way to do this is to record key information on disk tracks
that are not normally read by the operating system and thus
not reproduced by an ordinary copy command. When such
a program runs, it can use a special device control routine
to read the “hidden” track. If it does not find the identifying
information there, it knows the disk is not a legitimate copy.

Another way to do copy protection is by having the
program look for a small hardware device called a “dongle”
connected to the computer, usually to the parallel printer
port. Since the dongle is distributed only with the legiti-
mate program, it can serve as an effective form of copy
protection. (Encryption can also be used to render copies
unusable without the key.)

Decline of Copy Protection
Copy protection has a number of drawbacks. Because disk-
based copy protection writes on nonstandard tracks, even
legitimate programs may not work with certain models of
disk or CD drive. And because the legitimate user is unable
to make a backup copy of the disk, if it is damaged, the user
will be unable to use the program. Dongles, on the other
hand, can interfere with the operation of other devices con-
nected to the port, and a user might be required to use mul-
tiple dongles for multiple programs.

During the 1990s, copy protection was generally phased
out, except for some games. A variety of other strategies are
used against software piracy. The Software Publishers Asso-
ciation (SPA) maintains a program in which disgruntled
users can report unauthorized copying of software at their
workplace. Companies that allow unauthorized copying of
software can be sued for violating the terms of their soft-
ware license. International trade negotiations can include
provisions for cracking down on the massive “cloning” of
major software packages abroad.

With modern software, “soft” copy protection gener-
ally still exists in the form of requiring the typing in of a
serial number from the CD, often combined with online

copy protection        117

“activation” or “validation,” as with Microsoft Windows
and Office products. The online validation process can
forestall the use of valid but duplicated serial numbers
(see digital rights management and software piracy
and counterfeiting).

Hackers and cyber-libertarians have often argued that
the problem of software piracy has been overrated, and
that allowing the copying of software would enable more
people who would not otherwise buy programs to try them
out. Once someone likes the program, they might buy it
not only for legitimacy of ownership, but in order to get
access to the technical support and regular upgrades that
are often required for complex business software packages.
For less expensive software, an alternative channel (see
shareware) allows for a “try before you buy” distribution
of software.

Further Reading
Aldrich, John. “Implementing Simple Copy Protection: Technical

Overview.” Available online. URL: http://www.codeproject.
com/win32/simplecopyprotection.asp?df=100&foru mid=425
0&exp=0&select=878288. Accessed September 6, 2007.

Gilmore, John. “What’s Wrong with Copy Protection.” February
16, 2001. Available online. URL: http://www.toad.com/gnu/
whatswrong.html. Accessed September 6, 2007.

Wikipedia. “Copy Protection.” Available online. URL: http://
en.wikipedia.org/wiki/Copy_protection. Accessed September
6, 2007.

CORBA  (Common Object Request Broker
Architecture)
CORBA (Common Object Request Broker Architecture) is a
standardized way to specify how different applications (on
the same or different machines) can call upon the services
of database objects (see database and object-oriented
programming). The CORBA standard is defined by the
Object Management Group (OMG), a consortium of more
than 700 companies or organizations, including the major
players in distributed database technology.

Structure and Usage
Creating a CORBA application involves three basic steps.
First, specifications are provided using an interface defini-
tion language (IDL) that specifies in generic terms what
services an object will provide. An IDL compiler then cre-
ates a “skeleton” interface that the developer can fill in with
actual code for a class for that object in a programming lan-
guage (such as Java).

To use CORBA, a client application accesses an Object
Request Broker (ORB), which is software that locates the
referenced object on the network (thus the program does
not need to know or keep track of specific locations). The
ORB sends the request to the object, which processes it and
returns the results, which are then sent back to the client
application.

The intent of CORBA is to make objects implemented
by different vendors fully interoperable (able to call one
another using the same syntax). While CORBA 1.0 did not
completely meet this goal, CORBA 2.0 explicitly provided

for a protocol called IIOP (Internet Inter-ORB Protocol)
that, if adhered to, does make brokers (ORBs) and objects
interoperable across vendors and programming languages.
CORBA 3 adds a new CORBA Component Model (CCM)
and specifications that, among other things, provide for
better negotiation with firewalls, a problem that had made
CORBA hard to use in Web development.

Corba Services
In addition to the interfaces defined for particular objects,
CORBA provides a number of services that apply to all
objects. These services include creating, moving/copying,
or removing objects; allowing more readable names for
objects; concurrency and transaction control; setting prop-
erties for objects; and sending queries to objects.

A competing framework for distributed object comput-
ing is COM/DCOM (Common Object Model/Distributed
Common Object Model, now supplanted by .NET (see
Microsoft.net). A simpler (though possibly less secure)
way to connect programs running on different machines is
to use the Simple Object Access Protocol (see soap).

Further Reading
Bolton, Fintan. Pure CORBA. Indianapolis: Sams, 2001.
“Introduction to CORBA” [Java implementation]. Available

online. URL: http://java.sun.com/developer/onlineTraining/
corba/corba.html. Accessed September 4, 2007.

McHale, Ciaran. “CORBA Explained Simply, 2007.” Available
online. URL: http://www.ciaranmchale.com/corba-explained-
simply/. Accessed September 4, 2007.

counterterrorism and computers
Counterterrorism is the effort to detect, identify, and neu-
tralize terrorist groups and prevent attacks. Not surpris-
ingly, information technology plays a part in every phase
of this effort—and sometimes even becomes part of the
battlefield.

Intelligence and Surveillance
The Web and other Internet services are an important part
of the battle against terrorism, not least because terrorists
themselves are beginning to use online tools effectively
(see cyberterrorism). The Internet inherently allows for
considerable anonymity (see anonymity and the Inter-
net). However, any online activity leaves traces, however
virtual, and surveillance, intelligence, and forensic tech-
niques are being adapted to this new medium (see com-
puter forensics).

By putting so much material online, terrorists are expos-
ing themselves to the increasingly sophisticated data min-
ing and “semantic Web” tools that are being developed.
These tools can, for example, identify material likely to be
of interest (and summarize it) and even analyze the rela-
tionship between individuals or groups based on their writ-
ing or verbal communications. Of course such results must
still be reviewed and acted upon by trained human analysts.
Further, surveillance tools that are deployed too widely or
indiscriminately are liable to raise privacy concerns.

118        CORBA

In recent years the U.S. Department of Homeland Secu-
rity has apparently been developing more sophisticated
data-mining and pattern-recognition programs (see bio-
metrics and data mining). One is called ADVISE, or Anal-
ysis, Dissemination, Visualization, Insight, and Semantic
Enhancement. This at least suggests an attempt not to sim-
ply find matches between e-mail, online postings, or other
textual data, but to construct profiles of a person’s activity
and/or intentions, which could presumably then be com-
pared with terrorist or criminal profiles.

Surveillance or wiretapping of specific individuals also
raises legal issues, particularly with recent revelations of
so-called warrantless wiretaps. Officials have claimed that
there are relatively few such cases (perhaps fewer than 100
per year), but the Bush administration’s claim that it did
not need to follow Foreign Intelligence Surveillance Act
(FISA) procedures raised considerable controversy, and a
court decision forced the administration to seek affirmation
of its powers by Congress.

Intelligence officials argue that existing FISA proce-
dures are too cumbersome to deal with the Internet. Old-
style wiretapping involved specific telephone instruments
and lines, but on the Internet the routing of information is
constantly changing, and a person may use several different
devices and types of communication. Thus it is argued that
the warrant must be broad enough to apply to the person,
not a particular means of communication. It is also argued
that the global nature of the network also means that dis-
tinctions about whether persons are inside or outside of the
United States may no longer be as relevant.

Privacy and civil liberties advocates tend to agree that
some updating of warrant procedures to deal with modern
technology is necessary, but they point to secretiveness
and lack of effective legal oversight resulting in a lack
of accountability for government surveillance programs.
This concern has also been fueled by a succession of rev-
elations that surveillance programs are more extensive
than previously thought. (This includes the involvement
of telecommunications and Internet service providers
and the use of FBI “national security letters”—essentially
secret subpoenas.)

Coordinating Efforts
Besides the gathering and analysis of intelligence, computer
applications are used in the intelligence and counterter-
rorism community for many of the same functions found
in any large enterprise. These applications include e-mail,
personal information management, collaborative creation
or review of documents, scheduling and project manage-
ment, and so on.

Intelligence agencies are even adopting some popular
emerging Web technologies. First came Intellipedia, a clas-
sified version of Wikipedia serving as a knowledge base
for intelligence professionals (see wikis and Wikipedia).
In late 2007 the director of national intelligence (DNI)
launched A-Space, which includes Intellipedia, while add-
ing other extensive databases, online office facilities (simi-
lar to Google Apps), and even blogs and a MySpace-like
component (see social networking).

Further Reading
Derosa, Mary. Data Mining and Data Analysis for Counterterrorism.

Washington, D.C.: Center for Strategic & International Stud-
ies, 2004.

Hoover, J. Nicholas. “U.S. Spy Agencies Go Web 2.0 in Effort
to Better Share Information.” InformationWeek, August 23,
2007. Available online. URL: http://www.informationweek.
com/story/showArticle.jhtml?articleID=201801990. Accessed
September 10, 2007.

Lichtblau, Eric. “F.B.I. Data Mining Reached beyond Initial Tar-
gets.” New York Times, September 9, 2007. Available online.
URL: http://www.nytimes.com/2007/09/09/washington/09fbi.
html. Accessed September 10, 2007.

Miller, Greg. “Spy Chief Reveals Details of Operations.” Los Ange-
les Times. Available online. URL: http://www.latimes.com/
news/nationworld/nation/la-na-intel23aug23,0,6229712.
story?coll=la-home-center. Accessed September 10, 2007.

Mohammed, Arshad, and Sara Kehaulani Goo. “Government
Increasingly Turning to Data Mining.” Washington Post,
June 15, 2006, p. D03. Available online. URL: http://www.
whisperingwires.info/. Accessed September 10, 2007.

National Research Council. Information Technology for Counterter-
rorism: Immediate Actions and Future Possibilities. Washing-
ton, D.C.: National Academies Press, 2003.

Taipale, K. A. “Whispering Wires and Warrantless Wiretaps: Data
Mining and Foreign Intelligence Surveillance.” Bulletin on
Law & Security, spring 2006. Available online. URL: http://
www.whisperingwires.info/. Accessed September 10, 2007.

CPU
The CPU, or central processing unit, is the heart of a com-
puter, the place where data is brought in from input devices,
processed, and sent to output devices. (This article describes
the CPU from the point of view of desktop micromputers,
where it is a single large silicon chip and supporting chips;
see mainframe for a discussion of that earlier architecture,
microprocessor for desktop and portable CPUs, and chip
and chipset for physical design of components.)

The CPU consists of two major parts. The arithmetic-
logic unit performs arithmetic or logical operations on pairs
of numbers brought in from memory and stored in special
locations called registers (see arithmetic logic unit). For
example, the CPU can add a value from main memory to
a value stored in a register and store the result back into
memory. In addition to addition, subtraction, multiplica-
tion, and division, the CPU can logically compare the indi-
vidual bits in two values, performing such operations as
AND, where the result is 1 only if both bits are ones, or OR,
where the result is 1 if either bit is one. The power of a CPU
is measured either in the number of clock cycles that drive
it each second (see clock speed) or the number of standard
instructions it can execute in a second. For modern PCs,
clock speeds range into the billions of cycles per second
(gigahertz) and millions of instructions per second (most
instructions take more than one cycle to be completed).

The other key part of the CPU is the control unit, which
determines when (and which) instructions will be executed.
Operations to be performed are specified by instruction val-
ues that are the lowest level representation of program code,
sometimes called machine code. An index register is used
to keep track of the current instruction. As instructions are
processed, control signals can indicate special conditions,

CPU        119

such as a result being negative. Based on the instructions
and signals, the CPU can skip over some instructions, jump-
ing to another location in the program.

The main memory or RAM (random access memory)
contains both the program instructions and the data being
used by the program, which in turn can be read from a
disk or other medium or written back to storage. The effec-
tive speed of the system is derived not only from the clock
speed but from the speed at which data travels over the sys-
tem bus, a set of wires that each carry one data bit, as well
as the operating speed of the memory chips themselves (see
clock speed and bus).

The access of programs to the CPU is controlled in turn
by the operating system. Modern operating systems share
the CPU with several running programs, doling out execu-
tion time according to a scheduling algorithm that takes
into account the possible special priority of some programs
(see multitasking).

Further Reading
Brain, Marshall. “How Microprocessors Work.” Available online.

URL: http://computer.howstuffworks.com/microprocessor.htm.
Accessed June 30, 2007.

Mano, M. Morris, and Charles Kime. Logic and Computer Design
Fundamentals. 4th ed. Upper Saddle River, N.J.: Prentice Hall,
2007.

Stokes, Jon. Inside the Machine: An Illustrated Introduction to Micro-
processors and Computer Architecture. San Francisco: No
Starch Press, 2006.

Craigslist
Some of the most successful Web services involve just one
or two basic changes in a traditional business or social
model. Online auctions, for example, came from the real-
ization that the auctioneer and auction house could be
eliminated and a platform provided by which people could
buy from or sell to one another directly. (The platform, of
course, does have to include such things as listing policies,
payment methods, and feedback systems.)

Craigslist has done for the newspaper “personal” ad and
laundromat bulletin board what eBay has done for auctions.
It was founded in 1995 by Craig Newmark, a San Francisco
Bay Area software developer who saw a need for an online
forum for news about local events. The “list” part of Craigs
list reflects its origin as an e-mail list.

News about the list spread rapidly in Newmark’s milieu
of well-connected professionals, and the volume of postings
grew correspondingly large. Furthermore, many people
began to post things other than event listings—including
job openings, for which Newmark soon set up a separate
category on the list. As the number and kinds of postings
grew, the mailing list format became unwieldy, so New-
mark and some volunteers put together a Web interface that
users could use to browse the various categories. By 2000
Craigslist.org had become a full-time job for Newmark and
nine employees

Craiglist’s Web site is organized by community, includ-
ing U.S. states and cities and a variety of other countries
and international cities. Each local site is further divided
into sections such as community activities (including people
seeking or providing childcare or sharing rides), personal
ads (seeking relationships), housing (mostly rentals), jobs,
services, items for sale, and a variety of discussion forums.

As of 2007 Craigslist had 24 employees. The site is nearly
completely free of charge, with revenue coming only from
paid job listings and apartment broker listings in selected
cities. The site’s popularity has been impressive, with more
than 5 billion page views, 10 million visitors, and over 10
million classified ads per month.

Newmark and CEO Jim Buckimaster have suggested
that they have little interest in either turning Craigslist
into a public company or “going commercial” and tapping
what many observers consider to be much greater revenue
potential.

Problems and Issues
Craiglist’s success has raised some issues. In 2004 eBay
bought a 25 percent stake in the company, leading some
supporters to worry about pressure to raise more revenue
by carrying banner ads or charging for posting on the site.
However, as of 2008 the site remains free to users.

The CPU uses the Instruction Pointer (IP) to keep track of the
address of the next instruction in memory, which is stored in the
Instruction Register (IR). The Address Register (AR) and Data
Register (DR) perform a similar function with program data. Data
can also be moved between main memory and the CPU’s registers,
which are special fast-retrieval memory locations. Instructions are
decoded by the control unit and passed to the arithmetic Logic Unit
(ALU) for execution.

120        Craigslist

As with eBay, Craigslist has to strike a balance between
protecting users from criminal activity and exercising direct
oversight with the attendant expenses and legal problems.
For keeping out illegal ads (such as discriminatory hous-
ing or job offers or solicitations for prostitution), Craigslist
has relied mainly on users to be “good citizens” and to
“flag” offending ads for removal by the service. Neverthe-
less, police have reported use of Craigslist by prostitution
rings and other organized criminals and identity thieves
seeking personal information. A 2006 suit (subsequently
dismissed) accused Craigslist of “allowing” discriminatory
housing ads in Chicago. (Under federal law, Web sites are
generally not liable for content posted by users, unless the
site has edited content.)

Because Craigslist has been so successful, newspapers
have complained that it has dried up much of their revenue
from classified advertising, costing them an estimated $50–
$65 million in 2004 in the Bay Area alone. This is particu-
larly a concern of small local and independent newspapers
for which ads may be their only source of revenue.

Craigslist has won a 2001 Webby award for Best Com-
munity Site, and was voted Best Local Web site in a 2003
Manhattan Reader’s Poll.

Further Reading
Carney, Brian M. “Zen and the Art of Classified Advertising.” Wall

Street Journal.com OpinionJournal, June 17, 2006. Available
online. URL: http://www.opinionjournal.com/editorial/fea-
ture.html?id=110008531. Accessed September 9, 2007.

Craigslist. Available online. URL: http://www.craigslist.org.
Accessed September 9, 2007.

“Craigslist Hits Bay Area Classifieds Hard.” NewsInc 16 (Decem-
ber 27, 2004): n.p. Available online. URL: http://www.newsinc.
net/morgue/2004/NI041227.html. Accessed September 9, 2007.

Sentementes, Gus G. “Web Site Vice Stings.” Baltimoresun.com,
September 8, 2007. Available online. URL: http://www.
balt imoresun.com/news/local /annearundel /bal-md.ar.
prostitution08sep08,0,179750 1.story. Accessed September 9,
2007.

Cray, Seymour
(1925–1996)
American
Computer Engineer, Inventor

Seymour Cray was a computer designer who pioneered the
development of high-performance computers that came
to be called supercomputers. Cray was born in Chippewa
Falls, Wisconsin. After serving in World War II as an army
electrical technician, Cray went to the University of Min-
nesota and earned a B.S. in electrical engineering and then
an M.S. in applied mathematics. (This combination is a
common background for many of the designers who would
have to combine mathematics and engineering principles to
create the first computers.)

In 1951, he joined Engineering Research Associates
(ERA), one of a handful of companies that sought to com-
mercialize the digital computing technology that had been
developed during and just after the war. Cray soon became

known for his ability to grasp every aspect of computing
from logic circuits to the infant discipline of software devel-
opment. When ERA and its competitor, the Eckert-Mauchly
Computer Company were bought by Remington Rand, Cray
became the chief designer for the Univac, the first com-
mercially successful computer. In 1957, however, Cray and
two colleagues struck out on their own to form Control
Data Corporation (CDC). Their CDC 1604 was one of the
first computers to move from vacuum tubes to transistors.
The CDC 6600 was considered by many to be technically
superior to the IBM 360. However, by then IBM had become
preeminent in the business computing market, while the
CDC machines found favor with scientists.

By the late 1960s, Cray had persuaded CDC to provide
him with production facilities within walking distance of
his home in Chippewa Falls. There he designed the CDC
7600. This computer was hailed as the world’s first supercom-
puter (see supercomputer). However CDC disagreed with
Cray about the commercial feasibility of even more powerful
computers. In 1972, Cray formed his own company, Cray
Research, Inc. By then Cray’s reputation as a computer archi-
tect was so great that investors flocked to buy stock in his
company. His series of Cray supercomputers looked like sleek
monoliths from a science fiction movie. The machines were
the first supercomputers to use parallel processing, where

Seymour Cray is considered by many people to be the father
of the supercomputer. His innovative Cray computers looked—
and performed—like something out of science fiction.  (Cray
Research)

Cray, Seymour        121

tasks can be assigned to different processors to speed up
throughput. While costing millions of dollars apiece, the
Cray supercomputers made it possible to perform simu-
lations in atomic physics, aerodynamics, and other fields
that were far beyond the capabilities of earlier computers.
However, the Cray Computer Corporation ran into financial
problems and was bought by Silicon Graphics (SGI) in 1996.

Cray received many honors including the IEEE Com-
puter Society Pioneer Award (1980) and the ACM/IEEE
Eckert-Mauchly Award (1989). Cray died on October 5,
1996, in Colorado Springs, Colorado.

Further Reading
Bell, Gordon. “A Seymour Cray Perspective.” Available online. URL:

http://_research.microsoft.com/users/gbell/craytalk/. Accessed
July 1, 2007.

Breckenridge, Charles W. “A Tribute to Seymour Cray.” Available
online. URL: http://www.cgl.ucsf.edu/home/tef/cray/tribute.
html. Accessed July 1, 2007.

Murray, C. J. The Supermen: the Story of Seymour Cray and the
Technical Wizards behind the Supercomputer. New York: John
Wiley, 1997.

Smithsonian Institute. National Museum of American History.
“Seymour Cray Interview.” Available online. URL: http://
americanhistory.si.edu/collections/comphist/cray.htm.

CRM  See customer relationship management.

CSS  See cascading style sheets.

Cunningham, Howard  (Ward)
(1949– )
American
Software Developer

Today the first place many Web users look for informa-
tion about a topic is Wikipedia, the vast and ever growing
online collaborative encyclopedia. The type of software that
makes Wikipedia (and thousands of other wikis) possible
was invented by Howard G. Cunningham, better known as
Ward Cunningham.

Born on May 26, 1949, Cunningham learned to program
in high school. He then attended Purdue University, where
he received a bachelor’s degree in electrical engineering and
computer science and then a master’s in computer science.
After graduation Cunningham worked as a researcher in
microcomputer systems for Tektronix, where he encoun-
tered an intriguing style of programming (see Smalltalk).
In a later position at Wyatt Software, Cunningham became
involved with larger-scale software projects and began to
think about better ways to manage them.

In the early 1980s Cunningham encountered a book that
looked at architecture in terms of the combining of intuitive
patterns. Cunningham began to apply similar principles to
the design of software (see also design patterns). One result
was the holding of the first conference on pattern languages
at the University of Illinois at Urbana-Champaign in 1994.

Around that time, Cunningham was seeking a way for
programmers to collaborate in working with design pat-
terns. He had already encountered the power of linking
(see hypertext) in HyperCard, developed by Apple for the
Macintosh in the late 1980s. Because it was so easy to use,
HyperCard encouraged many nonprofessional programmers
(including teachers) to develop and share applications.

Developing the Wiki
Using HyperCard, Cunningham built an application that
allowed users to add free-form data to a database and link
it to other entries by clicking a button. Users who tried it
were fascinated by its potential. Cunningham then wanted
to expand it so users could access it over networks. How-
ever, he was unable to develop a networked version of his
HyperCard application.

One colleague suggested using the World Wide Web (see
Berners-Lee, Tim and World Wide Web). Cunningham
implemented his free-form linking system as Web pages,
and the result was something he at first thought of calling
QuickWeb. He then remembered hearing the phrase wiki
wiki or “quickly, quickly”) in Hawaii, and he decided to call
his system wikiwikiWeb. Today, it is just known as a wiki
(see wikis and Wikipedia). This first wiki, called the Port-
land Pattern Repository, came online in 1995 and continues
to operate today.

Collaborative Software Development
Cunningham worked for a few years on open-source proj-
ects at Microsoft. The giant software maker is not generally
well regarded among open-source developers, though Cun-
ningham has acknowledged its technical prowess. At any
rate, Cunningham decided to move on. He served as direc-
tor for community development at the Eclipse Foundation,
which oversees development of Eclipse, a versatile and very
popular open-source programming environment. In 2007
Cunningham left Eclipse to become chief technology officer
(CTO) of AboutUs, a company founded to further develop
wikis and collaborative communities.

Cunningham continues to be an enthusiastic proponent
of open source. He argues that the most important advan-
tage of open source is not lower cost, but the way it puts
access to powerful tools into the hands of thousands of
users and encourages them to develop new features and
capabilities.

Cunningham’s contributions to programming methods
are also extensive, including the use of design patterns for
“quick and agile” development and what became known as
“extreme programming.”

Further Reading
Cunningham, Ward. Home Page. Available online. URL: http://

www.c2.com/cgi/wiki?WardCunningham. Accessed Septem-
ber 9, 2007.

Leuf, Bo, and Ward Cunningham. The Wiki Way: Quick Collabora-
tion on the Web. Upper Saddle River, N.J.: Addison-Wesley
Professional, 2001.

Siddalingaiah, Madhu. “Ward Cunningham Interview: Eclipse,
Collaboration and Software Trends.” Includes links to Cun-
ningham’s EclipseCon 2006 presentation. SQL Summit.

122        CRM

Available online [audio]. URL: http://www.sqlsummit.com/
People/WCunningham.htm. Accessed September 9, 2007.

Taft, Darryl K. “Father of Wiki Speaks Out on Community
and Collaborative Development.” eWeek, March 20, 2006.
Available online. URL: http://www.eweek.com/article2/
0,1759,1939982,00.asp. Accessed September 9, 2007.

Wiki Wiki Web. Available online. URL: http://c2.com/cgi-bin/
wiki?WikiWikiWeb. Accessed September 9, 2007.

customer relationship management  (CRM)
In recent years there has been increasing emphasis, par-
ticularly in online business, on communicating with and
“cultivating” customers as well as in systematically using
information about transactions and customer behavior (see
also e-commerce). Collectively, these activities (and the
software used to implement them) are often known as cus-
tomer relationship management (CRM).

The basic data stream in CRM is a complete contact
history for each customer, including not only purchases,
but also product or customer support inquiries. The result-
ing database is used to ensure that with each new contact
(such as through a call center), the person responding has
access to all the information about previous contacts with
the customer. Thus, for example, in the course of answering
a query or solving a problem, the representative can review
a list of which products the customer has purchased and
suggest additional products that might help deal with the
problem.

Besides dealing with customer-initiated contacts, CRM
data can be very useful in designing marketing campaigns,
advertising, promotions, and so on (see online adver-
tising). The database can be analyzed to determine, for
example, the likelihood that a customer who buys a digital
camera might also buy a particular printer or memory card
(see data mining). Once this is known, a customer who is
in the process of buying a camera might be offered a special
price on a memory card during checkout. (For an example
of extensive integration, mining, and use of CRM data, see
amazon.com.) For longer-term planning, “strategic CRM”
can help a company decide on what types of products and
markets to focus.

In addition to a database with extensive analysis and
reporting facilities, a CRM system requires software that
sales or support persons can use to access information in
real time and update it with the results of the current call.
Organizations can buy turnkey products or design their
own CRM systems by selecting and integrating software
components. However implemented, effective CRM requires
that everyone in contact with a customer keep the ongoing
cultivation of that relationship in mind, and search for ways
to deliver more value than the competition.

Successful CRM also requires a balance between the
desire to get as much information as possible and allay-
ing customers’ concerns. If the CRM software (or how it is
used) slows down the resolution of support calls, ends up
generating unwanted solicitations (particularly from third
parties), or conveys a sense of disregard for privacy, it could
damage customer relations and lead to loss of business and
reputation.

Further Reading
Buttle, Francis. Customer Relationship Management: Concepts and

Tools. Burlington, Mass.: Elsevier Butterworth-Heinemann,
2004.

CRM Today. Available online. URL: http://www.crm2day.com/.
Accessed September 9, 2007.

Customer Relationship Management Association. Available online.
URL: http://www.crmassociation.org/. Accessed September 9,
2007.

Kincaid, Judith W. Customer Relationship Management: Getting It
Right. Upper Saddle River, N.J.: Prentice-Hall/HP Professional
Books, 2002.

Kumar, V., and Werner J. Reinartz. Customer Relationship Manage-
ment: A Databased Approach. New York: Wiley, 2005.

Prahalad, C. K., et al. Harvard Business Review on Customer Rela-
tionship Management. Cambridge, Mass.: Harvard Business
School, 2001.

cyberlaw
Legal scholars and law schools have begun to use the term
cyberlaw to refer to a variety of legal issues that are often
involved in online interactions (see cyberspace). While
traditional legal fields such as contract law, property law,
privacy, and jurisdiction do apply online, cyberlaw recog-
nizes that certain common features of the digital world
pose unique challenges.

The first question in any legal dispute is which court, if
any, has jurisdiction. In the physical world there are well-
demarcated spheres (in the United States) for federal, state,
and municipal law. However, participants in an online
transaction or other act may often be in different physi-
cal jurisdictions. Indeed, the World Wide Web’s structure
does not inherently follow physical boundaries, with link-
age being largely semantic rather than geographical. Some
Internet advocates such as John Perry Barlow have gone so
far as to argue that the Web must develop its own laws and
customs that reflect its technical and social nature—even-
tually forming its own social contract.

A more pragmatic approach is taken by Lawrence Les-
sig, who argues that a legal regime must evolve that takes
into account the needs and concerns of both traditional
physical jurisdictions and the new realm of cyberspace (see
Lessig, Lawrence).

Diverse Issues
In practice, when crimes or disputes occur online, political
pressure or legal duty will impel federal and state officials
to become involved. For example, users of file-sharing ser-
vices are being sued for alleged violations of copyright law
(see file-sharing and P2P networks and intellectual
property and computing). The question of whether the
provider of an online service should be held responsible
for violations by users must also be decided; in the United
States, federal law has exempted providers from most legal
liabilities. Matters can become even more complicated
when people involved in a case are living in different coun-
tries. (Many countries have lax or no regulation of online
activity, and activity prohibited in countries such as the
United States can flourish there—see, for example, online
gambling.)

cyberlaw        123

Many issues regarding freedom of speech and expres-
sion arise in the online world. Should a blogger be accorded
the rights of a traditional journalist? Should an American
company such as Google or Yahoo! be held responsible for
turning dissidents over to Chinese authorities?

The growth of immersive and persistent online game
worlds such as Second Life raises other difficult questions for
cyberlaw (see identity in the online world and online
games). Can promises (whether business contracts or even
marriage proposals) made through online personas (“ava-
tars”) be binding? Who owns property (such as a house)
created or purchased in the virtual world? What if some-
one steals or vandalizes the virtual property? Should a vir-
tual world be treated as a kind of parallel jurisdiction and
perhaps allowed to have its own legal system and courts,
perhaps even a form of limited sovereignty? While these
questions may seem far-fetched, they take on more urgency
as millions of people begin to spend a significant part of
their waking time in a virtual world and generate economic
activity that can be denominated in real money. The resolu-
tion of these and other cyberlaw issues will both depend on
and influence how the Internet itself is organized and gov-
erned (see Internet organization and governance).
For some organizations currently involved in trying to pro-
mote cyber rights and shape policy, see cyberspace advo-
cacy groups.

Further Reading
Barlow, John Perry. “A Declaration of the Independence of Cyber-

space.” Available online. URL: http://homes.eff.org/~barlow/
Declaration-Final.html. Accessed September 9, 2007.

Electronic Frontier Foundation. “Internet Law Treatise.” Available
online. URL: http://ilt.eff.org/index.php/Table_of_Contents.
Accessed April 23, 2008.

Gahtan, Alan. Cyberlaw Encyclopedia. Available online. URL:
http://www.gahtan.com/cyberlaw/. Accessed September 9,
2007.

Ku, Raymond S., and Jacqueline D. Lipton. Cyberspace Law: Cases
and Materials. 2nd ed. New York: Aspen Publishers, 2006.

Lessig, Lawrence. Code: Version 2.0. New York: Basic Books, 2006.
Zittrain, Jonathan L. Jurisdiction (Internet Law Series). New York:

Foundation Press, 2005.

cybernetics
Cybernetics may not be familiar to many readers today,
except as part of words like “cyberspace.” The term was
coined by mathematician Norbert Wiener (see Wiener,
Norbert) in his book about control and communication
in animals and machines. The root comes from the Greek
kybernetes, meaning steersman or governor.

Cybernetics looks at systems as a whole. A key con-
cept is feedback, which allows a system to adjust itself in
response to changes in the environment. A familiar exam-
ple is a thermostat, which includes a switch that expands as
the air heats, turning off the heater when the temperature
reaches its indicated setting. Similarly, as the air cools the
switch contracts and restarts the heater.

In addition to feedback, cybernetics looks at how infor-
mation is communicated between the environment and a
machine or organism, or between component parts. Cyber-

netics is also interested in structures that may be built
up through feedback and communication—ultimately, in
humans: the structures of self, identity, and consciousness.

Cybernetics is fundamental to the operation of robots
(see robotics). Around the time of Wiener’s book, Grey
Walter built one of the earliest robots, a “cybernetic turtle”
that could autonomously explore an environment, respond-
ing to changes in light.

In computers, any program that changes its behavior in
response to new data might be called cybernetic. Cybernet-
ics is relevant to a variety of fields in computer science that
involve machine learning or reasoning (see artificial intel-
ligence, genetic programming, and neural network).

During the 1950s and 1960s cybernetics concepts
became quite influential and were applied to such diverse
fields as neurology, cognitive science, psychology, phi-
losophy, anthropology, sociology, and economics. How-
ever, the term cybernetics itself gradually fell out of favor,
even though the concepts remain at the heart of systems
thinking. For some writers such as Gregory Bateson and
anthropologist Margaret Mead, the focus shifted to a “new
cybernetics” or “second-order cybernetics” that studies the
interaction of observers with phenomena and attempts to
construct a model of the mind itself.

Further Reading
American Society for Cybernetics. Available online. URL: http://

www.asc-cybernetics.org/. Accessed September 10, 2007.
Gasperi, Michael. “Grey Walter’s Machina Speculatrix.” Avail-

able online. URL: http://www.extremenxt.com/walter.htm.
Accessed September 10, 2007.

Principia Cybernetica Web. Available online. URL: http://pespmc1.
vub.ac.be/. Accessed September 10, 2007.

Wiener, Norbert. Cybernetics: or Control and Communication in
the Animal and the Machine. 2nd ed. Cambridge, Mass.: MIT
Press, 1961.

cyberspace advocacy groups
By the mid-1990s a number of issues were arising as the
Internet and Web became an increasingly important fac-
tor in commerce and society (see censorship and the
Internet, intellectual property and computing, and
privacy in the digital age). Often in response to pro-
posed or enacted federal legislation, a number of advocates
have organized groups to keep track of developments that
they believe threaten the free exchange of information and
expression, as well as opposing government surveillance
and corporate practices believed to intrude on privacy.

Although there are dozens of groups advocating for the
rights of Internet users, three groups have been particularly
prominent and effective.

Electronic Frontier Foundation
The Electronic Frontier Foundation (EFF) was founded in
1990 by Mitch Kapor, John Gilmore, and John Perry Bar-
low. Its immediate motivation was the federal search and
seizure of computers belonging to Steve Jackson Games
as part of an investigation into illegal distribution of pro-
prietary documents. Although the game company was not

124        cybernetics

involved in any crime, the seizure of its equipment and
information threatened to put it out of business. Ultimately,
Jackson prevailed in federal court, establishing that uncon-
ventional means of expression such as games were entitled
to First Amendment protection. In another high-profile
case, computer scientist Daniel Bernstein sued and won
the right to publish encryption software and related papers,
again extending First Amendment protections in the digital
world.

The EFF has also been involved in the dispute between
users of file-sharing services and the Recording Industry
Institute of America (RIAA) over subpoenas of service pro-
viders seeking alleged illegal downloaders.

Most recently, the EFF has expanded its efforts further
with regard to issues of government surveillance and the
prosecution of computer crimes, such as collection and use
of evidence.

Center for Democracy and Technology
Founded in 1994, the Center for Democracy and Technol-
ogy (CDT) somewhat overlaps the EFF in interests, but
has a greater emphasis on the connections between online
activities and the political process. The organization’s first
major battle involved the Computer Decency Act. While
intended by its proponents to ban obscenity and particu-
larly child pornography from the Internet, cyberspace-
rights advocates saw the law as vague, poorly written, and
likely to deny access to material that is constitutionally
protected for adults—an argument that the Supreme Court
ultimately accepted in ACLU v. Reno (1997).

More recently, the CDT has supported the free-speech
rights of bloggers (see blogs and blogging), arguing
that they should be accorded journalistic rights (see also
journalism and computers). Besides issue advocacy, the
organization’s overall focus is on developing public policy
that recognizes the unique features of cyberspace and pro-
motes freedom of expression, protection of privacy, and
widespread access to the Net (see also Internet access
policy).

Electronic Privacy Information Center
Also founded in 1994, the Electronic Privacy Information
Center (EPIC) is a Washington, D.C.–based public inter-
est research center devoted to privacy and civil liberties
issues. The group’s electronic newsletter EPIC Alert pro-
vides a useful summary of ongoing developments, cases,
and issues. The organization also publishes regularly
updated compendiums on developments in open govern-
ment/freedom of information, privacy and human rights,
and privacy law.

(For online activists involved in general political issues
and campaigns, see political activism and the Internet.)

Further Reading
Center for Democracy and Technology. Available online. URL:

http://www.cdt.org/. Accessed September 10, 2007.
Center for Democracy and Technology. “CDT: A Decade of Inter-

net Advocacy.” Available online. URL: http://www.cdt.org/
mission/2006aao.pdf. Accessed September 10, 2007.

Electronic Frontier Foundation. Available online. URL: http://
www.eff.org/. Accessed September 10, 2007.

Electronic Privacy Information Center. Available online. URL:
http://www.epic.org/. Accessed September 10, 2007.

Godwin, Mike. Cyber Rights: Defending Free Speech in the Digital
Age. Revised ed. Cambridge, Mass.: MIT Press, 2003.

Privacy.org. Available online. URL: http://www.privacy.org/.
Accessed September 10, 2007.

cyberspace and cyber culture
The term cyberspace first came to prominence when
it appeared in Neuromancer, a 1984 novel by science fic-
tion writer William Gibson. The word is a combination
of “cyber” (meaning related to computers) and “space.”
As another SF writer, Bruce Sterling, wrote in The Hacker
Crackdown (1993), cyberspace is “the place between the
phones. The indefinite place out there, where the two of you,
human beings, actually meet and communicate.”

While the elite telegraphers of the 19th century and
later telephone users first experienced the sense of disem-
bodied electronic communication, it took the development
of widespread computer terminals, personal computers,
and connecting networks to create a sense of an ongoing
place in which people meet and interact. The first “vil-
lages” in cyberspace came into being during the 1970s as
research networks (ARPA), and the Usenet newsgroups
of UNIX users began to carry messages and news post-
ings. During the 1980s, many more settlements began to
light up the map of cyberspace, ranging from cities (large
online services such as The Source, BIX, and CompuServe)
to thousands of villages (tiny bulletin board systems run-
ning on personal computers). (See online services and
bulletin board systems.)

Wherever human beings build communities, they shape
culture. The cyber culture that grew up in cyberspace has
featured many diverse strands. Hackers (not originally a
pejorative term) had their distinctive hangouts and lingo.
Bulletin board cultures varied from the hacker hardcore to
user groups that tried to assist beginners. On the nascent
Internet multiplayer game worlds called MUDs (Multi-User
Dungeons) and Muses used words to create richly detailed
fantasy cyberspaces. Together with chat rooms and con-
ferencing systems, they fostered virtual communities that,
like physical communities, express a full range of human
behavior (see blogs and blogging, conferencing sys-
tems, chat, social networking, texting and instant
messaging, and virtual community).

While cyber culture shares the characteristics of other
human cultures, it also has unique characteristics that are
dictated by the nature of the online, virtual medium. Since
the online user reveals only what he or she chooses to
reveal, identities can be fluid: playful or deceptive. While
people are not physically vulnerable in cyberspace, they
are certainly emotionally vulnerable. (Virtual eroticism, or
“cyber sex” has even led to virtual rapes.) The issue of pro-
tecting privacy becomes important because sensitive per-
sonal information is constantly being exposed in order to
carry on commerce (see identity in the online world
and privacy in the digital age.)

cyberspace and cyber culture        125

The Future of Cyberspace
By the end of the 1990s, the face of cyberspace was no
longer that of text screens but that of the World Wide Web
with its graphical pages. Multiplayer games now often fea-
ture graphics and even real-time voice communication is
possible. With ubiquitous digital cameras, the boundary
between cyberspace and physical space has become fluid,
with people able to enter into each other’s physical envi-
ronments in realistic ways. Meanwhile, the development
of virtual reality techniques has made computer-generated
worlds much more vivid and realistic (see virtual real-
ity). As more people are linked continually to the network
by broadband and wireless connections, cyberspace may
eventually disappear as a separate reality, having merged
with physical space.

Further Reading
Bell, David. An Introduction to Cybercultures. New York: Routledge,

2001.
Bell, David, and Barbara M. Kennedy, eds. The Cybercultures

Reader. New York: Routledge, 2007.
Jenkins, Henry. Convergence Culture: Where Old and New Media

Collide. New York: New York University Press, 2006.
Resource Center for Cyberculture Studies. Available online. URL:

http://rccs.usfca.edu/default.asp. Accessed July 1, 2007.
Silver, David, and Adrienne Massari, eds. Critical Cyberculture

Studies. New York: New York University Press, 2006.
Wired magazine. Available online. URL: http://www.wired.com.

Accessed July 1, 2007.

cyberstalking and harassment
Cyberstalking and harassment or “cyber bullying” involve
the use of online communications and facilities (such as
instant messaging, chat rooms, e-mail, or Web sites) to
stalk, harass, or otherwise abuse a person or group. These
activities may be carried on entirely online or in connection
with physical stalking or harassment.

Stalking and threatening a person has been a crime in
the physical world for some time, and similar principles
apply to online stalking. Generally, to be guilty of stalking, a
person must repeatedly harass or threaten the victim, often
following him or her and intruding or violating privacy.

Cyberstalkers take advantage of the fact that there is
a great deal of information about many people online.
(Indeed, the popularity of sites such as MySpace means
that many users can unwittingly provide that information
in well-organized, easy-to-access form—see social net-
working.) The stalker can also use search engines to find
e-mail or even physical addresses and phone numbers, or
can join chat rooms used by the prospective victim,

Motives for stalking can range from sexual obsession to
anger at some real or imagined slight, to more idiosyncratic
reasons. As with physical stalking in an earlier generation,
law enforcement agencies were often slow to acknowledge
the potential seriousness of the crime or to develop effec-
tive ways to deal with it.

This began to change with the tragic and highly pub-
licized case of Amy Boyer, who had been found online
through a data broker, stalked, harassed, and ultimately

murdered. In 1999 California became the first state to pass
a law against cyberstalking, and in 2000 cyberstalking was
made part of the federal Violence against Women Act.

Cyberbullying
Like traditional bullying in schools or other settings, cyber-
bullying involves harassment, sometimes organized, of
people considered to be weak or different in some way.
However, the ability to hide or disguise one’s identity online
(see anonymity and the Internet) facilitates cyberbully-
ing by making it harder for victims to identify and confront
or report their tormentors. Media for cyberbullying include
text and instant messaging, photos or videos, blogs, and
increasingly, pages on social networking sites. Contents can
include threats, racial or other slurs, and unwelcome sexual
solicitations.

In March 2007 a number of organizations joined with
the U.S. Department of Justice in a public service advertis-
ing campaign to educate young people about cyberbullying
and what they can do to prevent it. Some schools are adopt-
ing anti-cyberbullying policies and programs.

Besides potentially serious psychological trauma to vic-
tims, cyberbullying can sometimes lead victims to lash out,
and in extreme cases, cyberbullying may play a role in cam-
pus shootings.

Further Reading
Bocij, Paul. Cyberstalking: Harassment in the Internet Age and How

to Protect Your Family. Westport, Conn.: Praeger, 2004.
Bolton, Jose, and Stan Graeve, eds. No Room for Bullies: From the

Classroom to Cyberspace: Teaching Respect, Stopping Abuse,
and Rewarding Kindness. Boys Town, Nebr.: Boys Town Press,
2005.

“Cyberbullying: Identifying the Causes and Consequences of
Online Harassment” [news and resources]. Available online.
URL: http://www.cyberbullying.us/. Accessed September 10,
2007.

Cyberbullying.org. Available online. URL: http://www.cyberbullying.
org/. Accessed September 10, 2007.

Henderson, Harry. Internet Predators (Library in a Book). New
York: Facts On File, 2005.

Widhalm, Shelley. “New Teen Bullies.” Washington Times, September
10, 2007. Available online. URL: http://washingtontimes.com/
article/20070910/METRO/109100038/1004. Accessed Septem-
ber 10, 2007.

Willard, Nancy E. Cyberbullying and Cyberthreats: Responding to
the Challenge of Online Social Aggression, Threats, and Distress.
Champaign, Ill.: Research Press, 2007.

cyberterrorism
Cyberterrorism can include several types of activities:
the promotion of terrorist or militant groups on the Web
(including propaganda and recruitment), the coordination
or facilitation of terrorist activities, and actual attacks on
Web sites or other information infrastructure.

Terrorists on the Web
There is little doubt that terrorist groups are increasingly
computer savvy and willing to use the technology to fur-
ther their purposes. Many groups have Web sites that are

126        cyberstalking and harassment

used for propaganda and recruiting. (In 2007 a British court
sentenced three men, calling them “cyber-jihadis” and say-
ing they had used a Web site to urge Muslims to attack non-
Muslims.) In fact extremist groups of many kinds (including
neo-Nazis and other racial extremists) have long used Web
sites to attract young followers through propaganda, music,
and even games.

Other material posted by terrorist groups online
includes bomb-making plans, lists of potential targets (pos-
sibly including maps or blueprints), and “tips” for penetrat-
ing defenses or evading detection. (A project called Dark
Web at the University of Arizona searches for, compiles,
and analyzes massive amounts of Web content generated by
terrorist groups.)

Attacks on Web Sites
Attempts to jam or disrupt Web sites (such as denial of
service attacks or DOS) have been made for a variety of rea-
sons. At one end of the spectrum are individuals or small
groups engaged in criminal activity (such as attempted
extortion) or expressing political protest (“hacktivists”). At
the other end are alleged online offensives by national gov-
ernments (see Information warfare).

Although there have been no major disruptions as of
mid-2008, terrorists (or sympathizers) have already con-
ducted cyberattacks. One site has even offered a download-
able “electronic jihad” program that users can use to select
from a list of targets to launch an automated DOS. While
such sites are usually taken down after a few months, it is
relatively easy to start another, especially because informa-
tion provided for site registration is often not verified.

Fighting Cyberterrorism
Strategies and tactics to combat cyberterrorism involve both
general antiterrorist intelligence and other techniques as
well as those particularly adapted to the cyberspace arena
(see counterterrorism and computers, computer
crime and security, and computer forensics).

The cyberterrorist threat also plays an important role
in the effort to better protect vital infrastructure. Although
attacks on banking and other financial computer systems
have the potential to cause severe economic damage, much
attention has focused on computer-based attacks that have
the potential to directly injure or even kill people. Back in
2000, an individual hacker in Australia took over a pumping
station and dumped more than 264,000 gallons of raw sew-
age into public lands and waterways. Although no humans
were directly harmed, it is easy to see that such contamina-
tion in the drinking water supply could be deadly.

Regardless of the type of computer system, following
best security practices can go a long way to “hardening”
potential targets. Such practices include the use of robust
firewalls and antivirus programs, regular security updates
for the operating system and software, network monitoring
and intrusion detection, sharing information about secu-
rity threats, and training personnel to be aware of typical
attacker techniques, including deception (social engineer-
ing). There needs to be a comprehensive protection plan for
each facility that takes both physical and electronic security
into account

Assessment
In recent years cyberterrorism has been a much publicized
topic. Some critics believe that the threat of cyberterrorism
has been overestimated—not because many computer sys-
tems are not vulnerable, but because the most vulnerable
physical systems are generally not on the Internet and not
easily accessible. It has also been argued that terrorists gen-
erally use simpler, more direct weapons (e.g., bombs) and
aim to produce physically spectacular or terrifying results.
Most cyberattacks would not seem to meet those criteria.
On the other hand, a cyberattack might be launched in
conjunction with physical attacks, either as a distraction
or to make it harder for authorities to respond to the main
attack.

Properly assessing risks and allocating resources will
always be difficult, and will always be influenced by politi-
cal and economic as well as technological factors.

Further Reading
Blane, John V., ed. Cybercrime and Cyberterrorism: Current Issues.

New York: Novinka Books, 2003.
Brown, Lawrence V., ed. Cyberterrorism and Computer Attacks.

New York: Novinka Books, 2006.
Chen, Hsinchun. “How Terrorists Use the Internet” [interview

transcript]. The Science Show, March 31, 2007. Available
online. URL: http://www.abc.net.au/rn/scienceshow/stories/
2007/1885902.htm#transcript. Accessed September 7, 2007.

Colarik, Andrew M. Cyber Terrorism: Political and Economic Impli-
cations. Hershey, Penn.: Idea Group, 2006.

“Cyber-Terrorism: Propaganda or Probability?” About.com. Avail-
able online. URL: http://antivirus.about.com/library/weekly/
aa090502a.htm. Accessed September 7, 2007.

Greenmeier, Larry. “Cyberterrorism: By Whatever Name, It’s on
the Increase.” InformationWeek, July 7, 2007. Available online.
URL: http://www.informationweek.com/story/showArticle.
jhtml?articleID=200900812. Accessed July 12, 2007.

O’Day, Alan, ed. Cyberterrorism. Burlington, Vt.: Ashgate, 2004.
Wagner, Breanne. “Electronic Jihad: Experts Downplay Imminent

Threat of Cyberterrorism. National Defense 92 (July 1, 2007):
p. 34 ff.

cyberterrorism        127

128

data
Today the term data is associated in many peoples’ minds
mainly with computers. However, data (as in “given facts”
or measurements) has been used as a term by scientists and
scholars for centuries. Just as with a counting bead, a notch
in a stick, or a handwritten tally, data as stored in a com-
puter (or on digital media) is a representation of facts about
the world. These facts might be temperature readings, cus-
tomer addresses, dots in an image, the characteristics of
a sound at a given instant, or any number of other things.
But because computer data is not a fact but a representation
of facts, its accuracy and usefulness depends not only on
the accuracy of the original data, but on its context in the
computer.

At bottom, computer data consists of binary states (rep-
resented numerically as ones or zeroes) stored using some
physical characteristic such as an electrical or magnetic
charge or a spot capable of absorbing or reflecting light.
A string of ones and zeroes in a computer has no inherent
meaning. Is the bit pattern 01000001 a number equivalent
to 65 in the decimal system? Yes. Is it the capital letter “A”?
It may be, if interpreted as an ASCII character code. Is it
part of some larger number? Again, it may be, if the mem-
ory location containing this pattern is interpreted as part of
a set of two, four, or more memory locations.

In order to be interpreted, data must be assigned a cat-
egory such as integer, floating point (decimal), or character
(see data types). The programming language compiler uses
the data type to determine how many memory locations
make up that data item, and which bits in memory corre-
spond to which bits in the actual number. Data items can be

treated as a batch (see array) for convenience, or different
kinds of data such as names, addresses, and Social Security
numbers can be grouped together into records or structures
that correspond to an entity of interest (such as a customer).
In creating a structure within the program to represent the
data, the programmer must be cognizant of its purpose and
intended use.

The programming language and code statements define
the context of data within the rules of the language. How-
ever, the meaning of data must ultimately be constructed
by the human beings who use it. For example, whether a
test score is good, bad, or indifferent is not a characteris-
tic of the data itself, but is determined by the purposes of
the test designer. This is why a distinction is often made
between data, as raw numbers or characters, and informa-
tion as data that has been placed in a meaningful context
so that it can be useful and perhaps even enlightening to
the user.

Further Reading
Bierman, Alan W. Great Ideas in Computer Science: a Gentle Intro-

duction. 2nd ed. Cambridge, Mass.: MIT Press, 1997.
Hillis, Daniel W. The Pattern on the Stone: the Simple Ideas that

Make Computers Work. New York: Basic Books, 1998.

data abstraction
Abstract data types are used to describe a “generic” type of
data, specifying how the data is stored and what operations
can be performed on it (see object-oriented program-
ming, list processing, stack, and queue).

D

For example, an abstract stack data type includes a
structure for storing data (such as a list or array) and a
set of operations, such as “pushing” an integer onto the
stack and “popping” (removing) an integer from the stack.
(For the process of combining data and operations into a
single entity, see encapsulation.) Abstract data types can
be implemented directly in object-oriented programming
languages (see class, c++, Java, and Smalltalk).

One advantage of using abstract data types is that it
separates a structure and functionality from its implemen-
tation. In designing the abstract stack type, for example,
one can focus on what a stack does and its essential func-
tions. One avoids becoming immediately bogged down
with details, such as what sorts of data items can be placed
on the stack, or exactly what mechanism will be used to
keep track of the number of items currently stored. This
approach also avoids “featuritis,” the tendency to see how
many possible functions or features one can add to the
stack object. For example, while it might be useful to give a
stack the ability to print out a list of its items, it is probably
better to wait until one needs such a capability than to bur-
den the basic stack idea with extra baggage that may make
it more cumbersome or less efficient.

An abstract data type or its embodiment, a class, is not
used directly by the program. Rather, it is used to create an
entity (object) that is a particular instance of the abstract
data type (for example, an actual stack that will be used
to manipulate data). The data stored inside the object is
not accessed directly, but through functions that the object
receives from the abstract data type (such as the push and
pop operations for a stack). (For more information about
how such objects are used, see class.)

Because the abstract data type is not directly used by
the program, the implementation of how the data is stored
or manipulated can be changed without affecting programs
that use objects of that type. This information hiding is
one of the chief benefits of object-oriented programming.
Another advantage is inheritance, the ability to derive more
specialized versions of the abstract data type or class. Thus,
one can create a derived stack class that includes the print-
ing function mentioned earlier.

Further Reading
Carrano, Frank M. Data Abstraction and Problem Solving with C++:

Walls and Mirrors. 4th ed. Reading, Mass.: Addison-Wesley,
2004.

“Introduction to Data Abstraction.” MIT Press. Available online.
URL: http://mitpress.mit.edu/sicp/full-text/sicp/book/node27.
html. Accessed July 3, 2007.

Koffman, Elliot B., and Paul A. T. Wolfgang. Objects, Abstraction,
Data Structures and Design Using Java Version 5.0. New York:
Wiley, 2004.

data acquisition
There are a variety of ways in which data (facts or mea-
surements about the world) can be turned into a digital
representation suitable for manipulation by a computer. For
example, pressing a key on the keyboard sends a signal that
is stored in a memory buffer using a value that represents

the ASCII character code for the key pressed. Moving the
mouse sends a stream of signals that are proportional to the
rotation of the ball which in turn is calibrated into a series
of coordinates and ultimately to a position on the screen
where the cursor is to be moved. Digital cameras and scan-
ners convert the varying light levels of what they “see” into
a digital image.

Besides the devices that are familiar to most computer
users, there are many specialized data acquisition devices
(DAQs). Indeed, most instruments used in science and
engineering to measure physical characteristics are now
designed to convert their readings into digital form. (Some-
times the instrument includes a processor that provides a
representation of the data, such as a waveform or graph. In
other cases, the data is sent to a computer for processing
and display.)

Components of a Data Acquisition System
The data acquisition system begins with a transducer,
which is a device that converts a physical phenomenon
(such as heat) into a proportional electrical signal. Trans-
ducers include devices such as thermistors, thermocouples,
and pressure or strain gauges. The output of the transducer
is then fed into a signal conditioning circuit. The purpose
of signal conditioning is to make sure the signal fits into
the range needed by the data processing device. Thus the

Data acquisition is the process of gathering real-time data from
scientific instruments and making it available in digital form. Sen-
sor signals are “conditioned” by filtering extraneous values, and
are then sampled and digitized. Software can now provide elaborate
graphic displays as well as alert scientists to unusual readings.

data acquisition        129

signal may be amplified or its voltage may be adjusted or
scaled to the required level. Another function of signal con-
ditioning is to isolate the incoming signal from the com-
puter to which the acquisition device is connected. This
is necessary both to protect the delicate computer circuits
from possible “spikes” in the incoming signal and to pre-
vent “noise” (extraneous electromagnetic signals created by
the computer itself) from distorting the signal, and thus
the ultimate measurements. Various sorts of filters can be
added for this purpose.

The conditioned signal is fed as an analog input into the
data acquisition device, which is often a board inserted into
a personal computer. The purpose of the board is to sample
the signal and turn it into a stream of digital data. The
digital data is stored in a buffer (either on the board or in the
computer’s main memory). Software then takes over, analyz-
ing the data and creating appropriate displays (such as digi-
tal readings, graphs, or warning signals) as configured by
the user. If the data is being displayed in real time, the speed
of the software, the operating system, and the computer’s
clock speed may become significant (see clock speed).

Performance Considerations
The sampling rate, or the number of times the signal is mea-
sured per second, is of fundamental importance. A higher
sampling rate usually means a more accurate representa-
tion of the physical data (thus audio sampled at higher rates
sounds more “natural”). The faster the sampling rate, the
larger the amount of data to be processed and the greater
the amount of computer resources needed. Thus, picking a
sampling rate usually involves a tradeoff between accuracy
and speed (for a real-time application, data must be pro-
cessed fast enough so that whoever is using it can respond
to it as it comes in).

Three internal factors determine the performance of
a DAQ. The resolution is the number of bits available to
quantify each measurement. Clearly the ability to measure
thousands of voltage levels is useless if the resolution of a
system is only 8 bits (256 possible values.) The range is the
distance between the minimum and maximum voltage lev-
els the DAQ can recognize. If a signal must be “squeezed”
into too narrow a range, a corresponding amount of reso-
lution will be lost. Finally, there is the gain or the ratio
between changes in the measured quantity and changes in
the signal strength.

Applications
Data acquisition systems are essential to gathering and pro-
cessing the detailed data required by scientific and engi-
neering applications. The automated control of chemical
or biochemical processes requires the ability of the control
software to assess real-time physical data in order to make
timely adjustments to such factors as temperature, pressure,
and the presence of catalysts, inhibitors, or other compo-
nents of the process. The highly automated systems used in
modern aviation and increasingly, even in ground vehicles,
depend on real-time data acquisition. It is not surprising,
then, that data acquisition is one of the fastest-growing
fields in computing.

Further Reading
Beyon, Jeffrey Y. LabVIEW Programming, Data Acquisition and

Analysis. Upper Saddle River, N.J.: Prentice Hall, 2000.
“Data Acquisition (DAQ) Fundamentals.” Available online. URL:

http://zone.ni.com/devzone/cda/tut/p/id/3216. Accessed June
8, 2007.

James, Kevin. PC Interfacing and Data Acquisition: Techniques for
Measurement, Instrumentation and Control. Boston: Newnes,
2000.

database administration
Database administration is the management of database
systems (see database management system). Database
administration can be divided into four broad areas: data
security, data integrity, data accessibility, and system
development.

Data Security
With regard to databases, ensuring data security includes
the assignment and control of users’ level of access to sensi-
tive data and the use of monitoring tools to detect compro-
mise, diversion, or unauthorized changes to database files
(see data security). When data is proprietary, licensing
agreements with both database vendors and content provid-
ers may also need to be enforced.

Data Integrity
Data integrity is related to data security, since the com-
pleteness and accuracy of data that has been compromised
can no longer be guaranteed. However, data integrity also
requires the development and testing of procedures for the
entry and verification of data (input) as well as verifying
the accuracy of reports (output). Database administrators
may do some programming, but generally work with the
programming staff in maintaining data integrity. Since most
data in computers ultimately comes from human beings,
the training of operators is also important.

Within the database structure itself, the links between
data fields must be maintained (referential integrity) and
a locking system must be employed to ensure that a new
update is not processed while a pending one is incomplete
(see transaction processing).

Internal procedures and external regulations may
require that a database be periodically audited for accuracy.
While this may be the province of a specially trained infor-
mation processing auditor, it is often added to the duties
of the database administrator. (See also auditing in data
processing.)

Data Accessibility
Accessibility has two aspects. First, the system must be reli-
able. Data must be available whenever needed by the orga-
nization, and in many applications such as e-commerce,
this means 24 hours a day, 7 days a week (24/7). Reliability
requires making the system as robust as possible, such as
by “mirroring” the database on multiple servers (which in
turn requires making sure updates are stored concurrently).
Failure must also be planned for, which means the imple-

130        database administration

mentation of onsite and offsite backups and procedures for
restoring data (see backup and archive systems).

System Development
An enterprise database is not a static entity. The demand for
new views or applications of data requires the development
and testing of new queries and reports. While this is nor-
mally done by the database programmers, the administra-
tor may need to consider its impact on the operation of the
system. The administrator also helps plan for the needs of a
growing, changing, organization by designing or evaluating
proposals for expanding the system, possibly moving it to
new hardware or a new operating system or migrating the
database applications to a new database management sys-
tem (DBMS).

Because of the importance of database management to
corporations, government, and other organizations, data-
base administration became a “hot” employment area in
the 1990s. Most database administrators specialize in a
particular database platform, such as Oracle or Microsoft
Access. The growing need to make databases accessible via
the Internet has added a new range of challenges to the
database administrator, including the management of serv-
ers, remote authentication of users, and the mastery of Java,
Common Gateway Interface (CGI), and scripting languages
in order to tie the database to the server and user (see Java,
cgi, Perl, and xml).

Further Reading
About.com. Database Administration [links]. Available online. URL:

http://databases.about.com/od/administration/Database_
Administration.htm. Accessed July 8, 2007.

Alapati, Sam R. Expert Oracle Database 10g Administration. Berke-
ley, Calif.: Apress, 2005.

Mannino, Michael A. Database Design, Application Development,
and Administration. 3rd ed. New York: McGraw-Hill, 2005.

Mullins, Craig S. Database Administration: The Complete Guide to
Practices and Procedures. Reading, Mass: Addison-Wesley Pro-
fessional, 2002.

MySQL AB. MySQL Administrator’s Guide and Language Reference.
Indianapolis: MySQL Press, 2005.

Wood, Dan, Chris Leiter, and Paul Turley. Beginning SQL Server
2005 Administration. Indianapolis: Wrox, 2006.

database management system  (DBMS)
A database management system consists of a database (a
collection of information, usually organized into records
with component fields) and facilities for adding, updating,
retrieving, manipulating, and reporting on data.

Database Structure
In the early days of computing, a database generally con-
sisted of a single file that was divided into data blocks that
in turn consisted of records and fields within records. The
COBOL language was (and is) particularly suited to read-
ing, processing, and writing data in such files. This flat
file database model is still used for many simple applica-
tions including “home data managers.” However, for more
complex applications where there are many files containing
interrelated data, the flat file model proves inadequate.

In 1970, computer scientist E. F. Codd proposed a rela-
tional model for data organization. In the relational model,
data is not viewed as files containing records, but as a set
of tables, where the columns represent fields and the rows
individual entities (such as customers or transactions).

A field (column) that two tables have in common (called
the key) can be used to link the two. For example, consider
a table of customer information (name, customer number,
address, current balance, and so on) and a table of trans-
action information (product number, quantity, customer
number of purchaser, and so on).

To find all the items purchased by a particular customer,
the relational database uses the common field (the customer
account number) to join the two tables. A query can then
select all records in the transaction file whose customer
number field matches the current customer in the customer
file. (Notice that the validity of a key field depends on its
being unique: If each customer doesn’t have one [and only
one] customer number, any report of purchases will not be
dependable.)

A procedure called normalization is often used to create
a set of tables from a set of data files and records, such that
no fields contain duplicate information. This is necessary in
order to ensure that a piece of information can be updated
and the update “propagated” to the entire database without
missing any instances.

Relational databases usually also enforce referential integ-
rity. This means preventing changes to the database from
causing inconsistencies. For example, if table A and table B
are linked and a record is deleted from table A, any links to
that record from records in table B must be removed. Simi-
larly, if a change is made in a linked field in a table, records
in a linked table must be updated to reflect the change.

During the 1980s, the dBase relational database pro-
gram became the most popular DBMS on personal comput-
ers. Microsoft Access is now popular on Windows systems,

Because both the Customer Record and the Transaction Record
include the Customer Number field, it is easy to pull information
from both databases into a single report, such as a summary of pur-
chases for each customer.

database management system        131

and Oracle is prominent in the UNIX world. Beginning
in the 1980s, SQL (Structured Query Language) became a
widely used standard for querying and manipulating data
tables, and most DBMS implement SQL (see sql).

Trends
The embracing of object-oriented programming principles
starting in the 1980s has led to development of object-ori-
ented database structures (see object-oriented program-
ming). In this approach tables, queries, views, and other
components of the DBMS are treated as objects that present
their functionality through interfaces (much in the way a
class in an object-oriented program does). This approach
can improve data integrity, flexibility (such as through the
ability to define new operations), and the development of
new capabilities derived from predecessor objects. Object
models are also helpful in dealing with a networked world
in which data tables are often stored on separate computers.

As important as changes in the architecture of databases
have been, the impact of a changing environment has prob-

ably been even more significant. In particular, Web sites of
all kinds are increasingly being driven by databases (such as
for inventory and order processing for e-commerce). In turn,
many databases of all sizes and types are now accessible and
searchable via the Web. This has meant a new emphasis on
rapid development of database programs, particularly using
scripting languages, as well as fast and efficient Web-based
database processing (see also Ajax). While the traditional
high-end corporate database systems such as Oracle and
SQL Server are still vital for the enterprise, open-source
alternatives (particularly MySQL) are in widespread use for
many applications including wikis and content-management
systems. The use of flexibly structured data (see xml and
semantic Web) to link and transform databases has also
expanded database concepts in the Web-centric world.

Further Reading
Allen, Christopher, Catherine Creary, and Simon Chatwin. Intro-

duction to Relational Databases. Berkeley, Calif.: McGraw-Hill
Osborne, 2003.

Microsoft Access is a popular relational database program for personal computers. It can be used for both simple (“flat file”) databases and
for complex databases with many interrelated files.

132        database management system

Hellerstein, Joseph S., and Michael Stonebreaker, eds. Readings
in Database Systems. 4th ed. Cambridge, Mass.: MIT Press,
2005.

Hoffer, Jeffrey A., Mary Prescott, and Fred McFadden. Modern
Database Management. 8th ed. Upper Saddle River, N.J.: Pren-
tice Hall, 2006.

Powell, Gavin. Beginning XML Databases. Indianapolis: Wrox,
2006.

“Web Programming: Databases.” Available online. URL: http://
www.webreference.com/programming /databases.html.
Accessed July 8, 2007.

Williams, Hugh E., and David Lane. Web Database Applications
with PHP and MySQL. 2nd ed. Sebastapol, Calif.: O’Reilly
Media, 2004.

data communications
Broadly speaking, data communications is the transfer of
data between computers and their users. At its most abstract
level, data communications requires two or more comput-
ers, a device to turn data into electronic signals (and back
again), and a transmission medium. Telephone lines, fiber
optic cable, network (Ethernet) cable, video cable, radio
(wireless), or other kinds of links can be used. Finally, there
must be software that can manage the flow of data.

Until recently, the modem was the main device used
to connect personal computers to information services or

networks (see modem). In general, data being sent over a
communications link must be sent one bit at a time (this is
called serial transmission, and is why an external modem is
connected to a computer’s serial port). However most phone
cables and other links are multiplexed, meaning that they
carry many channels (with many streams of data bits) at
the same time.

To properly recognize data in a bit stream coming over a
link, the transmission system must use some method of flow
control and have some way to detect errors (see error cor-
rection). Typically, the data is sent as groups or “frames”
of bits. The frame includes a checksum that is verified by
the receiver. If the expected and actual sums don’t match,
the recipient sends a “negative acknowledgment” message
to the sender, which will retransmit the data. In the original
system, the sender waited until the recipient acknowledged
each frame before sending the next, but modern protocols
allow the sender to keep sending while the frames being
received are waiting to be checked.

The actual transmission of data over a line can be con-
sidered to be the lowest level of the data communications
scheme. Above that is packaging of data as used and inter-
preted by software. Unless two computers are directly con-
nected, the data is sent over a network, either a local area
network (LAN) or a wide-area network such as the global
Internet. A network consists of interconnected nodes that
include switches or routers that direct data to its destina-
tion (see network). Networks such as the Internet use
packet-switching: Data is sent as individual packets that
contain a “chunk” of data, an address, and an indication
of where the data fits within the message as a whole. The
packets are routed at the routers using software that tries
to find the fastest link to the destination. When the pack-
ets arrive at the destination, they are reassembled into the
original message.

Applications
Data communications are the basis both for networks and
for the proper functioning of servers that provide ser-
vices such as World Wide Web pages, electronic mail,
online databases, and multimedia content (such as audio
and streaming video). While Web page design and e-com-
merce are the “bright lights” that give cyberspace its char-
acter, data communications are like the plumbing without
which computers cannot work together. The growing
demand for data communications, particularly broadband
services such as DSL and cable modems, translates into a
steady demand for engineers and technicians specializing
in the maintenance and growth of this infrastructure (see
broadband).

Besides keeping up with the exploding demand for
more and faster data communications, the biggest chal-
lenge for data communications in the early 21st century
is the integration of so many disparate methods of com-
munications. A user may be using an ordinary phone
line (19th-century technology) to connect to the Inter-
net, while the phone company switches might be a mix-
ture of 1970s or later technology. The same user might
go to the workplace and use fast Ethernet cables over a

Modern data communications can be thought of as a series of lay-
ers, from the actual physical connection (such as a cable) at the
“bottom” to the operations of software such as Web browsers or e-
mail programs at the highest level.

data communications        133

local network, or connect to the Internet through DSL,
an enhanced phone line. Traveling home, the user might
use a personal digital assistant (PDA) with a wireless link
to make a restaurant reservation (see wireless comput-
ing). The user wants all these services to be seamless and
essentially interchangeable, but today data communica-
tions is more like roads in the early days of the automo-
bile—a few fast paved roads here and there, but many
bumpy dirt paths.

Further Reading
Forouszan Behrouz. Data Communications and Networking. New

York: McGraw Hill, 2006.
Stallings, William. Data and Computer Communications. 8th ed.

Upper Saddle River, N.J.: Prentice Hall, 2006.
Strangio, Christopher E. “Data Communications Basics.” Avail-

able online. URL: http://www.camiresearch.com/Data_Com_
Basics/data_com_tutorial.html. Accessed July 8, 2007.

White, Curt. Data Communications and Computer Networks: A Busi-
ness User’s Approach. 4th ed. Boston: Course Technology,
2006.

data compression
The process of removing redundant information from data
so that it takes up less space is called data compression.
Besides saving disk space, compressing data such as e-mail
attachments can make data communications faster.

Compression methods generally begin with the realiza-
tion that not all characters are found in equal numbers in
text. For example, in English, letters such as e and s are
found much more frequently than letters such as j or x.
By assigning the shortest bit codes to the most common
characters and the longer codes to the least common char-
acters, the number of bits needed to encode the text can be
minimized.

Huffman coding, first developed in 1952, is an algorithm
that uses a tree in which the pairs of the least probable (that
is, least common) characters are linked, the next least prob-
able linked, and so on until the tree is complete.

Another coding method, arithmetic coding, matches
characters’ probabilities to bits in such a way that the same
bit can represent parts of more than one encoded character.
This is even more efficient than Huffman coding, but the
necessary calculations make the method somewhat slower
to use.

Another approach to compression is to look for words
(or more generally, character strings) that match those
found in a dictionary file. The matching strings are replaced
by numbers. Since a number is much shorter than a whole
word or phrase, this compression method can greatly
reduce the size of most text files. (It would not be suitable
for files that contain numerical rather than text data, since
such data, when interpreted as characters, would look like a
random jumble.)

The Lempel-Ziv (LZ) compression method does not
use an external dictionary. Instead, it scans the file itself
for text strings. Whenever it finds a string that occurred
earlier in the text, it replaces the later occurrences with
an offset, or count of the number of bytes separating the

occurrences. This means that not only common words but
common prefixes and suffixes can be replaced by num-
bers. A variant of this scheme does not use offsets to the
file itself, but compiles repeated strings into a dictionary
and replaces them in the text with an index to their posi-
tion in the dictionary.

Graphics files can often be greatly compressed by replac-
ing large areas that represent the same color (such as a blue
sky) with a number indicating the count of pixels with that
value. However, some graphics file formats such as GIF are
already compressed, so further compression will not shrink
them much.

More exotic compression schemes for graphics can use
fractals or other iterative mathematical functions to encode
patterns in the data. Most such schemes are “lossy” in that
some of the information (and thus image texture) is lost,
but the loss may be acceptable for a given application. Lossy
compression schemes are not used for binary (numeric data
or program code) files because errors introduced in a pro-
gram file are likely to affect the program’s performance (if
not “break” it completely). Though they may have less seri-
ous consequences, errors in text are also generally consid-
ered unacceptable.

Trends
There are a variety of compression programs used on
unix systems, but variants of the Zip program are now
the overwhelming favorite on Windows-based systems. Zip
combines compression and archiving. Archiving, or the
bundling together of many files into a single file, contrib-
utes a further reduction in file size. This is because files in
most file systems must use a whole number of disk sectors,
even if that means wasting most of a sector. Combining files
into one file means that at most a bit less than one sector
will be wasted.

A basic approach to data compression is to look for recurring pat-
terns and store them in a “dictionary.” Each occurrence of the
pattern can then be replaced by a brief reference to the dictionary
entry. The resulting file may then be considerably smaller than the
original.

134        data compression

Further Reading
Arimura, Mitsuharu. “Mitsuharu Arimura’s Bookmarks on Source

Coding/Data Compression.” Available online. URL: http://
www.hn.is.uec.ac.jp/~arimura/compression_links.html.
Accessed July 8, 2007.

“Data Compression Reference Center.” Available online. URL:
http://www.rasip.fer.hr/_research/compress/index.html.
Accessed July 8, 2007.

Saloman, David. Data Compression: The Complete Reference. 4th ed.
New York: Springer-Verlag, 2006.

Sayood, Khalid. Introduction to Data Compression. 3rd ed. San
Francisco: Morgan Kaufmann, 2005.

data conversion
The developer of each application program that writes data
files must define a format for the data. The format must
be able to preserve all the features that are supported by
the program. For example, a word processing program will
include special codes for font selection, typestyles (such as
bold or italic), margin settings, and so on.

In most markets there are more than one vendor, so
there is the potential for users to encounter the need to
convert files such as word processing documents from one
vendor’s format to another. For example, a Microsoft Word
user needing to send a document to a user who has Word-
Perfect, or the user may encounter another user who also
has Microsoft Word, but a later version.

There are some ways in which vendors can relieve some
of their users’ file conversion issues (and thus potential
customer dissatisfaction). Vendors often include facilities to
read files created by their major rivals’ products, and to save
files back into those formats. This enables users to exchange
files. Sometimes the converted document will look exactly
like the original, but in some cases there is no equivalence
between a feature (and thus a code) in one application and a
feature in the other application. In that case the formatting
or other feature may not carry over into the converted ver-
sion, or may be only partially successful.

Vendors generally make a new version of an applica-
tion downwardly compatible with previous versions (see
also compatability and portability). This means that the
new version can read files created with the earlier versions.
(After all, users would not be happy if none of their existing
documents were accessible to their new software!) Similarly,
there is usually a way to save a file from the later version in
the format of an earlier version, though features added in the
later version will not be available in the earlier format.

Another strategy for exchanging otherwise incompatible
files is to find some third format that both applications can
read. Thus Rich Text Format (RTF), a format that includes
most generic document features, is supported by most mod-
ern word processors. A user can thus export a file as RTF
and the user of a different program will be able to read it
(see rtf). Similarly, many database and other programs can
export files as a series of data values separated by commas
(comma-delimited files), and the files can be then read by a
different program and converted to its “native” format.

A variety of format conversion utilities are available as
either commercial software or shareware. There are also busi-

nesses that specialize in data conversion. While their services
can be expensive, using them may be the best way to con-
vert large numbers of files, rather than having to individually
load and save them. Data conversion services can also handle
many “ancient” data files from the 1970s or even early 1980s
whose formats are no longer supported by current software.

Further Reading
Heuser, Werner. “Data Conversion and Migration Tools.” Available

online. URL: http://dataconv.org/. Accessed July 8, 2007.
“Media Conversion: Online File Conversions.” Available online.

URL: http://www.iconv.com/. Accessed July 8, 2007.

data dictionary
A modern enterprise database system can contain hundreds
of separate data items, each with important characteristics
such as field types and lengths, rules for validating the data,
and links to various databases that use that item (see data-
base management system). There can also be many different
views or ways of organizing subsets of the data, and stored
procedures (program code modules) used to perform vari-
ous data processing functions. A developer who is creating
or modifying applications that deal with such a vast database
will often need to check on the relationships between data
elements, views, procedures, and other aspects of the system.

One fortunate characteristic of computer science is that
many tools can be applied to themselves, often because the
contents of a program is itself a collection of data. Thus, it is
possible to create a database that keeps track of the elements
of another database. Such a database is sometimes called a
data dictionary. A data dictionary system can be developed
in the same way as any other database, but many database
development systems now contain built-in facilities for gen-
erating data dictionary entries as new data items are defined,
and updating definitions as items are linked together and new
views or stored procedures are defined. (A similar approach
can be seen in some software development systems that cre-
ate a database of objects defined within programs, in order to
preserve information that can be useful during debugging.)

Data dictionaries are particularly important for creating
data warehouses (see data warehouse), which are large
collections of data items that are stored together with the
procedures for manipulating and analyzing them.

Further Reading
Kreines, David. Oracle Data Dictionary Pocket Reference. Sebasta-

pol, Calif.: O’Reilly Media, 2003.
Pelzer, Trudy. “MySQL 5.0 New Features: Data Dictionary.”

Available online. URL: http://dev.mysql.com/tech-resources/
articles/mysql-datadictionary.html. Accessed July 8, 2007.

data glove  See haptics.

data mining
The process of analyzing existing databases in order to find
useful information is called data mining. Generally, a data-
base, whether scientific or commercial, is designed for a

data mining        135

particular purpose, such as recording scientific observa-
tions or keeping track of customers’ account histories. How-
ever, data often has potential applications beyond those
conceived by its collector.

Conceptually, data mining involves a process of refining
data to extract meaningful patterns—usually with some
new purpose in mind. First, a promising set or subset of the
data is selected or sampled. Particular fields (variables) of
interest are identified. Patterns are found using techniques
such as regression analysis to find variables that are highly
correlated to (or predicted by) other variables, or through
clustering (finding the data records that are the most simi-
lar along the selected dimensions). Once the “refined” data
is extracted, a representation or visualization (such as a
report or graph) is used to express newly discovered infor-
mation in a usable form.

Similar (if simpler) techniques are being used to target
or personalize marketing, particularly to online customers.
For example, online bookstores such as Amazon.com can
find what other books have been most commonly bought
by people buying a particular title. (In other words, iden-
tify a sort of reader profile.) If a new customer searches for
that title, the list of correlated titles can be displayed, with
an increased likelihood of triggering additional purchases.
Businesses can also create customer profiles based on their
longer-term purchasing patterns, and then either use them
for targeted mailings or sell them to other businesses (see
e-commerce). In scientific applications, observations can
be “mined” for clues to phenomena not directly related to
the original observation. For example, changes in remote
sensor data might be used to track the effects of climate
or weather changes. Data-mining techniques can even be
applied to the human genome (see bioinformatics).

Trends
Data mining of consumer-related information has emerged
as an important application as the volume of e-commerce
continues to grow, the amount of data generated by large
systems (such as online bookstores and auction sites)
increases, and the value of such information to marketers
becomes established. However, the use of consumer data
for purposes unrelated to the original purchase, often by
companies that have no pre-existing business relationship
to the consumer, can raise privacy issues. (Data is often
rendered anonymous by removing personal identification
information before it is mined, but regulations or other
ways to assure privacy remain incomplete and uncertain.)

The most controversial applications of data mining are
in the area of intelligence and homeland security. Because
such applications are often shrouded in secrecy, the public
and even lawmakers have difficulty in assessing their value
and devising privacy safeguards. According to the Govern-
ment Accountability Office, as of 2007 some 199 different
data-mining programs were in use by at least 52 federal
agencies. One of the most controversial is ADVISE (Anal-
ysis Dissemination, Visualization, Insight and Semantic
Enhancement), developed by the Department of Homeland
Security since 2003. The program purportedly can match
and create profiles using government records and users’

Web sites and blogs. Privacy advocates and civil libertarians
have raised concerns, and legislation has been introduced
that would require that all federal agencies report their data-
mining activities to Congress (see also counterterrorism
and computers and privacy in the digital age.)

Further Reading
Clayton, Mark. “U.S. Plans Massive Data Sweep.” Christian Science

Monitor, February 9, 2006, n.p. Available online. URL: http://
www.csmonitor.com/2006/0209/p01s02-uspo.html. Accessed
July 8, 2007.

Dunham, Margaret H. Data Mining: Introductory and Advanced Top-
ics. Upper Saddle River, N.J.: Prentice Hall, 2002.

Markov, Zdravko, and Daniel T. Larose. Data Mining the Web:
Uncovering Patterns in Web Content, Structure, and Usage.
Hoboken, N.J.: Wiley, 2007.

Tan, Pang-Ning, Michael Steinbach, and Vipin Kumar. Introduction
to Data Mining. Upper Saddle River, N.J.: Pearson Education,
2006.

data security
In most institutional computing environments, access to
program and data files is restricted to authorized persons.
There are several mechanisms for restricting file access in a
multiuser or networked system.

User Status
Because of their differing responsibilities, users are often
given differing restrictions on access. For example, there
might be status levels ranging from root to administrator to
“ordinary.” A user with root status on a UNIX system is able
to access any file or resource. Any program run by such a
user inherits that status, and thus can access any resource.
Generally, only the user(s) with ultimate responsibility for
the technical functioning of the system should be given
such access, because commands used by root users have the
potential to wipe out all data on the system. A person with
administrator status may be able to access the files of other
users and to access certain system files (in order to change
configurations), but will not be able to access certain core
system files. Ordinary users typically have access only to
the files they create themselves and to files designated as
“public” by other users.

File Permissions
Files themselves can have permission status. In UNIX,
there are separate statuses for the user, any group to which
the user belongs, and “others.” There are also three different
activities that can be allowed or disallowed: reading, writ-
ing, and executing. For example, if a file’s permissions are

User	 Group	 Other
rwx	 rw-	 r—

the user can read or write the file or (if it is a directory or
program), execute it. Members of the same group can read
or write, but not execute, while others can only read the file
without being able to change it in any way. Operating sys-
tems such as Windows NT use a somewhat different struc-

136        data security

ture and terminology, but also provide for varying user
status and access to objects.

Record-level Security
Security on the basis of whole directories or even files may
be too “coarse” for many applications. In a particular data-
base file, different users may be given access to different
data fields. For example, a clerk may have read-only access
to an employee’s basic identification information, but not
to the results of performance evaluations. An administra-
tor may have both read and write access to the latter. Using
some combination of database management and operating
system level capabilities, the system will maintain lists of
user accounts together with the objects (such as record
types or fields) they can access, and the types of access
(read only or read/write) that are permitted. Rather than
assigning access capabilities separately for each user, they
may be defined for a group of similar users, and then indi-
vidual users can be assigned to the group.

Other Security Measures
Security is also important at the program level. Because a
badly written (or malicious) program might destroy impor-
tant data or system files, most modern operating systems
restrict programs in a number of ways. Generally, each pro-
gram is allowed to access only such memory as it allocates
itself, and is not able to change data in memory belonging
to other running programs. Access to hardware devices can
also be restricted: an operating system component may have
the ability to access the innermost core of the operating sys-
tem (where drivers interact directly with devices), while
an ordinary applications program may be able to access
devices only through facilities provided by the operating
system.

There are a number of techniques that unauthorized
intruders can use to try to compromise operating systems
(see computer crime and security). Access capabilities
that are tied to user status are vulnerable if the user can get
the login ID and password for the account. If the account
has a high (administrator or root) status, then the intruder
may be able to give viruses, Trojan horses, or other mali-
cious programs the status they need in order to be able to
penetrate the defenses of the operating system (see also
computer virus).

Files that have intrinsically sensitive or valuable data
are often further protected by encoding them (see encryp-
tion). Encryption means that even intruders who gain read
access to the file will need either to crack the encryption
(very difficult without considerable time and computer
resources) or somehow obtain the key. Encryption does not
prevent the deletion or copying of a file, however, just the
understanding of its contents.

The dispersal of valuable or sensitive data (such as cus-
tomers’ social security numbers) across expanding networks
increases the risk of “data breaches” where the privacy,
financial security, and even identity of thousands of peo-
ple are compromised (see also identity theft). In recent
years, for example, there have been numerous cases where
laptop computers containing thousands of sensitive records

have been stolen from universities, financial institutions,
or government agencies—in such cases there is often no
way to know whether the thief will actually access the data.
(Often affected individuals are notified that they may be
at risk, and such prophylactic measures as credit monitor-
ing are provided.) In response to public anxiety there has
been pressure for federal or state legislation that would
make companies responsible for breaches of their data and
specify compensation or other recourse for affected custom-
ers. (Opponents of such laws cite government reports that
find that most data breaches do not lead to identity theft,
and that the regulations would increase the cost of millions
of daily transactions.)

There is a continuing tradeoff between security and ease
of use. From the security standpoint, it might be assumed
that the more barriers or checkpoints that can be set up
for verifying authorization, the safer the system will be.
However, as security systems become more complex, it
becomes more difficult to ensure that authorized users are
not unduly inconvenienced. If users are sufficiently frus-
trated, they will be tempted to try to bypass security, such
as by sharing IDs and passwords or making files they create
“public.”

Further Reading
Garretson, Cara. “The Do’s and Don’ts of Data Breaches: How

Security Professionals Can Lessen the Impact.” Network
World, June 18, 2007, p. 1.

Grant, Gross. “Gov’t Report: Data Breaches Don’t Often Result in
ID Theft.” PC World, July 6, 2007, n.p. Available online. URL:
http://www.pcworld.com/article/id,134203-c,privacysecurity/
article.html. Accessed July 8, 2007.

Killmeyer, Jan. Information Security Architecture: An Integrated
Approach to Security in the Organization. 2nd ed. Boca Raton,
Fla.: Auerbach Publications, 2006.

Rasch, Max. “Strict Liability for Data Breaches?” Available
online. URL: http://www.securityfocus.com/columnists/387.
Accessed July 8, 2007.

Tipton, Harold F., and Micki Krause. Information Security Manage-
ment Handbook. 6th ed. Boca Raton, Fla.: Auerbach Publica-
tions, 2007.

data structures
A data structure is a way of organizing data for use in a
computer program. There are three basic components to a
data structure: a set of suitable basic data types, a way to
organize or relate these data items to one another, and a set
of operations, or ways to manipulate the data.

For example, the array is a data structure that can
consist of just about any of the basic data types, although
all data must be of the same type. The way the data is orga-
nized is by storing it in sequentially addressable locations.
The operations include storing a data item (element) in the
array and retrieving a data item from the array.

Types of Data Structures
The data structures commonly used in computer science
include arrays (as discussed above) and various types of
lists. The primary difference between an array and a list is
that an array has no internal links between its elements,

data structures        137

while a list has one or more pointers that link the elements.
There are several types of specialized list. A tree is a list
that has a root (an element with no predecessor), and each
other element has a unique predecessor. The guarantee of
a unique path to each tree node can make the operations
of inserting or deleting an item faster. A stack is a list
that is accessible only at the top (or front). Any new item
is inserted (“pushed”) on top of the last item, and remov-
ing (“popping”) an item always removes the item that was
last inserted. This order of access is called LIFO (last in,
first out). A list can also be organized in a first in, first out
(FIFO) order. This type of list is called a queue, and is
useful in a situation where tasks must “wait their turn” for
attention.

Implementation Issues
The implementation of any data structure depends on the
syntax of the programming language to be used, the data
types and features available in the language, and the algo-
rithms chosen for the data operations that manipulate the
structure. In traditional procedural languages such as C, the
data storage part of a data structure is often specified in one
part of the program, and the functions that operate on that
structure are defined separately. (There is no mechanism
in the language to link them.) In object-oriented languages
such as C++, however, both the data storage declarations
and the function declarations are part of the same entity, a
class. This means that the designer of the data structure
has complete control over its implementation and use.

Together with algorithms, data structures make up the
heart of computer science. While there can be numerous
variations on the fundamental data structures, understand-
ing the basic forms and being able to decide which one
to use to implement a given algorithm is the best way to
assure effective program design.

Further Reading
Drozdek, Adam. Data Structures and Algorithms in C++. 3rd ed.

Boston: Course Technology, 2004.
Ford, William H., and William R. Topp. Data Structures with Java.

Upper Saddle River, N.J.: Prentice Hall, 2004.
Lafore, Robert. Data Structures & Algorithms in Java. 2nd ed. India-

napolis: Sams, 2003.
Storer, J. A. An Introduction to Data Structures and Algorithms. New

York: Springer, 2002.

data types
As far as the circuitry of a computer is concerned, there’s
only one kind of data—a series of bits (binary digits) fill-
ing a series of memory locations. How those bits are to be
interpreted by the people using the computer is entirely
arbitrary. The purpose of data types is to define useful con-
cepts such as integer, floating-point number, or character in
terms of how they are stored in computer memory.

Thus, most computer languages have a data type called
integer, which represents a whole number that can be stored
in 16 bits (two bytes) of memory. When a programmer
writes a declaration such as:

int Counter;

in the C language, the compiler will create machine instruc-
tions that set aside two bytes of memory to hold the con-
tents of the variable Counter. If a later statement says:

Counter = Counter + 1;

(or its equivalent, Counter++) the program’s instructions
are set up to fetch two bytes of memory to the processor’s
accumulator, add 1, and store the result back into the two
memory bytes.

Similarly, the data type long represents four bytes (32
bits) worth of binary digits, while the data type float stores
a floating-point number that can have a whole part and a
decimal fraction part (see numeric data). The char (char-
acter) type typically uses only a single byte (8 bits), which
is enough to hold the basic ASCII character codes up to 255
(see characters and strings).

The Bool (Boolean) data type represents a simple true or
false (usually 1 or 0) value (see Boolean operators).

Structured Data Types
The preceding data types all hold single values. However,
most modern languages allow for the construction of data
types that can hold more than one piece of data. The array
is the most basic structured data type; it represents a series
of memory locations that hold data of one of the basic
types. Thus, in Pascal an array of integer holds integers,
each taking up two bytes of memory.

Many languages have composite data types that can
hold data of several different basic types. For example, the
struct in C or the record in Pascal can hold data such as a
person’s first and last name, three lines of address (all arrays
of characters, or strings), an employee number (perhaps an
integer or double), a Boolean field representing the presence
or absence of some status, and so on. This kind of data type
is also called a user-defined data type because programmers
can define and use these types in almost the same ways as
they use the language’s built-in basic types.

What is the difference between data types and data
structures? There is no hard-and-fast distinction. Gen-
erally, data structures such as lists, stacks, queues, and
trees are more complex than simple data types, because
they include data relationships and special functions
(such as pushing or popping data on a stack). However,
a list is the fundamental data type in list-processing lan-
guages such as Lisp, and string operators are built into
languages such as Snobol. (See list processing, stack,
queue, and tree.)

Further, in many modern languages fundamental and
structured data types are combined seamlessly into classes
that combine data structures with the relevant operations
(see class and object-oriented programming).

Further Reading
Prata, Stephen. C Primer Plus. 5th ed. Indianapolis: Sams, 2003.
———. C++ Primer Plus. 5th ed. Indianapolis: Sams, 2005.
“Type System.” Wikipedia. Available online. URL: http://en.

wikipedia.org/wiki/Type_system. Accessed July 8, 2007.
Watt, David A., and Deryck F. Brown. Java Collections: An Introduc-

tion to Abstract Data Types, Data Structures, and Algorithms.
New York: Wiley, 2001.

138        data types

data warehouse
Modern business organizations create and store a tremen-
dous amount of data in the form of transactions that become
database records. Increasingly, however, businesses are
relying on their ability to use data that was collected for one
purpose (such as sales, customer service, and inventory)
for purposes of marketing research, planning, or decision
support. For example, transaction data might be revisited
with a view to identifying the common characteristics of
the firm’s best customers or determining the best way to
market a particular type of product. In order to conduct
such research or analysis, the data collected in the course of
business must be stored in such a way that it is both accu-
rate and flexible in terms of the number of different ways in
which it can be queried. The idea of the data warehouse is
to provide such a repository for data.

When data is used for particular purposes such as sales
or inventory control, it is usually structured in records
where certain fields (such as stock number or quantity)
are routinely processed. It is not so easy to ask a differ-
ent question such as “which customers who bought this
product from us also bought this other product within six
months of their first purchase?” One way to make it easier
to query data in new ways is to store the data not in records
but in arrays where, for example, one dimension might
be product numbers and another categories of customers.
This approach, called Online Analytical Processing (OLAP)
makes it possible to extract a large variety of relationships
without being limited by the original record structure.

Implementation
The key in designing a data warehouse is to provide a way
that researchers using analytical tools (such as statistics
programs) can access the raw data in the underlying data-
base. Software using query languages such as SQL can
serve as such a link. Thus, the researcher can define a query

using the many dimensions of the data array, and the OLAP
software (also called middleware) translates this query into
the appropriate combination of queries against the underly-
ing relational database.

The data warehouse is closely related to the concept
of data mining. In fact, data mining can be viewed as the
exploitation of the collection of views, queries, and other
elements that can be generated using the data warehouse as
the infrastructure (see data mining).

Further Reading
Data Warehousing Information Center. Available online. URL:

http://www.dwinfocenter.org/. Accessed July 8, 2007.
DM Review/dataWarehouse.com Available online. URL: http://

www.datawarehouse.com/. Accessed July 8, 2007.
Inmon, W. H. Building the Data Warehouse. 4th ed. Indianapolis:

Wiley, 2005.
Kimball, Ralph, and Margy Ross. The Data Warehouse Toolkit: The

Complete Guide to Dimensional Modeling. 2nd ed. Indianapo-
lis: Wiley, 2002.

DBMS  See database management system.

decision support system
A decision support system (DSS) is a computer applica-
tion that focuses on providing access to or analysis of the
key information needed to make decisions, particularly in
business. (It can be thought of as a more narrowly focused
approach to computer assistance to management—see man-
agement information system.)

The development of DSS has several roots reaching back
to the 1950s. This includes operational analysis and the the-
ory of organizations and the development of the first inter-
active (rather than batch-processing) computer systems.
Indeed, the SAGE automated air defense system developed
starting in the 1950s could be described as a military DSS.
The system presented real-time information (radar plots)
and enabled the operator to select and focus on particular
elements using a light pen. By the 1960s more-systematic
research on DSS was underway and included the provoca-
tive idea of “human-computer symbiosis” for problem solv-
ing (see Licklider, J. C. R.).

The “back end” of a DSS is one or more large databases
(see data warehouse) that might be compiled from transac-
tion records, statistics, online news services, or other sources.
The “middle” of the DSS process includes the ability to ana-
lyze the data (online analytical processing, or OLAP; see also
data mining). Other elements that might be included in a
DSS are rules-based systems (see expert system) and inter-
active models (see simulation). These elements can help the
user explore alternatives and “what if” scenarios.

The structure of a DSS is sometimes described as model
driven (generally using a small amount of selected data),
data driven (based on a large collection of historical data),
knowledge driven (perhaps using an expert system), or
communications driven (focusing on use of collaborative
software—see groupware, as well as more recent develop-
ments) (see wikis and Wikipedia).

The general process of warehousing data. The data warehouse adds
value to the data by further structuring it so relationships can be
explored by analysts.

decision support system        139

User Interface—The “Front End”
All the data and tools in the world are of little use if the
user cannot work with it effectively (see user interface).
Information or the results of queries or modeling must be
displayed in a way that is easy to grasp and use. (A spread-
sheet with nothing highlighted or marked would be a poor
choice.) Graphical “widgets” such as dials, buttons, sliders,
and so on can help the user see the results and decide what
to look at next (see digital dashboard).

Another key principle is that decision making in the
modern world is as much a social as an individual process.
Therefore a DSS should facilitate communication and col-
laboration (or interface with software that does so).

A variety of specialized DSSs have been developed for
various fields. Examples include PROMIS (for medical deci-
sion making) and Carnegie Mellon’s ZOG/KMS, which has
been used in military and business settings.

Further Reading
Greenes, Robert A., ed. Clinical Decision Support: The Road Ahead.

Orlando, Fla.: Academic Press, 2006.
Gupta, Jatinder N. D., Guisseppi A. Forgionne, and Manuel Mora T.,

eds. Intelligent Decision-Making Support Systems. New York:
Springer, 2006.

Power, D. J. “A Brief History of Decision Support Systems.” Version
4.0. Available online. URL: http://dssresources.com/history/
dsshistory.html. Accessed September 10, 2007.

Turban, Efraim, et al. Decision Support and Business Intelligence Sys-
tems. 8th ed. Upper Saddle River, N.J.: Prentice-Hall, 2006.

Dell, Inc.
Dell Computer (NASDAQ: DELL) is one of the world’s lead-
ing manufacturers and sellers of desktop and laptop com-
puters (see personal computer). By 2008 Dell had more
than 88,000 employees worldwide.

The company was founded by Michael Dell, a student at
the University of Texas at Austin whose first company was
PC’s Limited, founded in 1984. Even at this early stage Dell
successfully employed several practices that would come
to typify the Dell strategy: Sell directly to customers (not
through stores), build each machine to suit the customer’s
preferences, and be aggressive in competing on price.

In 1988 the growing company changed its name to
Dell Computer Corporation. In the early 1990s Dell tried
an alternative business model, selling through warehouse
clubs and computer superstores. When that met with little
success, Dell returned to the original formula. In 1999 Dell
overtook Compaq to become the biggest computer retailer
in America.

Generally, the Dell product line has aimed at two basic
segments: business-oriented (OptiPlex desktops and Lati-
tude laptops) and home/consumer (XPS desktops and
Inspiron laptops, and in 2007, Inspiron desktops).

Challenges and Diversification
Around 2002, Dell, perhaps facing the growing commod-
ity pricing of basic PCs, began to expand into computer
peripherals (such as printers) and even home entertainment
products (TVs and audio players). In 2003 the company

changed its name to Dell, Inc. (dropping “Computer”). Dell
also experienced an increase in international sales in 2005,
while achieving a first place ranking in Fortune magazine
as “most admired company.” However, the company also
made some missteps, losing $300 million because of faulty
capacitors on some motherboards. Earnings continued to
fall short of analysts’ expectations, and in January 2007
Michael Dell returned as CEO after the resignation of Kevin
B. Rollins, who had held the post since 2004.

Meanwhile, Dell has made further attempts at diversify-
ing the product line. In 2006 the company began, for the
first time, to introduce AMD (instead of Intel) processors
in certain products, and in 2007 Dell responded to cus-
tomer suggestions by announcing that some models could
be ordered with Linux rather than Microsoft Windows
installed. Also in 2007, Dell acquired Alienware, maker of
high-performance gaming machines.

Dell has struggled to boost its sagging revenue as it
lost ground to competitors, notably HP. Known primarily
as a mail-order and online company, Dell has announced
that it will also sell PCs through “big box” retailers such
as Wal-Mart.

Dell continues to receive praise and criticism from vari-
ous quarters. On the positive side, the company has been
praised for its computer-recycling program by the National
Recycling Coalition. Dell products also tend to score at or
near the top in performance reviews by publications such
as PC Magazine.

On the other hand, there have been complaints about
Dell’s technical support operation. Technicians apparently
follow “scripts” very closely, making customers take sys-
tems apart and follow troubleshooting directions regardless
of what the customer might already know or have done.
The increasing “offshoring” of support has also led to com-
plaints about language and communication problems.

Further Reading
Dell, Inc. Available online. URL: http://www.dell.com. Accessed

September 10, 2007.
Dell, Michael, and Catherine Fredman. Direct from Dell: Strategies

that Revolutionized an Industry. New York: HarperBusiness,
2006.

Holzner, Steven. How Dell Does It: Using Speed and Innovation to
Achieve Extraordinary Results. New York: McGraw-Hill, 2006.

demon
The unusual computing term demon (sometimes spelled
daemon) refers to a process (program) that runs in the
background, checking for and responding to certain events.
The utility of this concept is that it allows for automation of
information processing without requiring that an operator
initiate or manage the process.

For example, a print spooler demon looks for jobs that
are queued for printing, and deals with the negotiations nec-
essary to maintain the flow of data to that device. Another
demon (called chron in UNIX systems) reads a file describ-
ing processes that are designated to run at particular dates
or times. For example, it may launch a backup utility every
morning at 1:00 a.m. E-mail also depends on the periodic
operation of “mailer demons.”

140        Dell, Inc.

While the term demon originated in the UNIX culture,
similar facilities exist in many operating systems. Even in
the relatively primitive MS-DOS for IBM personal comput-
ers of the 1980s, the ability to load and retain small utility
programs that could share the main memory with the cur-
rently running application allowed for a sort of demon that
could spool output or await a special keypress. Microsoft
Windows systems have many demon-like operating system
components that can be glimpsed by pressing the Ctrl-Alt-
Delete key combination.

The sense of autonomy implied in the term demon is in
some ways similar to that found in bots or software agents
that can automatically retrieve information on the Internet,
or in the Web crawler, which relentlessly pursues, records,
and indexes Web links for search engines. (See software
agent and search engine.)

Further Reading
Brock, Dean, and Bob Benites. Mastering Tools, Taming Daemons:

UNIX for the Wizard Apprentice. Greenwich, Conn.: Manning
Publications, 1995.

Stevens, W. Richard. Advanced Programming in the UNIX Environ-
ment. Upper Saddle River, N.J.: Addison-Wesley, 2005.

“UNIX Daemons in Perl.” Available online. URL: http://www.
webreference.com/perl/tutorial/9/. Accessed July 8, 2007.

Dertouzos, Michael L.
(1936–2001)
Greek-American
Computer Scientist, Futurist

Born in Athens, Greece, on November 5, 1936, Michael
Dertouzos spent adventurous boyhood years accompany-
ing his father (an admiral) in the Greek navy’s destroyers
and submarines. He became interested in Morse Code,
shipboard machinery, and mathematics. At the age of 16
he read an article about Claude Shannon’s work in infor-
mation theory and a project at the Massachusetts Institute
of Technology that sought to build a mechanical robot
“mouse.” He quickly decided that he wanted to come to
America to study at MIT.

After the hardships of the World War II years inter-
vened, Dertouzos received a Fulbright scholarship that
placed him in the University of Arkansas, where he earned
his bachelor’s and master’s degrees while working on acous-
tic-mechanical devices for the Baldwin Piano Company. He
was then able to fulfill his boyhood dream by receiving his
Ph.D. from MIT, then promptly joined the faculty. He was
director of MIT’s Laboratory for Computer Science (LCS)
starting in 1974. The lab has been a hotbed of new ideas
in computing, including computer time-sharing, Ethernet
networking, and public-key cryptography. Dertouzos also
embraced the growing Internet and serves as coordinator of
the World Wide Web consortium, a group that seeks to cre-
ate standards and plans for the growth of the network.

Combining theoretical interest with an entrepreneur’s
eye on market trends, Dertouzos started a small company
called Computek in 1968. It made some of the first “smart
terminals” that included their own processors.

In the 1980s, Dertouzos began to explore the rela-
tionship between developments and infrastructure in
information processing and the emerging “information
marketplace.” However, the spectacular growth of the
information industry has taken place against a backdrop of
the decline of American manufacturing. Dertouzos’s 1989
book, Made In America, suggested ways to revitalize Amer-
ican industry.

During the 1990s, Dertouzos brought MIT into closer
relationship with the visionary designers who were creating
and expanding the World Wide Web. When Tim Berners-
Lee and other Web pioneers were struggling to create the
World Wide Web consortium to guide the future of the new
technology, Dertouzos provided extensive guidance to help
them set their agenda and structure. (See World Wide
Web and Berners-Lee, Tim.)

Dertouzos was dissatisfied with operating systems such
as Microsoft Windows and with popular applications pro-
grams. He believed that their designers made it unneces-
sarily difficult for users to perform tasks, and spent more
time on adding fancy features than on improving the basic
usability of their products. In 1999, Dertouzos and the MIT
LCS announced a new project called Oxygen. Working in
collaboration with the MIT Artificial Intelligence Labora-
tory, Oxygen was intended to make computers “as natural a
part of our environment as the air we breathe.”

As a futurist, Dertouzos tried to paint vivid pictures of
possible future uses of computers in order to engage the
general public in thinking about the potential of emerging
technologies. His 1995 book, What Will Be, paints a vivid
portrait of a near-future pervasively digital environment.
His imaginative future is based on actual MIT research,
such as the design of a “body net,” a kind of wearable
computer and sensor system that would allow people to
not only keep in touch with information but also to com-
municate detailed information with other people simi-
larly equipped. This digital world will also include “smart
rooms” and a variety of robot assistants, particularly in the
area of health care. However, this and his 2001 publica-
tion, The Unfinished Revolution, are not unalloyed celebra-
tions of technological wizardry. Dertouzos has pointed out
that there is a disconnect between technological visionar-
ies who lack understanding of the daily realities of most
peoples’ lives, and humanists who do not understand the
intricate interconnectedness (and thus social impact) of
new technologies.

Dertouzos was given an IEEE Fellowship and awarded
membership in the National Academy of Engineering, He
died on August 27, 2001, after a long bout with heart dis-
ease. He was buried in Athens near the finish line for the
Olympic marathon.

Further Reading
Dertouzos, Michael. L. The Unfinished Revolution: How to Make

Technology Work for Us—Instead of the Other Way Around.
New York: HarperCollins, 2002.

———. What Will Be: How the New World of Information Will
Change Our Lives. New York: HarperCollins, 1997.

“Farewell to a Visionary of the Computer Age.” Business Week,
September 17, 2001, p. 101.

Dertouzos, Michael L.        141

design patterns
Design patterns are an attempt to abstract and general-
ize what is learned in solving one problem so that it can
be applied to future similar problems. The idea was first
applied to architecture by Christopher Alexander in his
book A Pattern Language. Alexander described a pattern as
a description of situations in which a particular problem
occurs, with a solution that takes into account the factors
that are “invariant” (not changed by context). Guidance for
applying the solution is also provided.

For example, a bus stop, a waiting room, and a line at
a theme park are all places where people wait. A “place to
wait” pattern would specify the problem to be solved (how
to make waiting as pleasant as possible) and suggest solu-
tions. Patterns can have different levels of abstraction or
scales on which they apply (for example, an intimate the-
ater and a stadium are both places of entertainment, but
one is much larger than the other).

Patterns in turn are linked into a network called a pat-
tern language. Thus when working with one pattern, the
designer is guided to consider related patterns. For exam-
ple, a pattern for a room might relate to patterns for seating
or grouping the occupants.

Patterns in Software
The concept of patterns and pattern languages carries over
well into software design. As with architectural patterns,
a software pattern describes a problem and solution, along
with relevant structures (see class and object-oriented
programming). Note that patterns are not executable code;
they are at a higher level (one might say abstract enough to
be generalizable, specific enough to be applicable).

Software patterns can specify how objects are created
and ways in which they function and interface with other
objects. Patterns are generally documented using a common
format; one example is provided in the book Design Pat-
terns. This scheme has the following sections:

• � name and classification

• � intent or purpose

• � alternative names

• � problem—the kind of problem the pattern addresses,
and conditions under which it can be used

• � applicability—typical situations of use

• � structure description—such as class or interaction
diagrams

• � participants—classes and objects involved in the pat-
tern and the role each plays

• � collaboration—how the objects interact with one
another

• � consequences—the expected results of using the pat-
tern, and possible side effects or shortcomings

• � implementation—explains a way to implement the
pattern to solve the problem

• � sample code—usually in a commonly used program-
ming language

• � known uses—actual working applications of the
pattern

• � related patterns—other patterns that are similar or
related, with a description of how they differ

An example given in Design Patterns is the “publish-
subscribe” pattern. This pattern describes how a number
of objects (observers) can be dependent on a “subject.” All
observers are “subscribed” to the subject, so they are noti-
fied whenever any data in the subject changes. This pattern
could be used, for example, to set up a system where differ-
ent reports, spreadsheets, etc., need to be updated whenever
notified by a controlling object that has received new data.

Some critics consider the use of patterns to be too
abstract and inefficient. Since a pattern has to be re-imple-
mented for each use, it has been argued that well-docu-
mented, reusable classes or objects would be more useful.

Proponents, however, argue that “design reuse” is more
powerful than mere “object reuse.” A pattern provides a
whole “language” for talking about a problem and its proven
solutions, and can help both the original designer and oth-
ers understand and extend the design.

Further Reading
Alexander, Christopher. A Pattern Language: Towns, Buildings,

Construction. New York: Oxford University Press, 1977.
“Design Patterns.” IBM Research. Available online. URL: http://

www.research.ibm.com/designpatterns/. Accessed September
10, 2007.

Freeman, Eric, and Elisabeth Freeman. Head First Design Patterns.
Sebastapol, Calif.: O’Reilly, 2004.

Gamma, Erich, et al. Design Patterns: Elements of Reusable Object-
Oriented Software. Upper Saddle River, N.J.: Addison-Wesley
Professional, 1995.

Kurotsuchi, Brian T. “Welcome to the Wonderful World of Design
Patterns.” Available online. URL: http://www.csc.calpoly.
edu/~dbutler/tutorials/winter96/patterns/. Accessed Septem-
ber 10, 2007.

desktop publishing  (DTP)
Traditionally documents such as advertisements, brochures,
and reports were prepared by combining typed or printed
text with pasted-in illustrations (such as photographs and
diagrams). This painstaking layout process was necessary
in order to produce “camera-ready copy” from which a
printing company could produce the final product.

Starting in the late 1980s, desktop computers became
powerful enough to run software that could be used to cre-
ate page layouts. In addition, display hardware gained a
high enough resolution to allow for pages to be shown on
the screen in much the same form as they would appear on
the printed page. (This is known by the acronym WYSI-
WYG, or “what you see is what you get.”) The final ingredi-
ent for the creation of desktop publishing was the advent of
affordable laser or inkjet printers that could print near print
quality text and high-resolution graphics (see printers).

This combination of technologies made it feasible for
trained office personnel to create, design, and produce many

142        design patterns

documents in-house rather than having to send copy to a
printing company. Adobe’s PageMaker program soon became
a standard for the desktop publishing industry, appearing first
on the Apple Macintosh and later on systems running Micro-
soft Windows. (The Macintosh’s support for fonts and WYSI-
WYG displays gave it a head start over the Windows PC in the
DTP industry, and to this day many professionals prefer it.)

There is no hard-and-fast line between desktop publish-
ing and the creation of text itself. Modern word processing
software such as Microsoft Word includes a variety of features
for selection and sizing of fonts, and the ability to define
styles for creating headings, types of paragraphs, and so on
(see word processing). Word and other programs also allow
for the insertion and placement of graphics and tables, the
division of text into columns, and other layout features. In
general, however, word processing emphasizes the creation
of text (often for long documents), while desktop publishing
software emphasizes layout considerations and the fine-tun-
ing of a document’s appearance. Thus, while a word proces-
sor might allow the selection of a font in a given point size, a
desktop publishing program allows for the exact specification
of leading (space between lines) and kerning (the adjustment
of space between characters). Most desktop publishing pro-
grams can import text that was originally created in a word
processor. This is helpful because using desktop publishing
software to create the original text can be tedious.

Desktop publishing is generally used for short docu-
ments such as ads, brochures, and reports. Material to be
published as a book or magazine article is normally submit-
ted by the author as a word processing document. The pub-
lisher’s production staff then creates a print-ready version.
Books and other long documents are generally produced
using in-house computer typesetting facilities.

Today desktop publishing is part of a range of technolo-
gies used for the production of documents and presenta-
tions. Document designers also use drawing programs (such
as Corel Draw) and photo manipulation programs (such as
Adobe Photoshop) in preparing illustrations. Further, the
growing use of the Web means that many documents must
be displayable on Web pages as well as in print. Adobe’s Por-
table Document Format (PDF) is one popular way of creat-
ing files that exactly portray printed text (see PDF).

Further Reading
Blattner, D., and N. Davis, eds. The QuarkXPress Book: For Macin-

tosh and Windows. Berkeley, Calif.: Peachpit Press, 1998.
“Desktop Publishing News.” Available online. URL: http://

desktoppublishing.com/_news1.html. Accessed November
2007.

Parker, Roger C. Web Design and Desktop Publishing for Dummies.
2nd ed. New York: Hungry Minds, 1997.

“Resources for Desktop Publishers.” Available online. URL: http://
www.nlightning._com/dtpsbiblio.html. Accessed November
2007.

Shushan, R. and D. Wright, with L. Lewis. Desktop Publishing by
Design: Everyone’s Guide to PageMaker6. 4th ed. Redmond,
Wash.: Microsoft Press, 1996.

developing nations and computing
Most writing about computer technology tends to focus on
developments in technically advanced nations, such as the

United States, European Union, and Japan. There is also
growing coverage of the rapidly developing information
economy in the world’s two most populous nations, India
and China. But what about the poorest or least developed
nations, particularly those in Africa?

Infrastructure
A common problem in developing countries is a lack of
basic infrastructure to support electronic devices—phone
lines, television cables, even a reliable power grid. (About
two billion people on this planet still have no access to elec-
tricity!)

One way around this obstacle is to skip over the wired
stage of development in favor of wireless connections, per-
haps using battery or even solar power. The necessity for
large government investments in infrastructure can then be
avoided in favor of mobile, distributed, flexible access that
can be gradually spread and scaled up. Already, in some of
the poorest nations mobile phone use has been growing at
an annual rate of 50 percent or more.

Once access to communications and data is provided,
users can immediately start getting an economic return or
otherwise improving their lives. Farmers, for example, can
get weather reports and keep in touch with market prices.
Of course online communications might also give farmers
a tool for organizing themselves politically or economically
(such as into co-ops). People start to get in touch with
developments around the world that might affect them, and
discover possible ways to a better life. However, authori-
tarian governments often resist such trends because they
fear the development of well-connected democratic reform
movements.

Closing the Gap
Much of the barrier to developing countries joining the net-
worked world is human rather than technological. Before
people can learn to use computers, they need to be able to
read. They also need some idea of what science and tech-
nology are about and why they are important for their eco-
nomic well-being.

Beyond people learning to use computers to commu-
nicate, or in agriculture or commerce, a developing coun-
try needs to have enough people with the advanced skills
needed for a self-sustaining information economy. These
include technicians, support staff, teachers, engineers, pro-
grammers, and computer scientists.

One reason for the rapid growth of computing in India
and especially China is that these countries, while still hav-
ing millions of people living on subsistence, also have effec-
tive educational systems including advanced training. Their
growing pool of skilled but relatively inexpensive work-
ers in turn attracts foreign investment capital. In addition
to China and India, other nations with strong electronics
manufacturing industries include Singapore, Korea, Malay-
sia, Mexico, and Brazil.

The United Nations has developed the Technology
Achievement Index (TAI) to measure the ability of a coun-
try to innovate, to effectively use new and existing technol-
ogy, and to build a base of technically skilled workers.

developing nations and computing        143

One Laptop per Child
While the conventional view of technological development
stresses the importance of infrastructure and skills, some
visionary educational activists are suggesting a way to
“jump-start” the information economy in poor and devel-
oping countries. They note that despite the potential of
wireless technology, adequate computing power for joining
the world network has simply been too expensive for all
but the elite in developing countries. (A $400 no-frills PC
costs more than the annual per capita income of Haiti, for
example.)

In response, MIT computer scientists (see Mit Media
Lab and Negroponte, Nicholas) have started an initiative
called One Laptop Per Child. Their machine (introduced as
a prototype in 2005) includes the following features:

• � very low power consumption (2–3 watts)

• � lower and higher power modes (the latter, for exam-
ple, can provide backlighting for the screen when an
external power source is available)

• � ability to use a variety of batteries or an external
power source, including a hand-powered generator

• � built-in wireless networking

• � tough construction, including a water-resistant mem-
brane keyboard

• � flash memory instead of a hard drive or CD-ROM

• � built-in color camera, microphone, and stereo speakers

• � open-source Linux operating system and other soft-
ware, including programming languages especially
useful for learners

The computer is intended ultimately to cost no more than
$100 per unit, and is to be distributed through participating
governments. Countries that have made at least tentative
commitments to the project as of 2007 include Argentina,
Cambodia, Costa Rica, Dominican Republic, Egypt, Greece,
Libya, Nigeria, Pakistan, Peru, Rwanda, Tunisia, Uruguay,
and, in the United States, the states of Massachusetts and
Maine.

The underlying philosophy of the project is based on
“constructivist learning,” the idea that children can learn
powerful ideas through using suitable interactive systems
(see logo and Papert, Seymour). In a way it is intended
to be a sort of lever to create a generation with the skills to
function in the 21st-century information economy, without
re-creating the cumbersome industrial-style educational
systems of the previous 200 years.

Although, generally, some well received critics are con-
cerned about the environmental impact of producing (and
eventually disposing of) millions more computers, while
others (including some officials in developing countries)
believe the money for providing computers to children
should be used instead for more urgent needs such as clean
water, public health, and basic school supplies.

Whether using top-down or bottom-up approaches, the
web of connection, communication, and information con-

tinues its rapid though uneven spread around the world.
However, as new technologies continue to emerge in the
developed world, the position of technological “have-nots”
may worsen if effective education and access programs are
not developed.

Further Reading
Desai, Meghnad, et al. “Measuring the Technological Achieve-

ment of Nations and the Capacity to Participate in the Net-
work Age.” Journal of Human Development 3 (2002): 95–122.
Available online. URL: http://unpan1.un.org/intradoc/groups/
public/documents/apcity/unpan014340.pdf. Accessed Sep-
tember 11, 2007.

One Laptop per Child. Available online. URL: http://laptop.org/
vision/index.shtml. Accessed September 11, 2007.

Wilson, Ernest J., III. The Information Revolution and Developing
Countries. Cambridge, Mass.: MIT Press, 2004.

Wireless Internet Institute. The Wireless Internet Opportunity for
Developing Countries. Boston, Mass.: World Times, 2003.

device driver
A fundamental problem in computer design is the control
of devices such as disk drives and printers. Each device
is designed to respond to a particular set of control com-
mands sent as patterns of binary values through the port
to which the device is connected. For example, a printer
will respond to a “new page” command by skipping lines
to the end of the current page and moving the print head
to the start of the next page, taking margin settings into
account. The problem is this: When an applications pro-
gram such as a word processor needs to print a document,
how should the necessary commands be provided to the
printer? If every application program has to include the
appropriate set of commands for each device that might be
in use, programs will be bloated and much development
effort will be required for supporting devices rather than
extending the functionality of the product itself. Instead,
the manufacturers of printers and other devices such as
scanners and graphics tablets typically provide a program
called a driver. (A version of the driver is created for each
major operating system in use.) The driver serves as the
intermediary between the application, the operating system
and the low-level device control system. It is sometimes
useful to have drivers in the form of continually running
programs that monitor the status of a device and wait for
commands (see demon).

Modern operating systems such as Microsoft Windows
typically take responsibility for services such as printing
documents. When a printer is installed, its driver program
is also installed in Windows. When the application pro-
gram requests to print a document, Windows’s print system
accesses the driver. The driver turns the operating system’s
“generic” commands into the specific hardware control
commands needed for the device.

While the use of drivers simplifies things for both pro-
gram developers and users, there remains the need for users
to occasionally update drivers because of an upgrade either
in the operating system or in the support for device capa-
bilities. Both Windows and the Macintosh operating system

144        device driver

implement a feature called plug and play. This allows for a
newly installed device to be automatically detected by the
system and the appropriate driver loaded into the operat-
ing system (see plug and play). Other device management
components enable the OS to keep track of the driver ver-
sion associated with each device. Some of the newest operat-
ing systems include auto-update features that can search on
the Web for the latest driver versions and download them.

The need to provide drivers for popular devices creates
something of a barrier to the development of new operating
systems. In a catch-22, device manufacturers are unlikely to
support a new OS that lacks significant market share, while
the lack of device support in turn will discourage users
from adopting the new OS. (Users of the Linux operat-
ing system faced this problem. However, that system’s open
source and cooperative development system made it easier
for enthusiasts to write and distribute drivers without wait-
ing for manufacturers to do so.)

Further Reading
Mr. Driver: Device Drivers. Available online. URL: http://www.

mrdriver.com. Accessed July 8, 2007.
Oney, Walter. Programming the Microsoft Windows Driver Manual.

2nd ed. Redmond, Wash.: Microsoft Press, 2005.
Rubini, Alessandro, and Jonathan Corbet. Linux Device Drivers.

3rd ed. Sebastapol, Calif.: O’Reilly, 2005.
Windows Driver Kit (WDK) Overview. Available online. URL:

http://www.microsoft.com/whdc/devtools/wdk/default.mspx.
Accessed July 8, 2007.

DHTML  See html, dhtml, and xhtml.

Diffie, Bailey Whitfield
(1944– )
American
Mathematician, Computer Scientist

Bailey Whitfield Diffie created the system of public key
cryptography that many computer users depend on today
to protect their sensitive information (see encryption).

Diffie was born on June 5, 1944, in the borough of
Queens, New York City. As a youngster he read about secret
codes and became fascinated. Although he was an indiffer-
ent high school student who barely qualified for graduation,
Diffie scored so high on standardized tests that he won
admission to the University of California, Berkeley, in 1962,
where he studied mathematics for two years. However, in
1964 he transferred to the Massachusetts Institute of Tech-
nology (MIT) and obtained his B.S. in mathematics in 1965.

After graduation Diffie took a job at Mitre Corporation,
a defense contractor, where he plunged into computer pro-
gramming, helping create Mathlab, a program that allowed
mathematicians to not merely calculate with a computer,
but also to manipulate mathematical symbols to solve equa-
tions. (The program would eventually evolve into Macsyma,
a software package used widely in the mathematical com-
munity—see mathematics software.)

By the early 1970s Diffie had moved to the West Coast,
working at the Stanford Artificial Intelligence Laboratory
(SAIL), where he met Lawrence Roberts, head of informa-
tion processing research for ARPA, the Defense Depart-
ment’s research agency. Roberts’s main project was the
creation of the ARPAnet, the computer network that would
later evolve into the Internet.

Roberts was interested in providing security for the new
network, and (along with AI researcher John McCarthy)
he helped revive Diffie’s dormant interest in cryptogra-
phy. By 1974 Diffie had learned that IBM was developing
a more secure cipher system, the DES (Data Encryption
Standard), under government supervision. However, Diffie
soon became frustrated with the way the National Security
Agency (NSA) doled out or withheld information on cryp-
tography, making independent research in the field very
difficult. Seeking to learn the state of the art, Diffie traveled
widely, seeking out people who might have fresh thoughts
on the subject.

Diffie found one such person in Martin Hellman, a Stan-
ford professor who had also been struggling on his own to
develop a better system of encryption. They decided to pool
their ideas and efforts, and Diffie and Hellman came up
with a new approach, which would become known as pub-
lic key cryptography. It combined two important ideas that
had already been discovered to an extent by other research-
ers. The first idea was the “trap-door function”—a math-
ematical operation that can be easily performed “forward”
but that was very hard to work “backward.” Diffie realized,
however, that a trap-door function could be devised that

The device driver is the link between the operating system and
the hardware that controls a specific device. Program requests are
passed by the operating system to the device driver, which issues the
detailed instructions needed by the device controller.

Diffie, Bailey Whitfield        145

could be worked backward easily if the person had the
appropriate key.

The second idea was that of key exchange. In classical
cryptography, there is a single key used for both encryption
and decryption. In such a case it is absolutely vital to keep
the key secret from any third party, so arrangements have
to be made in advance to transmit and protect the key.

Diffie, however, was able to work out the theory for a
system that generates pairs of mathematically interrelated
keys: a private key and a public key. Each participant
publishes his or her public key, but keeps the correspond-
ing private key secret. If one wants to send an encrypted
message to someone, one uses that person’s public key
(obtained from the electronic equivalent of a phone direc-
tory). The resulting message can only be decrypted by the
intended recipient, who uses the corresponding secret,
private key.

The public key system can also be used as a form of
“digital signature” for verifying the authenticity of a mes-
sage. Here a person creates a message encrypted with his or
her private key. Since such a message can only be decrypted
using the corresponding public key, any other person can
use that key (together with a trusted third-party key ser-
vice) to verify that the message really came from its pur-
ported author.

Diffie and Hellman’s 1976 paper in the IEEE Transac-
tions on Information Theory began boldly with the statement
that “we stand today on the brink of a revolution in cryp-
tography.” This paper soon came to the attention of three
researchers who would create a practical implementation
called RSA (for Rivest, Shamir, and Adelman).

Through the 1980s Diffie, resisting urgent invitations
from the NSA, served as manager of secure systems research
for the phone company Northern Telecom, designing sys-
tems for managing security keys for packet-switched data
communications systems (such as the Internet).

In 1991 Diffie was appointed Distinguished Engineer
for Sun Microsystems, a position that has left him free to
deal with cryptography-related public policy issues. The
best known of these issues has been the Clipper Chip, a
proposal that all new computers be fitted with a hardware
encryption device that would include a “back door” that
would allow the government to decrypt data. Along with
many civil libertarians and privacy activists, Diffie did not
believe users should have to trust largely unaccountable
government agencies for the preservation of their privacy.
Their opposition was strong enough to scuttle the Clipper
Chip proposal by the end of the 1990s. Another proposal,
using public key cryptography but having a third-party
“key escrow” agency hold the keys for possible criminal
investigation, also fared poorly. In 1998 Diffie and Susan
Landau wrote Privacy on the Line, a book about the politics
of surveillance and encryption. The book was revised and
expanded in 2007.

Diffie has received a number of awards for both technical
excellence and contributions to civil liberties. These include
the IEEE Information Theory Society Best Paper Award
(1979), the IEEE Donald Fink Award (1981), the Electronic
Frontier Foundation Pioneer Award (1994), and even the

National Computer Systems Security Award (1996), given by
the NIST and NSA.

Further Reading
Diffie, Whitfield. “Interview with Whitfield Diffie on the Devel-

opment of Public Key Cryptography.” Conducted by Franco
Furger; edited by Arnd Weber, 1992. Available online. URL:
http://www.itas.fzk.de/mahp/weber/diffie.htm. Accessed Sep-
tember 12, 2007.

Diffie, Whitfield, and Susan Landau. Privacy on the Line: the Poli-
tics of Wiretapping and Encryption. Updated and expanded ed.
Cambridge, Mass.: MIT Press, 2007.

Kahn, David. The Codebreakers: The Story of Secret Writing. Revised
ed. New York: Scribner, 1996.

Levy, Steven. Crypto: How the Code Rebels Beat the Government:
Saving Privacy in the Digital Age. New York: Viking Penguin,
2001.

digital cash
Also called digital money or e-cash, digital cash represents
the attempt to create a method of payment for online trans-
actions that is as easy to use as the familiar bills and coins
in daily commerce (see e-commerce). At present, credit
cards are the principal means of making online payments.
While using credit cards takes advantage of a well-estab-
lished infrastructure, it has some disadvantages. From a
security standpoint, each payment potentially exposes the
payer to the possibility that the credit card number and
possibly other identifying information will be diverted and
used for fraudulent transactions and identity theft. While
the use of secure (encrypted) online sites has reduced this
risk, it cannot be eliminated entirely (see computer crime
and security). Credit cards are also impracticable for very
small payments from cents to a few dollars (such as for
access to magazine articles) because the fees charged by the
credit card companies would be too high in relation to the
value of the transaction.

One way to reduce security concerns is to make trans-
actions that are anonymous (like cash) but guaranteed.
Products such as DigiCash and CyberCash allow users to
purchase increments of a cash equivalent using their credit
cards or bank transfers, creating a “digital wallet.” The user
can then go to any Web site that accepts the digital cash and
make a payment, which is deducted from the wallet. The
merchant can verify the authenticity of the cash through
its issuer. Since no credit card information is exchanged
between consumer and merchant, there is no possibility
of compromising it. The lack of wide acceptance and stan-
dards has thus far limited the usefulness of digital cash.

The need to pay for small transactions can be han-
dled through micropayments systems. For example, users
of a variety of online publications can establish accounts
through a company called Qpass. When the user wants to
read an article from the New York Times, for example, the
fee for the article (typically $2–3) is charged against the
user’s Qpass account. The user receives one monthly credit
card billing from Qpass, which settles accounts with the
publications. Qpass, eCharge, and similar companies have
had modest success. A similar (and quite successful) ser-
vice is offered by companies such as PayPal and Billpoint,

146        digital cash

which allow winning auction bidders to send money from
their credit card or bank account to the seller, who would
not otherwise be equipped to accept credit cards. True
micropayments would extend down to just a few cents.

“True” digital cash, allowing for anonymous payments
and micropayments, has been slow to catch on. However,
the successful digital cash system is likely to have the fol-
lowing characteristics:

• � Protects the anonymity of the purchaser (no credit
card information transmitted to the seller)

• � Verifiable by the seller, perhaps by using one-time
encryption keys

• � The purchaser can create digital cash freely from
credit cards or bank accounts

• �M icropayments can be aggregated at a very low trans-
action cost

As use of digital cash becomes more widespread, it is likely
that tax and law enforcement agencies will press for the
inclusion of some way to penetrate the anonymity of trans-
actions for audit or investigation purposes. They will be
opposed by civil libertarians and privacy advocates. One
likely compromise may be requiring that transaction infor-
mation or encryption keys be deposited in some sort of
escrow agency, subject to being divulged upon court order.

Further Reading
Kou, Weidong. Payment Technologies for E-Commerce. New York:

Springer, 2003.
Lamb, Gregory M. “ ‘Nickel and Diming’ across the Internet.”

Christian Science Monitor, February 23, 2004, n.p. Avail-
able online. URL: http://www.csmonitor.com/2004/0223/
p13s01-wmgn.html. Accessed July 8, 2007.

Orr, Bill. “Cashless Society, Ahoy! Suddenly Micropayments Are
Hot Again.” ABA Banking Journal 98 (March 2006): ff.

Rosenborg, Victoria. PayPal for Dummies. Hoboken, N.J.: Wiley,
2005.

Warwick, David R. “Violent Crime and Cash: The Connection;
Privacy Concerns About Digital Cash May Be Overblown.”
The Futurist, May 1, 2007, p. 42.

digital convergence
Since the late 20th century, many forms of communication
and information storage have been transformed from ana-
log to digital representations (see analog and digital).
For example, the phonograph record (an electromechani-
cal analog format) gave way during the 1980s to a wholly
digital format (see cd-rom). Video, too, is now increasingly
being stored in digital form (DVD or laser disks) rather than
in the analog form of videotape. Voice telephony, which
originally involved the conversion of sound to analogous
electrical signals, is increasingly being digitized (as with
many cell phones) and transmitted in packet form over the
communications network.

The concept of digital convergence is an attempt to
explore the implications of so many formerly disparate ana-
log media now being available in digital form. All forms of
digital media have key features in common. First, they are

essentially pure information (computer data). This means
that regardless of whether the data originally represented
still images from a camera, video, or film, the sound of a
human voice, music, or some other form of expression,
that data can be stored, manipulated, and retrieved under
the control of computer algorithms. This makes it easier
to create seamless multimedia presentations (see multime-
dia and hypertext and hypermedia). Services or products
previously considered to be separate can be combined in
new ways. For example, many radio stations now provide
their programming in the form of “streaming audio” that
can be played by such utilities as RealPlayer or Microsoft
Windows Media Player (see streaming). Similarly, televi-
sion news services such as CNN can offer selected excerpts
of their coverage in the form of streaming video files. As
more users gain access to broadband Internet connections
(such as cable or DSL), it is gradually becoming feasible to
deliver TV programs and even full-length feature films in
digital format. By the middle of the decade, media deliv-
ery began to proliferate on new platforms that represent
a further convergence of function. Many “smart phones”
can play audio and video (see smartphone). In July 2007
Apple’s iPhone entered the market, combining phone, media
player, and Web browsing functions, and similar devices
will no doubt follow (see also pda).

Emerging Issues
The merging of traditional media into a growing stream
of digital content has created a number of difficult legal
and social issues. Digital images or sounds from various
sources can easily be combined, filtered, edited, or other-
wise altered for a variety of purposes. As a result, the value
of photographs as evidence may be gradually compromised.

Digital convergence results from the fact that many formerly ana-
log media (such as sound, film, and video) are now being acquired
and processed digitally. Once in digital form, the content can be
processed and played by a variety of software and used on many
different platforms ranging from desktop computers to electronic
books (e-books) and portable MP3 music players. Content can also
be linked and organized using hypertext or hypermedia techniques,
as on the Web.

digital convergence        147

The ownership and control of the intellectual property rep-
resented by music, video, and film has also been compli-
cated by the combination of digitization and the pervasive
Internet. For example, during 2000–2001 the legal battles
involving Napster, a program that allows users to share
music files pitted the rights of music producers and artists
to control the distribution of their product against the tech-
nological capability of users to freely copy and distribute
the material. While a variety of copy protection systems
(both software and hardware-based) have been developed
in an attempt to prevent unauthorized copying, histori-
cally such measures have had only limited effectiveness
(see copy protection, digital rights management, and
intellectual property and computing).

Digital convergence also raises deeper philosophical
issues. Musicians, artists, and scholars have frequently sug-
gested that the process of digitization fails to capture subtle-
ties of performance that might have been accessible in the
original media. At the same time, the richness and immer-
sive qualities of the new multimedia may be drawing people
further away from the direct experience of the “real” analog
world around them. Ultimately, the embodiment of digital
convergence in the form of virtual reality likely to emerge
in the early 21st century will pose questions as profound as
those provoked by the invention of printing and the devel-
opment of mass broadcast media (see virtual reality).

Further Reading
Covell, Andy. Digital Convergence: How the Merging of Computers,

Communications and Multimedia Is Transforming Our Lives.
Newport, R.I.: Aegis Publishing, 2000.

———. Digital Convergence Phase 2: A Field Guide for Creator-Col-
laborators. Champaign, Ill.: Stipes Publishing, 2004

Jenkins, Henry. Convergence Culture: Where Old and New Media
Collide. New York: New York University Press, 2006.

Park, Sangin. Strategies and Policies in Digital Convergence. Her-
shey, Penn.: Information Science Reference, 2007.

digital dashboard
The dashboard of a car is designed to present vital real-time
information to the driver, such as speed, fuel supply, and
engine status. Ideally this information should be easy to
grasp at a glance, allowing for prompt action when neces-
sary. Conversely, unnecessary and potentially distracting
information should be avoided, or at least relegated to an
unobtrusive secondary display.

A digital dashboard is a computer display that uses sim-
ilar concepts. Its goal is to provide an executive or manager
with the key information that allows him or her to monitor
the health of the enterprise and to take action when neces-
sary. (A digital dashboard can also be part of a larger set of
management tools—see decision support system.)

The screen display for a digital dashboard can use a
variety of objects (see graphical user interface). These
can include traditional charts (line, bar, or pie), color-coded
maps, depictions of gauges, and a variety of other interface
elements sometimes known as “widgets.”

However information is depicted, the dashboard is
designed to summarize the current status of business or

other functions, identify trends, and warn the user when
attention is required. For example, a dashboard might
summarize production and shipping for each of a compa-
ny’s factories. Bars on a chart might be green when levels
are within normal parameters, but turn red if, for exam-
ple, production has fallen more than 20 percent below
target goals. Dashboard displays can also be useful for
graphically showing the degree to which project objectives
are being met.

Digital dashboards can be custom built or obtained
in forms specialized for various types of business. Typi-
cally the dashboard is hosted on the corporate Web server
and is accessible through Web browsers—perhaps with an
abbreviated version that can be viewed on PDAs and smart
phones.

Critique
Today dashboards are in widespread use in many top cor-
porations, from Microsoft to Home Depot. An oft-cited
advantage of dashboard technology is that it keeps manag-
ers focused and provides for quick response in situations
where time may be crucial. No longer is it necessary for the
manager to track down key individuals and try to make
sense of their reports over the phone.

Some critics, however, worry that dashboards may make
management too “data driven.” Those regular calls, after
all, can form an important part of the relationship between
an executive or manager and subordinates, as well as get-
ting a sense of morale and possible personnel problems that
may be affecting productivity. Overreliance on dashboards
and “bottom line” numbers may also hurt the morale of
salespeople and others who come to feel that they are being
micromanaged. Further, the dashboard may omit important
considerations that in turn are likely to receive less atten-
tion and support.

Further Reading
Ante, Spencer E., and Jena McGregor. “Giving the Boss the Big

Picture: A ‘Dashboard’ Pulls Up Everything the CEO Needs
to Run the Show.” BusinessWeek, February 13, 2006. Avail-
able online. URL: http://www.businessweek.com/magazine/
content/06_07/b3971083.htm. Accessed September 12, 2007.

Dashboard Examples. Available online. URL: http://www.
enterprise-dashboard.com/. Accessed September 12, 2007.

Dashboard Insight. Available online. URL: http://www.dashboard
insight.com/. Accessed September 12, 2007.

Eckerson, Wayne W. Performance Dashboards: Measuring, Monitor-
ing, and Managing Your Business. New York: Wiley, 2006.

Few, Stephen. Information Dashboard Design: The Effective Visual
Communication of Data. Sebastapol, Calif.: O’Reilly, 2006.

digital divide
The term digital divide was coined in the late 1990s amid
growing concern that groups such as minorities, the elderly,
and rural residents were not becoming computer liter-
ate and connecting to the Internet at the same rate as the
young, educated, and relatively affluent.

Nearly a decade later this perception of a chasm has
diminished somewhat. According to the Pew Internet &
American Life project, as of 2006 about two-thirds (70 per-

148        digital dashboard

cent) of American adults were using the Internet, and the
number has continued to increase, though more slowly
(there is evidence of a “hard core” unconnected popula-
tion). Groups that lagged in Internet usage included Ameri-
cans 65 years or older (35 percent), African Americans (58
percent), and persons without at least a high school educa-
tion (36 percent).

The digital divide is more severe if one looks at the
world as a whole (see developing nations and comput-
ing). Rapidly industrializing nations such as China and
India are seeing considerable increases in the number of
people with some form of computer and Internet access,
though the numbers are still small in relation to the total
population. In severely underdeveloped countries (such as
many in Africa), connectivity may be improved by the “One
Laptop per Child” project, which has designed a prototype
computer designed to cost less than $100.

Broadband Use
Not all Internet access is equal. High-speed connections
(see broadband, cable modem, and dsl) encourage fre-
quent Internet use throughout the day, and make it feasible
to access and share rich media (images, videos, podcasts,
and so on). According to the Pew Internet & American Life
project, 47 percent of all adult Americans had a broadband
Internet connection at home as of 2007. The rate of broad-
band adoption continues to lag for rural residents (31 per-
cent) and African Americans (40 percent).

However, the broadband adoption rate for African
Americans has been increasing rapidly (it was only 14 per-
cent in early 2005). There are a number of factors that cor-
relate with the likelihood that a person or community will
have access to the Web. People in lower-income brackets
are less likely to own PCs. Phone service may be less reli-
able (particularly in rural areas), and Internet access may
require expensive toll charges. While schools and public
libraries can offer an alternative venue for Internet access,
inner-city schools have tended to lag behind in connecting
to the Internet and in the ratio of networked computers to
students. (The Net Day activities in the mid-1990s first pub-
licized and sought to ameliorate this problem.)

Internet access also correlates to education. While per-
sons lacking a college education are likely to be poorer than
college graduates, they are also less likely to be working
in jobs that include regular computer access. A deficiency
in basic reading and keyboard skills can also serve as a
barrier to participation in the online world (see also com-
puter literacy). People over age 50 are also less likely to
be online. They are more likely to have spent their career in
noncomputerized jobs and may feel that they cannot master
the new technology.

Targeted attempts to close the digital divide through
providing more Internet access through schools and librar-
ies are likely to continue to be successful. The marketplace
itself is perhaps making the biggest contribution, since the
price of an Internet-capable PC with a basic dial-up connec-
tion is now around $400 plus about $10/month.

Improvement in the teaching of general literacy as well
as technical skills in the K-12 schools is necessary if the

next generation is to be able to participate fully and equally
in the online world.

Further Reading
Compaine, Benjamin M., ed. The Digital Divide: Facing a Crisis or

Creating a Myth? Cambridge, Mass.: MIT Press, 2001.
Digital Divide Network. Available online. URL: http://www.digital

divide.net/. Accessed July 9, 2007.
Norris, Pippa. Digital Divide: Civic Engagement, Information Pov-

erty, and the Internet Worldwide. Cambridge, Mass.: Cam-
bridge University Press, 2001.

Nulens, Gert. The Digital Divide in Developing Countries: Towards
an Information Society in Africa. Brussels: VUB Brussels Uni-
versity Press, 2001.

Pew Internet & American Life Project. “Digital Divisions.” Avail-
able online. URL: http://www.pewinternet.org/pdfs/PIP_
Digital_Divisions_Oct_5_2005.pdf. Accessed July 9, 2007.

———. “Home Broadband Adoption 2007.” Available online. URL:
http://www.pewinternet.org/pdfs/PIP_Broadband%202007.
pdf. Accessed July 9, 2007.

digital rights management  (DRM)
By default, once information is digitized it is simply a pat-
tern of bits that can be easily copied within the same or a
different medium, using a variety of software or the built-in
facilities of the operating system. Of course the develop-
ment of tape-recording technology in the mid-20th century
already made it possible to copy audio recordings, and the
later development of videotape and the VCR did the same for
video. However, while analog copying techniques lose some
accuracy (or fidelity) with each generation of copying, digi-
tal files can be copied exactly each time. It is equally easy to
e-mail, upload, or otherwise distribute audio or video files.

Legally, the creator of an original work can assert copy-
right—literally, the “right to copy” or to control when and
how the work is distributed. Digital rights management
(DRM) refers to a variety of technologies that can be used
to enforce this right by making it at least difficult for the
purchaser of one copy of a work to copy and distribute it in
turn. (Similar technologies have also been used to prevent
copying of software, which is, after all, just another pattern
of bits—see copy protection and software piracy and
counterfeiting.)

DRM for Film and Video
In the mid-1990s, movies on DVD were protected using the
Content Scrambling System (CSS). This proprietary format
was licensed only for certain hardware and operating sys-
tems, but in 1999 an activist programmer released DeCSS, a
program that could decode protected discs and allow them
to be played on operating systems such as Linux, which had
not been licensed. A similar story unfolded in 2007 when
hackers broke the Advanced Access Content System (AACS)
that was used to protect the new high-definition HD DVD
and Blu-Ray discs.

Protecting Music
DRM has also been used on many audio CDs. Many consum-
ers complained that their CD players (particularly when used
with Windows PCs) were not compatible with the protected

digital rights management        149

discs. A bigger controversy arose in 2005 when Sony began
to use DRM technology that (without notification) installed
a rootkit (a kind of “back door” to the operating system) that
potentially left systems open to attack. Facing public outcry
and several lawsuits, Sony withdrew the DRM, which, ironi-
cally, was rather ineffective at preventing copying. By 2007
music CD producers had concluded that DRM had more
costs than benefits, and such protection is no longer found
on audio CDs.

Music distributed online is often protected by DRM.
However, some services such as Apple iTunes now offer the
option of buying DRM-free music at a higher price. (Apple’s
Steve Jobs has called upon the online music industry to
completely eliminate DRM.)

Legal and Other Issues
Generally, the argument for DRM has been straightforward:
If people can get something for free, they will not buy it.
Content creators and publishers would go out of business.
Organizations such as the Recording Institute Association
of America (RIAA) have aggressively sued college students
and others accused of sharing copyrighted music or video
online and successfully forced the best known file-sharing
service, Napster, to become a licensed music service (see
file-sharing and p2p networks).

The principal legal means for enforcing DRM is the Digi-
tal Millennium Copyright Act (DMCA), passed in 1998. The
law prohibits the production or dissemination of technology
(software or hardware) that allows users to circumvent DRM.
However, it has been difficult in practice to prevent the rapid
dissemination of “cracks” for DRM over the Internet.

There are also a number of legal arguments against
DRM. One is that it prevents certain actions allowed to con-
sumers under copyright law, such as making a backup copy
of media that one has purchased (see intellectual prop-
erty and computing). Also, because many DRM schemes
work only with Windows or Macintosh machines, users of
other operating systems (notably Linux) must “crack” DRM
in order to be able to use the protected media. (Under the
law, such action to promote “interoperability” is allowed,
though not if the purpose is to facilitate illegal copying. But
like most matters of intent, this can be hard to determine.)

There have also been First Amendment issues. Although
the DMCA includes a “scholarly research” exception, some
cryptography researchers have said that they have been
inhibited from publishing analysis of DRM for fear of legal
prosecution.

A number of activists and groups have opposed DRM,
including open-source advocate Richard Stallman and the
Electronic Frontier Foundation (see cyberspace advocacy
groups). One of their efforts has been promotion of the
Free Software Foundation’s General Public License (GPL3),
which prohibits the use of DRM in products distributed
under that open-source license.

Further Reading
Defective by Design: A Campaign of the Free Software Founda-

tion. Available online. URL: http://defectivebydesign.org/.
Accessed September 12, 2007.

Electronic Frontier Foundation. Available online. URL: http://
www.eff.org. Accessed September 12, 2007.

May, Christopher. Digital Rights Management: The Problem of
Expanding Ownership Rights. Oxford, U.K.: Chandos, 2007.

Motion Picture Association of America. Available online. URL:
http://www.mpaa.org/. Accessed September 12, 2007.

Recording Industry Association of America. Available online.
URL: http://www.riaa.org/. Accessed September 12, 2007.

Van Tassel, Joan. Digital Rights Management: Protecting and Mon-
etizing Content. Burlington, Mass.: Focal Press, 2006.

Zeng, Wenjun, Heather Yu, and Ching-Yung Lin. Multimedia Secu-
rity Technologies for Digital Rights Management. Burlington,
Mass.: Academic Press, 2006.

Dijkstra, Edsger W.
(1930–2002)
Dutch
Computer Scientist

Edsger W. Dijkstra was born in Rotterdam, Netherlands,
in 1930 into a scientific family (his mother was a math-
ematician and his father was a chemist). He received an
intensive and diverse intellectual training, studying Greek,
Latin, several modern languages, biology, mathematics, and
chemistry. While majoring in physics at the University of
Leiden in 1951, he attended a summer school at Cambridge
that kindled what soon became a major interest in pro-
gramming. He continued this pursuit at the Mathematical
Center in Amsterdam in 1952 while finishing studies for his

Edsger Dijkstra’s ideas about structured programming helped
develop the field of software engineering, enabling program-
mers to organize and manage increasingly complex software
projects.  (Department of Computer Sciences, UT Austin)

150        Dijkstra, Edsger W.

physics degree. At the time there were no degrees in com-
puter science; indeed, programming did not yet exist as an
academic discipline. Like most other computers of the time,
the Mathematical Center’s ARMAC was custom-built. With
no high-level languages yet in use, programming required
intimate familiarity with the machine’s architecture and
low-level instructions. Dijkstra soon found that he thrived
in such an environment.

By 1956, Dijkstra had discovered an algorithm for find-
ing the shortest path between two points. He applied the
algorithm to the practical problem of designing electrical
circuits that used as little wire as possible, and generalized
it into a procedure for traversing treelike data structures.

During the 1960s, Dijkstra began to explore the prob-
lem of communication and resource-sharing within com-
puters. He developed the idea of a semaphore. Like the
railroad signaling device that allows only one train at a
time to pass through a single section of track, the program-
ming semaphore provides mutual exclusion, ensuring that
two processes don’t try to access the same memory or other
resource at the same time.

Another problem Dijkstra tackled involved the sequenc-
ing of several processes that are accessing the same
resources. He found ways to avoid a deadlock situation
where one process had part of what it needed but was stuck
because the process holding the other needed resource was
in turn waiting for the first process to finish. His algorithms
for allowing multiple processes (or processors) to take turns
gaining access to memory or other resources would become
fundamental for the design of new computing architectures.

During the 1970s, Dijkstra immigrated to the United
States, where he became a research fellow at Burroughs, one
of the major manufacturers of mainframe computers. Dur-
ing this time he helped launch the “structured program-
ming” movement. His paper “GO TO Considered Harmful”
criticized the use of that unconditional “jump” instruction
because it made programs hard to read and verify. The
newer structured languages such as Pascal and C affirmed
Dijkstra’s belief in avoiding or discouraging such haphazard
program flow (see structured programming).

Dijkstra spent the last decades of his career as a pro-
fessor of mathematics at the University of Texas at Aus-
tin, where he held the Schlumberger Centennial Chair in
Computer Science. Dijkstra had some unusual quirks for
a computer scientist. His papers were handwritten with a
fountain pen, and he did not even own a personal computer
until late in life.

In 1972 Dijkstra won the Association for Computing
Machinery’s Turing Award. After his death on August 6, 2002,
in Nuenen, The Netherlands, the ACM renamed its award for
papers in distributed computing as the Dijkstra Prize.

Perhaps Dijkstra’s greatest testament, however, is found
in the millions of lines of computer code that are better
organized and easier to maintain because of the widespread
adoption of structured programming.

Further Reading
Dijkstra, Edsger Wybe. A Discipline of Programming. Upper Saddle

River, N.J.: Prentice Hall, 1976.

———. Selected Writings on Computing: A Personal Perspective. New
York: Springer, 1982.

———, and W. H. J. Feijen. A Method of Programming. Reading,
Mass.: Addison-Wesley, 1988.

Shasha, Dennis, and Cathy Lazere. Out of Their Minds: The Lives
and Discoveries of 15 Great Computer Scientists. New York:
Springer-Verlag, 1995.

disabled persons and computing
The impact of the personal computer upon persons hav-
ing disabilities involving sight, hearing, or movement has
been significant but mixed. Computers can help disabled
people communicate and interact with their environment,
better enabling them to work and live in the mainstream of
society. At the same time, changes in computer technology
can, if not ameliorated, exclude some disabled persons from
fuller participation in a society where computer access and
skills are increasingly taken for granted.

Computers as Enablers
Computers can be very helpful to disabled persons. With
the use of text-to-speech software, blind people can have
online documents read to them. (With the aid of a scan-
ner, printed materials can also be input and read aloud.)
Persons with low vision can benefit from software that
can present text in large fonts or magnify the contents of
the screen. Text can also be printed (embossed) in Braille.
Deaf or hearing-impaired persons can now use e-mail or
instant messaging software for much of their communica-
tion needs, largely replacing the older and more cumber-
some teletype (TTY and TTD) systems. As people who have
seen presentations by physicist Stephen Hawking know,
even quadriplegics who have only the use of head or finger
movements can input text and have it spoken by a voice
synthesizer. Further, advances in coupling eye movements
(and even brain wave patterns) to computer systems and
robotic extensions offer hope that even profoundly disabled
persons will be able to be more self-sufficient.

Challenges
Unfortunately, changes in computer technology can also
cause problems for disabled persons. The most pervasive
problem arose when text-based operating systems such as
MS-DOS were replaced by systems such as Microsoft Win-
dows and the Macintosh that are based on graphic icons
and the manipulation of objects on the screen. While text
commands and output on the older system could be easily
turned into speech for the visually impaired, everything,
even text, is actually graphics on a Windows system. While
it is possible to have software “hook into” the operating sys-
tem to read text within Windows out loud, it is much more
difficult to provide an alternative way for a blind person to
find, click on, drag, or otherwise manipulate screen objects.
Thus far, while Microsoft and other operating system devel-
opers have built some “accessibility” features such as screen
magnification into recent versions of their products, there
is no systematic, integrated facility that would allow a blind
person to have the same facility as a sighted person.

disabled persons and computing        151

The growth of the World Wide Web also poses prob-
lems for the visually impaired, since many Web pages rely
on graphical buttons for navigation. Software plug-ins can
provide audio cues to help with screen navigation. While
Web browsers usually have some flexibility in setting the
size of displayed fonts, some newer features (such as cas-
cading style sheets) can remove control over font size
from the user.

Because most computer systems today use graphical
user interfaces, the failure to provide effective access may be
depriving blind and visually impaired persons of employment
opportunities. Meanwhile, the computer industry, educational
institutions, and workplaces face potential challenges under
the Americans with Disabilities Act (ADA), which requires
that public and workplace facilities be made accessible to
the disabled. Some funding through the Technology-Related
Assistance Act has been provided to states for promoting the
use of adaptive technology to improve accessibility.

Further Reading
Adaptive Computer Products. Available online. URL: http://www.

makoa.org/computers.htm. Accessed July 9, 2007.
Better Living through Technology. Available online. URL: http://

www.bltt.org/. Accessed July 9, 2007.
Gnome [Linux]. Accessibility Project. Available online. URL:

http://developer.gnome.org/projects/gap/. Accessed July 9,
2007.

Microsoft Accessibility. Available online. URL: http://www.
microsoft.com/enable/default.aspx. Accessed July 9, 2007.

Slatin, John M., and Sharron Rush. Maximum Accessibility: Mak-
ing Your Web Site More Usable for Everyone. Boston: Addison-
Wesley Professional, 2003.

Thatcher, Jim, et al. Web Accessibility: Web Standards and Regula-
tory Compliance. New York: Springer, 2006.

Vanderheiden, Gregg C. Making Software More Accessible for People
with Disabilities. Collingdale, Penn.: Diane Pub. Co., 2004.

disaster planning and recovery
Most businesses, government offices, or other organizations
are heavily dependent on having continuous access to their
data and the hardware, network, and software necessary to
work with it. Activities such as procurement (see supply
chain management), inventory, order fulfillment, and cus-
tomer lists are vital to day-to-day operations. Any disaster
that might disrupt these activities, whether natural (such as
an earthquake or severe weather) or human-made (see com-
puter virus and cyberterrorism), must be planned for.
Such planning is often called “business continuity planning.”

The most basic way to protect against data loss is to
maintain regular backups (see backup and archive sys-
tems). On-site backups can protect against hardware failure,
and can consist of separate storage devices (see networked
storage) or the use of redundant storage within the main
system itself (see raid). However, for protection against fire
or other larger-scale disaster, it is also necessary to have
regular off-site backups, whether using a dedicated facility
or an online backup service.

To protect against power failure or interruption, one or
more uninterruptible power supplies (UPS) can be used,
and possibly a backup generator to deal with longer-term

outages. All equipment should also have surge protection to
avoid damage from power fluctuations.

Of course anything that can minimize the chance of
disaster happening or the extent of its effects should also be
part of disaster planning. This can include structural rein-
forcement, physical security, firewalls and antivirus soft-
ware, and fire alarms and suppression systems.

Disaster Planning
Despite the best precautions, disasters will continue to hap-
pen. Organizations whose continued existence depends on
their data and systems need to plan systematically how they
are going to respond to foreseeable risks, and how they are
going to recover and resume operations. Planning for disas-
ters involves the following general steps:

• � specify the potential costs and other impacts of loss of
data or access

• � use that data to prioritize business functions or units

• � assess how well facilities are currently being protected

• � determine what additional hardware or services (such
as additional file servers, attached storage, or remote
backup) should be installed

• � develop a comprehensive recovery plan that specifies
procedures for dealing with various types of disas-
ters or extent of damage, and including immediate
response, recovery or restoration of data, and resump-
tion of normal services

• � develop plans for communicating with customers,
authorities, and the general public in the event of a
disaster

• � specify the responsibilities of key personnel and pro-
vide training in all procedures

• � arrange ahead of time for sources of supplies, addi-
tional support staff, and so on

• � establish regular tests or drills to verify the effective-
ness of the plan and to maintain the necessary skills

Recent natural disasters as well as the 9/11 terror-
ist attacks have spurred many organizations to begin or
enhance their disaster planning and recovery procedures.

Further Reading
Benton, Dick. “Disaster Recovery: A Pragmatist’s Viewpoint.”

Disaster Recovery Journal, Winter 2007, pp. 79–81. Available
online. URL: http://www.drj.com/articles/win07/2001-16.pdf.
Accessed September 13, 2007.

Disaster Recovery Guide. Available online. URL: http://www.disaster-
recovery-guide.com/. Accessed September 13, 2007.

Disaster Recovery World: The Business Continuity Planning &
Disaster Recovery Planning Directory. Available online. URL:
http://www.disasterrecoveryworld.com/. Accessed September
13, 2007.

Snedaker, Susan. Business Continuity and Disaster Recovery Plan-
ning for IT Professionals. Rockland, Md.: Syngress, 2007.

Wallace, Michael. The Disaster Recovery Handbook: A Step-by-Step
Plan to Ensure Business Continuity and Protect Vital Operations,
Facilities, and Assets. New York: AMACOM, 2004.

152        disaster planning and recovery

disk array  See raid.

distance education
Distance education (also called distance learning or virtual
learning) is the use of electronic information and commu-
nication technology to link teachers and students without
their being together in a physical classroom.

Distance education in the form of correspondence
schools or classes actually began as early as the mid-19th
century with teaching of the Pitman Shorthand writ-
ing method. Later, correspondence classes became part of
Chautauqua, a movement to educate the rural and urban
working classes, taking advantage of the growing reach of
mail service through Rural Free Delivery. In correspon-
dence schools, each lesson is typically mailed to the stu-
dent, who completes the required work and returns it for
grading. A certificate is awarded upon completion of course
requirements. A few universities (such as the University of
Wisconsin) also began to offer correspondence programs.

By the middle of the 20th century, radio and then tele-
vision was being used to bring lectures to students. This
increased the immediacy and spontaneity of teaching. The
invention of videotape in the 1970s allowed leading teachers

to create customized courses geared for different audiences.
However, the ability of students to interact with teachers
remained limited.

In the 1960s computers also began to be used for edu-
cation. One of the earliest and most innovative programs
was PLATO (Programmed Logic for Automatic Teaching
Operations), which began at the University of Illinois but
was later expanded to hundreds of networked terminals.
PLATO in many ways pioneered the combining of text,
graphics, and sound—what would later be called multime-
dia. PLATO also provided for early forms of both e-mail and
computer bulletin boards.

Meanwhile, with the development of ARPANET and
eventually the Internet, a new platform became available
for delivering instruction. By the mid-1990s, courses were
being delivered via the Internet (see World Wide Web).

Modern Distance Education
As broadband Internet access becomes the norm, more Inter-
net-based learning environments are taking advantage of
video conferencing technology, allowing teachers and stu-
dents to interact face to face. This helps answer a common
objection by critics that distance education cannot replicate
the personal and social dimensions of face-to-face education.

Distance education technologies such as this Polycom video conferencing software enable teachers and students to see, talk, and interact with
each other. Here, Manhattan School of Music student Wu Jie of the Zukerman Performance Program demonstrates her violin technique to
Maestro Zukerman.  (Photo by Andrew Lepley for Business Wire via Getty Images)

distance education        153

Another way this objection is sometimes addressed by uni-
versities is by having a period of physical residency (per-
haps a few weeks) as part of the semester.

New platforms for distance education continue to
emerge. Class content including lectures has been format-
ted for delivery to mobile devices such as iPods (see pda
and smartphone). Another intriguing idea is to establish
the classroom within an existing virtual world, such as
the popular game Second Life (see online games.) Here
students and teachers can meet “face to face” through their
virtual embodiments (avatars). It seems only a matter of
time before entire universities will exist in such burgeoning
alternative worlds.

Further Reading
Bates, A. W. (Tony). Technology, E-Learning and Distance Educa-

tion. 2nd ed. New York: Routledge, 2005.
Distance Education at a Glance. University of Idaho. Available

online. URL: http://www.uidaho.edu/eo/distglan. Accessed
September 13, 2007.

Distance Learning. About.com. Available online. URL: http://
distancelearn.about.com/. Accessed September 13, 2007.

Moore, Michael Grahame, ed. Handbook of Distance Education. 2nd
ed. Lawrence Mahwah, N.J.: Erlbaum, 2007.

Peterson’s Online Degrees and Distance Learning Programs. Avail-
able online. URL: http://www.petersons.com/distancelearning/.
Accessed September 13, 2007.

Simonson, Michael, et al. Teaching and Learning at a Distance:
Foundations of Distance Education. 3rd ed. Upper Saddle River,
N.J.: Prentice Hall, 2005.

distributed computing
This concept involves the creation of a software system
that runs programs and stores data across a number of dif-
ferent computers, an idea pervasive today. A simple form
is the central computer (such as in a bank or credit card
company) with which thousands of terminals communicate
to submit transactions. While this system is in some sense
distributed, it is not really decentralized. Most of the work
is done by the central computer, which is not dependent on
the terminals for its own functioning. However, responsi-
bilities can be more evenly apportioned between computers
(see client-server computing).

Today the World Wide Web is in a sense the world’s
largest distributed computing system. Millions of docu-
ments stored on hundreds of thousands of servers can be
accessed by millions of users’ Web browsers running on
a variety of personal computers. While there are rules for
specifying addresses and creating and routing data pack-
ets (see Internet and tcp/ip), no one agency or computer
complex controls access to information or communication
(such as e-mail).

Elements of a Distributed Computing System
The term distributed computer system today generally refers
to a more specific and coherent system such as a database
where data objects (such as records or views) can reside on
any computer within the system. Distributed computer sys-
tems generally have the following characteristics:

• � The system consists of a number of computers (some-
times called nodes). The computers need not neces-
sarily use the same type of hardware, though they
generally use the same (or similar) operating systems.

• � Data consists of logical objects (such as database
records) that can be stored on disks connected to
any computer in the system. The ability to move
data around allows the system to reduce bottlenecks
in data flow or optimize speed by storing the most
frequently used data in places from which it can be
retrieved the most quickly.

• � A system of unique names specifies the location of
each object. A familiar example is the DNS (Domain
Naming System) that directs requests to Web pages.

• � Typically, there are many processes running concur-
rently (at the same time). Like data objects, processes
can be allocated to particular processors to balance
the load. Processes can be further broken down into
threads (see concurrent programming). Thus, the
system can adjust to changing conditions (for exam-
ple, processing larger numbers of incoming transac-
tions during the day versus performing batches of
“housekeeping” tasks at night).

• � A remote procedure call facility enables processes on
one computer to communicate with processes run-
ning on a different computer.

• � In inter-process communication protocols specify the
processing of “messages” that processes use to report
status or ask for resources. Message-passing can be
asynchronous (not time-dependent, and analogous
to mailing letters) or synchronous (with interactive
responses, as in a conversation).

• � The capabilities of each object (and thus the messages
it can respond to or send) are defined in terms of an
interface and an implementation. The interface is like
the declaration in a conventional program: It defines
the types of data that can be received and the types
of data that will be returned to the calling process.
The implementation is the code that specifies how the
actual processing will be done. The hiding of imple-
mentation details within the object is characteristic of
object-oriented programming (see class).

• � A distributed computing environment includes facili-
ties for managing objects dynamically. This includes
lower-level functions such as copying, deleting, or
moving objects and systemwide capabilities to dis-
tribute objects in such as way as to distribute the
load on the system’s processors more evenly, to make
backup copies of objects (replication), and to reclaim
and reorganize resources (such as memory or disk
space) that are no longer allocated to objects.

Three widely used systems for distributed computing
are Microsoft’s DCOM (Distributed Component Object
Model), OMG’s Common Object Request Broker Archi-
tecture (see Microsoft .net and corba), and Sun’s Java/

154        distributed computing

Remote Method Invocation (Java/RMI). While these imple-
mentations are quite different in details, they provide most
of the elements and facilities summarized above.

Applications
Distributed computing is particularly suited to applica-
tions that require extensive computing resources and that
may need to be scaled (smoothly enlarged) to accommo-
date increasing needs (see grid computing). Examples
might include large databases, intensive scientific comput-
ing, and cryptography. A particularly interesting example
is SETI@home, which invites computer users to install a
special screen saver that runs a distributed process dur-
ing the computer’s idle time. The process analyzes radio
telescope data for correlations that might indicate receipt of
signals from an extraterrestrial intelligence (see coopera-
tive processing).

Besides being able to marshal very large amounts of
computing power, distributed systems offer improved fault
tolerance. Because the system is decentralized, if a par-
ticular computer fails, its processes can be replaced by
ones running on other machines. Replication (copying) of
data across a widely dispersed network can also provide
improved data recovery in the event of a disaster.

Further Reading
Farley, Jim, and Mike Loukides. Java Distributed Computing. Sebas-

topol, Calif.: O’Reilly, 1998.
Garg, Vijay K. Concurrent and Distributed Computing in Java. New

York: Wiley, 2004.
———. Elements of Distributed Computing. New York: Wiley,

2002.
Goff, Max K. Network Distributed Computing: Fitscapes and Falla-

cies. Upper Saddle River, N.J.: Prentice Hall, 2003.
MacDonald, Matthew. Microsoft .NET Distributed Applications:

Integrating XML Web Services and .NET Remoting. Redmond,
Wash.: Microsoft Press, 2003.

Obasanjo, Dare, and Sanjay Bhatia. “An Introduction to Dis-
tributed Object Technologies.” Available online. URL:
http://www.25hoursaday.com/_IntroductionToDistributed
Computing.html. Accessed February 1, 2008.

Shan, Yen-Ping, Ralph H. Earle, and Marie A. Lenzi. Enterprise
Computing with Objects: from Client-Server Environments to the
Internet. Reading, Mass.: Addison-Wesley, 1997.

SETI@Home. Available online. URL: http://setiathome.ssl.berkeley.
edu/. Accessed August 14, 2007.

DNS  (domain name system)
The operation of the Internet requires that each participat-
ing computer have a unique address to which data pack-
ets can be routed (see Internet and tcp/ip). The Domain
Name System (DNS) provides alphabetical equivalents to
the numeric IP addresses, giving the now familiar-looking
Web addresses (URLs), e-mail addresses, and so on.

The system uses a set of “top-level” domains to cat-
egorize these names. One set of domains is based on the
nature of the sites involved, including: .com (commercial,
corporate), .edu (educational institutions), .gov (govern-
ment), .mil (military), .org (nonprofit organizations), .int
(international organizations), .net (network service provid-
ers, and so on).

The other set of top-level domains is based on the geo-
graphical location of the site. For example, .au (Australia),
.fr (France), and .ca (Canada). (While the United States has
the .us domain, it is generally omitted in practice, because
the Internet was developed in the United States).

INTERNET COUNTRY CODES  
(partial list)

AD	 Andorra
AE	 United Arab Emirates
AF	 Afghanistan
AG	 Antigua and Barbuda
AI	 Anguilla
AL	 Albania
AM	 Armenia
AN	 Netherlands Antilles
AO	 Angola
AQ	 Antarctica
AR	 Argentina
AS	 American Samoa
AT	 Austria
AU	 Australia
AW	 Aruba
AZ	 Azerbaijan
BA	 Bosnia and Herzegovina
BB	 Barbados
BD	 Bangladesh
BE	 Belgium
BF	 Burkina Faso
BG	 Bulgaria
BH	 Bahrain
BI	 Burundi
BJ	 Benin
BM	 Bermuda
BN	 Brunei Darussalam
BO	 Bolivia
BR	 Brazil
BS	 Bahamas
BT	 Bhutan
BV	 Bouvet Island
BW	 Botswana
BY	 Belarus
BZ	 Belize
CA	 Canada
CC	 Cocos (Keeling) Islands
CF	 Central African Republic
CG	 Congo
CH	 Switzerland
CI	 Côte d’Ivoire (Ivory Coast)
CK	 Cook Islands
CL	 Chile
CM	 Cameroon
CN	 China
CO	 Colombia
CR	 Costa Rica

DNS        155

CS	 Czechoslovakia (former)
CU	 Cuba
CV	 Cape Verde
CX	 Christmas Island
CY	 Cyprus
CZ	 Czech Republic
DE	 Germany
DJ	 Djibouti
DK	 Denmark
DM	 Dominica
DO	 Dominican Republic
DZ	 Algeria
EC	 Ecuador
EE	 Estonia
EG	 Egypt
EH	 Western Sahara
ER	 Eritrea
ES	 Spain
ET	 Ethiopia
FI	 Finland
FJ	 Fiji
FK	 Falkland Islands (Malvinas)
FM	 Micronesia
FO	 Faroe Islands
FR	 France
FX	 France, Metropolitan
GA	 Gabon
GB	 Great Britain (UK)
GD	 Grenada
GE	 Georgia
GF	 French Guiana
GH	 Ghana
GI	 Gibraltar
GL	 Greenland
GM	 Gambia
GN	 Guinea
GP	 Guadeloupe
GQ	 Equatorial Guinea
GR	 Greece
GS	 S. Georgia and S. Sandwich Isls.
GT	 Guatemala
GU	 Guam
GW	 Guinea-Bissau
GY	 Guyana
HK	 Hong Kong
HM	 Heard and McDonald Islands
HN	 Honduras
HR	 Croatia (Hrvatska)
HT	 Haiti
HU	 Hungary
ID	 Indonesia
IE	 Ireland
IL	 Israel
IN	 India
IO	 British Indian Ocean Territory
IQ	 Iraq

IR	 Iran
IS	 Iceland
IT	 Italy
JM	 Jamaica
JO	 Jordan
JP	 Japan
KE	 Kenya
KG	 Kyrgyzstan
KH	 Cambodia
KI	 Kiribati
KM	 Comoros
KN	 Saint Kitts and Nevis
KP	 Korea (North)
KR	 Korea (South)
KW	 Kuwait
KY	 Cayman Islands
KZ	 Kazakhstan
LA	 Laos
LB	 Lebanon
LC	 Saint Lucia
LI	 Liechtenstein
LK	 Sri Lanka
LR	 Liberia
LS	 Lesotho
LT	 Lithuania
LU	 Luxembourg
LV	 Latvia
LY	 Libya
MA	 Morocco
MC	 Monaco
MD	 Moldova
MG	 Madagascar
MH	 Marshall Islands
MK	 Macedonia
ML	 Mali
MM	 Myanmar
MN	 Mongolia
MO	 Macau
MP	 Northern Mariana Islands
MQ	 Martinique
MR	 Mauritania
MS	 Montserrat
MT	 Malta
MU	 Mauritius
MV	 Maldives
MW	 Malawi
MX	 Mexico
MY	 Malaysia
MZ	 Mozambique
NA	 Namibia
NC	 New Caledonia
NE	 Niger
NF	 Norfolk Island
NG	 Nigeria
NI	 Nicaragua
NL	 Netherlands

156        DNS

NO	 Norway
NP	 Nepal
NR	 Nauru
NT	 Neutral Zone
NU	 Niue
NZ	 New Zealand (Aotearoa)
OM	 Oman
PA	 Panama
PE	 Peru
PF	 French Polynesia
PG	 Papua New Guinea
PH	 Philippines
PK	 Pakistan
PL	 Poland
PM	 St. Pierre and Miquelon
PN	 Pitcairn
PR	 Puerto Rico
PT	 Portugal
PW	 Palau
PY	 Paraguay
QA	 Qatar
RE	 Reunion
RO	 Romania
RU	 Russian Federation
RW	 Rwanda
SA	 Saudi Arabia
SB	 Solomon Islands
SC	 Seychelles
SD	 Sudan
SE	 Sweden
SG	 Singapore
SH	 St. Helena
SI	 Slovenia
SJ	 Svalbard and Jan Mayen Islands
SK	 Slovak Republic
SL	 Sierra Leone
SM	 San Marino
SN	 Senegal
SO	 Somalia
SR	 Suriname
ST	 Sao Tome and Principe
SU	 USSR (former)
SV	 El Salvador
SY	 Syria
SZ	 Swaziland
TC	 Turks and Caicos Islands
TD	 Chad
TF	 French Southern Territories
TG	 Togo
TH	 Thailand
TJ	 Tajikistan
TK	 Tokelau
TM	 Turkmenistan
TN	 Tunisia
TO	 Tonga
TP	 East Timor

TR	 Turkey
TT	 Trinidad and Tobago
TV	 Tuvalu
TW	 Taiwan
TZ	 Tanzania
UA	 Ukraine
UG	 Uganda
UK	 United Kingdom
UM	 US Minor Outlying Islands
US	 United States
UY	 Uruguay
UZ	 Uzbekistan
VA	 Vatican City State (Holy See)
VC	 Saint Vincent and the Grenadines
VE	 Venezuela
VG	 Virgin Islands (British)
VI	 Virgin Islands (U.S.)
VN	 Viet Nam
VU	 Vanuatu
WF	 Wallis and Futuna Islands
WS	 Samoa
YE	 Yemen
YT	 Mayotte
YU	 Yugoslavia
ZA	 South Africa
ZM	 Zambia
ZR	 Zaire
ZW	 Zimbabwe

Domains and Addresses
A complete Internet address generally consists of a word
representing the name of the organization or company, pos-
sibly followed by the name of a department or division.
This is followed by the top-level domain. Here are some
examples:

well.com The Well conferencing system, a business in the
U.S.

acm.org The Association for Computing Machinery, a non-
profit professional organization

state.gov United States Department of State

berkeley.edu University of California, Berkeley

www2.physics.ox.ac.uk Department of Physics, Oxford Uni-
versity, Oxfordshire, United Kingdom.

To access a service at a given site, the host address is pre-
fixed to indicate the server or service. Most commonly, this
is www for World Wide Web. Thus www.well.com indicates
the Web server at the well.com host, while ftp.well.com
would indicate the ftp (file transfer protocol) server. (In
some cases, if there is no prefix, www will be assumed.)

A complete Web address or URL (Uniform Resource
Locator) also includes a prefix for the protocol to be used
(see World Wide Web). Most commonly this is http:// (for
hypertext transfer protocol), though most Web browsers

DNS        157

will treat this as the default and not require that it be typed.
ftp:// can be used to access ftp servers via the Web. Finally,
a URL must include the path to the directory that actually
contains the HTML document or other resource, as well
as its filename. Thus a complete address for a hypothetical
user’s home page might be:

http://www.BigUniversity.edu/users/tomr/index.html

Internal Addressing
When a Web user types such an address, the Web browser
connects to a nearby name server. This program trans-
lates the name into an IP (Internet Protocol) address. The
address consists of four 8-bit numbers called tuples, sepa-
rated by periods. For example, the domain name www.well.
com currently translates to 208.178.101.2. The first num-
ber represents one of five classes of networks, with the
first three classes (A-C) organized according to the number
and size of networks and D and E being reserved for one-
to-many “broadcast” transmissions and experimentation
respectively.

To obtain a domain name, a person or organization
contacts one of several registration services accredited by
ICANN (the nonprofit Internet Corporation for assigned
Names and Numbers). Each name must be unique. Con-
siderable legal disputation has occurred when someone
not connected with a company has registered a domain
containing that company’s name. The tremendous growth
of e-commerce has made distinctive or easy-to-remember
domain names a scarce and valuable commodity. Foresee-
ing this, some speculators bought up attractive domains in
the hope (sometimes realized) of selling them to corpora-
tions at a huge profit. Anti–“domain squatting” laws were
passed in reaction. In other cases, disgruntled employees or
consumers have registered domains for Web sites critical of
major corporations such as airlines and telephone compa-
nies. In the courts, this pits the right of free speech against
the right of a company to control the use of its name.

Expanding the System
The expansion of the Internet has strained the capacity of
the existing DNS. The shortage of “name space” is being
addressed by the release of IP Version 6, which replaces the
32-bit addresses with 128-bit ones. In addition, in Novem-
ber 2000 ICANN announced the creation of seven new top-
level domains: .aero (air transport), .biz (business), .coop
(cooperatives), .info (general-purpose), .museum (muse-
ums), .name (personal sites), and .pro (professionals such
as lawyers, accountants, and physicians). However, the situ-
ation is muddled by the existence of competing proposals
and the use of unofficial DNS systems that provide their
own domains (but require special software for access, since
they are not recognized by regular DNS servers).

Perhaps a more fundamental issue is the adopting of
a system designed by English speakers to a world that
increasingly seeks international access and standards (see
internationalization). The problem is how to meet local
needs without creating new barriers through incompatible
addressing schemes. The proposal being implemented as of

the mid-2000s is called Internationalizing Domain Names
in Applications (IDNA). This standard includes an algo-
rithm by which address labels written using the many char-
acter sets and diacritical marks in the world’s languages
(as rendered in Unicode) can be translated to the standard
ASCII characters used by the existing DNS (see charac-
ters and strings).

Further Reading
Albitz, Paul, and Cricket Liu. DNS and BIND, 4th ed. Sebastopol,

Calif.: O’Reilly, 2001.
ICANN (Internet Corporation for Assigned Names and Num-

bers). Available online. URL: http://www.icann.org/. Accessed
August 14, 2007.

“Internationalization of Domain Names: A History of Technology.”
Internet Society. www.isoc.org/pubpolpillar/docs/i18n-dns-
chronology.pdf. Accessed July 10, 2007.

InterNIC. Available online. URL: http://www.internic.net/. Accessed
August 14, 2007.

InterNIC Registry WhoIs [domain look-up]. Available online.
URL: http://www.internic.net/whois.html. Accessed August
14, 2007.

documentation of program code
Computer system documentation can be divided into two
main categories based upon the intended audience. Manu-
als and training materials for users focus on explaining
how to use the program’s features to meet the user’s needs
(see documentation, user). This entry, however, focuses
on the creation of documentation for programmers and oth-
ers involved in software development and maintenance (see
also technical writing).

Software documentation can consist of comments
describing the operation of a line or section of code. Early
programming with its reliance on punched cards had only
minimal facilities for incorporating comments. (Some of the
proponents of COBOL thought that the language’s English-
like syntax would make additional documentation unnec-
essary. Like the similar claim that trained programmers
would no longer be needed, the reality proved otherwise.)

After the switch from punchcard input to the use of
keyboards, adding comments became easier. For example, a
comment in C looks like this:

printf(“Hello, world\n”);
/* Display the traditional message */

while C++ uses comments in this form:

cout << “Hello, World”;
// This is also a comment

Each language provides a particular symbol or set of sym-
bols for separating comments from executable code. The
compiler ignores comments when compiling the program.

While proper commenting can help people understand
a program’s functions, the coding style should also be one
that promotes clarity. This includes the use of descriptive
and consistent names for variables and functions. This can
also be influenced by the conventions of the operating sys-
tem: For example, Windows has many special data struc-
tures that should be used consistently.

158        documentation of program code

In addition to the commented source code, external
documentation is usually provided. Design documents can
range from simple flowcharts or outlines to detailed specifi-
cations of the program’s purpose, structure, and operations.
Rather than being considered an afterthought, documenta-
tion has been increasingly integrated into the practice of
software engineering and the software development process.
This practice became more prevalent during the 1960s and
1970s when it became clear that programs were not only
becoming larger and more complex, but also that significant
programs such as business accounting and inventory appli-
cations were likely to have to be maintained or revised for
perhaps decades to come. (The lack of adequate documenta-
tion of date-related code in programs of this vintage became
an acute problem in the late 1990s. See y2k problem.)

Documentation Tools
As programmers began to look toward developing their
craft into a more comprehensive discipline, advocates of
structured programming placed an increased emphasis not
only on proper commenting of code but on the develop-
ment of tools that could automatically create certain kinds
of documentation from the source code. For example, there
are utilities for C, C++, and Java (javadoc) that will extract
information about class declarations or interfaces and for-
mat them into tables. Most software development environ-
ments now include features that cross-reference “symbols”
(named variables and other objects). The combination of
comments and automatically generated documentation can
help with maintaining the program as well as being helpful
for creating developer and user manuals.

While programmers retain considerable responsibility
for coding standards and documentation, larger program-
ming staffs typically have specialists who devote their full
time to maintaining documentation. This includes the log-
ging of all program change requests and the resulting new
distributions or “patches,” the record of testing and retest-
ing of program functions, the maintenance of a “version
history,” and coordinating with technical writers in the
production of revised manuals.

Further Reading
Barker, Thomas T. Writing Software Documentation: A Task-Ori-

ented Approach. 2nd ed. New York: Longman, 2002.
Goodliffe, Pete. Code Craft: The Practice of Writing Excellent Code.

San Francisco: No Starch Press, 2007.
Knuth, Donald E. Literate Programming. Stanford, Calif.: Center

for the Study of Language and Information, 1992.
Rüping, Andreas. Agile Documentation: A Pattern Guide to Produc-

ing Lightweight Documents for Software Projects. Hoboken,
N.J.: Wiley, 2003.

Society for Technical Communication. Available online. URL:
http://www.stc.org/. Accessed July 9, 2007.

documentation, user
As computing moved into the mainstream of offices and
schools beginning in the 1980s and accelerating through
the 1990s, the need to train millions of new computer users
spawned the technical publishing industry. In addition to

the manual that accompanied the software, third-party
publishers produced full-length books for beginners and
advanced users as well as “dictionaries” and reference manu-
als (see also technical writing). A popular program such
as WordPerfect or (today) Adobe Photoshop can easily fill
several shelves in the computer section of a large bookstore.

A number of publishers targeted particular audiences
and adopted distinctive styles. Perhaps the best known is
the IDG “Dummies” series, which eventually diversified its
offerings from computer-related titles to everything from
home remodeling to investing. Berkeley, California, pub-
lisher Peachpit Press created particularly accessible intro-
ductions for Windows and Macintosh users. At the other
end of the spectrum, publishers Sams, Osborne, Waite
Group, and Coriolis targeted the developer and “power
user” community and the eclectic, erudite volumes from
O’Reilly grace the bookshelves of many UNIX users.

Online Documentation
During the 1980s, the lack of a multitasking, window-based
operating system limited the ability of programs to offer
built-in (or “online”) documentation. Traditionally, users
could press the F1 key to see a screen listing key commands
and other rudimentary help. However, both the Macin-
tosh and Windows-based systems of the 1990s included
the ability to incorporate a standardized, hypertext-based
help system in any program. Users could now search for
help on various topics and scroll through it while keeping
their main document in view. Another facility, the “wiz-
ard,” offered the ability to guide users step by step through
a procedure.

The growth of the use of the Web has provided a new ave-
nue for online help. Today many programs link users to their
Web site for additional help. Even help files stored on the
user’s own hard drive are increasingly formatted in HTML
for display through a Web browser. Additional sources of
help for some programs include training videos and animated
presentations using programs such as PowerPoint.

By the late 1990s, printed user manuals were becoming a
less common component in software packages. (Instead, the
manual was often provided as a file in the Adobe Acrobat
format, which reproduces the exact appearance of printed
material on the screen.) The computer trade book industry
has also declined somewhat, but the bookstore still offers
plenty of alternatives for users who are more comfortable
with printed documentation.

Further Reading
Casabona, Helen. “From Good to Great—The Finer Points of Writ-

ing User Documentation.” www.stc.org/confproceed/1995/
PDFs/PG437440.PDF. Accessed July 9, 2007.

“How to Publish a Great User Manual.” Available online. URL:
http://www.asktog.com/columns/017ManualWriting.html.
Accessed July 9, 2007.

Kukulska-Hulme, Agnes. Language and Communication: Essential
Concepts for User Interface and Documentation Design. New
York: Oxford University Press, 1999.

Online Technical Writing [textbook]. Available online. URL: http://
www.io.com/~hcexres/textbook/acctoc.html. Accessed July 9,
2007.

documentation, user        159

Society for Technical Communication. Available online. URL:
http://www.stc.org/. Accessed July 9, 2007.

document model
Most early developers and users of desktop computing sys-
tems thought in terms of application programs rather than
focusing on the documents or other products being cre-
ated with them. From the application point of view, files
are opened or created, content (text or graphics) is created,
and the file is then saved. There is no connection between
the files except in the mind of the user. The dominant word
processors of the 1980s (such as WordStar and WordPer-
fect) were designed as replacements for the typewriter and
emphasized the efficient creation of text (see word pro-
cessing). Users who wanted to work with other types of
information had to run completely separate applications,
such as dBase for databases or Lotus 1-2-3 for spreadsheets.
Working with graphics images (to the extent it was possible
with early PCs) required still other programs.

This “application-centric” way of thinking suited pro-
gram developers at a time when most computer systems
(such as those running MS-DOS) could run only one pro-
gram at a time. But increasing processor power, memory,
and graphics display capabilities during the late 1980s made
it possible to create an operating system such as Micro-
soft Windows that could display text fonts and formatting,
graphics and other content in the same window, and run
several different program windows at the same time (see
multitasking). In turn, this made it possible to present a
model that was more in keeping with the way people had
worked in the precomputer era.

In the new “document model,” instead of thinking in
terms of individual application programs working with
files, users could think in terms of creating documents.
A document (such as a brochure or report) could contain
formatted text, graphics, and data brought in from database
or spreadsheet programs. This meant that in the course of
working with a document users would actually be invoking
the services of several programs: a word processor, graphics
editor, database, spreadsheet, and perhaps others. To the
user, however, the focus would be on a screen “desktop” on
which would be arranged documents (or projects), not on
the process of running individual programs and loading
files.

Implementing the Document Model
There are two basic approaches to maintaining documents.
One is to create large programs that provide all of the fea-
tures needed, including word processing, graphics, and data
management (see application suite). While such tight
integration can (ideally at least) create a seamless work-
ing environment with a consistent user interface, it lacks
flexibility. If a user needs capabilities not included in the
suite (such as, perhaps the ability to create an HTML ver-
sion of the document for the Web), one of two cumbersome
procedures would have to be followed. Either the operating
system’s “cut and paste” facilities might be used to copy
data from another application into the document (possibly

with formatting or other information lost in the process),
or possibly the document could be saved in a file format
that could be read by the program that was to provide the
additional functionality (again with the possibility of losing
something in the translation).

Linking and Embedding
A more sophisticated approach is to create a protocol that
applications could use to call upon one another’s services.
The Windows COM (Component Object Model) uses a tech-
nology formerly called OLE (Object Linking and Embed-
ding). Using this facility, someone working on a document
in Microsoft Word could “embed” another object such as
an Excel spreadsheet or an Access database into the cur-
rent document (which becomes the container). When the
user double-clicks on the embedded object, the appropriate
application is launched automatically, and the user sees the
screen menus and controls from that application instead of
those in Word. (One can also think of Word in this example
being the client and Excel or Access as the server—see cli-
ent-server computing). All work done with the embedded
object is automatically updated by the server application
and everything is stored in the same document file. Alter-
natively, an application may be linked rather than embed-
ded. In that case, the container document simply contains
a pointer to the file in the other application. Whenever
that file is changed, all documents that are linked to it are
updated. Object embedding thus preserves a document-cen-
tric approach but works with any applications that support
that facility, regardless of vendor. The Macintosh operating
system offers a similar facility. Apple and IBM attempted
unsuccessfully to create a competing standard called Open-
Doc. This should not be confused with the more recent
Open Document standard from the popular open-source
application Open Office. Meanwhile Microsoft’s COM, grad-
ually introduced during the later 1990s, has been largely
superseded by .NET (see Microsoft .NET). This reflects
a shift in emphasis from a document model (within a sin-

The Document Object Model (DOM) treats a Web page as an object
that can be manipulated using a variety of scripting languages.

160        document model

gle computer) to a more comprehensive “network object
model.”

Document and object models are also increasingly
important for working on the Web. This can be seen in
the increasing use of XML documents and the Document
Object Model (see xml and dom). This involves the use of a
consistent programming interface (see api) by which many
applications can create or process XML documents for data
communication or display.

Further Reading
Bornestein, Niel M. .NET and XML. Sebastapol, Calif.: O’Reilly

Media, 2003.
“Document Object Model (DOM).” World Wide Web Consortium.

Available online. URL: http://www.w3.org/DOM/. Accessed
August 12, 2007.

Lowry, Juval. Programming .NET Components. 2nd ed. Sebastapol,
Calif.: O’Reilly Media, 2005.

“Open Document Format for Office Applications: OASIS Stan-
dard.” Available online. URL: http://docs.oasis-open.org/
office/v1.0. Accessed July 10, 2007.

DOM  (Document Object Model)
The Document Object Model (DOM) is a way to represent
a Web document (see html and xml) as an object that
can be manipulated using code in a scripting language (see
JavaScript). The DOM was created by the World Wide Web
Consortium (W3C) as a way to standardize methods of
manipulating Web pages at a time when different brows-
ers used different access models. The full specification is
divided into four levels (0 through 3). By 2005, most DOM
specifications were supported by the major Web browsers.

Using DOM, a programmer can navigate through the
hierarchical structure of a document, following links or
“descending” into forms and user-interface objects. With
DOM one can also add HTML or XML elements, as well as
load, save, or format documents.

Code can also be written to respond to a number of
“events,” including user keyboard or mouse activity and
interactions with specific user-interface elements and
HTML forms. For example, the “mouseover” event will be
triggered when the user moves the mouse cursor over a
defined region. The code can then perform an action such
as popping up a box with explanatory text. The “submit”
event will be triggered when the user has finished filling
in a form and clicked the button to send it to the Web
site. When an event occurs, the event object is used to
pass detailed information about it to the program, such as
which key or button was pressed, the location of the mouse
pointer, and so on.

Although learning the DOM methods and how to use
them takes some time, and familiarity with JavaScript is
helpful, the syntax for accessing DOM methods should be
familiar to anyone who has used an object-oriented program-
ming language. Here are some simple sample statements.

Get the document with the specified ID:
document.getElementById(ID)

Get the element with the specified tag:
document.getElementByTagName(tagname)

Get the specified attribute (property) of
the specified element:

myElement.getAttribute(attributeName)
Create an element with the specified tag and
reference it through a variable:

var myElementNode = document.
createElement(tagname)

Evaluation
Although dynamic HTML (DHTML) also has an object
model that can be used to access and manipulate individual
elements, DOM is more comprehensive because it provides
access to the document as a whole and the ability to navi-
gate through its structure.

By providing a uniform way to manipulate documents,
DOM makes it easier to write tools to process them in a
series of steps. For example, database programs and XML
parsers can produce DOM document “trees” as output, and
an XSLT (XML style sheet processor) can then be used to
format the final output.

For working with XML, another popular alternative is
the Simple API for XML (SAX). The SAX model is quite dif-
ferent from DOM in that the former “sees” a document as
a stream of events (such as element nodes) and the parser
is programmed to call methods as events are encountered.
DOM, on the other hand, is not a stream but a tree that can
be entered arbitrarily and traversed in any direction. On
the other hand, SAX streams do not require that the entire
document be held in memory, and processing can some-
times be faster.

Further Reading
Document Object Model FAQ. World Wide Web Consortium.

Available online. URL: http://www.w3.org/DOM/faq.html.
Accessed September 16, 2007.

Heilmann, Christian. Beginning JavaScript with DOM Scripting and
Ajax: From Novice to Professional. Berkeley, Calif.: APress, 2006.

Keith, Jeremy. DOM Scripting: Web Design with JavaScript and the
Document Object Model. Berkeley, Calif.: APress, 2005.

Robie, Jonathan. “What Is the Document Object Model?” World
Wide Web Consortium. Available online. URL: http://www.
w3.org/TR/WD-DOM/introduction.html. Accessed Septem-
ber 14, 2007.

Sambells, Jeffrey, and Aaron Gustafson. Advanced DOM Script-
ing: Dynamic Web Design Techniques. Berkeley, Calif.: APress,
2007.

DOS  See ms-dos.

Dreyfus, Hubert
(1929– )
American
Philosopher, Cognitive Psychologist

As the possibilities for computers going beyond “number
crunching” to sophisticated information processing became
clear starting in the 1950s, the quest to achieve artificial intel-
ligence (AI) was eagerly embraced by a number of innovative

Dreyfus, Hubert        161

researchers. For example, Allen Newell, Herbert Simon, and
Cliff Shaw at the RAND Corporation, attempted to write
programs that could “understand” and intelligently manipu-
late symbols rather than just literal numbers or characters.
Similarly, MIT’s Marvin Minsky (see Minsky, Marvin) was
attempting to build a robot that could not only perceive its
environment, but in some sense understand and manipulate
it. (See artificial intelligence and robotics.)

Into this milieu came Hubert Dreyfus, who had earned
his Ph.D. in philosophy at Harvard. Dreyfus had special-
ized in the philosophy of perception (how meaning can be
derived from a person’s environment) and phenomenology
(the understanding of processes). When Dreyfus began to
teach a survey course on these areas of philosophy, some
of his students asked him what he thought of the artificial
intelligence researchers who were taking an experimental
and engineering approach to the same topics the philoso-
phers had discussed abstractly.

Philosophy had attempted to explain the process of per-
ception and understanding (see also cognitive science).
One tradition, the rationalism represented by such think-
ers as Descartes, Kant, and Husserl took the approach of
formalism and attempted to elucidate rules governing the
process. They argued that in effect the human mind was a
machine (albeit a wonderfully complex and versatile one).
The opposing tradition, represented by the phenomenolo-
gists Wittgenstein, Heidegger, and Merleau-Ponty, took a
holistic approach in which physical states, emotions, and
experience were inextricably intertwined in creating the
world that people perceive and relate to.

If computers, which at that time had only the most
rudimentary “senses” and no emotions could perceive and
understand in the way humans did, then the rules-based
approach of the rationalist philosophers would be vindi-
cated. But when Dreyfus had examined the AI efforts, he
wrote a paper titled “Alchemy and Artificial Intelligence.”
His comparison of AI to alchemy was provocative in that it
suggested that like the alchemists, the modern AI research-
ers had met with only limited success in manipulating
their materials (such as by teaching computers to perform
such intellectual tasks as playing checkers and even prov-
ing mathematical theorems). However, Dreyfus concluded
that the kind of flexible, intuitive, and ultimately robust
intelligence that characterizes the human mind couldn’t be
matched by any programmed system. Each time AI research-
ers demonstrated the performance of some complex task,
Dreyfus examined the performance and concluded that it
lacked the essential characteristics of human intelligence.
Dreyfus expanded his paper into the book What Computers
Can’t Do. Meanwhile, critics complained that Dreyfus was
moving the goal posts after each play, on the assumption
that “if a computer did it, it must not be true intelligence.”

Two decades later, Dreyfus reaffirmed his conclusions in
What Computers Still Can’t Do, while acknowledging that the
AI field had become considerably more sophisticated in creat-
ing systems of emergent behavior (such as neural networks).

Currently a professor in the Graduate School of Phi-
losophy at the University of California, Berkeley, Dreyfus
continues his work in pure philosophy (including a com-

mentary on phenomenologist philosopher Martin Hei-
degger’s Being and Time) while still keeping an eye on the
computer world in his latest publication, On the Internet.

Further Reading
Dreyfus, Hubert. What Computers Can’t Do: A Critique of Artificial

Reason. New York: Harper and Row, 1972.
———. What Computers Still Can’t Do. Cambridge, Mass.: MIT

Press, 1992.
Dreyfus, Hubert, and Stuart Dreyfus. Mind over Machine: the Power

of Human Intuitive Expertise in the Era of the Computer. Rev.
ed. New York: Free Press, 1988.

Henderson, Harry. Artificial Intelligence: Mirrors for the Mind. New
York: Chelsea House, 2007.

DRM  See digital rights management.

DSL  (digital subscriber line)
DSL (digital subscriber line) is one of the two most preva-
lent forms of high-speed wired access to the Internet (see
broadband and cable modem). DSL can operate over
regular phone lines (sometimes called POTS or “plain
old telephone service”). DSL takes advantage of the fact
that existing phone lines can carry frequencies far beyond
the narrow band used for voice telephony. When install-
ing DSL, the phone company must evaluate the quality of
existing lines to determine how many frequency bands are
usable, and thus how much data can be transmitted. Fur-
ther, because the higher the frequency the shorter the dis-
tance the signal can travel, the available bandwidth drops
as one gets farther from the central office or a local DSL
access Multiplexer (DSLAM).

Typical DSL services can range in speed from 128 kbps
to 3 Mbps. Many providers offer higher speeds at additional
cost. Speeds quoted are generally maximums; actual speed
may be less due to poor line quality or greater distance
from the central office.

The most common form of DSL is ADSL (asymmetric
DSL), which has much higher download speeds than upload
speeds. This is generally not a problem, since most users
consume much more content than they generate. The lower
frequencies are generally reserved for regular voice and fax
service. A single DSL modem can serve multiple users in a
local network by being connected to a router.

As more people move from land-line phone service to
cellular, there has been greater demand for offering so-
called naked DSL—DSL without traditional phone ser-
vice. DSL can also be provided over optical fiber (see fiber
optics).

Note that an older and lower-bandwidth version of the
technology called ISDN (Integrated Services Digital Net-
work) is still in use, but has largely been superseded by
DSL/ADSL.

Alternatives to DSL
Cable is still more popular than DSL, though the latter has
closed the gap somewhat. The fact that the two services can
both provide fast Internet access (mostly) through existing

162        DRM

infrastructure has created considerable competition. Thus
a cable provider can now offer telephone service via the
Internet (see voip) at the same time a phone provider using
DSL can offer movies and television programming streamed
over the network. The fact that in many locations DSL and
cable providers are in competition can result in lower rates
or more attractive “bundles” of services for consumers.

On average, cable modem speeds are somewhat faster
than DSL; however, cable speeds can degrade as more users
are added to a circuit. Although both services have had their
share of glitches, they now both tend to be quite reliable.

Further Reading
Golden, Philip, Herve Dedieu, and Krista S. Jacobsen, eds. Imple-

mentation and Applications of DSL Technology. Boca Raton,
Fla.: CRC Press, 2007.

Mitchell, Bradley. “DSL vs. Cable: Modem Comparison.” Avail-
able online. URL:http://compnetworking.about.com/od/
dslvscablemodem/a/dslcablecompare.htm. Accessed Septem-
ber 16, 2007.

Reynolds, Janice. A Practical Guide to DSL: High-Speed Connections
for Local Loop and Network. New York: CMP Books, 2001.

Smith, Roderick W. Broadband Internet Connections: A User’s Guide
to DSL and Cable. Upper Saddle River, N.J.: Addison-Wesley
Professional, 2007.

DTP  See desktop publishing.

DVR  (digital video recording)
A digital video recorder (DVR) records digital television
broadcasts and stores them on a disk (see hard disk and
cd-rom and dvd-rom). DVRs first appeared as commercial
products in 1999 in Replay TV and TiVo, the latter becom-
ing the most successful player in the field.

A DVR works with digital signals and discs rather than
tape used by the video cassette recorders (VCRs) that had
become popular starting in the 1980s. The digital recorder
has several advantages over tape:

• � much larger capacity, limited only by hard drive size

• � instant (random) access to any recorded programming
without having to go forward or backward through a
tape

• � the ability to “time shift” within a live broadcast,
including pausing and instant replay

• � the ability to skip over commercials

• � digital special effects

DVR and Integrated Entertainment
Besides what it can do with the program itself, the other
big advantage of DVR technology stems from the fact that
it produces digital data in a standard format (usually an

DSL uses special modems to convert between computer data and signals that can travel over ordinary phone lines. This technology is widely
used to provide broadband Internet access.

DVR        163

MPEG file) that is fully compatible with PCs and other com-
puting devices. Indeed, by installing one or more TV tuners
or “cable cards” (for access to digital cable signals) to a PC,
one need only add suitable software to turn a Windows,
Macintosh, or Linux PC into a versatile DVR. Alternatively,
many cable and satellite TV services are offering set-top
boxes with built-in DVRs.

Services such as TiVo also provide access to an online
program schedule (for a monthly charge). This works with
features that allow the user to scan for and review program
listings and to arrange, for example, to record all new epi-
sodes of a weekly series as they arrive. DVRs with dual tun-
ers allow for recording two live programs simultaneously,
or recording one while watching another.

DVR technology is also now being used for closed-cir-
cuit television (CCTV) surveillance systems, due to supe-
rior storage and playback capabilities. Similar technology is
also found in digital video cameras (camcorders).

DVRs are part of a landscape where entertainment that
used to be confined to television broadcast, cable, or satel-
lite systems can now be received digitally over the Inter-

net. Since DVRs produce digital output, recorded programs
can be easily shared over the Internet, such as by post-
ing on the popular YouTube site, possibly leading to loss
of revenue for the original providers (see intellectual
property and computing). In response, HBO and other
providers have argued for requiring that DVRs recognize
content that is flagged as “copy never” and refuse to copy
such programs.

Another problem for providers is the growing number
of DVR users who have the ability to easily skip over com-
mercials. Attempts are being made to make commercials
shorter and more entertaining, or to rely more on product
placement within the programming itself.

Further Reading
DVR Buying Guide. Available online. URL: http://products.

howstuffworks.com/dvr-buying-guide.htm. Accessed Septem
ber 16, 2007.

ReplayTV. Available online. URL: http://www.replaytv.com/.
Accessed September 16, 2007.

TiVo. Available online. URL: http://www.tivo.com/. Accessed Sep-
tember 16, 2007.

164        DVR

165

eBay
eBay Inc. (NASDAQ symbol: EBAY) is the world’s largest
online auction and shopping site. The first appearance of
the auction service was in 1995 as AuctionWeb, part of the
personal Web site of Pierre Omidyar (see auctions, online
and Omidyar, Pierre). Omidyar was surprised at how rap-
idly the auction service (which was initially free) grew. After
he imposed a modest listing fee, Omidyar found himself
receiving thousands of dollars in small checks, and decided
that online auctions could become a full-time business.

In September 1997, with Jeff Skoll now on board as
president, AuctionWeb officially became eBay. When the
company went public in 1998 (at the height of the first
“Internet boom”), Omidyar and Skoll became instant mil-
lionaires. Meanwhile, eBay took on Margaret (Meg) Whit-
man as its new CEO, and under her leadership the company
has expanded rapidly through its first decade.

eBay also seeks new markets and revenue through stra-
tegic acquisitions. These include payment services such as
the very popular PayPal, other e-commerce sites such as
Half.com, shopping.com, and rent.com, and even Skype,
the Internet phone service. eBay’s net revenue for 2007 was
$7.67 billion.

Online Auctions
Auctions remain at the core of eBay’s business, with mil-
lions of items in dozens of categories being listed and sold
each day. Offerings can range from factory equipment (in
the Business & Industrial category) to books, toys, sports
memorabilia—even cars and, in a limited fashion, real

estate. There are now hundreds of small- to medium-size
businesses who derive their revenue from eBay, whether
selling their own merchandise, acting as agents for others,
or selling software or templates for managing auctions.

eBay does not charge any buyer’s fees, but makes its
money by charging the seller for each listing and then a
percentage of the selling price. As of 2007 eBay has regional
operations in more than 20 countries, including China and
India. (Yahoo, a distant second to eBay in online auctions,
discontinued its U.S. auction site in mid-2007.)

Beyond Auctions
In recent years eBay has increasingly tried to build a more
“traditional” online shopping experience in parallel with its
auctions. The Buy It Now feature allows a seller to list an
item at a fixed price, either instead of auctioning the item
or as an option that can be exercised if there have been no
auction bids. Sellers can organize their offerings into regu-
lar “stores” to make it easier for customers to browse their
merchandise. (Many traditional stores, such as antiques or
collectibles dealers, now offer some of their items via their
eBay store.) eBay Express, introduced in 2006, adds conve-
nience by allowing users to buy selected items from mul-
tiple sellers using a standard online shopping cart.

Like Amazon.com, eBay has focused considerable atten-
tion on developing more ways for users to comment on
their purchases and otherwise contribute content (see
user-created content). The most important mechanism
is feedback, which lets buyers summarize their opinions
of a transaction after its completion. The feedback system

E

has been recently expanded and structured to allow users
to give specific ratings on aspects of the transaction, such
as accuracy of description and shipping cost and speed.
Although not perfect (feedback can be “pumped up” by
setting up phony transactions between two accounts), the
system does allow buyers to exercise a certain amount
of caution before bidding on an expensive item from an
unknown seller. eBay also offers various forms of “con-
sumer protection” if items are not received or are substan-
tially not as described.

Not surprisingly in a marketplace of this size, there
is opportunity for various forms of fraud, including sale
of counterfeit, defective, or lower-grade merchandise and,
on the part of buyers, credit card fraud. eBay has been
criticized for not policing fraud adequately. Generally, the
service has maintained the position that it is only a facilita-
tor of transactions. If it had to guarantee the authenticity of
merchandise, it would have to operate like a conventional
auction house, with the attendant fees. However, eBay has
solicited the help of experts in fields such as coins and
stamps to help them identity counterfeit or misdescribed
items.

eBay provides a number of forums for user comments,
including discussion boards and chat rooms. Users can
also write reviews and guides to help, for example, nov-
ice collectors who might find themselves overwhelmed by
the coin or stamp listings. In mid-2006 eBay expanded its
“community content” to include an eBay Community Wiki
(see wikis and Wikipedia) and eBay blogs (see blogs and
blogging).

eBay is always trying to make it easier to match users’
specific needs with the thousands of potentially relevant
offerings. Providing recommendation information (includ-
ing user-generated recommendations) is another way to
make shopping easier and more satisfying, as has been
shown by Amazon.com. Another possible way to get a big-
ger share of users’ day-to-day purchases is to make eBay
available on mobile devices as well as linking it to sites
such as Facebook, where young people in particular spend
much of their time (see social networking.)

Long-time eBay CEO Meg Whitman stepped down in
March 2008, while calling for innovation to reinvigorate
a company that many observers now consider to be staid
and “old school” in the age of Web 2.0. Whitman’s succes-
sor, John Donahoe, has announced a new fee structure and
new ways of searching for and displaying listings—devel-
opments that have provoked some controversy in the seller
community.

Further Reading
Bergstein, Brian. “Middle-aged eBay in for Changes.” Associated

Press/San Francisco Chronicle, June 18, 2007. p. C3.
Cohen, Adam. The Perfect Store: Inside eBay. Boston: Little, Brown,

2002.
Collier, Marsha. eBay for Dummies. 5th ed. Hoboken, N.J.: Wiley,

2006.
———. Starting an eBay Business for Dummies. Hoboken, N.J.:

Wiley, 2007.
eBay. Available online. URL: http://www.ebay.com. Accessed Sep-

tember 16, 2007.

e-books and digital libraries
An e-book is a book whose text is stored in digital form
and can be read on a PC or a handheld reading device.
Since most books today are created on word processors and
typesetting systems, it is easy for a publisher to create an
electronic version. Older books that exist only in printed
form can be scanned and converted to text (see optical
character recognition).

An e-book has a number of advantages over its printed
counterpart. The text can be searched and can include links
to sections or even to documents on the World Wide Web.
Reading software or devices can easily enlarge text for the
visually handicapped, or read it in a synthesized voice.
Since only bits need to be moved around, e-books save trees
as well as the cost of manufacturing, transporting, ware-
housing, and displaying conventional books.

There are some disadvantages. Many people are not
comfortable reading large amounts of text at a computer.
Portable reading devices that may be more convenient are
relatively expensive and not standardized. There is no uni-
versal format for e-books, so some software or readers may
not be able to read all e-books.

As of 2008 the e-book landscape may be in the process
of being reshaped. Amazon’s Kindle book reader is the lat-
est attempt to marry e-books to handheld devices. Weigh-
ing less than a paperback book, the Kindle can download
books and other content directly over a cellular broadband
connection and display text using an “electronic ink” tech-
nology that simulates print. Amazon is offering a large
selection of e-books including electronic versions of current
best sellers at prices several dollars below that of the hard-
back version.

Authors and publishers, like other content creators, may
have to deal with the illicit copying and distribution of text
in digital form, as happened with the last Harry Potter book
even before its publication in 2007. Some e-books contain a
form of copy protection (see digital rights management).
This, as with video and music, can lead to compatibility
problems.

A number of e-publishers as well as conventional pub-
lishers now offer books online, most commonly as pdf
(portable document format) files. A hybrid service, “publish
on demand,” keeps the book on file and prints and ships
bound copies as they are ordered, eliminating the problem
of remainders. In the future, so-called digital paper (a thin
membrane that can display text), may be used to create a
more booklike reading experience.

Digital Libraries
A digital library is to e-books what a conventional library
is to printed books. Sometimes called an electronic library
or virtual library, digital libraries can be created in a
variety of ways. Printed books can now be scanned and
digitized rapidly. Google has said that it can scan 3,000
volumes a day using a proprietary system. (This is not
necessary, of course, for books that were originally cre-
ated in digital form.)

Advantages of digital libraries include the following:

166        e-books and digital libraries

• � There is never a shortage of copies or the need for a
reader to wait for access.

• �M any digital libraries allow full searching of the text
of all volumes. Libraries can also use a common data
format (such as “Open Archives.”) to make their mate-
rial searchable throughout the Internet.

• �M any older, hard-to-find books can be made more
“discoverable” and accessible.

Project Gutenberg is one of the oldest and best-known
digital library projects, dating back to 1971. Most of the
collection consists of scanned or transcribed texts of public
domain (no longer subject to copyright) books. As of late
2007, Project Gutenberg had more than 17,000 different
titles in its collection.

Of course more recent books are covered by copyright.
In order to include copyrighted books in a digital library,
some sort of compensation to the copyright holder gener-
ally needs to be made, and it is unclear how that might be
implemented in a way that preserves free access.

There are also what might be called “digital pseudo-
libraries” such as Google Book Search. Google has been
scanning part or all of the collections of universities such as
Stanford, Harvard, and Oxford as well as the New York Pub-
lic Library. Google provides full access to public domain
books (or those for which permission has been obtained
from the publisher). For copyrighted books there is a lim-
ited ability to search by keyword and view a limited num-
ber of pages. Amazon.com’s “Search inside the Book” works
rather similarly, but only with books for which the pub-
lisher has granted permission.

Google’s initiative has aroused some controversy because,
according to traditional practice, someone wanting access to
a copyrighted work beyond “fair use” is supposed to obtain
permission. Google has reversed this presumption, allowing
publishers who do not want their material to be available to
opt out. The Authors Guild of America and the Association of
American Publishers have separately sued Google for copy-
right infringement. Google argues that the limited amount
of text provided for copyrighted books falls within the fair
use provisions of copyright law. The authors and publish-
ers, however, point to the fact that Google is copying the
whole text of the book in order to allow for searching.

If the legal issues can be settled in such a way as to
allow robust digital libraries, the benefits for researchers
will be considerable. Google already offers a “my library”
feature that users can use to search for books they already
know and organize and search them digitally.

Further Reading
Google Book Search. Available online. URL: http://books.google.

com/. Accessed September 16, 2007.
Hirschhorn, Michael. “The Hapless Seed: Publishers and Authors

Should Stop Cowering. Google Is Less Likely to Destroy the
Book Business Than to Slingshot It into the 21st Century.”
Atlantic Monthly, June 2007, p. 134 ff.

Kelly, Kevin. “Scan This Book!” New York Times Magazine, May 14,
2006. pp. 42–49, 64, 71.

Kresh, Diane, ed. The Whole Digital Library Handbook. Chicago:
American Library Association, 2007.

Lesk, Michael. Understanding Digital Libraries. 2nd ed. San Fran-
cisco: Morgan Kaufmann, 2004.

Project Gutenberg. Available online. URL: http://www.gutenberg.
org/wiki/Main_Page. Accessed September 16, 2007.

Thompson, Bob. “Google Wants to Digitize Every Book. Publish-
ers Say Read the Fine Print First.” Washington Post, August
12, 2006, p. D1.

Eckert, J. Presper
(1919–1995)
American
Computer Engineer

J. Presper Eckert played a key role in the design of what is
often considered to be the first general-purpose electronic
digital computer, then went on to pioneer the commer-
cial computer industry. An only child, Eckert grew up in
a prosperous Philadelphia family that traveled widely and
had many connections with Hollywood celebrities such as
Douglas Fairbanks and Charlie Chaplin. He was a star stu-
dent in his private high school and also did well at the Uni-
versity of Pennsylvania, where he graduated in 1941 with a
degree in electrical engineering and a strong mathematics
background.

Continuing at the university as a graduate student and
researcher, Eckert met an older researcher, John Mauchly.
They found they shared a deep interest in the possibili-
ties of electronic computing, a technology that was being
spurred by the needs of war research. After earning his
master’s degree in electrical engineering, in 1942 Eckert
joined Mauchly in submitting a proposal to the Ballistic
Research Laboratory of the Army Ordnance Department for
a computer that could be used to calculate urgently needed
firing tables for guns, bombs, and missiles. The Army
granted the contract, and they organized a team that grew
to 50 people. Begun in April 1943, their ENIAC (Electronic
Numerical Integrator and Computer) was finished in 1946.
While it was too late to aid the war effort, the room-size
machine filled with 18,000 vacuum tubes demonstrated the
practicability of electronic computing. Its computation rate
of 5,000 additions per second far exceeded other calculators
of the time.

With some input from mathematician John von Neu-
mann, Eckert and Mauchly began to develop a new
machine, EDVAC, for the University of Pennsylvania (see
von Neumann, John). While this effort was still under
way, they formed their own business, the Eckert-Mauchly
Computer Corporation and began to develop the BINAC
(BINary Automatic Computer), which was intended to be
a (relatively) compact and lower-cost version of ENIAC.
This machine demonstrated a key principle of modern com-
puters—the storage of program instructions along with
data. The ability to store, manipulate, and edit instructions
vastly increased the flexibility and ease of use of computing
machines (see history of computing).

By the late 1940s, Eckert and Mauchly began to develop
Univac I, the first commercial implementation of the new
computing technology. When financial difficulties threat-
ened to sink their company in 1950, it was acquired by

Eckert, J. Presper        167

Remington Rand. Working as a division within that com-
pany, the Eckert-Mauchly team completed Univac I in time
for the computer to make a remarkably accurate forecast of
the 1952 presidential election results.

Eckert continued with the Sperry-Rand Corporation
(later called Univac and then Unisys Corporation) and
became a vice president and senior technical adviser. He
retired in 1989. He received an honorary doctorate from
the University of Pennsylvania in 1964. In 1969, he was
awarded the National Medal of Science, the nation’s highest
award for achievement in science and engineering.

Further Reading
Eckstein, P. “Presper Eckert.” IEEE Annals of the History of Com-

puting 18, vol. 1, Spring 1996, 25–44.
McCartney, Scott. Eniac: the Triumphs and Tragedies of the World’s

First Computer. New York: Berkley Books, 1999.
Smithsonian Institution. National Museum of American History.

“Presper Eckert Interview.” Available online. URL: http://
americanhistory.si.edu/collections/comphist /eckert.htm.
Accessed August 14, 2007.

e-commerce
Since the introduction of credit cards and the beginning
of banking automation in the 1960s, computers and com-
munications networks have played an increasing role in the
infrastructure of commerce (see banking and computers).
Some businesses also established proprietary networks (for
example, to allow pharmacies to order drugs directly from
suppliers).

Electronic sales directly to consumers were pioneered
by “teletex,” such as the French Minitel, as well as such ser-
vices as CompuServe and America Online. However, these
services were proprietary, meaning that businesses could
only market to subscribers. The widespread adoption of the
Internet in the mid-1990s (see World Wide Web) created
an open and potentially much larger marketplace.

The first e-commerce boom came in the late 1990s,
when enthusiasm about the seeming potential for unlim-
ited profits drove numerous online startups, often with
poorly conceived business plans that assumed that rapid
expansion and low prices would result in gaining con-
trol of a particular sector and achieving a dominant (and
profitable) position. Among the numerous casualties of
the “dot-bust” of 2000–2001 was WebVan, a company
that sold and delivered groceries directly to consumer’s
homes.

While the bursting of the “dot-com bubble” was pain-
ful to investors, entrepreneurs, and workers, recovery
was soon underway. The recovery was aided by the steady
growth of Internet users (particularly those with broad-
band connections), innovative software for interacting with
consumers and analyzing transaction information, and the
coming of age of a generation that had virtually grown up
online.

Today e-commerce is a steadily growing sector, and it is
increasingly international, fed by nearly 1.5 billion Internet
users worldwide. (China, with more than 250 million Web
users, has become the world’s largest online market.)

Meanwhile in the United States in 2007 total consumer
retail sales on the Internet reached $136 billion, up nearly
20 percent over the previous year. According to a report
from Forrester Research, online retail revenues (excluding
travel-related services) will pass $250 billion by 2011. Sur-
veys show that about 80 percent of American Internet users
have bought something online, while many users who buy
products off-line originally searched for information about
them online.

The most popular e-commerce sectors today include the
selling of books, music and movies, travel-related services,
electronics, clothing, luxury goods, and medications. (In
2006, online buyers actually spent more money on cloth-
ing than on computers and related products.) A number
of other online activities can be considered part of e-com-
merce, although they are usually not included in retail-
ing statistics (see auctions, online; online gambling;
online games; and social networking).

Infrastructure
Successful e-commerce depends on a complex array of ser-
vices, facilities, and software. For marketing and consumer
communications, see online advertising and customer
relationship management. Behind the scenes, trans-
action data is constantly being collected and analyzed to
determine the success of the marketing program and to
“personalize” the customer experience and allow for tar-
geted marketing (see cookies and data mining).

The actual transaction processing requires shopping
cart software and a connection to the credit card processing
infrastructure (see digital cash). Specialized forms of sell-
ing require additional software and support systems (see,
for example, auctions, online). An ongoing e-business
must also deal with functions shared by “brick and mortar”
(traditional) stores: inventory control, ordering from sup-
pliers (see supply chain management), taxes, payroll, and
so on. The broader e-commerce sector also includes busi-
nesses that do not target consumers but, rather, the needs
of business itself—so-called business to business or B2B.

Security and Privacy
One continuing obstacle to the growth of e-commerce has
been consumers’ concerns about the theft or misuse of per-
sonal information gathered as part of the shopping process.
This can involve either fake Web sites (see phishing and
spoofing) or legitimate businesses that sell information
about customers without their knowledge or consent (see
privacy in the digital age). According to a report from
Gartner Research, more than $900 million in e-commerce
sales during 2006 was lost because of consumers’ security
concerns, and about a billion dollars more in sales was lost
because customers decided not to buy online at all.

Trends
E-commerce is maturing even as it continues to evolve.
Some trends in the second half of the 2000 decade reflect
changes in what is presented to the consumer, how it is
delivered, and how users can participate in ways other than
simply viewing content and selecting products:

168        e-commerce

• � delivery of richer and more interactive multimedia
experience, catering to the widespread availability of
broadband connections

• � integration of marketing using programming inter-
faces (see mashups) with popular online services
such as Google Maps, online game worlds, and social
networking sites (see online games and social net-
working)

• � increasing participation of consumers in develop-
ing the quality of the shopping experience, such as
through user product reviews and blogs (see user-
created content)

• � increased emphasis on serving rapidly growing for-
eign markets, such as India and China

• � the spread of e-commerce to new mobile platforms
(see pda and smartphone)

Further Reading
Combe, Colin. Introduction to e-Business: Management and Strategy.

Burlington, Mass.: Elsevier, 2006.
eCommerce Info Center. Available online. URL: http://www.

ecominfocenter.com/. Accessed July 15, 2007.
eCommerce Times. Available online. URL: http://www.ecommer-

cetimes.com. Accessed July 16, 2007.
Forrester Research. Available online. URL: http://www.forrester.

com. Accessed July 10, 2007.
Grant, Graeme. “Trends in 2007 Online Retailing.” Available

online. URL: http://www.destinationcrm.com/articles/default.
asp?ArticleID=6938. Accessed July 10, 2007.

Jupiter Research. Available online. URL: http://www.jupiter
research.com. Accessed July 10, 2007.

Laudon, Kenneth, and Carol Traver. E-Commerce: Business, Tech-
nology, Society. 3rd ed. Upper Saddle River, N.J.: Prentice
Hall, 2006.

education and computers
Computers are widely used in educational institutions from
elementary school to college. While computers have had as
yet little impact on the structure or organization of schools,
educational software and the use of the Internet has had a
growing impact on how education is delivered.

History
During the 1950s and early 1960s, computer resources were
generally too scarce, expensive, and cumbersome to be used
for teaching, although universities aspired to have comput-
ers to aid their graduate and faculty researchers. However,
during the 1960s computer engineers and educators at the
Computer-based Education Research Laboratory at the Uni-
versity of Illinois, Urbana, formed a unique collaboration
and designed a computer system called PLATO. The PLATO
system used mainframe computers to deliver instructional
content to up to 1,000 simultaneous users at terminals
throughout the University of Illinois and other educational
institutions in the state. PLATO pioneered the interactive
approach to instruction and the use of graphics in addition
to text. The PLATO system was later marketed by Con-
trol Data Corporation (CDC) for use elsewhere. During this
time Stanford University also set up a system for deliver-
ing computer-assisted instruction (CAI) to users connected
to terminals throughout the nation. (See computer-aided
instruction.)

By the early 1980s, microcomputers had become rela-
tively affordable and capable of running significant edu-
cational software including graphics. Apple Computer’s
Apple II became an early leader in the school market, and
the introduction of the Macintosh in 1984 with the Hyper-
card scripting language inspired many teachers and other
enthusiasts to create their own educational software. By
the early 1990s, IBM compatible PCs with Windows were
catching up. Commercially available computer games
(such as Civilization or Railroad Tycoon) also offered ways
to enrich social studies and other classes (see computer
games).

The advent of the World Wide Web and graphical Web
browsing in the mid-1990s spurred schools to connect to
the Internet. The Web offered the opportunity for educa-
tors to create resources that could be accessed by col-
leagues and students anywhere in the world. The use of
Web portals such as Yahoo!, library catalogs, and online
encyclopedias gave teachers and students potential access
to a far greater variety of information than could pos-
sibly be found in textbooks. The Web also offered the
opportunity for students at different schools to participate
in collaborative projects, such as community surveys or
environmental studies.

E-commerce involves far more than just advertising and selling
goods and services. In a typical e-commerce system a “shopping
cart” records consumers’ selections. The items ordered must be
processed against inventory and prepared for shipping. Mean-
while, information about the user’s selections and viewing is fed
into a database from which patterns of consumer behavior can be
extracted. Some techniques of information gathering raise privacy
concerns, however.

education and computers        169

Applications
Educational applications of computing can be divided into
several categories, as summarized in the following table.

While small compared to the business market, the
educational software industry is a significant market, tar-
geting both schools and parents seeking to improve their
children’s academic performance. However, the educational
use of computers extends far beyond specialized software.
Schools are in effect a major industry in themselves, requir-
ing much of the same support software as large businesses.

Trends
The growth of the World Wide Web has led to some shift
of emphasis away from stand-alone, CD-ROM based appli-
cations running on local PCs or networks. Educators are
excited about the possibilities for online collaboration.
Public concern about children achieving an adequate level
of technical skill (see computer literacy) has fueled an
increasing commitment of funds for computer hardware,
software, and networking for schools.

Some visionaries speak of a 21st-century “virtual school”
that has no classroom in the conventional sense, but uses
the Internet and conferencing software to bring teachers
and students together. While there has been only limited
experimentation in creating virtual secondary schools,
thousands of university courses are now offered online, and
many degree programs are now available. Some institutions
such as the University of Phoenix have made such “distance
learning” a core part of their growth strategy.

Several factors have caused other observers to have mis-
givings about the rush to get schools onto the “information
superhighway.” Many schools lack adequate physical facili-
ties and teacher training. Under those circumstances other
priorities might deserve precedence over the installation of
technology that may not be effectively utilized. At the same
time, the lagging in access to technology by minorities and
the poor may suggest that schools must play a significant
role in providing such access and enabling the coming gen-
eration to catch up (see digital divide).

The debate over how best to use technology in the
schools also reflects fundamental theories about teaching
and learning. Critics of information technology such as
Clifford Stoll (see Stoll, Clifford) have reacted against
the mechanical, rote nature of much educational software.
They also decry the hype of some advocates who have sug-
gested technology as a panacea for the problems of low
performance, poor motivation, and lack of accountability in
many schools.

Some advocates of computer use agree with the criticism
of uncreative and poorly planned “e-learning” programs,
but argue that the answer is to use technology that helps
good teachers unlock creativity. For example, Seymour Pap-
ert and his LOGO language are based on “constructivist”
principles where students learn through doing (see Papert,
Seymour and logo). From this point of view, “computer
literacy” should not be a focus in itself, but one outcome
of a program that creates literate and capable learners (see
computer literacy.)

Application Area	U sers	E xamples

Computer-aided 	 Generally high school and up	 Course modules for science, social studies, etc. Students
instruction (CAI)		� evaluated and materials presented on the basis of student perfor-

mance (see computer-aided instruction).
Drill-and-practice	 Elementary school students	� Sets of math problems, geography quizzes, etc. Sounds or graph-

ics used for reward for correct answers.
Online collaborative 	 Elementary and high school 	 Students from different schools use e-mail or chat to coordinate a
learning	 students	� project, such as creating a Web site about local environmental

issues.
Online classes	 Mainly college and adults	� Students participate remotely through videoconferencing, chat,

e-mail, etc. (see distance education).
Educational 	 Junior high and older students	 Gamelike programs that simulate real-world problems, such as
simulations 		� managing a city to investing in the stock market. Often commer-

cially available games can be used.
Reference and 	 Elementary and older students	 Online encyclopedias and knowledge bases (see also wikis and
resources		� Wikipedia); specialized references on CD-ROM or DVD; online

reference and bibliographical databases; library catalogs; and
Web site of universities, museums, and government agencies.

General software 	 Students and teachers	 Use of general-purpose software such as word processors,
applications		� publishing, or presentation programs for creating class projects

and reports. Also use of e-mail, chat, and blogs for collaboration
and after-hours communication between students and teachers.

Administrative 	 Teachers and administrators	 Use of specialized or general-purpose software to maintain
applications		� attendance, grades, and other class and school administration

functions.

170        education and computers

Further Reading
Cuban, Larry. Oversold & Underused: Computers in the Classroom.

Cambridge, Mass.: Harvard University Press, 2001.
Global Schoolhouse. Available online. URL: http://www.

globalschoolnet.org. Accessed July 19, 2007.
November, Alan. Empowering Students with Technology. Arlington,

Ill.: SkyLight Professional Development, 2001.
Paley, Amit R. “Software’s Benefits on Tests in Doubt: Study Says

Tools Don’t Raise Scores.” Washington Post, April 5, 2007, p. 1.
Pflaum, William D. The Technology Fix: The Promise and Reality

of Computers in Our Schools. Alexander, Va.: Association for
Supervision and Curriculum Development, 2004.

Richardson, Will. Blogs, Wikis, Podcasts, and Other Powerful Web
Tools for Classrooms. Thousand Oaks, Calif.: Corwin Press,
2006.

Stoll, Clifford. High Tech Heretic: Why Computers Don’t Belong in
the Classroom and Other Reflections by a Computer Contrarian.
New York: Doubleday, 1999.

“Technology Integration.” Education World. Available online.
URL: http://www.educationworld.com/a_tech/. Accessed July
19, 2007.

Warlick, David. Classroom Blogging: A Teacher’s Guide to the Blogo-
sphere. Morrisville, N.C.: Lulu.com, 2005.

education in the computer field
Education and training in computer-related fields runs the
gamut from courses in basic computer concepts in adult
education or junior college programs to postgraduate pro-
grams in computer science and engineering. Curricula can
be roughly divided into the following areas

• � computer literacy and applications

• � computer science

• � information systems

Computer Literacy and Applications
There is a general consensus that basic knowledge of com-
puter terminology and mastery of widely used types of soft-
ware will be essential for a growing number of occupations
(see computer literacy). The elementary and junior high
school curriculum now generally includes computer classes
or “labs” where students learn the basics of word process-
ing, spreadsheets, databases, graphics software, and use
of the World Wide Web. There may also be introductory
courses in programming, usually featuring easy-to-use pro-
gramming languages such as Logo or BASIC.

Some high schools offer a track geared toward prepara-
tion for college studies in computer science. This track may
include courses in more advanced languages such as C++ or
Java. Because of public interest and marketability, courses in
graphics (such as use of Adobe Photoshop), multimedia, and
Web design are also increasingly popular. Adult education
and community college programs feature a similar range of
courses. Many of today’s adult workers went to school at a
time when personal computers were not readily available and
computer literacy was not generally emphasized. The career
prospects of many older workers are thus increasingly lim-
ited if they don’t receive training in basic computer skills.

Technical or vocational schools offer tightly focused pro-
grams that are geared toward providing a set of marketable

skills, often in conjunction with gaining industry certifica-
tions (see certification of computer professionals).

Computer Science
In the early 1950s, knowledge of computing tended to have
an ad hoc nature. On the practical level, computing staffs
tended to train newcomers in the specific hardware and
machine-level programming languages in use at a particu-
lar site. On the theoretical level, programmers in scientific
fields were likely to come from a background in electronics,
electrical engineering, or similar disciplines.

As it became clear that computers were going to play an
increasingly important role, courses specific to computing
were added to curricula in mathematics and engineering.
By the late 1950s, however, leading people in the comput-
ing field had become convinced that a formal curriculum in
computer science was necessary for further advance in an
increasingly sophisticated computing arena (see computer
science). By the early 1960s, efforts at the University of
Michigan, University of Houston, Stanford, and other insti-
tutions had resulted in the creation of separate graduate
departments of computer science. By the mid-1960s, the
National Academy of Sciences and the President’s Science
Advisory Committee had both called for a major expan-
sion of efforts in computer science education to be aided by
federal funding. During the 1970s and 1980s, mathemati-
cal and engineering societies (in particular the Association
for Computing Machinery (ACM) and Institute for Electri-
cal and Electronic Engineering (IEEE) worked to estab-
lished detailed computer science curricula that extended
to undergraduate study. By 2000, there were 155 accredited
programs in computer science in the United States.

Information Systems
The traditional computer science curriculum emphasizes
theoretical matters such as algorithm and program design
and computer architecture. Hiring managers in corpo-
rate information systems departments have observed that
computer science graduates often have little experience in
such practical considerations as systems analysis, or the
designing of computer systems to meet business require-
ments. There has also been an increasing need for systems
administrators, database administrators, and networking
professionals who are well versed in the management and
maintenance of particular systems.

In response to demand from industry, many universi-
ties have instituted degree programs in information sys-
tems (sometimes called MIS or Management Information
Systems) as an alternative to computer science. While these
programs include some study of theory, they focus on prac-
tical considerations and often include internships or other
practical work experience. Some programs offer more ambi-
tious students a dual track leading to an MBA.

Challenges
There has always been a gap between the emphases in com-
puter and information science programs and the needs of
a rapidly changing marketplace. However, additional chal-

education in the computer field        171

lenges face education in the computer field today. The num-
ber of undergraduate computer science degrees awarded in
Ph.D.-granting universities in the United States has steadily
declined since 2000. In part this may be a delayed reaction
to the decline in employment of programmers early in the
decade (due to the bursting of the “dot-com bubble”) that has
since leveled off but has not significantly grown (see employ-
ment in the computer field). This, together with the out-
sourcing of many jobs (see globalism and the computer
industry) may have in turn discouraged young people from
entering the field.

At the same time, many observers insist that prospects
are good for educators and students who can target emerg-
ing high-demand skills. These include areas such as com-
puter security, data mining, bioinformatics, Web content
management, and even aspects of business management.
Educators will be challenged to strike a balance between a
comprehensive treatment of concepts that have many poten-
tial applications and the need to provide specific skills that
are in demand in the market.

Further Reading
ACM-IEEE Joint Task Force on Computing Curricula. “Com-

puter Science. 2001.” Available online. URL: http://acm.org/
education/curric_vols/cc2001.pdf. Accessed July 22, 2007.

———. “Information Systems.” 2001 Available online. URL:
http://www.acm.org/education/is2002.pdf. Accessed July 22,
2007.

Anthes, Gary. “Computer Science Looks for a Remake.” Comput-
erworld. May 1, 2006. Available online. URL: http://www.
computerworld.com/careers/story/0,10801,110959,00.html.
Accessed July 22, 2007.

Computer Science Directory. Available online. URL: http://csdir.
org/. Accessed July 22, 2007.

Denning, Peter J. “Great Principles in Computing Curricula.”
ACM SIGCSE Bulletin, vol. 36, March 2004. Available online.
URL: http://portal.acm.org/citation.cfm?id=1028174.971303.
Accessed July 22, 2007.

Greening, Tony, ed. Computer Science Education in the 21st Century.
New York: Springer-Verlag, 2000.

Open Directory Project. “Computer Science.” Available online. URL:
http://dmoz.org/Computers/Computer_Science/. Accessed July
22, 2007.

e-government
Just as the way business is organized and conducted has
been profoundly changed by information and communica-
tions technology, the operation of government at all levels
has been similarly affected. The term e-government (or elec-
tronic government) is a way of looking at these changes as
a whole and of considering how government uses (or might
use) various computer applications.

The use of information technology in government can
involve changes in the organization and internal commu-
nications of government departments, changes in how ser-
vices are delivered to the public, and providing new ways
for the public to interact with the agency.

Internally, government agencies have many of the same
information management and sharing needs as private
enterprises (see data mining, database administration,

e-mail, groupware, personal information manager,
and project management software). However, govern-
ment agencies are likely to have to adapt their information
systems to account for complex, specialized regulations
(both those the agency administers and others it is subject
to). The standards of openness and accountability are gen-
erally different from and stricter than those that apply to
private organizations.

A major focus of e-government is in expanding agencies’
presence on the Web and making government sites more
useful. This can include providing summaries of regulations
or other complicated information, offering online assis-
tance, allowing filing of tax or other forms electronically,
and helping with applications such as for Social Security or
Medicare. Where applicants must physically visit the office,
a computerized system can make it easy to make appoint-
ments to reduce time waiting in line (a welcome option now
offered by many state departments of motor vehicles).

Implementation
Obtaining employees with the necessary skills for maintain-
ing sophisticated information systems and modern dynamic
Web sites is not easy. The government hiring process tends
to be cumbersome and slow to respond to changing needs.
Government must often compete with a private sector that
is willing to pay high prices for top talent.

In many cases, adopting comprehensive e-government
would require a rethinking of an agency’s purpose and pri-
orities. There is also a tension between the Web culture,
which focuses on linking information across conventional
boundaries, and the tendency of bureaucracies to compart-
mentalize and centrally control information. Nevertheless,
even without fundamentally restructuring how agencies
operate, there has been considerable success with bringing
information to the public through a central portal (USA.
gov, formerly FirstGov).

Once a service is offered, it has to be promoted. While
some services (such as “e-filing” of tax returns) can be read-
ily promoted for their convenience, other services are more
obscure or may be of interest only to a narrow constituency.

Social and Political Impact
A survey by the Hart-Teeter poll found that respondents
considered the most important potential benefit of e-gov-
ernment to be greater government accountability; the
second was greater access to information; and, perhaps sur-
prisingly, convenience came third.

One criticism of e-government initiatives is that they
often lack central coordination and may be implemented
without keeping in mind the need of an agency to provide
uniform, consistent, and impartial treatment to all citizens.
For example, if an agency focuses its resources on develop-
ing its Web site, people who lack online access may come
to feel that they are receiving “second class” service (see
digital divide). This is particularly unfortunate because
the unconnected people are likely to be in poor and isolated
communities that are most likely to be in need of govern-
ment services.

172        e-government

As with private enterprise, there can also be important
online privacy issues. Information that has been collected
digitally is easy to transfer to other agencies or even (as in
the case of DMV information in some states) sold to private
companies. Having a clearly spelled-out privacy policy is
crucial.

Besides keeping private what people expect to be pri-
vate, government agencies must also provide information
that helps ensure public accountability. Information col-
lected by government agencies is often subject to the Free-
dom of Information Act (FOIA). This may require that data
be provided in a format that is readily accessible.

Further Reading
Briefing Book Outline: E-Government. Advisory Committee to the

Congressional Internet Caucus. Available online. URL: http://
www.netcaucus.org/books/egov2001/. Accessed September
18, 2007.

Center for Technology in Government. Available online. URL:
http://www.ctg.albany.edu. Accessed September 18, 2007.

Cordella, Antonio. “E-Government: Towards the E-bureaucratic
Form?” Journal of Information Technology 22 (2007): pp. 265–
274.

Government Computerization (Open Directory). Available
online. URL: http://www.dmoz.org/Society/Issues/Science_
and_Technology/Computers/Government_Computerization/.
Accessed September 18, 2007.

LaVigne, Mark. “E-Government: Creating Tools of the Trade.”
Available online. URL: http://www.netcaucus.org/books/
egov2001/pdf/e-govt.pdf. Accessed September 18, 2007.

Rosencrance, Linda. “User Satisfaction with Federal Govern-
ment Web Sites down Slightly.” Computerworld, September
18, 2007. Available online. URL: http://www.computerworld.
com/action/article.do?command=viewArticleBasic&articleId
=9037079. Accessed September 18, 2007.

USA.gov: “Government Made Easy” [Official U.S. Government
Portal]. Available online. URL: http://www.usa.gov/. Accessed
September 18, 2007.

Eiffel
Eiffel is an interesting programming language developed
by Bertrand Meyer and his company Eiffel Software in the
1980s. The language was named for Gustav Eiffel, the archi-
tect who designed the famous tower in Paris. The language
and accompanying methodology attracted considerable
interest at software engineering conferences.

Eiffel fully supports (and in some ways pioneered) pro-
gramming concepts found in more widely used languages
today (see class and object-oriented programming). Syn-
tactically, Eiffel emphasizes simple, reusable declarations that
make the program easier to understand, and tries to avoid
obscure or lower-level code such as compiler optimizations.

Program Structure
An Eiffel program is called a “system,” emphasizing its
structure as a set of classes that represent the types of real-
world data that need to be processed. A simple class might
look like this:

class
COUNTER

feature—access counter value
total: INTEGER

feature—manipulate counter value
increment is—increase counter by one

do
total :- total + 1

end
decrement is—decrease counter by one

do
total := total - 1

end
reset is—reset counter to zero

do
total := 0

end
end

(In this listing language, keywords are in bold and user-
defined objects are in italics. This formatting will be done
automatically as the user enters the text.) Once the class is
defined, making an instance of it is very simple:

my_counter COUNTER

create my_counter	

The Eiffel compiler itself compiles to an intermediate
“bytecode” that, in the final stage, is compiled into C, taking
advantage of the ready availability of optimized C compilers.

A unique feature of Eiffel is the ability to set up “con-
tracts” that specify in detail how classes will interact with
one another. (This goes well beyond the usual declarations
of parameters and enforcement of data types.) For example,
with the COUNTER class an “invariant” can be declared
such that total >= 0. This means that this condition must
always remain true no matter what. A method can also
require that the caller meet certain conditions. After pro-
cessing and before returning to the caller, the method can
ensure that a particular condition is true. The point of these
specifications is that they make explicit what a given unit of
code expects and what it promises to do in return. This can
also improve program documentation.

Implementation and Uses
Eiffel’s proponents note that it is more than a language: It
is designed to provide consistent ways to revise and reuse
program components throughout the software development
cycle. The current implementation of Eiffel is available for
virtually all platforms and has interfaces to C, C++, and
other languages. This allows Eiffel to be used to create a
design framework for reusing existing software components
in other languages. Eiffel’s consistent object-oriented design
also makes it useful for documenting or modeling software
projects (see modeling languages).

Eiffel was developed around the same time as C++. Eiffel
is arguably cleaner and superior in design to the latter lan-
guage. However, two factors led to the dominance of C++:
the ready availability of inexpensive or free compilers and
the existence of thousands of programmers who already
knew C. Eiffel ended up being a niche language used for

Eiffel        173

teaching software design and for a limited number of com-
mercial applications using the EiffelStudio programming
environment.

Eiffel has been recognized for its contributions to the
development of object-oriented software design, most
recently by the Association for Computing Machinery’s
2006 Software System Award for Impact on Software
Quality.

Further Reading
“Eiffel in a Nutshell.” Available online. URL: http://archive.eiffel.

com/eiffel/nutshell.html. Accessed September 19, 2007.
Eiffel Zone. Available online. URL: http://eiffelzone.com/. Accessed

September 19, 2007.
“Introduction to Eiffel” [Flash presentation]. Available online.

URL: http://www.eiffel.com/developers/presentations/eiffel_
introduction/player.html?slide=. Accessed September 19,
2007.

Meyer, Bertrand. Eiffel: The Language. Englewood Cliffs, N.J.:
Prentice Hall, 1991.

———. Object-Oriented Software Construction. 2nd ed. Upper Sad-
dle River, N.J.: Prentice Hall, 2000.

Wiener, Richard. An Object-Oriented Introduction to Computer
Science Using Eiffel. Upper Saddle River, N.J.: Prentice Hall,
1996.

Electronic Arts
Electronic Arts (NASDAQ symbol: ERTS) is a pioneering
and still prominent maker of games for personal computers
(see computer games). Its fortunes largely mirror those of
the game industry itself.

In 1982 Trip Hawkins and several colleagues left Apple
Computer and founded a company called Amazin’ Soft-
ware. The company was founded with the goal of making
“software that makes a personal computer worth owning.”
Hawkins also had an ambitious goal of turning it into a bil-
lion-dollar company, but this goal would not be achieved
until the mid-1990s. Meanwhile, after considerable internal
debate, the company changed its name to Electronic Arts in
late 1982. This name reflects Hawkins’s belief that computer
games were an emerging art form and that their developers
should be respected as artists. This would be reflected in
game box covers that looked like record jackets and promi-
nently featured the names of the developers.

In 1983 EA published three games for the Atari 800
computer that typified playability and diversity. Archon
combined chesslike strategy with arcade-style battles; Pin-
ball Construction Set let users create and play their own
layouts; and the unique M.U.L.E. was a deceptively simple
game of strategic resources—and one of the first multi-
player video games. EA titles published in the later 1980s
include an exploration game Seven Cities of Gold, the graph-
ically innovative space conquest game Starflight, and the
role-playing series The Bard’s Tale.

In its early years the company published games devel-
oped by independent programmers, but in the late 1980s
it began to develop some games in house. EA sought out
innovative games and promoted them directly to retailers.
While it was difficult at first to market often-obscure games
to stores, as the games became successful and regular retail

channels were established, EA’s revenue began to outpace
that of competitors. (Hawkins left in 1991 to found the
game company 3DO.)

Challenges and Criticism
By the 2000s EA, now under Larry Probst, had suffered
loss of its once-dominant position in what had become
an increasingly diverse industry. EA was criticized by
some investment analysts for declining to follow the
trend toward ultraviolent, M-rated games such as Grand
Theft Auto, though the company later softened that stand.
In recent years the company’s big sellers have been its
graphically intense and realistic sports simulations, nota-
bly John Madden Football. (Besides the NFL, EA has con-
tracts with NASCAR, FIFA [soccer], and the PGA and
Tiger Woods.)

In 2007 EA announced that it would come out with
Macintosh versions of many of its top titles. However, crit-
ics have noted that the company seems to be publishing
fewer original titles in favor of yearly updates (particularly
in their sports franchises).

Along with much of the game industry, EA has increas-
ingly focused on console games (see game console). EA
currently develops games for the leading consoles; in fact,
about 43 percent of EA’s 2005 revenue came from sales
for the Sony PlayStation2 alone. (Total revenue in 2008
was $4.02 billion.) EA has also been expanding into online
games, starting in 2002 with an online version of The Sims,
a “daily life simulator.” (See online games.)

Some critics have objected to EA’s practice of buying
smaller companies in order to get control over their popu-
lar games, and then releasing versions that had not been
properly tested. Perhaps the most-cited example is EA’s
acquiring of Origin Systems and its famous Ultima series of
role-playing games. Once acquired, EA produced two new
titles in the series that many gamers consider to not be up
to the Ultima standard.

The company has also been criticized for requiring very
long work hours from developers; it eventually settled suits
from game artists and programmers demanding compensa-
tion for unpaid overtime.

EA has shown continuing interest in promoting the pro-
fession of game development. In 2004 the company made
a significant donation toward the development of a game
design and production program at the University of South-
ern California.

Meanwhile, founder Hawkins has founded a company
called Digital Chocolate, focusing on games for mobile
devices.

Further Reading
EA.com Web site. Available online. URL: http://www.ea.com.

Accessed September 19, 2007.
EA Sports Home Page. Available online. URL: http://www.

easports.com/. Accessed September 19, 2007.
“Mobile Games: Way beyond Phone Tag” [Interview with Trip

Hawkins]. Business Week Online, April 3, 2006. Available
online. URL: http://www.businessweek.com/technology/
content/apr2006/tc20060403_840834.htm. Accessed Sep-
tember 19, 2007.

174        Electronic Arts

Waugh, Eric-Jon Rossel. “A Short History of Electronic Arts.” Busi-
ness Week Online, August 25, 2006. Available online. URL:
http://www.businessweek.com/innovate/content/aug2006/
id20060828_268977.htm. Accessed September 19, 2007.

electronic voting systems
There are a variety of ways to electronically register, store,
and process votes. In recent years older manual systems
(paper ballots or mechanical voting machines) have been
replaced in many areas with systems ranging from purely
digital (touch screens) to hybrid systems where marked
paper ballots are scanned and tabulated by machine. How-
ever, voting systems have been subject to considerable con-
troversy, particularly following the Florida debacle in the
2000 U.S. presidential election.

The criteria by which voting systems are evaluated
include:

• � how easy it is for the voter to understand and use the
system

• � accessibility for disabled persons

• � whether the voter’s intentions are accurately recorded

• � the ability to make a permanent record of the vote

• � prevention of tampering (physical or electronic)

• � provisions for independent auditing of the votes in
case of dispute

The degree to which a given system meets these criteria
can vary considerably because of both design and imple-
mentation issues.

Early Systems
The earliest form of voting system consisted of paper ballots
marked and tabulated entirely by hand. The first generation
of “automatic” voting systems involved mechanical voting
machines (where votes were registered by pulling levers).
Next came two types of hybrid systems where votes were
cast mechanically but tabulated automatically. These sys-
tems used punch cards (see punched cards and paper
tape) or “marksense” or similar systems where the voter
filled in little squares and the ballots were then scanned
and tabulated automatically.

The ultraclose and highly disputed 2000 U.S. presiden-
tial election “stress-tested” voting systems that most people
had previously believed were reasonably accurate. The prin-
cipal problems were the interpretation of punch cards that
were not properly punched through (so-called dimpled or
hanging chads) and the fact that some ballot layouts proved
to be confusing or ambiguous. Two types of voting systems
have been proposed as replacements for the problematic
earlier technology.

Touchscreen
This type of system uses a screen display that can be
directly manipulated by the voter (see touchscreen). In
the most common type, called DRE (direct-recording elec-
tronic), a computer program interprets and tabulates the
vote as it is cast, storing an image in a removable memory
unit and (usually) printing out a copy for backup. After vot-
ing is complete, the memory module can be sent to the cen-
tral counting office. (Alternatively, votes can be transmitted
over a computer network in batches throughout the day.)
In a few cases, voting has also been implemented through
secure Internet sites.

Optical Scan
Concern about potential tampering with computers has led
many jurisdictions to begin to replace touchscreen systems
with optical-scan systems, where the voter marks a sturdy
paper ballot. (About half of U.S. counties now use opti-
cal-scan systems.) The advantage of optical systems is that
the voter physically marks the ballot and can see how he
or she has voted, and after tabulation the physical ballots
are available for review in case of problems. However, opti-
cal-scan ballots must be properly marked using the correct
type of pencil, or they may not be read correctly. Unlike the
touchscreen, it is not possible to give the voter immediate
feedback so that any errors can be corrected. Optical-ballot
systems may cost more because of paper and printing costs
for the ballots, which may have to be prepared in several

There are several types of electronic voting systems, such as this box
that automatically tallies specially marked ballots. Common concerns
include the potential for tampering and the need to provide for inde-
pendent verification of results.  (Lisa McDonald/istockphoto)

electronic voting systems        175

languages. However this cost may be offset by not having to
develop or validate the more complicated software needed
for all-electronic systems.

Whatever system is used, federal law requires that visu-
ally or otherwise disabled persons be given the opportu-
nity, wherever possible, to cast their own vote in privacy.
With optical-scan ballots, this is accommodated with a spe-
cial device that plays an audio file listing the candidates
for each race, with the voter pressing a button to mark
the choice. However, disability rights advocates have com-
plained that existing systems still require that another per-
son physically insert the marked ballot into the scanner.
Touchscreen systems, however, with the aid of audio cues,
can be used by visually disabled persons without the need
for another person to be present. They are thus preferred by
some advocates for the disabled.	

Reforms and Issues
In response to the problems with the 2000 election, Con-
gress passed the Help America Vote Act in 2002. Since then,
the federal government has spent more than $3 billion to
help states replace older voting systems—in many cases
with touchscreen systems.

The biggest concern raised about electronic voting sys-
tems is that they, like other computer systems, may be sus-
ceptible to hacking or manipulation by dishonest officials.
In 2007 teams of researchers at the University of Califor-
nia–Davis were invited by the state to try to hack into its
voting systems. For the test, the researchers were provided
with full access to the source code and documentation for
the systems, as well as physical access. The hacking teams
were able to break into and compromise every type of vot-
ing system tested. In their report, the researchers outlined
what they claimed to be surprisingly weak electronic and
physical security, including flaws that could allow hackers
to introduce computer viruses and take over control of the
systems.

Manufacturers and other defenders of the technology
have argued that the testing was unrealistic and that real-
world hackers would not have had nearly as much informa-
tion about or access to the systems. (This may underestimate
the resourcefulness of hackers, as shown with other sys-
tems, such as the phone system and computer networks.)

Another issue is who will be responsible for indepen-
dently reviewing the programming (source) code for each
system to verify that it does not contain flaws. Manufactur-
ers generally resist such review, considering the source code
to be proprietary. (A possible alternative might be an open-
source voting system. Advocates of open-source software
argue that it is safer precisely because it is open to scrutiny
and testing—see open-source movement.)

One common response to these security concerns is to
require that all systems generate paper records that can be
verified and audited. Some defenders of existing technol-
ogy say that adding a parallel paper system is unnecessarily
expensive and introduces other problems such as printer
failures. They argue that all-electronic systems can be made
safer and more secure, such as through the use of encryp-
tion. (A proposed compromise would be for the machine to

print out a simple receipt with a code that the voter could
use to verify online that the vote was tabulated.)

As of 2007, 28 states had passed laws requiring that vot-
ing systems produce some sort of paper receipt or record
that shows the voter what has been voted and that can be
used later for an independent audit or recount,

Although control of elections is primarily a state or local
responsibility, the federal government does have jurisdic-
tion over elections for federal office. As a practical matter,
any changes in voting technology or procedures mandated
by Congress for federal elections will end up being used in
local elections as well.

In 2007, congressional leaders decided not to require a
major overhaul of the nation’s election systems until at least
2012. However, the inclusion of some sort of paper record is
being mandated for the 2008 election. For users of touch-
screen systems, the simplest way to accommodate this is to
add small paper-spool printers, but some states have com-
plained that their systems would require more-expensive
accommodations.

Meanwhile, a lively debate continues in many states and
other jurisdictions about how to meet the need for accessi-
ble but secure voting systems without breaking the budget.

Further Reading
Drew, Christopher. “Accessibility Isn’t Only Hurdle in Voting

System Overhaul.” New York Times, July 21, 2007. Avail-
able online. URL: http://www.nytimes.com/2007/07/21/
washington/21vote.html. Accessed September 20, 2007.

Open Voting Consortium. Available online. URL: http://www.
openvotingconsortium.org/. Accessed September 20, 2007.

Rubin, Aviel. Brave New Ballot: The Battle to Safeguard Democracy
in the Age of Electronic Voting. New York: Morgan Road Books,
2006.

Saltman, Roy G. The History and Politics of Voting Technology: In
Quest of Integrity and Public Confidence. New York: Palgrave
Macmillan, 2006.

United States Election Assistance Commission. “2005 Voluntary
Voting System Guidelines.” Available online. URL: http://
www.eac.gov/voting%20systems/voting-system-certification/
2005-vvsg. Accessed September 20, 2007.

“Verified Voting: Mandatory Manual Audits of Voter-Verified
Paper Records.” Available online. URL: http://www.verified
voting.org/. Accessed September 20, 2007.

Wildemuth, John. “State Vote Machines Lose Test to Hackers.”
San Francisco Chronicle, July 28, 2007, p. A-1. Available
online. URL: http://www.sfgate.com/cgi-bin/article.cgi?f=/c/
a/2007/07/28/MNGP6R8TJO1.DTL. Accessed September 20,
2007.

e-mail
Electronic mail is perhaps the most ubiquitous computer
application in use today. E-mail can be defined as the send-
ing of a message to one or more individuals via a computer
connection.

Development and Architecture
The simplest form of e-mail began in the 1960s as a way that
users on a time-sharing computer system could post and
read messages. The messages consisted of text in a file that
was accessible to all users. A user could simply log into the

176        e-mail

system, open the file, and look for messages. In 1971, how-
ever, the ARPANET (ancestor of the Internet—see inter-
net) was used by researchers at Bolt Beranek and Newman
(BBN) to send messages from a user at one computer to a
user at another. The availability of e-mail helped fuel the
growth of the ARPANET through the 1970s and beyond.

As e-mail use increased and new features were devel-
oped, the question of a standardized protocol for messages
became more important. By the mid-1980s, the world of
e-mail was rather fragmented, much like the situation in
the early history of the telephone, where users often had to
choose between two or more incompatible systems. Apranet
(or Internet) users used SMTP (Simple Mail Transport Pro-
tocol) while a competing standard (OSI MHS, or Message
Handling System) also had its supporters. Meanwhile, the
development of consumer-oriented online services such as
CompuServe and America Online threatened a further bal-
kanization of e-mail access, though systems called gateways
were developed to transport messages from one system to
another.

By the mid-1990s, however, the nearly universal adop-
tion of the Internet and its TCP/IP protocol had established
SMTP and the ubiquitous Sendmail mail transport program
as a uniform infrastructure for e-mail. The extension of the
Internet protocol to the creation of intranets has largely
eliminated the use of proprietary corporate e-mail systems.

Instead, companies such as Microsoft and Google compete
to offer full-featured e-mail programs that include group-
oriented features such as task lists and scheduling (see also
personal information manager).

E-mail Trends
The integration of e-mail with HTML for Web-style for-
matting and MIME (for attaching graphics and multime-
dia files) has greatly increased the richness and utility of
the e-mail experience. E-mail is now routinely used within
organizations to distribute documents and other resources.
However, the addition of capabilities has also opened secu-
rity vulnerabilities. For example, Microsoft Windows and
the popular Microsoft Outlook e-mail client together pro-
vide the ability to run programs (scripts) directly from
attachments (files associated with e-mail messages). This
means that it is easy to create a virus program that will run
when an enticing-looking attachment is opened. The virus
can then find the user’s mailbox and mail copies of itself to
the people found there. E-mail has thus replaced the floppy
disk as the preferred medium for such mischief. (See com-
puter virus.)

Beyond security issues, e-mail is having considerable
social and economic impact. E-mail has largely replaced
postal mail (and even long-distance phone calls) as a way
for friends and relatives to keep in touch. As more com-
panies begin to use e-mail for providing routine bills and
statements, government-run postal systems are seeing their
first-class mail revenue drop considerably. Despite the risk
of viruses or deception and the annoyance of electronic
junk mail (see spam), e-mail has become as much a part of
our way of life as the automobile and the telephone.

Further Reading
Costales, Bryan, and Eric Allman. Sendmail. 3rd ed. Sebastapol,

Calif.: O’Reilly, 2002.
Sendmail Consortium. Available online. URL: http://www.send

mail.org/. Accessed July 22, 2007.
Shipley, David, and Will Schwalbe. Send: The Essential Guide to

Email for Office and Home. New York: Knopf, 2007.
Song, Mike, Vicki Halsey, and Tim Burress. The Hamster Revolu-

tion: How to Manage Your Email Before It Manages You. San
Francisco: Bennett-Koehler, 2007.

embedded system
When people think of a computer, they generally think of
a general-purpose computing system housed in a separate
box, for use on the desk or as a laptop or hand-held device.
However, the personal computer and its cousins are only the
surface of a hidden web of computing capability that reaches
deep into numerous devices used in our daily lives. Modern
cars, for example, often contain several specialized computer
systems that monitor fuel injection or enhance the car’s grip
on the road under changing conditions. Many kitchen appli-
ances such as microwaves, dishwashers, and even toasters
contain their own computer chips. Communications sys-
tems ranging from cell phones to TV satellite dishes include
embedded computers. Most important, embedded systems
are now essential to the operation of critical infrastructure

Transmission of an e-mail message depends on widely used proto-
cols such as SMTP, which controls message format and processing,
and POP3, which handles interaction between mail servers and
client programs. As long as the formats are properly followed, users
can employ a wide variety of mail programs (agents), and service
providers can use a variety of mail server programs.

embedded system        177

such as medical monitoring systems and power transmission
networks. (The potential vulnerability of embedded systems
to the Y2K date-related problems was a major concern in
the months leading up to 2000, especially because many
embedded systems might have to be replaced rather than
just reprogrammed. In the event, it turned out that there
were relatively few date-dependent systems and only minor
disruptions were experienced. See y2k problem.)

Characteristics of Embedded Systems
What most distinguishes an embedded system from a desk-
top computer is not that it is hidden inside some other device,
but that it runs a single, permanent program whose job it is
to monitor and respond to the environment in some way.
For example, an oven controller would accept a user input
(the desired temperature), monitor a sensor or thermostat,
and control the heat to ensure that the correct temperature
is being maintained. Embedded systems are thus similar to
robots in that they sense and manipulate their environment.

Architecturally, an embedded system typically consists of
a microprocessor, some nonvolatile memory (memory that can
maintain its contents indefinitely), sensors (to receive read-
ings from the environment), signal processors (to convert
inputs into usable information), and “effectuators” (switches
or other controls that the embedded system can use to change
its environment). In practice, an embedded system may not
have its own sensors or effectors, but instead interface with
other systems (such as avionics or steering).

Programmers of embedded systems often use spe-
cial compilers or languages that are particularly suited
for creating embedded software (see ada and forth).

Because available memory is limited, embedded program
code tends to be compact. Since embedded systems are
often responsible for critical infrastructure, their operat-
ing programs must be carefully debugged. Designers try
to make programs “robust” so they can respond sensibly
to unexpected conditions or at least “fail gracefully” in
a way least likely to cause damage. Other strategies to
improve the reliability of embedded systems include the
use of overdesigned, fault-tolerant components (as in the
military “milspec”) and the use of separate, redundant
systems so that a failing system can be “locked out” and
processing can continue elsewhere.

Further Reading
Catsoulis, John. Designing Embedded Hardware. 2nd ed. Sebasta-

pol, Calif.: O’Reilly, 2005.
Embedded.com: “Thinking inside the Box.” Available online. URL:

http://www.embedded.com/. Accessed July 22, 2007.
Embedded Systems. Dr. Dobb’s Portal. Available online. URL:

http://www.ddj.com/dept/embedded/. Accessed July 22, 2007.
Norergaard, Tammy. Embedded Systems Architecture: A Comprehen-

sive Guide for Engineers and Programmers. Burlington, Mass.:
Newnes/Elsevier, 2005.

Simon, David E. An Embedded Software Primer. Upper Saddle River,
N.J.: Addison-Wesley/Pearson Education, 1999.

employment in the computer field
The number of computer-related positions has grown rap-
idly over the past few decades. According to the U.S. Bureau
of Labor Statistics, by the mid-1990s the fastest-growing
professions in the United States included systems analysts,
computer scientists, and computer engineers. By the mid-
2000s, computer-related occupations were still near the top
of the list, which by then also included network and com-
munications analysts (second only to “home health aids”).

Computer-related employment can be broken down into
the following general categories:

• � hardware design and manufacturing, including com-
puter systems, peripherals, communications and net-
work hardware, and other devices

• � the software industry, ranging from business applica-
tions to consumer software, games, and entertainment

• � the administrative sector (systems administration,
network administration, database administration,
computer security, and so on)

• � the Web sector, including ISPs, Web hosts and page
developers, and e-commerce applications

• � the support sector, including training and education,
computer book publishing, technical support, and
systems repair and maintenance

In addition to these “pure” computer-related jobs, there
are many other positions that involve working with PCs.
These include word processing/desktop publishing, statis-
tics, scientific research, accounting and billing, shipping,
retail sales and inventory, and manufacturing. (See also
programming as a profession.)

An embedded system is a computer processor that is part of a
“real-world” device that must interact with its environment. Sensor
inputs (such as torque or pressure sensors) provide real-time data
about conditions faced by the device (such as a vehicle). This data
is processed by the onboard processor under the control of a per-
manent (ROM) program, and commands are issued to the effector
controls, which might, for example, apply braking pressure.

178        employment in the computer field

Job Market Considerations
In the late 1990s, a number of sources forecast a growing
gap between the number of positions opening in computer-
related fields and the number of new people entering the
job market (estimates of the gap’s size ranged into the hun-
dreds of thousands nationally). Particularly in the Internet
sector, demand for programmers and system administrators
meant that new college graduates with basic skills could
earn unprecedented salaries, while experienced profession-
als could often become highly paid consultants. Despite the
growing emphasis on computing in secondary and higher
education, computer science and engineering candidates
were in particularly short supply. As a result, many com-
panies received permission to hire larger numbers of immi-
grants from countries such as India.

The “dot crash” of 2001–2002 saw a sharp if temporary
decline in demand for computer professionals, particularly
in the Web and e-commerce sectors, but it impacted hard-
ware sales as well. The industry then saw a resurgence, but
with an emphasis on somewhat different skill sets. Skills in
strong demand toward the end of the 2000 decade include:

• � detection, prevention, and investigation of computer
attacks (see computer crime and security and com-
puter forensics)

• � improvements in operating system and software
security

• � use of open-source software and operating systems
(see open-source movement and Linux)

• � surveillance and physical security (see biometrics)

• � transaction analysis for both security and marketing
applications (see data mining)

• � e-commerce applications and management (see cus-
tomer relationship management)

• � rapid development of efficient, highly interactive Web
services (see Ajax, Web 2.0 and beyond, and script-
ing languages)

• � hardware and software for mobile and wireless devices
(particularly delivery and integration of media)

• � content management for Web sites and media services

• � scientific computing, particularly genetic and biologi-
cal applications (see bioinformatics)

On the other hand, with the successful passing of the
Y2K crisis, the outlook for mainframe programmers (par-
ticularly using COBOL) is increasingly dim. Prospects are
also poor for certain operating, network, and database sys-
tems with declining market share (such as OS/2, Novell
networking, and some older database systems). It is true
that as baby boomer programmers retire, there will be
some demand for maintenance or conversion of obsolescent
systems. Finally, as global trends toward outsourcing and
relocating of lower-level support and even programming
continue, it may become harder for domestic workers to
begin to climb the IT ladder.

Socially, the key challenges that must be met to ensure
a healthy computer-related job market are the improvement
of education at all levels (see education and computers)
and the increasing of ethnic and gender diversity in the
field (which is related to the fostering of more equal educa-
tional opportunity), and adapting to changes in the global
economy (see globalism and the computer industry).

Further Reading
Brandel, Mary. “12 IT Skills that Employers Can’t Say No To.”

Computerworld, July 11, 2007. Available online. URL: http://
www.computerworld.com/action/article.do?command=viewA
rticleBasic&articleId=9026623. Accessed July 22, 2007.

Farr, Michael. Top 100 Computer and Technical Careers. 3rd ed. St.
Paul, Minn.: JIST Works, 2006.

Henderson, Harry. Career Opportunities in Computers and Cyber-
space. 2nd ed. New York: Facts On File, 2004.

Information Technology Jobs in America. New York: Info Tech
Employment Publications, 2007.

U.S. Department of Labor. Occupational Outlook Handbook,
2006–07 edition. Available online. URL: http://www.bls.gov/
oco/. Accessed July 22, 2007.

Vocational Information Center. Computer Science Career Guide.
Available online. URL: http://www.khake.com/page17.html.
Accessed July 22, 2007.

emulation
One consequence of the universal computer concept (see
von Neumann, John) is that in principle any computer
can be programmed to imitate the operation of any other.
An emulator is a program that runs on one computer but
accurately processes instructions written for another (see
also microprocessor and assembler). For example, fans
of older computer games can now download emulation
programs that allow modern PCs to run games originally
intended for an Apple II microcomputer or an Atari game
machine. Emulators allowing Macintosh and Linux users to
run Windows programs have also achieved some success.

In order to work properly, the emulator must set up a
sort of virtual model of the target microprocessor, includ-
ing appropriate registers to hold data and instructions and a
suitably organized segment of memory. While carrying out
instructions in software rather than in hardware imposes
a considerable speed penalty, if the processor of the emu-
lating PC is much faster than the one being emulated, the
emulator can actually run faster than the original machine.

An entire hardware and software environment can also
be emulated; this is called a virtual machine. For example,
programs such as VMware can be used to run Windows,
Linux, and BSD UNIX, each in a separate “compartment”
that appears to be a complete machine, with all the neces-
sary hardware drivers and emulated facilities.

The term virtual machine can also refer to language such
as Java, where programs are first compiled into a platform-
independent intermediate “byte code,” which is then run
by a Java virtual machine that produces the instructions
needed for a given platform.

In the past, emulation was sometimes used to allow pro-
grammers to develop software for large, expensive main-
frames while using smaller machines. Emulators can also

emulation        179

consist of a combination of specially-designed chips and
software, as in the case of the “IBM 360 on a chip” that
became available for the IBM PCs.	

The term emulation is also sometimes used to refer to a
program that accurately simulates the operation of a hard-
ware device. For example, when printers that included
hardware for processing the PostScript typographical lan-
guage were expensive, programs were developed that could
process the PostScript instructions in the PC itself and then
send the output as graphics to a less expensive printer.

Further Reading
Comparison of Virtual Machines. Wikipedia. Available online.

URL: http://en.wikipedia.org/wiki/Comparison_of_virtual_
machines. Accessed July 23, 2007.

Smith, Jim, and Ravi Nair. Virtual Machines: Versatile Platforms
for Systems and Processes. San Francisco: Morgan Kaufmann,
2005.

VMware. Available online. URL: http://www.vmware.com. Accessed
July 23, 2007.

encapsulation
In the earliest programming languages, any part of a pro-
gram could access any other part simply by executing an
instruction such as “jump” or “goto.” Later, the concept of
the subroutine helped impose some order by creating rela-
tively self-contained routines that could be “called” from
the main program. At the time the subroutine is called, it is
provided with necessary data in the form of global variables
or (preferably) parameters, which are variable references
or values passed explicitly when the subroutine is called.
When the subroutine finishes processing, it may return val-
ues by changing global variables or changing the values of
variables that were passed as parameters (see procedures
and functions).

While an improvement over the totally unstructured
program, the subroutine mechanism has several drawbacks.
If it is maintained as part of the main program code, one
programmer may change the subroutine while another pro-
grammer is still expecting it to behave as previously defined.
If not properly restricted, variables within the subroutine
might be accessed directly from outside, leading to unpre-
dictable results. To minimize these risks, languages such as
C and Pascal allow variables to be defined so that they are
“local”—that is, accessible only from code within the func-
tion or procedure. This is a basic form of encapsulation.

The class mechanism in C++ and other object-oriented
languages provides a more complete form of encapsulation
(see object-oriented programming, class, and C++). A
class generally includes both private data and procedures or
methods (accessible only from within the class) and public
methods that make up the interface. Code in the main pro-
gram uses the class interface to create and manipulate new
objects of that class.

Encapsulation thus both protects code from uncontrolled
modification or access and hides information (details) that
programmers who simply want to use functionality don’t
need to know about. Thus, high-quality classes can be
designed by experts and marketed to other developers who

can take advantage of their functionality without having to
“reinvent the wheel.”

Further Reading
Berard, Edward V. “Abstraction, Encapsulation, and Information

Hiding.” Available online. URL: http://www.itmweb.com/
essay550.htm. Accessed July 23, 2007.

Booch, G. Object-Oriented Analysis and Design with Applications.
3rd ed. Upper Saddle River, N.J.: Addison-Wesley, 2007.

Müller, Peter. “Introduction to Object-Oriented Programming
Using C++.” Available online. URL: http://www.gnacademy.
org/uu-gna/text/cc/Tutorial/tutorial.html. Accessed August
14, 2007.

Poo, Danny, and Derek Kiong. Object-Oriented Programming and
Java. 2nd ed. New York: Springer-Verlag, 2007.

encryption
The use of encryption to disguise the meanings of messages
goes back thousands of years (the Romans, for example,
used substitution ciphers, where each letter in a message
was replaced with a different letter). Mechanical cipher
machines first came into general use in the 1930s. Dur-
ing World War II the German Enigma cipher machine
used multiple rotors and a configurable plugboard to cre-
ate a continuously varying cipher that was thought to be
unbreakable. However, Allied codebreakers built electrome-
chanical and electronic devices that succeeded in exploiting
flaws in the German machine (while incidentally advancing
computing technology). During the cold war Western and
Soviet cryptographers vied to create increasingly complex
cryptosystems while deploying more powerful computers
to decrypt their opponent’s messages.

In the business world, the growing amount of valuable
and sensitive data being stored and transmitted on comput-
ers by the 1960s led to a need for high-quality commercial
encryption systems. In 1976, the U.S. National Bureau of
Standards approved the Data Encryption Standard (DES),
which originally used a 56-bit key to turn each 64-bit
chunk of message into a 64-bit encrypted ciphertext. DES
relies upon the use of a complicated mathematical function
to create complex permutations within blocks and charac-
ters of text. DES has been implemented on special-purpose
chips that can encrypt millions of bytes of message per
second.

Public-Key Cryptography
Traditional cryptosystems such as DES use the same key to
encrypt and decrypt the message. This means that the key
must be somehow transmitted to the recipient before the
latter can decode the message. As a result, security may be
compromised. However, the same year DES was officially
adopted, Whitfield Diffie and Martin Hellman proposed a
very different approach, which became known as public-
key cryptography. In this scheme each user has two keys, a
private key and a public key. The user publishes his or her
public key, which enables any interested person to send the
user an encrypted message that can be decrypted only by
using the user’s private key, which is kept secret. The sys-
tem is more secure because the private key is never trans-

180        encapsulation

mitted. Further, a user can distribute a message encrypted
with his or her private key that can be decrypted only with
the corresponding public key. This provides a sort of signa-
ture for authenticating that a message was in fact created by
its putative author.

In 1978, Ron Rivest, Adi Shamir, and Leonard Adelman
announced the first practical implementation of public-key
cryptography. This algorithm, called RSA, became the pre-
vailing standard in the 1980s. While keys may need to be
lengthened as computer power increases, RSA is likely to
remain secure for the foreseeable future.

Legal Challenges
Until the 1990s, the computer power required for routine
use of encryption was generally beyond the reach of most
small business and consumer users, and there was little
interest in a version of the RSA algorithm for microcomput-
ers. Meanwhile, the U.S. federal government tried to main-
tain tight controls over encryption technology, including
prohibitions on the export of encryption software to many
foreign countries.

However, the growing use of electronic mail and the
hosting of commerce on the Internet greatly increased con-
cern about security and the need to implement an easy-to-
use form of encryption. In 1990, Philip Zimmermann wrote

an RSA-based email encryption program that he called
Pretty Good Privacy (PGP). However, RSA, Inc. refused to
grant him the necessary license for its distribution. Further,
FBI officials and sympathetic members of Congress seemed
poised to outlaw the use of any form of encryption that did
not include a provision for government agencies to decode
messages.

Believing that people’s liberty and privacy were at stake,
Zimmermann gave copies of PGP to some friends. The pro-
gram soon found its way onto computer bulletin boards,
and then spread worldwide via Internet newsgroups and
ftp sites. Zimmermann then developed PGP 2.0, which
offered stronger encryption and a modular design that
made it easy to create versions in other languages. The
U.S. Customs Department investigated the distribution of
PGP but dropped the investigation in 1996 without bring-
ing charges. (At about the same time a federal judge ruled
that mathematician Daniel Bernstein had the right to pub-
lish the source code for an encryption algorithm without
government censorship.)

Government agencies eventually realized that they
could not halt the spread of PGP and similar programs. In
the early 1990s, the National Security Agency (NSA), the
nation’s most secret cryptographic agency, proposed that
standard encryption be provided to all PC users in the form
of hardware that became known as the Clipper Chip. How-
ever, the hardware was to include a “back door” that would
allow government agencies and law enforcement (presum-
ably upon fulfilling legal requirements) to decrypt any mes-
sage. Civil libertarians believed that there was far too much
potential for abuse in giving the government such power,
and a vigorous campaign by privacy groups resulted in the
mandatory Clipper Chip proposal being dropped by the
mid-1990s in favor of a system called “key escrow.” This
system would require that a copy of each encryption key
be deposited with one or more trusted third-party agencies.
The agencies would be required to divulge the key if pre-
sented with a court order. However, this proposal has been
met with much the same objections that had been made
against the Clipper Chip.

In the early 21st century, the balance is likely to con-
tinue to favor the code-makers over the code-breakers.
While it is rumored that the NSA can use arrays of super-
computers to crack any encrypted message given enough
time, and a massive eavesdropping system called Echelon
for analyzing message traffic has been partially revealed, as
a practical matter most of the world now has access to high-
quality cryptography. Only radically new technology (see
quantum computing) is likely to reverse this trend.

Further Reading
Cobb. Chey/ Cryptography for Dummies. Hoboken, N.J.: John Wiley

& Sons, 2004.
Henderson, Harry. Privacy in the Information Age (Library in a

Book) 2nd ed. New York: Facts On File, 2006.
“The International PGP Home Page.” Available online. URL: http://

www.pgpi.org/. Accessed February 2, 2008.
Levy, Stephen. Crypto. New York: Viking, 2001.
Singh, Simon. The Code Book: the Science of Secrecy from Ancient Egypt

to Quantum Cryptography. New York: Anchor Books, 2000.

Public key encryption allows users to communicate securely with-
out having to exchange their private keys. In part 1, person A
publishes a public key, which can be used by anyone else (such as
person B) to encrypt a message that only person A can read. In part
2, person A encrypts a message with his or her private key. Since
this message can only be encrypted using person A’s public key, per-
son B can use the published public key to verify that the message is
indeed from person A.

encryption        181

Engelbart, Douglas
(1925– )
American
Computer Engineer

Douglas Engelbart invented key elements of today’s graphi-
cal user interface, including the use of windows, hypertext
links, and the ubiquitous mouse. Engelbart grew up on
a small farm near Portland, Oregon, and acquired a keen
interest in electronics. His electrical engineering studies
at Oregon State University were interrupted by wartime
service in the Philippines as a radar technician. During that
time he read a seminal article by Vannevar Bush entitled
“As We May Think.” Bush presented a wide-ranging vision
of an automated, interlinked text system not unlike the
development that would become hypertext and the World
Wide Web (see Bush, Vannevar).

After returning to college for his Ph.D. (awarded in
1955), Engelbart worked for NACA (the predecessor of
NASA) at the Ames Laboratory. Continuing to be inspired
by Bush’s vision, Engelbart conceived of a computer dis-
play that would allow the user to visually navigate through
information displays. Engelbart received his doctorate in
electrical engineering in 1955 at the University of Califor-
nia, Berkeley, taught there a few years, and then went to
the Stanford Research Institute (SRI), a hotbed of futur-
istic ideas. In 1962, Engelbart wrote a seminal paper of
his own, titled “Augmenting Human Intellect: A Concep-
tual Framework.” In this paper Engelbart emphasized the
computer not as a mere aid to calculation, but as a tool
that would enable people to better visualize and organize
complex information to meet the increasing challenges of
the modern world. The hallmark of Engelbart’s approach
to computing would continue to be his focus on the central
role played by the user.

In 1963, Engelbart left SRI and formed his own research
lab, the Augmentation Research Center. During the 1960s
and 1970s, he worked on implementing linked text systems
(see hypertext and hypermedia). In order to help users
interact with the computer display, he came up with the
idea of a device that could be moved to control a pointer
on the screen. Soon called the “mouse,” the device would
become ubiquitous in the 1980s.

Engelbart also took a key interest in the development
of the ARPANET (ancestor of the Internet) and adapted his
NLS hypertext system to help coordinate network develop-
ment. (However, the dominant form of hypertext on the
Internet would be Tim Berners-Lee’s World Wide Web—(see
Berners-Lee, Tim.) In 1989, Engelbart founded the Boot-
strap Institute, an organization dedicated to improving the
collaboration within organizations, and thus their perfor-
mance. During the 1990s, this nurturing of new businesses
and other organizations would become his primary focus.

Engelbart received the MIT-Lemuelson Award and the
a.m. Turing Award in 1997 and the National Medal of Tech-
nology in 2000. Public recognition of Engelbart’s work and
ideas about human-computer interaction was also reflected
in a Stanford University symposium called “Engelbart’s
Unfinished Revolution.”

Further Reading
Bardini, Thierry. Bootstrapping: Douglas Engelbart, Coevolution,

and the Origins of Personal Computing. Stanford, Calif.: Stan-
ford University Press, 2000.

Bootstrap Institute. Available online. URL: http://www.bootstrap.
org. Accessed July 23, 2007.

“Engelbart’s Unfinished Revolution.” Stanford University Sym-
posium. Available online. URL: http://www.itmweb.com/
essay550.htm. Accessed July 23, 2007.

“Internet Pioneers: Doug Engelbart.” Available online. URL: http://
www.ibiblio.org/pioneers/Engelbart.html. Accessed April 18,
2008.

Engelberger, Joseph
(1925– )
American
Entrepreneur, Roboticist

Joseph Engelberger and George Devol created the first indus-
trial robot, revolutionizing the assembly line. Engelberger
went on to develop other robots that can work in hospi-
tals and other settings while tirelessly promoting industrial
robotics.

Engelberger was born on July 26, 1925, in New York
City. During World War II he was selected for a special pro-
gram where promising students were paid to study physics
at Columbia University. Just after the war he worked as
an engineer on early nuclear tests in the Pacific. He also
worked on aerospace and nuclear power projects. After com-
pleting his military duties, Engelberger attended Columbia
University’s School of Engineering and earned B.S. (1946)
and M.S. degrees in physics and electrical engineering. This
solid background in science and engineering would shape
Engelberger’s practical approach to robot design.

A number of technologies of the 1940s and 1950s con-
tributed to the later development of robotics. The war had
greatly increased the development of automatic controls
and servomechanisms that allow for precise positioning and
manipulation of machine parts. The rise of nuclear power
and the need to safely handle radioactive materials also
spurred the development of automatic controls. Engelberger
began to develop business ventures in the automation field,
starting a company called Consolidated Controls.

In the mid-1950s Engelberger met George Devol, an inven-
tor who had patented a programmable transfer machine. This
was a device that could automatically move components from
one specified position to another, such as in a die-casting
machine that formed parts for automobiles. Engelberger
realized that Devol’s machine could, with some additional
extensions and capabilities, become a robot that could be
programmed to work on an assembly line.

In 1956 Engelberger and Devol founded Unimate, Inc.—
the world’s first industrial robot company. Their robot,
also called Unimate, is essentially a large “shoulder” and
arm. The shoulder can move along a track to position the
arm near the materials to be manipulated. The arm can be
equipped with a variety of specialized grasping “hands” to
suit the task. The robot is programmed to perform a set of
repetitive motions. It is also equipped with various devices

182        Engelbart, Douglas

for aligning the workpiece (the object to be manipulated)
and to make small adjustments for variations.

In spring 1961 the first Unimate robot began opera-
tions on the assembly line at the General Motors Plant in
Turnstedt, a suburb of Trenton, New Jersey. Most of the
factory’s 3,000 human workers welcomed the newcomer
because Unimate would be doing a job involving the cast-
ing of car doors and other parts from molten metal—hot,
dangerous work. That first Unimate worked for nearly 10
years, tirelessly keeping up with three shifts of human
workers each day.

In 1980 Engelberger published Robotics in Practice. This
book, together with Robotics in Service (1988), became a
standard textbook that defined the growing robotics indus-
try. The two titles also marked a shifting of Engelberger’s
focus from industrial robots to service robots—robots that
would do their jobs not in factories, but in workplaces such
as warehouses or hospitals.

In the 1980s Engelberger founded HelpMate Robotics,
Inc. The company’s most successful product has been the
HelpMate robot. The robot is designed to dispatch records,
laboratory samples, and supplies throughout a busy hos-
pital. HelpMate does not follow a fixed track. Rather, it is
programmed to visit a succession of areas or stations and
makes its own way, using cameras to detect and go around
obstacles. HelpMate can even summon an elevator to go to
a different floor!

Along with other robotics entrepreneurs, Engelberger
is also looking toward a time when robots will be able to
perform a number of useful tasks in the home. In particu-
lar, Engelberger sees great potential for robots in helping
to care for the growing population of elderly people who
need assistance in the tasks of daily life. He points out that
no government or insurance company can afford to hire a
full-time human assistant to enable older people to con-
tinue to live at home. However, a suitable robot could fetch
things, remind a person when it is time to take medication,
and even perform medical monitoring and summon help if
necessary.

Joseph Engelberger’s achievements in industrial and ser-
vice robotics have won him numerous plaudits and awards
from the industry. He has also received honorary doctorates
from five institutions, including Carnegie Mellon University
in Pittsburgh—one of the great centers of robotics research
in the United States.

Since 1977, the Robotics Industries Association has pre-
sented the annual Joseph F. Engelberger Award to honor the
most significant innovators in the science and technology
of robotics. Engelberger was elected to the National Acad-
emy of Engineering in 1984. He also received the Prog-
ress Award of the Society of Manufacturing Engineers and
the Leonardo da Vinci Award of the Society of Mechanical
Engineers, as well as the 1982 American Machinist Award.
In 1992 Engelberger was included in the London Sunday
Times series on “The 1000 Makers of the 20th Century.”
Japan has awarded him the Japan Prize for his key role in
the establishment of that nation’s thriving robotics indus-
try. In 2000 Engelberger delivered the keynote address to
the World Automation Congress, which was also dedicated

to him. In 2004 he received the IEEE Robotics and Automa-
tion Award.

Further Reading
Brain, Marshall. “Robotic Nation.” Available online. URL: http://

marshallbrain.com/robotic-nation.htm. Accessed May 3,
2007.

Engelberger, Joseph F. Robotics in Practice: Management and Appli-
cations of Industrial Robots. New York: AMACOM, 1980.

———. Robotics in Service. Cambridge, Mass.: MIT Press, 1989.
———. “Whatever Became of Robotics Research.” Robotics Online.

http://www.roboticsonline.com/public/articles/articlesdetails.
cfm?id=769. Accessed May 3, 2007.

Henderson, Harry. Modern Robotics: Building Versatile Machines.
New York: Chelsea House, 2006.

Nof, Shimon Y. Handbook of Industrial Robotics. 2nd ed. New York:
Wiley, 1999.

Robotics Online. Available online. URL: http://www.roboticsonline.
com/. Accessed May 3, 2007.

enterprise computing
This concept refers to the organization of data processing
and communications across an entire corporation or other
organization. Historically, computing technology and infra-
structure often developed at different rates in the various
departments of a corporation. For example, by the 1970s,
departments such as payroll and accounting were making
heavy use of electronic data processing (EDP) using main-
frame computers. The introduction of the desktop computer
in the 1980s often resulted in operations such as marketing,
corporate communications, and planning being conducted
using a disparate assortment of software, databases, and
document repositories. Even the growing use of networking
often meant that an enterprise had several different net-
works with at best rudimentary intercommunication.

The movement toward enterprise computing, while often
functioning as a buzzword for the selling of new network-
ing and knowledge management technology, conveys a real
need both to manage and leverage the growing information
resources used by a large-scale enterprise. The infrastruc-
ture for enterprise computing is the network, which today
is increasingly built using Internet protocol (see tcp/ip),
although legacy networks must often still be supported.
Enterprise-oriented software uses the client-server model,
with an important decision being which operating systems
to support (see client-server computing).

The need for flexibility in making data available across
the organization is leading to a gradual shift from the older
relational database (RDBMs) to object-oriented databases
(OODBMs). One advantage of object-oriented databases is
that it is more scalable (able to be expanded without run-
ning into bottlenecks) and data can be distributed dynami-
cally to take advantage of available computing resources.
(An alternative is the central depository. See data ware-
house.) The dynamic use of storage resources is also impor-
tant (see disk array).

The payoffs for a well-integrated enterprise informa-
tion system go beyond efficiency in resource utilization and
information delivery. If, for example, the marketing depart-
ment has full access to data about sales, the data can be

enterprise computing        183

analyzed to identify key features of consumer behavior (see
data mining).

Further Reading
Bernard, Scott A. An Introduction to Enterprise Architecture Plan-

ning. 2nd ed. Bloomington, Ind.: AuthorHouse, 2005.
Blanding, Steve, ed. Enterprise Operations Management Handbook.

2nd ed. Boca Raton, Fla.: CRC Press, 1999.
Carbone, Jane. IT Architecture Toolkit. Upper Saddle River, N.J.:

Prentice Hall PTR, 2004.
Zachman Institute for Framework Advancement. Available online.

URL: http://www.zifa.com/. Accessed July 29, 2007.

entrepreneurs in computing
Much publicity has been given to figures such as Micro-
soft founder and multibillionaire Bill Gates, who turned a
vest-pocket company selling BASIC language tapes into the
dominant seller of operating systems and office software for
PCs. Historically, however, the role of key entrepreneurs in
the establishment of information technology sectors repeats
the achievements of such 19th- and early 20th-century
technology pioneers as Thomas Edison and Henry Ford.
There appear to be certain times when scientific insight and
technological capability can be translated into businesses
that have the potential to transform society while making
the pioneers wealthy.

Like their counterparts in earlier industrial revolu-
tions, the entrepreneurs who created the modern computer
industry tend to share certain common features. In posi-
tive terms one can highlight imagination and vision such
as that which enabled J. Presber Eckert and John Mauchly
to conceive that the general-purpose electronic computer
could find an essential place in the business and scientific
world (see Eckert, J. Presper and Mauchly, John). In
the software world, observers point to Bill Gates’s intense
focus and ability to create and market not just an operat-
ing system but also an approach to computing that would
transform the office (see Gates, William, III). The Internet
revolution, too, was sparked by both an “intellectual entre-
preneur” such as Tim Berners-Lee, inventor of the World
Wide Web (see Berners-Lee, Tim) and by Netscape found-
ers Mark Andreessen and Jim Clark, who turned the Web
browser into an essential tool for interacting with informa-
tion both within and outside of organizations.

While technological innovation is important, the ability
to create a “social invention”—such as a new vehicle or plan
for doing business, can be equally telling. At the beginning
of the 21st century, the World Wide Web, effectively less
than a decade old, is seeing the struggle of entrepreneurs
such as Amazon.com’s Jeff Bezos, eBay’s Pierre Omidyar,
and Yahoo!’s Jerry Yang to expand significant toeholds in
the marketing of products and information into sustainable
businesses.

Historically, as industries mature, the pure entrepre-
neur tends to give way to the merely effective CEO. In
the computer field, however, it is very hard to sort out the
waves of innovation that seem to follow close upon one
another. Some sectors, such as the selling of computer sys-
tems (a sector dominated by entrepreneurs such as Michael

Dell [Dell Computers] and Compaq’s Rod Canion) seem to
have little remaining scope for innovation. In other sectors,
such as operating systems (an area generally dominated
by Microsoft), an innovator such as Linus Torvalds (devel-
oper of Linux) can suddenly emerge as a viable challenger.
And as for the Internet and e-commerce, it is too early to
tell whether the pace of innovation has slowed and the
shakeout now under way will lead to a relatively stable
landscape. (Note: a number of other biographies of com-
puter entrepreneurs are featured in this book. For example,
see Andreessen, Marc; Bezos, Jeffrey P.; Engelberger,
Joseph; Moore, Gordon E.; and Omidyar, Pierre.)

Further Reading
Cringely, R. X. Accidental Empires. New York: Harper, 1997.
Henderson, Harry. A to Z of Computer Scientists. New York: Facts

On File, 2003.
———. Communications and Broadcasting. (Milestones in Science

and Invention). New York: Chelsea House, 2006.
Jager, Rama Dev and Rafael Ortiz. In the Company of Giants. New

York: McGraw-Hill, 1997.
Malone, Michael S. Betting It All: The Technology Entrepreneurs.

New York: Wiley, 2001.
———. The Valley of Heart’s Delight: A Silicon Valley Notebook,

1963–2001. New York: Wiley, 2001.
Reid, R. H. Architects of the Web. New York: John Wiley, 1997.
Spector, Robert. amazon.com: Get Big Fast. New York: Harper-Busi-

ness, 2000.

enumerations and sets
It is sometimes useful to have a data structure that holds
specific, related data values. For example, if a program is to
perform a particular action for data pertaining to each day
of the week, the following Pascal code might be used:

type Day is (Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday, Sunday)

Such a data type (which is also available in Ada, C, and
C++) is called an enumeration because it enumerates, or
“spells out” each and every value that the type can hold.

Once the enumeration is defined, a looping structure
can be used to process all of its values, as in:

var Today: Day;
for Today: = Monday to Sunday do (some state-
ments)

Pascal, C, and C++ do not allow the same item to be
used in more than one enumeration in the same name space
(area of reference). Ada, however, allows for “overloading”
with multiple uses of the same name. In that case, however,
the name must be qualified by specifying the enumeration
to which it belongs, as in:

If Day = Days (‘Monday’) . . .

As far as the compiler is concerned, an enumeration
value is actually a sequential integer. That is, Monday = 0,
Tuesday = 1, and so on. Indeed, built-in data types such as
Boolean are equivalent to enumerations (false = 0, true =
1) and in a sense the integer type itself is an enumeration

184        entrepreneurs in computing

consisting of 0, 1, 2, 3, . . . and their negative counterparts.
Pascal also includes built-in functions to retrieve the pre-
ceding value in the enumeration (pred), the following ele-
ment (succ), or the numeric position of the current element
(ord).

The main advantage of using explicit enumerations is
that a constant such as “Monday” is more understandable
to the program’s reader than the value 0. Enumerations are
frequently used in C and C++ to specify a limited group
of items such as flags indicating the state of device or file
operation.

Unlike most other languages Pascal and Ada also allow
for the definition of a subrange, which is a sequential por-
tion of a previously defined enumeration. For example, once
the Day type has been defined, an Ada program can define
subranges such as:

subtype Weekdays is Days range Monday . .
Friday;
subtype Weekend is Days range Saturday . .
Sunday;

Sets
The set type (found only in Pascal and Ada) is similar to an
enumeration except the order of the items is not significant.
It is useful for checking to see whether the item being con-
sidered belongs to a defined group. For example, instead of
a program checking whether a character is a vowel as fol-
lows:

if (char = ‘a’) or (char = ‘e’) or (char = ‘i’)
or (char = ‘o’) or (char = ‘u’) . . .

the program can define:

type Vowels = (a, e, i, o, u);
if char in Vowels . . .

Further Reading
Sebesta, Robert W. Concepts of Programming Languages. 8th ed.

Boston: Pearson, 2007.

ergonomics of computing
Ergonomics is the study of the “fit” between people and
their working environment. Because computers are such
a significant part of the working life of so many people,
finding ways for people to maximize efficiency and reduce
health risks associated with computer use is increasingly
important.

Since the user will be looking at the computer monitor
for hours on end, it is important that the display be large
enough to be comfortably readable and that there be enough
contrast. Glare on the monitor surface should be avoided.
It is recommended that the monitor be placed so that the
top line of text is slightly below eye level. A distance of
about 18 inches to two feet (roughly arm’s length) is recom-
mended. There has been concern about the health effects of
electromagnetic radiation generated by monitors. Most new
monitors are designed to have lower emissions.

While the “standard” keyboard has changed little in
20 years of desktop computing, there have been attempts
at innovation. One, the Dvorak keyboard, uses an alter-
native arrangement of letters to the standard “QWERTY.”
Although it is a more logical arrangement from the point of
view of character frequency, studies have generally failed
to show sufficient advantage that would compensate for
the effort of retraining millions of typists. There have also
been specially shaped “ergonomic” keyboards that attempt
to bring the keys into a more natural relationship with the
hand (see keyboard).

The use of a padded wrist rest remains controversial.
While some experts believe it may reduce strain on the arm
and neck, others believe it can contribute to Carpal Tunnel
Syndrome. This injury, one of the most serious repetitive
stress injuries (RSIs), is caused by compression of a nerve
within the wrist and hand.

Because of reliance on the mouse in many applications,
experts suggest selecting a mouse that comfortably fits the
hand, with the buttons falling “naturally” under the fingers.
When moving the mouse, the forearm, wrist, and fingers
should be kept straight (that is, in line with the mouse).
Some people may prefer the use of an alternative pointing
device (such as trackball or “stub” within the keyboard
itself, often found in laptop computers).

A variety of so-called ergonomic chairs of varying qual-
ity are available. Such a chair can be a good investment in
worker safety and productivity, but for best results the chair
must be selected and adjusted after a careful analysis of
the individual’s body proportions, the configuration of the
workstation, and the type of applications being used. In
general, a good ergonomic chair should have an adjustable
seat and backrest and feel stable rather than rickety.

The operating system and software in use are also
important. Providing clear, legible text, icons or other
controls and a consistent interface will contribute to the
user’s overall sense of comfort, as well as reducing eye-
strain. It is also important to try to eliminate unnecessary
repetitive motion. For example, it is helpful to provide
shortcut key combinations that can be used instead of a
series of mouse movements. Beyond specific devices, the
development of an integrated design that reduces stress
and improves usability is part of what is sometimes called
human factors research.

In March 2001, President Bush cancelled new OSHA
standards that would have further emphasized reporting
and mitigating repetitive stress and musculo-skeletal dis-
orders (MSDs). However, the legal and regulatory climate
is likely to continue to place pressure on employers to take
ergonomic considerations into account.

Further Reading
Coe, Marlana. Human Factors for Technical Communicators. New

York: Wiley, 1996.
Dul, Jan, and Bernard Weerdmeester. Ergonomics for Beginners:

A Quick Reference Guide. 2nd ed. Grand Rapids, Mich.: CRC
Press, 2001.

“Ergonomic Design for Computer Workstations.” Available online.
URL: http://www.ergoindemand.com/computer-workstation-
ergonomics.htm. Accessed July 30, 2007.

ergonomics of computing        185

Salvendy, Gavriel. Handbook of Human Factors and Ergonomics. 3rd
ed. New York: Wiley, 2006.

U.S. Department of Labor. Occupational Safety & Health Admin-
istration. “Computer Workstations.” Available online. URL:
http://www.osha.gov/SLTC/etools/computerworkstations/
index.html. Accessed July 30, 2007.

Vredenberg, Karel, Scott Isensee, and Carol Righi. User-Centered
Design: an Integrated Approach. Upper Saddle River, N.J.:
Prentice Hall, 2001.

error correction
Transmitting data involves the sending of bits (ones and
zeros) as signaled by some alternation in physical charac-
teristics (such as voltage or frequency). There are a number
of ways in which errors can be introduced into the data
stream. For example, electrical “noise” in the line might be
interpreted as spurious bits, or a bit might be “flipped” from
one to zero or vice versa. Generally speaking, the faster the
rates at which bits are being sent, the more sensitive the
transmission is to effects that can cause errors.

While a few wrong characters might be tolerated in
some text messages or graphics files, binary files represent-
ing executable programs must generally be received per-
fectly, since random changes can make programs fail or
produce incorrect results. Data communications engineers
have devised a number of methods for checking the accu-
racy of data transmissions.

The simplest scheme is called parity. A single bit is
added to each eight-bit byte of data. In even parity, the
extra (parity) bit is set to one when the number of ones in
the byte is odd. In odd parity, a one is added if the data byte
has an even number of ones. This means that the receiver of
the data can expect it to be even or odd respectively. When
the byte arrives at its destination, the receiving program
checks the parity bit and then counts the number of ones
in the rest of the byte. If, for example, the parity is even
but the data as received has an odd number of ones, then
at least one of the bits must have been changed in error.
Parity is a fast, easy way to check for errors, but it has some
unreliability. For example, if there were two errors in trans-

mission such that a one became a zero and a different zero
became a one, the parity would be unchanged and the error
would not be detected.

The checksum method offers greater reliability. The
binary value of each block of data is added and the sum
is sent along with the block. At the destination, the bits in
the block are again added to see if they still match the sum.
A variation, the cyclical redundancy check or CRC, breaks
the data into blocks and divides them by a fixed number.
The remainder for the division for each block is appended
to the block and the calculation is repeated and checked at
the destination. Today most modem control software imple-
ments parity or CRC checking.

A more sophisticated method called the Hamming Code
offers not only high reliability but also the ability to auto-
matically correct errors. In this scheme the data and check
bits are encrypted together to create a code word. If the
word received is not a valid code word, the receiver can use
a series of parity checks to find the original error. Increasing
the ratio of redundant check bits to message bits improves
the reliability of the code, but at the expense of having to
do more processing to encrypt that data and requiring more
time to transmit it.

Further Reading
“Error-Correcting Code.” Wolfram MathWorld. Available online.

URL: http://mathworld.wolfram.com/Error-CorrectingCode.
html. Accessed July 31, 2007.

Fung, Francis Yein Chei. “A Survey of the Theory of Error-Correct-
ing Codes.” Available online. URL: http://cadigweb.ew.usna.
edu/~wdj/teach/ecc/codes.html. Accessed July 31, 2007.

Wicker, S. B. Error Control Systems for Digital Communication and
Storage. Upper Saddle River, N.J.: Prentice Hall, 1995.

error handling
An important characteristic of quality software is its abil-
ity to handle errors that arise in processing (also called
run-time errors or “exceptions”). Before it is released for
general use, a program should be thoroughly tested with
a variety of input (see quality assurance, software).
When errors are found, the soundness of the algorithm and
its implementation must be checked, as well as the program
logic (see algorithm). Interaction between the program
and other programs (including the operating system) as
well as with hardware must also be considered. (See bugs
and debugging.)

However, even well-tested software is likely to encoun-
ter errors. Therefore a program intended for widespread use
must include instructions for dealing with errors, antici-
pated or otherwise. The process of error handling can be
divided into four stages: validation, detection, communica-
tion, and amelioration.

Data validation is the first line of defense. At the “front
end” of the program, data being entered by a user (or read
from a disk file or communications link) is checked to see
whether it falls within the prescribed parameters. (In the
case of a program such as a data management system, the
user interface plays an important role. Data input fields
can be designed so that they accept only valid characters.

For even parity, if the number of ones in the byte is odd, the parity
bit is set to one to make the total number of ones even. Odd parity
would work the same way, except the parity bit would be set when
necessary to ensure an odd number of ones.

186        error correction

On-line help and error messages can explain to users why a
particular input is invalid.)

However, data validation can ensure only that data falls
within the generally acceptable parameters. Some particu-
lar combination or context of data might still be erroneous,
and calculations performed within the program can also
produce errors. Some examples include a divisor becoming
zero (not allowable mathematically) or a number overflow-
ing or underflowing (becoming too large or too small for
register or memory space allotted for it).

Error communication is generally handled by a set of
error codes (special numeric values) returned to the main
program by the function used to perform the calculation.
In addition, errors that arise in file processing (such as “file
not found”) also return error codes. For example, suppose
there is a division function in C++

double Quotient(double dividend, double
divisor) throw(ZERODIV)

{
if (0.0 == divisor)

throw ZERODIV();
return dividend / divisor;

}

In C++ “throw” means to post an error that can be
“caught” by the appropriate error-handling routine. Thus,
the corresponding “catch” code might have:

catch(ZERODIV)
{

cout << “Division by zero error!” << endl;
}

Once an error has been detected and communicated,
decision statements (branches or loops) can check for the
presence of error codes and execute appropriate instruc-
tions based on what is encountered. (In object-oriented lan-
guages such as C++ special classes and objects are often
used to handle errors.)

Many simple utility programs respond to errors by issu-
ing an error message and then quitting. However, many
real-world applications must be able to respond to errors
and continue processing (for example, a program reading
data from a scientific instrument may have to deal with the
occasional “outlier” or a strange value caused by a burst of
interference). Depending on circumstances, the error ame-
lioration code might simply reject the erroneous data or
result, ask for the data to be re-sent, or keep a log or statis-
tics of the number and kind of errors encountered. More
sophisticated approaches based on mathematical error
analysis are also possible.

Further Reading
Dony, Christophe. Advanced Topics in Exception Handling Tech-

niques. New York: Springer, 2006.
“Exceptions” [Java tutorials]. Available online. URL: http://java.

sun.com/docs/books/tutorial/essential/exceptions/. Accessed
July 31, 2007.

Romanovsky, Alexander, et al., eds. Advances in Exception Handling
Techniques. New York: Springer, 2001.

Soulle, Juan. “Exceptions” [C++]. Available online. URL: http://
www.cplusplus.com/doc/tutorial/exceptions.html. Accessed
July 31, 2007.

expert systems
An expert system is a computer program that uses encoded
knowledge and rules of reasoning to draw conclusions or
solve problems. Since reasoning (as opposed to mechani-
cal calculation) is a form of intelligent behavior, the field
of expert systems (also called knowledge representation or
knowledge engineering) is part of the broader field of AI
(see artificial intelligence).

History and Applications
By the end of the 1950s, early research in artificial intelli-
gence was producing encouraging results. A number of tasks
associated with human reasoning seemed to be well within
the capabilities of computers. Early checkers and chess pro-
grams, while far from expert level, were steadily improving.
Computer programs were proving geometry theorems. One
of the most important AI pioneers, John McCarthy, declared
that in principle all human knowledge could be encoded in
such a way that programs could “understand” and reason
from that knowledge to new conclusions.

Two disparate approaches to achieving AI gradually
emerged. In the early 1960s, many researchers tried to gen-
eralize the automated reasoning process so that a program
could analyze and solve a wide variety of problems, much
in the way a human being can. The resulting programs were
indeed flexible, but it was difficult to work with anything
other than simplified problems. (The SHRDLU program, for
example, worked in an abstract world of blocks on a table.)

The other approach was to try to provide exhaustively
specified rules for dealing with a more narrowly defined realm
of knowledge. The DENDRAL program, developed in the mid-
1960s by Edward A. Feigenbaum and associates, was designed
to analyze the mass spectra of organic molecules according to
theories employed by chemists (see Feigenbaum, Edward).
It eventually became clear that the key to the success for such
program lay more in the “capturing” and encoding of expert
knowledge than in the development of more flexible methods
of reasoning. The methods for encoding and working with the
knowledge were refined and further developed into a variety
of expert systems during the 1970s.

In the 1980s, expert system technology became mature
enough to leave the laboratories and play a role in industry.
Two early applications were Digital Equipment Corporation’s
XCON, which automatically configured minicomputers from
component parts at a rate and accuracy far surpassing that
of human engineers. Another, Dipmeter Advisor, used real-
time data to predict the dip (tilt) of rock layers in a drill
bore. (This information was crucial for determining the
feasibility of an oil or gas well.)

Today expert systems are a mature technology (and
indeed, the most tangible success of AI research in practi-
cal applications). Expert systems are used in applications
as diverse as engine troubleshooting, diagnosis of rare dis-
eases, and investment analysis.

expert systems        187

Anatomy of an Expert System
An expert system has two main components, a knowledge base
and an inference engine. The knowledge base consists of a set
of assertions (facts) or of rules expressed as if . . . then state-
ments that specify conditions that, if true, allow a particular
inference to be drawn (see prolog). The inference engine
accepts new assertions or queries and tests them against the
stored rules. Because satisfying one rule can create a condi-
tion that is to be tested by a subsequent rule, chains of rea-
soning can be built up. If the reasoning is from initial facts
to an ultimate conclusion, it is called forward chaining. If a
conclusion is given and the goal is to prove that conclusion,
there can be backward chaining from the conclusion to the
assertions (similar to axioms in mathematical proofs).

While some rules are ironclad (for example, if a closed
straight figure has three sides, it’s a triangle) in many real-
world applications it is necessary to take a probabilistic
approach. For example, experience might suggest that if a
customer buys reference books there is a 40 percent chance
the customer will also buy a related CD-ROM product.
Thus, rules can be given weights or confidence factors and as
the rules are chained, a cumulative probability for the con-
clusion can be generated and some threshold probability
for asserting a conclusion can be specified. (See also fuzzy
logic and uncertainty).

While rules-based inference systems are relatively easy
to traverse automatically, they may lack the flexibility to
codify the knowledge needed for complex activities (such as
automatic analysis of news stories). An alternative approach
involves the construction of a knowledge base consisting
of frames. A frame (also called a schema) is an encoded
description of the characteristics and relationships of enti-
ties. For example, an expert system designed to analyze
court cases might have frames that describe the roles and
interests of the defendant, defense counsel, prosecutor, and
so on, and other frames describing the trial and sentencing
process. Using this knowledge, the system might be able to
predict what sort of plea agreement a particular defendant
might reach with the state. While potentially more robust
than a rules-based system, a frames-based system faces the
twin challenges of building and maintaining a complex and
open-ended knowledge base and of developing methods of
reasoning more akin to generalized artificial intelligence
(see artificial intelligence).

Trends
Expert systems (particularly of the rules-based variety) now
have an established place in business, industry, and sci-
ence. The field of genomics and genetic engineering, widely
seen as the “technology of the 21st century” may be a par-

ticularly fruitful applications area for analytical expert sys-
tems. Another promising area is the use of expert systems
for e-commerce marketing analysis (see data mining). An
emerging emphasis in expert system development is the
use of object-oriented concepts (see object-oriented pro-
gramming) and distributed database and knowledge shar-
ing technology to build and maintain large knowledge bases
more efficiently.

Further Reading
“Expert Systems.” American Association for Artificial Intelligence.

Available online. URL: http://www.aaai.org/AITopics/html/
expert.html. Accessed July 31, 2007.

Giarrartano, Joseph C., and Gary D. Riley. Expert Systems: Prin-
ciples and Programming. 4th ed. Boston: Thomson Course
Technology, 2004.

“Introduction to Expert Systems.” Available online. URL: http://
www.expertise2go.com/webesie/tutorials/ESIntro/. Accessed
July 31, 2007.

Jackson, Peter. Introduction to Expert Systems. 3rd ed. Reading,
Mass.: Addison-Wesley, 1998.

Building an expert system requires that the knowledge of experts
be “captured” in the form of a series of assertions and rules called
a knowledge base. Once the knowledge base is established, users
seeking advice can use an inference engine to examine the knowl-
edge base for valid conclusions that can be expressed as recommen-
dations, often with varying degrees of confidence.

188        expert systems

189

fault tolerance
Fault tolerance is a design concept that recognizes that all
computer-based systems will fail eventually. The question is
whether a system as a whole can be designed to “fail grace-
fully.” This means that even if one or more components
fail, the system will continue to operate according to its
design specifications, even if its speed or throughput must
decrease.

Methods and Implementations
There are a number of ways to make a system more fault
tolerant. Individual components such as hard drives can be
composed of multiple units so that the remaining units can
take over if one fails (see also raid). If each key component
has at least one backup, then there should be time to replace
the primary before the backup also fails.

Another way to achieve fault tolerance is to provide mul-
tiple paths to successful completion of the task. In fact, this
is how packet-switched networks like the Internet work
(see tcp/ip). If one communications link is down or too
congested, packets are given an alternative routing.

Fault diagnosis software can also play an important role
both in determining how to respond to a problem (beyond
any automatic response) and for providing data that will be
useful later to system administrators or technicians. Some
fault diagnosis systems can use elaborate rules (see expert
systems) to pinpoint the cause of a fault and recommend a
solution.

The amount of fault tolerance to be provided for a sys-
tem depends on a number of factors:

• � How important is it that the system not fail?

• � How critical is a given component to the operation of
the system?

• � How likely is it that a given component will fail?
(Mean time between failures, or MBTF)

• � How expensive is it to make the component or system
fault tolerant?

A related concept is fail-safe. While fault tolerance
emphasizes continued operation despite one or more fail-
ures, fail-safe emphasizes the ability to shut down safely
in case of an unrecoverable failure. With computer-based
systems, fail-safe design can use redundant systems (as
in avionics) to perform calculations, with a failing system
“outvoted” if necessary by the good ones. In most cases
there should also be a provision to alert the pilot or opera-
tor in time to take over operations from the automatic
system.

Another common example of fail-safe is modern operat-
ing systems that create a “journal” of pending operations to
files that can be used to restore the integrity of the system
after a power failure or other abrupt shutdown (see file
system.)

Further Reading
Isermann, Rolf. Fault-Diagnosis Systems: An Introduction from Fault

Detection to Fault Tolerance. New York: Springer, 2006.
Koren, Israel, and C. Mani Krishna. Fault-Tolerant Systems. San

Francisco: Morgan Kauffman, 2007.
National Institute of Standards and Technology. “A Conceptual

Framework for System Fault Tolerance.” Available online. URL:

F

http://hissa.nist.gov/chissa/SEI_Framework/framework_
1.html. Accessed September 20, 2007.

Pullum, Laura L. Software Fault Tolerance: Techniques and Imple-
mentation. Norwood, Mass.: Artech House, 2001.

Feigenbaum, Edward
(1936– )
American
Computer Scientist

Edward Feigenbaum is a pioneer artificial intelligence
researcher, best known for his development of expert sys-
tems (see artificial intelligence). Feigenbaum was born
in Weehawken, New Jersey. His father, a Polish immigrant,
died before Feigenbaum’s first birthday. His stepfather, an
accountant and bakery manager, was fascinated by science
and regularly brought young Edward to the Hayden Plane-
tarium’s shows and to every department of the vast Museum
of Natural History. The electromechanical calculator his
father used to keep accounts at the bakery particularly fas-
cinated Edward. His interest in science gradually turned to
a perhaps more practical interest in electrical engineering.

While at the Carnegie Institute of Technology (now
Carnegie Mellon University), Feigenbaum was encour-
aged to venture beyond the more mundane curriculum to
the emerging field of computation. He became interested
in John Von Neumann’s work in game theory and deci-
sion making and also met Herbert Simon, who was con-
ducting pioneering research into how organizations made
decisions (see von Neumann, John). This in turn brought
Feigenbaum into the early ferment of artificial intelligence
research in the mid-1950s. Simon and Alan Newell had just
developed Logic Theorist, a program that simulated the
process by which mathematicians proved theorems through
the application of heuristics, or strategies for breaking prob-
lems down into simpler components from which a chain of
assertions could be assembled leading to a proof.

Feigenbaum quickly learned to program IBM main-
frames and then began writing AI programs. For his doc-
toral thesis, he explored the relation of artificial problem
solving to the operation of the human mind. He wrote a
computer program that could simulate the human pro-
cess of perceiving, memorizing, and organizing data for
retrieval. Feigenbaum’s program, the Elementary Perceiver
and Memorizer (EPAM), was a seminal contribution to AI.
Its “discrimination net,” which attempted to distinguish
between different stimuli by retaining key bits of informa-
tion, would eventually evolve into the neural network (see
neural network). Together with Julian Feldman, Feigen-
baum edited the 1962 book Computers and Thought, which
summarized both the remarkable progress and perplexing
difficulties encountered during the field’s first decade.

During the 1960s, Feigenbaum worked to develop sys-
tems that could perform induction (that is, derive general
principles based on the accumulation of data about specific
cases). Working on a project to develop a mass spectrom-
eter for a Mars probe, Feigenbaum and his fellow research-
ers became frustrated at the computer’s lack of knowledge

about basic rules of chemistry. Feigenbaum then decided
that such rules (or knowledge) might be encoded in such
a way that the program could apply it to the data being
gathered from chemical samples. The result in 1965 was
Dendral, the first of what would become a host of success-
ful and productive expert systems (see expert system). A
further advance came in 1970 with Meta-Dendral, a pro-
gram that could not only apply existing rules to determine
the structure of a compound, it could also compare known
structures with the existing database of rules and infer new
rules, thus improving its own performance.

During the 1980s, Feigenbaum coedited the four-volume
Handbook of Artificial Intelligence. He also introduced expert
systems to a lay audience in two books, The Fifth Generation
(co-authored with Pamela McCorduck) and The Rise of the
Expert Company.

Feigenbaum combined scientific creativity with entre-
preneurship in founding a company called IntelliGenetics
and serving as a director of Teknowledge and IntelliCorp.
These companies pioneered the commercialization of
expert systems. In doing so, Feigenbaum and his colleagues
publicized the discipline of “knowledge engineering”—the
capturing and encoding of professional knowledge in medi-
cine, chemistry, engineering, and other fields so that it can
be used by an expert system. In what he calls the “knowl-
edge principle” he asserts that the quality of knowledge in
a system is more important than the algorithms used for
reasoning. Thus, Feigenbaum has tried to develop knowl-
edge bases that might be maintained and shared as easily as
conventional databases.

Remaining active in the 1990s, Feigenbaum was second
president of the American Association for Artificial Intel-
ligence and (from 1994 to 1997) chief scientist of the U.S.
Air Force. In 1995, Feigenbaum received the Association for
Computing Machinery’s prestigious A. M. Turing Award.
Founder of the Knowledge Systems Laboratory at Stanford
University, Feigenbaum remains a professor emeritus of
computer science at that institution.

Further Reading
Feigenbaum, Edward, Julian Feldman, and Paul Armer, eds. Com-

puters and Thought. Cambridge, Mass.: MIT Press, 1995.
Feigenbaum, Edward, Pamela McCorduck, and H. Penny Nii. The

Rise of the Expert Company: How Visionary Companies are
Using Artificial Intelligence to Achieve Higher Productivity and
Profits. New York: Vintage Books, 1989.

Henderson, Harry. Artificial Intelligence: Mirrors for the Mind. New
York: Chelsea House, 2007.

Shasha, Dennis, and Cathy Lazere. Out of Their Minds: The Lives
and Discoveries of 15 Great Computer Scientists. New York:
Copernicus/Springer-Verlag, 1995.

fiber optics
A fiber optic (or optical fiber) cable transmits photons
(light) instead of electrons. Depending on the diameter of
the cable, the light is guided either by total internal reflec-
tion or as a waveguide (manipulating refraction). These
principles were known as early as the mid-19th century and
began to be used in the 20th century for such applications

190        Feigenbaum, Edward

as dental and medical illumination and in experiments in
transmitting images for television.

Development
Optical fiber in its modern form was developed in the
1950s. The glass fiber through which the light passes is
surrounded by a transparent cladding designed to provide
the needed refractive index to keep the light confined. The
cladding in turn is surrounded by a resin buffer layer and
often an outer jacket and plastic cover. Fiber used for com-
munication is flexible, allowing it to bend if necessary.

Early optical fiber could not be used for practical com-
munication because of progressive attenuation (weakening)
of the light as it traveled. However, by the 1970s the attenu-
ation was being reduced to acceptable levels by removing
impurities from the fibers. Today the light signals can travel
hundreds of miles without the need for repeaters or amplifi-
ers. In the 1990s a new type of optical fiber (photonic crys-
tal) using diffraction became available. This kind of fiber
is particularly useful in applications that require higher
power signals.

Communications and Network Applications
Optical fiber has several advantages over ordinary electric
cable for communications and networking. The signals can
travel much farther without the need for a repeater to boost
the signal. Also, the ability to modulate wavelengths allows
optical fiber to carry many separate channels, greatly increas-
ing the total data throughput. Optical fiber does not emit RF
(radio frequency) energy, a source of “cross talk” (interfer-
ence) in electrical cable. Fiber is also more secure than elec-
trical cable because it is hard for an eavesdropper to tap.

Today fiber is used for most long-distance phone lines
and Internet connections. Many cable television systems
are upgrading from video cable to fiber because of its
greater reliability and ability to carry more bandwidth and
enhanced data services.

The last area where electrical (copper) cable predomi-
nates is in the “last mile” between main lines and houses
or buildings, and within local networks. However, new
buildings and higher-end homes often include built-in fiber.
Increasingly, phone companies are upgrading service by
bridging the last mile through fiber-to-the-home (FTTH)
networks. While requiring a considerable investment, FITH
allows phone companies to replace relatively slow DSL with
faster (higher bandwidth) service better suited to deliver
video, data, and phone service simultaneously (see band-
width, cable modem, and dsl). As of 2008, 3.3 million
American homes had fiber connections, mainly through
Verizon’s FIOS service. It is expected that FTTH will be
built into many new housing developments.

In 2007 Corning announced the development of “nano-
structured” optical fibers that can be bent more sharply
(such as around corners) without loss of signal. Corning is
working with Verizon to develop easier and cheaper ways
to provide FTTH.

(Related optical principles can also be applied to com-
puter design. See optical computing.)

Further Reading
The Fiber Optic Association. “User’s Guide to Fiber Optic System

Design and Installation.” Available online. URL: http://www.
thefoa.org/user/. Accessed September 20, 2007.

“Fiber Optics: The Basics of Fiber Optic Cable: A Tutorial.” Avail-
able online. URL: http://www.arcelect.com/fibercable.htm.
Accessed September 20, 2007.

Fiber to the Home Council. Available online. URL: http://www.
ftthcouncil.org/. Accessed September 20, 2007.

Hecht, Jeff. Understanding Fiber Optics. 5th ed. Upper Saddle River,
N.J.: Prentice Hall, 2005.

Palais, Joseph C. Fiber Optic Communications. 5th ed. Upper Sad-
dle River, N.J.: Prentice Hall, 2004.

file
At bottom, information in a computer is stored as a series of
bits, which can be grouped into larger units such as bytes
or “words” that represent particular numbers or characters.
In order to be stored and retrieved, a collection of such
binary data must be given a name and certain attributes
that describe how the information can be accessed. This
named entity is the file.

Files and the Operating System
Files can be discussed at three levels, the physical layout,
the operating system, and the application program. At the
physical level, a file is stored on a particular medium. (See
floppy disk, hard disk, cd-rom, and tape drives.) On
disk devices a file takes up a certain number of sectors,
which are portions of concentric tracks. (On tape, files are
usually stored as contiguous segments or “blocks” of data.)

The file system is the facility of the operating system that
organizes files (see operating system). For example, on DOS
and older Windows PCs, there is a file allocation table (FAT)
that consists of a linked list of clusters (each cluster consists
of a fixed number of sectors, varying with the overall size of
the disk). When the operating system is asked to access a file,
it can go through the table and find the clusters belonging to
that file, read the data and send it to the requesting applica-
tion. Modern file systems further organize files into groups
called folders or directories, which can be nested several lay-
ers deep. Such a hierarchical file system makes it easier for
users to organize the dozens of applications and thousands of
files found on today’s PCs. For example, a folder called Book
might have a subfolder for each chapter, which in turn con-
tains folders for text and illustrations relating to that chapter.

Besides storing and retrieving files, the modern file sys-
tem sets characteristics or attributes for each file. Typical
attributes include write (the file can be changed), read (the
file can be accessed but not changed), and archive (which
determines whether the file needs to be included in the next
backup). In multi-user operating systems such as UNIX
there are also attributes that indicate ownership (that is,
who has certain rights with regard to the file). Thus a file
may be executable (run as a program) by anyone, but write-
able (changeable) only by someone who has “superuser”
status (see also data security).

The current generation of file systems for PCs includes
additional features that promote efficiency and particularly

file        191

data integrity. Versions of Windows starting with NT, 2000,
and XP come standardly with NTFS, the “New Technology
File System,” which includes journaling, or the keeping of
a record of all transactions affecting the system (such as
deleting or adding a file). In the event of a mishap such as
a power failure, the transactions can be “replayed” from
the journal, ensuring that the file system reflects the actual
current status of all files. NTFS also uses “metadata” that
describes each file or directory. Database principles can
thus be applied to organizing and retrieving files at a higher
level.

Linux (based on UNIX) uses a single file system hier-
archy that incorporates all devices in the system. (The net-
work file system, NFS, effectively extends the hierarchy to
all machines on the local network.) The popular Linux ext3
file system also includes journaling.

Files and Applications
The ultimate organization of data in a file depends on the
application. A typical approach is to define a data record
with various fields. The program might have a loop that
repeatedly requests a record from the file, processes it in
some way, and repeats until the operating system tells it
that it has reached the end of the file. This would be a
sequential access; a program can also be set up for ran-
dom access, which means that an arbitrary record can be
requested and that request will be translated into the cor-
rect physical location in the file. The two approaches can
be combined in ISAM (Indexed Sequential Access Method),
where the records are stored sequentially but fields are
indexed so a particular record can be retrieved.

Since files such as graphics (images), sound, and format-
ted word processing documents can only be read and used
by particular applications, files are often given names with
extensions that describe their format. When a Windows
user sees, for example, a Microsoft Word document, the
filename will have a .DOC extension (as in chapter.doc) and
will be shown with an icon registered by the application for
such files. Further, a file association will be registered so
that when a user opens such a file the Word program will
run and load it.

From a user interface point of view, the use of the file as
the main unit of data has been criticized as not correspond-
ing to the actual flow of most kinds of work. While from
the computer’s point of view, the user is opening, modify-
ing, and saving a succession of separate files, the user often
thinks in terms of working with documents (which may
have components stored in a number of separate files.) Thus,
many office software applications offer a document-oriented
or project-oriented view of data that hides or minimizes the
details of individual files (see document model).

Further Reading
Callaghan, Brent. XFS Illustrated. Reading, Mass.: Addison-Wesley

Professional, 1999.
Matloff, Norman. “File Systems in UNIX.” Available online. URL:

http://heather.cs.ucdavis.edu/~matloff /UnixAndC/Unix/
FileSyst.html. Accessed August 1, 2007.

Nagar, Rajeev. Windows NT File System Internals. Reprint. Amherst,
N.H.: OSR Press, 2006.

Pate, Steven. UNIX File Systems: Evolution, Design, and Implementa-
tion. New York: Wiley, 2003.

file server
The growth in desktop computing since the 1980s has
resulted in much data being moved from mainframe com-
puters to desktop PCs, which are now usually linked by
networks. While a network enables users to exchange files,
there remains the problem of storing large files or collec-
tions of files (such as databases) that are too large for a typi-
cal PC hard drive or that need to be accessed and updated
by many users.

The common solution is to obtain a computer with
large, fast disk drives (see also raid). This computer, the
file server, is equipped with software (often included with
the networking package) that serves (provides) files as
requested by users or applications on the other PCs on
the network. (See also client-server computing.) The
specifics of configuring the server for optimum efficiency,
providing adequate security, and arranging for backup or
archiving varies with the particular network operating sys-
tem in use (the most popular environments are Windows
NT, Vista, and the various versions of UNIX and Linux).

The file server has many advantages over storing the
files needed by each user on his or her own PC. By storing
the files on a central server, ordinary users’ PCs do not need
to have larger, more expensive disk drives. Central storage
also makes it easier to ensure that backups are run regu-
larly (see backup and archive systems).

There are some potential problems with this approach.
With central storage, a failure of the file server could bring
work throughout the network to a halt. (The use of RAID
with its redundant “mirror” disks is designed to prevent
the failure of a single drive from making data inaccessible).
As the network and/or size of the data store gets larger,
multiple servers are usually used. The performance of a file
server is also greatly affected by the efficiency of the cach-
ing mechanism used (see cache).

As the amount of data that must be stored increases,
organizations will consider storage area network (SAN) and
network attached storage (NAS, see networked storage)
technologies. SAN makes it easier for numerous users to
share a resource such as an automated tape library or disk
RAID, while NAS is an efficient way to allow files to be cen-
trally stored but readily shared.

All but the simplest servers require special software or
extensions to the operating system. For example, Microsoft
Windows Server is essentially a version of Windows with
built-in facilities for managing a file or application server,
including the ability to organize “clusters” of servers and
balance the load of requests. Linux often comes in server
versions as well, though this is basically simply a distribu-
tion preconfigured with the programs needed to manage
servers (such as Samba).

Meanwhile, the reason for having a file server is chang-
ing. Cost of storage is much less of an issue for smaller
offices with the recent availability of high-capacity drives
(500 GB or more) starting at approximately $100. However,

192        file server

a central server still may offer better security and can serve
as a central repository from which documents or source
code can be “checked out” and updated in an orderly way
(version control).

Further Reading
“Designing and Deploying File Servers.” Microsoft TechNet.

Available online. URL: http://technet2.microsoft.com/
windowsserver/en/library/42befce4-7c15-4306-8edc-a80b
8c57c67d1033.mspx. Accessed August 1, 2007.

Eckstein, Robert, David Collier-Brown, and Peter Kelly. Using
Samba. 2nd ed. Sebastapol, Calif.: O’Reilly Media, 2003.

Matthews, Martin S. Windows Server 2003: A Beginner’s Guide. 2nd
ed. Berkeley, Calif.: McGraw-Hill Osborne, 2003.

“Samba: Opening Windows to a Wider World.” Available online.
URL: http://us3.samba.org. Accessed August 1, 2007.

Tulloch, Mitch. Introducing Windows Server 2008. Redmond,
Wash.: Microsoft Press, 2007.

file-sharing and P2P networks
File-sharing services allow participants to provide access to
files on their personal computers, such as music or video.
In turn, the user can browse the service to find and down-
load material of interest. The structure is generally that of a
peer-to-peer (P2P) network with no central server.

The first major file-sharing service was Napster. This
was a P2P network but had a central server that provided
the searchable list of files and locations—but not the files
themselves, which were downloaded from users’ PCs.
Napster was forced to close in 2001 by legal action from
copyright holders (see intellectual property and com-
puting). A new but unrelated for-pay service opened later
under the same name.

Because of the legal vulnerability of centralized-list P2P
services, a new model was developed, typified by Gnutella.
This is a fully P2P model with both indexing and data
decentralized in nodes throughout the network. As of mid-
2006, Gnutella and similar services such as Kazaa had an
estimated 10 million users.

BitTorrent
Many services today use the popular BitTorrent file-shar-
ing protocol. A BitTorrent client (either the program of that
name or another compatible one) can transmit or receive
any type of data. To share a file, the client creates a “tor-
rent”—a small file that contains metadata describing the
file and an assignment to a “tracker.” The tracker is another
computer (node) that coordinates the distribution of the
file. Although this sounds complicated and a request takes
longer to set up than an ordinary HTTP connection, the
advantage is that once set up, downloading is efficiently
managed even for files for which there is high demand.
The downloading client connects to multiple clients that
provide pieces of the desired file. Because of its efficiency,
BitTorrent allows for distribution of substantial amounts of
data at low cost, particularly since the system “scales up”
automatically without having to provide extra resources.
BitTorrent is currently being used for a variety of legally

distributed material, including video, sound, and textual
content (see blogs and blogging, podcasting, and rss).

Legal Issues
Because of their frequent use to share copyrighted music,
video, or other material, a variety of organizations of copy-
right owners have sued file-sharing services and/or their
users. The biggest problem for the courts is to determine
whether there is “substantial non-infringing use”—that is,
the service is being used to exchange legal data.

Some file-sharing services have been accused of dis-
tributing malware (viruses or spyware) or of being used
to distribute material that is illegal per se (such as child
pornography).

In response to litigation threats, file-sharing services
have tended to become more decentralized, and some have
features that increase anonymity of users (see anonymity
and the Internet) or use encryption.

Further Reading
BitTorrent. Available online. URL: http://www.bittorrent.com/.

Accessed September 20, 2007.
Gardner, Susannah, and Kris Krug. BitTorrent for Dummies. Hobo-

ken, N.J.: Wiley, 2006.
Gnutella. Available online. URL: http://www.gnutella.com/.

Accessed September 20, 2007.
Roush, Wade. “P2P: From Internet Scourge to Savior.” Technology

Review. December 15, 2006. Available online. URL: http://
www.technologyreview.com/Biztech/17904. Accessed Sep-
tember 21, 2007.

Schmidt, Aernout, Wilfred Dolfsma, and Wim Keuvelaar. Fighting
the War on File Sharing. Cambridge: Cambridge University
Press, 2007.

Silverthorne, Sean. “Music Downloads: Pirates—or Customers?”
[Q&A with Felix Oberholzer-Gee]. Harvard Business School
Working Knowledge. Available online. URL: http://hbswk.
hbs.edu/item/4206.html. Accessed September 20, 2007.

Wang, Wallace. Steal This File Sharing Book: What They Won’t Tell
You About File Sharing. San Francisco: No Starch Press, 2004.

file transfer protocols
With today’s networked PCs and the use of e-mail attach-
ments it is easy to send a copy of a file or files from one
computer to another, because networks already include all
the facilities for doing so. Earlier, many PCs were not net-
worked but could be connected via a dial-up modem. To
established the connection, a terminal program running on
one PC had to negotiate with its counterpart on the other
machine, agreeing on whether data would be sent in 7- or
8-bit chunks, and the number of parity bits that would be
included for error-checking (see error correction). The
sending program would inform the receiving program as
to the name and basic type of the file. For binary files
(files intended to be interpreted as literal binary codes, as
with executable programs, images, and so on) the contents
would be sent unchanged. For text files, there might be the
issue of which character set (7- bit or 8-bit ASCII) was being
used, and whether the ends of lines were to be marked with
a CR (carriage return) character, an LF (linefeed), or both
(see characters and strings).

file transfer protocols        193

Implementations
Once the programs agree on the basic parameters for a file
transfer, the transfer has to be managed to ensure that it
completes correctly. Typically, files are divided into blocks
of data (such as 1K, or 1024 bytes each). During the 1970s,
Ward Christensen developed Xmodem, the first widely used
file transfer program for PCs running CP/M (and later, MS-
DOS and other operating systems). Xmodem was quite reli-
able because it incorporated a checksum (and later, a more
advanced CRC) to check the integrity of each data block.
If an error is detected, the receiving program requests a
retransmission.

The Ymodem program adds the capability of specifying
and sending a batch of files. Zmodem, the latest in this line
of evolution, automatically adjusts for the amount of errors
caused by line conditions by changing the size of the data
blocks used and also includes the ability to resume after an
interrupted file transfer. Another widely used file transfer
protocol is Kermit, which has been implemented for virtu-
ally every platform and operating system. Besides file trans-
fer, Kermit software offers terminal emulation and scripting
capabilities. However, despite their robustness and capabil-
ity, Zmodem and Kermit have been largely supplanted by
the ubiquitous Web download link.

In the UNIX world, the ftp (file transfer protocol) pro-
gram has been a reliable workhorse for almost 30 years.
With ftp, the user at the PC or terminal connects to an ftp
server on the machine that has the desired files. A variety of
commands are available for specifying the directory, listing
the files in the directory, specifying binary or text mode,
and so on. While the traditional implementation uses typed
text commands, there are now many ftp clients available for
PCs that use a graphical interface with menus and buttons
and allow files to be selected and dragged between the local
and remote machines.

Even though many files can now be downloaded through
HTML links on Web pages, ftp is still the most efficient way
to transfer batches of files, such as for uploading content to
a Web server.

Further Reading
“FTP New User Guide.” Available online. URL: http://www.ftp-

planet.com/ftpresources/basics.htm. Accessed August 4,
2007.

Loshin, Peter. Big Book of Internet File Transfer RFCs. San Diego,
Calif.: Morgan Kaufmann, 2000.

Pike, Mary Ann, and Noel Estabrook. Using FTP. Indianapolis:
Que, 1995.

“What Is Kermit?” Columbia University. Available online. URL:
http://www.columbia.edu/kermit/kermit.html. Accessed
August 4, 2007.

film industry and computing
Anyone who compares a science fiction film of the 1960s or
1970s with a recent offering will be struck by the realism with
which today’s movie robots, monsters, or aliens move against
vistas of giant starships and planetary surfaces. The computer
has both enhanced the management of cinematic production
processes and made possible new and startling effects.

The role of the computer in film begins well before
the first camera rolls. Writers can use computers to write
scripts, while specialized programs can be used to lay
out storyboards. Using 3D programs somewhat like CAD
(drafting) programs, set designers can experiment with
the positioning of objects before deciding on a final design
and obtaining or creating the physical props. For mattes
(backgrounds against which the characters will be shot in
a scene), a computer-generated scene can now be inserted
directly into the film without the need for an expensive,
hand-painted backdrop.

Similarly, animation and special effects can now be ren-
dered in computer animation form and integrated into the
storyboard so that the issues of timing and combining of
effects can be dealt with in the design stage. The actual
effects can then be created (such as by using extremely
realistic computer-controlled puppets and models together
with computer generated imagery, or CGI) with the assur-
ance that they will properly fit into the overall sequence.
The ability to combine physical modeling, precise control,
and added textures and effects can now create a remarkably
seamless visual result in which the confrontation between a
beleaguered scientist and a vicious velociraptor seems quite
believable.

Just as the physical and virtual worlds are frequently
blended in modern moviemaking, the traditional categories
of visual media have also merged. Disney’s fully animated
films such as The Lion King benefit from the same computer-
generated lighting and textures as the filming of live actors.
Using 3D graphics engines, computer game scenes are now
rendered with almost cinematic quality (see computer
games). Even characters from old movies can be digitally
combined (composited) with new footage. (Of course, the
artistic value of such efforts may be controversial.)

Computer technology, now relatively inexpensive, can
also give the generally lower budget world of television
access to higher-quality effects. As computers continue to
become more powerful yet cheaper, amateur or indepen-
dent filmmakers are gaining abilities previously reserved to
big Hollywood studios.

The delivery of film and video has also been greatly
affected by digitization. Classic movies can be digitized
to rescue them from deteriorating film stock, while videos
can be delivered digitally over cable TV systems or over the
Internet. The ability to easily copy digital content does raise
issues of piracy or theft of intellectual property (see intel-
lectual property and computing).

More recently, digital camcorders (and video modes in
digital cameras and even cell phones) are making access to
basic “film” technology a part of everyday life. A few min-
utes browsing a video-sharing site (see YouTube) reveals
a wide variety of documentary and creative productions
ranging from the equivalent of the old “home movie” to
professional quality.

Further Reading
Harris, Tom. “How Digital Cinema Works.” Available online. URL:

http://entertainment.howstuffworks.com/digital-cinema.htm.
Accessed August 4, 2007.

194        film industry and computing

Masson, Terrence, ed. CG 101: A Computer Graphics Industry Ref-
erence. 2nd ed. Williamstown, Mass.: Digital Fauxtography,
2007.

McKernan, Brian. Digital Cinema: The Revolution in Cinematogra-
phy, Post-Production, and Distribution. New York: McGraw-
Hill, 2005.

“Milestones in Film History: Greatest Visual and Special Effects.”
Available online. URL: http://www.filmsite.org/visualeffects.
html. Accessed August 4, 2007.

Sawicki, Mark. Filming the Fantastic: A Guide to Visual Effects Cin-
ematography. Burlington, Mass.: Focal Press, 2007.

Slone, Michael. Special Effects: How to Create a Hollywood Film on
a Home Studio Budget. Studio City, Calif.: Michael Wiese Pro-
ductions, 2007.

Swartz, Charles S, ed. Understanding Digital Cinema: A Professional
Handbook. Burlington, Mass.: Focal Press, 2005.

Willis, Holly. New Digital Cinema: Reinventing the Moving Image.
London: Wallflower Press, 2005.

financial software
Large businesses use complex database systems, spread-
sheets, and other applications for activities such as account-
ing, planning/forecasting, and market research (see
business applications of computers). Here we will con-
sider the variety of consumer and small business software
applications that are available to help with the planning
and management of financial activities, such as

• � home budgeting and money management

• � investment and retirement planning

• � college financing

• � tax planning and filing

• � home buying or selling

• � basic accounting, inventory, and other activities for
small business

Basic home money management programs (such as the pop-
ular Quicken) handle the budgeting and recording of daily
and monthly expenses. The program can usually also inter-
face with on-line banking services (see banking and com-
puters) as well as exporting data to tax filing software.

For small or home-based businesses, programs such as
QuickBooks can provide basic management of inventory,
sales, taxes, expenses, and other functions. There are also
niche programs for applications such as managing on-line
auctions or Web-based sales.

For financial planning, there are a variety of programs
(ranging from small free or shareware utilities available on-
line to full commercial packages) that offer special calcula-
tors, graphs, and other aids for planning for the future. For
example, the future value of a savings account at various
points can be calculated given the interest rate, or the full
cost of a loan or mortgage similarly calculated. Full-fea-
tured programs usually include helpful explanations of the
various types of financial instruments. Some programs con-
duct an “interview” where the program asks the user about
his or her objectives, priorities, or tolerance for risk, and
then recommends a course of action. Such programs can be

helpful even though they lack the experience and breadth
of knowledge available to a human financial planner.

Tax preparation software is perhaps the fastest-growing
consumer financial application. Programs normally must
be purchased each year to incorporate the latest changes
in tax law. An important incentive has been created by the
Internal Revenue Service encouraging electronic filing of
tax returns by promising speedier refunds to “e-filers.”

Trends
Publishers of respected guidebooks (such as for college
admissions and financial aid) are creating electronic ver-
sions that can be easier to use and more up to date than
the printed counterpart. Meanwhile, many Web sites are
offering utilities such as financial calculators, implemented
in Java and run on-line without any software having to
be downloaded by the user. The services can be offered
to attract users for paid services or simply to acquire e-
mail addresses for solicitation. Users should be cautious
about revealing sensitive identification or financial data to
unknown on-line sites.

The growth in small and home-based businesses is
likely to continue in an economy that continues to offer
new opportunities while reducing job security. While start-
ing a small business is always an uncertain enterprise, easy-
to-use accounting software offers the budding entrepreneur
a better chance of being able to stay on top of expenses dur-
ing the crucial first months of business.

The growing complexity of financial choices available
to average consumers and the need for more people to
take responsibility for their retirement planning is likely
to increase the range and capability of financial planning
applications in the future.

Further Reading
Financial Software Reviews—Personal Finance Software. Avail-

able online. URL: http://financialsoft.about.com/od/reviews-
financesoftware /Software_Reviews_Personal_Finance
_Software.htm. Accessed August 4, 2007.

Heady, Robert K., Christy Heady, and Hugo Ottolenghi. The Com-
plete Idiot’s Guide to Managing Your Money. 4th ed. Indianapo-
lis: Alpha Books, 2005.

Ivens, Kathy. Quickbooks 2007: The Official Guide. Berkeley, Calif.:
Osborne/McGraw-Hill, 2007.

Nelson, Stephen L. Quicken 2007 for Dummies. Hoboken, N.J.:
Wiley, 2007.

finite-state machine
There are many calculations or other processes that can be
described using a specific series of states or conditions. For
example, the state of a combination lock depends not only
on what numeral is being dialed or punched at the moment,
but on the numbers that have been previously entered. An
even simpler example is a counter (such as a car odometer),
whose next output is equal to one increment plus its cur-
rent setting. In other words, a state-based device has an
inherent “memory” of previous steps.

In computing, a program can be set up so that each
possible input, when combined with the current state, will

finite-state machine        195

result in a specified output. That output becomes the new
state of the machine. (Alternatively, the machine can be
set so that only the current state determines the output,
without regard to the previous state.) This is supported
by the underlying structure of the logic switching within
computer circuits as well as the “statefulness” of all cal-
culations. (Given n, n+1 is defined, and so on.) Alan Tur-
ing showed that combining the state mechanism with an
infinite memory (conceptualized as an endless roll of tape)
amounted to a universal computer—that is, a mechanism
that could perform any valid calculation, given enough time
(see Turing, Alan).

The idea of the sequential (or state) machine is closely
related to automata, which are entities whose behavior is

controlled by a state table. The interaction of such automata
can produce astonishingly complex patterns (see cellular
automata).

Applications
Many programs and operating systems are structured as an
endless loop where an input (or command) is processed,
the results returned, the next input is processed, and so
on, until an exit command is received. A mode or state can
be used to determine the system’s activity. For example, a
program might be in different modes such as waiting for
input, processing input, displaying results, and so on. The
program logic will refer to the current state to determine
what to do next and at some point the logic will transition
the system to the next state in the sequence. The validity of
some kinds of programs, protocols, or circuits can therefore
be proven by showing that there is an equivalent finite-state
machine—and thus that all possible combinations of inputs
have been accounted for.

Finite-state machines have many other interesting appli-
cations. Simple organisms can be modeled as a set of states
that interact with the environment (see artificial life).
The lower-level functions of robots can also be represented
as a set of interacting finite-state machines. Even video
game characters often use FSMs to give them a repertoire of
plausible behavior.

Further Reading
Finite State Machine Editor [software]. Available online. URL:

http://fsme.sourceforge.net/. Accessed August 4, 2007.
Meyer, Nathaniel. “Finite State Machine Tutorial.” Available

online. URL: http://www.generation5.org/content/2003/FSM_
Tutorial.asp. Accessed August 4, 2007.

Wagner, Ferdinand, et al. Modeling Software with Finite State
Machines: A Practical Approach. Boca Raton, Fla.: CRC Press,
2006.

firewall
The vulnerability of computer systems to malicious or
criminal attack has been greatly increased by the growing
number of connections between computers (and local net-
works) and the worldwide Internet (see computer crime
and security, Internet, and tcp/ip). The widespread use
of permanent broadband connections by consumers (such
as DSL and cable modem links) has increased the risk to
home users. Intruders can use “port scanning” programs
to determine what connections a given system or network
has open, and can use other programs to snoop and steal or
destroy sensitive data.

A firewall is a program (or combination of software and
hardware) that sits between a computer (or local network)
and the Internet. Typical firewall functions include:

• � Examining incoming data packets and blocking those
that include commands to examine or use unauthor-
ized ports or IP addresses

• � Blocking data packets that are associated with com-
mon hacking techniques such as “trojans” or “back-
door” exploitations

This diagram shows a finite-state representation of a ZIP code. The
arrows link each state (within a circle) to its possible successor. In
this simple example each digit must be followed by another digit
until the fifth digit, which can either be followed by a blank (indi-
cating a five-digit ZIP code) or four more digits for a 9-digit ZIP.

196        firewall

• � Hiding all the internal network addresses on a local
network, presenting only a single address to the
outside world (this is also called NAT, or Network
Address Translation)

• �M onitoring particular applications such as ftp (file
transfer protocol) and telnet (remote login), restrict-
ing them to certain addresses. Often a special address
called a proxy is established rather than allowing
direct connections between the outside and the local
network.

Firewalls are usually configured by providing a rule that
specifies what is to be done based on the origin address or
other characteristics of an incoming packet. Because con-
nections made by local programs to the outside can also
compromise the system, rules are also created for such
applications. The firewall package may come with a set of
default rules for common applications and situations. When
something not covered by the rules happens, the user will
be prompted and guided to establish a new rule.

Modern firewalls are “stateful,” meaning that they keep
track not only of the source and destination of individual
packets but their context (including originating applica-
tion). Microsoft Windows Vista has improved the operating
system’s built-in firewall, at the expense of added complex-
ity. Zone Labs’s ZoneAlarm is another popular PC firewall.
Linux provides a default firewall called iptables, which can
be configured by a variety of applications. For added pro-
tection, users of broadband Internet connections should not
connect their PC directly to the Internet. Rather, an inex-
pensive wired or wireless router that includes a built-in
firewall can be connected on one side to the cable or DSL
modem and on the other side to one or more computers in
the local network.

Internet security packages for home users often com-
bine a firewall with other services such as virus protection,
parental control, and blocking of objectionable content or
advertising.	

Further Reading
Home PC Firewall Guide. Available online. URL: http://www.

firewallguide.com/. Accessed August 4, 2007.
Komar, Brian, Ronald Beekelaar, and Joern Wettern. Firewalls for

Dummies. 2nd ed. New York: Wiley, 2003.
Noonan, Wes, and Ido Dubrawsky. Firewall Fundamentals. India-

napolis: Cisco Press, 2006.
ZoneAlarm. Available online. URL: http://www.zonealarm.com.

Accessed August 4, 2007.
Zwicky, Elizabeth D., Simon Cooper, and D. Brent Chapman.

Building Internet Firewalls. 2nd ed. Sebastapol, Calif.: O’Reilly
Media, 2000.

FireWire
FireWire is a high-speed serial interface used by personal
computers and digital audio and video equipment. (The
name FireWire is an Apple brand name, but it is used gener-
ically. Technically it is the IEEE 1394 Serial Bus.)

FireWire was developed in the 1990s by the IEEE P1394
Working Group with substantial funding from Apple and

help from engineers from major corporations including
IBM, Digital Equipment Corporation (DEC), Sony, and
Texas Instruments. In 1993 it was hailed as the “most sig-
nificant new technology” by Byte magazine.

FireWire was intended to replace Apple’s parallel SCSI
(Small Computer System Interface). (Sony’s implementa-
tion, called I.Link, omits the two power pins in favor of a
separate power connector.) However, because Apple asked
for $1.00 per port in patent royalties, Intel instead devel-
oped a faster version of the universal serial bus (see usb)
and that, rather than FireWire, is the standard port on most
Windows machines.

Common uses for FireWire include connecting digital
video (such as camcorder) devices, audio devices, and some
data storage devices. FireWire is favored over USB 2.0 for
many professional applications because of its higher speed
and power distribution capabilities. However, it is more
expensive than USB 2.0, which provides sufficient speed
for many consumer peripherals such as digital cameras and
printers.

Further Reading
Anderson, Don, and MindShare, Inc. FireWire System Architecture.

2nd ed. Boston: Addison-Wesley Pearson Education, 1998.
FireWire (Apple Developer Connection). Available online. URL:

http://developer.apple.com/hardwaredrivers/firewire/index.
html. Accessed September 20, 2007.

flag
A flag is a variable that is used to specify a particular condi-
tion or status (see variable). Usually a flag is either true or
false. For example, a flag Valid_Form could be set to true
before the input form is processed. If the validation check
for any data field fails, the flag would be set to false. After
the input procedure has ended, the main program would
check the Valid_Form flag. If it’s true, the data on the form
is processed (for example, continuing on to the payment
process). If the flag is false, the input form might be redis-
played with errors or omissions highlighted.

Flags can be combined to check multiple conditions. For
example, suppose the input form routine also looked up the
customer’s account and checked to make sure the customer
was approved for purchasing. The test for this might read:

If Valid_Form and Valid_Customer then
// continue processing else
// display error messages

In such cases, the flags are combined using the appro-
priate and or or operators (see Boolean operators).

While flags are often used inside a routine to keep track
of processing, modern programming practice discourages
the use of “global” flags at the top level of the program. As
with other global variables, such flags are vulnerable to
being unpredictably changed or to having two parts of the
program check the same flag without being able to rely on
its state. (Thus a routine relies on a global flag being true
but calls another routine that sets the flag to false without
the original routine checking it again.) If several routines

flag        197

(or even programs) are being run at the same time, the situ-
ation gets even more complicated and a semaphore that can
be controlled by one process at a time is more appropriate
(see concurrent programming). However, a main pro-
gram that sets a flag to indicate the program mode and does
not allow the flag to be changed by routines within the pro-
gram is relatively safe.

Flags can also have more than two valid conditions,
such as for specifying a number of possible states for a file
or device. This usage is found mostly in operating systems.

Further Reading
“C++ I/O Flags.” Available online: URL: http://www-control.eng.

cam.ac.uk/~pcr20/www.cppreference.com/cppio_flags.html.
Accessed August 4, 2007.

“Class Flags” [Java]. Available online. URL: http://java.sun.com/
j2ee/sdk_1.3/techdocs/api/javax/mail/Flags.html. Accessed
August 4, 2007.

Myers, Gene. “Becoming Bit Wise.” C-Scene Issue 09. Available
online. URL: http://www.gmonline.demon.co.uk/cscene/cs9/
cs9-02.html. Accessed April 28, 2008.

Vincent, Alan. “Flag Variables, Validation and Function Control.”
Available online. URL: http://wsabstract.com/javatutors/
valid1.shtml. Accessed February 4, 2008.

flash and smart mobs
A flash mob is a spontaneously organized public gathering
facilitated by ubiquitous mobile communications (see espe-
cially texting and instant messaging). The earliest flash
mobs were a mixture of whimsy and social experiment. The
first reported example, coordinated by Bill Wasik, senior
editor of Harper’s Magazine, occurred in June 2003 when
a hundred people suddenly showed up on the ninth floor
of Macy’s in New York City, claiming to be shopping for a
“love rug.”

Smart Mobs
Smart mobs are similar in organization to flash mobs but
tend to be more purposeful and enduring forms of social
organization. The phenomenon was first described by How-
ard Rheingold in his book Smart Mobs: The Next Social
Revolution (see Rheingold, Howard). Rheingold describes
several examples of smart mobs, including teenage “thumb
tribes” in Tokyo and Helsinki, Finland (named for their use
of tiny thumb-operated keyboards on cell phones). Their
typical activities included organizing impromptu raves or
converging on rock stars or other celebrities.

Smart mobs took on a more political bent in 1999 with
spontaneously organized, fast-moving antiglobalization
protests in Seattle. Police had considerable difficulty con-
taining the protests, their communications and coordina-
tion capabilities not being equal to the task.

Another political smart mob occurred in 2001 when
protesters in the Philippines used text messaging to orga-
nize demonstrations against the government of President
Joseph Estrada. The protests grew rapidly, and Estrada was
soon forced from office (see political activism and the
Internet). Smart mob techniques were also used start-
ing in 2003 to coordinate protests against the Iraq War. As

wireless communication continues to become ubiquitous,
aspects of smart mob organization can be expected to turn
up in future mass movements.

Even as the term has faded from public use, flash mobs
have continued to flourish, appealing to a desire to have fun
while striking out against an overly regimented consumer
society. The term urban playground movement has also been
used for the promotion of such gatherings.

Further Reading
Berton Justin. “Flash Mob 2.0: Urban Playground Movement

Invites Participation.” San Francisco Chronicle, November 10,
2007. Available online. URL: http://www.sfgate.com/cgi-bin/
article.cgi?f=/c/a/2007/11/10/MNMVT8UM9.DTL. Accessed
April 23, 2008.

“Howard Rheingold: Smart Mobs.” Edge, July 16, 2002. Available
online. URL: http://www.edge.org/3rd_culture/rheingold/
rheingold_print.html. Accessed September 21, 2007.

Packer, George. “Smart-Mobbing the War.” New York Times, March
9, 2003. Available online. URL: http://query.nytimes.com/
gst /fullpage.html?res=9D02E5D61F3CF93AA35750C0A9
659C8B63. Accessed September 21, 2007.

Rheingold, Howard. Smart Mobs: The Next Social Revolution. Cam-
bridge, Mass.: Basic Books, 2002.

———. Smart Mobs Web site. Available online. URL: http.://www.
smartmobs.com/. Accessed September 21, 2007.

Schwartz, John. “New Economy: In the Tech Meccas, Masses
of People, or ‘Smart Mobs,’ are Keeping in Touch through
Wireless Devices.” New York Times, July 22, 2002. Available
online. URL: http://query.nytimes.com/gst/fullpage.html?sec
=technology&res=98 02E5D61638F931A15754C0A9649C8B
63. Accessed March 28, 2008.

flash drive
A flash or “thumb” drive is a small data storage device that
uses semiconductor flash memory rather than a disk drive.
It is connected to a digital device using the universal serial
bus (see usb). Because most computers, digital cameras,
and other digital devices have USB ports, a flash drive is a
convenient way to provide up to 16 GB (as of 2007) of low
power, rewritable memory. Flash drives first appeared in
late 2000.

Flash drives can use a separate USB cable (useful when
several devices need to be connected to closely spaced USB
ports) or simply have a connector that plugs directly into
the port. Many people who regularly work with several
computers carry their backup data or even a complete oper-
ating system (such as Linux) on a flash drive, perhaps con-
nected to their keyring.

In Windows Vista some recent flash drives can be used
to provide an additional system memory cache through a
feature called ReadyBoost.

Flash drives can also be built into portable devices,
including video and audio players. A competing technol-
ogy (particularly found in digital cameras and PDAs) is the
Secure Digital (SD) memory card developed by Matsushita,
SanDisk, and Toshiba, which offers comparable capacity
but is proprietary and requires a special interface.

For high-security applications, flash drives can include
built-in encryption or fingerprint readers (see biometrics).
However, as with other readily portable media, unsecured

198        flash and smart mobs

flash drives containing sensitive data pose a real risk to
many organizations.

Under development by SanDisk and Intel are larger flash
drives (32 or 80 GB) suitable for replacing hard drives in lap-
tops. The benefits are lower weight and power consumption.

Further Reading
Axelson, Jan. USB Mass Storage: Designing and Programming Devices

and Embedded Hosts. Madison, Wis.: Lakeview Research, 2006.
Oreskovic, Alexei. “Intel Prepares Flash Attack.” The Street.

com, September 9, 2007. Available online. URL: http://www.
thestreet.com/s/intel-prepares-f lash-attack/newsanalysis/
techsemis/10380471.html. Accessed September 20, 2007.

Tyson, Jeff. “How Flash Memory Works.” Available online. URL:
http://developer.apple.com/hardwaredrivers/firewire/index.
html. Accessed September 20, 2007.

flat-panel display
The traditional computer display uses a cathode ray tube
(CRT) like that in a television set (see monitor). The flat-
panel display is an alternative used in most laptop com-
puters and some higher-end desktop systems. The most
common type uses a liquid crystal display (LCD). The dis-
play consists of a grid of cells with one cell for each of the
three colors (red, green, and blue) for each pixel.

The LCD cells are sandwiched between two polarizing
filter layers that consist of many fine parallel grooves. The
two filters are set so that the grooves on the second are
rotated 90 degrees with respect to the first. By default, the
light is polarized by the first filter, twisted by the liquid
crystals so it is parallel to the grooves of the second filter,
and thus passes through to be seen by the viewer. (For color
displays, the light is first passed through one of three color
filters to make it red, green, or blue as set for that pixel.)
However, if current is applied to a crystal cell, the crys-
tals realign so that the light passes through them without
twisting. This means that the second polarizing filter now
blocks the light and the cell appears opaque (or dark) to the
viewer.

Color LCD displays can use two different mechanisms for
sending the current through the crystals. In passive matrix
displays, the current is timed so that it briefly charges the
correct crystal cells. The charges fade quickly, making the
image look dim, and the display cannot be refreshed quickly
because of the persistence of ghost images. This means that
such displays do not work well with games or other pro-
grams with rapidly changing displays.

In an active matrix display, each display cell is con-
trolled by its own thin film transistor (TFT). These displays
are sharper, brighter, and can be refreshed more frequently,
allowing better displays for animations and games. How-
ever, fabrication costs for TFT displays are higher, and the
displays are also vulnerable to having a few transistors
fail, leading to permanent dark spots on the display. Active
matrix displays also use more power, reducing battery life
on laptop PCs. A general disadvantage of flat panel displays
is that their pixel dimensions are fixed, so setting the dis-
play to a resolution smaller than its full dimensions usually
results in an unsatisfactory image.

As newer technologies bring down the cost of flat-panel
LCD displays they are increasingly being seen on desktop
PCs, where they have the advantage of taking up much
less space than conventional monitors while drawing less
power.

Further Reading
“The PC Technology Guide. Flat panel displays.” Available online.

URL: http://www.pctechguide.com/43FlatPanels.htm. Accessed
August 14, 2007.

White, Ron. How Computers Work. 8th ed. Indianapolis: Que,
2005.

floppy disk
Until the mid-1990s, the floppy disk or diskette was the
primary method for distributing software and providing
removable data storage for personal computers. Diskettes
first appeared in the late 1960s on IBM minicomputers, and
became more widespread on a variety of minicomputers
and early microcomputers during the 1970s.

The now obsolete 8-inch and 5-¼ inch disks were made
from Mylar with a metal oxide coating, the assembly being
housed in a flexible cardboard jacket (hence the term “floppy
disk”). The more compact 3.5-inch diskettes first widely
introduced with the Apple Macintosh in 1984 became the
standard type for all PCs by the 1990s. These diskettes are
no longer truly “floppy” and come in a rigid plastic case.

A typical floppy disk drive has a controller with two
magnetic heads so that both sides of the diskette can be

When the current is off, the liquid crystals remain twisted so the
light passes through both polarizing panels and illuminates the dis-
play. However, when current is applied, the crystals straighten out,
causing the light to be blocked by the second polarizing panel.

floppy disk        199

used to hold data. The surface is divided into concentric
tracks that are in turn divided into sectors. (For more on
disk organization, see hard drive.) The heads are precisely
positioned to the required track/sector location using step-
per motors under control of the disk driver. The data capac-
ity of a disk depends on how densely tracks can be written
on it. Today’s 3.5-inch diskettes typically hold 1.44 MB of
data.

In recent years, drive technology has advanced so that
many more tracks can be precisely written in the same
amount of surface. The result is found in products such as
the popular Zip disks, which can hold 100 MB or even 250
MB, making them comparable in capacity and speed with
older, smaller hard drives.

Since the late 1990s, the traditional floppy disk has become
less relevant for most users. With more computers connected
to networks, the use of network copying commands or e-mail
attachments has made it less necessary to exchange files via
floppy, a practice dubbed “sneaker-net.” When data needs to
be backed up or archived, the high-capacity USB drive, tape,
or writable CD is a more practical alternative to low-capacity
floppies. (See backup and archive systems.) With its iMac
line, Apple actually discontinued including a floppy drive as
standard equipment. In PC-compatible laptops, a floppy drive
is often available as a plug-in module that can be alternated
with other devices. Desktop systems still sometimes come
with a single 3.5-inch drive.

Further Reading
White, Ron. How Computers Work. 8th ed. Indianapolis: Que,

2005.

flowchart
A flowchart is a diagram showing the “flow” or progress of
operations in a computer program. Flowcharting was one
of the earliest aids to program design and documentation,
and a plastic template with standard flowcharting symbols
was a common programming accessory. Today CASE (com-
puter-aided software engineering) systems often include
utilities that can automatically generate flowcharts based
on the control structures and procedure calls found in the
program code (see case).

The standard flowchart symbols include blocks of vari-
ous shapes that represent input/output, data processing,
sorting and collating, and so on. Lines with arrows indicate
the flow of data from one stage or process to the next. A
diamond-shaped symbol indicates a decision to be made
by the program. If the decision is an “if” (see branching
statements) separate lines branch off to the alternatives.
If the decision involves repeated testing (see loop), the line
returns back to the decision point while another line indi-
cates the continuation of processing after the loop exits.
Devices such as printers and disk drives have their own
symbols with lines indicating the flow of data to or from
the device.

Complex software systems can employ several levels of
flowcharts. For example, a particular routine within a pro-
gram might have its own flowchart. The routine as a whole

would then appear as a symbol in a higher-level flowchart
representing the program as a whole. Finally, a system chart
might show each program that is run as part of an overall
data processing system.

While still useful, flowcharting is often supplemented by
other techniques for program representation (see pseudo-
code). Also, modern program design tends to shift the
emphasis from charting the flow of processing to elucidat-
ing the properties and relationships of objects (see object-
oriented programming).

Further Reading
Boillot, M. H., G. M. Gleason, and L. W. Horn. Essentials of Flow-

charting. New York: WCB/McGraw-Hill, 1995.

font
In computing, a font refers to a typeface that has a distinc-
tive appearance and style. In most word processing, desk-
top publishing, and other programs the user can select the
point size at which the font is to be displayed and printed
(in traditional typography each point size would be consid-
ered to be a separate font). Operating systems such as Win-

A flowchart uses a set of simple symbols to describe the steps
involved in a data processing operation. The parallelograms indi-
cate an input/output operation (such as reading or writing a file).
The “decision diamonds” have yes and no branches depending on
the result of a test or comparison.

200        flowchart

dows and Macintosh usually come with an assortment of
fonts, and applications can register additional fonts to make
them available to the system.

Fonts are often presented as a “family” that includes
the same type design with different attributes such as bold-
face and italic. The spacing of letters could be uniform
(monospace) as in the Courier font often used for printing
computer program code or proportional (as with most text
fonts). For proportional fonts the design can include kern-
ing, or the precise fitting together of adjacent letters for a
more attractive appearance. Fonts are also described as serif
if they have small crossbars on the ends of letters such as at
the end of the crossbar on a T in the Times Roman font.
Other fonts such as Arial lack the tiny bars and are called
sans serif (without serif).

There are two basic ways to store font data in the
computer system. Bitmapped fonts store the actual pat-
tern of tiny dots that make up the letters in the font. This
has the advantage of allowing each letter in each point
size to be precisely designed. The primary disadvantage
is the amount of memory and system resources required
to store a font in many point sizes. In practice, this con-
sideration results in only a relatively few fonts and sizes
being available.

The alternative, an outline or vector font uses a “page
description language” such as Adobe PostScript or Tru-
eType to provide graphics commands that specify the draw-
ing of each letter in a font. When the user specifies a font,
the text is rendered by processing the graphics commands
in an interpreter. Since the actual bitmap doesn’t need to be
stored and all point sizes of a font can be generated from
one description, outline fonts save memory and disk space
(although they require additional processor resources for
rendering). While sophisticated scaling techniques are used
to maintain a pleasing appearance as the font size changes,
outline fonts will not look as polished as bitmapped fonts
that are hand-designed at each point size. (For use of fonts
see typography, computerized.)

Further Reading
Aaron, B. TrueType Display Fonts. San Francisco: Sybex, 1993.
Adobe Systems. Adobe Type Library Reference Book. 2nd ed. Moun-

tain View, Calif.: Adobe Press, 2003.
Headley, Gwyn. The Encyclopedia of Fonts. London: Cassell Illus-

trated, 2005.
Lupton, Ellen. Thinking with Type: A Critical Guide for Designers,

Writers, Editors & Students. New York: Princeton Architec-
tural Press, 2007.

Microsoft Typography. Available online. URL: http://www.microsoft.
com/typography/default.mspx. Accessed August 4, 2007.

TrueType Typography. Available online. URL: http://www.
truetype-typography.com/. Accessed August 4, 2007.

Forth
The unusual Forth programming language was designed
by Charles H. Moore in 1970. An astronomer, Moore was
interested in developing a compact language for controlling
motors to drive radio telescopes and other equipment.

Language Structure
Forth has a very simple structure. The Forth system con-
sists of a collection of words. Each word is a sequence of
operations (which can include other existing words). For
example, the DUP word makes a copy of a data value. Data
is held by a stack. For example, the arithmetic expression
written as 2 + 3 in most languages would be written in
Forth as + 2 3. When the + operator (which in Forth is a
pre-defined word) executes, it adds the next two numbers
it encounters (2 and 3) together, and puts the sum on the
stack (where in turn it might be fetched for further process-
ing by the next word in the program (see stack). This rep-
resentation is also called postfix notation and is familiar to
many users of scientific calculators.

The words in the dictionary are “threaded” or linked so
that each word contains the starting address of the next one.
The Forth interpreter runs a simple loop where it fetches
the next token (one or more characters delimited by spaces)
and scans the dictionary to see if it matches a defined word
(including variables). If a word is found, the code in the
word is executed. If no word is found, the interpreter inter-
prets the token as a numeric constant, loads it on the stack,
and proceeds to the next word.

A key feature of Forth is its extensibility. Once you have
defined a word, the new word can be used in exactly the same
way as the predefined words. The various forms of defining
words allow for great control over what happens when a new
word is created and when the word is later executed. (In
many ways Forth anticipated the principles of object-oriented
programming, with words as objects with implicit construc-
tors and methods. A well-organized Forth program builds up
from “primitive” operations to the higher-level words, with
the program itself being the highest-level word.)

Forth has always attracted an enthusiastic following of
programmers who appreciate a close communion with the
flow of data in the machine and the ability to precisely
tailor programs. The language is completely interactive,
since any word can be typed at the keyboard to execute
it and display the results. Forth was also attractive in the

Strictly speaking, a particular type design is called a typeface, and
a font is a rendering of a typeface with specified characteristics
such as height in points and possibly width or pitch in characters
per inch. Thus there are usually many fonts for each typeface.

Forth        201

early days of microcomputing because the lack of need for
a sophisticated interpreter or compiler meant that Forth
systems could run comfortably on systems that had perhaps
16K or 64K of available RAM.

Forth never caught on with the mainstream of program-
mers, however. Its very uniqueness and the unusual mindset
it required probably limited the number of people willing to
learn it. While Forth programs can be clearly organized,
badly written Forth programs can be virtually impossible
to read. However, Forth is sometimes found “under the
hood” in surprising places (for example, the PostScript page
description language is similar to Forth) and the language
still has a considerable following in designing hardware
control devices (see embedded systems).

Further Reading
Brodie, L. Starting FORTH. 2nd ed. Upper Saddle River, N.J.: Pren-

tice Hall, 1987.
———. Thinking FORTH. 2nd ed. Upper Saddle River, N.J.: Pren-

tice Hall, 1994.
Forth Interest Group. Available online. URL: http://www.forth.

org. Accessed August 14, 2007.
Rather, Elizabeth D. Forth Application Techniques. Hawthorne,

Calif.: FORTH, Inc., 2006.

FORTRAN
As computing became established throughout the 1950s,
the need for a language that could express operations in a
more “human-readable” language began to be acutely felt.
In a high-level language, programmers define variables and
write statements and expressions to manipulate them. The
programmer is no longer concerned with specifying the
detailed storage and retrieval of binary data in the com-
puter, and is freed to think about program structure and the
proper implementation of algorithms.

Fortran (FORmula TRANslator) was the first widely
used high-level programming language. It was developed
by a project begun in 1954 by a team under the leadership
of IBM researcher John Backus. The goal of the project was
to create a language that would allow mathematicians, sci-
entists, and engineers to express calculations in something
close to the traditional notation. At the same time, a com-
piler would have to be carefully designed so that it would
produce executable machine code that would be nearly as
efficient as the code that would have been created through
the more tedious process of using assembly languages. (See
compiler and assembler.)

The first version of the language, Fortran I, became
available as a compiler for IBM mainframes in 1957. An
improved (and further debugged version) soon followed.
Fortran IV (1963) expanded the number of supported
data types, added “common” data storage, and included
the DATA statement, which made it easier to load literal
numeric values into variables. This mature version of For-
tran was widely embraced by scientists and engineers, who
created immense libraries of code for dealing with calcula-
tions commonly needed for their work.

By the 1970s, the structured programming movement
was well under way. This school of programming empha-

sized dividing programs into self-contained procedures into
which data would be passed, processed, and returned. The
use of unconditional branches (GOTO statements) as was
common in Fortran was now discouraged. A new version of
the language, Fortran 77 (or F77), incorporated many of the
new structural features. The next version, Fortran 90 (F90),
added support for recursion, an important technique for
coding certain kinds of problems (see recursion). Math-
ematics libraries were also modernized. FORTRAN 2003
contains a number of new features, including support for
modern programming structures (see object-oriented
programming) and the ability to interface smoothly with
programs written in the C language. A relatively minor fur-
ther revision has the tentative name FORTRAN 2008.

Sample Program
The following simple example illustrates some features of a
traditional FORTRAN program:

INTEGER INTARRAY(10)
INTEGER ITEMS, COUNTER, SUM, AVG
SUM = 0
READ *, ITEMS
DO 10 COUNTER = 1, ITEMS

READ *, INTARRAY(COUNTER)
SUM = SUM + INTARRAY(COUNTER)

10 CONTINUE
AVG = SUM / ITEMS
PRINT ‘SUM OF ITEMS IS: ’, SUM
PRINT ‘AVERAGE IS: ’, AVG

STOP
END

The program creates an array holding up to ten integers
(see array). The first number it reads is the number of items
to be added up. It stores this in the variable ITEMS. A DO
loop statement then repeats the following two statements
once for each number from 1 to the total number of items.
Each time the two statements are executed, COUNTER is
increased by 1. The statements read the next number from
the array and add it to the running total in SUM. Finally, the
average is calculated and the sum and average are printed.

Like its contemporary, COBOL, Fortran is viewed by
many modern programmers as a rather clumsy and anach-
ronistic language (because of its use of line number refer-
ences, for example). However, there is a tremendous legacy
of tested, reliable Fortran code and powerful math libraries.
(For example, a Fortran program can call library routines
to quickly get the sum or cross-product of any array or
matrix.) These features ensure that Fortran has continuing
appeal and utility to users who are more concerned with
getting fast and accurate results than with the niceties of
programming style.

Further Reading
Chapman, Stephen J. Fortran 95/2003 for Scientists & Engineers.

3rd ed. New York: McGraw-Hill, 2007.
Chivers, Ian, and Jane Sleightholme. Introduction to Programming

with Fortran: With Coverage of Fortran 90, 95, 2003 and 77.
New York: Springer, 2005.

202        FORTRAN

Page, Clive. “Clive Page’s List of Fortran Resources.” Available
online. URL: http://www.star.le.ac.uk/~cgp/fortran.html.
Accessed August 4, 2007.

Reid, John. “The Future of Fortran.” Available online. URL: http://
www.ieeexplore.ieee.org/iel5/5992/27213/01208645.pdf.
Accessed August 4, 2007.

fractals in computing
Fractals and the related idea of chaos have profoundly
changed the way scientists think about and model the
world. Around 1960, Benoit Mandelbrot noticed that sup-
posedly random economic fluctuations were not distributed
evenly but tended to form “clumps.” As he investigated other
sources of data, he found that many other things exhibited
this odd behavior. He also discovered that the patterns of
distribution were “self-similar”—that is, if you magnified a
portion of the pattern it looked like a miniature copy of the
whole. Mandelbrot coined the term fractal (meaning frac-
tured, or broken up) to describe such patterns. Eventually,
a number of simple mathematical functions were found to
exhibit such behavior in generating values.

Fractals offered a way to model many phenomena in
nature that could not be handled by more conventional
geometry. For example, a coastline that might be measured
as 1,600 miles on a map might be many thousands of miles

when measured on local maps, as the tiny inlets at every
bay and beach are measured. Fractal functions could repli-
cate this sort of endless generation of detail in nature.

Fractals showed that seemingly random or chaotic data
could form a web of patterns. At the same time, Mandel-
brot and others had discovered that the pattern radically
depended on the precise starting conditions: A very slight
difference at the start could generate completely different
patterns. This “sensitive dependence on initial conditions”
helped explain why many phenomena such as weather (as
opposed to overall climate) resisted predictability.

Computing Applications
Many computer users are familiar with the colorful fractal
patterns generated by some screen savers. There are hun-
dreds of “families” of fractals (beginning with the famous
Mandelbrot set) that can be color-coded and displayed in
endless detail. But there are a number of more significant
applications. Because of their ability to generate realistic
textures at every level of detail, many computer games and
simulations use fractals to generate terrain interactively.
Fractals can also be used to compress large digital images
into a much smaller equivalent by creating a mathemati-
cal transformation that preserves (and can be used to re-
create) the essential characteristics of the image. Military
experts can use fractal analysis either to distinguish artifi-
cial objects from surrounding terrain or camouflage, or to
generate more realistic camouflage. Fractals and chaos the-
ory are likely to produce many surprising discoveries in the
future, in areas ranging from signal analysis and encryption
to economic forecasting.

Further Reading
Fractal Resources & Links. Available online. URL: http://home.att.

net/~Novak.S/resources.htm. Accessed August 4, 2007.
Gleick, J. Chaos: The Making of a New Science. New York: Viking,

1987.
Mandelbrot, Benoit. The Fractal Geometry of Nature. New York:

W.H. Freeman, 1982.
Peitgen, Heinz-Otto, Hartmunt Jüurgens, and Dietmar Saupe.

Chaos and Fractals. 2nd ed. New York: Springer, 2004.

functional languages
Most commonly used computer languages such as C++
and FORTRAN are imperative languages. This means that
a statement is like a “sentence” in which the value of an
expression or the result of a function is used in some way,
such as assigning it to another variable or printing it. For
example:

A = cube(3)

passes the parameter 3 to the cube function, which returns
the value 27, which is then assigned to the variable A.

In a functional language, the values of functions are not
assigned to variables (or stored in intermediate locations as
functions are evaluated). Instead, the functions are manipu-
lated directly, together with data items (atoms) arranged
in lists. The earliest (and still best-known) functional lan-
guage is LISP (see lisp). Programming is accomplished by

A Mandelbrot fractal generated using Adobe PhotoShop and the
KPT (Kai’s Power Tools) Fraxplorer filter.  (Lisa Yount)

functional languages        203

defining and arranging functions until the desired process-
ing is accomplished. (The decision making accomplished
by branching statements in imperative languages is accom-
plished by incorporating conditionals in function defini-
tions.)

Many functional languages (including LISP) for conve-
nience incorporate some features of imperative languages.
The ML language, for example, includes data type declara-
tions. A similar language, Haskell, however, eschews all
such imperative features.

Applications
Functional languages have generally been used for special-
ized purposes, although they can in principle perform any
task that an imperative language can. APL, which is basi-
cally a functional language, has devotees who appreciate its
compact and powerful syntax for performing calculations
(see apl). LISP and its variants have long been favored for
many artificial intelligence applications, particularly natu-
ral language processing, where its representation of data as
lists and the facility of its list-processing functions seems a
natural fit.

Proponents of functional languages argue that they free
the programmer from having to be concerned with explic-
itly setting up and using variables. In a functional language,
problems can often be stated in a more purely mathematical
way. Further, because functional programs are not orga-
nized as sequentially executed tasks, it may be easier to
implement parallel processing systems using functional
languages.

However, critics point out that imperative languages are
much closer to how computers actually work (employing
actual storage locations and sequential operation) and thus
produce code likely to be much faster and more efficient
than that produced by functional languages.

Further Reading
Bird, R. Introduction to Functional Programming Using Haskell. 2nd

ed. London: Prentice Hall, 1998.
Hudak, Paul. The Haskell School of Expression: Learning Functional

Programming through Multimedia. New York: Cambridge Uni-
versity Press, 2000.

Michaelson, Greg, Phil Trinder, and Hans-Wolfgang. Loidl, eds.
Trends in Functional Programming. 2 vols. Portland, Oreg.:
Intellect, 2000.

Thompson, S. Haskell. Miranda: The Craft of Functional Program-
ming. 2nd ed. Reading, Mass.: Addison-Wesley, 1996.

fuzzy logic
At bottom, a data bit in a computer is “all or nothing”
(1 or 0). Most decisions in computer code are also all or

nothing: Either a condition is satisfied, and execution takes
one specified path, or the condition is not satisfied and it
goes elsewhere. In real life, of course, many situations fall
between the cracks. For example, a business might want to
treat a credit applicant who almost qualifies for “A” status
different from one who barely made “B.” While a program
could be refined to include many gradations between B and
A, another approach is to express the degree of “closeness”
(or certainty) using fuzzy logic.

In 1965, mathematician L. A. Zadeh introduced the con-
cept of the fuzzy set. In a fuzzy set, a given item is not
simply either a member or not a member of a specified set.
Rather, there is a degree of membership or “suitability”
somewhere between 0 (definitely not a member) and 1 (defi-
nitely a member). A program using fuzzy logic must include
a variety of rules for determining how much certainty to
assign in a given case. One way to create rules is to ask
experts in a given field (such as credit analysis) to articulate
the degree of certainty or confidence they would feel in a
given set of circumstances. For physical systems, data can
also be correlated (such as the relationship of temperature
to the likelihood of failure of a component) and used to cre-
ate a rule to be followed by, for example, a chemical process
control system.

Fuzzy logic is particularly applicable to the creation of
programs (see expert system) that are better able to cope
with uncertainty and the need to weigh competing factors
in coming to a decision. It can also be used in engineer-
ing to allow designers to specify which factors they want
to tightly constrain (such as for safety reasons) and which
can be allowed more leeway. The system can then come up
with optimized design specifications. Fuzzy logic has also
been applied to areas such as pattern recognition and image
analysis where a number of uncertain observations must
often be accumulated and a conclusion drawn about the
overall object.

Further Reading
Bojadziev, George, and Maria Bojadziev. Fuzzy Logic for Business,

Finance, and Management. 2nd ed. Hackensack, N.J.: World
Scientific Publishing Co., 2007.

“Fuzzy Logic Tutorial.” Encoder (Seattle Robotics Society). March
1998. Available online. URL: http://www.seattlerobotics.
org/encoder/mar98/fuz/flindex.html. Accessed August 4,
2007.

Mendel, Jerry M. Uncertain Rule-Based Fuzzy Logic Systems: Intro-
duction and New Directions. Upper Saddle River, N.J.: Prentice
Hall PTR, 2000.

Nguyen, Hung T., and Elbert A. Walker. A First Course in Fuzzy
Logic. 3rd ed. Bocal Raton, Fla.: Chapman & Hall/CRC,
2006.

Sanchez, E. Fuzzy Logic and the Semantic Web. Amsterdam: Else-
vier, 2006.

204        fuzzy logic

205

game consoles
Game consoles are computer devices dedicated to (or pri-
marily used for) playing video games. The earliest such
devices appeared in the 1970s from Magnavox and then
Atari, and could only play simple games like Pong (a crude
simulation of ping-pong). Slightly later systems began to
feature cartridges that allowed them to play a greater vari-
ety of games.

After a shakeout in the late 1970s, Atari revived the
video game industry with its hit game Space Invaders.
However, this was followed by another industry crash as
the market became glutted by often imitative and inferior
games. The next leader was Nintendo, with its own hit,
Super Mario Brothers. By the end of the 1980s another Japa-
nese firm, Sega, had entered the American market.

During the 1990s consoles grew in power and graphic
sophistication. CDs (and later DVDs) replaced cartridges
and allowed for larger, more complex games. By the end of
the decade the main competitors were the Sony Playstation
2 and the Nintendo 64 (indicating a 64-bit processor) and
GameCube. Meanwhile Microsoft entered the game console
market with its Xbox, which featured a more PC-like archi-
tecture including a built-in hard drive (soon also adopted
by Sony).

New Technologies
A technology with applications far beyond games is the
“cell chip” technology introduced by Sony in its Play-
Station 3, introduced in late 2006. The Sony cell chip
has seven cores and can reach nearly supercomputer-scale

speeds (and in fact is being used to create impromptu
supercomputers).

Sony also opted to include a high-definition “Blu-ray”
DVD player in the PS3, strengthening its application as a
media device as well as a gaming device, with Microsoft
and its Xbox 360 initially opting for the ultimately unsuc-
cessful HD DVD.

Nintendo’s Wii, the third major competitor as of 2007,
innovates in a different area: the user interface. The Wii
comes with a controller that can track both where it is
pointing and how it is being used, allowing for rather real-
istic sports and combat simulations.

Further Reading
Amirch, Dan. PlayStation 2 for Dummies. New York: Hungry

Minds, 2001.
Farkas, Bart G. The Nintendo Wii Pocket Guide. Berkeley, Calif.:

Peachpit Press, 2007.
Forster, Winnie. The Encyclopedia of Game Machines. Utting, Ger-

many: Game Plan, 2005.
Johnson, Brian. Xbox 360 for Dummies. Hoboken, N.J.: Wiley,

2006.
Kent, Steven L. The Ultimate History of Video Games. New York:

Three Rivers Press, 2001.
Kim, Ryan. “New Era of Game Devices Arrives: Sony and Nin-

tendo Meet the Challenge of Microsoft’s Xbox.” San Francisco
Chronicle, November 13, 2006, p. F-1. Available online. URL:
http://sfgate.com/cgi-bin/article.cgi?file=/c/a/2006/11/13/
BUGS1MAGAN1.DTL. Accessed September 21, 2007.

Nintendo. Available online. URL: http://www.nintendo.com.
Accessed September 21, 2007.

Playstation (Sony). Available online. URL: http://www.us.
playstation.com/. Accessed September 21, 2007.

G

Takahashi, Dean. The Xbox 360 Uncloaked: The Real Story Behind
Microsoft’s Next-Generation Video Game Console. Spiderworks,
2006.

Xbox (Microsoft). Available online. URL: http://www.microsoft.
com/xbox/. Accessed September 21, 2007.

Gates, William, III (Bill)
(1955– )
American
Entrepreneur, Programmer

Bill Gates built Microsoft, the dominant company in the
computer software field and in doing so, became the world’s
wealthiest individual, with a net worth measured in the
tens of billions. Born on October 28, 1955, to a successful
professional couple in Seattle, Gates’s teenage years coin-
cided with the first microprocessors becoming available to
electronics hobbyists.

Gates showed both technical and business talent as early
as age 15, when he developed a computerized traffic-control
system. He sold his invention for $20,000, then dropped
out of high school to work as a programmer for TRW for

the very respectable salary of $30,000. By age 20, Gates
had returned to his schooling and become a freshman at
Harvard, but then he saw a cover article in Popular Electron-
ics. The story introduced the Altair, the first commercially
available microcomputer kit.

Gates believed that microcomputing would soon become
a significant industry. To be useful, however, the new
machines would need software, and Gates and his friend
Paul Allen began by creating an interpreter for the BASIC
language that could run in only 4 KB of memory, making
it possible for people to write useful applications without
having to use assembly language. This first product was
quite successful, although to Gates’s annoyance it was illic-
itly copied and distributed for free.

In 1975, Gates and Allen formed the Microsoft Cor-
poration. Most of the existing microcomputer companies,
including Apple, Commodore, and Tandy (Radio Shack)
signed agreements to include Microsoft software with their
machines. However, the big breakthrough came in 1980,
when IBM decided to market its own microcomputer. When
negotiations for a version of CP/M (then the dominant oper-
ating system) broke down, Gates agreed to supply IBM with
a new operating system. Buying one from a small Seattle
company, Microsoft polished it a bit and sold it as MS-DOS
1.0. Sales of MS-DOS exploded as many other companies
rushed to create “clones” of IBM’s hardware, each of which
needed a copy of the Microsoft product.

In the early 1980s, Microsoft was only one of many
thriving competitors in the office software market. Word
processing was dominated by such names as WordStar
and WordPerfect, Lotus 1-2-3 ruled the spreadsheet roost,
and dBase II dominated databases (see word processing,
spreadsheet, and database management system). But
Gates and Microsoft used the steady revenues from MS-
DOS to undertake the creation of Windows, a much larger
operating system that offered a graphical user interface (see
user interface). While the first versions of Windows were
clumsy and sold poorly, by 1990 Windows (with versions
3.1 and later, 95 and 98) had become the new dominant OS
and Microsoft’s annual revenues exceeded $1 billion (see
Microsoft Windows). Gates relentlessly leveraged both
the company’s technical knowledge of its own OS and its
near monopoly in the OS sector to gain a dominant market
share for the Microsoft word processing, spreadsheet, and
database programs.

By the end of the decade, however, Gates and Microsoft
faced formidable challenges. The growth of the Internet and
the use of the Java language with Web browsers offered a
new way to develop and deliver software, potentially getting
around Microsoft’s operating system dominance (see Java).
That dominance, itself, was being challenged by Linux, a
version of LINUX created by Finnish programmer Linus
Torvalds (see linux). Gates responded that Microsoft, too,
would embrace the networked world and make all its soft-
ware fully integrated with the Internet and distributable in
new ways.

However, antitrust lawyers for the U.S. Department of
Justice and a number of states began legal action in the late
1990s, accusing Microsoft of abusing its monopoly status

Game consoles such as this Microsoft Xbox are now more powerful
than many desktop computers.  (Microsoft Corporation)

206        Gates, William, III

by virtually forcing vendors to include its software with
their systems. In 2000, a federal judge agreed with the gov-
ernment. In November 2002, an appeals court accepted a
proposed settlement that would not break up Microsoft but
would instead restrain a number of its unfair business prac-
tices.

Gates’s personality often seemed to be in the center of
the ongoing controversy about Microsoft’s behavior. Posi-
tively, he has been characterized as having incredible
energy, drive, and focus in revolutionizing the development
and marketing of software.

On the other hand, Gates has been unapologetic about
his dominance of the market. During the 1990s he often
appeared defensive and abrasive in giving legal depositions
or making public statements. As an executive, he has at times
shown little tolerance for what he considers to be incompe-
tence or shortsightedness on the part of subordinates.

There is another face to Bill Gates: He is one of the
leading philanthropists of our time. In 2000 he and his
wife founded the Bill and Melinda Gates Foundation. The
foundation’s endowment was about $33 billion by 2006,
and Warren Buffet pledged to nearly double that through

stock donations. The foundation gives over $800 million a
year to global health programs (including vaccination pro-
grams), supports a variety of global development efforts,
and donates money and software to libraries and educa-
tional institutions. In June 2006 Gates announced that he
would be withdrawing from involvement in the day-to-day
affairs of Microsoft, in order to devote more time to philan-
thropy.

Since 2004, Gates has been featured on Time magazine’s
annual list of 100 most influential people. In 2005, the
magazine made Gates, along with his wife and U2’s lead
singer Bono, “Persons of the Year.” Gates has also received
four honorary doctorates.

Further Reading
Bank, David. Breaking Windows: How Bill Gates Fumbled the Future

of Microsoft. New York: Free Press, 2001.
Bill & Melinda Gates Foundation. Available online. URL: http://

www.gatesfoundation.org/default.htm. Accessed August 5,
2007.

Lesinski, Jeanne M. Bill Gates (Biography A&E). Rev. ed. Minne-
apolis: Lerner Publications, 2007.

Lowe, Jane C. Bill Gates Speaks: Insights from the World’s Greatest
Entrepreneur. New York: Wiley, 1998.

Markoff, John. “Exit, Pursued by 1,000 Bears (Microsoft Corp.’s
Bill Gates)” New York Times, July 30, 2007, p, C1.

Wallace, James, and Jim Erickson. Hard Drive: Bill Gates and the
Making of the Microsoft Empire. New York: HarperBusiness,
1993.

genetic algorithms
The normal method for getting a computer to perform a
task is to specify the task clearly, choose the appropriate
approach (see algorithm), and then implement and test
the code. However, this approach requires that the pro-
grammer first know the appropriate approach, and even
when there are many potentially suitable algorithms, it isn’t
always clear which will prove optimal.

Starting in the 1960s, however, researchers began to
explore the idea that an evolutionary approach might be
adaptable to programming. Biologists today know that
nature did not begin with a set of highly optimized algo-
rithms. Rather, it addressed the problems of survival
through a proliferation of alternatives (through mutation
and recombination) that are then subjected to natural selec-
tion, with the fittest (most successful) organisms surviving
to reproduce. Researchers began to develop computer pro-
grams that emulated this process.

A genetic program consists of a number of copies of a
routine that contain encoded “genes” that represent ele-
ments of algorithms. The routines are given a task (such
as sorting data or recognizing patterns) and the most suc-
cessful routines are allowed to “reproduce” by exchanging
genetic material. (Often, further “mutation” or variation is
introduced at this stage, to increase the range of available
solutions.) The new “generation” is then allowed to tackle
the problem, and the process is repeated. As a result, the
routines become increasingly efficient at solving the given
problem, just as organisms in nature become more perfectly
adapted to a given environment.

Bill Gates is the multibillionaire cofounder of Microsoft Corpo-
ration, the leader in operating systems and software for personal
computers. The company has faced antitrust actions since the
late 1990s.  (Microsoft Corporation)

genetic algorithms        207

Applications
Variations of genetic algorithms or “evolutionary program-
ming” have been used for many applications. In engineering
development, a virtual environment can be set up in which
a simulated device such as a robot arm can be allowed to
evolve until it is able to perform to acceptable specifica-
tions. (NASA has also used genetic programs competing on
80 computers to design a space antenna.) Different versions
of an expert system program can be allowed to compete at
performing tasks such as predicting the behavior of finan-
cial markets. Finally, a genetic program is a natural way to
simulate actual biological evolution and behavior in fields
such as epidemiology (see also artificial life).

Further Reading
“Bibliography on Genetic Programming.” Available online. URL: http://

liinwww.ira.uka.de/bibliography/Ai/genetic.programming.
html. Accessed August 5, 2007.

Brown, Chappell. “Darwin’s Ideas Evolve Design.” EE Times, Febru-
ary 6, 2006. Available online. URL: http://www.eetimes.com/
showArticle.jhtml?articleID=178601156. Accessed August 5,
2007.

Eiben, A. E., and J. E. Smith. Introduction to Evolutionary Comput-
ing. New York: Springer, 2003.

Genetic-programming.org [Resources]. Available online. URL: http://
www.genetic-programming.org/. Accessed August 5, 2007.

“The GP Tutorial.” Available online. URL: http://www.genetic
programming.com/Tutorial/. Accessed August 5, 2007.

Keats, Jonathon. “John Koza Has Built an Invention Machine.”
 Popular Science, April 2006. Available online. URL: http://
www.popsci.com/popsci/science/0e13af26862ba010vgnvcm
1000004eecbccdrcrd.html. Accessed August 5, 2007.

Langdon, William B., and Riccardo Poli. Foundations of Genetic
Programming. New York: Springer, 2002.

Riolo, Rick, and Bill Worzel, eds. Genetic Programming Theory
and Practice. Norwell, Mass.: Kluwer Academic Publishers,
2003.

Geographical Information Systems
Cartography, or the art of mapmaking, has been trans-
formed in many ways by the use of computers. Traditionally,
mapmaking was a tedious process of recording, compiling,
and projecting or plotting information about the location,
contours, elevation, or other characteristics of natural geo-
graphic features or the demographic or political structure
of human communities.

Instead of being transcribed from the readings of survey-
ing instruments, geographic information can be acquired
and digitized by sensors such as cameras aboard orbit-
ing satellites. The availability of such extensive, detailed
information would overwhelm any manual system of tran-
scribing or plotting. Instead, the Geographical Informa-
tion System (GIS, first developed in Canada in the 1960s)
integrates sensor input with scanning and plotting devices,
together with a database management system to compile
the geographic information.

The format in which the information is stored is depen-
dent on the scope and purpose of the information system. A
detailed topographical view, for example, would have physi-
cal coordinates of latitude, longitude, and elevation. On the
other hand, a demographic map of an urban area might

have regions delineated by ZIP code or voting precinct, or
by individual address.

Geographic data can be stored as either a raster or a
vector representation. A raster system divides the area into
a grid and assigns values to each cell in the grid. For exam-
ple, each cell might be coded according to its highest point
of elevation, the amount of vegetation (ground cover) it has,
its population density, or any other factor of interest. The
simple grid system makes raster data easy to manipulate,
but the data tends to be “coarse” since there is no informa-
tion about variations within a cell.

Unlike the arbitrary cells of the raster grid, a vector rep-
resentation is based upon the physical coordinates of actual
points or boundaries around regions. Vector representation
is used when the actual shapes of an entity are important,
as with property lines. Vector data is harder to manipulate
than raster data because geometric calculations must be
made in order to yield information such as the distance
between two points.

The power of geographic information systems comes from
the ability to integrate data from a variety of sources, whether
aerial photography, census records, or even scanned paper
maps. Once in digital form, the data can be represented in a
variety of ways for various purposes. A sophisticated gis can
be queried to determine, for example, how much of a pro-
posed development would have a downhill gradient and be
below sea level such that flooding might be a problem. These
results can in turn be used by simulation programs to deter-
mine, for example, whether release of a chemical into the
groundwater from a proposed plant site might affect a partic-
ular town two miles away. Geographic information systems
are thus vital for the management of a variety of complex
systems that are distributed over a geographical area, such
as water and sewage systems, power transmission grids, and
traffic control systems. Other applications include emergency
planning (and evacuation routes) and the long-term study of
the effects of global warming trends.

A raster grid showing annual rainfall totals in inches for mythical
Square County. Raster data is easy to work with, but the “coarse-
ness” of the grid means that it does not capture much local varia-
tion or detail.

208        Geographical Information Systems

from information to navigation
The earliest use of maps was for facilitating navigation.
The development of the Global Positioning System (GPS)
made it possible for a device to triangulate readings from
three of 24 satellites to pinpoint the user’s position on
Earth’s surface within a few meters (or even closer in mil-
itary applications). The mobile navigation systems that
have now become a consumer product essentially use the
current physical coordinates to look up information in the
onboard geographical information system. Depending on
the information stored and the user’s needs, the resulting
display can range from a simple depiction of the user’s
location on a highway or city street map to the generat-
ing of detailed driving directions from the present loca-
tion to a desired location. As these systems are fitted with
increasingly versatile natural language systems (and per-
haps voice-recognition capabilities), the user will be able
to ask questions such as “Where’s the nearest gas station?”
or even “Where’s the nearest French restaurant rated at
least three stars?”

Further Reading
Burrough, P.A., and R. McDonnell. Principles of Geographical Infor-

mation Systems. 2nd ed. New York: Oxford University Press,
1998.

Demers, M. N. Fundamentals of Geographic Information Systems.
New York: Wiley, 1997.

Longley, P. A., (and others) eds. Geographical Information Systems:
Principles, Techniques, Management and Applications. New
York: Wiley, 1998.

Ramadan, K. “The Use of GPS for GIS Applications.” http://www.
geogr.muni.cz/lgc/gis98/proceed/RAMADAN.html

U.S. Geological Survey. “Geographic Information Systems.” http://
www.usgs.gov/research/gis/title.html.

globalization and the computer industry
Globalization can be described as a group of trends that
are breaking down the boundaries between national and
regional economies, making countries more dependent on
one another, and resulting in the freer flow of labor and
resources. These trends have been praised by free trade
advocates and decried by proponents of labor rights and
environmentalism. However one feels about them, it is
clear that global trends are reshaping the computer and
information industry in many ways, and pose significant
challenges.

Global trends that affect computer technology, software,
and services include:

• � offshoring, or the continuing movement of manufac-
turing of high-value components (and whole systems)
from the industrialized West to regions such as Asia

• � outsourcing—moving functions (such as technical
support) from a company’s home country to areas
where suitable labor forces are cheaper (see employ-
ment in the computer field)

• � removal of traditional intermediaries such as brokers
and agents, with some of their functions being taken
over by software (see software agent)

• � decentralized networks (of which the Internet itself
is the most prominent example) and the tendency of
information to flow freely and quickly despite barri-
ers such as censorship

• � virtualization—creation of work groups or whole
companies that are distributed across both space
and time (24 hours), coordinated by the Internet and
mobile communications (see virtualization)

• � increasing use of open-source and collaborative mod-
els of software and information development (see
open source)

• � blurring of the distinction between consumers and
producers of information (see social networking
and user-created content)

These global trends can be divided roughly into three cat-
egories: movement of labor and resources, restructuring of
markets, and changes in the nature and flow of production.

Movements and Shifts
Offshoring is the movement of manufacturing operations
from the traditional developed industrial nations (such
as the United States and Europe) to developing nations
(see also developing nations and computing). The
principal motivation for this (as well as outsourcing, the
movement of corporate functions and services) is lower
labor and related costs. India, with its large population
of well-trained, English-speaking workers, was the first
beneficiary of these trends in the 1990s. Many major U.S.
computer companies such as IBM, Intel, Microsoft, and
HP have made major investments in software develop-
ment operations in India. However, it should be noted
that offshoring/outsourcing is a truly global trend, with
other industrialized nations taking advantage of similar
situations, particularly where there are language compat-
ibilities. Thus Japanese companies have invested heavily
in China, while Germans and other Europeans have pre-
ferred to look toward Eastern Europe.

Besides lower costs, outsourcing can speed development
by taking advantage of differences in time zones, allowing
for coordinated 24-hour production cycles.

Free-Trade Controversies
Proponents of these trends generally include them under
the umbrella of “free trade.” Their arguments include:

• � greater productivity through more efficient tapping of
talent and resources

• � improvement in the standard of living in developing
nations

• � lower prices for goods and services in developed
nations

• � spurring innovation through competition and the
movement of displaced workers to higher-value jobs

Opponents point to a number of serious problems and
issues, including:

globalization and the computer industry        209

• � downward wage pressure and/or unemployment as
workers in developed nations are displaced by offshore
workers

• � difficulty in retraining displaced workers

• � lack of adequate protective regulations and labor
rights for workers in developing nations

• � potential deterioration in the quality of services (such
as technical support) after outsourcing

• � risks of dependence on offshore supply sources in
times of crisis

Restructuring of Markets
Computer-related businesses must also deal with the effects
of globalization on the market for hardware, software, and
services. Lower-cost offshore manufacturing has helped
contribute to making many computer systems and peripher-
als into commodity items. This certainly benefits consum-
ers (consider the ubiquitous $100 or less computer printer).
However, it becomes more difficult to extract a premium
for a brand as opposed to a generic name. Some companies
have responded by relentless efforts to maximize efficiency
in manufacturing (for example, see Dell, Inc.), while a few
others have maintained a reputation for style or innovation
(see Apple, Inc.). Consumers have increasingly objected,
however, to the difficulty in dealing with offshore technical
support.

While the power of the Internet has opened many new
ways of reaching potential customers around the world,
dealing with a global marketplace brings considerable
added complications, such as the need to deal with different
regulatory systems (such as the European Union). In some
areas (notably Asia) there is also the problem of unauthor-
ized copying of software and media products (see soft-
ware piracy and counterfeiting).

New Ways of Working
A global, connected economy is not only changing where
work is done, but also how it is done. If a software devel-
oper, for example, has operations in the United States,
Europe, India, and China, at any time of day there will
be work going on somewhere. With the complexity and
speed of operations, managers in the United States may
have to keep quite long and irregular hours in order to
have real-time communication with counterparts abroad.
This interaction is made possible by a variety of technolo-
gies, including Internet-based phone and video conferenc-
ing and, of course, e-mail. However, this is not without
added stress. Overall operations can be structured to take
advantage of the time zone differences. Code or documents
written in Bangalore might be reviewed and revised in Sili-
con Valley the same day.

Global trends are likely to continue and even acceler-
ate as the computer and information industry continues to
develop around the world. While technology can help deal
with some of the challenges, there are many larger eco-
nomic and political issues involved, and whether they can

be satisfactorily resolved may ultimately have the greatest
impact on the industry.

Further Reading
Blinder, Alan E. “Offshoring: The Next Industrial Revolution?”

Foreign Affairs 85 (March/April 2006): 113–128.
Carmel, Erran, and Paul Tjia. Offshoring Information Technology:

Sourcing and Outsourcing to a Global Workforce. New York:
Cambridge University Press, 2005.

Currie, Wendy. The Global Information Society. New York: Wiley,
2000.

Friedman, Thomas L. The World Is Flat: A Brief History of the
Twenty-First Century. 2nd rev. ed. New York: Picador, 2007.

Quinn, Michelle. “Working Around the Clock.” Los Angeles Times,
June 19, 2007. Available online. URL: http://www.latimes.
com/news/la-fi-timezone19jun19,1,7843626.story?ctrack=1&
cset=true. Accessed September 21, 2007.

Samii, Massood, and Gerald D. Karush, eds. International Business
& Information Technology. New York: Routledge, 2004.

Sood, Robin. IT, Software, and Services: Outsourcing and Offshor-
ing: The Strategic Plan with a Practical Viewpoint. Austin, Tex.:
AiAiYo Books, 2005.

Steger, Manfred B. Globalization: A Very Short Introduction. New
York: Oxford University Press, 2003.

Google
Google Inc. (NASDAQ symbol: GOOG) has built a busi-
ness colossus by focusing on helping users find what they
are looking for on the Internet while selling advertising
targeted at those same users. By 2006, “to google” could be
found in dictionaries as a verb meaning to look up anyone
or anything online.

Google was founded by two Stanford students (see Brin,
Sergey and Page, Larry) who, for their doctoral thesis,
had described a Web search algorithm that could give a bet-
ter idea of the likely relevance of a given site based on the
number of sites that linked to it. The two students imple-
mented a search engine based on their ideas and hosted it
on the Stanford Web site, where its popularity soon irri-
tated the university’s system administrators. In 1998 their
business was incorporated as Google, Inc., and moved to
the archetypal Silicon Valley entrepreneur’s location—a
friend’s garage. However, as the company attracted invest-
ment capital and grew rapidly, it moved to Palo Alto and
then its present home in Mountain View.

Google’s initial public stock offering was in 2004, and
the market’s enthusiastic response made many senior
employees instant millionaires. Google’s steady growth in
subsequent years has kept its stock in demand, reaching a
record peak of $560 in September 2007. (In 2006 Google
was added to the S&P 500 Index.)

Search and Its Larger Context
People tend to think of Google as a search engine. Actu-
ally, it is better to think of it as an ever-expanding net-
work of Web-based services that include general and
specialized searches but also tools for content creation
and collaboration.

It is true that search and the accompanying advertising
are the core of Google’s revenue and thus the engine that

210        Google

drives its proliferation. In 2000 Google adopted keyword-
based advertising. (This was not a new idea, but Google
was the first to really make it work.) Basically, advertisers
bid for the right to have their ad accompany the results of a
search that contains a given word, on a per “click through”
basis—that is, how often the user clicks on the ad to go to
the advertiser’s site. Advertisers are prioritized according
to how much they bid, their previous click-through rate,
and their ad’s relevance to the search. If someone searches,
for example, “widget” and Acme Widget Co. is in line for
placement, the Acme ad is shown. If the user then clicks on
it, Acme makes a payment to Google (and hopes to some
business).

The power of keyword-based and other “contextual”
advertising is that, by definition, any accompanying ad is
targeted to someone who is quite probably already look-
ing for what one is selling. And what makes this such a
revenue-maker for Google is that, since the company serves
over half of all Web searches, anyone wanting an ad to
reach the biggest share of its potential audience will have to
turn to Google.

Google’s ability to offer more precisely targeted advertis-
ing has been enhanced in several ways:

• � AdSense, which can be installed on a Web site where
it displays ads keyed to the site’s content. Revenue is
shared by Google and the site owner.

• � Advertisers can specify an AdWord and Google will
place it on participating sites in its “content network”
that it believes are relevant. The advertiser pays per
thousand viewings of the ads (“impressions”).

• � Specialized shopping-oriented searches such as
Google Product Search, which returns lists of sellers
and a price comparison.

• � Searches can also be local (particularly useful for
mobile devices) and results can be keyed to maps.

Other Applications
Google has greatly expanded beyond its core business of
search and accompanying advertising. In general, the com-
pany has been emphasizing acquiring or developing tools
that help users create content and collaborate. These offer-
ing include:

• � Blogger, an easy-to-use blogging tool (see blogs and
blogging)

• � JotSpot, developer of wiki collaboration tools (see
wikis and Wikipedia)

• � YouTube, the largest video-sharing service, acquired
by Google in 2006 (see YouTube)

• �G mail, a free e-mail service

• �G oogle Apps, which provides a Web-based office envi-
ronment including a calendar and Google Docs &
Spreadsheets. (The standard edition is free and repre-
sents a competitive challenge for Microsoft Office, par-
ticularly for small businesses and simpler applications.)

In addition to office and collaboration tools, Google has
several other prominent applications that do not easily fit in
one category:

• �G oogle News provides a constantly updated newspa-
perlike format that groups stories under headlines.

• �G oogle Book Search offers access to thousands of
public-domain books and summaries or limited pre-
views of copyrighted works (see e-books and digital
libraries)

• �G oogle Maps and Google Earth are vast troves of map
information, satellite imagery, and even street-level
views of some cities.

A key to the growth of Google’s new Web services is that
many of them come with programming interfaces that can
be used to integrate them into Web sites and applications.
It is relatively easy, for example, to combine maps and data
about stores or other locations (see mashups).

Criticism
As of mid-2008 Google had more than 19,500 full-time
employees. The company’s workplace culture at its Moun-
tain View “Googleplex” is famous for its gourmet food,
elaborate recreation center, and other perks. (In 2007 For-
tune magazine rated Google first in the nation as a place to
work.)

Google has a market capitalization of about $180 billion,
ahead of such giants as Hewlett-Packard and IBM. In 2008
Google took in $16.6 billion, with $4.2 billion in profit.
Google’s impact on the online world has been immense.
As of mid-2007 Google was processing 54 percent of all
Internet search requests, followed distantly by Yahoo! at 20
percent and Microsoft at 13 percent.

Google sets a high standard for itself. Its mission state-
ment is “to organize the world’s information and make it
universally accessible and useful.” A corporate motto is
“don’t be evil” in the pursuit of success. A number of critics
have suggested, however, that Google has fallen short of its
standards in a number of respects:

• �G oogle Book Search had led to accusations of copy-
right violations by publishers and authors. Google has
also been accused of benefiting from rampant copying
of copyrighted content on its YouTube subsidiary.

• �G oogle has been criticized for aiding China in censor-
ing search results (see censorship and the Internet).

• � The detailed imagery available from Google Earth has
been criticized by some nations on security grounds,
and street-level views have raised privacy questions.

• � Some Google practices, including the extensive use of
cookies and analysis of users’ e-mail and other con-
tent, have also aroused privacy concerns (see cook-
ies and data mining).

• �G oogle has also been criticized for keeping its Page
Rank system secret, making it hard to determine if it
is treating users fairly.

Google        211

In 2007 Google acquired DoubleClick for $3.1 billion.
Although the combination of the leading search company
and a major online advertising service provoked concerns
about a possible monopoly, the acquisition was approved by
U.S. and European regulators.

While Google continues to be a subject of both admira-
tion and debate, it is clear that it has placed powerful tools
and enormous new resources in the hands of Web users
around the world.

Further Reading
Battelle, John. The Search: How Google and Its Rivals Rewrote the

Rules of Business and Transformed Our Culture. New York:
Portfolio, 2005.

Davis, Harold. Google Advertising Tools: Cashing In with AdSense,
AdWords, and the Google APIs. Sebastapol, Calif.: O’Reilly,
2006.

Kopytoff, Verne. “Who’s Afraid of Google? Firms in Silicon Val-
ley and beyond Fear Search Giant’s Plans for Growth.” San
Francisco Chronicle. May 11, 2007, p. A-1. Available online.
URL: http://sfgate.com/cgi-bin/article.cgi?f=/c/a/2007/05/11/
MNGRIPPB2N1.DTL. Accessed September 22, 2007.

Marshall, Perry, and Bryan Todd. Ultimate Guide to Google
AdWords: How to Access 100 Million People in 10 Minutes.
Irvine, Calif.: Entrepreneur Media, 2007.

Vise, David A., and Mark Malseed. The Google Story: Inside the
Hottest Business, Media and Technology Success of Our Time.
Canada: Random House/Delta, 2006.

government funding of computer research
While the popular version of the story of the information
age tends to focus on lone inventors in garages or would-be
entrepreneurs working out of college dorm rooms, many of
the fundamental technologies underlying computers and net-
works have been the results of government-funded projects.

ENIAC, the first operational full-scale electronic digi-
tal computer, was an Army Ballistic Research Labora-
tory project developed during and just after World War
II. Early computers were also sponsored and used by the
army and navy in areas such as guided missile develop-
ment, and in national laboratories such as Los Alamos,
where nuclear weapons were being developed. (Later the
Atomic Energy Agency and its successor in the Department
of Energy would play a similar role in obtaining computers,
in particular developing an appetite for the more powerful
machines—see supercomputer.)

The Office of Naval Research (ONR) played an impor-
tant role in developing the underlying theory and design for
computer architecture (see von Neumann, John), as well
as sponsoring many of the early conferences on computer
science, helping the discipline emerge.

As the cold war got underway, an increasing amount
of funding went to military-related technology. Since com-
puters were becoming essential for designing or operating
complex technologies in aerospace, weapons systems, and
other areas, it is not surprising that computer scientists
have received a significant share of government research
dollars.

A pattern of cooperation emerged between government
agencies and companies such as Univac and particularly

IBM, who were creating the computer industry. AT&T Bell
Laboratories (see Bell Labs) received support for com-
munications and semiconductor technology. Leading-edge
research funded for military purposes tended to turn up
five or ten years later in new generations of commercial
products.

Begun in the late 1950s, one of the biggest defense com-
puting projects was the ambitious (but only marginally suc-
cessful) SAGE automated air defense system. It began with
Whirlwind, the first computer designed for multitasking
and continuous, real-time operation and data storage using
magnetic core memory. Equally innovative were the user
consoles, which pioneered such features as CRT-based out-
put and a touch interface using a light pen.

Defense Advanced Research
Projects Agency (DARPA)
Established in 1958 and sometimes known as the Advanced
Research Projects Agency (ARPA), this agency through its
Information Processing Technology Office has funded or
contributed to some of the most important developments of
the information age, including:

• � time-sharing computer and operating systems (MIT
Project Mac)

• � packet-switched networks; the Internet (implemented
as ARPANET)

• � NLS, an early hypertext system (see hypertext)

• � artificial intelligence topics including speech recogni-
tion

ARPA was unusual as a government agency in its agile
management. Managers were given considerable latitude to
bring together the most innovative computer scientists and
turn them loose with a minimum of bureaucratic oversight.

Funding Academic Research and
Computer Science
Although military-related research has been the largest
portion of government funding for computer science, other
government agencies have also played important roles.
Vannevar Bush worked tirelessly to create a new national
research infrastructure, and this eventually bore fruit in
the National Science Foundation (NSF). Starting in the
1960s the NSF began with a focus on providing computer
support for the sciences, but soon concluded that univer-
sity researchers were being crippled by lack of both com-
puters and people who could design software. The agency
began to directly support the funding of university com-
puter purchases and the development of computer science
programs. By 1970 the NSF was also supporting the devel-
opment of computer networks as a way for institutions to
share resources. NSF funding for computer science and
related activities continued to grow. In the mid-1980s NSF
set up the National Center for Supercomputing Applications
(NCSA), which in turn set up regional centers from which
researchers could tap into supercomputer power through a
high-speed network.

212        government funding of computer research

Industrial Competitiveness
By the 1980s strong competitive threats to the U.S. com-
puter industry (notably from Japan) and some government
funding began to go to helping the American industry coor-
dinate its research. An example is SEMATECH, the semi-
conductor manufacturing research consortium. (DARPA
also played an important role in the development of VLSI
[very large-scale integration] circuits.)

Another effort of this era was the Strategic Computing
Initiative, which was also in part a response to Japanese
developments—their Fifth Generation Computer Program.
SCI aimed to develop hardware and software for advanced
artificial intelligence projects, starting with a military
focus, such as autonomous vehicles, voice-controlled “glass
cockpit” aircraft interfaces, and expert systems for battle
management.

Although there is always fluctuation and changing polit-
ical priorities, there is no reason to believe that government
funding will not continue to play a very important role in
computer-related research and development. There will also
continue to be debates over the uses to which governments
put computing technology, particularly in the military,
intelligence, and national security areas.

Further Reading
Defense Advanced Research Projects Agency (DARPA). Available

online. URL: http://www.arpa.mil/. Accessed September 22,
2007.

National Center for Supercomputing Applications (NCSA). Avail-
able online. URL: http://www.ncsa.uiuc.edu/. Accessed Sep-
tember 22, 2007.

National Research Council. Funding a Revolution: Government Sup-
port for Computing Research. Washington, D.C.: National Acad-
emies Press, 1999. Available online. URL: http://www.nap.
edu/readingroom/books/far/contents.html. Accessed Septem-
ber 22, 2007.

National Science Foundation. “Exploring the Frontiers of Com-
puting.” Available online. URL: http://www.nsf.gov/dir/index.
jsp?org=CISE. Accessed September 22, 2007.

Redmond, Kent C., and Thomas M. Smith. From Whirlwind to
MITRE: The R&D Story of the SAGE Air Defense Computer.
Cambridge, Mass.: MIT Press, 2000.

Roland, Alex, and Philip Shiman. Strategic Computing: DARPA and
the Quest for Machine Intelligence, 1983–1993. Cambridge,
Mass.: MIT Press, 2002.

graphics card
Prior to the late 1970s, most computer applications (other
than some scientific and experimental ones) did not use
graphics. However, the early microcomputer systems such
as the Apple II, Radio Shack TRS-80, and Commodore PET
could all display graphics, either on a monitor or (with the
aid of a video modulator) on an ordinary TV set. While
primitive (low resolution; monochrome or just a handful of
colors) this graphics capability allowed for a thriving mar-
ket in games and educational software.

The earliest video displays for mainstream PCs pro-
vided basic text display capabilities (such as the MDA, or
monochrome display adapter, with 25 lines of text up to
80 characters per line) plus the ability to create graphics
by setting the color of individual pixels. The typical low-

end graphics card of the early 1980s was the CGA (Color
Graphics Adapter), which offered various modes such as
320 by 200 pixels with four colors. Computers marketed
for professional use offered the EGA (Enhanced Graph-
ics Adapter), which could show 640 by 350 pixels at 16
colors.

The ultimate video display standard during the time
of IBM dominance was the VGA (Video Graphics Array),
which offered a somewhat improved high resolution of 640
by 480 pixels at 16 colors, with an alternative of a lower
320 by 280 pixels but with 256 colors. Because of its use of
a color palette containing index values, the 256 colors can
actually be drawn from a range of 262,144 possible choices.
VGA also marked a break from earlier standards because
in order to accommodate such a range of colors it had to
convert digital information to analog signals to drive the
monitor, rather than using the digital circuitry found in
earlier monitors.

Modern video cards can be loosely described as imple-
menting SVGA (Super VGA), but there are no longer dis-
crete standards. Typical display resolutions for desktop PCs
today are 1024 by 768 or 1280 by 1024 pixels. (Laptops tra-
ditionally have had a lower-resolution 800 by 600 display,
but many are now comparable to desktop displays.) The
range of colors is vast, with up to 16,777,216 possible colors
stored as 32 bits per pixel.

Storing 32 bits (4 bytes) for each of the pixels on a 1024
by 768 screen requires more than 3 megabytes. However,
this is just for static images. Games, simulations, and other
applications use moving 3D graphics. Since a computer
screen actually has only two dimensions, mathematical
algorithms must be used to transform the representation

The basic parts of a graphics card. The card is connected to the
CPU by the bus (often a special bus called the AGP, or Accelerated
Graphics Port). Graphics data can be generated by the CPU and
transferred directly to the graphics card’s memory, but most cards
today perform a lot of the graphics processing using the card’s own
on-board processor for sophisticated 3D, textures, shading, and
other effects.

graphics card        213

of objects so they look as if they have three dimensions,
appearing in proper perspective, with regard to what objects
are behind other objects, and with realistic lighting and
shading (see computer graphics).

Traditionally, all of the work of producing the actual
screen data was undertaken by the PC’s main processor,
executing instructions from the application program and
display driver. By putting a separate processor on the video
card (called a video accelerator), together with its own sup-
ply of memory (now up to 256 MB), the main system was
freed from this burden. A new high-bandwidth connection
between the PC motherboard and the graphics card became
available with the development of the AGP (Accelerated
Graphics Port). (See bus.) Memory used on video cards is
also optimized for video operations, such as by using types
of memory such as Video RAM (VRAM) that do not need to
be refreshed as frequently.

Increasingly, the algorithms for creating realistic images
(such as lighting, shading, and texture mapping) are now
supported by the software built into the video card. Of
course, the applications program needs a way to tell the
graphics routines what to draw and how to draw it. In
systems running Microsoft Windows, a program function
library called Direct3D (part of a suite called DirectX) has
become the standard interface between applications and
graphics hardware. Video card manufacturers in turn have
optimized their cards to carry out the kinds of operations
implemented in DirectX. (A nonproprietary standard called
OpenGL has also achieved some acceptance, particularly on
non-Windows systems.)

In evaluating video cards, the tradeoff is between the
extent to which advanced graphic features are supported
and the number of frames per second that can be calculated
and sent to the display. If the processing becomes too com-
plicated, the frame rate will slow down and the display will
appear to be jerky instead of smooth.

Further Reading
“Graphics and Displays.” Tom’s Hardware. Available online. URL:

http://www.tomshardware.com/graphics/index.html. Accessed
August 5, 2007.

Jones, Wendy. Beginning DirectX 10 Game Programming. Boston:
Course Technology, 2007.

Luna, Frank. Introduction to 3D Game Programming with DirectX
9.0c: A Shader Approach. Plano, Tex.: Wordware Publishing,
2006.

Sanchez, Julio, and Maria P. Canton. The PC Graphics Handbook.
Boca Raton, Fla.: CRC Press, 2003.

Shreiner, Dave, et al. OpenGL Programming Guide. 5th ed. Upper
Saddle River, N.J.: Addison-Wesley Professional, 2005.

“Video Cards.” PC Guide. Available online. URL: http://www.
pcguide.com/ref/video/index.htm. Accessed August 5, 2007.

graphics formats
Broadly speaking, a graphics file consists of data that speci-
fies the color of each pixel (dot) in an image. Since there are
many ways this information can be organized, there are a
variety of graphics file formats. The most important and
widely used ones are summarized below.

BMP (Windows Bitmap)
In a bitmap format there is a group of bits (i.e. a binary
value) that specifies the color of each pixel. Windows pro-
vides standard bitmap (BMP) formats for 1-bit (2 colors
or monochrome), 4-bit (16 colors), 8-bit (256 colors), or
24-bit (16 million colors). The Windows bitmap format is
also called a DIB (device-independent bitmap) because the
stored colors are independent of the output device to be
used (such as a monitor or printer). The relevant device
driver is responsible for translating the color to one actually
used by the device. Because it is “native” to Windows, BMP
is widely used, especially for program graphics resources.

Bitmap formats have the advantage of storing the exact
color of every pixel without losing any information. How-
ever, this means that the files can be very large (from
hundreds of thousands of bytes to several megabytes for
Windows screen graphics). BMP and other bitmap formats
do support a simple method of compression called run-
length encoding (RLE), where a series of identical pixels is
replaced by a single pixel and a count. Bitmap files can be
further compressed through the use of utilities such as the
popular Zip program (see data compression).

EPS
EPS (Encapsulated PostScript) is a vector-based rather than
bitmap (raster) format. This means that an EPS file consists
not of the actual pixel values of an image, but the instruc-
tions for drawing the image (including coordinates, colors,
and so on). The instructions are specified as a text file in
the versatile PostScript page description language. This for-
mat is usually used for printing, and requires a printer that
supports PostScript (there are also PostScript renderers that
run entirely in software, but they tend to be slow and some-
what unreliable).

GIF
GIF, or Graphics Interchange Format, is a bitmapped format
promulgated by CompuServe. Instead of reserving enough
space to store a large number of colors in each pixel, this
format uses a color table that can hold up to 256 colors.
Each pixel contains a reference (index into) the color table.
This means that GIF works best with images that have rela-
tively few colors and for applications (such as Web pages)
where compactness is important. GIF also uses compres-
sion to achieve compactness, but unlike the case with JPEG
it is a lossless compression called LZW. There is also a GIF
format that stores simple animations.

JPEG
JPEG, which stands for Joint Photographic Experts Group,
is widely used for digital cameras because of its ability to
highly compress the data in a color graphics image, allow-
ing a reasonable number of high-resolution pictures to be
stored in the camera’s onboard memory. The compression
is “lossy,” meaning that information is lost during compres-
sion (see data compression). At relatively low compression
ratios (such as 10:1, or 10 percent of the original image size)
changes in the image due to data loss are unlikely to be

214        graphics formats

perceived by the human eye. At higher ratios (approaching
100:1) the image becomes seriously degraded. JPEG’s abil-
ity to store thousands of colors (unlike GIF’s limit of 256)
makes the format particularly suitable for the subtleties of
photography.

PCX
PCX is a compressed bitmap format originally used by the
popular PC Paintbrush program. In recent years it has been
largely supplanted by BMP and TIFF.

TIFF
TIFF, or Tagged Image File Format, is also a compressed
bitmap format. There are several variations by different
vendors, which can lead to compatibility problems. Imple-
mentations can use various compression methods, gener-
ally leading to ratios of 1.5 to 1 to about 2 to 1.

Further Reading
Brown, C. Wayne, and Barry J. Shepherd. Graphics File Formats

Reference and Guide. Greenwich, Conn.: Manning Publica-
tions, 1995.

Miano, John. Compressed Image File Formats. Upper Saddle River,
N.J.: Addison-Wesley Professional, 1999.

“Web Style Guide: Graphics.” Available online. URL: http://
webstyleguide.com/graphics/. Accessed August 5, 2007.

Murray, James D., and William vanRyper. Encyclopedia of Graph-
ics File Formats. 2nd ed. (on CD-ROM). Sebastopol, Calif.:
O’Reilly, 1996.

“Wotsit’s Format: The Programmer’s Resource.” Available online.
URL: http://www.wotsit.org/. Accessed August 14, 2007.

graphics tablet
While conventional pointing devices (see mouse) are quite
satisfactory for making selections and even manipulat-
ing objects, many artists prefer the control available only
through a pen or pencil, which allows the angle and pres-
sure of the stylus tip to be varied, creating precise lines and
shading. A graphics tablet (also called a digitizing tablet) is
a device that uses a specially wired pen or pencil with a flat
surface (tablet). Besides tracking the location of the pen and
translating it into X/Y screen coordinates, the tablet also
has pressure sensors (depending on sensitivity, the tablet

can recognize 256, 512, or 1024 levels of pressure). In com-
bination with buttons on the pen, the pressure level can be
used to control the line thickness, transparency, or color.
In addition, the driver software for some graphics tablets
includes additional functions such as the ability to program
the pen to control features of such applications as Adobe
Photoshop.

The tablet is connected to the PC (usually through a USB
port). The pen may be connected to the tablet by a tether, or
it may be wireless. If the pen has an onboard battery, it can
provide additional features at the expense of weight and the
need to replace batteries occasionally.

A variant implementation uses a small “puck” instead
of a pen. The puck, which can be moved smoothly over the
tablet surface, often has a window with crosshairs in the
center. This makes it particularly useful for tracing detailed
drawings such as in engineering applications.

Many artists find that wielding a pen with a graphics
tablet offers not only finer control, but also more natural
and less fatiguing method of input than with the mouse.

Further Reading
Chastain, Sue. “Before You Buy a Graphics Tablet.” Available

online. URL: http://graphicssoft.about.com/od/aboutgraphics/
a/graphicstablets.htm. Accessed August 5, 2007.

Kolle, Iril C. Graphics Tablet Solutions. Cincinnati, Ohio: Muska &
Lipman, 2001.

Threinen-Pendarvis, Cher. The Photoshop and Painter Artist Tablet
Book: Creative Techniques in Digital Painting. Berkeley, Calif.:
Peachpit Press, 2004.

green PC
This is a general term for features that reduce the growing
environmental impact of the manufacture or use of comput-
ers. This impact has several aspects: energy consumption,
resource consumption, e-waste, and pollution and green-
house emissions.

Energy Consumption
The greatest part of a typical computer system’s power con-
sumption is from the monitor, followed by the hard drive
and CPU. It follows that considerable energy can be saved if
these components are powered down when not in use. On
the other hand, most users do not want to go through the
whole computer startup process several times a day. One
solution is to design a computer system so that it turns off
many components when not in use but is still able to restore
full function in a few seconds.

When applied to a personal computer, the federally
adopted Energy Star designation indicates a computer sys-
tem that includes an energy saving mode that can power
down the monitor, hard drive, or CPU after a specified
period elapses without user activity, such that the inactive
system consumes no more than 30 watts. In the ultimate
energy-saving feature a suspend mode saves the current
state of the computer’s memory (and thus of program opera-
tion) to a disk file. When the user presses a key (or moves
the mouse), the computer “wakes up” and reloads its mem-
ory contents from the disk, resuming operation where it left

Many graphics tablets use a stylus or pen. The system can track the
pen’s position and, often, the amount of pressure being exerted, and
draw the line accordingly.

green PC        215

off. By 2000, virtually all new PCs were Energy Star compli-
ant, though many users fail to actually enable the power-
saving features.

In July 2007 stricter Energy Star specifications for desk-
top PCs were adopted. Power supplies must now be at least
80 percent efficient. Meanwhile, the International Energy
Agency has been promoting an initiative to reduce power
consumption of idle PCs (and other appliances) to 1 watt
or less.

Resource Consumption
Computers consume a variety of resources, starting with their
manufacturing and packaging. Resource consumption can be
reduced by building more compact units and by designing
components so they can be more readily stripped and recycled
or reused. Adopting reusable storage media (such as rewrit-
able CDs), recycling printer toner cartridges, and changing
office procedures to minimize the generation of paper docu-
ments are also ways to reduce resource consumption.

E-Waste
In recent years the disposal of obsolete computers and other
electronic equipment (“e-waste”) has been both a grow-
ing concern and a business opportunity. There are many
toxic substances in electronics components, including lead,
mercury, and cadmium. Processing e-waste to recover raw
materials is expensive, so greater emphasis has been placed
on disassembling machines and reusing or refurbishing
their individual components. Meanwhile, many communi-
ties have banned disposing of e-waste in regular trash, and
some have offered opportunities to drop off e-waste at no or
minimal charge. States such as California have also insti-
tuted a recycling fee that is collected upon sale of devices
such as CRT monitors and televisions.

Pollution and Greenhouse Emissions
Fabrication of computer chips in more than 200 large plants
around the world involves a variety of toxic chemicals and
waste products. The Silicon Valley alone is home to 29 toxic
sites under the EPA’s Superfund Program. The shift of much
of semiconductor and computer component manufacturing
to countries such as China that have less strict pollution
controls has also exacerbated what has become a global
problem.

Whether through regulation or enlightened self-interest,
companies that want to reduce future emissions can use
several strategies. Manufacturing equipment and processes
can be modified so they create fewer toxic substances or at
least keep them from getting into the environment. Non-
toxic (or less toxic) materials can be substituted where
possible—for example, use of ozone-depleting chlorofluo-
rocarbons (CFCs) as cleaning agents has been largely elimi-
nated. Finally, waste can be properly sorted and disposed
of, and recycled wherever feasible.

Like other major manufacturing sectors, the computer
industry is also faced with the need to reduce the amount
of the greenhouse gases (particularly CO2) contributing to
global warming. This mainly means further reducing the

energy consumption of new PCs. In June 2007 a number
of major players, including Google, Intel, Dell, Hewlett-
Packard, Microsoft, and Sun, established the Climate Savers
Computing Initiative. Going beyond Energy Star, the pro-
gram is expected to reduce power consumption equivalent
to 54 million tons of greenhouse gases annually—about the
same as that produced by 11 million cars or 20 large coal-
fired power plants.

Further Reading
Brandon, John. “Build a Green PC.” ExtremeTech, March 2,

2007. Available online. URL: http://www.extremetech.com/
article2/0,1697,2097765,00.asp. Accessed August 5, 2007.

Cascio, Jamais. Green PC: How to Dispose of Unwanted Tech Equip-
ment without Hassles, and Where to Find Great New Environ-
mentally Friendly Gear. PC World, May 22, 2006. Available
online. URL: http://www.pcworld.com/article/id,125708/
article.html. Accessed August 5, 2007.

“Cleaner Computers? Industry to Cut Carbon.” (AP/MSNBC). June
12, 2007. Available online. URL: http://www.msnbc.msn.
com/id/19203144/. Accessed August 5, 2007.

Esty, Daniel, and Andrew S. Winston. Green to Gold: How Smart
Companies Use Environmental Strategy to Innovate, Create
Value, and Build Competitive Advantage. New Haven, Conn.:
Yale University Press, 2006.

Kuehr, Ruediger, and Eric Williams, eds. Computers and the Envi-
ronment: Understanding and Managing Their Impacts. Norvell,
Mass.: Kluwer Academic Publishers, 2003.

Weil, Nancy. “The Realities of Green Computing.” PC World,
August 3, 2007. Available online. URL: http://www.pcworld.
com/article/id,135509/article.html. Accessed August 5, 2007.

grid computing
Grid or cluster computing involves the creation of a sin-
gle computer architecture that consists of many separate
computers that function much like a single machine. The
computers are usually connected using fast networks (see
local area network). The purpose of the arrangement
can be to provide redundant processing in case of system
failures, to dynamically balance a fluctuating work load,
or to split large computations into many parts that can be
performed simultaneously. This latter approach to “high-
performance computing” creates the virtual equivalent of a
very large and powerful machine (see supercomputer).

Architecture
Grid and cluster architectures often overlap, but the term
grid tends to be applied to a more loosely coordinated
structure where the computers are dispersed over a wider
area (not a local network). In a grid, the work is usually
divided into many separate packets that can be processed
independently without the computers having to share data.
Each task can be completed and submitted without waiting
for the completion of any other task. Clusters, or the other
hand, more closely couple computers to act more like a
single large machine.

The first commercially successful product based on this
architecture was the VAXcluster released in the 1980s for
DEC VAX minicomputers. These systems implemented par-
allel processing while sharing file systems and peripherals.

216        grid computing

In 1989 an open-source cluster solution called Paral-
lel Virtual Machine (PVM) was developed. These clusters
could mix and match any computers that could connect
over a TCP/IP network (i.e., the Internet).

Current Implementations and Applications
Clusters made from hundreds of desktop-class computer
processors can achieve supercomputer levels of performance
at comparatively low prices. An example is the System X
supercomputer cluster at Virginia Tech, which generates
12.25 TFlops (trillion floating point operations per second)
from 1100 Apple XServe G5 dual-processor desktops run-
ning Mac OS X.

Additional savings and flexibility can be found in
Beowulf clusters, which use standard commodity PCs run-
ning open-source operating systems (such as Linux) and
software such as the Globus Toolkit.

Another type of implementation is the “ad hoc” com-
puter grid. These are projects where users sign up to receive
and process work packets using their PC’s otherwise idle
time. Examples include SETI@Home (search for extrater-
restrial intelligence) and Folding@Home (protein-folding
calculations). For more on this type of arrangement, see
cooperative processing.

Although there has been some recent interest in enter-
prise grids, most grid computing applications are in sci-
ence. The world’s most powerful computer grid, TeraGrid,
is funded by the National Science Foundation and ties
together major supercomputing and advanced computing
installations at universities and government laboratories.
Current applications for TeraGrid include weather and cli-
mate forecasting, earthquake simulation, epidemiology, and
medical visualization.

Further Reading
Globus Toolkit Homepage. Available online. URL: http://www.

globus.org/toolkit/. Accessed September 23, 2007.
Haynos, Matt. “Perspectives on Grid: Grid Computing—Next-

Generation Distributed Computing.” IBM, January 27, 2004.
Available online. URL: http://www.ibm.com/developerworks/
grid/library/gr-heritage/. Accessed September 23, 2007.

Kacsuk, Peter, Thomas Fahringer, and Zsolt Nemeth. Distributed
and Parallel Systems: From Cluster to Grid Computing. New
York: Springer Science/Business Media, 2007.

Kopper, Karl. Linux Enterprise Cluster: Build a Highly Available
Cluster with Commodity Hardware and Free Software. San
Francisco: No Starch Press, 2005.

Plaszczak, Pawel, and Richard Wellner, Jr. Grid Computing: The Savvy
Manager’s Guide. San Francisco: Morgan Kaufman, 2006.

Robbins, Stuart. Lessons in Grid Computing: The System Is a Mirror.
New York: Wiley, 2006.

TeraGrid. Available online. URL: http://www.teragrid.org/. Accessed
September 23, 2007.

groupware
When PCs were first introduced into the business world,
they tended to be used in isolation. Individual workers
would prepare documents such as spreadsheets and data-
base reports and then print them out and distribute them
as memos, much in the way of traditional paper documents.

However, as computers began to be tied together into local
area networks (see local area network) in the 1980s,
focus began to shift toward the use of software to facilitate
communication, coordination, and collaboration among
workers. This loosely defined genre of software was dubbed
groupware.

Popular groupware software suites such as Lotus Notes
and Microsoft Exchange generally offer at least some of the
following features:

• � e-mail coordination, including the creation of group or
task-oriented mail lists

• � shared calendar, giving each participant information
about all upcoming events

• � meeting management, including scheduling (ensur-
ing compatibility with everyone’s existing schedule)
and facilities booking

• � scheduling tasks with listing of persons responsible
for each task, progress (milestones met), and check-
ing off completed tasks

• � real-time “chat” or instant message capabilities

• � documentation systems that allow a number of people
to make comments on the same document and see
and respond to each other’s comments

• � “whiteboard” systems that allow multiple users to
draw a diagram or chart in real time, with everyone
able to see and possibly modify it

Groupware is increasingly integrated with the Internet,
with documents and shared resources (calendars, sched-
ules, and so on) implemented in HTML as Web pages or
Web-linked databases. (See also personal information
manager.)

An attractive alternative to locally installed groupware
is a suite of collaboration and productivity applications
delivered directly via the Web and accessible using only
a Web browser. Google introduced such a package called
Google Apps in 2007. It has a free basic version but is
expected to offer fee-based enhanced services for larger
organizations.

Groupware is likely to be an increasingly important
aspect of institutional information processing in a global,
mobile economy. With workgroups often geographically
distributed (as well as including telecommuters), traditional
face-to-face meetings become increasingly impractical as
well as often being considered wasteful and inefficient. New
forms of collaboration are supplementing the traditional e-
mail and conferencing (see blogs and blogging and wikis
and Wikipedia). Wikis are particularly interesting in that
they can not only track current resources, but also provide
a knowledge base with lasting value.

Further Reading
Andriessen, J. H. Erik. Working with Groupware: Understanding

and Evaluating Collaboration Technology. New York: Springer,
2003.

Boles, David. Google Apps Administrator Guide: A Private-Label Web
Workspace. Boston: Course Technology, 2007.

groupware        217

Cavalancia, Nick. Microsoft Exchange Server 2007: A Beginner’s
Guide. 2nd ed. Berkeley, Calif.: McGraw-Hill Osborne Media,
2007.

Google Apps. Available online. URL: https://www.google.com/a/.
Accessed August 5, 2007.

Gookin, Dan. Google Apps for Dummies. Hoboken, N.J.: Wiley,
2008.

Morimoto, Rand, et al. Microsoft Exchange Server 2007 Unleashed.
Indianapolis: Sams, 2007.

Munkvold, Bjorn Erik, et al. Implementing Collaboration Technolo-
gies in Industry. New York: Springer, 2003.

Udell, Jon. Practical Internet Groupware. Sebastapol, Calif.:
O’Reilly, 1999.

Grove, Andrew S.
(1936– )
Hungarian-American
Entrepreneur

Andrew Grove is a pioneer in the semiconductor industry
and builder of Intel, the corporation whose processors now
power the majority of personal computers. Grove was born
András Gróf on September 2, 1936, in Budapest to a Jewish
family. Grove’s family was disrupted by the German occupa-
tion of Hungary later in World War II. Andrew’s father was
conscripted into a work brigade and then into a Hungarian
formation of the German army. Andrew and his mother,
Maria, had to hide from the Nazi roundup in which many
Hungarian Jews were sent to death in concentration camps.

Although the family survived and was reunited after the
war, Hungary had come under Soviet control. Andrew, now
20, believed his freedom and opportunity would be very
limited, so he and a friend made a dangerous border cross-
ing into Austria. Grove came to the United States, where
he lived with his uncle in New York and studied chemical
engineering. He then earned his Ph.D. at the University of
California at Berkeley and became a researcher at Fairchild
Semiconductor in 1963 and then assistant director of devel-
opment in 1967. He soon became familiar with the early
work toward what would become the integrated circuit, key
to the microcomputer revolution that began in the 1970s
and wrote a standard textbook (Physics and Technology of
Semiconductor Devices).

In 1968, however, he joined colleagues Robert Noyce and
Gordon Moore in leaving Fairchild and starting a new com-
pany, Intel. Grove switched from research to management,
becoming Intel’s director of operations. He established a

management style that featured what he called “construc-
tive confrontation”—a vigorous, objective discussion where
opposing views could be aired without fear of reprisal. Crit-
ics, however, sometimes characterized the confrontations
as more harsh than constructive.

Grove became a formidable competitor. In the late 1970s,
it was unclear whether Intel (maker of the 8008, 8080, and
subsequent processors) or Motorola (with its 68000 proces-
sor) would dominate the market for microprocessors to run
the new desktop computers. Grove emphasized the training
and deployment of a large sales force, and by the time the
IBM PC debuted in 1982, it and its imitators would all be
powered by Intel chips.

During the 1980s, Grove would be challenged to be
adaptable when Japanese companies eroded Intel’s share of
the DRAM (memory) chip market, often “dumping” prod-
uct below their cost. Grove decided to get Intel out of the
memory market, even though it meant downsizing the com-
pany until the growing microprocessor market made up for
the lost revenues. In 1987, Grove had weathered the storm
and become Intel’s CEO. He summarized his experience of
the rapidly changing market with the slogan “only the para-
noid survive.”

During the 1990s, Intel introduced the popular Pentium
line, having to overcome mathematical flaws in the first ver-
sion of the chip and growing competition from Advanced
Micro Devices (AMD) and other companies that made chips
compatible with Intel’s. Grove also had to fight prostate
cancer, apparently successfully, and relinquished his CEO
title in 1998, remaining chairman of the board.

Through several books and numerous articles, Grove has
had considerable influence on the management of modern
electronics manufacturing. He has received many industry
awards, including the IEEE Engineering Leadership Rec-
ognition award (1987), and the AEA Medal of Achievement
award (1993). In 1997, he was CEO of the Year (CEO maga-
zine) and Time magazine’s Man of the Year.

Further Reading
“Andy Grove.” Intel. Available online. URL: http://www.intel.com/

pressroom/kits/bios/grove.htm. Accessed August 5, 2007.
Grove, Andrew S. High Output Management. 2nd ed. New York:

Vintage Books, 1995.
———. One-on-One with Andy Grove. New York: Putnam, 1987.
———. Only the Paranoid Survive. New York: Currency Doubleday,

1996.
Tedlow, Richard S. Andrew Grove: The Life and Times of an Ameri-

can. New York: Penguin/Portfolio, 2006.

218        Grove, Andrew S.

219

hackers and hacking
Starting in the late 1950s, in computer facilities at MIT,
Stanford, and other research universities people began to
encounter persons who had both unusual programming
skill and an obsession with the inner workings of the
machine. While ordinary users viewed the computer sim-
ply as a tool for solving particular problems, this peculiar
breed of programmers reveled in extending the capabilities
of the system and creating tools such as program editors
that would make it easier to create even more powerful
programs. The movement from mainframes that could run
only one program at a time to machines that could simulta-
neously serve many users created a kind of environmental
niche in which these self-described hackers could flourish.
Indeed, while administrators sometimes complained that
hackers took up too much of the available computer time,
they often depended on them to fix the bugs that infested
the first versions of time-sharing operating systems. Hack-
ers also tended to work in the wee hours of the night while
normal users slept.

Early hackers had a number of distinctive characteris-
tics and tended to share a common philosophy, even if it
was not always well articulated:

• � Computers should be freely accessible, without arbi-
trary limits on their use (the “hands-on imperative”).

• � “Information wants to be free” so that it can reach its
full potential. Conversely, government or corporate
authorities that want to restrict information access
should be resisted or circumvented.

• � The only thing that matters is the quality of the
“hack”—the cleverness and utility of the code and
what it lets computers do that they could not do
before.

• � As a corollary to the above, the reputation of a hacker
depends on his (it was nearly always a male) work—
not on age, experience, academic attainment, or any-
thing else.

• � Ultimately, programming was a search for truth and
beauty and even a redemptive quality—coupled with
the belief that technology can change the world.

Hackers were relatively tolerated by universities and
sometimes prized for their skills by computer companies
needing to develop sophisticated software. However, as the
computer industry grew, it became more concerned with
staking out, protecting, and exploiting intellectual prop-
erty. To the hacker, however, intellectual property was a
barrier to the unfettered exploration and exploitation of the
computer. Hackers tended to freely copy and distribute not
only their own work but also commercial systems software
and utilities.

During the late 1970s and 1980s, the microcomputer cre-
ated a mass consumer software market, and a new generation
of hackers struggled to get the most out of machines that had
a tiny amount of memory and only rudimentary graphics
and sound capabilities. Some became successful game pro-
grammers. At the same time a new term entered the lexicon,
software piracy (see software privacy and counterfeit-
ing). Pirate hackers cracked the copy protection on games

H

and other commercial software so the disks could be cop-
ied freely and exchanged at computer fairs, club meetings,
and on illicit bulletin boards (where they were known as
“warez”). (See copy protection and intellectual prop-
erty and computing.)

The growing use of on-line services and networks in the
1980s and 1990s brought new opportunities to exploit com-
puter skills to vandalize systems or steal valuable informa-
tion such as credit card numbers. The popular media used
the term hacker indiscriminately to refer to clever program-
mers, software pirates, and people who stole information or
spread viruses across the Internet. The wide availability of
scripts for password cracking, Web site attacks, and virus
creation means that destructive crackers often have little
real knowledge of computer systems and do not share the
attitudes and philosophy of the true hackers who sought to
exploit systems rather than destroy them.

During the 1980s, a new genre of science fiction called
cyberpunk became popular. It portrayed a fractured, dys-
topian future where elite hackers could “jack into” com-
puters, experiencing cyberspace directly in their mind, as
in William Gibson’s Neuromancer and Count Zero. In such
tales the hacker became the high-tech analog of the cowboy
or samurai, a virtual gunslinger who fought for high stakes
on the newest frontier (see science fiction and comput-
ing). Meanwhile, lurid stories about such notorious real-
world hackers (see Mitnick, Kevin) brought the dark side
of hacking into popular consciousness.

By the turn of the new century, the popular face of hack-
ing was again changing. Some of the most effective tech-
niques for intruding into systems and for stealing sensitive
information (see computer crime and identity theft)
have always been psychological rather than technical. What
started as one-on-one “social engineering” (such as pos-
ing as a computer technician to get a user’s password) has
been “industrialized” in the form of e-mails that frighten or
entice recipients into supplying credit card or bank infor-
mation (see spam and phishing and spoofing.) Criminal
hackers have also linked up with more-traditional criminal
organizations, creating rings that can efficiently turn stolen
information into cash.

In response to public fears about hackers’ capabilities,
federal and local law enforcement agencies have stepped
up their efforts to find and prosecute people who crack
or vandalize systems or Web sites. Antiterrorism experts
now worry that well-financed, orchestrated hacker attacks
could be used by rogue nations or terrorist groups to para-
lyze the American economy and perhaps even disrupt vital
infrastructure such as power distribution and air traffic
control (see counterterrorism and information war-
fare). In this atmosphere the older, more positive image of
the hacker seems to be fading—although the free-wheeling
creativity of hacking at its best continues to be manifested
in cooperative software development (see open source).

Further Reading
2600 magazine. Available online. URL: http://www.2600.com.

Accessed February 2, 2008.
Erickson, Jon. Hacking: The Art of Exploitation. 2nd ed. San Fran-

cisco: No Starch Press, 2007.

Gibson, William. Neuromancer. West Bloomfield, Mich.: Phantasia
Press, 1986.

Hafner, Katie, John Markoff. Cyberpunk: Outlaws and Hackers on
the Computer Frontier. New York: Simon & Schuster, 1991.

Harris, Shon, et al. Gray Hat Hacking: The Ethical Hacker’s Hand-
book. Berkeley, Calif.: McGraw-Hill/Osborne Media, 2004.

Levy, Stephen. Hackers: Heroes of the Computer Revolution. New
York: Doubleday, 1984.

Littman, J. The Fugitive Game: On-line with Kevin Mitnick. Boston:
Little, Brown, 1996.

Mitnick, Kevin, and William L. Simon. The Art of Deception: Con-
trolling the Human Element of Security. Indianapolis: Wiley,
2002.

———. The Art of Intrusion: The Real Stories behind the Exploits of
Hackers, Intruders & Deceivers. Indianapolis: Wiley, 2005.

Raymond, Eric. The New Hacker’s Dictionary. 3rd ed. Cambridge,
Mass.: MIT Press, 1996.

handwriting recognition
While the keyboard is the traditional means for entering
text into a computer system, both designers and users have
long acknowledged the potential benefits of a system where
people could enter text using ordinary script or printed
handwriting and have it converted to standard computer
character codes (see characters and strings). With such
a system people would not need to master a typewriter-style
keyboard. Further, users could write commands or take
notes on handheld or “palm” computers the size of a small
note pad that are too small to have a keyboard (see por-
table computers). Indeed, such facilities are available to a
limited extent today.

A handwriting recognition system begins by building
a representation of the user’s writing. With a pen or stylus
system, this representation is not simply a graphical image
but includes the recorded “strokes” or discrete movements
that make up the letters. The software must then create a
representation of features of the handwriting that can be
used to match it to the appropriate character templates.
Handwriting recognition is actually an application of the
larger problem of identifying the significance of features in
a pattern.

One approach (often used on systems that work from
previously written documents rather than stylus strokes)
is to identify patterns of pixels that have a high statistical
correlation to the presence of a particular letter in the rect-
angular “frame” under consideration. Another approach is
to try to identify groups of strokes or segments that can be
associated with particular letters. In evaluating such tenta-
tive recognitions, programs can also incorporate a network
of “recognizers” that receive feedback on the basis of their
accuracy (see neural network). Finally, where the identity
of a letter remains ambiguous, lexical analysis can be used
to determine the most probable letter in a given context,
using a dictionary or a table of letter group frequencies.

Implementation and Applications
A number of handheld computers beginning with Apple’s
Newton in the mid-1990s and the now popular Palm devices
and BlackBerry have some ability to recognize handwrit-
ing. However, current systems can be frustrating to use

220        handwriting recognition

because accuracy often requires that users write very care-
fully and consistently or (as in the case of the Palm) even
replace their usual letter strokes with simplified alternatives
that the computer can more easily recognize. If the user is
allowed to use normal strokes, the system must be gradu-
ally “trained” by the user giving writing samples and con-
firming the system’s guess about the letters. As the software
becomes more adaptable and processing power increases
(allowing more sophisticated algorithms or larger neural
networks to be practical) users will be able to write more
naturally and systems will gain more consumer acceptance.
(One step in this direction is the Tablet PC, a notepad-sized
computer with a digitizer tablet and a stylus and handwrit-
ing recognitions software, included in Windows XP and
expanded in Windows Vista. Programs such as Microsoft
OneNote use handwriting recognition to allow users to
incorporate handwritten text into notes that can be orga-
nized and quickly retrieved.)

Currently, handwriting recognition is used mainly in
niche applications, such as collecting signatures for deliv-
ery services or filling out “electronic forms” in applications
where the user must be mobile and relatively hands-free
(such as law enforcement).

Further Reading
Crooks, Clayton E. II. Developing Tablet PC Applications. Hingam,

Mass.: Charles River Media, 2003.
“Handwriting Recognition.” TechRepublic Resources. Available

online. URL: http://search.techrepublic.com.com/search/
handwriting+recognition.html. Accessed August 6, 2007.

Liu, Zhi-Qiang, Jin-Hai Cai, and Richard Buse. Handwriting Recog-
nition: Soft Computing and Probabilistic Approaches. New York:
Springer, 2003.

Matthews, Craig Forrest. Absolute Beginner’s Guide to Tablet PCs.
Indianapolis: Que, 2003.

Taylor, Paul. “Cast Off Your Keyboard.” Financial Times/FT.com
August 2, 2007. Available online. URL: http://www.ft.com/
cms/s /04546598-410d-11dc-8f37-0000779fd2ac.html.
Accessed August 6, 2007.

Van West, Jeff. “Using Tablet PC: Handwriting Recognition 101.”
Available online. URL: http://www.microsoft.com/windowsxp/
using/tabletpc/getstarted/vanwest_03may28hanrec.mspx.
Accessed August 6, 2007.

Zimmerman, W. Frederick. Complete Guide to OneNote. Berkeley,
Calif.: Apress, 2003.

haptic interfaces
Most interfaces between users and computer systems involve
the equivalent of switches—keyboard keys or mouse but-
tons. These interfaces cannot respond to degrees of pres-
sure (for an exception, see graphics tablet). Further, there
is no feedback returned to the user through the interface
device—the key or mouse does not “push back.”

Haptic (from the Greek word for “touch”) interfaces are
different in that they do register the pressure and motion of
touch, and they often provide touch feedback as well.

Force-feedback systems use movement of the control
as a way to provide feedback to the operator. A common
example is the control stick in an aircraft that begins to
vibrate as the aircraft approaches a stall (where it would
lose control). This provides immediate feedback to the pilot
using the device by which he or she is already controlling
the plane.

More sophisticated forms of force feedback are used in
remote-controlled devices for manipulation or exploration.
The first application was developed in the 1950s for han-
dling radioactive materials. Today a combination of posi-
tion and movement sensing and force feedback can be used
with special gloves to enable users to grasp and heft 3D
virtual objects while getting a sense of their weight, shape,
and even texture.

In games, haptic joysticks and other controls such as
steering wheels can provide sensations such as resistance to
a car’s turn or the sensation of a bat hitting a ball. The Nin-
tendo Wii game console comes with a controller that tracks
the direction and speed of its movement along with a set of
simple but engrossing sports games to show its capabilities.

Some emerging or near-future uses of haptic technology
include:

One approach to handwriting recognition involves the extraction of
a stroke pattern and its comparison to a database of templates rep-
resenting various letters and symbols. Ultimately the corresponding
ASCII character is determined and stored.

haptic interfaces        221

• � remote surgery, where the surgeon can feel the resis-
tance of tissues and the location of anatomical features

• � use of haptic technology to provide robots with more
humanlike gripping capabilities

• � 3D sculpture in a virtual 3D world modeling the char-
acteristics of different materials and tools

Like virtual reality itself, haptics is currently found
in niche applications such as entertainment, control, and
training systems. Besides the expense of the technology
itself, there is the need for specialized programming. How-
ever, the time may come when haptic support, like mouse
and pen support, is included in operating systems and
widely available programming libraries.

Further Reading
Burdea, Grigore C. Force and Touch Feedback for Virtual Reality.

New York: Wiley, 2006.
Haptic Interface Research Laboratory (Purdue University).

Available online. URL: http://www.ecn.purdue.edu/HIRL/.
Accessed September 23, 2007.

McLaughlin, Margaret L., Joao P. Hespanha, and Gaurav S.
Sukhatme. Touch in Virtual Environments: Haptics and the
Design of Interactive Systems. Upper Saddle River, N.J.: Pren-
tice Hall, 2002.

Zyga, Lisa. “Artists ‘Draw on Air’ to Create 3D Illustrations.” Avail-
able online. URL: http://www.physorg.com/news109425896.
html. Accessed September 23, 2007.

hard disk
Even after decades of evolution in computing, the hard
disk drive remains the primary means of fast data storage
and retrieval in computer systems of all sizes. The disk
itself consists of a rigid aluminum alloy platter coated with
a magnetic oxide material. The platter can be rotated at
speeds of more than 10,000 rpm. A typical drive consists of
a stack of such platters mounted on a rotating spindle, with
a read/write head mounted above each platter.

Early hard drive heads were controlled by a stepper
motor, which positioned the head in response to a series of
electrical pulses. (This system is still used for floppy drives.)
Today’s hard drives, however, are controlled by a voice-coil
actuator, similar in structure to an audio speaker. The coil
surrounds a magnet. When a current enters the coil, it gen-
erates a magnetic field that interacts with that of the perma-
nent magnet, moving the coil and thus the disk head. Unlike
the stepper motor, the voice coil is continuously variable and
its greater precision allows data tracks to be packed more
tightly on the platter surface, increasing disk capacity.

The storage capacity of a drive is determined by the
number of platters and the spacing (and thus number) of
tracks that can be laid down on each platter. Capacities
have steadily increased while prices have plummeted: In
1980, for example, a hard drive for an Apple II microcom-
puter cost more than $1,000 and held only 5 MB of data. As
of 2007 internal hard drives with a capacity of 500 GB or
more cost around a $150.00.

Data is organized on the disk by dividing the tracks
into segments called sectors. When the disk is prepared

to receive data (a process called formatting), each sector
is tested by writing and reading sample data. If an error
occurs, the operating system marks the sector as unusable
(virtually any hard disk will have at least a few such bad
sectors).

The set of vertical corresponding tracks on the stack of
platters that make up the drive is called a cylinder. Since
the drive heads are connected vertically, if a head is cur-
rently reading or writing for example sector 89 on one
platter, it is positioned over that same sector on all the
others. Therefore, the operating system normally stores
files by filling the full cylinder before going to a new sec-
tor number.

Another way to improve data flow is to use sector inter-
leaving. Because many disk drives can read data faster than
the operating system can read it from the disk’s memory
buffer, data is often stored by skipping over adjacent sec-
tors. Thus, instead of storing a file on sectors 1, 2, and 3,
it might be stored on sectors 1, 3, and 5 (this is called a 2:1
interleave). Moving the head from sector 1 to sector 3 gives
the system enough time to process the data. (Otherwise,
by the time the system was ready to read sector 2, the disk
would have rotated past it and the system would have to
wait through a complete rotation of the disk.) Newer CPUs
are often fast enough to keep up with contiguous sectors,
avoiding the need for interleaving.

Data throughput tends to decrease as a hard drive is
used. This is due to fragmentation. The operating system
runs out of sufficient contiguous space to store new files
and has to write new files to many sectors widely scattered
on the disk. This means the head has to be moved more
often, slowing data access. Using an operating system (or

Parts of a typical hard disk drive. Many hard drives have multiple
heads and platters to allow for storage of larger amounts of data.

222        hard disk

third party) defragmentation utility, users can periodically
reorganize their hard drive so that files are again stored in
contiguous sectors.

Files can also be reorganized to optimize space rather
than access time. If an operating system has a minimum
cluster size c4K, a single file with only 32 bytes of data
will still consume 4,096 bytes. However, if all the files are
written together as one huge file (with an index that spec-
ifies where each file begins) that waste of space would be
avoided. This is the principle of disk compression. Disk
compression does slow access somewhat (due to the need
to look up and position to the actual data location for a
file) and the system becomes more fragile (since garbling
the giant file would prevent access to the data in perhaps
thousands of originally separate files). The low cost of
high capacity drives today has made compression less
necessary.

Interfacing Hard Drives
When the operating system wants to read or write data
to the disk, it must send commands to the driver, a pro-
gram that translates high-level commands to the instruc-
tions needed to operate the disk controller, which in turn
operates the motors controlling the disk heads. The two
most commonly used interfaces for PC internal hard drives
today are both based on the ATA (Advanced Technology
Attachment) standard. The older standard is PATA (par-
allel ATA), also called IDE (Integrated Drive Electronics)
or EIDE (Enhanced IDE). Increasingly common today is
SATA, or serial ATA. Another alternative, more commonly
used on servers, is SCSI (Small Computer System Interface).
SCSI is more expensive but has several advantages: It has
the ability to organize incoming commands for greater effi-
ciency and also features greater flexibility (an EIDE control-
ler can connect only two hard drives, while SCSI can “daisy
chain” a large number of disk drives or other peripherals).
In practice, the two interfaces perform about equally well.
USB (Universal Serial Bus) is frequently used to interface
with external hard drive units (see usb).

The capacity continues to increase, with data able to
be written more densely or perhaps in multiple layers on
the same disk surface. Denser storage also offers the ability
to make drives more compact. Already hard drives with a
diameter of about an inch have been built by IBM and oth-
ers for use in digital cameras.

The proliferation of multimedia (including video) and
the growth of databases has fed a voracious appetite for
hard drive space. Disks with a capacity of 1 TB (terabyte,
or trillion bytes) were starting to come onto the market by
2007. For larger installations, disk arrays (see raid) offer
high capacity and data-protecting redundancy.

Perpendicular hard drive recording technology recently
developed by Hitachi aligns the magnetic “grains” that hold
bits of data vertically instead of horizontally, allowing for
a considerably higher data density (and thus capacity, for a
given size disk). Hitachi suggests that eventually 1 TB can
be stored on a 3.5" disk.

Drive speeds (and thus data throughput) have also been
increasing, with more users choosing 7200 rpm rather than

the formerly standard 5400 rpm drives. (There are drives as
fast as 15,000 rpm, but for most applications the benefits of
higher speed drop off rapidly.)

Another factor in data access time and throughput is the
use of a dedicated memory device (see cache) to “pre-fetch”
data likely to be needed. Windows Vista allows memory
from some USB memory sticks (see flash drive) to work
as a disk cache. “Hybrid” hard drives directly integrating
RAM and drive storage are also available.

Further Reading
Jacob, Bruce, Spencer Ng, and David Wang. Memory Systems:

Cache, DRAM, Disk. San Francisco: Morgan Kaufmann, 2007.
“Perpendicular Hard Drive Recording Technology.” Available online.

URL: http://www.webopedia.com/DidYouKnow/Computer_
Science/2006/perpendicular_hard_drive_technology.asp.
Accessed August 6, 2007.

“Storage.” Tom’s Hardware Guide. Available online. URL: http://www.
tomshardware.com/storage/index.html. Accessed August 6,
2007.

“What’s Inside a Hard Drive?” Available online. URL: http://www.web
opedia.com/DidYouKnow/Hardware_Software/2002/InsideHard
Drive.aspdYouKnow/Hardware_Software/2002/InsideHard
Drive.asp. Accessed August 6, 2007.

hashing
A hash is a numeric value generated by applying a math-
ematical formula to the numeric values of the characters
in a string of text (see characters and strings). The for-
mula is chosen so that the values it produces are always the
same length (regardless of the length of the original text)
and are very likely to be unique. (Two different strings
should not produce the same hash value. Such an event is
called a collision.)

Applications
The two major application areas for hashing are informa-
tion retrieval and cryptographic certification. In databases,
an index table can be built that contains the hash values for
the key fields and the corresponding record number for each
field, with the entries in hash value order. To search the
database, an input key is hashed and the value is compared
with the index table (which can be done using a very fast
binary search). If the hash value is found, the corresponding
record number is used to look up the record. This tends to
be much faster than searching an index file directly.

Alternatively, a “coarser” but faster hashing function can
be used that will give the same hash value to small groups
(called bins) of similar records. In this case the hash from
the search key is matched to a bin and then the records
within the bin are searched for an exact match.

In cryptography an encrypted message can be hashed,
producing a unique fixed-length value. (The fixed length
prevents attackers from using mathematical relationships
that might be discoverable from the field lengths.) The
hashed message can then be encrypted again to create an
electronic signature (see certificate, digital). For long
messages this is more efficient than having to apply the sig-
nature function to each block of the encrypted message, yet

hashing        223

the unique relationship between the original message and
the hash maintains a high degree of security.

Finally, hashing can be used for error detection. If a
message and its hash are sent together, the recipient can
hash the received text. If the hash value generated matches
the one received, it is highly likely the message was received
intact (see also error correction).

Further Reading
Partow, Arash. “General Purpose Hash Function Algorithms.”

Available online. URL: http://www.partow.net/programming/
hashfunctions/. Accessed August 6, 2007.

Pieprzyk, Josef, and Babak Sadeghiyan. Design of Hashing Algo-
rithms. New York: Springer-Verlag, 1993.

health, personal  See personal health information
management.

heap
In operating systems and certain programming languages
(such as LISP), a heap is a pool of memory resources avail-
able for allocation by programs. The memory segments
(sometimes called cells) can be the same size or of variable
size. If the same size, they are linked together by pointers
(see list processing). Memory is then allocated for a vari-
able by traversing the list and setting the required number

of cells to be “owned” by that variable. (While some lan-
guages such as Pascal and C use explicit memory allocation
or deallocation functions, other languages such as LISP use
a separate runtime module that is not the responsibility of
the programmer.)

Deallocation (the freeing up of memory no longer
needed by a variable so it can be used elsewhere) is more
complicated. In many languages several different pointers
can be used to refer to the same memory location. It is
therefore necessary not only to disconnect a given pointer
from the cell, but to track the total number of pointers con-
nected to the cell so that the cell itself is deallocated only
when the last pointer to it has been disconnected. One
way to accomplish this is by setting up an internal variable
called a reference counter and incrementing or decrementing
it as pointers are connected or disconnected. The disadvan-
tages of this approach include the memory overhead needed
to store the counters and the execution overhead of having
to continually check and update the counters.

An alternative approach is garbage collection. Here the
runtime system simply connects or disconnects pointers
as required by the program’s declarations, without making
an attempt to reclaim the disconnected (“dead”) cells. If
and when the supply of free cells is exhausted, the runtime
system takes over and begins a three-stage process. First,
it provisionally sets the status indicator bit for each cell to
show that it is “garbage.” Each pointer in the program is
then traced (that is, its links are followed) into the heap,
and if a valid cell is found that cell’s indicator is reset to
“not garbage.” Finally, the garbage cells that remain are
linked back to the pool of free cells available for future allo-
cation. The chief drawback of garbage collection is that the
more cells actually being used by the program, the longer
the garbage-collecting process will take (since all of these
cells have to be traced and verified). Yet it is precisely when
most cells are in use that garbage collection is most likely to
be required.

The need for garbage collection has diminished in many
programming environments because modern computers
not only have large amounts of memory, most operating
systems also implement virtual memory, which allows a
disk or other storage device to be treated as an extension of
main memory.

Note: the term heap is also used to describe a particular
type of binary tree. (See tree.)

Further Reading
Lafore, Robert. Data Structures & Algorithms in Java. 2nd ed. India-

napolis: Sams, 2002.
Preiss, Bruno R. “Heaps and Priority Queues.” Available online.

URL: http://www.brpreiss.com/books/opus4/html/page352.
html. Accessed August 6, 2007.

Sebesta, Robert W. Concepts of Programming Languages. 8th ed.
Boston: Addison-Wesley, 2007.

help systems
In the early days of computing, the programmers of a sys-
tem tended to also be its users and were thus intimately
familiar with the program’s operation and command set.

To search a hashed database, the hashing formula is first applied to
the search key, yielding a hash value. That value can then be used
in a binary search to quickly zero in on the matching record, if any.

224        health, personal

If not a programmer, the user of a mainframe program was
probably at least a well-trained operator who could work
with the aid of a brief summary or notes provided by the
programmer. However, with the beginnings of office auto-
mation in the 1970s and the growing use of desktop com-
puters in office, home, and school in the 1980s, increasingly
complex programs were being put in the hands of users
who often had only minimal computer training (see com-
puter literacy).

While programs often came with one or more tutorial
or reference manuals, designers realized that offering help
through the program itself would have some clear advan-
tages. First, the user would not have to switch attention from
the computer screen to look things up in a manual. Second,
the help system could be programmed to not only provide
information, but also to help the user find the informa-
tion needed in a given situation. For example, related topics
could be linked together and a searchable index provided.

Implementation
Programs running under the text-based MS-DOS of the
1980s tended to have only rudimentary help screens (often
invoked by pressing the F1 key). Generally, these were lim-
ited to brief summaries of commands and associated key
combinations. However, with the growing use of Micro-
soft Windows (and the similar Macintosh interface), a more
complete and versatile help system was possible. Since these
systems allowed multiple windows to be displayed on the
screen, the user could consult help information while still
seeing the program’s main screen. This allowed for trying a
recommended procedure and observing the results.

Windows and Macintosh help systems also featured
highlighted links in the text that could be used to jump to
related topics (see hypertext and hypermedia). A topic
word can also be typed into an index box, bringing up any
matching topics. If all else fails, the entire help file could be
indexed so that any word could be used to find matching
topics.

More recent Windows programs also include wizards. A
wizard is a step-by-step procedure for accomplishing a par-
ticular task. For example, if a Microsoft Word user want to
learn how to format text into multiple columns, the help sys-
tem can offer a wizard that takes the user through the proce-
dure of specifying the number of columns, column size, and
so on. The steps can even be applied directly to the document
with the wizard “driving” the program accordingly.

Recently, many programs have implemented their help
in the form of Web pages, stored either on the user’s com-
puter or at the vendor’s Web site (see html). HTML has the
advantage that it is now a nearly universal format that can
be used on a variety of platforms and (if hosted on a Web
site) the help can be continually improved and updated.
(Microsoft’s latest version of HTML Help has supplanted its
original WinHelp, which is no longer supported by Vista.)

A variety of shareware and commercial help authoring
systems such as RoboHelp are available to help developers
create help in Windows or HTML format. UNIX systems,
which have always included an on-line manual, now typi-
cally offer HTML-based help as well.

With printed documentation being increasingly
eschewed for cost-cutting reasons, users of many programs
today must depend on the help system as well as on on-line
documents (such as PDF files) and Web-based support.

Further Reading
Hackos, JoAnn T., and Dawn M. Steven. Standards for Online Com-

munication: Publishing Information for the Internet/World Wide
Web/Help Systems/Corporate Intranets. New York: Wiley, 1997.

Heng, Christopher. “Free Help Authoring, Manual and Documen-
tation Writing Tools.” Available online. URL: http://www.
thefreecountry.com/programming/helpauthoring.shtml.
Accessed August 6, 2007.

“Microsoft HTML Help 1.4 SDK.” Available online. URL: http://
msdn2.microsoft.com/en-us/library/ms670169.aspx. Accessed
August 6, 2007.

Weber, Jean Hollis. Is the Help Helpful? How to Create Online Help
That Meets Your Users’ Needs. Whitefish Bay, Wisc.: Hentzen-
werke Publishing, 2004.

hexadecimal system
The base 16 or hexadecimal system is a natural way to rep-
resent the binary data stored in a computer. It is more com-
pact than binary because four binary digits can be replaced
by a single “hex” digit.

The following table gives the corresponding decimal,
binary, and hex values from 0 to 15:

Decimal	 Binary	H ex

0	 0	 0
1	 0001	 1
2	 0010	 2
3	 0011	 3
4	 0100	 4
5	 0101	 5
6	 0110	 6
7	 0111	 7
8	 1000	 8
9	 1001	 9
10	 1010	 A
11	 1011	 B
12	 1100	 C
13	 1101	 D
14	 1110	 E
15	 1111	 F

Note that decimal and hex digits are the same from 0 to
9, but hex uses the letters A–F to represent the digits cor-
responding to decimal 10–15. The system extends to higher
numbers using increasing powers of 16, just as decimal
uses powers of 10: For example, hex FF represents binary
11111111 or decimal 255. Many of the apparently arbitrary
numbers encountered in programming can be better under-
stood if one realizes that they correspond to convenient
groupings of bits: FF is eight bits, sufficient to hold a single
character (see characters and strings). In low-level pro-
gramming memory addresses are also usually given in hex
(see assembler).

hexadecimal system        225

Further Reading
Matz, Kevin. “Introduction to Binary and Hexadecimal.” Available

online. URL: http://www.comprenica.com/atrevida/atrtut01.
html. Accessed August 7, 2007.

history of computing
With the digital computer now more than 60 years old, there
has been growing interest in its history and development.
Although it would take a library of books to do the subject
justice, providing a summary of the main themes and trends
of each decade of computing will give readers of this book
some helpful context for understanding the other entries.

Early History
In a sense, the idea of mechanical computation emerged in
prehistory when early humans discovered that they could
use physical objects such as piles of stones, notches, or
marks as a counting aid. The ability to perform computa-
tion beyond simple counting extends back to the ancient
world: For example, the abacus developed in ancient China
could still beat the best mechanical calculators as late as
the 1940s (see calculator). The mechanical calculator
began in the West in the 17th century, most notably with
the machines created by philosopher-scientist Blaise Pas-
cal. Other devices such as “Napier’s bones” (ancestor of the
slide rule) depended on proportional logarithmic relation-
ships (see analog computer).

While the distinction between a calculator and true com-
puter is subtle, Charles Babbage’s work in the 1830s delin-
eated the key concepts. His “analytical engine,” conceived but
never built, would have incorporated punched cards for data
input (an idea taken over from the weaving industry), a cen-
tral calculating mechanism (the “mill”), a memory (“store”),
and an output device (printer). The ability to input both pro-
gram instructions and data would enable such a device to
solve a wide variety of problems (see Babbage, Charles).

Babbage’s thought represented the logical extension of
the worldview of the industrial revolution to the problem
of calculation. The computer was a “loom” that wove math-
ematical patterns. While Babbage’s advanced ideas became
largely dormant after his death, the importance of statistics
and information management would continue to grow with
the development of the modern industrial state in Europe
and the United States throughout the 19th century. The
punch card as data store and the creation of automatic tabu-
lation systems would reemerge near the end of the century
(see Hollerith, Herman).

During the early 20th century, mechanical calculators and
card tabulation and sorting machines made up the data pro-
cessing systems for business, while researchers built special-
purpose analog computers for exploring problems in physics,
electronics, and engineering. By the late 1930s, the idea of a
programmable digital computer emerged in the work of theo-
reticians (see Turing, Alan and von Neumann, John).

1940s
The highly industrialized warfare of World War II required
the rapid production of a large volume of accurate calcula-

tions for such applications as aircraft design, gunnery con-
trol, and cryptography. Fortunately, the field was now ripe
for the development of programmable digital computers.
Many reliable components were available to the computer
designer including switches and relays from the telephone
industry and card readers and punches (manufactured by
Hollerith’s descendant, IBM), and vacuum tubes used in
radio and other electronics.

Early computing machines included the Mark I (see
Aiken, Howard), a huge calculator driven by electri-
cal relays and controlled by punched paper tape. Another
machine, the prewar Atanasoff-Berry Computer (see
Atanasoff, John) was never completed, but demonstrated
the use of electronic (vacuum tube) components, which
were much faster than electromechanical relays. Meanwhile,
a German inventor built a programmable binary computer
that combined a mechanical number storage mechanism
with telephone relays (see Zuse, Conrad). Zuse also pro-
posed building an electronic (vacuum tube) computer, but
the German government decided not to support the project.

During the war, British and American code breakers
built a specialized electronic computer called Colossus,
which read encoded transmissions from tape and broke
the code of the supposedly impregnable German Enigma
machines.

The most viable general-purpose computers were devel-
oped by J. Presper Eckert and John Mauchly starting in
1943 (see Eckert, J. Presper and Mauchly, John). The
first, ENIAC, was completed in 1946 and had been intended
to perform ballistic calculations. While its programming
facilities were primitive (programs had to be set up via a
plugboard), ENIAC could perform 5,000 arithmetic opera-
tions per second, about a thousand times faster than the

John Mauchly and Presper Eckert, Jr., shown with a portion of their
ENIAC computer. The ENIAC is often considered to be the first
general-purpose electronic digital computer.  (Hulton Archive /
Getty Images)

226        history of computing

electromechanical Mark I. ENIAC had about 19,000 vacuum
tubes and consumed as much power as perhaps a thousand
modern desktop PCs.

1950s
The 1950s saw the establishment of a small but viable com-
mercial computer industry in the United States and parts of
Europe. Eckert and Mauchly formed a company to design
and market the UNIVAC, based partly on work on the exper-
imental EDVAC. This new generation of computers would
incorporate the key concept of the stored program: Rather
than the program being set up by wiring or simply read
sequentially from tape or cards, the program instructions
would be stored in memory just like any other data. Besides
allowing a computer to fetch instructions at electronic rather
than mechanical speeds, storing programs in memory meant
that one part of a program could refer to another part dur-
ing operation, allowing for such mechanisms as branching,
looping, the running of subroutines, and even the ability of
a program to modify its own instructions.

The UNIVAC became a hit with the public when it was
used to correctly predict the outcome of the 1952 presi-
dential election. Government offices and large corporations
began to look toward the computer as a way to solve their
increasingly complex data processing needs. Forty UNI-
VACs were eventually built and sold to such customers as
the U.S. Census Bureau, the U.S. Army and Air Force, and
insurance companies. Sperry (having bought the Mauchly-
Eckert company), Bendix, and other companies had some
success in selling computers (often for specialized applica-
tions), but it was IBM that eventually captured the broad
business market for mainframe computers.

The IBM 701 (marketed to the government and defense
industry) and 702 (for the business market) incorporated sev-
eral emerging technologies including a fast electronic (tube)
memory that could store 4,096 36-bit data words, a rotating
magnetic drum that could store data that is not immediately
needed, and magnetic tape for backup. The IBM 650, mar-
keted starting in 1954, became the (relatively) inexpensive
workhorse computer for businesses (see mainframe). The
IBM 704, introduced in 1955, incorporated magnetic core
memory and also featured floating-point calculations.

1960s
The 1960s saw the advent of a “solid state” computer design
featuring transistors in place of vacuum tubes and the use
of ferrite magnetic core memory (introduced commercially
in 1955). These innovations made computers both more
compact (although they were still large by modern stan-
dards), more reliable, and less expensive to operate (due
to lower power consumption.) The IBM 1401 was a typical
example of this new technology: It was compact, relatively
simple to operate, and came with a fast printer that made it
easier to generate data.

There was a natural tendency to increase the capacity
of computers by adding more transistors, but the hand-
wiring of thousands of individual transistors was difficult
and expensive. As the decade progressed, however, the con-

cept of the integrated circuit began to be implemented in
computing. The first step in that direction was to attach a
number of transistors and other components to a ceramic
substrate, creating modules that could be handled and
wired more easily during the assembly process.

IBM applied this technology to create what would
become one of the most versatile and successful lines in
the history of computing, the IBM System/360 computer.
This was actually a series of 14 models that offered suc-
cessively greater memory capacity and processing speed
while maintaining compatibility so that programs devel-
oped on a smaller, cheaper model would also run on the
more expensive machines. Compatibility was ensured by
devising a single 360 instruction set that was implemented
at the machine level by microcode stored in ROM (read-only
memory) and optimized for each model. By 1970 IBM had
sold more than 18,000 360 systems worldwide.

By the mid-1960s, however, a new market segment had
come into being: the minicomputer. Pioneered by Digital
Equipment Corporation (DEC) with its PDP line, the mini-
computer was made possible by rugged, compact solid-state
(and increasingly integrated) circuits. Architecturally, the
mini usually had a shorter data word length than the main-
frame, and used indirect addressing (see addressing) for
flexibility in accessing memory. Minis were practical for uses
in offices and research labs that could not afford (or house)
a mainframe (see minicomputer). They were also a boon
to the emerging use of computers in automating manufac-
turing, data collection, and other activities, because a mini
could fit into a rack with other equipment (see also embed-
ded systems). In addition to DEC, Control Data Corporation
(CDC) produced both minis and large high-performance
machines (the Cyber series), the first truly commercially
viable supercomputers (see supercomputer).

In programming, the main innovation of the 1960s was
the promulgation of the first widely-used, high-level pro-
gramming languages, COBOL (for business) and FORTRAN
(for scientific and engineering calculations), the result of
research in the late 1950s. While some progress had been
made earlier in the decade in using symbolic names for
quantities and memory locations (see assembler), the new
higher-level languages made it easier for professionals out-
side the computer field to learn to program and made the
programs themselves more readable, and thus easier to
maintain. The invention of the compiler (a program that
could read other programs and translate them into low-
level machine instructions) was yet another fruit of the
stored program concept.

1970s
The 1970s saw minis becoming more powerful and versatile.
The DEC VAX (“Virtual Address Extension”) series allowed
larger amounts of memory to be addressed and increased
flexibility. Meanwhile, at the high end, Seymour Cray left
CDC to form Cray Research, a company that would pro-
duce the world’s fastest supercomputer, the compact, freon-
cooled Cray-1. In the mainframe mainstream, IBM’s 370
series maintained that company’s dominant market share in
business computing.

history of computing        227

The most striking innovation of the decade, however,
was the microcomputer. The microcomputer (now often
called the “computer chip”) combined three basic ideas: an
integrated circuit so compact that it could be laid on a single
silicon chip, the design of that circuit to perform the essen-
tial addressing and arithmetic functions required for a com-
puter, and the use of microcode to embody the fundamental
instructions. Intel’s 4004 introduced in late 1971 was origi-
nally designed to sell to a calculator company. When that
deal fell through, Intel started distributing the microproces-
sors in developer’s kits to encourage innovators to design
computers around them. Soon Intel’s upgraded 8008 and
8080 microprocessors were available, along with offerings
by Rockwell, Texas Instruments, and other companies.

Word of the microprocessor spread through the elec-
tronic hobbyist community, being given a boost by the
January 1975 issue of Popular Electronics that featured the
Altair computer kit, available from an Albuquerque com-
pany called MITS for about $400. Designed around the Intel
8080, the Altair featured an expansion bus (an idea bor-
rowed from minis).

The Altair was hard to build and had very limited mem-
ory, but it was soon joined by companies that designed
and marketed ready-to-use microcomputer systems, which
soon became known as personal computers (PCs). By 1980,
entries in the field included Apple (Apple II), Commodore
(Pet), and Radio Shack (TRS-80). These computers shared
certain common features: a microprocessor, memory in the
form of plug-in chips, read-only memory chips containing
a rudimentary operating system and a version of the BASIC
language, and an expansion bus to which users could con-
nect peripherals such as disk drives or printers.

The spread of microcomputing was considerably aided
by the emergence of a technical culture where hobbyists

and early adopters wrote and shared software, snatched
up a variety of specialized magazines, talked computers in
user groups, and evangelized for the cause of widespread
personal computing.

Meanwhile, programming and the art of software
development did not stand still. Innovations of the 1970s
included the philosophy of structured programming (fea-
turing well-defined control structures and methods for
passing data to and from subroutines and procedures). New
languages such as Pascal and C, building on the earlier
Algol, supported structured programming design to varying
degrees (see structured programming). Programmers on
college campuses also had access to UNIX, a powerful oper-
ating system containing a relatively simple kernel, a shell
for interaction with users, and a growing variety of utility
programs that could be connected together to solve data
processing problems (see unix). It was in this environment
that the government-funded ARPANET developed proto-
cols for communicating between computers and allowing
remote operation of programs. Along with this came e-mail,
the sharing of information in newsgroups (Usenet), and a
growing web of links between networks that would eventu-
ally become the Internet (see internet).

1980s
In the 1980s, the personal computer came of age. IBM broke
from its methodical corporate culture and allowed a design
team to come up with a PC that featured an open, expand-
able architecture. Other companies such as Compaq legally
created compatible systems (called “clones”), and “PC-com-
patible” machines became the industry standard. Under the
leadership of Bill Gates, Microsoft gained control of the
operating system market and also became the dominant
competitor in applications software (particularly office soft-
ware suites).

Although unable to gain market share comparable to the
PC and its clones, Apple’s innovative Macintosh, introduced
in 1984, adapted research from the Xerox PARC laboratory
in user interface design. At a time when PC compatibles
were still using Microsoft’s text-based MS-DOS, the Mac
sported a graphical user interface featuring icons, menus,
and buttons, controlled by a mouse (see user interface).
Microsoft responded by developing the broadly similar
Windows operating environment, which started out slowly
but had become competitive with Apple’s by the end of the
decade.

The 1980s also saw great growth in networking. Uni-
versity computers running UNIX were increasingly linked
through what was becoming the Internet, while office com-
puters increasingly used local area networks (LANs) such
as those based on Novell’s Netware system. Meanwhile, PCs
were also being equipped with modems, enabling users to
dial up a growing number of on-line services ranging from
giants such as CompuServe to a diversity of individually
run bulletin board systems (see bulletin board systems).

In the programming field a new paradigm, object-ori-
ented programming (OOP) was offered by languages such
as smalltalk and C++, a variant of the popular C language.
The new style of programming focused on programs as

Integrated circuit (IC) chips for memory and control were making
for increasingly powerful, compact, and reliable computer compo-
nents. The microprocessor supplied the remaining ingredient needed
for a true desktop personal computer.

228        history of computing

embodying relationships between objects that are respon-
sible for both private data and a public interface represented
by methods, or capabilities offered to users of the object.
Both structured and object-oriented methods attempted to
keep up with the growing complexity of large software sys-
tems that might incorporate millions of lines of code. The
federal government adopted the Ada language with its abil-
ity to precisely manage program structure and data opera-
tions. (See object-oriented programming and ada.)

1990s
By the 1990s, the PC was a mature technology dominated
by Microsoft’s Windows operating system. UNIX, too, had
matured and become the system of choice for university com-
puting and the worldwide Internet. Although the potential of
the Internet for education and commerce was beginning to
be explored, at the beginning of the decade the network was
far from friendly for the average consumer user.

This changed when Tim Berners-Lee, a researcher at
Geneva’s CERN physics lab, adapted hypertext (a way to
link documents together) with the Internet protocol to
implement the World Wide Web. By 1994, Web browsing
software that could display graphics and play sounds was
available for Windows-based and other computers (see
World Wide Web and Web browser). The remainder of
the decade became a frenzied rush to identify and exploit
business plans based on e-commerce, the buying and sell-
ing of goods and services on-line (see e-commerce). Mean-
while, educators demanded Internet access for schools.

In the office, the Intranet (a LAN based on the Inter-
net TCP/IP protocol) began to supplant earlier network-
ing schemes. Belatedly recognizing the threat and potential
posed by the Internet, Bill Gates plunged Microsoft into
the Web server market, included the free Internet Explorer
browser with Windows, and vowed that all Microsoft pro-
grams would work seamlessly with the Internet.

Moore’s Law, the dictum that computer power roughly
doubles every 18 months, continued to hold true as PCs
went from clock rates of a few tens of MHz to more than 1
GHz. RAM and hard disk capacity kept pace, while low-cost
color printers, scanners, digital cameras, and video systems
made it easier than ever to bring rich media content into
the PC and the on-line world.

Beyond 2000
The new decade began with great hopes, particularly for the
Web and multimedia “dot-coms,” but their stocks, inflated
by unsustainable expectations, took a significant dip in
2000–2001. By the middle of the decade the computing
industry had largely recovered and in many ways was stron-
ger than ever. On the Web, new software approaches (see
Ajax, application service provider, and service-ori-
ented architecture) are changing the way services and
even applications are delivered. The integration of search
engines, mapping, local content, and user participation (see
blogging, user-created content, and social network-
ing) is changing the relationship between companies and
their customers.

In hardware, Moore’s law is now expressed not through
faster single processors, but using processors with two, four,
or more processing “cores,” challenging software design-
ers (see multiprocessing). Mobile computing is one of the
strongest areas of growth (see pda and smartphone), with
devices combining voice phone, text messaging, e-mail, and
Web browsing.)

The industry continues to face formidable challenges
ranging from mitigating environmental impact (see green
pc) to the shifting of manufacturing and even software
development to rapidly growing countries such as India
and China (see globalism and the computer industry.)

Thus far, each decade has brought new technologies and
methods to the fore, and few observers doubt that this will
be true in the future.

Note: for a more detailed chronology of significant
events in computing, see Appendix 1: “Chronology of Com-
puting.” For more on emerging technologies, see trends
and emerging technologies.

Further Reading
Allan, Roy A. A History of the Personal Computer: The People and

the Technology. London, Ont.: Allan Publishing, 2001.
Campbell-Kelly, Martin. From Airline Reservations to Sonic the

Hedgehog: A History of the Software Industry. Cambridge,
Mass.: MIT Press, 2004.

Ceruzzi, Paul E. A History of Modern Computing. 2nd ed. Cam-
bridge, Mass.: MIT Press, 2003.

Chandler, Alfred D., Jr. Inventing the Electronic Century: The Epic
Story of the Consumer Electronics and Computer Industries,
with a New Preface. Cambridge, Mass.: Harvard University
Press, 2005.

Computer History Museum. Available online. URL: http://www.
computerhistory.org/. Accessed June 10, 2007.

Ifrah, Georges. The Universal History of Computing: From the Aba-
cus to the Quantum Computer. New York: Wiley, 2002.

NetHistory. Available online. URL: http://www.nethistory.info/
index.html. Accessed August 7, 2007.

Hollerith, Herman
(1860–1929)
American
Inventor

Herman Hollerith invented the automatic tabulating machine,
a device that could read the data on punched cards and dis-
play running totals. His invention would become the basis
for the data tabulating and processing industry. Hollerith
was born in Buffalo, New York, and graduated from the
Columbia School of Mines. After graduation, he went to
work for the U.S. Census as a statistician. Among other tasks
he compiled vital statistics for Dr. John Shaw Billings, who
suggested to Hollerith that using punched cards and some
sort of tabulator would help the Census Department keep up
with the growing volume of demographic statistics.

Hollerith studied the problem and decided that he could
build a suitable machine. He went to MIT, where he taught
mechanical engineering while working on the machine,
which was partly inspired by an earlier device that had
used a piano-type roll rather than punched cards as input.

Hollerith, Herman        229

Facing vigorous competition and in declining health,
Hollerith sold his patent rights to the company that even-
tually evolved into IBM, the company that would come
to dominate the market for tabulators, calculators, and
other office machines. The punched card, often called the
Hollerith card, would become a natural choice for com-
puter designers and would remain the principal means of
data and program input for mainframe computers until
the 1970s.

Further Reading
Austrian, G. D. Herman Hollerith: Forgotten Giant of Information

Processing. New York: Columbia University Press, 1982.
Kistermann, F. W. “The Invention and Development of the Hol-

lerith Punched Card.” Annals of the History of Computing, 13,
245–259.

Russo, Mark. “Herman Hollerith: The World’s First Statisti-
cal Engineer.” Available online. URL: http://www.history.
rochester.edu/steam/hollerith. Accessed August 7, 2007.

home office
The widespread use of the personal computer and associ-
ated peripherals such as printers has made it more practi-
cal for many people to do at least part of their work from
their homes. In addition to traditional freelance occupa-
tions such as writing and editing, many other businesses
including consulting, design, and sales can now be con-
ducted from a home office. Computer hardware and soft-
ware makers began to target a distinctive market niche that
is sometimes referred to as SOHO (Small Office / Home
Office), thus including both actual home offices and small
commercial offices.

As a market, the SOHO has somewhat different require-
ments than the large offices traditionally served by major
computer vendors:

• � Relatively modest PCs as compared to heavy-duty file
servers or workstations

• � Peripherals shared by two or more PCs (although the
plummeting price of printers made it common to pro-
vide each PC with its own printer)

• � The need for a small “footprint”—that is, minimizing
the space taken up by the equipment. Multifunction
peripherals (typically incorporating printer, scanner,
copier, and perhaps a fax machine) are a popular solu-
tion to this requirement.

• � A simple local network (see local area network)
with shared Internet access

• � Low-end or midrange software (such as Microsoft
Works or Office Small Business edition as opposed to
the full-blown Office suite)

• � Application for collaboration and productivity deliv-
ered via the Web (such as Google Apps) may also be
an attractive alternative.

• � Available installation and support (since many home
users lack technical hardware or system administra-
tion skills)

The Hollerith tabulator and sorter box, invented by Herman Hol-
lerith and used in the 1890 U.S. census. It “read” cards by passing
them through electrical contacts.  (Hulton Archive / Getty
Images)

230        home office

The peripatetic Hollerith soon got a job with the U.S. Patent
Office, partly to learn the procedures he would need to fol-
low to patent his tabulator. He applied for several patents,
including one for the punched-card tabulator. He tested the
device with vital statistics in Baltimore, New York, and the
state of New Jersey.

Hollerith’s mature system included a punch device that
a clerk could use to record variable data in many categories
on the same card (a stack of cards could also be prepunched
with constant data, such as the number of the census dis-
trict). The cards were then fed into a device something like
a small printing press. The top part of the press had an
array of spring-loaded pins that connected to tiny pots of
mercury (an electrical conductor) in the bottom. The pins
were electrified. Where a pin encountered a punched hole
in the card, it penetrated through to the mercury, allowing
current to flow. The current created a magnetic field that
moved the corresponding counter dial forward one posi-
tion. The dials could be read after a batch of cards was fin-
ished, giving totals for each category, such as an ethnicity
or occupation. The dials could also be connected to count
multiple conditions (for example, the total number of for-
eign-born citizens who worked in the clothing trade).

Aided by Hollerith’s machines, a census unit was able
to process 7,000 records a day for the 1890 census, about
ten times the rate in the 1880 count. Starting around 1900,
Hollerith brought out improved models of his machines
that included such features as an automatic (rather than
hand-fed) card input mechanism, automatic sorters, and
tabulators that boasted a much higher speed and capacity.
Hollerith machines soon found their way into government
agencies involved with vital statistics, agricultural statis-
tics, and other data-intensive matters, as well as insurance
companies and other businesses.

Although the home or small office remains a signifi-
cant market segment, specific targeting to the segment has
become more difficult. With falling PC prices and increas-
ing capabilities, there is little difference today between a
mid-level “consumer” computer system and the kinds of
systems previously marketed for home office use.

Further Reading
Attard, Janet. The Home Office and Small Business Answer Book.

2nd ed. New York: Owl Books, 2000.
Ivens, Kathy. Home Networking for Dummies. 4th ed. Hoboken,

N.J.: Wiley, 2007.
Orloff, Erica, and Kathy Levinson. The 60-Second Commute: A

Guide to Your 24/7 Home Office Life. Upper Saddle River, N.J.:
Prentice Hall, 2003.

Slack, S. E. CNET Do-It-Yourself Digital Home Office Projects. Berke-
ley, Calif.: McGraw-Hill Osborne Media, 2007.

Small Business Computing. Available online. URL: http://www.
smallbusinesscomputing.com/. Accessed August 7, 2007.

SOHO Computing. Available online. URL: http://www.
sohocomputing.info/. Accessed August 7, 2007.

Hopper, Grace Murray
(1906–1992)
American
Computer Scientist

Grace Brewster Murray Hopper was an innovator in the
development of high-level computer languages in the 1950s
and 1960s. She is best known for her role in the develop-
ment of COBOL, which became the premier language for
business data processing.

Hopper was born in New York City. She graduated with
honors with a B.A. in mathematics and physics from Vassar
College in 1928, and went on to receive her M.A. and Ph.D.
in mathematics at Yale University. She taught at Vassar from
1931 to 1943, when she joined the U.S. Naval Reserve at
the height of World War II. As a lieutenant (J.G.), she was
assigned to the Bureau of Ordnance, where she worked in
the Computation Project at Harvard under pioneer com-
puter designer Howard Aiken (see Aiken, Howard). She
became one of the first “coders” (that is, programmers) for
the Mark I. After the war, Hopper worked for a few years
in Harvard’s newly established Computation Laboratory. In
1949, however, she became senior mathematician at the
Eckert-Mauchly Corporation, the world’s first commercial
computer company, where she helped with program design
for the famous UNIVAC. She stayed with what became the
UNIVAC division under Remington Rand (later Sperry
Rand) until 1971.

While working with UNIVAC, Hopper’s main focus was
on the development of programming languages that could
allow people to use symbolic names and descriptive state-
ments instead of binary codes or the more cryptic forms of
assembly language (see assembler). In 1952, she developed
A-0, the first compiler (that is, a program that could trans-
late language statements to the corresponding low-level
machine instructions). She then developed A-2 (a compiler
that could handle mathematical expressions), and then in
1957 she developed Flow-Matic. This was the first compiler

that worked with English-like statements and was designed
for a business data processing environment.

In 1959, Hopper joined with five other computer scien-
tists to plan a conference that would eventually result in the
development of specifications for a “Common Business Lan-
guage.” Her earlier work with Flow-Matic and her design
input played a key role in the development of what would
become the COBOL language.

Hopper retained her Navy commission and even after
her retirement in 1966 she was recalled to active duty to
work on the Navy’s data processing needs. She finally
retired in 1986 with the rank of rear admiral. Hopper spoke
widely about data processing issues, especially the need for
standards in computer language and architecture, the lack
of which she said cost the government billions of dollars in
wasted resources. Admiral Hopper died on January 1, 1992,
in Arlington, Virginia.

Hopper received numerous awards and honorary degrees,
including the National Medal of Technology. (The navy
named a suitably high-tech Aegis destroyer after her in
1996.) The Association for Computing Machines (ACM)
created the Grace Murray Hopper Award to honor distin-
guished young computer professionals. Hopper has become
a role model for many girls and young women considering
careers in computing.

Grace Murray Hopper created the first computer program com-
piler and was instrumental in the design and adoption of COBOL.
When she retired, she was the first woman admiral in U.S. Navy
history.  (Unisys Corporation)

Hopper, Grace Murray        231

Further Reading
“Grace Brewster Murray Hopper” [biography]. St. Andrews Uni-

versity [Scotland] School of Mathematics and Statistics.
Available online. URL: http://www-history.mcs.st-andrews.
ac.uk/Biographies/Hopper.html. Accessed August 7, 2007.

Grace Hopper Celebration of Women in Computing. Available
online. URL: http://gracehopper.org. Accessed August 7, 2007.

Marx, Christy. Grace Hopper: The First Woman to Program the First
Computer in the United States. New York: Rosen Publishing
Group, 2003.

Williams, Kathleen Broome. Grace Hopper: Admiral of the Cyber
Sea. Annapolis, Md.: Naval Institute Press, 2004.

HTML, DHTML, and XHTML
In developing the World Wide Web, Tim Berners-Lee (see
Berners-Lee, Tim) had to provide several basic facilities.
One was a protocol, HTTP, for requesting documents over
the network (see world wide web). Another was a system
of links between documents (see hypertext and hyper-
media). The third was a way to embed instructions in the
pages so that the Web browser could properly display the
text and graphics. Berners-Lee created HTML (Hypertext
Markup Language) for this purpose. It is based on the more
elaborate SGML (Standard Generalized Markup Language).

The basic “statement” in HTML is the tag. Tags are
delimited by angle brackets (<>). Tags that affect a docu-
ment or section of a document come in pairs, with the sec-
ond member of the pair preceded by a slash. For example,
the tags

<HTML>

</HTML>

indicate the beginning and end of an HTML document,
while <BOLD> and </BOLD> delimit text that should be
rendered in boldface.

Besides specifying such things as headings, font, font
size, and typestyles, HTML includes tags for Web-related
functions. One of the most useful is the A, or “anchor”
tag. As with some other HTML tags, the A tag is used with
attributes that further specify what it so be done. The A tag
is usually used with the <HREF> or Hypertext Reference
attribute, which specifies a document that is to be linked to
the current document so that the user can click on a high-
light to go there. For example:

<A HREF=“http://www.MySite.Pages/
Glossary”>Glossary of Computer Terms

specifies a link to a particular page at a particular site.
The link will appear in the browser as the highlighted text
Glossary of Computer Terms. If clicked, the browser will
load the HTML page titled Glossary.

Implementation and Extensions
Inserting HTML tags by hand is a tedious and error-prone
process (for example, it’s easy to omit a bracket or a slash
or add “illegal” spaces within tags). Fortunately, there are
now many HTML editor programs that let users insert the
appropriate elements much in the way word processors
make it easy to specify fonts and formatting. (Indeed, pro-
grams such as Microsoft Word allow users to convert and
save documents in HTML format.)

HTML has been extended in a number of ways. First,
new features have been added to later versions of the lan-

An HTML hyperlink embedded in a Web page. The anchor link gives the address (URL) of the linked page, as well as specifying the text that
will appear in the link, which will be rendered by the Web browser in a special color or font.

232        HTML, DHTML, and XHTML

guage, including better support for frames, columns, tables,
and other formats. Browser developers have also adopted
a system that allows document authors to define general
styles to ensure consistent document appearance (see cas-
cading style sheets). Style sheets can inherit styles from
other style sheets, allowing an organization to create gen-
eral style sheets that can then be refined to create special-
ized styles for particular types of documents. The latest
version of HTML (as of 2007) is 4.01, with 5.0 still in draft.

Dynamic HTML (DHTML) is a set of techniques that
allow otherwise fixed (“static”) HTML pages to be changed
as users are viewing them. A scripting language (see, for
example, JavaScript) is used to change the specifications
(usually via the style sheet). The programming interface
to the Web page is the document object model (see dom).
DHTML can be used, for example, to create drop-down
menus or “rollover” buttons that change as the mouse navi-
gates over them. Even simple games have been written in
DHTML to run in Web browsers. DHTML should be distin-
guished from other dynamic techniques such as server-side
scripting (see Perl and php), which changes the page before
it is presented to the user, and asynchronous techniques
that can change a part of a page without reloading it (see
Ajax).

XHTML is essentially a rewriting of HTML according to
the syntax of the Extensible HyperText Markup Language
(see xml). Because of the stricter syntax rules for XML,
XHTML cannot use many of the earlier free-form structures
of HTML. However, because XML has become so prevalent
a means for connecting Web pages to data sources, there are
many XML tools that XHTML authors can use for parsing
and syntax checking. As of 2007, XHTML 1.1 is the prevail-
ing standard, but a draft 2.0 version represents a more thor-
ough break from the elements of the original HTML.

Further Reading
Freeman, Eric, and Elisabeth Freeman. Head First HTML with CSS

and XHTML. Sebastapol, Calif.: O’Reilly Media, 2005.
Goodman, Danny. Dynamic HTML: The Definitive Reference. 3rd

ed. Sebastapol, Calif.: O’Reilly Media, 2006.
Lloyd, Ian. Build Your Own Website the Right Way Using HTML &

CSS. Lancaster, Calif.: SitePoint, 2006.
Musicano, Chuck, and Bill Kennedy. HTML & XHTML: The Defini-

tive Guide. 6th ed. Sebastapol, Calif.: O’Reilly Media, 2006.
Olsson, Tommy. “Bulletproof HTML: 37 Steps to Perfect Markup.”

Sitepoint. Available online. URL: http://www.sitepoint.com/
article/html-37-steps-perfect-markup. Accessed August 7, 2007.

Tittel, Ed, and Mary Burmeister. HTML 4 For Dummies. 5th ed.
Hoboken, N.J.: Wiley, 2005.

hypertext and hypermedia
Most computer users today are familiar with the concept
of hypertext, even if they don’t often use the term itself.
Each time a Web user clicks on a link on a Web page, he
or she is using hypertext. Most on-line help systems also
use hypertext to take the reader from one topic to another,
related topic. The term hypermedia acknowledges modern
systems’ use of many kinds of resources other than plain
text, including still images, videos, and sound recordings.

In a traditional document, the reader is generally
assumed to proceed sequentially from the beginning to the
end. (Although there may well be footnotes or cross-refer-
ences within the document, these are generally experienced
as temporary divergences from the primary, sequential nar-
rative.) Generally speaking, each reader might be expected
to acquire roughly the same set of facts from the document.

In a hypertext document, however, the links between
topics create multiple potential paths for readers. To the
extent the author has provided links between all related
topics, the reader is free to pursue his or her particular
interests rather than being bound by a sequential structure
imposed by the author. For example, in a document that
discusses various organisms in an ecology and the effects of
climate and vegetation, one reader might choose to explore
one organism in depth, following links from it to other
resources devoted to that organism (including outside Web
pages, images, videos, and so on). Another reader might be
interested specifically in the effects of rainfall on the ecol-
ogy as a whole and follow a completely different set of links
to sites having climatological data.

History and Development
In 1945, a time when the very first digital computers were
coming on-line, Vannevar Bush, a pioneer designer of ana-
log computers, proposed a mechanism he called the Memex
(see Bush, Vannevar). This system would link portions of
documents to allow retrieval of related information. The
proposal was impracticable in terms of the very limited
capacity of computers of the time. By the 1960s, when com-
puters had become more powerful (and the minicomputer
was beginning to be a feasible purchase for libraries and
schools), another visionary, Theodore Nelson, coined the
terms hypertext and hypermedia. He suggested that net-
working (a technology then in its infancy) could allow for
what would eventually amount to a worldwide database of
interconnected information. Nelson developed his specifi-
cations for a system he called Xanadu, but he was unable to
create a working version of the system until the late 1990s.
However, in 1968 Douglas Engelbart (also known as the
inventor of the computer mouse) demonstrated a more lim-
ited but workable hypertext system called NLS/Augment.

During the 1970s and 1980s, a variety of hypertext sys-
tems were created for various platforms, including Guide
and Toolbook for MS-DOS and Windows PCs. Perhaps
the most influential system was Hypercard, developed for
Apple’s Macintosh. While Hypercard did not have a com-
plete set of facilities for creating hypertext, the flexible,
programmable, linkable “cards” could be used to imple-
ment hypertext documents. Many encyclopedias and other
reference products on CD-ROM began to implement some
form of hypertext links.

The true explosion of hypertext came with the develop-
ment and growth of the World Wide Web throughout the
1990s. Hypertext on the Web is implemented through the
use of HTTP (HyperText Transport Protocol) over the Inter-
net’s TCP/IP protocol and by coding documents in HTML
(Hypertext Markup Language). (See html, Internet, tcp/
ip, and World Wide Web.)

hypertext and hypermedia        233

Implementation
A hypertext document consists of nodes. A node can be a
part of a document that conveys a logical “chunk” of infor-
mation, such as the text that would be under a particular
heading in a traditional document. In some systems nodes
can be grouped together as a composite—for example, the
second-level headings under a first-level heading might be
considered nodes making up a single composite.

The text contains links. A link specifies an anchor or
specific location to which it points. The user normally
doesn’t see the anchor, but rather the marker, which is
some form of highlighting (such as a different color) that
indicates that an area is a link that can be clicked on.
(In systems such as the Web, link markers need not be
textual. Small pictures are often used as visual link mark-
ers.) Web browsers and other hypertext programs often
supplement the use of links with various navigation aids.
These can include buttons for traversing back or forward
through a list of recently visited links, a history list from
which previous links can be selected, and bookmarks that
allow the user to save and descriptively label important
links for easier future access.

Hypertext is becoming the dominant paradigm for pre-
senting technical or other reference information. With less-
structured text, hypertext links are usually considered to be
supplemental to the traditional structure. The term hyper-
media refers to the linking of nontextual material—images,
videos, sound files, even Java applets and other programs.
(Since both hypertext and hypermedia are now so ubiqui-

tous, the terms themselves seem to be used less frequently
except in an academic context.)

Hypertext perhaps achieves its fullest power when it
is used for collaborative expression and research. Without
being able to easily link to what is being discussed, blogs
would just be static diaries (see blogs and blogging).
Wikis, too, depend on linking not only to reference exist-
ing, related entries, but to “grow” the tree of knowledge
with “stubs” being put in to encourage other contributors to
flesh out related topics (see wikis and Wikipedia). Despite
suggestions to the contrary, hypertext seems to be problem-
atic with regard to fiction, unless a work is constructed as
an explicit hypertext. If hypertext literature becomes popu-
lar, it will require that both authors and readers radically
change their role and expectations with regard to the text.

Further Reading
Bromme, Rainer, and Elmar Stahl. Writing Hypertext and Learning.

Kidlington, Oxford, U.K.: Elsevier Science, 2002.
Bush, Vannevar. “As We May Think.” Atlantic Monthly 176, 101–

108. Available online. URL: http://www.theatlantic.com/
doc/194507/bush.

Landow, George P. Hypertext 3.0: Critical Theory and New Media
in an Era of Globalization. 3rd ed. Baltimore: Johns Hopkins
University Press, 2006.

McCann, Jerome. Radiant Textuality: Literature after the World
Wide Web. New York: Palgrave Macmillan, 2001.

Nelson, Theodore. Computer Lib/Dream Machines. Rev. ed. Chi-
cago: Hugo’s Books, 1987.

Snyder, I. Hypertext: the Electronic Labyrinth. New York: New York
University Press, 1997.

234        hypertext and hypermedia

235

IBM
International Business Machines is familiarly known as
IBM (which is its NYSE symbol) or the nickname “Big
Blue.” Arguably it is the world’s oldest information tech-
nology company, with its roots in card tabulation and
other business machines in the late 19th century (see
Hollerith, Hermann and punched cards and paper
tape). Under president Thomas J. Watson Sr., IBM devel-
oped what would become known as the “IBM card” and
machinery to manage the huge amounts of data required
by the U.S. Social Security system starting in the mid-
1930s. However, IBM would later be criticized for provid-
ing the same technology to Nazi Germany, where it would
be used to help round up Jews for the Holocaust. On the
other hand, IBM calculating machines were a very neces-
sary part of the Allied war effort, including the develop-
ment of the atomic bomb.

In the 1950s, cold war–related defense work gave IBM
access to new technologies, including the multiuser, real-
time architecture needed for the SAGE air defense computer
(see government funding of computer research.)

Despite UNIVAC’s head start, IBM dominated the com-
mercial computer industry from the mid-1950s at least until
the 1970s (see mainframe). The keystone product was the
IBM/360 and later IBM/370 mainframe systems. IBM did
not sell just hardware: It provided complete solutions in
the form of hardware, operating systems, other software,
and peripherals. Because of its dominance, it was hard for
small innovators to gain traction, and many people in the
university hacker culture felt about IBM as many of their
descendants feel about Microsoft today. (IBM’s dress code

with its dark suits reassured business managers but added
to the company’s conformist image.)

Retrenchment
IBM went on to set the standard for the most common type
of personal computer in the 1980s (see ibm pc). However,
the decade would also bring a gradual decline of IBM’s
dominant role. On the desktop, IBM quickly outpaced Apple
(despite the latter’s innovation—see Macintosh). However,
it became legally possible and profitable to build “clone”
PCs that could run the same software as the IBM PC, and
often faster and at lower cost. In the 1990s the growing
use of networks of increasingly powerful desktop machines
would erode the mainframe market. Finally, in 2004 IBM
sold its PC business (including the well-regarded Thinkpad
series of laptops) to Lenovo, a Chinese company.

Today IBM remains a major seller of computer serv-
ers particularly targeted to Internet businesses. The com-
pany has also achieved success through designing chips
for videogame units (see game consoles). However,
the company’s overall focus is mainly on business con-
sulting, software (including database and collaborative
products), management services, and the exploitation of
its vast trove of patents. IBM has also enthusiastically
embraced open software and contributed a considerable
amount of code to the programming community, such as
the Eclipse program development system (see Linux and
open source).

IBM remains the largest computer-related company
(after HP). In 2007 the company earned $7 billion on rev-
enue of $98.8 billion.

I

Further Reading
Bashe, Charles J., et al. IBM’s Early Computers. Cambridge, Mass.:

MIT Press, 1985.
Birth of the IBM PC (IBM Archives). Available online. URL: http://

www-03.ibm.com/ibm/history/exhibits/pc25/pc25_birth.
html. Accessed September 23, 2007.

Black, Edwin. IBM and the Holocaust: The Strategic Alliance between
Nazi Germany and America’s Most Powerful Corporation. New
York: Three Rivers Press, 2001.

Garr, Doug. IBM Redux: Lou Gerstner & the Business Turnaround of
the Decade. New York: HarperBusiness, 1999.

IBM Corporation. Available online. URL: http://www.ibm.com.
Accessed September 23, 2007.

Pugh, Emerson W. Memories that Shaped an Industry: Decisions
Leading to IBM System/360. Cambridge, Mass.: MIT Press,
2000.

Pugh, Emerson W., Lyle R. Johnson, and John H. Palmer. IBM’s 360
and Early 370 Systems. Cambridge, Mass.: MIT Press, 1991.

Soltis, Frank G. Fortress Rochester: The Inside Story of the IBM
Series. Loveland, Colo.: 29th Street Press, 2001.

IBM PC
By 1981, a small but vigorous personal computer (PC)
industry was offering complete desktop computer systems.
Apple’s Apple II offered color graphics and expandability
through an “open architecture”—slots into which cards
designed by third-party vendors could be plugged. While
the Apple II had its own DOS (disk operating system) as
did Radio Shack’s TRS-80, most microcomputers sold in the
business market used CP/M, an operating system developed
by Gary Kildall and his company Digital Research.

Meanwhile, IBM, the world’s largest computer com-
pany (see ibm), had quietly created a special team headed
by Phillip (“Don”) Estridge and tasked with designing a
personal computer. Unlike the case with the company’s
mainframe development, the team was given considerable
freedom in choosing architecture and components—but
they were told they would have to have a machine ready for
the market in one year.

Because of the short time frame, the team chose third-
party components already well established in the market,
including the monitor, floppy disk drive, and a printer.
Unlike Apple and most other companies, IBM created two
separate video display systems, one monochrome (MDA)
for sharp text for business applications and the three-
color CGA system for the game and education markets (see
graphics card).

The IBM team also adopted standards from the emerg-
ing microcomputer industry instead of trying to use exist-
ing mainframe standards. For example, they used the ASCII
code to represent characters, not the EBCDIC code used
on IBM mainframes. They also chose the Intel 8086 and
8088 microprocessors, which had an instruction set simi-
lar to that of the Intel 8080 used in many CP/M systems
(see microprocessor). This would make it easy for soft-
ware developers to create IBM PC versions of their software
quickly so that the new machine would have a repertoire of
business software.

One might have expected that IBM would also adopt a
version of CP/M as the PC’s operating system, taking advan-

tage of the closest thing to an existing industry standard.
However, CP/M was relatively expensive, and negotiations
with Digital Research stumbled, leaving an opening for a
much smaller company, Microsoft, to sell a DOS based on
software it had licensed from Seattle Computer Products.
While IBM did offer CP/M and another operating system
based on the UC San Diego Pascal development system,
Microsoft DOS, which became known as PC-DOS (and later
MS-DOS), was cheapest and effectively became the default
offering (see ms-dos).

When IBM officially announced its PC in April 1981,
Apple took out full-page ads “welcoming” the new com-
petitor to what it considered to already be a mature indus-
try. But by the end of 1983, a million IBM PCs had been
sold, dwarfing Apple and other brands. From then on, while
Apple would go on to announce its distinctive Macintosh in
1984, the IBM machine would set the industry standard. To
most people, “PC” would mean “IBM PC.”

Open Standards and Expansion
As more businesses bought IBM PCs, the company steadily
expanded the machine’s capabilities to meet the demands
of the business environment. The next model, the PC-XT,
introduced in 1982, included a hard disk drive and more
system memory. As software became more demanding, the
need for a faster and more capable processor also became
apparent. In 1984, IBM responded with the PC-AT, which
used the Intel 80286 processor, combining the faster pro-
cessor with a wider (16-bit) and faster data bus (see bus).

However, IBM would not have the market to itself. A
consequence of the use of an open, expandable architecture
and “off the shelf” processor and other components is that
other companies could market PCs that were compatible
with IBM’s (that is, they could run the same operating sys-
tem and applications software). Although competitors could
not legally make a simple copy of the read-only memory
(ROM) BIOS, the code that enabled the components to com-
municate, they could reverse-engineer a functional equiva-
lent. The first major competitor in what became known as
the “PC Clone” market was Compaq, which also offered an
improved video display and a transportable model. Zenith,
Tandy (Radio Shack), and HP also offered “name-brand” PC
clones.

In 1987, IBM tried to establish a proprietary standard by
introducing the PS/2 line, which featured a 3.5-inch floppy
drive (standard PC compatibles used 5.25-inch drives), a
new high-resolution graphics standard (VGA), a new sys-
tem bus (MCA or Microchannel Architecture), and a new
operating system (OS/2). Despite some technical advan-
tages, the PS/2 achieved only modest success. Since the
card slots were incompatible with the previous standard,
existing expansion products could not be used. Microsoft
soon came out with a new operating environment, Win-
dows, which while inferior in multitasking capabilities to
OS/2 was easier to use (see user interface and Microsoft
Windows).

By the 1990s, it was clear that IBM no longer controlled
the standards for PCs. (Indeed, IBM soon abandoned the
PS/2 MCA architecture and returned to the earlier stan-

236        IBM PC

dard, which competitors had never left.) Instead, the indus-
try incrementally built upon what had become known as
the ISA (Industry Standard Architecture), supplementing
it with a new kind of expansion card connector called PCI.
Currently, IBM is in the second tier in PC sales behind
industry leaders Dell and Compaq, having a market share
comparable to Hewlett-Packard and Gateway. IBM also did
relatively well in the laptop computer sector with its Think-
pad series, before selling it to Lenovo.

Today’s industry standards are effectively determined
by two companies: the chip-maker Intel and the software
giant Microsoft. Indeed, “standard” PCs are now often
called “Wintel” machines. The direct-order giant Dell and
its competitors HP and Lenovo dominate the “commodity
PC” market. However, by creating a standard that was flex-
ible enough for two decades of PC development, IBM made
a lasting contribution to computing comparable to its inno-
vations in the mainframe arena.

Further Reading
Dell, Deborah A,. and J. Jerry Purdy. Thinkpad: a Different Shade of

Blue. Indianapolis, Ind.: Sams, 1999.
Dell, Michael. Direct from Dell: Strategies that Revolutionized an

Industry. New York: HarperBusiness, 2000.
Gilster, Ron. PC Hardware: a Beginner’s Guide. New York: McGraw-

Hill, 2001.
Hoskins, Jim, and Bill Wilson. Exploring IBM Personal Computers.

10th ed. Gulf Breeze, Fla.: Maximum Press, 1999.
Ling, Zhigun, and Martha Avery. The Lenovo Affair: The Growth of

China’s Computer Giant and Its Takeover of IBM-PC. New York:
Wiley, 2006.

identity in the online world
There are two aspects of identity in cyberspace, both of
which are intriguing but problematic: Outer identity is the
name or other descriptors that are identified by other peo-
ple as belonging to a particular person, and inner identity is
a person’s sense of who or what he or she “really is.”

Users of online systems such as chat rooms or games
have the ability to use a variety of names (pseudonyms)
or to be effectively anonymous (see anonymity and the
Internet). In games, the identity used by a player is rep-
resented by a virtual representation called an avatar. Other
players (through their own avatars) will encounter the ava-
tar and identify it by physical appearance, behavior, and
what it tells about itself (the “back story”).

While opportunities to do this emerged in the 1970s with
paper-and-dice role-playing games such as the very popu-
lar Dungeons and Dragons, there are significant differences
between online identity and these earlier games. People
played “D&D” in person, so it was relatively easy to maintain
a distinction between a character a person was “running” and
the person himself or herself. Also, these role-playing ses-
sions were fixed in time and place: After slaying the dragon,
the players went home. Indeed even the term “role-playing”
made the comfortable assumption that the activity was a pre-
tend, make-believe identity assumed by the player.

Virtual game worlds began in the 1980s with text-based
MUDS (multi-user dungeons) and similar online environ-

ments. Today game worlds are graphically immersive and
persistent. Although there are games focused on the tradi-
tional battles and quests, others such as Second Life are best
described not as games at all but literal second or alterna-
tive lives that persons can participate in for hours a day. In
these worlds an avatar can own property and make commit-
ments, even a virtual form of marriage. In many cases in-
game goods and money can actually be exchanged for “real
world” money. And crucially, unlike the D&D encounter,
in these virtual worlds the “real person” behind an avatar
need never be revealed.

Constructing Identities
The online world invites people to construct and try out
identities. Because of the vital role they play in people’s
sense of self and their social interactions, sexual or gen-
der identity is a particularly important issue. The online
world has some clear advantages for persons who are exper-
imenting with different identities (such as transgender). A
man, for example, can create a female avatar that really
looks female. Further, people can act out sexual encounters
without the possible physical consequences of violence or
disease. On the other hand, people can still be hurt psycho-
logically, and online relationships can take on added risks
and challenges by eventually becoming physical ones.

There are also venues where there can be “hybrid” iden-
tities. In a site such as MySpace, a person can construct the
kind of “face” he or she wants to present to the world and
interact with the pages of other people. Here the online
identity is often tied with a physical one (potentially creat-
ing vulnerability) but need not be (creating the potential for
deception).

Young people in particular will have to deal with the
opportunities and challenges of multiple virtual identities.
On the one hand, young people are very adaptable, espe-
cially to new technologies. On the other hand, youth and
particularly adolescence has always been a time of inner
conflicts and a search for lasting identity (see young peo-
ple and computing).

The deeper philosophical and psychological implications
of cyberspace are intriguing. According to some modern
psychological theories (such as Marvin Minsky’s “society of
mind”), the mind does not consist of a single ego perhaps in
conflict with unconscious forces, but rather, many separate
“agents” that interact as they seek various goals. From that
point of view the online world expands that model into
social space and may lead to a world in which each physical
person may have many virtual persons associated with it.

Online identities are becoming a fertile area of research
in psychology and sociology. Pioneering work has been
done by psychologist Sherry Turkle, who has explored dif-
fering male and female styles of relationship to technology,
how technology affects children, and other issues.

The social and legal implications of online identity are
equally challenging. Can an avatar be sued? Can one avatar
commit a criminal act (perhaps even rape) against another?
Might an avatar have privacy rights and the right of public-
ity? The legal system has hardly begun to consider such
questions, and they are becoming more urgent as everything

identity in the online world        237

from meetings to concerts takes place in virtual worlds. It is
possible that eventually online worlds will be allowed to
create their own internal legal systems, perhaps subject to
“metarules” about how they are to be enforced within the
context of physical jurisdictions (see cyberlaw).

Further Reading
Cooper, Robbie. Alter Ego: Avatars and Their Creators. London:

Chris Boot, 2007.
Schroeder, Ralph, and Ann-Sofie Axelsson, eds. Avatars at Work

and Play: Collaboration and Interaction in Shared Virtual Envi-
ronments. New York: Springer, 2007.

“Sexual Identity Online.” MYCyclopedia of New Media. Available
online. URL: http://wiki.media-culture.org.au/index.php/
Sexual_Identity_Online. Accessed September 23, 2007.

Thomas, Angela. Youth Online: Identity and Literacy in the Digital
Age. New York: Peter Lang, 2007.

Turkle, Sherry. Life on the Screen: Identity in the Age of the Internet.
New York: Simon & Schuster, 1995.

———. The Second Self: Computers and the Human Spirit. Twenti-
eth Anniversary ed. Cambridge, Mass.: MIT Press, 2005.

identity theft
Identity theft is essentially the impersonation of someone
in order to gain use of their resources or, occasionally, to
escape the consequences of previous criminal behavior.
The most common motive for identity theft is to gain access
to a person’s financial resources, such as credit cards or
checking accounts, or to obtain credit or services. (Some-
times a distinction is made between identity theft, where
the victim’s identity is assumed and effectively becomes
the perpetrator’s identity, and identity fraud, where infor-
mation is only used long enough to complete particular
transactions.)

Identity thieves must first obtain the necessary informa-
tion to pose as their victim. This can be done by physically
obtaining such items as checks, receipts, credit offers, and
so on from the trash or mail. Information such as name,
address, account numbers, and the ultimate prize, the
Social Security number, can then be used, for example, to
apply for credit in the victim’s name, or buy goods and have
them shipped to the perpetrator’s address.

People can minimize the risk of physical identity theft
by securing their mail and shredding sensitive documents.
However, the fastest-growing venue for identity theft is
online. The online world presents additional opportunities
to the criminals, the necessity of new precautions, and dif-
ficult challenges for law enforcement.

Digital information useful for identity theft can be
obtained in a variety of ways. It can be physically stolen in
the form of laptops or portable storage devices or obtained
electronically by breaking into and compromising computer
systems (see computer crime and security). Programs
can exploit operating-system or software flaws to travel
from one networked PC to another and e-mail informa-
tion back to the perpetrator (see computer virus). Finally,
users can be coerced, enticed, or otherwise tricked into
providing the information (such as passwords) themselves,
via authentic-looking institutional Web sites (see phishing
and spoofing).

Incidence and Prevention
According to various surveys, the incidence of identity theft
increased substantially between 2001 and 2003. There are
conflicting views of recent trends. Data for 2006 from Jav-
elin Strategy and Research suggests a decrease (10.1 mil-
lion U.S. adult victims in 2003 and 8.9 million in 2006).
However, data from the Federal Trade Commission records
246,035 actual complaints of identity theft in 2006, mak-
ing it by far the number one item on its list of consumer
fraud complaints. (Of these, 25 percent reflected credit card
fraud, and phone/utilities fraud and bank fraud each repre-
sented 16 percent.)

To give some further perspective, according to the Inter-
net Crime Complaint Center (a joint program of the FBI
and the National White Collar Crime Center), identity theft
amounted to only 1.6 percent of reported cyber crimes.
(Credit card or check fraud without confirmed identity
theft added up to 9.7 percent.) Nevertheless, however mea-
sured, it is clear that identity theft remains a very serious
problem.

Until recent years, response to identity theft complaints
by law enforcement tended to be ineffectual and frustrat-
ing to victims. This was probably due to a combination of
circumstances, including many police officers being unfa-
miliar with the nature of the crime or technology involved,
unsure about how to proceed, and not even certain they
had jurisdiction. This situation has improved considerably,
however, with national organizations, greater interagency
cooperation (including between federal, state, and local
agencies), and strong and explicit laws against identity theft
and fraud. (The Identity Theft and Assumption Deterrence
Act of 2003 now makes possession of “any means of iden-
tification” to “knowingly transfer, possess, or use without
lawful authority” a federal crime.)

The main goal for consumers, however, should be pre-
vention. Steps that can greatly reduce the chance of becom-
ing a victim of online identity theft include:

• � Keep security software (antivirus, antispam, antispyware)
up to date.

• � Do not click on links in e-mail that purports to be
from a financial institution, government agency,
online merchant or auction service. Use the browser’s
address box to go directly to the relevant site.

• � Do not post addresses, account numbers, or Social
Security numbers online, including chat rooms or
social networking sites. Teach children likewise, and
consider installing software that can block the post-
ing of such information.

• �M ake sure that the financial institutions and mer-
chants that one uses have acceptable privacy poli-
cies and policies for dealing with “data breaches” and
other loss of sensitive information.

• � If you suspect you have been victimized, go to a site
such as the Identity Theft Resource Center or the
Privacy Rights Clearinghouse to learn how to stop
further losses and reestablish credit and accounts.

238        identity theft

Further Reading
Cullen, Terry. The Wall Street Journal Complete Identity Theft Guide-

book: How to Protect Yourself from the Most Pervasive Crime in
America. New York: Three Rivers Press, 2007.

“How Many Identity Theft Victims Are There? What Is the Impact
on Victims?” Privacy Rights Clearinghouse. Available online.
URL: http://www.privacyrights.org/ar/idtheftsurveys.htm.
Accessed September 23, 2007.

Identity Theft Resource Center. Available online. URL: http://
www.idtheftcenter.org/. Accessed September 23, 2007.

“Identity Theft Tops FTC Complaints for 2006.” Consumeraffairs.
com, February 8, 2007. Available online. URL: http://www.
consumeraffairs.com/news04/2007/02/ftc_top_10.html.
Accessed September 23, 2007.

Internet Crime Complaint Center. Available online. URL: http://
www.ic3.gov/. Accessed September 23, 2007.

Privacy Rights Clearinghouse. Available online. URL: http://www.
privacyrights.org/. Accessed September 23, 2007.

image processing
Image processing is a general term for the manipulation
of a digitized image to produce an enhanced or more con-
venient version. Some of the earliest applications were in
the military (aerial and, later, satellite reconnaissance) and
in the space program. The military and space programs
had a great need for extracting as much useful information
as possible from images that were often gathered under
extreme or marginal conditions. They also needed to make
cameras and other hardware components simultaneously
more compact and more efficient, and generally had the
funds to pay for such specialized developments.

Once developed, higher-quality image processing sys-
tems found their way into other applications such as domes-
tic surveillance and medical imaging. The development of
cameras that could directly turn light into digitized images
(see photography, digital) made image processing seam-
less by avoiding the necessity of scanning images from tra-
ditional film.

Image processing applications can be divided into
three general categories: enhancement, interpretation, and
maintenance.

Enchancement
Enhancement includes bringing out objects of interest (such
as enemy vehicles or a particular rock formation on Mars)
from the surrounding background by enhancing contrast
or applying appropriate filters to block out the background.
More sophisticated filters can also be used to compensate
for defects in the original image, such as “red-eye,” blur,
and loss of focus. Today’s image processing programs, such
as the popular Adobe Photoshop, make relatively sophisti-
cated image manipulation techniques available to interested
amateurs as well as professionals. More sophisticated image
enhancement techniques include the creation of 3D images
based upon the differences calculated from a number of
photos shot from slightly different angles.

A considerable amount of image enhancement takes
place even before the photo is taken. Today’s versatile cam-
eras (see photography, digital) include a variety of modes
that are preset for different scenarios such as indoor portrait

or low light. After the picture is taken, photo management
programs (often bundled with the camera or even included
in the operating system) not only help organize photos, but
also provide simple ways to crop or enhance them.

Interpretation
Interpretation refers to manipulation designed to help
human observers obtain more and better information
from the image. For example, “false color” can be used to
heighten otherwise imperceptible color differences in the
original image, or to translate nonvisual information (such
as heat or radio emission levels) into visual terms.

Artificial intelligence algorithms can also be employed
to automatically analyze images for features of interest (see
pattern recognition and computer vision). In fields
such as military reconnaissance this might allow a high
volume of imagery to be prescreened, with images meet-
ing certain criteria “flagged” for the attention of human
interpreters.

Maintenance
Maintenance includes archiving of images, often with the
aid of compression to reduce the amount of storage space
required (see data compression). It can also include the
restoration of images that may have been degraded (as from
chemical decomposition of stored film.) This can be done
either by creating a reversible mathematical model of the
degradation process (thus, for example, restoring colors
that have changed through oxidation or other processes)
or by creating a model of how the image was formed in the
first place and comparing its output to the existing image.

Further Reading
GIMP, the GNU Image Manipulation Program. Available online.

URL: http://www.gimp.org/. Accessed August 8, 2007.
Gonzalez, Rafael, and Richard E. Woods. Digital Image Processing.

3rd ed. Upper Saddle River, N.J.: Prentice Hall, 2007.
Hanbury, Allan. “A Short Introduction to Digital Image Process-

ing.” Available online. URL: http://www.prip.tuwien.ac.at/
~hanbury/intro_ip/. Accessed August 8, 2007.

MathWorks Image Processing. Available online. URL: http://www.
mathworks.com/applications/imageprocessing/. Accessed
August 8, 2007.

Seul, Michael, Lawrence O’Gorman, and Michael J. Sammon.
Image Analysis: Description, Examples, and Code. New York:
Cambridge University Press, 2000.

Ward, Al. PhotoShop for Right-Brainers: Photo Manipulation. Alam-
eda, Calif.: SYBEX, 2004.

information design
Information design is concerned with arranging and pre-
senting information in ways that enable viewers to use it
efficiently and with the greatest benefit. This discipline can
be said to have begun in the 19th century with the develop-
ment of diagrams and maps that present the relationship
between two or more variables. These included John Snow’s
map of London showing the locations of cholera outbreaks
in the 1850s, and a striking 1861 diagram by Joseph Minard
that related the geographical progress of Napoléon’s 1812

information design        239

invasion of Russia with the diminishing size of the French
forces. These early examples coincided with a time when
industrial society was becoming increasingly complex and
populous, and both government and business needed new
ways to visualize statistics. Other products to which infor-
mation design contributes became important in the fol-
lowing century: traffic and transit signs, product warning
labels, and product manuals, to name a few.

Some of the basic considerations for information design
include:

• � effectiveness at presenting relevant information

• � selection and arrangement of information

• � balance of attractiveness and clarity

• � proper use of the medium (size, materials, etc.)

Of course the designer has additional constraints, such as
the purpose of the design (advertising, product documenta-
tion, report, etc.), policies of the client, any applicable regu-
lations (such as for warning labels), and so on.

From Physical to Digital
Moving from the world of print to the Web brings new
resources and challenges to the information designer. Web
design has many advantages over print—powerful layout
tools and perhaps templates, the availability of animation
or other effects, the ability to adapt to different audiences,
and, above all, interactivity. However, each of these fea-
tures brings additional choices—not only font and text size,
but background, use of images, whether to include anima-
tion (such as Flash), and how to design clear and easy-to-
use forms and other interactive features. Further, designs
may have to adapt to a variety of platforms (large desktop
screens, laptops, PDAs, and mobile devices) and provide
for users who have visual impairments or other disabilities
(for more, see Web page design). For information displays
designed to provide “at a glance” summaries and alerts
about problems, see digital dashboard.	

Although these concerns may seem far afield from the
classic principles of graphic design, they actually represent
technological extensions of them. It is easy to get lost in the
particulars of designing, for example, Web pages showing
statistical charts, without having thought about whether
the charts themselves show information clearly and accu-
rately in the scales and proportions used.

Further Reading
Digital Web Magazine. Available online. URL: http://www.digital-

web.com/. Accessed September 23, 2007.
Few, Stephen. Information Dashboard Design: The Effective Visual

Communication of Data. Sebastapol, Calif.: O’Reilly Media,
2006.

Information Design Journal. John Herndon, Va.: Benjamins Pub-
lishing Company, 1979. Free sample available online. URL:
http://www.benjamins.com/cgi-bin/t_bookview.cgi?bookid=I
DJDD%2012%3A1. Accessed September 23, 2007.

Lipton, Ronnie. The Practical Guide to Information Design. New
York: Wiley, 2007.

Lõwgren, Jonas, and Erik Stolterman. Thoughtful Interaction
Design: A Design Perspective on Information Technology. 2nd
ed. Cambridge, Mass.: MIT Press, 2007.

Tufte, Edward R. Envisioning Information. Cheshire, Conn.: Graph-
ics Press, 1990.

———. The Visual Display of Quantitative Information. 2nd ed.
Cheshire, Conn.: Graphics Press, 2001.

information retrieval
While much attention is paid by system designers to the
representation, storage and manipulation of information in
the computer, the ultimate value of information processing
software is determined by how well it provides for the effec-
tive retrieval of that information. The quality of retrieval is
dependent on several factors: hardware, data organization,
search algorithms, and user interface.

At the hardware level, retrieval can be affected by the
inherent seek time of the device upon which the data is
stored (such as a hard disk), the speed of the central proces-
sor, and the use of temporary memory to store data that is
likely to be requested (see cache). Generally, the larger the
database and the amount of data that must be retrieved to
satisfy a request, the greater is the relative importance of
hardware and related system considerations.

Data organization includes the size of data records and
the use of indexes on one or more fields. An index is a sepa-
rate file that contains field values (usually sorted alphabeti-
cally) and the numbers of the corresponding records. With
indexing, a fast binary search can be used to match the
user’s request to a particular field value and then the appro-
priate record can be read (see hashing).

There is a tradeoff between storage space and ease of
retrieval. If all data records are the same length, random
access can be used; that is, the location of any record can be
calculated essentially by multiplying the record’s sequence
number by the fixed record length. However, having a fixed
record size means that records with shorter data fields must
be “padded,” wasting disk space. Given the low cost of disk
storage today, space is generally less of a consideration.

The search algorithms used by the program can also
have a major impact on retrieval speed (see sorting and
searching). As noted, if a binary search can be done against
a sorted list of fields or records, the desired record can be
found in only a few comparisons. At the opposite extreme,
if a program has to move sequentially through a whole
database to find a matching record, the average number of
comparisons needed will be half the number of records in
the file. (Compare looking up something in a book’s index
to reading through the book until you find it.)

Real-world searching is considerably more complex,
since search requests can often specify conditions such
as “find e-commerce but not amazon.com” (see Boolean
operators). Searches can also use wildcards to find a word
stem that might have several different possible endings,
proximity requirements (find a given word within so many
words of another), and other criteria. Providing a robust set
of search options enables skilled searchers to more precisely
focus their searches, bringing the number of results down
to a more manageable level. The drawback is that complex
search languages result in more processing (often several
intermediate result sets must be built and internally com-

240        information retrieval

pared to one another). There is also more likelihood that
searchers will either make syntax errors in their requests or
create requests that do not have the intended effect.

While database systems can control the organization
of data, the pathways for retrieval and the command set
or interface, the World Wide Web is a different matter.
It amounts to the world’s largest database—or perhaps
a “metabase” that includes not only text pages but file
resources and links to many traditional database systems.
While the flexibility of linkage is one of the Web’s strengths,
it makes the construction of search engines difficult. With
millions of new pages being created each week, the “web-
crawler” software that automatically traverses links and
records and indexes site information is hard pressed to
capture more than a diminishing fraction of the available
content. Even so, the number of “hits” is often unwieldy
(see search engine).

A number of strategies can be used to provide more
focused search results. The title or full text of a given page
can be checked for synonyms or other ideas often associ-
ated with the keyword or phrase used in the search. The
more such matches are found, the higher the degree of
relevance assigned to the document. Results can then be
presented in declining order of relevance score. The user
can also be asked to indicate a result document that he or
she believes to be particularly relevant. The contents of this
document can then be compared to the other result docu-
ments to find the most similar ones, which are presented as
likely to be of interest to the researcher.

Information retrieval from either stand-alone databases
or the Web can also be improved by making it unnecessary
for users to employ structured query languages (see sql)
or even carefully selected keywords. Users can simply type
in their request in the form of a question, using ordinary
language: For example, “What country in Europe has the
largest population?” The search engine can then translate

the question into the structured queries most likely to elicit
documents containing the answer. Ask Jeeves (retired as of
2006) and similar search services have thus far been only
modestly successful with this approach.

On a large scale, systematic information retrieval and
analysis (see data mining) has become increasingly sophis-
ticated, with applications ranging from e-commerce and
scientific data analysis to counterterrorism. Artificial intel-
ligence techniques (see pattern recognition) play an
important role in cutting-edge systems.

Finally, encoding more information about content and
structure within the document itself can provide more
accurate and useful retrieval. The use of XML and work
toward a “semantic Web” offers hope in that direction (see
Berners-Lee, Tim; semantic web; and xml).

Further Reading
Bell, Suzanne S. Librarian’s Guide to Online Searching. Westport,

Conn.: Libraries Unlimited, 2006.
Chakrabarti, Soumen. Mining the Web: Discovering Knowledge from

Hypertext Data. San Francisco: Morgan Kaufmann, 2002.
Grossman, David A., and Ophir Frieder. Information Retrieval:

Algorithms and Heuristics. 2nd ed. Norwell, Mass.: Springer,
2004.

“Information Retrieval Research.” Search Tools Consulting. Avail-
able online. URL: http://www.searchtools.com/info/info-
retrieval.html. Accessed August 8, 2007.

Meadow, Charles T., et al. Text Information Retrieval Systems. 3rd
ed. Burlington, Mass.: Academic Press, 2007.

information theory
Information theory is the study of the fundamental charac-
teristics of information and its transmission and reception.
As a discipline, information theory took its impetus from
the ideas of Claude Shannon (see Shannon, Claude).

In his seminal paper “A Mathematical Theory of Com-
munication” published in the Bell System Technical Journal
in 1948, Shannon analyzed the redundancy inherent in any
form of communication other than a series of purely ran-
dom numbers. Because of this redundancy, the amount of
information (expressed in binary bits) needed to convey a
message will be less than the number in the original mes-
sage. It is because of redundancy that data compression
algorithms can be applied to text, graphics, and other types
of files to be stored on disk or transmitted over a network
(see data compression).

Shannon also analyzed the unpredictability or uncer-
tainty of information as it is received—that is, the number of
possibilities for the next bit or character. This is related to the
number of possible symbols, but since all symbols are usually
not equally likely, it is actually a sum of probabilities. Shan-
non used the physics term entropy to refer to this measure. It
is important because it makes it possible to analyze the prob-
ability of error (caused by such things as “line noise”) in a
communications circuit. Shannon’s basic formula is:

C = Blog2(1 + P / N)

where the channel capacity C is in bits per second, B is the
bandwidth, P the signal power, and N the Gaussian noise
power.

A number of criteria can be used by Web search engines to deter-
mine the likely relevance of search results. Perhaps the most impor-
tant tool, however, is feedback from the user.

information theory        241

Shannon found that if as long as the actual data trans-
mission rate is less than the channel capacity C, an error-
correcting code can be devised to ensure that any desired
accuracy rate is achieved (see error correction). A related
formula can also be used to find the lowest transmission
power needed given a specified amount of noise.

The influence of Shannon and his disciples on comput-
ing has been pervasive. Information theory provides the
fundamental understanding needed for applications in data
compression, signal analysis, data communication, and
cryptography—as well as problems in other fields such as
the analysis of genetic mutation or variation.

Further Reading
Cover, Thomas, and Joy A. Thomas. Elements of Information The-

ory. 2nd ed. Hoboken, N.J.: Wiley, 2006.
Gray, R. M. Entropy and Information Theory. New York: Springer,

1990. Available online. URL: http://ee.stanford.edu/~gray/
it.pdf. Accessed August 8, 2007.

Hankerson, Darrel, Greg A. Harris, Jr., and Peter D. Johnson. Intro-
duction to Information Theory and Data Compression. 2nd ed.
Boca Raton, Fla.: CRC Press/Chapman & Hall, 2003.

IEEE Information Theory Society. Available online. URL: http://
www.itsoc.org/. Accessed August 8, 2007.

Shannon, Claude. “A Mathematical Theory of Communication.”
Bell System Technical Journal 27 (July, October 1948): 379–
423, 523–656. Available online. URL: http://plan9.bell-labs.
com/cm/ms/what/shannonday/shannon1948.pdf. Accessed
August 8, 2007.

information warfare
Information warfare has many aspects and can be fought
on many levels. On the battlefield, it can involve collecting
tactical or strategic intelligence and protecting one’s own
channels of communication. Conversely, it can involve dis-
rupting the enemy’s means of communication, blocking the
enemy’s intelligence gathering, spreading disinformation,
and trying to disrupt their decision process. Beyond the
battlefield, media (including the Internet) can be used for
propaganda purposes.

All of these objectives today involve the use of digital
information and communications systems. Examples include:

• � analysis of enemy communications using both auto-
matic tools and human analysts

• � cryptography and signal analysis

• � protection of computer and network infrastructure

• � attacks and disruptions on enemy information infra-
structure, both military and civilian (such as denial-
of-service attacks on Web sites)

• � use of Web sites to spread disinformation or propa-
ganda

History and Development
Information warfare is as old as warfare itself, with such
things as ruses designed to trick or confuse enemy sentries
or lighting many fires to convince the enemy that one’s
army was much larger than in reality. Wiretapping and

spoof messages began with the telegraph in the mid-19th
century, and eavesdropping and other tricks with radio
were used in World War I. These arts had greatly increased
in scale and sophistication by World War II—an entire fake
army corps was “created” to deceive the Germans prior to
the D-day invasion.

Information warfare involving computers has been used
in recent conflicts. The active phase of the U.S. attack in the
first Gulf War in 1991 began with systematic destruction
and disruption of Iraqi information and command-and-con-
trol assets through targeted attacks. As a result, the still
largely intact Iraqi military was left blind as to the coming
flank attack by U.S. forces.

In 2007 a series of coordinated attacks by unknown
parties paralyzed much of Estonia’s Web-based government
and business structures following a dispute with Russia.
To many observers this represents a model for “strategic”
information warfare that might be used in future conflicts.
(Note that the techniques used in information warfare by
the national military and the kinds of cyber attacks that
might be favored by terrorists overlap. For the latter, see
cyberterrorism.)

Further Reading
Armistead, E. Leigh. Information Warfare: Separating Hype from

Reality. Washington, D.C.: Potomac Books, 2007.
Greenmeier, Larry. “Estonian ‘Cyber Riot’ Was Planned, but Mas-

termind Still a Mystery.” InformationWeek, August 3, 2007.
Available online. URL: http://www.informationweek.com/
showArticle.jhtml?articleID=201202784. Accessed September
23, 2007.

Johnson, L. Scott. “Toward a Functional Model of Information
Warfare.” Available online. URL: http://bss.sfsu.edu/fischer/
IR%20360/Readings/Information%20War.htm. Accessed Sep-
tember 23, 2007.

Libicki, Martin C. Conquest in Cyberspace: National Security and
Information Warfare. New York: Cambridge University Press,
2007.

Rattray, Gregory J. Strategic Warfare in Cyberspace. Cambridge,
Mass.: MIT Press, 2001.

Waltz, Edward. Information Warfare: Principles and Operations.
Boston: Artech House, 1998.

Input/Output  (I/O)
While the heart of a computer is its central processing unit
or CPU (the part that actually “computes”), a computer
must also have a “circulatory system” through which data
moves between the CPU, the main memory, input devices
(such as a keyboard or mouse), output devices (such as a
printer), and mass storage devices (such as a hard or floppy
disk drive). Input/Output or I/O processing is the general
term for the management of this data flow (see also bus,
parallel port, serial port, and usb).

I/O processing can be categorized according to how a
request for data is initiated, what component controls the
process, and how the data flows between devices. In most
early computers the CPU was responsible for all I/O activi-
ties (see cpu). Under program control, the CPU initiated a
data transfer, checked the status of the device (or area of
memory) that would be sending or receiving the data, and

242        information warfare

monitored the flow of data until it was complete. While this
arrangement simplified computer architecture and reduced
the cost of memory units or peripheral devices (at a time

when computer hardware was hand-built and relatively
costly), it also meant that the CPU could perform no other
processing until I/O was complete.

In most modern computers, responsibility for I/O has
largely been removed from the CPU, freeing it to concen-
trate on computation. There are several ways to imple-
ment such architecture. One method that has been used on
microcomputers since their earliest day is interrupt-driven
I/O. This means that the CPU has separate circuits on
which a device requesting I/O service can “post” a request.
The CPU periodically checks the circuits for an interrupt
request (IRQ). If one is found, it can send a query to each
device on a list until the correct one is found (the latter
is called polling). Alternatively, the overhead involved in
polling can be eliminated by having the IRQ include either
a device identification number or a memory address that
contains an interrupt service routine (this is called vectored
interrupts). While interrupts alone do not free the CPU of
the need to manage the I/O, they do remove the overhead of
having to frequently check all devices for I/O.

The actual I/O process can also be moved out of the
CPU through the use of direct memory access (DMA). Here
a separate control device takes over control of the system
from the CPU when I/O is requested. It then transfers data
directly between a device (such as a hard disk drive) and
a buffer in main memory. Although the CPU is idle dur-
ing this process, the transfer is accomplished much more
quickly because the full capacity of the bus can be used to
move data rather than having to be shared with the flow of
program instructions in the CPU.

A more sophisticated I/O control device is called a chan-
nel. A channel controller can operate completely indepen-
dently of the CPU without requiring that the CPU become
idle during a transfer. Channels can also act as a sort of spe-
cialized CPU or coprocessor, running program instructions
to monitor the data transfer. There are also channels capa-
ble of monitoring and controlling several devices simulta-
neously (this is called multiplexing). The use of channels in
mainframes such as the IBM 360 and its descendants is one
reason why mainframes still perform a workhorse role in
high-volume data processing.

In microcomputers the trend has also been toward
offloading I/O from the CPU and the main bus to separate
controllers or channels. For example, the AGP (acceler-
ated graphics port) found on most modern PCs acts as a
channel between main memory and the graphics control-
lers (see graphics card). This means that as a program
generates graphics data it can be automatically transferred
from memory to the graphics controllers without any load
on the CPU, and over a bus that is faster than the main
system bus.

Further Reading
Buchanan, William. Applied PC Interfacing, Graphics and Inter-

rupts. Reading, Mass.: Addison-Wesley, 1999.
Karbo, Michael B. “About the PC I/O System.” Available online.

URL: http://www.karbosguide.com/hardware/module5a1a.
htm. Accessed August 8, 2007.

White, Ron, and Timothy Downs. How Computers Work. 8th ed.
Indianapolis: Que, 2005.

Steps in processing an interrupt request (IRQ) in a PC. (1) The
device requesting attention signals the Interrupt Controller, which
in turn sends a special signal to the CPU. (2) The CPU saves
its state (including internal data and the address of the current
instruction) to a stack. (3) The CPU gets the interrupt number and
other information from the Interrupt Controller, then looks up a
set of instructions for processing that particular interrupt. (4) The
CPU executes the interrupt processing code, which generally links
to BIOS code for handling a device such as the keyboard. (5) The
CPU reloads its state information from the stack and resumes the
interrupted processing.

Input/Output        243

installation of software
While not often covered in computer science or software
engineering courses, the process of getting a program to
work on a given computer is often nontrivial. In the early
days of PCs, installation generally involved simply copying
the main program file and any needed settings files to a disk
directory and possibly setting up the appropriate driver for
the user’s printer. (A cryptic user interface sometimes made
the latter procedure a frequent occasion for technical sup-
port calls.) Users generally did not have to make many
choices about what components to install or where to put
them. On the other hand, installation programs sometimes
made changes to a user’s system without notification or the
ability to “back out.”

The ascension of Microsoft Windows to dominance as
a PC operating system improved the installation process in
several ways. Since the operating system and device drivers
written by hardware vendors took over responsibility for
installing and configuring printers and other devices, users
generally didn’t have to worry about configuring programs
to work with specific hardware. Particularly with Windows
95 and later versions, a standard “installation kit” allows
software developers to provide a familiar, step-by-step
installation procedure to guide users. Generally, installation
consists of an introductory screen, legal agreement, and the
opportunity to choose a hard drive folder for the program.
A moving “progress bar” then shows the files being copied
from the installation CD to the hard drive. A “readme” file
giving important considerations for using the program is
usually provided. Increasingly, software registration is done
by launching the user’s Web browser and directing it to the
vendor’s Web site where a form is presented.

The installation of drivers accompanying new hardware
such as a printer or scanner has been simplified even more
through the “Plug and Play” feature in modern versions of
Windows. This allows the system to automatically detect
the presence of a new device and either install the driver
automatically or prompt the user to insert a disk or CD (see
plug and play).

Installation becomes a much more complicated matter
when an enterprise has to install from tens to hundreds
or thousands of copies of a program on employees’ PCs.
While small businesses may simply buy consumer-pack-
aged software and install one copy on each PC, large busi-
nesses generally obtain a site license allowing a certain
number of installations (or in some cases, unlimited on-site
installations). Organizations must monitor the number of
installations of a particular program package to ensure that
licensing agreements are not violated while trying to use
available software assets as efficiently as possible. (This is
sometimes called software asset management or SAM.)

An automated installation script can be used to install
a copy of the same software on each PC on the company’s
network—or a utility can be used to copy an exact hard
disk image, including fully configured operating system
and applications, to each PC. Alternatively, it is possible
to buy networked versions of some programs. In this case
the application actually runs on a server and is accessed
from (but not copied to) each user’s PC. This technique has

also been adopted to provide consumers with an alterna-
tive to stand-alone installation (see application service
provider).

Installation is only the first part of the story, of course.
Most significant programs will experience a steady flow
of minor version updates as well as security patches. For
individual users, setting the program to update automati-
cally (if possible) or periodically checking for updates may
be sufficient. For organizations, the task of making sure all
the deployed copies of the software are up to date can be
nontrivial, although tools such as Microsoft System Center
can help. (Many Linux distributions such as Ubuntu can
automatically retrieve all updates for installed packages.)

Linux and UNIX systems have also evolved more sophis-
ticated installation systems in order to keep up with today’s
more complex applications and distributions. One common
solution used by Red Hat and other Linux vendors is a
“package” system where the user selects programs and fea-
tures and the system identifies the components (packages)
that must be installed to enable them.

Further Reading
Browne, Christopher. “Linux System Configuration Tools.” Available

online. URL: http://linuxfinances.info/info/linuxsysconfig.
html. Accessed August 8, 2007.

Chappell, David. Introducing Microsoft System Center. Available
online. URL: http://download.microsoft.com/download/7/
A/1/7A1C88D7-B91A-4114-AF8D-852B481D5E F7/Introduci
ng%20System%20Center.doc. Accessed August 8, 2007.

Habib, Irfan. “New Approaches to Linux Package Management.”
Linux.com November 10, 2005. Available online. URL: http://
www.linux.com/feature/49405. Accessed August 8, 2007.

Honeycutt, Jerry. Microsoft Windows Desktop Deployment Resource
Kit. Redmond, Wash.: Microsoft Press, 2003.

Mehler, Kerrie, Cameron Fuller, and John Joyner. Microsoft Sys-
tem Center Operations Manager 2007 Unleashed. Indianapolis:
Sams, 2007.

Wilson, Phil. The Definitive Guide to Windows Installer. Berkeley,
Calif.: Apress, 2004.

Intel Corporation
Intel Corporation (NASDAQ symbol: INTC) is the world’s
largest manufacturer of semiconductors or “computer
chips.” The company was founded in 1968 as Integrated
Electronics Corporation by Robert Noyce and Gordon
Moore (see chip and Moore, Gordon).

Until the early 1980s Intel made most of its revenue
from manufacturing SRAM memory chips (see memory).
When the Japanese had made significant inroads into the
semiconductor market, Intel turned to microprocessors,
which it had introduced in 1971 and which formed the
basis for the development of the desktop or personal com-
puter (see microprocessor and personal computer).
During the 1980s, Intel 8086/8088 processors and their
successors (286, 386, 486) and the associated chipsets were
being used in the dominant “Wintel” (Microsoft Windows
plus Intel) PC architecture. By the middle of the 1990s,
Intel dominated the microprocessor market with its Pen-
tium series chips, overcoming a mathematical flaw in some
of the latter.

244        installation of software

Competition
Around 2000, Intel’s dominance began to be challenged.
The power of modern processors allowed for the develop-
ment of lower-cost commodity PCs, and when Intel contin-
ued its progression toward increased power, competitors,
particularly AMD (see Advanced Micro Devices), were
able to gain greater market share with its less expensive
CPUs.

In higher power chips (particularly dual- and multi-core
chips with more than one processor), Intel seems to have
the edge in the middle of the first decade of the new cen-
tury, although AMD is coming on strong. Meanwhile Intel
and Apple in 2006 made a deal to replace the PowerPC chip
in the Macintosh with Intel chips.

Intel has struggled with corporate reorganization and
lower sales of chipsets and motherboards (even while con-
tinuing with strong sales of its dual-core and quad-core
processors). After a decline of 42 percent from 2005 to
2006, Intel’s net income increased to about $7 billion in
2007. However, its workforce has continued to decline
from 102,500 in mid-2006 to 86,300 in 2007. However,
Intel is expecting to produce more quad-core processors,
new laptop components (including flash memory instead
of hard drives), and other innovations in a very competi-
tive market.

Further Reading
Coleman, Bob, and Logan Shrine. Losing Faith: How the Grove Sur-

vivors Led the Decline of Intel’s Corporate Culture. 2007.
Colwell, Robert P. The Pentium Chronicles: The People, Passion, and

Politics Behind Intel’s Landmark Chips. Hoboken, N.J.: Wiley,
2006.

Grove, Andrew S. Only the Paranoid Survive: How to Exploit the
Crisis Points That Challenge Every Company. New York: Dell,
1996.

Intel Corporation. Available online. URL: http://www.intel.com.
Accessed September 23, 2007.

intellectual property and computing
Intellectual property can be defined as the rights the cre-
ator of an original work (such as an invention or a book)
has to control its reproduction or use. Developers of new
computer hardware, software, and media content must be
able to realize a return on their time and effort. This return
is threatened by the ease with which programs and data on
disks can be illicitly copied and redistributed. Several legal
mechanisms can be used to deter such behavior.

Legal Protection Mechanisms
Intellectual property represented by the design of new hard-
ware can be protected through the patent system. A patent
gives the inventor the exclusive right to sell or license the
invention for 20 years after the date of filing. The basic
requirements for a device to be patentable are that it rep-
resents an actual physical device or process and that it be
sufficiently original and useful. A mere idea for a device,
a mathematical formula, or a law of nature is not patent-
able in itself. In computing, a patent can be given for an
actual physical device that meets the originality and useful-

ness requirements. Software that works with that device to
control a physical process can be part of the patent, but an
algorithm is not patentable by itself.

In practice, however, the situation is much murkier
and more problematic. Patents are viewed as a key stra-
tegic resource (and financial asset) by companies such as
IBM (which holds 40,000 patents and earns $1 billion a
year by licensing them), and in the decade between 1995
and 2005 the annual number of patent applications filed
rose 73 percent to 409,532. This has led to a considerable
backlog in the Patent Office, and critics suggest that many
patents are granted without being properly examined,
such as for the existence of “prior art” (previous uses of
similar technology).

Large companies often complain that so-called patent
trollers obtain patents that may be relevant enough to cause
infringement or invalidate a later patent, and then threaten
the company with litigation if they are not paid. (Small
patent holders in turn complain that large companies some-
times ignore or underpay them because they assume that
the patent holder cannot afford litigation.) Many compa-
nies, including eBay, Research in Motion (maker of the
Blackberry PDA), and Microsoft have been embroiled in
patent suits.

Major computer companies such as Google, IBM, and
Apple are supporting the Patent Reform Act of 2007. The
law would tighten the standards for getting a patent and
make it easier to challenge the patent later.

As of mid-2008 the bill remained stalled in the Senate.
Meanwhile, a federal court had overturned new patent reg-
ulations that sought to streamline the application process
by reducing the amount of supporting materials submitted.

Because of these restrictions, most software is protected
by copyright rather than by patent. A computer program is
considered to be a written work akin to a book. (After all,
a computer program can be thought of as a special type of
narrative description of a process. When compiled into exe-
cutable code and run on a suitable computer, a program has
the ability to physically carry out the process it describes.)

Like other written works, a program has to be suffi-
ciently original. Once copyrighted, protection lasts for the
life of the author (programmer) plus 70 years. (Works made
for hire are covered for 95 years from first publication or
120 years from creation.) Given the pace of change in com-
puting, such terms are close to “forever.” While not strictly
necessary, registration of the work with the U.S. Copyright
Office and the inclusion of a copyright statement serve as
effective legal notice and prevent infringers from claiming
that they did not know the work was copyrighted.

Content (that is, text or multimedia materials) presented
in a computer medium can be copyrighted in the same way
as its traditional printed counterpart. However, in 1996 the
U.S. Supreme Court declared that a program’s user interface
as such could not be copyrighted (see Lotus Development
Corp. v. Borland International, U.S. 94-2003).

Computer programs have also received protection
as trade secrets. Under the Uniform Trade Secrets Act, as
adopted in many states, a program can be considered a
trade secret if gaining economic value from it depends upon

intellectual property and computing        245

it not being generally known to competitors, and that “rea-
sonable effort” is undertaken to maintain its secrecy. The
familiar confidentiality and non-disclosure agreements
signed by many employees of technical firms are used to
enforce such secrecy.

First Amendment Issues
In a few cases the government itself has sought to limit
access to software, citing national security. In the 1996 case
of Bernstein v. U.S., however, the courts ultimately ruled
that computer program code was a form of writing pro-
tected by the First Amendment, so government agencies
seeking to prevent the spread of strong encryption software
could not prevent its publication.

However, First Amendment arguments have been less
effective in challenging private software protection mecha-
nisms. In 2001 a U.S. District judge ruled that Princeton
University computer scientist Edward Felten and his col-
leagues had no legal basis to challenge provisions of the
Digital Millennium Copyright Act (DMCA). The scientists
had claimed that a letter from the Recording Industry Asso-
ciation of America (RIAA) had cast a “chilling effect” on
their research into DVD-protection software by threatening
them with legal action if they published academic papers
about copy protection software used by online music ser-
vices. The RIAA had withdrawn its letter, and the courts
ruled there was no longer anything to sue about. Critics of
the decision claim that it still leaves the academics in a sort
of legal limbo since there is no guarantee that they would
not be sued if they published something.

In another widely watched case the U.S. Court of
Appeals in New York affirmed a ruling that Eric Corley,
editor of the hacker magazine 2600 could not publish the
code for DeCSS, a program that would allow users to read
encrypted DVD disks, bypassing publisher’s restrictions.
The Court said that the DMCA did not infringe upon First
Amendment rights. This decision would appear to conflict
with Bernstein, although the latter has to do with govern-
ment censorship, not copyright. The Supreme Court is
likely to hear one or more computer-related copyright cases
in the years to come.

Fair Use and Copy Protection
Although the purchase of software may look like a simple
transfer of ownership, most software is accompanied by a
license that actually grants only the right to use the pro-
gram under certain conditions. For example, users are typi-
cally not allowed to make copies of the program and run
the program on more than one computer (unless the license
is specifically for multiple uses). However, as part of “fair
use” users are allowed to make an archival or backup copy
to guard against damage to the physical media.

Until the 1990s, it was typical for many programs (par-
ticularly games) to be physically protected against copy-
ing (see copy protection). Talented hackers or “software
pirates” are usually able to defeat such measures, and
“bootleg” copies of programs outnumber legitimate copies
in some Asian markets, for example (see software piracy
and counterfeiting). Copy protection and/or encryption

is also typically used for some multimedia products such as
DVD movies.

Challenges of New Media
By the mid-2000 decade, the biggest intellectual property
battles were not about esoteric program codes but rather
revolved around how to satisfy the ordinary home consum-
er’s appetite for music and video while preserving produc-
ers’ revenues. Increasingly, music and even video is being
downloaded rather than being bought in commercial pack-
aging at the local store.

In the Sony v. Universal case (1984) the Supreme Court
ruled that manufacturers of devices such as VCRs were
not liable for their misuse if there were “substantial non-
infringing uses”—such as someone making a copy of legally
possessed media for their own use. However, in 2005 the
Supreme Court ruled that Grokster, a decentralized file-
sharing service, could be held liable for the distribution of
illegally copied media if it “actively induced” such copying.

By 2006 media industry lobbyists (particularly the
Recording Industry Institute of America, or RIAA) were
promoting a number of bills in Congress that would fur-
ther restrict consumers’ rights to use media. Such mea-
sures might include requiring that devices be able to detect
“flagged” media and refuse to copy it (see digital rights
management), as well as adding stricter provisions to the
Digital Millennium Copyright Act (DMCA). These mea-
sures are opposed by cyber-libertarian groups such as the
Electronic Frontier Foundation and consumer groups such
as the Home Recording Rights Coalition.

Further Reading
Chabrow, Eric. “The U.S. Patent System in Crisis.” Information-

Week, February 20, 2006. Available online. URL: http://www.
informationweek.com/story/showArticle.jhtml?articleID=180
204145. Accessed August 12, 2007.

Electronic Frontier Foundation. “Unintended Consequences: Seven
Years under the DMCA.” April 2006. Available online. URL:
http://www.eff.org/IP/DMCA/unintended_consequences.php.
Accessed August 8, 2007.

Gilbert, Jill. The Entrepreneur’s Guide to Patents, Copyrights, Trade-
marks, Trade Secrets & Licensing. New York: Berkley Books,
2004.

Home Recording Rights Coalition. Available online. URL: http://
www.hrrc.org/. Accessed August 8, 2007.

“Intellectual Property Law News.” FindLaw. Available online.
URL: http://news.findlaw.com/legalnews/scitech/ip/. Accessed
August 8, 2007.

Klemens, Ben. Math You Can’t Use: Patents, Copyright, and Software.
Washington, D.C.: Brookings Institution, 2006.

LaPlante, Alice. “Media Distribution Rights: Here Come the Judges
(and Congress).” InformationWeek, June 29, 2006. Available
online. URL: http://www.informationweek.com/story/show-
Article.jhtml?articleID=189700173. Accessed August 8, 2007.

Wilson, Lee. Fair Use, Free Use, and Use by Permission: How to Han-
dle Copyrights in All Media. New York: Allworth Press, 2005.

internationalization and localization
Internationalization and localization are ways to adapt
computer software (often created in the United States or
Europe) to other languages and cultures. The abbreviations

246        internationalization and localization

I18n and L10n are sometimes used for internationalization
and localization, respectively (the numbers in each word
refer to the number of letters in the alphabet between the
letters). The two processes are complementary.

Internationalization involves designing programs so
they will be as easy as possible to adapt to a variety of cul-
tural settings. For example, the Unicode character set is
preferred because it can accommodate most of the world’s
alphabets and many other characters. Program code can
also be modularized such that date, time, and other formats
for different countries can be loaded in and used as desired.

Localization involves changing a number of aspects
of a software product (including user interface elements
and online help) to reflect the language and culture of the
intended market. Some of this is fairly straightforward: for-
mats for numbers, currency, date, and time; text collation
and sorting order; and use of the keyboard (including spe-
cial keys). To the extent the program has been appropriately
generalized (internationalized), it becomes easier to local-
ize it for each setting.

Other aspects of localization can be subtler. Icons, for
example, may have to be changed because their supposedly
“universal” meaning would not translate well into the local
culture. Documentation may have to change wording to
avoid conveying ideas that may be confusing or even offen-
sive. Even more substantial localization may be required if
the target environment (such as the education system) is
substantially different from that in the country where the
software was written. Generally this cannot be done auto-
matically: the program must be reviewed by someone who
is knowledgeable about the target language or culture.

Further Reading
Esselink, Bert. A Practical Guide to Localization. Philadelphia: John

Benjamins Publisher, 2000.
Internationalization (I18n) Activity. World Wide Web Consortium.

Available online. URL: http://www.w3.org/International/.
Accessed September 23, 2007.

Smith-Ferrier, Guy. .NET Internationalization: The Developer’s
Guide to Building Global Windows and Web Applications. Upper
Saddle River, N.J.: Addison-Wesley, 2007.

Internet
The Internet is the worldwide network of all computers (or
networks of computers) that communicate using a particu-
lar protocol for routing data from one computer to another
(see tcp/ip). As long as the programs they run follow the
rules of the protocol, the computers can be connected by
a variety of physical means including ordinary and special
phone lines, cable, fiber optics, and even wireless or satel-
lite transmission.

History and Development
The Internet’s origins can be traced to a project sponsored
by the U.S. Defense Department. Its purpose was to find
a way to connect key military computers (such as those
controlling air defense radar and interceptor systems). Such
a system would require a great deal of redundancy, rout-
ing communications around installations that had been

destroyed by enemy nuclear weapons. The solution was
to break data up into individually addressed packets that
could be dispatched by routing software that could find
whatever route to the destination was viable or most effi-
cient. At the destination, packets would be reassembled
into messages or data files.

By the early 1970s, a number of research institutions
including the pioneer networking firm Bolt Beranek and
Newman (BBN), Stanford Research Institute (SRI), Carnegie
Mellon University, and the University of California at Berke-
ley were connected to the government-funded and admin-
istered ARPANET (named for the Defense Department’s
Advanced Research Projects Agency). Gradually, as use of
the ARPANET’s protocol spread, gateways were created to
connect it to other networks such as the National Science
Foundation’s NSFnet. The growth of the network was also
spurred by the creation of useful applications including
e-mail and Usenet, a sort of bulletin-board service (see the
Applications section below).

Meanwhile, a completely different world of online net-
working arose during the 1980s in the form of local bulletin
boards, often connected using a store-and-forward system
called FidoNet, and proprietary online services such as
CompuServe and America On-line. At first there were few
connections between these networks and the ARPANET,
which had evolved into a general-purpose network for the
academic community under the rubric of NSFnet. (It was
possible to send e-mail between some networks using spe-
cial gateways, but a number of different kinds of address
syntax had to be used.)

In the 1990s, the NSFnet was essentially privatized,
passing from government administration to a corporation
that assigned domain names (see domain name system).
However, the impetus that brought the Internet into the
daily consciousness of more and more people was the devel-
opment of the World Wide Web by Tim Berners-Lee at the
European particle research laboratory CERN (see Berners-
Lee, Tim and world wide web). With a standard way to
display and link text (and the addition of graphics and mul-
timedia by the mid-1990s), the Web is the Internet as far as
most users are concerned (see Web browser). What had
been a network for academics and adventurous profession-
als became a mainstream medium by the end of the decade
(see also e-commerce).

Applications
A number of applications are (or have been) important con-
tributors to the utility and popularity of the Internet.

• � E-mail was one of the earliest applications on the
ancestral ARPANET and remains the single most pop-
ular Internet application. Standard e-mail using SMTP
(Simple Mail Transport Protocol) has been imple-
mented for virtually every platform and operating sys-
tem. In most cases once a user has entered a person’s
e-mail address into the “address book,” e-mail can be
sent with a few clicks of the mouse. While failure of
the outgoing or destination mail server can still block

Internet        247

transmission of a message, e-mail today has a high
degree of reliability (see e-mail).

• � Netnews (also called Usenet, for UNIX User Net-
work) is in effect the world’s largest computer bul-
letin board. It began in 1979, when Duke University
and the University of North Carolina set up a simple
mechanism for “posting” text files that could be read
by other users. Today there are tens of thousands of
topical “newsgroups” and millions of messages (called
articles). Although still impressive in its quantity of
content, many Web users now rely more on discus-
sion forums based on Web pages (see netnews and
newsgroups).

• � Ftp (File Transport Protocol) enables the transfer of
one or more files between any two machines con-
nected to the Internet. This method of file transfer
has been largely supplanted by the use of download
links on Web pages, except for high-volume applica-
tions (where an ftp server is often operated “behind
the scenes” of a Web link). FTP is also used by Web
developers to upload files to a Web site (see file
transfer protocols).

• � Telnet is another fundamental service that brought
the Internet much of its early utility. Telnet allows a
user at one computer to log into another machine and
run a program there. This provided an early means for
users at PCs or workstations to, for example, access
the Library of Congress catalog online. However, if
program and file permissions are not set properly on
the “host” system, telnet can cause security vulner-
abilities. The telnet user is also vulnerable to having
IDs and passwords stolen, since these are transmitted
as clear (unencrypted) text. As a result, some online
sites that once supported telnet access now limit
access to Web-based forms. (Another alternative is to
use a program called “secure shell” or ssh, or to use a
telnet client that supports encryption.)

• �G opher was developed at the University of Minnesota
and named for its mascot. Gopher is a system of serv-
ers that organize documents or other files through
a hierarchy of menus that can be browsed by the
remote user. Gopher became very popular in the late
1980s, only to be almost completely supplanted by
the more versatile World Wide Web.

• � WAIS (Wide Area Information Service) is a gateway
that allows databases to be searched over the Inter-
net. WAIS provided a relatively easy way to bring
large data resources online. It, too, has largely been
replaced by Web-based database services.

• � The World Wide Web as mentioned above, is now
the main means for displaying and transferring infor-
mation of all kinds over the Internet. Its flexibility,
relative ease of use, and ubiquity (with Web browsers
available for virtually all platforms) has caused it to
subsume most earlier services. The utility of the Web
has been further enhanced by the development of

many search engines that vary in thoroughness and
sophistication (see World Wide Web and search
engine).

• � Streaming Media protocols allow for a flow of video
and/or audio content to users. Player applications for
Windows and other operating systems, and growing
use of high-speed consumer Internet connections (see
broadband) have made it possible to present “live”
TV and radio shows over the Internet.

• � E-commerce, having boomed in the late 1990s and
crashed in the early 2000s, continued to grow and
proliferate later in the decade, finding new markets
and applications and spreading into the developing
world (see e-commerce).

• � Blogs and other forms of online writing have become
prevalent among people ranging from elementary
school students to corporate CEOs (see blogs and
blogging).

• � Social networking sites such as MySpace and Face-
book are also very popular, particularly among young
people (see social networking).

• � Wikis have become an important way to share and
build on knowledge bases (see wikis and Wikipedia).

• � The integration of the Internet with traditional chan-
nels of communications is proceeding rapidly (see
podcasting, Internet radio, and VoIP).

Even as it begins to level off in the United States, world-
wide Internet usage continues to grow rapidly. Asia now has
more than twice as many users as North America, although
the latter still has more than five times the penetration
(percentage of population).

In the United States more than half of Internet users
have high-speed Internet connections (see broadband), and
the trend in other developed countries is similar. Broad-
band is both required by and contributes to the appetite of
Web users for music, streaming video, and other rich media
content (see streaming and music and video distribu-
tion, online).

Now in its fourth decade, the Internet is not without
daunting challenges. A major one is security—see com-
puter crime and security, computer virus, cyber-
terrorism, and information warfare. Users also want
protection from privacy abusers and online predators (see
privacy in the digital age, identity theft, phishing
and spoofing, and cyberstalking and harassment).

For other issues and challenges involving the Internet,
see censorship and the Internet, Internet architec-
ture and governance, Internet access policy, and
digital divide.

In the longer term what we call the Internet today is
likely to become so ubiquitous that people will no longer
think of it as a separate system or entity. Household appli-
ances, cars, cell phones, televisions, and virtually every
other device used in daily life will communicate with other
devices and with control systems using Internet protocols.

248        Internet

In effect, people may eventually live “inside” a World Wide
Web.

Further Reading
Hafner, Katie, and Matthew Lyon. Where Wizards Stay Up Late: The

Origins of the Internet. New York: Simon & Schuster, 1996.
Internet Society. Available online. URL: http://www.isoc.org.

Accessed August 8, 2007.
Internet World Stats. Available online. URL: http://www.

internetworldstats.com/stats.htm. Accessed August 8, 2007.
Okin, J. R. The Internet Revolution: The Not-for-Dummies Guide to

the History, Technology, and Use of the Internet. Winter Har-
bor, Me.: Ironbound Press, 2005.

Segaller, Stephen. Nerds 2.0.1: A Brief History of the Internet. New
York: TV Books, 1998.

Zakon, Robert H. “Hobbes’ Internet Timeline v8.2.” Available
online. URL: http://www.zakon.org/robert/internet/timeline/.
Accessed August 8, 2007.

Internet applications programming
The growth of the Internet and its centrality in business,
education, and other fields has led many programmers
to specialize in Internet-related applications. These can
include the following:

• � low-level infrastructure (networking [wired and wire-
less], routing, encryption support, and so on)

• � Web servers and related software

• � e-commerce infrastructure (see e-commerce)

• � interfacing with databases

• � data analysis and extraction (see data mining)

• � support for searching (see search engine)

• � autonomous software to navigate the net (see soft-
ware agent)

• � Internet-based communications (see texting and
instant messaging and VoIP)

• � systems to deliver text and media (see streaming,
podcasting, rss)

• � support for collaborative use of the Internet (see
blogs and blogging, social networking, and
wikis and Wikipedia)

• � security software (firewalls, intrusion analysis, etc.)

Internet applications programmers use a variety of lan-
guages and other programming tools (often in combina-
tion) to implement these applications. Some of the most
common are:

• � C++ is generally used for fundamental applications,
particularly those that must work at the system level
and for which speed and efficiency are prerequisites.
Examples would include Web servers and browsers
and some browser plug-ins (see C++).

• � Java has largely supplanted C++ as a general-pur-
pose language for programming small applications
(“applets”) that are hosted by Web sites and run on

the user’s browser. With a syntax that differs in only a
few respects from C++, Java can also be used to write
standalone applications (see Java).

• � HTML is not really a full-fledged programming lan-
guage, but it defines the layout and formatting of Web
pages, as well as providing for hyperlinks and the
embedding of applications. In many cases, HTML no
longer has to be coded directly but can be generated
from word processor-like page design programs (see
dntml, html, and xhtml).

• � Extensible markup language (see xml) has become
the preferred format for structuring a variety of data
both for automatic processing (see semantic Web)
and for feeding dynamic Web pages (see Ajax).

• � Scripting languages are an important tool for Inter-
net and Web development. CGI (Common Gateway
Interface) is a facility that allows scripts to control
the interaction between HTML forms on a Web page
and other programs such as databases (see cgi).
CGI scripts are written in scripting languages (see
JavaScript, Perl, php, Python, and scripting lan-
guages). Use of CGI is being gradually supplanted
by applets written in Java as well as other scripting
languages such as JavaScript and VBScript.

• � Active Server Pages (ASP) is a facility that uses Win-
dows ActiveX components to process scripts created
in Visual Basic, which in turn create HTML pages “on
the fly” and send them to the user’s Web browser.

• �M icrosoft’s recent .NET initiative represents an
attempt to integrate Internet connectivity and distrib-
uted operation into the programming framework for
all major languages.

• � Similar technologies are available for other platforms
such as Linux (see Ajax and document object
model)

Trends
Experienced programmers will continue to be needed for
creating and extending the infrastructure for the Internet
and Web and for providing increasingly powerful and easy-
to-use tools for developing Web sites. However, the wide
variety of tools now available means that people with less
experience will be able to design and implement attrac-
tive and effective Web pages, plugging in functionality such
as online shopping, conferencing, and site-specific search
engines. If web development follows the same course as
traditional programming, predictions that specialized pro-
grammers will no longer be needed will prove premature.
At the same time, generalist web developers will be able to
do more.

Further Reading
Andersson, Eve, Philip Greenspun, and Andrew Grumet. Software

Engineering for Internet Applications. Cambridge, Mass.: MIT
Press, 2006.

Connolly, Randy. Core Internet Application Development with ASP.
NET 2.0. Upper Saddle River, N.J.: Prentice Hall, 2007.

Internet applications programming        249

Dunaev, Sergei. Advanced Internet Programming: Technologies &
Applications. Hingham, Mass.: Charles River Media, 2001.

HTML/Web Programming Resources. Available online. URL: http://
www.sandhills.cc.nc.us/html.html. Accessed August 8, 2007.

Moore, Dana, Raymond Budd, and Edward Benson. Professional
Rich Internet Applications: AJAX and Beyond. Indianapolis:
Wrox, 2007.

Web Programming Resources. Available online. URL: http://www.
webreference.com/programming/. Accessed August 8, 2007.

Internet censorship  See censorship and the
Internet.

Internet cafés and “hot spots”
Internet cafés (also called cyber cafés) are public places
where computers are connected to the Internet and avail-
able for use for a fee by the hour or minute. Many Internet
cafés also sell coffee and food. Combining the social ambi-
ence of a traditional coffee shop and the attraction of the
Internet, many Internet cafés acquire a regular clientele
from students to adults.

These venues appeared first in the mid-1990s and spread
rapidly as their popularity grew. While the most common
activities at most Internet cafés are to check e-mail, send
text messages, or browse the Web, some locations special-
ize in gaming (see online games), providing more power-
ful machines running games over a local network. Such
gaming centers have been particularly popular in Asia.

Internet cafés have grown most rapidly in countries that
are becoming more urban and industrial but where many
people cannot yet afford their own computers. The most
striking example is China, which had 113,000 Internet cafés
in as of 2007. In keeping with its strict policies, however,
the Chinese government closely monitors activity at Internet
cafés (see censorship and the Internet).

Hot Spots
The number of dedicated Internet cafés in the United
States and many other highly developed countries has been
declining in recent years. This is largely due to the growing
number of people who connect to the Internet through their
own laptops and other mobile devices (see pda and smart-
phone). Thus many locations, including coffee chains such
as Starbucks, do not provide machines, but simply offer
wireless Internet access (see Wireless and mobile com-
puting). Areas where one can make such a wireless con-
nection are called “hot spots.” Today virtually all major
hotels and airports provide hot spots; there is normally a
fee for access as with Internet cafés. (The fee is collected by
routing all access through a portal.) However, a number of
venues offer free Wifi access.

Users of Internet cafés or hot spots should be aware
that they are sharing an ad hoc network with strangers and
may be exposed to malicious software. Passwords or other
sensitive data may be “sniffed” using special software. It
is therefore generally a good idea not to conduct financial
transactions or otherwise send sensitive information when
connected to such venues, unless one has provided for
encryption or can access a virtual private network. Addi-
tionally, users connecting their own machines to a hot spot
should have up-to-date firewall and antivirus software.

Further Reading
Bradley, Tony, and Becky Waring. “Complete Guide to Wi-Fi Secu-

rity.” Available online. URL: http://www.jiwire.com/wi-fi-
security-traveler-hotspot-1.htm. Accessed September 9, 2007.

Café Touch. Available online. URL: http://www.cafetouch.com/.
Accessed September 9, 2007.

Cyber cafés [directory]. Available online. URL: http://www.cyber
cafes.com/. Accessed September 9, 2007.

Internet Café Guide. Available online. URL: http://www.
internet-cafe-guide.com/. Accessed September 9, 2007.

Wi-Fi Hotspot Finder. Available online. URL: http://www.jiwire.
com/search-hotspot-locations.htm. Accessed September 9,
2007.

Internet organization and governance
The Internet is remarkable as a modern institution in that,
while the technology was developed with considerable gov-
ernment funding, the Net as we know it today is remarkably
free of externally imposed authority or regulation. This is
in sharp contrast with earlier communications technologies
such as the telegraph and telephone, which were generally
tightly regulated or even run by a government department
such as the Post Office. In part this was due to the complex-
ity of the technology and the fact that many political leaders
had little familiarity with it and its implications. (Also, the
speed of growth has been overwhelming in recent years,
considering that the World Wide Web in its modern form
was scarcely a decade and a half old as of 2008.)

Institutions of Self-Governance
While the Internet is not rigidly controlled, the need for
interoperability and orderly advances in technology has
led to the emergence of several organizations that provide

Internet cafes are particularly common in countries such as China,
where Internet access is still relatively rare in homes. In many cases
such facilities have given way to simple “hot spots,” where users
can wirelessly connect their own laptops or PDAs.  (Qin Ying/
Panorama/The Image Works)

250        Internet censorship

standards and guidance. The most important of these is
the World Wide Web Consortium (W3C). Other technical
organizations include the Internet Engineering Task Force
(IETF) and the Internet Corporation for Assigned Names
and Numbers (ICANN), the latter of which administers the
domain system (seen domain name system). The domain
registries in turn are run by many different institutions and
agencies.

Growing Role of Governments?
Many of the key innovators of the Internet have loosely
shared a somewhat anarchic or libertarian viewpoint, and
reinforced it with the claim that the decentralized archi-
tecture of the Internet itself resists imposition of rules from
outside. (Thus the saying, “the Internet sees censorship as a
failure and routes around it.”)

However, recently some writers such as Lawrence Les-
sig of Stanford Law School have called for a reappraisal.
Lessig argues that the Internet is far from ungovernable
and that indeed such an important institution must be regu-
lated. The question is how to regulate it wisely, shaping
its architecture to support freedom, democracy, and other
desirable values.

In 2003 and 2005, the United Nations brought together
many government representatives who raised many issues
about what they saw as inadequacies of the privately run
Internet (for example, in the assigning of domain names)
and a perceived bias toward American interests. The
United Nations has established an Information and Com-
munication Technologies (ICT) Task Force to carry on
these meetings, which will be called the Internet Gover-
nance Forum (IGF). Other international institutions such
as the International Telecommunications Union (ITU)
have sometimes come into conflict with the Internet’s self-
governing bodies.

Within the United States there continues to be strong
resistance to imposing new regulations on the Internet, in
part because of fear of constricting one of the most impor-
tant and fastest growing sectors of the economy.

The conflict between the Internet’s self-governing
culture and the needs and desires of political institu-
tions will no doubt continue. Sometimes the conflict can
be very sharp, as with China’s blocking of Internet con-
tent that it finds objectionable (see censorship and the
Internet). Other issues are perhaps deeper, such as the
question of how to enforce criminal laws or economic
regulations that were designed for a world made of brick
and steel.

Further Reading
Goldsmith, Jack, and Tim Wu. Who Controls the Internet? Illusions

of a Borderless World. New York: Oxford University Press,
2006.

Internet Governance Project. Available online. URL: http://www.
internetgovernance.org/. Accessed September 23, 2007.

Lessig, Lawrence. Code Version 2.0. New York: Basic Books, 2006.
MacLean, Don, ed. Internet Governance: A Grand Collaboration.

New York: United Nations ICT Task Force, 2004.
World Wide Web Consortium. Available online. URL: http://www.

w3.org/. Accessed September 23, 2007.

Internet radio
Internet radio is the provision of radio broadcast content
over the Internet (see streaming). Basically, the digitized
sound files of the broadcasts can be accessed and played
using widely available software such as Windows Media
Player or RealPlayer. Internet radio began in the mid-1990s,
and today an increasing number of broadcast stations are
offering their programming in this form, allowing them to
reach audiences far beyond the reach of their signal. Some
stations stream live (during the actual broadcast), while
others make programs available for download. (For auto-
matic downloading of broadcasts, see podcasting). There
are also “radio stations” that provide their content only via
the Internet. Internet radio should not be confused with
satellite or cable radio, which carry conventional radio sig-
nals in real time.

For the user, Internet radio expands the selection of
stations available from a few dozen over the air to hun-
dreds or thousands. Potentially this allows for the support
of specialized stations that have been struggling for audi-
ences in traditional markets—examples might be stations
broadcasting jazz or alternative music, political advocacy,
or programming in less widely spoken languages.

Of course there still remains the question of how com-
mercial Internet radio can support itself. Many on-air sta-
tions simply include their advertising in the Internet stream
(although this can be sometimes ineffective if the ad refers
solely to a local business). Some stations sell subscriptions
or charge a fee for each program.

Regular radio stations must pay royalties to performers
whose music is played on the air. Until recently, such fees
have been minimal (or even ignored) for Internet radio. A
major issue arose in 2007 when the U.S. Copyright Royalty
Board approved a steep increase in the royalties for music
on Internet radio. Many smaller Internet radio stations have
protested that the increased fees would put them out of
business as well as hurting many independent perform-
ers who depend on this medium to get their work heard.
However, a number of stations have been able to negotiate
reductions or caps on these fees on an ad hoc basis.

Further Reading
Heberlein, L. A. The Rough Guide to Internet Radio. London: Rough

Guides, 2002.
Hoeg, Wolfgang, and Thomas Lauterbach, eds. Digital Audio

Broadcasting: Principles and Applications of Digital Radio. 2nd
ed. New York: Wiley, 2003.

Internet Radio Guide. Available online. URL: http://www.
windowsmedia.com/Mediaguide/Radio. Accessed September
23, 2007.

Lee, Eric. How Internet Radio Can Change the World: An Activist’s
Handbook. Lincoln, Nebr.: iUniverse, 2004.

Web Radio [directory]. Available online. URL: http://www.
radio-directory.com/. Accessed September 23, 2007.

Internet service provider  (ISP)
An Internet service provider is any organization that pro-
vides access to the Internet. While nonprofit organiza-
tions such as universities and government agencies can be

Internet service provider        251

considered to be ISPs, the term is generally applied to a
commercial, fee-based service.

Typically, a user is given an account that is accessed by
logging in through the operating system’s Internet connec-
tion facility by supplying a user ID and password. Once con-
nected, the user can run Web browsers, e-mail clients, and
other programs that are designed to work with an Internet
connection. Most ISPs now charge flat monthly fees rang-
ing from $20 or so for dial-up access to around $40–$60
for high-speed cable or DSL connections (see broadband).
Some services such as America Online and CompuServe
include ISP service as part of a package that also includes
such features as software libraries, discussion forums, and
instant messaging. Online services tend to be more expen-
sive than “no frills” ISP services.

Most personal ISP accounts include a small allotment of
server space that users can use to host their personal Web
pages. There are generally extra charges for larger allot-
ments of space, for sites that generate high traffic, and for
commercial sites. Business-oriented ISPs typically provide
a more generous starting allotment along with more exten-
sive technical support and more reliable and higher-capac-
ity servers that are managed 24 hours a day.

The rapid growth in Internet use in the mid-1990s
encouraged many would-be entrepreneurs to start ISPs. How-
ever, with so many providers entering the field and with the
price for basic Internet connections falling, it soon became
apparent that the survival prospects for “generic” ISPs would
be poor. People entering the business today strive to pro-
vide added-value services such as superior Web page hosting
facilities, hosting blogs or wikis, or to focus on specialized
services for particularly industries (such as real estate).

Today’s ISPs also face a variety of legal challenges,
including customer privacy vs. the war on terrorism (see
privacy in the digital age), responsibility for copyright
infringement (see intellectual property and comput-
ing), and possible liability for online defamation, harass-
ment, or worse (see cyberstalking and harassment.)

Further Reading
Berkowitz, Howard C. Building Service Provider Networks. New

York: Wiley, 2002.
“Everything You Wanted to Know About Internet Service Provid-

ers.” Available online. URL: http://www.ispconsumerguide.
com/. Accessed February 6, 2008.

“ISP Liability.” BitLaw. Available online. URL: http://www.bitlaw.
com/internet/isp.html. Accessed August 8, 2007.

Nguyen, John V. Designing ISP Architectures. Upper Saddle River,
N.J.: Prentice Hall, 2002.

interpreter
An interpreter is a program that analyzes (parses) program-
ming commands or statements in a high-level language (see
programming languages), creates equivalent executable
instructions in machine code (see assembler) and executes
them. An interpreter differs from a compiler in that the lat-
ter converts the entire program to an executable file rather
than processing and executing it a statement at a time (see
compiler).

Many earlier versions of the BASIC programming lan-
guage were implemented as interpreters. Since an inter-
preter only has to hold one program statement at a time in
memory, it could run on early microcomputers that had only
a few tens of thousands of bytes of system memory. How-
ever, interpreters run programs considerably more slowly
than a compiled program would run. One reason is that an
interpreter “throws away” each source code statement after
it interprets it. This means that if a statement runs repeat-
edly (see loop), it must be re-interpreted each time it runs.
A compiler, on the other hand, would create only one set
of machine code instructions for the loop and then move
on. Also, because a compiler keeps the entire program in
memory, it can analyze the relationship between multiple
statements and recognize ways to rearrange or substitute
them for greater efficiency.

Interpretation can also be used to bridge differences
in hardware platforms. For example, in the UCSD Pascal
system developed in the 1970s, an interpreter first trans-
lates the Pascal source code into a standardized “P-code”
(pseudocode) for a generic processor called a P-machine. To

An interpreter scans a program code or command statement to
determine what each token (word or symbol) represents. Key-
words such as PRINT are looked up in a dispatch table that con-
tains instructions for dealing with that function. Variables are
looked up in a symbol table that gives their current value. Values
and operators make up expressions that are interpreted to yield
their final value. In this case the final value of 15 is given as data
to the PRINT routine, which is executed to put the number 15 on
the screen.

252        interpreter

run the program on a particular actual machine, a second
interpreter translates the P-code into specific executable
machine instructions for that machine. Today Java uses a
similar idea. A Java programming system translates source
code into an intermediate “bytecode,” which is interpreted
by a Java Virtual Machine, usually running with a Web
browser.

In practice, with today’s high-speed computers and
graphical operating environments, interpretative and com-
pilation functions are often seamlessly integrated into a
programming environment where code is checked for syn-
tax as it is entered, incrementally compiled (such that only
changed code is recompiled), and the programmer receives
the same kind of rapid feedback that was the hallmark of
the early BASIC interpreters (see programming environ-
ment). Purely interpretive systems survive mainly in the
form of text command processors for operating systems
(see shell).

Further Reading
Craig, Ian. The Interpretation of Object-Oriented Programming Lan-

guages. 2nd ed. New York: Springer, 2002.
Mack, Ronald. Writing Compilers and Interpreters: An Applied

Approach Using C++. 2nd ed. New York: Wiley, 2006.
Watt, David, and Deryck Brown. Programming Language Processors

in Java: Compilers and Interpreters. Upper Saddle River, N.J.:
Prentice Hall, 2000.

iRobot Corporation
iRobot is an innovative company based in Burlington, Mas-
sachusetts, that makes robots for home use (the Roomba
robotic vacuum cleaner and its floor-washing cousin
Scooba) to military robots such as various PackBot models
designed for reconnaissance, bomb disposal, and other dan-
gerous tasks.

iRobot was founded by robotics pioneer Rodney Brooks
of MIT’s Artificial Intelligence Lab (see Brooks, Rodney)
and two former MIT students, Helen Greiner and Colin
Angle. The company was founded in 1991 and incorporated
in 2000. Its first product was My Real Baby, a realistic (and

complicated) animated doll that proved to be too expen-
sive for the toy market. Roomba, on the other hand, was
released in 2002 and has met with considerable success—2
million units had been sold by May 2006. Besides Scooba,
Roomba has been joined by Dirt Dog (a workshop cleaner
and picker-upper) and Verro, a pool cleaner. iRobot has also
produced an educational/hobby robot called iRobot Create.

iRobot has done considerable work for the military,
based on work in the 1990s with robots that crawled or
rolled on tanklike tracks and were equipped with grasping
devices and other attachments. The PackBot series comes
in models adaptable to a variety of military tasks, and has
been used in Iraq and Afghanistan.

In 2007 iRobot released a redesigned, more durable
version of Roomba. Meanwhile cofounder Colin Angle has
said that the company is looking at many exciting future
applications, including industrial cleaning, mining, and oil
exploration. In the home, Roomba may be joined by out-
door robots that can mow the lawn and trim the hedges.

iRobot is a midsized company whose revenue has grown
from $54.3 million in 2003 to $227 million in 2007, with a
gross profit of $82.6 million and 423 employees.

Further Reading
Henderson, Harry. Modern Robotics: Building Versatile Machines.

New York: Chelsea House, 2006.
iRobot. Available online. URL: http://www.irobot.com. Accessed

September 23, 2007.
Lombardi, Candace. “iRobot’s Angle on the Future: More Profit.”

CNET News, August 23, 2007. Available online. URL:
http://www.news.com/iRobots-Angle-on-the-future-More-
profit/2008-11394_3-6204031.html. Accessed September 24,
2007.

Pereira, Joseph. “Natural Intelligence: Helen Greiner Thinks
Robots Are Ready to Become Part of the Household.” Wall
Street Journal Classroom Edition, October 2002. Available
online. URL: http://www.wsjclassroomedition.com/archive/
02oct/COVR_ROBOT.htm. Accessed September 24, 2007.

Roush, Wade. “Will Home Robots Ever Clean Up?” Technology
Review, March 3, 2006. Available online. URL: http://www.
technologyreview.com/article/16542/. Accessed September
24, 2007.

iRobot Corporation        253

254

Java
Java is a computer language similar in structure to C++.
Although Java is a general-purpose programming language,
it is most often used for creating applications to run on the
Internet, such as Web servers. A special type of Java pro-
gram called an applet can be linked into Web pages and run
on the user’s Web browser (see applet).

As an object-oriented language, Java uses classes that
provide commonly needed functions including the creation
of user interface objects such as windows and buttons (see
class and object-oriented programming). A variety of
sets of classes (“class frameworks”) are available, such as
the AWT (Abstract Windowing Toolkit).

Program Structure
A Java program begins by importing or defining classes and
using them to create the objects needed for the program’s
functions. Code statements then create the desired output or
interaction from the objects, such as drawing a picture or put-
ting text in a window. Here is a simple Java applet program:

import java.applet.Applet;
import java.awt.Graphics;
public class HelloWorld extends Applet {

public void paint(Graphics g) {
g.drawString(“Hello world!”, 50, 25);

}
}

The first two lines import (bring in) standard classes.
The applet class is the foundation on which applet programs

are built. The AWT (Abstract Windowing Toolkit) is a set of
classes that provide a graphical user interface.

The program then declares a new class called Hello-
World and specifies that it is built on (extends) the applet
class.

J

After an embedded Java program (called an applet) is compiled, its
executable file (Javacode) is stored on the Web server, together with
the HTML file for the Web page to which the program is linked.

Next is a declaration for a method (procedure for doing
something) called paint. This method uses a graphics object
g that includes various capabilities for drawing things on
the screen. Finally, the program uses the graphic object’s
predefined drawstring method to draw a string of text.

To develop this program, the programmer compiles it
with the Java compiler. He or she then creates an HTML
page that includes a tag that specifies that this code is to be
run when the link is activated (see html).

Development of Java
Java was created by James Gosling (1955– ). It began as an
in-house project at Sun Microsystems to design a language
that could be used to program “smart” consumer devices
such as an interactive television. When this project was
abandoned, Gosling, Bill Joy, and other developers realized
that the language could be adapted to the rapidly growing
Internet. Developers of Web pages needed an easier way to
create programs that could run when the page was accessed
by a user. By implementing user controls on Web pages, the
designers could give Web users the ability to interact on-
line in much the same way they interact with objects on the
screen on a Macintosh or Windows PC.

Advantages
Java has largely fulfilled this promise for Web developers.
C++ programmers have an easy learning curve to Java,
since the two languages have very similar syntax and a
similar use of classes and other object-oriented features. On
the other hand, programmers who don’t know C++ benefit
from Java being more streamlined than C++. For example,
Java avoids the necessity to use pointers (see pointers and
indirection) and uses classes as the consistent building
block of program structure. Software powerhouses such as
Microsoft (until recently) and IBM have joined Sun in pro-
moting Java.

Another much-touted feature of Java is its platform
independence. The language itself is separate from the vari-
ous operating system platforms. For each platform, a Java
Virtual Machine (JVM) is created, which interprets or com-
piles the code generated by the Java compiler so it can run
on that platform.

For security, Java applets run within a “sandbox” or
restricted environment so the user is protected from mali-
cious Java programs. (For example, programs are not
allowed to access the user’s disk or to connect the user’s
machine to another Web site.) Web browsers can also be set
to disable the running of Java applets.

A Mature Technology
Sun Java comes in two basic “flavors”: the Java 2 Standard
Edition (J2SE) for Microsoft Windows, Sun (Solaris), and
Linux, and the Enterprise Editions (J2EE), which includes
features needed in large, complex environments. Micro-
soft developed its own dialect of Java for Windows, but
effectively abandoned it as a result of legal action by Sun.
(Companies are allowed to develop Java implementations
for various platforms, so long as they pass Sun’s strict vali-
dation process.)

Java has paid particular attention to building reusable
software components. “JavaBeans” package a number of
related objects (classes) into a unit that can be accessed
through a standard set of methods and automatically que-
ried for information about their contents.

Today powerful and well-documented Java program-
ming interfaces are available for working with Web services.
While client-side Java applets run in the Web browser, Java
Server Pages (JSPs) embed code in an HTML page. The code
is compiled into a server-side application or “servlet.” XML
processing and database access is provided through the Java
API for XML (JAX).

Java has largely fulfilled its promise of bringing main-
stream object-oriented programming to a wide variety of
platforms. The language is now often taught as a first lan-
guage instead of C or C++. However, the idea of a single
dominant language seems to be no longer applicable in the
rapidly evolving world of software development.

To run the Java applet, the user loads the linked page in the Web
browser. The applet may then run automatically, or it may be con-
nected to a particular link or a control such as a button. Once
activated, the applet is downloaded by the Web browser, which then
runs its Javacode using a module called a Java Virtual Machine
(JVM). There is a separate JVM for each type of computer system.

Java        255

In 2006 Sun Microsystems announced that it would
make Java’s source code freely available (see open source).
In part this may be an attempt to maintain Java’s posi-
tion among programmers, some of whom have shifted their
attention from Java to Microsoft’s own offshoot of C++ (see
c#). However, Java’s greatest challenge seems to be in the
Web programming area, where it faces increasing competi-
tion from more agile languages (see, for example, Ruby) as
well as a variety of scripting languages that may be easier to
learn and quicker to use for many applications.

Further Reading
Arnold, Ken, James Golsing, and David Holmes. The Java Program-

ming Language. 4th ed. Upper Saddle River, N.J.: Prentice
Hall, 2005.

Burd, Barry. Beginning Programming with Java for Dummies. 2nd ed.
Hoboken, NJ: Wiley, 2005.

Gosling, James. “Is Java Getting Better with Age?” [interview].
Cnet News. Available online. URL: http://news.com.
com/2008-7345_3-6022062.html. Accessed April 10, 2007.

Krill, Paul. “Java Facing Pressure from Dynamic Languages.” Info-
World, March 25, 2006. Available online. URL: http://www.
infoworld.com/article/06/03/25/76803_HNjavapressure_
1.html. Accessed April 10, 2007.

McGovern, James, et al. Java Web Services Architecture. San Fran-
cisco: Morgan Kaufmann, 2003.

Schildt, Herbert. Swing: A Beginner’s Guide. New York: McGraw-
Hill, 2007.

JavaScript
JavaScript is one of several popular languages that can
enable Web pages to interact with users more quickly and
efficiently (see VBScript, php, and scripting languages).
The language first appeared in the mid-1990s’ Netscape 2
browser under the name LiveScript. Technically, JavaScript
is the Sun Microsystems trademark for its implementation
of a standard called ECMAScript. Despite the name, Java
Script is not directly related to the Java programming lan-
guage.

In its early years JavaScript was perhaps a victim of its
own success. Having a relatively easy-to-use scripting lan-
guage provided an easier way to add features such as 3D
buttons and pop-up windows to formerly humdrum Web
forms. However, as with an earlier generation’s fondness
for multiple fonts, early JavaScript programmers were often
prone to add unnecessary and confusing clutter to Web
pages. Besides sometimes annoying users, early JavaScript
also suffered from significant differences in how it was
implemented by the major browsers. As a result, Netscape
users were sometimes stymied by JavaScript written for
Microsoft Internet Explorer, and vice versa. Finally, browser
flaws have sometimes allowed JavaScript to be used to com-
promise security such as by installing malware-infested
“browser helpers.” As a result, many security experts began
to recommend that users disable JavaScript execution in
their browsers.

Using JavaScript
JavaScript syntax and language constructs are similar to
those of C, with the addition of basic object-oriented fea-

tures (see object-oriented programming). The language
itself has no capabilities for manipulating the environment
(such as input/output). Instead, JavaScript calls upon an
“engine” written for each host environment (normally a
Web browser). The engine implements features designed to
control how a Web page interacts with the user, such as the
display of windows and controls such as menus, buttons, or
toolbars. JavaScript can also be used to validate a Web form
in the browser before it is submitted to the server. In gen-
eral, “browser side” JavaScript processing reduces the load
on Web servers while allowing pages to respond quickly,
such as by changing graphics as the user’s mouse pointer
passes over parts of the page.

The principal interface between JavaScript and HTML
pages is the Document Object Model (see html and docu-
ment object model). A World Wide Web Consortium (W3C)
standard defines the DOM functions, and most browsers now
consistently support Levels 1 and 2 of these standards. How-
ever, there are many Web users who cannot run standard
JavaScript, such as users with visual disabilities (see disabled
persons and computing), users of some mobile browsers
(such as for PDAs or smart phones), or users who have sim-
ply disabled JavaScript for security reasons. Therefore, when
JavaScript is used for essential page functions (such as form
processing), the developer should provide an alternative way
for the user to perform the relevant task. (In the case of dis-
abled users, this may be a legal requirement.)

Traditionally, JavaScript code has been embedded
directly in the containing HTML page, using tags like the
following:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML
4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>
<html dir=“ltr” lang=“en”>
<head>
<title>JavaScript Example</title>
<body>
<script type=“text/JavaScript”>

var Name = prompt (“Enter your
name”,“”);

alert(Name);
</script>
</body>
</html>

When a JavaScript-enabled browser encounters this
code, a text box will prompt the user for a name, which is
stored in the variable Name and then displayed in an alert
box.

In modern Web design to XHTML standards, however,
just as formatting information is kept in a separate docu-
ment (see cascading style sheets) JavaScript code is also
maintained in a separate file and simply linked to within
the HTML page:

<script type=“text/javascript”
src=“mainscript.js”></script>

JavaScript can do much more than just display infor-
mation or process forms. JavaScript can access a variety

256        JavaScript

of Web services (such as databases and search engines)
and create custom pages in response to user actions (see
also Ajax). JavaScript can also be embedded in applications
other than Web browsers: for example, the Adobe Acrobat
and Reader and even operating-system scripting (such as
Microsoft’s JScript and JScript.NET). Although attention in
recent years seems to have shifted more to languages such
as PHP, JavaScript remains a widely used and powerful Web
design tool.

Further Reading
Flanagan, David. JavaScript: The Definitive Guide. 5th ed. Sebasta-

pol, Calif.: O’Reilly, 2006.
Heilmann, Christian. Beginning JavaScript with DOM Scripting and

Ajax. Berkeley, Calif.: APress, 2005.
JavaScript at Webdeveloper.com. Available online. URL: http://

www.webdeveloper.com/javascript/. Accessed September 24,
2007.

JavaScript.com: The Definitive JavaScript Resource. Available
online. URL: http://www.javascript.com/. Accessed Septem-
ber 24, 2007.

Wilton, Paul, and Jeremy McPeak. Beginning JavaScript. 3rd ed.
Indianapolis: Wiley, 2007.

job control language
In the early days of computing, data processing generally
had to be done in batches. By modern standards the memory
capacity of the computer was very limited (see mainframe).
Typically, programs had to be loaded one at a time from
punch cards or tape. The data to be processed by each pro-
gram also had to be made available by being mounted on a
tape drive or inserted as a stack of cards into the card reader
(see punched cards and paper tape). After the program
ran, its output would consist of more data cards or tape,
which might in turn be used as input for the next program.

For example, a series of programs might be used to
read employee time cards and calculate the payments due
after various items of withholding. That data might in turn
be input into a program to print the payroll checks and
another program to print a summary report.

In order for all this to work, the computer’s operating
system must be told which files (on which devices) are to
be used by the program, the memory partition in which
the program is to be run, the device to which output will
be written or saved, and so on. This is done by giving the
computer instructions in job control language (JCL). (In
the punch card days, the JCL cards were put at the top of
the deck before the cards with the instructions for the pro-
gram itself.)

For a simple example, we will use some elements of IBM
MVS JCL. In this version of job control language the general
form for all statements is

//name operation operands comment

where name is a label that can be used to reference the
statement from elsewhere, operation indicates one of a set
of defined JCL language commands, operand is a series of
values to be passed to the system, and comment is optional
explanatory text.

The three basic types of statement found in most job
control languages are JOB, EXEC, and DD. The JOB state-
ment identifies the job and the user running it and sets up
some parameters to specify the handling of the job.

//JOB,CLASSPROJ1,GROUP=J999996,USER=P999995,
//PASSWORD=?

This statement passes information to the system that
identifies the job name, group as assigned by the facility,
and user ID. The PASSWORD parameter is given a question
mark to indicate that it will be prompted for at the terminal.
Other parameters can be used to specify such matters as the
amount of computer time to be allocated to the job and the
way in which any error messages will be displayed.

The EXEC statement identifies the program to be run.
Some systems can also have a library of stored JCL proce-
dures that can also be specified in the EXEC statement.
This means that frequently run jobs can be run without
having to specify all the details each time. An example
EXEC statement is:

//Datasort EXEC BINSORT,BUFFER=256K

Here the statement is labeled Datasort so it can be refer-
enced from another part of the program. The procedure to
be executed is named BINSORT, and it is passed a parameter
called BUFFER with a value of 256K (presumably this is the
amount of memory to be used to hold data to be sorted).

One or more DD (Data Definition) statements are used
to specify sets (sources) of data to be used by the program.
This includes a specification of the type (such as disk or
tape) and format of the data. It also includes instructions
specifying what is to happen to the data set. For example,
the data set might be old (existing) or newly created by the
program. It may also be temporary (possibly to be passed
on to the next program) or permanent (“cataloged”).

Since interactive, multitasking operating systems such
as Windows and UNIX are now the norm in most comput-
ing, JCL is used less frequently today. However, it is still
needed in large computer installations running operating
systems such as IBM MVS (see mainframe) and for some
batch processing of scientific or statistical programs (such
as in FORTRAN or SAS).

Further Reading
Brown, Gary Deward. System 390 Job Control Language. 4th ed.

New York: John Wiley, 1998.
Malaga, Ernie, and Ted Holt. Complete CL: The Definitive Control

Language Programming Guide. 3rd ed. Carlsbad, Calif.: Mid-
range Computing, 1999.

Jobs, Steven Paul
(1955– )
American
Entrepreneur

Steve Jobs was cofounder of Apple Computer and shaped
the development and marketing of its distinctive Macintosh
personal computer (see Apple Corporation). Jobs showed

Jobs, Steven Paul        257

an enthusiastic interest in electronics starting in his high
school years and gained experience through summer work
at Hewlett-Packard, one of the dominant companies of the
early Silicon Valley. In 1974, he began to work for pio-
neer video game designer Nolan Bushnell at Atari. He also
became a key member of the Homebrew Computer Club, a
group of hobbyists who designed their own microcomputer
systems using early microprocessors.

Meanwhile, Jobs’s friend Steve Wozniak had developed
plans for a complete microcomputer system that could be
built using a single-board design and relatively simple cir-
cuits (see Wozniak, Steven). In it Jobs saw the poten-
tial for a standardized, commercially viable microcomputer
system. They formed a company called Apple Computer
(named apparently for the vanished orchards of Silicon Val-
ley) and built a prototype they called the Apple I. Although
they could only afford to build a few dozen of the machines,
they made a favorable impression on the computer enthusi-
ast community. By 1977, they were marketing a more com-
plete and refined version, the Apple II.

Unlike kits that could be assembled only by experi-
enced hobbyists, the Apple II was ready to use “out of the
box.” It included a cassette tape recorder for storing pro-
grams. When connected to a monitor or an ordinary TV,
the machine could create color graphics that were dazzling
compared to the monochrome text displays of most com-
puters. Users could buy additional memory (the first model
came with only 4K of RAM) as well as cards that could
drive devices such as printers or add other capabilities.

The ability to run a program called VisiCalc (see spread-
sheet) propelled the Apple II into the business world, and
about 2 million of the machines were eventually sold. In
1982, when Time magazine featured the personal computer
as its “man of the year,” Jobs’s picture appeared on the
cover. As he relentlessly pushed Apple forward, supporters
pointed to Jobs’s charismatic leadership, while detractors
said that he could be ruthless when anyone disagreed with
his vision of the company’s future.

However, 1982 also brought industry giant IBM into the
market. Its 16-bit computer was more powerful than the
Apple II, and IBM’s existing access to corporate purchasing
departments resulted in the IBM PC and its “clones” quickly
dominating the business market (see ibm pc).

Jobs responded to this competition by designing a PC
with a radically different user interface, based largely on
work during the 1970s and the Xerox PARC laboratory.
The first version, called the Lisa, featured a mouse-driven
graphical user interface that was much easier to use than
the typed-in commands required by the Microsoft/IBM
DOS. While the Lisa’s price tag of $10,000 kept it out of the
mainstream market, its successor, the Macintosh, attracted
millions of users, particularly in schools, although the IBM
PC and its progeny continued to dominate the business
market (see Macintosh). Meanwhile, Jobs had recruited
John Sculley, former CEO of PepsiCo, to serve as Apple’s
CEO.

After a growing divergence with Sculley over man-
agement style and Apple’s future priorities, Jobs left the
company in 1985. Using the money from selling his Apple

stock, Jobs bought a controlling interests in Pixar, a graph-
ics studio that had been spun off from LucasFilm. He also
founded a company called NextStep. The company focused
on high-end graphics workstations that used a sophisti-
cated object-oriented operating system. However, while its
software (particularly its development tools) was innova-
tive, the company was unable to sell enough of its hardware
and closed that part of the business in 1993.

In 1997, Jobs returned as CEO of Apple. By then the
company was struggling to maintain market share for its
Macintosh line in a world that was firmly in the “Wintel”
(Windows on Intel-based processors) camp. He had some
success in revitalizing Apple’s consumer product line with
the iMac, a colorful, slim version of the Macintosh. He also
focused on development of the new Mac OS X, a blending of
the power of UNIX with the ease-of-use of the traditional
Macintosh interface.

Beyond the Mac
At the beginning of the new century, Jobs and Apple made
bold moves beyond the company’s traditional strengths.
The Power PC chip in the Mac was phased out in favor of
Intel chips, the same hardware that runs Microsoft Win-
dows machines. (Indeed, the Mac was also given a utility
that allowed it to run Windows.) This potentially opened
the Mac to a much wider range of software.

The biggest move, however, was into media, first with
powerful video-authoring software for home users as well
as professionals, then with the tiny iPod that redefined the
portable media player (see music and video players, digi-
tal). At the same time, Apple entered the digital music
business in a big way with the iTunes store (see music and
video distribution, online). In 2007 Apple charged into
the mobile communications market (see smartphone) with
the innovative if expensive iPhone. So far the market has
responded positively to Jobs’s initiatives, with Apple stock
increasing in value more than 10 times between 2003 and
2006.

While Jobs is brash and unconventional (reflecting his
countercultural roots), critics have accused him of egotism
and of having an overly aggressive (and abrasive) mana-
gerial style. Jobs has also been the subject of lingering
investigations into his receiving discounted Apple stock
options, failing to report the resulting taxable income, and
correspondingly overstating Apple’s earnings. In Decem-
ber 2006 Apple’s internal investigation cleared Jobs of
responsibility for these issues, and the options were never
exercised. Whatever the future brings, Steve Jobs has an
assured place in the history of entrepreneurship and inno-
vation in computing.

Further Reading
“Bill Gates and Steve Jobs” [on-stage interview]. All Things Digi-

tal, May 30, 2007. Available online. URL: http://d5.allthingsd.
com/20070530/d5-gates-jobs-interview/. Accessed August 11,
2007.

Jobs, Steve. “Steve Jobs: Oral History” [interview]. April 20, 1995.
Available online. URL: http://www.cwheroes.org/archives/
histories/jobs.pdf. Accessed August 11, 2007.

258        Jobs, Steven Paul

Markoff, John. What the Dormouse Said: How the Sixties Coun-
terculture Shaped the Personal Computer Industry. New York:
Penguin, 2005.

Young, Jeffrey S., and William L. Simon. iCon: Steve Jobs, the Great-
est Second Act in the History of Business. Hoboken, N.J.: Wiley,
2005.

journalism and computers
The pervasive use of computers and the Internet has
changed the practice of journalism in many ways. This
entry will focus on the general impact of technology on the
creation and dissemination of news content. For discus-
sion of software used in the production of publications, see
desktop publishing, and word processing. For the role
that journalism plays in the computer industry, see jour-
nalism and the computer industry.

Research and Newsgathering
The gathering of on-scene information at newsworthy
events began to change in the 1980s, when notebook-sized
portable computers became available. Instead of having to
“file” stories with the newspaper by telegraph or phone, the
reporter could write the piece and send it to the newspa-
per’s computer using a phone connection (see modem) or
later, Internet-based e-mail.

The ability of reporters (particularly investigative report-
ers) to do in-depth research has been greatly enhanced
by the Internet. Traditionally, reporters looking for back-
ground material for an assignment could consult printed
reference works, their publications’ archives of printed arti-
cles (the “morgue”), and various public records, usually in
paper form. This process was necessarily slow, and it was
difficult to widen research to include a greater variety of
sources while still remaining timely.

Today most publications produce and store their mate-
rial electronically and make it available online. Reporters
thus have virtually instant access to articles written by their
colleagues around the world. Instead of having to rely on a
few press releases, position papers, or wire stories, report-
ers can search the Internet to delve more deeply into the
underlying source material, such as original documents or
statistics. An increasing number of public records are also
available online.

Changing Standards and New Challenges
After being submitted electronically, reporters’ stories can
be edited, revised as necessary, and submitted to the com-
puter-controlled typesetting systems that have now become
standard in most publications. Besides saving production
costs, computer-based newspaper production also makes it
easier to make last-minute changes as well as to create spe-
cial editions that include regional news.

However, at the same time the greater use of information
technology has made print journalists more productive, it
has also contributed to trends that continue to challenge
the viability of print journalism itself. The nature of the
Internet poses new challenges to reporter-researchers. The
accuracy of traditionally published books or articles is

backed implicitly by the reputation of the publisher as well
as that of the author. By offering a wide variety of materi-
als produced outside the mainstream publishing process,
often by unknown authors, the Internet can provide a much
greater diversity of viewpoints (see also wikis and Wiki-
pedig). The downside is that the reporter-researcher has
little assurance of the veracity or accuracy of facts given
on unknown Web sites. This creates a greater burden of
fact checking in responsible journalism or, alternatively, a
relaxation of the traditional standards. (The most famous
example of the latter is Matt Drudge, a self-made Internet-
based journalist who sometimes dramatically “scooped” his
more plodding colleagues but did not adhere to the old
journalistic standard of finding two independent sources
for each key fact.)

The use of the Internet as both a research tool and a
medium of publication is also bound up with the ever-
accelerating pace of the “news cycle,” or the time it takes
for a story to be disseminated and responded to. Broadcast
journalism with the advent of 24-hour news networks such
as CNN has steadily increased the pace of the broadcast
news cycle. Many newspapers and magazines have found
having Web sites to be a competitive necessity. The Internet
potentially combines the immediacy of broadcast journal-
ism with the ability to use text to convey information in
depth. The organization of Web pages (see hypertext and
hypermedia) avoids the physical limitations of the printed
medium.

In addition to Web sites that mirror and expand the
contents of printed newspapers, a number of distinctive
Internet-only sites emerged in the mid to late 1990s. Exam-
ples include salon.com, an “online newsmagazine” that
also includes regular featured columnists and discussion
forums. However, the downturn in the Internet-based econ-
omy in 2002 made the original idea of having free access
supported by advertising less viable. Such sites are now try-
ing to convert to a subscription-based model similar to that
of print-based publications, but it is unclear whether they
will be able to attract enough paying subscribers.

New Alternatives and New Questions
The Internet is rapidly changing not only how journalism is
produced, but how it is delivered—and indeed, the role and
future of the profession itself. Broadcast journalism, already
greatly changed by the advent of cable TV networks in the
1990s, has now found itself needing to deliver programs
through new channels (see podcasting, Internet radio,
and music and video distribution, online). With “broad-
casts” available any time at user request, the news cycle has
essentially vanished into a 24/7 reality where wave upon
wave of stories is constantly flowing and changing.

The more profound change, though, is in who gets to
practice and define journalism. Everyone it seems has some-
thing to say online (see blogs and blogging). Bloggers
who cover current events (especially politics) at their best
represent the latest incarnation of “citizen journalism” (see
political activism and the Internet). However, issues of
objectivity (and the line between activist and journalist) have
been raised, as has the question of what legal protections

journalism and computers        259

for journalists should apply to bloggers and online news
reporters.

In addition to blogs, photo and video sharing sites
(see, for example, YouTube) now widely distribute mate-
rial, often quite controversial, that might once have been
ignored by mainstream media. For their part, many main-
stream journalists now also maintain blogs through which
readers can respond to stories of the day.

At the same time, in an era when a stream of both
images and the printed word is on tap 24 hours a day, print
journalism faces a shrinking market and the need to justify
itself to consumers. The industry has responded since the
1970s by an increasing number of mergers of metropolitan
daily newspapers as well as the merging of newspapers into
broader-based media companies. Many people have grown
up with the daily routine of a newspaper at the breakfast
table, and there is still a cachet for prestigious publications
such as the New York Times and the Wall Street Journal.
Futurists have predicted that newspapers might eventually
be delivered to “electronic book” devices, perhaps through
a wireless connection (see e-books and digital libraries).
This might combine the immediacy of the Internet with the
physical convenience and portability of a newspaper.

Further Reading
Cornfield, Michael. “Buzz, Blogs, and Beyond: The Internet and

the National Discourse in the Fall of 2004.” Pew Center for
Internet & American Life. Available online. URL: http://www.
pewinternet.org/ppt/BUZZ_BLOGS__BEYOND_Final05-16-
05.pdf. Accessed August 11, 2007.

Daily KOS. Available online. URL: http://www.dailykos.com.
Accessed August 11, 2007.

Gillmor, Dan. We the Media: Grassroots Journalism by the People, for
the People. Sebastapol, Calif.: O’Reilly, 2004.

Meyer, Philip. The Vanishing Newspaper: Saving Journalism in the
Information Age. Columbia, Mo.: University of Missouri Press,
2004.

Pew Center for Civic Journalism. Available online. URL: http://
www.pewcenter.org. Accessed August 11, 2007.

Quinn, Stephen, and Vincent Filak, eds. Convergent Journalism: An
Introduction—Writing and Producing across Media. Burlington,
Mass.: Focal Press, 2005.

Salon.com. Available online. URL: http://www.salon.com. Accessed
August 1, 2007.

Slate.com. Available online. URL: http://www.slate.com. Accessed
August 1, 2007.

Wulfemeyer, K. Tim. Online Newswriting. Ames, Iowa: Blackwell
Publishing, 2006.

journalism and the computer industry
Developments in the computer industry and user commu-
nity have been chronicled by a great variety of printed and
on-line publications. As computer science began to emerge
as a discipline in the late 1950s and 1960s, academically
oriented groups such as the Association for Computing
Machinery (ACM) and Institute for Electrical and Electron-
ics Engineers (IEEE) began to issue both general and spe-
cial-interest journals. Meanwhile, the computer industry
developed both computer science-oriented publications
(such as the IBM Systems Journal) and independent industry
periodicals such as Datamation.

The development of microcomputer systems in the
mid- to late-1970s was accompanied by a proliferation of
varied and often feisty publications. Byte magazine, which
coined the term PC in 1976, became a respected trade pub-
lication that introduced new technologies while showcasing
what programmers could do with the early systems. The
weekly newspaper InfoWorld provided more immediate and
detailed coverage of industry developments, and was joined
by similar publications such as Information Week and Com-
puterworld. Meanwhile, technically savvy programmers and
do-it-yourself engineers turned to such publications as the
exotically named Dr. Dobbs’ Journal of Computer Calisthenics
and Orthodontia (eventually shortened to Dr. Dobbs’ Jour-
nal). Many groups of people who owned particular systems
(see user groups) also published their own newsletters
with technical tips.

The success of the IBM PC family of computers estab-
lished a broad-based consumer computing market. It
was accompanied by the success of PC Magazine, which
addresses a wide spectrum of both general consumers
and “power users.” As the revenue for the PC industry
grew in the 1990s, the trade publications grew fatter with
advertising. The popularity of the Internet and particu-
larly the World Wide Web in the latter part of the decade
provided niches for a spate of new publications including
Internet World and Yahoo! Internet Life. At the same time,
many traditional publications began to offer expanded
content via Web sites. For example, Ziff Davis, publisher
of PC Magazine and other computer magazines created
ZDNet, which offered a large amount of content from the
magazines plus expanded news and extensive shareware
and utility libraries.

Like earlier technological developments, the PC and
the Internet have also spawned cultural expressions. The
culture growing around the Internet and a generation of
young programmers, artists, and writers saw expression in
another genre of publications, ranging from small, eclectic
printed or Web “zines” to the slick Wired magazine.

From Print to Online
Many of the pressures on mainstream journalism also apply
to computer industry journalism. As computer hardware
became a commodity with lower profit margins, and with
the shift to e-commerce and online activity, many print
magazines have folded or at least shrunk. In 1998 the vener-
able Byte became an online-only publication, a path finally
followed by InfoWorld in 2007.

Online sites such as ZDNET and CNET now carry
in-depth news and product reviews. Slashdot (“New for
Nerds”) is particularly popular among programmers. As
with mainstream journalism, blogs also play an important
part in professional and industry journalism in the comput-
ing field.

Further Reading
CNET. Available online. ULR: http://www.cnet.com. Accessed

August 11, 2007.
“Computer Industry: Trade Magazines.” Yahoo.com. Available

online. URL: http://dir.yahoo.com/Business_and_Economy/

260        journalism and the computer industry

Business_to_Business/Computers/Industry_Information/
Trade_Magazines/. Accessed August 11, 2007.

“Tag: Computer Industry” [blogs]. Available online. URL: http://
it.wordpress.com/tag/computer-industry. Accessed August
11, 2007.

“Top 100 Computer and Software Magazines.” Available online.
URL: http://netvalley.com/top100mag.html. Accessed August
11, 2007.

ZDNET. Available online. URL: http://www.zdnet.com. Accessed
August 11, 2007.

Joy, Bill
(1955– )
American
Software Engineer, Entrepreneur

Bill Joy developed many of the key utilities used by users
and programmers on UNIX systems (see unix). He then
became one of the industry’s leading entrepreneurs and
later, a critic of some aspects of computer technology.

As a graduate student in computer science and electrical
engineering at the University of California at Berkeley in
the 1970s, Joy worked with UNIX designer Ken Thompson
(1943– ) to add features such as virtual memory (pag-
ing) and TCP/IP networking support to the operating sys-
tem (the latter work was sponsored by DARPA, the Defense
Advanced Research Projects Agency). These development
eventually led to the distribution of a distinctive version of
UNIX called Berkeley Software Distribution (BSD), which
rivaled the original version developed at AT&T’s Bell Labo-
ratories. The BSD system also popularized features such as
the C shell (a command processor) and the text editors “ex”
and “vi.” (See shell.)

As opposed to the tightly controlled AT&T version,
BSD UNIX development relied upon what would become
known as the open-source model of software development
(see open-source movement). This encouraged program-
mers at many installations to create new utilities for the
operating system, which would then be reviewed and inte-
grated by Joy and his colleagues. BSD UNIX gained indus-
try acceptance and was adopted by the Digital Equipment
Corporation (DEC), makers of the popular VAX series of
minicomputers.

In 1982, Joy left UC Berkeley and co-founded Sun Micro-
systems, a company that became a leader in the manu-
facture of high-performance UNIX-based workstations for
scientists, engineers, and other demanding users. Even
while becoming a corporate leader, he continued to refine
UNIX operating system facilities, developing the Network
File System (NFS), which was then licensed for use not only
on UNIX systems but on VMS, PC-DOS, and Macintosh
systems. Joy’s versatility also extended to hardware design,
where he helped create the Sun SPARC reduced instruction
set (RISC) microprocessor that gave Sun workstations much
of their power.

In the early 1990s, Joy turned to the growing world of
Internet applications and embraced Java, a programming
language created by James Gosling (see Java). He devel-

oped specifications, processor instruction sets, and mar-
keting plans. Java became a very successful platform for
building applications to run on Web servers and browsers
and to support the needs of e-commerce. As Sun’s chief
scientist since 1998, Joy has led the development of Jini,
a facility that would allow not just PCs but many other
“Java-enabled” devices such as appliances and cell phones
to communicate with one another.

Recently, however, Joy has expressed serious misgivings
about the future impact of artificial intelligence and related
developments on the future of humanity. Joy remains proud
of the achievements of a field to which he has contrib-
uted much. However, while rejecting the violent approach
of extremists such as Unabomber Theodore Kaczynski,
Joy points to the potentially devastating unforeseen con-
sequences of the rapidly developing capabilities of comput-
ers. Unlike his colleague Ray Kurzweil’s optimistic views
about the coexistence of humans and sentient machines,
Joy points to the history of biological evolution and sug-
gests that superior artificial life forms will displace humans

Bill Joy made key contributions to the Berkeley Software Distribu-
tion (BSD) version of UNIX, including developing its Network
File System (NFS). As a cofounder of Sun Microsystems, Joy then
helped develop innovative workstations and promoted Java as
a major language for developing Web applications.  (Bill Joy,
Kleiner Perkins Caulfield & Byers)

Joy, Bill        261

who will be unable to compete with them. He believes that
given the ability to reproduce themselves, intelligent robots
or even “nanobots” (see nanotechnology) might soon be
uncontrollable.

Joy also expresses misgivings about biotechnology and
genetic engineering, seen by many as the dominant scien-
tific and technical advance of the early 21st century. He
has proposed that governments develop institutions and
mechanisms to control the development of such dangerous
technologies, drawing on the model of the agencies that
have more or less successfully controlled the development
of nuclear energy and the proliferation of nuclear weapons
for the past 50 years. (For contrasting views see Kurzweil,
Ray and singularity, technological.)

In 2003 Joy left Sun and became a venture capitalist,
specializing in technologies and projects to combat what
he sees as serious global dangers, such as pandemic disease
and the possibility of bioterrorism.

Joy received the ACM Grace Murray Hopper Award for
his contributions to BSD UNIX before the age of 30. In
1993, he was given the Lifetime Achievement Award of the
USENIX Association, “For profound intellectual achieve-
ment and unparalleled services to the UNIX community.”

Further Reading
Brown, John Seely and Paul Duguid. “A Response to Bill Joy and

the Doom-and-Gloom Technofuturists.” Available online. URL:
http://www.aaas.org/spp/rd/ch4.pdf. Accessed August 12, 2007.

Joy, Bill. “Why the Future Doesn’t Need Us.” Wired, 8.04, April
2000. Available online. URL: http://www.wired.com/wired/
archive/8.04/joy.html. Accessed August 12, 2007.

Joy, Bill, et al. The Java Language Specification. 3rd ed. Upper Saddle
River, N.J.: Prentice Hall, 2005. Available online. URL: http://
java.sun.com/docs/books/jls/download/langspec-3.0.pdf.
Accessed August 12, 2007.

O’Reilly, Tim. “A Conversation with Bill Joy.” O’Reilly Network, Feb-
ruary 12, 2001. Available online. URL: http://www.openp2p.
com/pub/a/p2p/2001/02/13/joy.html. Accessed August 12, 2007.

262        Joy, Bill

263

Kay, Alan
(1940– )
American
Computer Scientist

Alan Kay developed a variety of innovative concepts that
changed the way people use computers. Because he devised
ways to have computers accommodate users’ perceptions
and needs, Kay is thought by many to be the person most
responsible for putting the “personal” in personal com-
puters. Kay also made important contributions to object-
oriented programming, changing the way programmers
organized data and procedures in their work.

Kay’s father developed prostheses (artificial limbs) and
his mother was an artist and musician. These varied per-
spectives contributed to Kay’s interest in interaction with
and perception of the environment. In the late 1960s, while
completing work for his Ph.D. at the University of Utah,
Kay developed his first innovations in both areas. He helped
Ivan Sutherland with the development of a program called
Sketchpad that enabled users to define and control onscreen
objects, while also working on the development of Simula, a
language that helped introduce new programming concepts
(see Simula and object-oriented programming). Indeed,
Kay coined the term object-oriented in the late 1960s. He
viewed programs as consisting of objects that contained
appropriate data that could be manipulated in response to
“messages” sent from other objects. Rather than being rigid,
top-down procedural structures, such programs were more
like teams of cooperating workers. Kay also worked on
parallel programming, where programs carried out several

tasks simultaneously (see concurrent programming). He
likened this structure to musical polyphony, where several
melodies are sounded simultaneously.

Kay participated in the Defense Advanced Research
Projects Agency (DARPA)—funded research that was lead-
ing to the development of the Internet. One of these DARPA
projects was FLEX, an attempt to build a computer that
could be used by nonprogrammers through interacting with
onscreen controls. While the bulky technology of the late
1960s made such machines impracticable, FLEX incorpo-
rated some ideas that would be used in later PCs, including
multiple onscreen windows.

During the 1970s, Kay worked at the innovative Xerox
Palo Alto Research Center (PARC). Kay designed a laptop
computer called the Dynabook, which featured high-reso-
lution graphics and a graphical user interface. While the
Dynabook was only a prototype, similar ideas would be
used in the Alto, a desktop personal computer that could
be controlled with a new pointing device, the mouse (see
Engelbart, Douglas). A combination of high price and
Xerox’s less than aggressive marketing kept the machine
from being successful commercially, but Steven Jobs (see
Jobs, Steven) would later use its interface concepts to
design what would become the Macintosh.

On the programming side Kay developed Smalltalk, a
language that was built from the ground up to be truly
object-oriented (see Smalltalk). Kay’s work showed that
there was a natural fit between object-oriented program-
ming and an object-oriented user interface. For example, a
button in a screen window could be represented by a button
object in the program, and clicking on the screen button

K

could send a message to the button program object, which
would be programmed to respond in specific ways.

After leaving Xerox PARC in 1983, Kay briefly served
as chief scientist at Atari and then moved to Apple, where
he worked on Macintosh and other advanced projects. In
1996, Kay became a Disney Fellow and Vice President of
Research and Development at Walt Disney Imagineering.
In 2001 Kay founded Viewpoints Research Institute, a non-
profit organization devoted to developing advanced learn-
ing environments for children. One such project is Squeak,
a streamlined but powerful version of Smalltalk that Kay
started developing in 1995. Another, eToys, is a multiplat-
form, media-rich, environment that can be used for educa-
tion or “just” play. Behind it all is Kay’s continuing effort
to do no less than reinvent programming and peoples’ rela-
tionship to computer environments.

Kay’s numerous honors include the ACM Turing Award
(2003) for contributions to object-oriented programming
and the Kyoto Prize (2004).

Further Reading
Alter, Allan E. “Alan Kay: The PC Must Be Revamped—Now.” CIO

Insight. Available online. URL: http://www.cioinsight.com/
article2/0,1540,2089567,00.asp. Accessed August 1, 2007.

Gasch, Scott. “Alan Kay.” Available online. URL: http://ei.cs.vt.edu/
~history/GASCH.KAY.HTML. Accessed August 12, 2007.

Kay, Alan. “The Early History of Smalltalk.” In Thomas J. Bergin,
Jr., and Richard G. Gibson, Jr., eds. History of Programming
Languages II. New York: ACM; Reading, Mass.: Addison-Wes-
ley, 1996.

Shasha, Dennis, and Cathy Lazere, eds. Out of their Minds: The
Lives and Discoveries of 15 Great Computer Scientists. New
York: Copernicus, 1995.

Viewpoints Research Institute. Available online. URL: http://www.
vpri.org/. Accessed August 12, 2007.

kernel
The idea behind an operating system kernel is that there
is a relatively small core set of “primitive” functions that
are necessary for the operation of system services (see also
operating system). These functions can be provided in a
single component that can be adapted and updated as desir-
able. The fundamental services include:

• � Process control—scheduling how the processes (pro-
grams or threads of execution within programs) share
the CPU, switching execution between processes, cre-
ating new processes, and terminating existing ones
(see multitasking).

• � Interprocess communication—sending “messages”
between processes enabling them to share data or
coordinate their data processing.

• �M emory management—allocating and freeing up
memory as requested by processes as well as imple-
menting virtual memory, where physical storage is
treated as an extension of main (RAM) memory. (See
memory management.)

• � File system services—creating, opening, reading from,
writing to, closing, and deleting files. This includes main-

taining a structure (such as a list of nodes) that specifies
the relationship between directories and files. (See file.)

In addition to these most basic services, some operating
systems may have larger kernels that include security
functions (such as maintaining different classes of users
with different privileges), low-level support for peripheral
devices, and networking (such as TCP/IP).

The decision about what functions to include in the ker-
nel and which to provide through device drivers or system
extensions is an important part of the design of operating
systems. Many early systems responded to the very limited
supply of RAM by designing a “microkernel” that could fit
entirely in a small amount of memory reserved permanently
for it. Today, with memory a relatively cheap resource, ker-
nels tend to be larger and include functions that are paged
dynamically into and out of memory.

In the UNIX world (and particularly with Linux) the
kernel is constantly being improved through informal col-
laborative efforts. Many Linux enthusiasts regularly install
new versions of the kernel in order to stay on the “leading
edge,” while more conservative users can opt for waiting
until the next stable version of the kernel is released.

Further Reading
Bovet, Daniel, and Marco Cesati. Understanding the Linux Kernel.

3rd ed. Sebastapol, Calif.: O’Reilly, 2005.
Love, Robert. Linux Kernel Development. 2nd ed. Indianapolis:

Novell Press, 2005.
Torvalds, Linus. “LinuxWorld: The Story of the Linux Kernel.”

linuxtoday. Available online. URL: http://www.linuxtoday.
com/developer/1999032500910PS. Accessed August 12, 2007.

The kernel is an intermediary between users and programs and the
hardware system. It provides the functions necessary for allocating
and controlling processes and system resources.

264        kernel

keyboard
Although most of today’s personal computers feature a
point-and-click graphical interface (see user interface
and mouse) the keyboard remains the main means for
entering text and other data into computer applications.
The modern computer keyboard traces its ancestry to the
typewriter, and the layout of its alphabetic and punctuation
keys remains that devised by typewriter pioneer Christo-
pher Latham Sholes in the late 1860s.

The principal difference in operation is that while a
typewriter needs only to transfer the impression of a key
through a ribbon onto a piece of paper, the computer key-
board must generate an electrical signal that uniquely iden-
tifies each key. This technology dates back to the 1920s
with the adoption of the teletypewriter (often known by
the brand name Teletype), which allowed operators to type
text at a keyboard and send it over telephone lines to be
printed. The transmissions used the Baudot character code,
which used five binary (off or on) positions to encode let-
ters and characters. This gave way to the ASCII code in the
1960s (see characters and strings) at about the time
that remote time-sharing services allowed users to interact
with computers through a Teletype connection.

The modern personal computer keyboard was standard-
ized in the mid-1980s when IBM released the PC AT. This
expanded keyboard now has 101 or 102 keys. It supplements
the standard typewriter keys with cursor-control (arrow)
keys, scroll control keys (such as Page Up and Page Down),
a dozen function keys that can be assigned to commands
by software, and a separate calculator-style keyboard for
numeric data entry. During the 1990s, Microsoft introduced
a few extra keys for Windows-specific functions.

The advent of laptop (or notebook) computers required
some compromises. The keys are generally smaller, although
on the better units they are still far enough apart to allow
for comfortable touch-typing. Laptops often combine the
function keys and cursor control keys with the regular keys,
using a special “Fn” key to shift between them.

In recent years, there has been some interest in adopt-
ing an alternative key layout devised by August Dvorak in
the 1950s. The theory behind this layout was that arrang-
ing the keyboard so the most commonly used keys were
directly under the fingers would be more efficient than the
Sholes layout, which legend claims was devised primarily
to slow down typists to a speed that early typewriters could
handle without jamming. However, researchers have gener-
ally been unable to find a significant improvement in either
performance or ergonomics between use of the standard
and Dvorak layouts, and the latter has not caught on com-
mercially.

Concern with repetitive strain injury (RSI) has led to
experiments in designing a keyboard more suited to the
human wrist and hand (see ergonomics of computing).
Some designs such as the Microsoft Natural Keyboard
divide the layout into left and right banks of keys and angle
them toward one another to reduce strain on the wrists. An
extreme form of the design actually breaks the keyboard
into two pieces. Such extreme designs have not found wide
acceptance.

It is possible that the further development of voice rec-
ognition software might allow spoken dictation to supplant
the keyboard for data entry. Currently, however, such tech-
nology is limited in speed and accuracy (see speech recog-
nition and synthesis).

With the increasingly popular mobile devices (see pda
and smartphone), keyboards are sometimes dispensed with
entirely. For light data entry (such as for e-mail and text
messaging), a small version of the standard keyboard can
be used. (In such cases users can type with their thumbs.)
With touch-sensitive screens on mobile devices, a “virtual
keyboard” can be displayed on the screen; however, the
lack of tactile feedback means this data-entry method takes
some getting used to. One can also obtain a keyboard that
can wirelessly connect to such a device to allow for more
extensive data entry (see Bluetooth.)

Further Reading
“Computer Keyboard Design.” Cornell University Ergonomics

Web. Available online. URL: http://ergo.human.cornell.edu/
ahtutorials/ckd.htm. Accessed August 12, 2007.

Lundmark, Torbjorn. Qwirky Qwerty: The Story of the Keyboard @
Your Fingertips. Sydney, Australia: New South Wales Univer-
sity Press, 2002.

Kleinrock, Leonard
(1934– )
American
Engineer, Computer Scientist

Every day billions of e-mails, text messages, and media files
are sent over the worldwide Internet. The infrastructure
that allows the efficient transmission of this vast data traffic
is largely based on the system of packet-switching and rout-
ing invented by Leonard Kleinrock.

Kleinrock was born in 1934 and grew up in New York
City. When he was only six years old Kleinrock built a crys-
tal radio, the first of many electronics projects, built from
cannibalized old radios and other equipment. Kleinrock

The Microsoft Natural Multimedia Keyboard features access to
functions needed by today’s computer users along with an ergo-
nomic layout designed to help reduce typing stress.  (Microsoft
Corporation)

Kleinrock, Leonard        265

attended the Bronx High School of Science, home of many
of the nation’s top future engineers. However, when it came
time for college, the family had no money to pay for his
higher education, so he attended night courses at the City
College of New York while working as an electronics techni-
cian and later as an engineer. Kleinrock graduated first in
his class in 1957 and earned a fully paid fellowship to the
Massachusetts Institute of Technology.

At MIT Kleinrock became interested in finding ways for
computers and their users to communicate with each other.
The idea of computer networking was in its infancy, but he
submitted a proposal in 1959 for Ph.D. research in network
design.

In 1961 Kleinrock published his first paper, “Informa-
tion Flow in Large Communication Nets.” Existing tele-
phone systems did what was called “circuit switching”: To
establish a conversation, the caller’s line is connected to the
receiver’s, forming a circuit that existed for the duration
of the call. This also meant that the circuit would not be
available to anyone else, and that if something was wrong
with the connection there was no way to route around the
problem.

Kleinrock’s basic idea was to set up data connections
that would be shared among many users as needed. Instead
of the whole call (or data transmission) being assigned to a
particular circuit, it would be broken up into packets that
could be sent along whatever circuit was the most direct.
If there was a problem, the packet could be resent on an
alternative route. This form of “packet switching” provided
great flexibility as well as more efficient use of the avail-
able circuits. Kleinrock further elaborated his ideas in his
dissertation, for which he was awarded his Ph.D. in 1963.
The following year MIT published his book Communications
Nets, the first full treatment of the subject.

Kleinrock joined the faculty at the University of Cali-
fornia, Los Angeles. In 1968 the Defense Department’s
Advanced Research Projects Agency (ARPA) asked him to
design a packet-switched network that would be known as
ARPANET. The computers on the network would be con-
nected using special devices called Interface Message Pro-
cessors (IMPs). The overall project was under the guidance
and supervision of one of Kleinrock’s MIT office mates,
Lawrence Roberts.

On October 29, 1969, Kleinrock and his assistants sent
the first data packets between UCLA and Stanford over
phone lines. Their message, the word “login,” was hardly as
dramatic as Alexander Graham Bell’s “Watson, come here,
I need you!” Nevertheless, a form of communication had
been created that in a few decades would change the world
as much as the telephone had done a century earlier.

The idea of computer networking did not catch on imme-
diately, however. Besides requiring a new way of thinking
about the use of computers, many computer administrators
were concerned that their computers might be swamped
with users from other institutions, or that they might ulti-
mately lose control over the use of their machines. Klein-
rock worked tirelessly to convince institutions to join the
nascent network. By the end of 1969 there were just four
ARPANET “nodes”: UCLA, the Stanford Research Institute,

UC Santa Barbara, and the University of Utah. By the fol-
lowing summer, there were ten.

During the 1970s Kleinrock trained many of the
researchers who would advance the technology of network-
ing. While Kleinrock’s first network was not the Internet we
know today, it was an essential step in its development. In
successfully establishing communication using the packet-
switched ARPANET, Kleinrock showed that such a network
was practicable.

By the early 1990s Kleinrock was looking toward a future
where most network connections were wireless and accessi-
ble through a variety of computerlike devices such as hand-
held “palmtop” computers, cell phones, and others not yet
imagined. In such a network the intelligence or capability is
distributed throughout, with devices communicating seam-
lessly so the user no longer need be concerned about what
particular gadget he or she is using. By the middle of the fol-
lowing decade, much of this vision had become reality.

Although his name is not well known to the general
public, Kleinrock has won considerable recognition within
the technical community. This includes Sweden’s L. M.
Ericsson Prize (1982), the Marconi Award (1986), and the
National Academy of Engineering Charles Stark Draper
Prize (2001).

Further Reading
Hafner, Katie, and Matthew Lyon. Where Wizards Stay Up Late: The

Origins of the Internet. New York: Simon and Schuster, 1996.
Kleinrock, Leonard. “Information Flow in Large Communication

Nets.” Available online. URL: http://www.lk.cs.ucla.edu/LK/
Bib/REPORT/PhD/proposal.html. Accessed May 3, 2007.

“Leonard Kleinrock’s Home Page.” Available online. URL: http://
www.lk.cs.ucla.edu/. Accessed May 3, 2007.

knowledge representation
The earliest concern of computer science was the represen-
tation of “raw” data such as numbers in programs (see data
types). Such data can be used in calculations, and actions
taken based on tests of data values, using branching (IF) or
looping structures.

However, facts are more than data. A fact is an asser-
tion, for example about a relationship, as in “Joe is a son of
Mike,” often expressed in a form such as son (Joe, Mike).
Implications can also be defined as proceeding from facts,
such as

son (Joe, Mike) implies father (Mike, Joe) or
son (Joe, Mike) and son (Mike, Phil) implies
grandson (Joe, Phil)

While it can be expressed in a variety of different forms
of notation, this predicate calculus forms the basis for
many automated reasoning systems that can operate on a
“knowledge base” of assertions, prove the validity of a given
assertion, and even generate new conclusions based upon
existing knowledge (see also expert systems).

An alternative form of knowledge representation used
in artificial intelligence programs is based on the idea of
frames. A frame is a structure that lists various character-

266        knowledge representation

istics or relationships that apply to a given individual or
class. For example, the individual “cat” might have a frame
that includes characteristics such as “warm-blooded” and
“bears live young.” In turn, these characteristics are also
assigned to the class “mammal” such that any individual
having those characteristics belongs to that class. A pro-
gram can then follow the linkages and conclude that a cat is
a mammal. Linkages can also be diagrammed as a “seman-
tic network” in a structure called a directed graph, with the
lines between nodes labeled to show relationships.

Knowledge representation systems have different con-
siderations depending on their intended purpose. A KR sys-
tem in an academic research setting might be intended to
demonstrate completeness: that is, it can generate all possible
conclusions from the facts given. However, expert systems
designed for practical use usually do not attempt to gener-
ate all possible conclusions (which might be computation-
ally impracticable) but to generate useful conclusions that
are likely to serve the needs of the knowledge consumer.

It is also important to note that epistemology (the the-
ory of knowledge) plays an important role in understanding
and evaluating KR systems. As an example, the assertion
“Mary believes she is 600 years old” might be a fact (Mary
is observed to hold such a belief), but the contents of the
belief are presumably not factual. The context of this belief
might also be different if Mary is an adult as opposed to
being a five-year-old child. Similarly, ontological (state of
being) considerations can also complicate the evaluation of
assertions. For example, should a fire be treated as an object
in itself, a process, or an attribute of a burning object?
Knowledge representation thus intertwines philosophy and
computer science.

The booming interest in extracting new patterns from
data (see data mining) and the effort to encode more
knowledge into Web documents (see ontologies and data
models, semantic Web, and xml) all involve applications
of knowledge representation.

Perhaps the most ambitious knowledge representation
project (and the longest-lasting one) has been Cyc (short for
Encyclopedia). Headed by AI researcher Douglas Lenat, the
object of Cyc is to create a massive network representing
the relationships and characteristics of millions of objects
and concepts found in peoples’ daily lives and work. Ide-
ally a wide variety of programs (both specialized and gen-
eral purpose) will be able to use this knowledge base (see
expert system). Projects such as Cyc and the Web Ontol-
ogy Language (Owl) also offer the possibility of a much
more intelligent Web search (see search engine) as well as
systems that can automatically summarize news stories and
other material.

Further Reading
Brachman, Ronald, and Hector Levesque. Knowledge Representa-

tion and Reasoning. San Francisco: Morgan Kaufmann, 2004.
Cycorp. Available online. URL: http://www.cyc.com/. Accessed

August 12, 2007.
Davis, Randall, Howard Shrobe, and Peter Szolovits. “What Is a

Knowledge Representation?” AI Magazine 14 (1993): 17–33.
Available online. URL: http://groups.csail.mit.edu/medg/ftp/
psz/k-rep.html. Accessed August 12, 2007.

Lacy, Lee W. Owl: Representing Information Using the Web Ontology
Language. Victoria, B.C., Canada: Trafford, 2005.

Makahfi, Pejman. “Introduction to Knowledge Modeling.” Avail-
able online. URL: http://www.makhfi.com/KCM_intro.htm.
Accessed August 12, 2007.

Knuth, Donald
(1938– )
American
Computer Scientist

Donald Knuth has contributed to many aspects of computer
science, but his most lasting contribution is his monumen-
tal work, The Art of Computer Programming, which is still in
progress.

Born in Milwaukee on January 10, 1938, Knuth’s ini-
tial background was in mathematics. He received his mas-
ter’s degree at the Case Institute of Technology in 1960
and his Ph. D. from the California Institute of Technology
(Caltech) in 1963. As a member of the Caltech mathemat-
ics faculty Knuth became involved with programming and
software engineering, serving both as a consultant to the
Burroughs Corporation and as editor of the Association
for Computing Machinery (ACM) publication Programming
Languages. In 1968, Knuth confirmed his change of career
direction by becoming professor of computer science at
Stanford University.

In 1971, Knuth published the first volume of The Art
of Computer Programming and received the ACM Grace
Murray Hopper Award. His broad contributions to the
field as well as specific work in the analysis of algorithms
and computer languages garnered him the ACM Turing
Award, the most prestigious honor in the field. Knuth
also did important work in areas such as LR (left-to-right,
rightmost) parsing, a context-free parsing approach used
in many program language interpreters and compilers
(see parsing).

However, Knuth then turned away from writing for an
extended period. His primary interest became the develop-
ment of a sophisticated software system for computer-gen-
erated typography. He developed both the TeX document
preparation system and METAFONT, a system for typeface
design that was completed during the 1980s. TeX found a
solid niche in the preparation of scientific papers, particu-
larly in the fields of mathematics, physics, and computer
science where it can accommodate specialized symbols and
notation.

Knuth did return to The Art of Computer Programming
and by the late 1990s he had completed two more of a
projected seven volumes. With his broad interests and con-
tributions and “big picture” approach to the evaluation of
programming languages, algorithms, and software engi-
neering methodologies, Knuth can fairly be described as
one of the “Renaissance persons” of the computer science
field. His numerous awards include the ACM Turing Award
(1974), IEEE Computer Pioneer Award (1982), American
Mathematical Society’s Steele Prize (1986), and the IEEE’s
John von Neumann Medal (1995).

Knuth, Donald        267

Further Reading
Frenkel, Karen A. “Donald E. Knuth: Scholar with a Passion for

the Particular.” Profiles in Computing, Communications of the
ACM, vol. 30, no. 10, October 1987.

———. The Art of Computer Programming. 3rd ed. vols. 1–3. Read-
ing, Mass.: Addison-Wesley, 1998.

Knuth, Donald E. Literate Programming. Stanford, Calif.: Center
for the Study of Language and Information, 1992.

———. Things a Computer Scientist Rarely Talks About. Stanford,
Calif.: CSLI Publications, 2001.

Slater, Robert. Portraits in Silicon. Cambridge, Mass.: MIT Press,
1987.

Kurzweil, Ray
(1948– )
American
Inventor, Futurist

Ray Kurzweil began his career as an inspired inventor who
brought words to the blind and new kinds of sounds to
musicians. Drawing upon his experience with the rapid

progress of technology, Kurzweil then wrote a series of
books that predicted a coming breakthrough into a world
shared by advanced intelligent machines and enhanced
human beings.

Kurzweil was born on February 12, 1948, in Queens,
New York, to an extremely talented family. Kurzweil’s
father, Fredric, was a concert pianist and conductor. Kurz-
weil’s mother, Hanna, was an artist, and one of his uncles
was an inventor. By the time he was 12, Kurzweil was
building and programming his own computer. He wrote a
statistical program that was so good that IBM distributed
it as well as a music-composing program. The latter earned
him first prize in the 1964 International Science Fair and
a meeting with President Lyndon B. Johnson in the White
House. Kurzweil even appeared on the television show I’ve
Got a Secret.

In 1967 Kurzweil enrolled in the Massachusetts Institute
of Technology, majoring in computer science and literature.
By the time he received his B.S. in 1970, Kurzweil had met
some of the most influential thinkers in artificial intelli-
gence research, including Marvin Minsky, whom he looked
to as a mentor (see Minsky, Marvin). Kurzweil had become
fascinated with the use of AI to aid and expand human
potential. In particular, he focused on pattern recognition,
or the ability to classify or recognize patterns such as the
letters of the alphabet on a page of text.

Early character-recognition technology had been limited
because it could only match very precise shapes, making it
impractical for reading most printed material. Kurzweil,
however, used his knowledge of expert systems and other
AI principles to develop a program that could use general
rules and relationships to “learn” to recognize just about
any kind of text (see ocr). This program, called Omnifont,
would be combined with the flatbed scanner (which Kurz-
weil invented in 1975) to create a system that could scan
text and convert the images into the corresponding char-
acter codes, suitable for use with programs such as word
processors.

A chance conversation with a blind fellow passenger on
a plane convinced Kurzweil that he could build a machine
that could scan text and read it out loud. Kurzweil would
combine his scanning technology with a speech synthesizer
(see speech recognition and synthesis). Kurzweil had to
create an expert system with hundreds of rules for properly
voicing the words in the text.

In 1976 Kurzweil was able to announce the Kurzweil
Reading Machine (KRM). Soon after the machine’s debut,
Kurzweil struck up a friendship with the legendary blind
pop musician Stevie Wonder. They shared an interest in
musical instruments and music synthesis. Existing analog
synthesizers were very versatile, but their output sounded
“thin” and artificial compared to the rich overtones in the
sound of a piano or guitar. Kurzweil was able to create a
much more realistic synthesizer sound using digital rather
than analog technology.

The first Kurzweil synthesizer, the K250, was released in
1983. His machine was the result of considerable research
in digitally capturing and representing the qualities of notes
from particular instruments, including the “attack,” or ini-

Prolific inventor and futurist Ray Kurzweil believes that
technology will soon take an exponential leap called “the
singularity.”  (Melanie Stetson Freeman / The Christian Sci-
ence Monitor / Getty Images)

268        Kurzweil, Ray

tial building of sound, the “decay,” or decline in the sound,
the sustain, and the release (when the note is ended.) The
resulting sound was so accurate that professional orchestra
conductors and musicians could not distinguish the syn-
thesized sound from that of the real instruments.

Throughout the 1980s and 1990s Kurzweil applied his
boundless inventiveness to a number of other challenges,
including speech recognition. The reverse of voice synthe-
sis, speech recognition involves the identification of pho-
nemes (and thus words) in speech that has been converted
into computer sound files. Kurzweil sees a number of pow-
erful technologies being built from voice recognition and
synthesis, including telephones that automatically translate
speech and devices that can translate spoken words into text
in real time for deaf people. He also believes that the ability
to control computers by voice command, which is currently
rather rudimentary, should also be greatly improved.

Technological Apocalypse?
During the 1990s, though, much of Kurzweil’s interest
turned from inventing the future to considering its likely
course. His 1990 book The Age of Intelligent Machines
offered a popular account of how AI research would change
many human activities. In 1999 Kurzweil published The
Age of Spiritual Machines. It made the provocative claim
that, by the middle of the 21st century, machine intel-
ligence would surpass that of humans. Kurzweil revisited
the topic in his latest book, The Singularity Is Near (2005).
The title seems to consciously echo the apocalyptic lan-
guage of a prophet predicting the last judgment or the
coming of a messiah. The word “singularity” is intended
to describe the effects of relentless, ever-increasing tech-
nological progress that eventually reaches a sort of “criti-
cal mass” and changes the world beyond all recognition
(see singularity, technological).

As he depicts life in 2009, 2019, 2029, and finally 2099,
Kurzweil portrays a world in which sophisticated AI per-

sonalities become virtually indistinguishable from humans
and can serve people as assistants, advisers, and even lov-
ers. Meanwhile, neural implants will remove the obstacles
of handicaps such as blindness, deafness, or lack of mobil-
ity (see neural interface). Other implants will greatly
enhance human memory, allow for the instant download
of knowledge, and function as “natural” extensions to the
brain. (For critics of such “strong AI” claims see Dreyfus,
Hubert and Weizenabum, Joseph.)

Kurzweil continues to engage in provocative projects.
Under the slogan “live long enough to live forever,” he is
researching and marketing various supplements intended
to promote longevity, and he reportedly monitors his own
diet and bodily functions carefully.

Whatever the future brings, Ray Kurzweil has become
one of America’s most honored inventors. Among other
awards, he has been elected to the Computer Industry Hall
of Fame (1982) and the National Inventors Hall of Fame
(2002). He has received the ACM Grace Murray Hopper
Award (1978), Inventor of the Year Award (1988), the Louis
Braille Award (1991), the National Medal of Technology
(1999), and the MIT Lemelson Prize (2001).

Further Reading
Henderson, Harry. Artificial Intelligence: Mirrors for the Mind. New

York: Chelsea House, 2007.
Joy, Bill. “Why the Future Doesn’t Need Us.” Wired Magazine 8

(April 2000). Available online. URL: http://www.wirednews.
com/wired/archive/8.04/joy.html. Accessed May 5, 2007.

Kurzweil, Raymond. The Age of Spiritual Machines: When Comput-
ers Exceed Human Intelligence. New York: Putnam, 1999.

———. The Singularity Is Near. New York: Viking, 2005.
KurzweilAI.net. Available online. URL: http://www.kurzweilai.

net/. Accessed May 5, 2007.
Kurzweil Technologies. Available online. URL: http://www.

kurzweiltech.com/ktiflash.html. Accessed May 5, 2007.
Richards, Jay, ed. Are We Spiritual Machines?: Ray Kurzweil vs. the

Critics of Strong AI. Seattle, Wash.: Discovery Institute, 2001.

Kurzweil, Ray        269

270

LAN  See local area network.

language translation software
Anyone who has learned a new language has also gained
an appreciation for how difficult it is to translate from one
language to another while preserving the intent, mean-
ing, and context of the original. Not surprisingly, develop-
ing software to perform this task, often called “machine
translation” (MT), has also proven to be difficult. (For a
more general discussion of how languages can be repre-
sented or studied using a computer, see linguistics and
computing.)

Rules-Based Approaches
There are several approaches that can be taken to automatic
language translation. A rules-based system parses the origi-
nal text to construct an intermediate representation. The
program then “transfers” the represented structure to an
equivalent structure in the target language, drawing upon
extensive lexicons (dictionaries) containing such things
as phrase structures, word structures (morphology), and
semantics (meanings). Developing this extensive knowl-
edge base and the rules for manipulating it is the most
challenging part of developing rules-based language trans-
lation systems. (For more on the general process of com-
puter “understanding” of language, see natural language
processing.)

Generally a translation produced by a rules-based sys-
tem will be intelligible to a speaker of the target language,

who will be able to understand the broad meaning of the
original text. However, it is likely to sound “awkward” and
miss certain nuances.

A simplified approach is based on a dictionary of words
or phrases and their meanings. Each source word or phrase
is simply looked up and converted to its equivalent in the
target language. Because it does not deal with grammatical
structure or context, this method is not very satisfactory
except perhaps for translating simple lists or catalogues.

Statistical Approaches
The other main approach to automatic translation relies
on statistical analysis of a large body of text (corpus) that
is already translated into two languages. For example, the
Bayes theorem (see Bayesian analysis) can be used to esti-
mate the probability that string A in French (for example,
“c’est un chien”) will occur in the English version as string
A’ “it’s a dog.”). Depending on the application, the same
approach can be applied word for word, phrase for phrase,
or sentence for sentence. Statistical approaches have had
good success (particularly if the corpus is both representa-
tive and sufficiently extensive). However, since it is based
on probability, there is always a chance that a segment of
text will be given the most likely translation rather than the
meaning intended by the writer.

Evaluation and Applications
There are a number of features in real human languages
and usage that are challenging for translation software to
deal with. Words can be ambiguous due to multiple mean-

L

ings, and phrases can be syntactically ambiguous. (A
famous example is, “Time flies like an arrow; fruit flies like
a banana.”) Rules-based translation software can attempt
to include rules for determining which word or sentence
meaning is intended, while statistically based programs can
try to determine the probability that a given word or phrase
in a given context has a certain meaning. Idioms or words
that are not in the program’s dictionary can also cause prob-
lems. (For example, Babel Fish translates “He already had
two strikes against him” literally, losing the nuance based
on the baseball reference.)

There are a variety of translation software packages in
use today. The oldest is SYSTRAN, which was developed
during the cold war of the 1960s to translate Russian scien-
tific and technical documents, and later has been used by
the European Union to work with documents in the union’s
various languages. Today SYSTRAN is the engine behind
such popular Web sites from AltaVista (Babel Fish) and
Google Language Tools. These services can translate text or
whole Web pages (with varying degrees of success).

Simple handheld translation devices with phrases com-
monly needed by travelers are also available. More sophis-
ticated devices (see speech recognition and synthesis)
that can facilitate two-way conversations are also being
developed for applications such as military interrogation
and civil affairs.

Further Reading
Babel Fish (AltaVista). Available online. URL: http://babelfish.

altavista.com/. Accessed September 25, 2007.
Hutchins, W. John. “Compendium of Translation Software.” June

2007. Available online. URL: http://www.hutchinsweb.me.uk/
Compendium.htm. Accessed September 25, 2007.

Hutchins, W. John and Harold L. Somers. Introduction to Machine
Translation. Burlington, Mass.: Academic Press, 1992.

Trujillo, Arturo. Translation Engines: Techniques for Machine Trans-
lation. New York: Springer, 1999.

Lanier, Jaron
(1960– )
American
Computer Scientist, Inventor

Jaron Lanier pioneered the technology of virtual reality that
is gradually having an impact on areas as diverse as enter-
tainment, education, and even medicine.

Lanier was born on May 3, 1960, in New York City,
although the family would soon move to Las Cruces, New
Mexico. Lanier’s father was a cubist painter and science
writer and his mother a concert pianist (she died when the
boy was nine years old). Living in a remote area, the preco-
cious Lanier learned to play a large variety of exotic musical
instruments and created his own science projects.

Lanier dropped out of high school, but fortunately sym-
pathetic officials at New Mexico State University let him
take classes there when he was only 14 years old. Lanier
even received a grant from the National Science Foundation
to let him pursue his research projects. Although fascinated
by computers (and their possibilities as an aid to music

and other expressive arts), Lanier had a sporadic academic
career, taking him to Bard College, where he dropped out of
their computer music program.

However, by the mid-1980s Lanier had gotten back into
computing by creating sound effects and music for Atari
video games and writing a commercially successful game
of his own called Moondust. He developed a reputation as a
rising star in the new world of game design.

Lanier then began to experiment with ways to immerse
the player more fully in the game experience. Using money
from game royalties, he joined with a number of experi-
menters and built a workshop in his house. One of these
colleagues was Tom Zimmermann, who had designed a
“data glove” that could send commands to a computer based
on hand and finger positions.

As the 1980s progressed, investors became increasingly
interested in the new technology, and Lanier was able to
expand his operation considerably, working on projects for
NASA, Apple Computers, Pacific Bell, Matsushita, and other
companies.

Lanier then coined the term “virtual reality” to
describe the experience created by this emerging tech-
nology. A user wearing a special helmet has a computer-
generated scene projected such that the user appears to be
“within” the world created by the software. The world is
an interactive one: Using gloves and body sensors, when
the user walks in a particular direction the world shifts
just as it would when walking in the “real” world. The
gloves appear as the user’s “hands” in the virtual world,
and objects in that world can be grasped and manipulated
much like real objects. In effect, the user has been trans-
ported to a different world created by the VR software
(see virtual reality).

Virtual reality technology had existed in some form long
before Lanier; it perhaps traces its roots back to the first
mechanical flight simulators built during World War II.
However, existing systems such as those used by NASA and
the Air Force were extremely expensive, requiring powerful
mainframe computers. They also lacked flexibility—each
system was built for one particular purpose, and the tech-
nology was not readily transferable to new applications.
Lanier’s essential achievement was to use the new, inex-
pensive computer technology of the 1980s to build versatile
software and hardware that could be used to create an infi-
nite variety of virtual worlds.

Unfortunately the hippylike Lanier (self-described as
a “Rastafarian hobbit” because of his dreadlocks) did not
mesh well with the big business world into which his initial
success had catapulted him. Lanier had to juggle numerous
simultaneous projects as well as becoming embroiled in
disputes over his patents for VR technology. In 1992 Lanier
lost control of his patents to a group of French investors
whose loans to VPL Research had not been paid, and he
was forced out of the company he had founded.

During the 1990s Lanier founded several new compa-
nies to develop various types of VR applications. These
include the Sausalito, California, software company
Domain Simulations and the San Carlos, California, com-
pany New Leaf Systems, which specialized in medical

Lanier, Jaron        271

applications for VR technology. Another company, New
York-based Original Ventures, focuses on VR-based enter-
tainment systems.

From 1997 to 2001, Lanier was chief scientist of
Advanced Network and Services, a developer of the Inter-
net2 (advanced high-speed networking) project, as well as
serving as lead scientist of the National Tele-Immersion
Initiative, a coalition of universities developing applications
for Internet2. From 2001 to 2004 Lanier was also a visit-
ing scientist at Silicon Graphics, Inc., doing fundamental
research on tele-immersion and telepresence. Since 2004
Lanier has been a fellow at the International Computer Sci-
ence Institute at UC Berkeley and since 2006, an interdisci-
plinary scholar-in-residence at Berkeley.

Futurist and Technology Pundit
Lanier’s humanistic and artistic background is reflected
in the stance he has taken in recent years toward the tech-
nology he helped create. He has a column called “Jaron’s
World” in Discover magazine and regularly contributes
to other publications such as Edge. In his writings Lanier
has criticized the tendency to see the Internet as some
sort of collective intelligence, warning that the individ-
ual might be in danger of being overwhelmed (see flash
mob). Lanier has also coined the term “cybernetic total-
ism” to refer to the tendency to put the constructs of the
computer world ahead of the full dimensionality of human
experience.

Besides writing and lecturing on virtual reality, Lanier is
active as both a musician and an artist. In 1994 he released
his CD Instruments of Change. Lanier’s paintings and draw-
ings have also been exhibited in a number of galleries.

Further Reading
Cave, Damien. “Artificial Stupidity: Virtual Reality Pioneer

Jaron Lanier Says Computers Are Too Dumb to Take Over
the World.” Salon.com, Oct. 4, 2000. Available online. URL:
http://archive.salon.com/tech/feature/2000/10/04/lanier/
index.html. Accessed February 6, 2008.

“Homepage of Jaron Lanier.” Available online. URL: http://www.
jaronlanier.com/. Accessed September 25, 2007.

Lanier, Jaron. “The Hazards of the New Online Collectivism.”
Edge. Available online. URL: http://www.edge.org/3rd_
culture/lanier06/lanier06_index.html. Accessed September
25, 2007.

———. “One Half of a Manifesto.” Available online. URL: www.
edge.org/3rd_culture/lanier/lanier_index.html. Accessed Sep-
tember 25, 2007.

Steffen, Alan. “What Keeps Jaron Lanier Awake at Night: Artificial
Intelligence, Cybernetic Totalism, and the Lack of Common
Sense.” Whole Earth (Spring 2003): 24–29. Available online.
URL: http://www.wholeearthmag.com/ArticleBin/111-5.pdf.
Accessed September 25, 2007.

laptop computer
A laptop is a portable computer that contains all compo-
nents (keyboard, display, motherboard, drives, etc.) in a
single (usually hinged) case. In general, a laptop can per-
form the same tasks as a desktop computer, though not nec-
essarily as quickly. (Laptops that have the full power and

capacity of a desktop are sometimes called “desktop replace-
ments,” while smaller, lighter, but less powerful machines
are called “notebooks.” For even smaller or lighter comput-
ers, see pda and tablet pc.)

Typical Components
A typical laptop computer in 2007 has the following com-
ponents:

• � a processor such as Intel Core 2 duo or a version (such
as Pentium M) optimized for wireless and lower-power
consumption

• � one or two gigabytes (GB) of system memory

• � hard drive (80 to 160 GB capacity)

• � combo CD/DVD optical drive with read-and-write
capabilities

• � LCD flat panel display (widescreen format) from 14
inches to 17 inches

• � graphics card or integrated graphics

• � wireless networking

• � keyboard with touch pad and/or pointing stick (to
simulate the mouse)

• � six- or nine-cell lithium ion or lithium polymer battery

Modern laptops are well supplied with USB and network
(Ethernet) ports. Many include readers for memory cards
(such as SD cards). Additional capabilities can be provided
by means of PC cards or Express cards. Most laptops run
the same operating systems (such as Windows Vista or Mac
OS X) as their desktop counterparts.

While portable and convenient, laptops do have some
disadvantages compared to desktops: They cost more for a
given level of performance; they are more difficult to repair;
and they are more attractive to thieves.

A traditional laptop computer with a clamshell case. Laptops are
now differentiated into lighter, more compact “notebooks” and
somewhat larger and heavier “desktop replacement” units. Mean-
while, smaller hand held devices can replace laptops for some
functions.

272        laptop computer

Development and Trends
The idea of small, portable personal computers goes back
to the Dynabook concept developed at Xerox PARC in the
1970s (see also Kay, Alan). The first “portable” computers
were often more aptly described as “luggable,” having more
the form factor of a suitcase than that of today’s laptops.
Nevertheless, the first commercially successful portable
computers, the Osborne 1 (1981) and the Compaq Portable
(1983), began to show the feasibility of portable comput-
ing. (At the other end of the size spectrum, the successful
Radio Shack TRS-80 Model 100 established the utility of
the notebook-sized computer.) In the 1980s true laptops
from companies such as Zenith and Toshiba with the famil-
iar clamshell design emerged, running PC-compatible MS-
DOS and, later, Windows applications. (Apple entered the
market with the Macintosh Portable in 1989, followed by
the PowerBook series, introduced in 1991.)

Most improvements in laptops in the 1990s and beyond
have been incremental (more storage, sharper displays,
more efficient batteries, and so on). Wireless (see Blue-
tooth and wireless and mobile computing) connectiv-
ity is now standard. Laptop development has bifurcated
somewhat, with higher-end machines rivaling desktops for
media, gaming, and other applications, while notebooks
often become lighter, sometimes forgoing optical and even
hard drives in favor of network connectivity and flash mem-
ory storage. Specially “ruggedized” laptops are used by the
military on battlefields and in other harsh environments.
Meanwhile, PDAs and smart phones capable of e-mail, Web
browsing, and light data entry offer an alternative to laptops
for people who are on the road frequently.

Further Reading
Gookin, Dan. Laptops for Dummies. 2nd ed. Hoboken, N.J.: Wiley,

2006.
Laptop Magazine. Available online. URL: http://www.laptopmag.

com/index.htm. Accessed September 26, 2007.
Laptops [resources and reviews]. Available online. URL: http://

reviews.cnet.com/laptops.html. Accessed September 26, 2007.
Miller, Michael. Your First Notebook PC. Indianapolis: Que, 2008.
Sandler, Corey. Upgrading & Fixing Laptops for Dummies. India-

napolis: Wiley, 2006.
Wilson, James E. Vintage Laptop Computers: First Decade, 1980–89.

Denver, Colo.: Outskirts Press, 2006.

law enforcement and computers
Besides his superb reasoning skills, perhaps Sherlock Hol-
mes’s most important asset was his extensive collection of
notes that provided a cross-referenced index to London’s
criminal underworld. Today computer applications have
given law enforcers investigative, forensic, communication,
tactical, and management tools that Holmes and his rivals
in the old Scotland Yard could not have imagined.

For the officer on the street, the ability to obtain auto
license, stolen vehicle, or outstanding warrant information in
near real-time provides a much better picture of the potential
risk in making stops or arrests. Other “tactical” technology
includes new devices for homing in on gunshots and the
growing use of remote-controlled robots for bomb disposal

and hostage negotiations (see robotics). A more controver-
sial area is the use of CCTV (closed-circuit TV) surveillance
cameras in public places, advocated as a crime deterrent but
raising concerns about privacy and intrusive social control.

If a criminal case is opened, a variety of software appli-
cations come into play. These include case management
programs for keeping track of evidence and witness inter-
views. Evidence must be properly logged at all times to
maintain a legally defensible chain of custody against accu-
sations of tampering.

The investigation of a crime involves many com-
puterized forensic aids. Besides automated matching of
fingerprints and, increasingly other physical data (see bio-
metrics), records can also be searched to detect patterns
such as crimes with related modus operandi (MOs). The
ability to access information from other jurisdictions and
to interface federal, state, and local agencies is also very
important, particularly for cases involving organized crime,
interstate fugitives, and terrorism.

Since data stored on computers is an increasingly preva-
lent form of evidence, law enforcement specialists must also
employ tools to recover data that may have been partially
erased or encrypted by suspects (see computer forensics).
Computers can be more active instruments of crime (see
computer crime and security). Such traditional tools as
wiretapping must be adapted to new forms of communica-
tion such as e-mail while addressing concerns about civil
liberties and privacy (see privacy in the digital age).

High-level planning for law enforcement budgets and
priorities requires access to detailed crime statistics. At the
national level, the Justice Department’s Bureau of Justice
Statistics is a definitive information source. Law enforc-
ers, like other professionals, increasingly use Web sites,
chat areas, and e-mail lists to discuss computer-related law
enforcement issues with colleagues.

Law enforcement agencies also use the same “bread and
butter” software needed by any substantial organization,
including word processing, spreadsheet, payroll, and other
accounting programs.

Further Reading
Boba, Rachel. Crime Analysis and Crime Mapping. Thousand Oaks,

Calif.: Sage Publications, 2005.
Chu, James. Law Enforcement Information Technology: A Manage-

rial, Operational, and Practitioner Guide. Grand Rapids, Mich.:
CRC Press, 2001.

Foster, Raymond E. Police Technology. Upper Saddle River, N.J.:
Prentice Hall, 2004.

Goold, Benjamin J. CCTV and Policing: Public Area Surveillance and
Police Practices in Britain. New York: Oxford University Press,
2004.

Gottschalk, Petter. Knowledge Management Systems in Law Enforce-
ment: Technologies and Techniques. Hershey, Pa.: Idea Group
Publishing, 2006.

Pattvina, April, ed. Information Technology and the Criminal Justice
System. Thousand Oaks, Calif.: Sage Publications, 2004.

legal software
Modern law offices rely heavily on software to manage
cases and records, to perform legal research, and to prepare

legal software        273

pleadings and other documents. Many of these functions
can be included in a legal software suite such as Amicus
Attorney. Some typical law office management modules
include the following:

• � client file, which provides links to all events, tasks,
time and billing, and so on involving each client

• � general contact file with contact information for other
people the office deals with regularly (such as court
clerks)

• � calendar for managing appointments, meetings, and
deadlines

• � time tracking and billing

• � document management (often interfaces with suites
such as Microsoft Office)

Research Tools
Legal research is easier (but in some ways more complex)
than in the days of going through dusty files in the local
courthouse or poring through a law library. The most used
online database for legal research is LexisNexis, which con-
tains two parts: Lexis (focusing on legal documents) and
Nexis (for business research). Some of the most important
Lexis content is:

• � text of all U.S. statutes and laws

• � U.S. published case opinions

• � public records including property records, liens, and
licenses

• � laws and opinions for many non-U.S. jurisdictions

• � articles from law journals

A free service called LexisOne provides a subset of
U.S. legal decisions. Lexis also has a File & Serve service
that allows for documents to be filed with courts or served
upon participating firms. Nexis complements Lexis for
many investigations because it offers news articles, par-
ticularly those relating to business activities. Other com-
mercial legal information services include Westlaw and
Loislaw. A free compilation of legal information that can
provide an alternative for researching laws and cases is
provided by the Legal Information Institute at Cornell
University.

Finding citations or news is only part of the task of
the legal researcher. The organization and management
of all the data needed for any legal specialty is challeng-
ing. Printed reference books are cumbersome and can
be quickly outdated. Recently a number of legal writers
have been using wikis (see wikis and Wikipedia) as a
tool for collaboration in creating online legal references.
For example, the Internet Law Treatise sponsored by the
Electronic Frontier Foundation covers a variety of legal
issues relating to the use of the Internet. The Legal Infor-
mation Institute at Cornell Law School is collaborating
with experts to create a complete legal dictionary and
encyclopedia in wiki form.

Further Reading
Bernstein, Paul. “Winning Software for Winning Cases.” Trial, 37

(November 1, 2001): 82 ff.
Delaney, Stephanie. Electronic Legal Research: An Integrated

Approach. Albany, N.Y.: Delmar (Thomson), 2002.
Internet Law Treatise (Electronic Frontier Foundation.) Available

online. URL: http://ilt.eff.org/index.php/Table_of_Contents.
Accessed September 26, 2007.

Law Office Computing Magazine. Available online. URL: http://
www.lawofficecomputing.com. Accessed September 26, 2007.

LexisNexis. Available online. URL: http://www.lexisnexis.com.
Accessed September 26, 2007.

Payne Consulting. Microsoft Word 2002 for Law Firms. Roseville,
Calif.: Prima Publishing, 2001.

Wex (Legal Information Institute at Cornell Law School). Avail-
able online. URL: http://www.law.cornell.edu/wex/index.
php/Main_Page. Accessed September 26, 2007.

Lessig, Lawrence
(1961– )
American
Law Professor and Writer

Law professor Lawrence Lessig is a pioneer in develop-
ing legal theories that deal with some of the most diffi-
cult issues emerging in the online world (see, for example,
intellectual property and computing).

Lessig was born on June 3, 1961, in Rapid City, South
Dakota, but grew up in Williamsport, Pennsylvania. As a
student at Yale Law School in the 1970s, Lessig, though pre-
viously president of Pennsylvania’s Teenage Republicans,
became interested in liberal values following the Water-
gate scandal and his exposure to authoritarian communist
regimes during a summer trip to Eastern Europe.

After graduating from Yale, Lessig clerked for U.S.
Supreme Court Justice Antonin Scalia, an articulate con-
servative with whom he could debate a variety of issues.
When he began to teach law himself at the University of
Chicago in 1991, he also began to incorporate issues aris-
ing in cyberspace in his lectures. In one article Lessig criti-
cized the Communications Decency Act for forcing sites
to block access to adult pornography in order to protect
children. Eventually the Supreme Court agreed and over-
turned the law.

In the late 1990s Lessig served as a special master to the
Supreme Court in the Microsoft antitrust case. This time
Lessig sided with the government, agreeing that Microsoft
had used its near monopoly in operating systems to bundle
its own Web browser to the detriment of rival Netscape.

The Creative Commons
In recent years Lessig has undertaken to promote a more
comprehensive set of legal principles aimed at protecting
privacy, expression, and other fundamental rights in cyber-
space. Many of the early and more radical Internet advo-
cates saw the new medium as a libertarian or anarchist
“free zone” that needed to be protected from any govern-
ment interference. Lessig, however, has argued in his books
Code and Other Laws of Cyberspace (2000) and Code Ver-
sion 2.0 (2006) that the online world needs a combination

274        Lessig, Lawrence

of technical architecture, private initiative, and reasonable
regulation.

In his book Free Culture (2004) Lessig celebrates the cre-
ativity and freedom of expression of the Internet but warns
that the Net may soon be “locked down” by the power of
the corporate media. Lessig is therefore a strong supporter
of “net neutrality,” the proposed policy that would prohibit
Internet service providers from charging different rates for
different content providers or types of content (see net
neutrality). Without this policy, advocates believe that
large corporations will gradually squeeze smaller, indepen-
dent voices off the Web by making it harder for them to
access users. In effect, what had been a shared “commons”
would become property bounded by fences, much as com-
mon pastures were once turned into private farms.

According to Lessig, another obstacle to a vigorous
online creative culture is the present copyright system.
Under this system there is a presumption that permission
is required for most usage of a work. This makes it difficult
for creators to confidently use all the tools for working with
existing content to create new expressions (see mashups).

To protect free expression, Lessig founded an organiza-
tion called Creative Commons in 2001, which has devel-
oped a new kind of license. Under this license the creator
can specify what users can do with the work—copy it, cre-
ate derivative works, and so on. Thus far Creative Commons
licenses have mainly been applied to online works such as
images shared on photo-sharing sites. Because applying for
a Creative Commons license includes providing descriptors
(metadata) about the work, people looking for material to
be used in their own work can easily determine what they
are allowed to do with a given work.

In 1997 Lessig left his professorship at the University
of Chicago Law School to become a professor at Harvard
Law School (1997–2000), and then Stanford (2000– ).
Lessig has been a guest lecturer at many universities and
other institutions around the world. He also serves as a
board member for many important cyberspace institutions,
including the Electronic Frontier Foundation and Creative
Commons.

In early 2008 Lessig announced that he would take on
a challenge perhaps even more daunting than preserving
Internet freedom—the battle against what he sees as perva-
sive corruption in the political system. He has proposed the
creation of a grassroots movement that would encourage
all incumbents and candidates to pledge to stop accepting
contributions from lobbyists, to stop putting special inter-
est “pork” in legislation, and to conduct publicly financed
campaigns.

Lessig has received a number of academic awards as well
at the Editor’s Choice award from Linux Journal (2002), was
named one of Fifty Top Innovators by Scientific American
(2002), and received the Free Software Foundation Award
(2003).

Further Reading
Creative Commons. Available online. URL: http://creativecommons.

org/. Accessed September 26, 2007.
Lessig, Lawrence. Code: Version 2.0 New York: Basic Books, 2006.

———. Free Culture: The Nature and Future of Creativity. New York:
Penguin Books, 2004.

Lessig blog. Available online. URL: http://www.lessig.org/.
Accessed September 26, 2007.

O’Brien, Chris. “Stanford Law Prof Wants Society to Clean Up
Its Act.” San Jose Mercury News, September 9, 2007. Avail-
able online. URL: http://www.mercurynews.com/business/
ci_6843973. Accessed September 26, 2007.

libraries and computing
The library is the institution traditionally charged with the
collection and distribution of humanity’s collective heritage
of written information. It is thus not surprising that the
development of modern information technology has meant
that libraries have had to undergo pervasive changes in
their practices and responsibilities.

One of the earliest applications for automation in librar-
ies was cataloging. By the 1960s, the ever-increasing volume
of books and serials (periodicals) published each year was
placing a growing burden on the manual cataloging system.
Under this system, catalogers at large libraries (and particu-
larly the Library of Congress) prepared a catalog record for
each new publication. These records were distributed by the
Library of Congress in the form of catalog card proof slips.
These, as well as compiled card images from other libraries,
could be used by each library to prepare catalog records for
its own holdings.

As mid-size computers became more affordable, it became
practicable for at least large library systems to put their cata-
log records on-line. In 1968, the MARC (Machine Readable
Cataloging) standard was first promulgated. A MARC record
uses specific, numbered fields to describe the elements of
a book, such as its catalog card number, main entry, title,
imprint, collation (pagination), and subject headings.

At first, MARC records were distributed mainly on mag-
netic tape in place of card slips. However, by the late 1970s
large on-line cataloging systems such as OCLC (On-line
College Library Center) and RLIN (Research Library Infor-
mation Network) were enabling libraries to search for and
download cataloging information in real time, and in turn
upload their own original catalog records to the shared
database. This greatly reduced redundant cataloging effort.
If a library receives a new book, a library assistant can
search for a preexisting catalog record. The record can then
be easily modified for local use, such as by adding a call
number and holdings information. The problem of authori-
ties (standardized entries for names) is also made more
manageable by being able to check entries on-line.

By the 1980s, the next logical step was under way: The
card catalog began to be replaced by a wholly electronic
catalog, enabling library patrons to search the catalog at
a terminal. Besides saving money, the on-line catalog also
offers researchers many more ways to search for materials:
for example, they can use keywords and not rely only on
titles and subject headings.

Along with cataloging, libraries began to automate their
circulation and acquisitions systems as well. As these sys-
tems become integrated, libraries can both monitor the
demand (finding materials that are in heavy use and need

libraries and computing        275

additional copies) and speed up the supply, by integrating
the acquisitions system with ordering systems maintained
by book distributors.

However, while most librarians consider the computer to
be a boon to their profession, there are criticisms and fur-
ther challenges. Nicholson Baker, for example, has decried
the abandonment of information in card catalogs that was
not carried over into electronic form. Baker has also criti-
cized the replacement of bound archives of periodicals with
microfilm, which is often of poor quality and prone to dete-
rioration. The storage of publications on computer media
has also met with concerns that the physical durability
of the media has not been sufficiently investigated, and
that in a rapidly changing technological world data formats
can become obsolete, no longer supported, and potentially
unreadable (see also backup and archive systems).

The growth of the World Wide Web has also presented
libraries with both opportunities and challenges. Catalog-
ers and reference librarians are struggling to find new ways
to categorize and retrieve the always-changing and ephem-
eral content of Web pages. Meanwhile, librarians have faced
not only funding and training issues in providing expanded
public Web access in libraries, but have also had to deal
with demands that Web content be filtered to protect chil-
dren from objectionable content. (The American Library
Association opposes such filtering as a form of censorship.)

Besides being a source of Internet connectivity for stu-
dents and people who cannot afford their own computer,
today’s libraries provide a wide variety of media products,
including audio CDs, audio and video tapes, and DVDs.
Increasingly, though, modern librarians are moving away
from the idea of a library as a repository of resources and
are placing greater emphasis on providing guidance and
starting points for users who are seeking to navigate the
often-overwhelming Web. Although they face many chal-
lenges, libraries seem to be succeeding in the task of rein-
venting themselves.

Further Reading
American Library Association. Office for Information Technol-

ogy Policy. Available online. URL: http://www.ala.org/oitp.
Accessed August 13, 2007.

Baker, Nicholson. Double Fold: Libraries and the Assault on Paper.
New York: Vintage Books, 2002.

Burke, John J. Neal-Schuman Library Technology Companion: A
Basic Guide for Library Staff. 2nd ed. New York: Neal Schuman
Publications, 2006.

Hanson, Kathlene, and H. Frank Cervone. Using Interactive Tech-
nologies in Libraries (LITA Guide). New York: Neal Schuman
Publishers, 2007.

Library and Information Technology Association. Available online.
URL: http://www.lita.org/ala/lita/litahome.cfm. Accessed
August 13, 2007.

library, program
Programming is a labor-intensive activity, especially when
the time required to test, debug, and verify the operation
of the program code is included. It is not surprising, then,
that even the earliest programmers sought ways to reuse
the code for commonly needed operations such as data

input, sorting, calculation, and formatting rather than
writing it from scratch. If a well-organized collection or
library of program routines is available, developers of
new applications can concentrate on the aspects particu-
lar to the current problem and use the library code for
routine operations.

In the mainframe world, the use of program libraries
was also mandated by the limited amount of main memory
available. A data processing task was often accomplished by
retrieving a series of card decks or tapes from the library
and mounting them in turn. Intermediate results could be
passed between programs under the control of a special
script (see job control language).

Some programming languages, notably C and its descen-
dants C++ and Java, are designed to provide a small core of
essential features (such as control structures, data types,
and operators). Other functions, such as math routines, data
I/O (input/output), and formatting are provided in library
files that are invoked by programs that need particular fea-
tures. There are several advantages to this approach. The

To use a program library, the programmer includes the appropriate
header file in the source code. After the source code is compiled, the
linker links it to the compiled object code file corresponding to the
header file, creating a single executable file.

276        library, program

core language is kept simple because it doesn’t have to deal
with issues such as the actual storage of data in memory
that are dependent on the particular architecture of each
type of machine. To “port” the language to a new machine,
specialists in its architecture can implement the standard
library functions. In addition to the standard libraries
included with the compiler, programmers are also free to
create additional libraries to support particular applications
such as graphics.

With a traditional library the library routines invoked
in the source code are included in the final executable file.
With most modern operating systems, however, many pro-
grams are active in memory at the same time (see mul-
titasking). Storing the same commonly used routines
(such as standard I/O) with each program wastes memory.
Therefore, operating systems such as Microsoft Windows
use dynamic linking. This means that instead of compiling
the library code into the program to create the executable
file, the program links to the library at execution time.
If another program is using the library, the new program
links to the same copy in memory rather than having to
store another copy. (Dynamically linked libraries [DLLs]
include special code to keep track of the invocation of the
library functions by each separate program.)

Further Reading
Josuttis, Nicolai M. The C++ Standard Library: A Tutorial and Refer-

ence. Upper Saddle River, N.J.: Addison-Wesley, 1999.
Loosemore, Sandra, et al. GNU C Library Application Fundamen-

tals. Boston: GNU Press, 2004.
———. et al. GNU C Library System & Network Applications. Bos-

ton: GNU Press, 2004.
Lundh, Fredrik. Python Standard Library. Sebastapol, Calif.:

O’Reilly, 2001.

Licklider, Joseph Carl Robnett
(1915–1990)
American
Computer Scientist, Psychologist

Most of the early computer pioneers came from back-
grounds in mathematics or engineering. This naturally led
them to focus on the computer as a tool for computation and
information processing. Joseph Licklider, however, brought
an extensive background in psychology to the problem of
designing interactive computer systems that could provide
better communication and access to information for users.

Licklider was born on March 11, 1915, in St. Louis, Mis-
souri. During the 1930s, he attended Washington University
in St. Louis, earning B.A. degrees in psychology, mathemat-
ics, and physics. He then concentrated on psychology for
his graduate studies, earning an M.A. at Washington Uni-
versity and then receiving his Ph.D. from the University of
Rochester in 1942.

While at Rochester, Licklider participated in a study
group led by Norbert Wiener, pioneer in the new field of
cybernetics, in the late 1940s. This brought him into con-
tact with emerging computer technology and its exciting
prospects for the future. In turn, Licklider’s psychology
background allowed him a perspective quite different from
the mathematical and engineering background shared by
most early computer pioneers.

Cybernetics emphasized the computer as a system that
could interact in complex ways with the environment. Lick-
lider added an interest in human-computer interaction and
communication. He began to see the computer as a sort of
“amplifier” for the human mind. He believed that humans
and computers could work together to solve problems that
neither could successfully tackle alone. The human could
supply imagination and intuition, while the computer pro-
vided computational “muscle.” Ultimately, according to the
title of his influential paper, it might be possible to achieve
a true “Man-Computer Symbiosis.”

During the 1950s, Licklider taught psychology at the
Massachusetts Institute of Technology, hoping eventually to
establish a full-fledged psychology department that would
elevate the concern for what engineers call “human factors.”
From 1957 to 1962 he also served in the private sector as a
vice president for engineering psychology at Bolt Beranek
and Newman, the company that would become famous for
pioneering networking technology.

In 1962, the federal Advanced Research Projects Agency
(ARPA) appointed Licklider to head a new office focusing
on leading-edge development in computer science. Lick-
lider soon brought together research groups that included
in their leadership three of the leading pioneers in artifi-
cial intelligence: John McCarthy, Marvin Minsky, and Allen
Newell (see artificial intelligence; McCarthy, John;
and Minsky, Marvin). By promoting university access to
government funding, Licklider also fueled the growth of
computer science graduate programs at major universities
such as Carnegie Mellon University, University of Califor-
nia at Berkeley, Stanford University, and the Massachusetts
Institute of Technology.

Dynamic linking is an alternative approach to library use. The pro-
gram is compiled with a reference to the library, but it is not linked
to the library code until the program is actually running. Since sev-
eral different running programs can link to the same dynamic link
library (DLL), memory is saved.

Licklider, Joseph Carl Robnett        277

In his research activities, Licklider focused his efforts
not so much on AI as on the development of interactive
computer systems that could promote his vision of human-
computer symbiosis. This included time-sharing systems,
where many users could share a large computer system,
and networks that would allow users on different comput-
ers to communicate with one another. He believed that the
cooperative efforts of researchers and programmers could
develop complex programs more quickly than teams limited
to a single agency or corporation (see also open-source
movement).

Licklider’s efforts to focus ARPA’s resources on net-
working and human-computer interaction would provide
the resources and training that would, in the late 1960s,
begin the development of what would become the Internet.
Licklider spent the last two decades of his career teaching
at MIT. Before his death in 1990, he presciently predicted
that by 2000 people around the world would be linked in a
global computer network.

Further Reading
“Internet Pioneers: J. C. R. Licklider.” Available online. URL: http://

www.ibiblio.org/pioneers/licklider.html. Accessed August 13,
2007.

Licklider, J. C. R. “Man-Computer Symbiosis.” IRE Transactions on
Human Factors in Electronics, vol. HFE-1, March 4–11, 1960.
Available online. URL: http://www.memex.org/licklider.pdf.
Accessed August 13, 2007.

Licklider, J. C. R., and Robert W. Taylor. “The Computer as a
Communication Device.” Science and Technology, April, 1968.
Available online. URL: http://gatekeeper.dec.com/pub/DEC/
SRC/publications/taylor/licklider-taylor.pdf. Accessed August
13, 2007.

Waldrop, M. Mitchell. The Dream Machine: J. C. Licklider and the
Revolution That Made Computing Personal. New York: Viking,
2001.

linguistics and computing
The study of human language and advances in computer
science have been closely intertwined. The field of compu-
tational linguistics uses computer systems to investigate the
structure of natural language. In turn, the area of natural
language processing involves the creation of software that
can apply linguistic principles to process written or spo-
ken human language (see natural language processing,
language translation software, and speech recogni-
tion and synthesis).

As simple low-level instruction codes began to evolve
into complex high-level programming language, language
designers had to struggle to give precise, complete, and
unambiguous definitions for the language’s structure. This
is essential for language users to be confident that their
programs will yield the desired results. It is also important
that developers trying to implement a language on different
hardware platforms and operating systems have rigorous
language specifications so the compiler on the new system
will produce programs equivalent to those on the system
where the language was first developed.

When computer scientists turned to linguistics for help
in defining programming languages, they found the work

of Noam Chomsky, perhaps the 20th century’s preeminent
linguist, to be particularly helpful. Chomsky developed a
concept of formal language in which grammar could be
specified as a series of rules built up a level at a time.
For example, at the lowest level, there is an alphabet from
which recognized words are generated. Next there are rules
for generating phrases (such as a noun phrase consisting of
a noun with optional adjectives and a verb phrase consist-
ing of a verb with optional adverbs). In turn, phrases can be
combined to form sentences.

Because grammatical structures are created by applying
rules to strings of symbols (words), the result is called a
generative grammar. Chomsky sought to apply this concept
of a “transformational generative grammar” as a universal
structure applicable to all human languages. Meanwhile,
computer scientists could use formal grammar rules to
define the valid statements in programming languages (see
also Backus-Naur form). This in turn allows a compiler
parser to break down high-level language statements and
convert them into low-level instruction codes that can actu-
ally be executed by the CPU (see assembler and parsing).

As new languages and more powerful hardware gave
computers increased power to deal with complex systems,
computer scientists (and artificial intelligence researchers in
particular) applied themselves to the problem of computer
processing of human languages. Success in this field might
lead not only to computer systems that humans could commu-
nicate with far more naturally, but also to automatic machine
translation that could, for example, allow an English speaker
and a Chinese speaker to communicate via e-mail.

However, developers of natural language systems face
formidable challenges. Most fundamentally, while comput-
ers process symbols using a restrictive, deterministic proce-
dure that Chomsky classifies as finite state (see finite state
machine), human languages must be understood using
the more complex transformational grammar. The lan-
guage processing system must therefore have rules that can
cope with the often ambiguous structure of actual human
speech. (For example, does the word fly in a given sentence
mean an insect, a baseball batted high in the air, or perhaps
a zippered opening in one’s trousers?)

One way to limit the problem is to deal with a restricted
realm of discourse. For example, a natural language “front
end” to a database might assume that all input nouns refer
to entities that exist in the database, such as employees,
positions, salaries, and so on. It then becomes a matter of
translating a query such as “How many employees in the
human resources department make more than $50,000 a
year” into something like:

find quantity (employee.department = “human
resources”) and (employee.salary > 50,000)

Understanding unrestricted text such as that found
in newspaper stories is much more complex, since fewer
assumptions can be made about the subject of the discourse.
Here the AI concept of frames can prove useful. A frame is
a sort of script that describes the elements of life’s com-
mon events or transactions. For example, suppose a news
story begins “Joe X was arrested yesterday for the murder

278        linguistics and computing

of Sarah Y. He was arraigned today and bail was denied.” A
system reading the story might see “arrested” and see that it
links to an internal frame called “crime.” The crime frame
might have slots for “accused person,” “charge,” “victim,”
and “custodial status.” The system could then interpret the
story as indicating that Joe is the accused person, murder is
the charge, Sarah is the victim. For the custodial status the
system might look to another frame called “arraignment”
that includes the rule that if bail is allowed and paid, the
person’s status is “released until trial” while if the bail is
either not allowed or not paid, the status is “in custody.”

Computational linguistics and natural language pro-
cessing are likely to be of increasing interest in years to
come. With the World Wide Web bringing the world’s lan-
guages into more pervasive contact, the ability to trans-
late or automatically summarize Web pages and e-mail will
be very marketable. It is also likely that advanced, secret
research in the field is also being carried out by organiza-
tions such as the National Security Agency (NSA), which
monitor worldwide communications.

Further Reading
Hausser, Roland. Foundations of Computational Linguistics: Human-

Computer Communication in Natural Language. 2nd ed. New
York: Springer, 2001.

Lawler, John. Using Computers in Linguistics: A Practical Guide.
New York: Routledge, 1998.

“Linguistics, Natural Language, and Computational Linguistics
Meta-Index.” Stanford University Natural Language Process-
ing. Available online. URL: http://www-nlp.stanford.edu/
links/linguistics.html. Accessed August 13, 2007.

Mitkov, Ruslan. The Oxford Handbook of Computational Linguistics.
New York: Oxford University Press, 2005.

Linux
Linux is an increasingly popular alternative to proprietary
operating systems. Its development sprang from two sources.
First was the creation of open-source versions of UNIX utili-
ties (see unix) by maverick programmer Richard Stallman
as part of the GNU (“Gnu’s not UNIX”) project during the
1980s. Although these tools were useful, the kernel, or basic
set of operating system functions, was still missing (see ker-
nel). Starting in 1991, another creative programmer, Linus
Torvalds, began to release open-source versions of the UNIX
kernel (see Torvalds, Linus). The combination of the ker-
nel and utilities became known as Linux (a combination
of Linus and UNIX), though Stallman and his supporters
believe that GNU/Linux is a more accurate name.

Development and Distributions
As an open-source product, Linux is continually being
developed by a community of thousands of loosely orga-
nized programmers. (The further development of the kernel
itself is more closely supervised by Torvalds and a system
of review that he set up.) New versions of the Linux kernel
are released frequently, including support (drivers) for new
devices and refinements in other features.

A distribution or “distro” is a package consisting of a
Linux kernel, standard utilities, and a variety of other soft-
ware such as office and graphics programs, Web-related

programs, and so on. Some distributions such as Novell and
Red Hat are geared toward business use and provide fee-
based support and consulting (Red Hat spun off Fedora as a
free user-supported distribution). One of the most popular
distributions as of the mid-2000s is Ubuntu. Named for
an African word meaning “humanity toward others” and
funded by millionaire Mark Shuttleworth, Ubuntu com-
bines a business-oriented component (through Canonical
Ltd.) and a large and enthusiastic community of desktop
users from all walks of life.

Using Linux
Linux is very versatile and probably runs on more kinds
of devices than any other operating system. These include
supercomputer clusters, Web and file servers, desktops
(including PCs designed for Windows and Macs), laptops,
PDAs, and even a few smart phones. The Linux program-
mer has many programming languages and environments
to choose from, including C++, Java, Perl, PHP, and Ruby.
Thousands of open-source programs have been written for
or ported to Linux, including OpenOffice.org (a suite com-
parable to Microsoft Office), databases (such as MySQL),
and Apache, the most popular Web server.

Although Linux rapidly gained a significant share in server
applications, early versions of Linux for ordinary desktop

The basic components of a Linux system. A distribution, or “dis-
tro,” combines the latest version of the common kernel with a win-
dow manager, selected software, and, perhaps, custom features.

Linux        279

users were criticized as being hard to install and to config-
ure for various types of hardware. However, current versions
of Linux have an installation experience that is comparable
to that of Windows, and such details as disk partitioning
and setting up networks can often be handled automatically.
(There can still be problems with some devices such as wire-
less cards for laptops, but even there things have improved
considerably.) A Linux distribution such as Ubuntu is now a
viable alternative to Windows unless one has to use certain
programs (such as PhotoShop or many games) that do not
have Linux versions. However, such options as dual-booting,
emulation, or virtual machines offer the ability to use both
Linux and Windows on the same machine.

Further Reading
Hill, Benjamin Mako, et al. The Official Ubuntu Book. 3rd ed. Upper

Saddle River, N.J.: Prentice Hall, 2008.
Linux.com. Available online. URL: http://www.linux.com/.

Accessed September 26, 2007.
Linux Journal. Available online. URL: http://www.linuxjournal.

com/. Accessed September 26, 2007.

Matthew, Neil, and Richard Stones. Beginning Linux Programming.
4th ed. Indianapolis: Wrox, 2007.

Red Hat. Available online. URL: http://www.redhat.com/. Accessed
September 26, 2007.

Sery, Pal G. Ubuntu Linux for Dummies. Hoboken, N.J.: Wiley,
2007.

Siever, Ellen, et al. Linux in a Nutshell. 5th ed. Sebastapol, Calif.:
O’Reilly, 2005.

Sobell, Mark G. A Practical Guide to Red Hat Linux: Fedora Core and
Red Hat Enterprise Linux. 3rd ed. Upper Saddle River, N.J.:
Prentice Hall, 2006.

Ubuntu. Available online. URL: http://www.ubuntulinux.org/.
Accessed September 26, 2007.

LISP
As interest in AI (see artificial intelligence) developed
in the early 1950s, researchers soon became frustrated by
the low-level computer languages of the day, which empha-
sized computation and other manipulation of numbers
rather than the processing of symbolic data.

A Linux system running Open Office, a full-featured (and free) office software suite  (Sun Microsystems)

280        LISP

At the 1956 Dartmouth Summer Research Project on
Artificial Intelligence, a gathering that brought together the
key early pioneers in the field, John McCarthy presented his
concepts for a different kind of computer language. Such
a language, he believed, should be able to deal with math-
ematical functions in their own terms—by manipulating
symbols, not just calculating numbers.

Together with Marvin Minsky, McCarthy began to
implement a language called LISP (for “list processor”). (See
McCarthy, John and Minsky, Marvin.) As the name sug-
gests, the language uses lists to store data (see list pro-
cessing) and features many functions for manipulating
list elements. List can consist of single elements (called
“atoms”) as in

(A B C D)

but lists can also include other lists, as in

(A (B C) D)

Each list item is stored as a “node” containing both a pointer
to its data value and a pointer to the next item in the linked
list. The LISP system typically includes housekeeping func-
tions such as “garbage collection,” where the memory from
discarded list items is returned to the free memory pool for
later allocation.

LISP programs look forbidding at first sight because they
tend to have many nested parentheses. However, expres-
sions and functions are actually constructed in a much sim-
pler way than in most other languages. Without the need
for complicated parsing, the LISP interpreter (called “eval”
because it evaluates its input) looks at the stream of data
and first asks whether the next item is a constant (such as a
number, quoted symbol, string, quoted list, or keyword). If
so, its value is returned. Otherwise, the interpreter checks
to see if the item is a defined variable and, if so, returns its
value. Finally, the interpreter checks to see if there is a list.
If so, the list is considered to be a function call followed by
its arguments. The function is called, given the data, and
the result is returned.

The following table shows some items in a list program
and how the interpreter will evaluate them:

Examples of Lisp Items

Type of Item	E xample	E valuation

integer	 24	 24
float	 5.5	 5.5
ratio	 3/4	 0.75
keyword	 defun	 defines function
quoted integer	 ’24	 24
quoted list	 ’(3 1 4 1 5)	 (3 1 4 1 5)
boolean	 nil	 false
function call	 +2 4	 6
variable	 a	 its value
quoted variable	 ’a	 a

Languages such as Algol, Pascal or C emphasize state-
ments and procedures. LISP, on the other hand, was the

first functional language (see functional languages).
The heart of a LISP program is functions that are evaluated
together with their arguments. LISP includes many built-
in, or primitive functions. Besides the usual mathematical
operations, there are primitives for basic list-processing
functions. For example, the list function creates a list from
its arguments: (list 1 2 3) returns the list (1 2 3), while the
cons function inserts an atom into the beginning of a list,
and the append function tacks it onto the end. Program-
mers define their own functions using the defun keyword.

LISP has two other features that make it a powerful
and flexible language for manipulating symbols and data.
LISP allows for recursive functions (see recursion). For
example, the following function raises a variable x to the
power y:

(defun power (x y)
(if (= y 0) 1

(* x (power x (1– y)))))

Here the if expression checks to see whether y is 0. If
not, the second expression invokes the function (power)
itself, which performs the same test. The result is that the
function keeps calling itself, storing temporary values, until
y gets down to 0. It then “winds itself back up,” multiplying
x by itself y times.

But perhaps the most interesting feature of LISP is that
it makes no distinction between programs (functions) and
data. Since a function call and its arguments themselves
constitute a list, a function can be fed as data to other func-
tions. This makes it easy to write programs that modify
their own operation.

Language Development
LISP quickly caught on with artificial intelligence research-
ers, and the version called LISP 1.5 was considered robust
enough for writing large-scale applications. While “main-
stream” computer scientists often used Algol and its descen-
dants as a universal language for expressing algorithms,
LISP became the lingua franca for AI people.

However, a number of dialects such as Mac-LISP diverged
as versions were written to support new hardware or were
promoted by companies such as LMI and Symbolics. While
researchers liked the interactive nature of interpreted LISP
(where functions could be defined and immediately tried out
at the keyboard), practical applications required compilation
into machine language to achieve adequate speed.

A widely used LISP variant is Scheme, developed by
MIT researchers in the mid-1970s. Scheme simplifies LISP
syntax (while still preserving the spirit), and at the same
time generalizes further by allowing functions to have all
the capabilities of data entities. That is, functions can be
passed as parameters to other functions, returned as values,
and assigned to variables and lists.

By the 1980s, personal computers became powerful
enough to run LISP, and the proliferation of LISP variants
running on different platforms led to a standardization move-
ment that resulted in Common LISP in 1984. Common LISP
combines the features of many existing dialects, includes

LISP        281

a rich variety of data types, and also makes greater allow-
ance for the imperative, sequential programming approach of
languages such as C. It thus accommodates varying styles of
programming. It is widely available today in both commer-
cial and shareware versions.

Seymour Papert created a LISP-like language called
Logo, which has been used to teach sophisticated computer
science ideas to young students (see logo).

Further Reading
Dybvig, R. Kent. The SCHEME Programming Language. 3rd ed.

Cambridge, Mass.: MIT Press, 2003.
“Lisp Information and Resources.” Available online. URL: http://

www.lispmachine.net/. Accessed August 13, 2007.
Queinnec, Christian. Lisp in Small Pieces. New York: Cambridge

University Press, 1996.
Seibel, Peter. Practical Common Lisp. Berkeley, Calif.: Apress, 2005.

list processing
A list is a series of data items that can be accessed sequen-
tially by following links from one item to the next. Lists
can be very useful for ordering or sorting data items and for
storing them on a stack or queue.

There are two general approaches to constructing lists.
In a data list used with procedural programming languages
such as C, each list item consists of a structure consisting
of a data member and a pointer. The pointer, called “next,”
contains the address of the next item. A program can easily
“step through” a list by starting with the first item, process-
ing its data, then using the pointer to move to the next
item, continuing until some condition is met or the end of
the list is reached.

In LISP-type languages, however, a more general struc-
ture is used, since essentially all data is part of a list. Here
each item is a node that can contains a pointer to any valid
object and a pointer to the next node. One advantage of this
scheme is that since fixed-length data fields are not used,
the list can be “hooked up” to objects of varying sizes and
types. This can also use memory more efficiently, though at
the cost of additional processing being needed to periodi-
cally reclaim memory (“garbage collection”).

Besides traversing (stepping through) a list by follow-
ing its “next” pointer, the basic list-processing operations
are insertion and deletion. It is easy to insert a new element
into a list: You first move to the item after which the new
item is to be inserted. Next, you connect that item’s “next”
pointer (link) to the new item. You then connect the new
item’s next link to the item that originally followed the
insertion point. Deleting an item is even simpler: You “snip
out” the item by connecting the item that originally linked
to it to the item that was originally after it.

Sometimes lists are set up so that each item has two
pointers: one to the next item and one to the previous one.
Such doubly linked lists can be traversed in either direction,
making retrieval faster in some situations, though at the cost
of storing the extra pointers. Lists are also used to implement
some specialized data structures (see stack and queue).

Applications
Lists are generally used to provide convenient access to rel-
atively small amounts of data where flexibility is required.
Unlike an array, a list need use only as much memory as it
needs to accommodate the current number of items (includ-
ing their associated pointers). A LISP-style node list can be
even more flexible in that items with varying sizes and
types of data can be included in the same list. Lists are thus
a more flexible way to implement such things as look-up
tables. (See also array.)

Further Reading
Covington, Michael A. “Some Recursive List Processing Algo-

rithms in Lisp.” Available online. URL: http://www.ai.uga.

A singly linked list. Each node (item) includes a value and a
pointer to the next node. Inserting a new node is simply a matter of
adjusting the pointer of an existing node to point to the new node,
with the new node’s pointer in turn pointing to the next item (or the
end of the list). A node is removed by disconnecting its pointer.

A doubly linked list. Each node has two pointers, one to the next
item and one to the prior (preceding) item. While doubly linked
lists use more memory, they can be processed more quickly because
they can be traversed in either direction.

282        list processing

edu/mc/LispNotes/RecursiveListProcessingAlgorithmsIn-
Lisp.pdf. Accessed August 13, 2007.

“Linked List Basics [In C/C++]” Available online. URL: http://
cslibrary.stanford.edu/103/LinkedListBasics.pdf. Accessed
August 13, 2007.

Seibel, Peter. “They Called It LISP for a Reason: List Processing.”
Available online. URL: http://www.gigamonkeys.com/book/
they-called-it-lisp-for-a-reason-list-processing.html. Accessed
August 13, 2007.

local area network  (LAN)
Starting in the 1980s, many organizations sought to connect
their employees’ desktop computers so they could share
central databases, share or back up files, communicate via
e-mail, and collaborate on projects. A system that links
computers within a single office or home, or a larger area
such as a building or campus, is called a local area network
(LAN). (Larger networks linking branches of an organiza-
tion throughout the country or world are called wide area
networks, or WANs. See network.)

Hardware Architecture
There are two basic ways to connect computers in a LAN.
The first, called Ethernet, was developed by a project at the
Xerox Palo Alto Research Center (PARC) led by Robert Met-
calfe. Ethernet uses a single cable line called a bus to which
all participating computers are connected. Each data packet
is received by all computers, but processed only by the one
it is addressed to. Before sending a packet, a computer first
checks to make sure the line is free. Sometimes, due to the
time delay before a packet is received by all computers,
another computer may think the line is free and start trans-

mitting. The resulting collision is resolved by having both
computers stop and wait varying times before resending.

Because connecting all computers to a single bus line is
impractical in larger installations, Ethernet networks are
frequently extended to multiple offices by connecting a bus
in each office to a switch, creating a subnetwork or segment
(this is sometimes called a star topology). The switches are
then connected to a main bus. Packets are first routed to
the switch for the segment containing the destination com-
puter. The switch then dispatches the packet to the destina-
tion computer. Another advantage of this switched Ethernet
system is that more-expensive, high-bandwidth cable can
be used to connect the switches to move the packets more
quickly over greater distances, while less-expensive cabling
can be used to connect each computer to its local switch.

An alternative way to arrange a LAN is called token
ring. Instead of the computers being connect to a bus that
ends in a terminator, they are connected in a circle where
the last computer is connected to the first. Interference is
prevented by using a special packet called the token. Like
the use of a “talking stick” in a tribal council, only the
computer holding the token can transmit at a given time.
After transmitting, the computer puts the token back into
circulation so it can be grabbed by the next computer that
wants to send data.

LAN Software
Naturally there must be software to manage the transmis-
sion and reception of data packets. The structure of a packet
(sometimes called a frame) has been standardized with a
preamble, source and destination addresses, the data itself,

A Token Ring network connects the machines in a “chain” around
which messages called tokens travel. Any PC can “grab” a passing
token and attach data and the address of another PC to it. Each PC
in turn watches for tokens that are addressed to it.

The Star network configuration uses a central hub to which each
PC is attached. To extend the network (such as into other offices),
the hubs can be connected to one another so they function as
switches. When a token arrives that is addressed to one of its PCs,
the hub will route it to the appropriate machine.

local area network        283

a checksum, and two special layers that interface with the
differing ways that Ethernet and token ring networks physi-
cally handle the packets.

The low-level processing of data packets must also be
interfaced with the overall operating system so that, for
example, a user on a desktop PC can “see” folders and files
on the file server and whole files can be transferred between
server and desktop PC. From the 1980s to the mid-1990s
the most common LAN operating system for DOS and later
Windows-based PCs was Novell Netware, while Macintosh
users used AppleTalk. Later versions of Windows (nota-
bly Windows NT) then incorporated their own networking
support, and Netware use declined somewhat.

The tremendous popularity of the Internet (particularly
the Web) starting in the mid-1990s propelled the Inter-
net protocol (see tcp/ip) into the forefront of networking.
Today’s business and home computers use essentially the
same tools to connect to the global Internet and to one
another. (The term Intranet, once used to distinguish local
TCP/IP networks from the Internet, is now pretty much
obsolete.)

Meanwhile, the technologies used to implement this
universal networking have proliferated. While the Inter-
net is most commonly delivered to homes and businesses
via wires (see cable modem and dsl), wireless networking
has replaced cable for many local networks, including most
home networks (see Wireless and mobile computing),
with the hub of the network being an inexpensive router
and wireless access point.

Further Reading
Briere, Danny, Pat Hurley, and Edward Ferris. Wireless Home Net-

working for Dummies. Hoboken, N.J.: Wiley Publishing, 2006.
Komar, Brian. Sams Teach Yourself TCP/IP Networking in 21 Days.

2nd ed. Indianapolis: Sams, 2002.
Lowe, Doug. Networking for Dummies. Hoboken, N.J.: Wiley Pub-

lishing, 2007.
Spurgeon, Charles. Ethernet: The Definite Guide. Sebastapol, Calif.:

O’Reilly Media, 2000.
Tittel, Ed, Earl Follis, and James E. Gaskin. Networking with Net-

Ware for Dummies. 4th ed. Foster City, Calif.: IDG Books,
1998.

Logo
Logo is a derivative of LISP (see lisp) that preserves much of
that language’s list processing and symbolic manipulation
power while offering simpler syntax, easier interactivity,
and graphics capabilities likely to appeal to young people.
Logo has often been used as a first computer language for
students in elementary and junior high school grades. As
Harold Abelson noted in his Apple Logo primer in 1982,
“Logo is the name for a philosophy of education and a con-
tinually evolving family of programming languages that aid
in its realization.”

Logo was developed starting in 1967 by educator Sey-
mour Papert and his colleagues at Bolt, Beranek and New-
man, Inc. Papert, a mathematician and AI pioneer, had
became interested in devising an education-oriented com-
puter language after working with developmental psychol-

ogist Jean Piaget. Papert focused particularly on Piaget’s
emphasis on “constructivism”—the idea that people learn
mainly by fitting new concepts into an existing frame-
work built from the experience of daily life. Papert came to
believe that abstract computer languages such as FORTRAN
or even BASIC were hard for children to assimilate because
their algebraic formulas and syntax had little in common
with daily activities such as walking, playing, drawing, or
making things.

For example, most computer languages implement
graphics using statements that specify screen points using
Cartesian coordinates (X, Y). A square, for example, might
be drawn by statements such as:

PLOT 100, 100
LINETO 150, 100
LINETO 150, 150
LINETO 100, 150
LINETO 100, 100

While familiarity with the coordinate system eventually
allows one to visualize this operation, it is far from intui-
tive.

Papert, however, includes a “turtle” in his Logo lan-
guage. The turtle was originally an actual robot that could
be programmed to move around; in most systems today it is
represented by a cursor on the screen. As the turtle moves,
it uses a “pen” to leave a “trail” that draws the graphic.

With turtle commands, a square can be drawn by:

FD 50 (that is, forward 50)
RT 90 (turn right 90 degrees)
FD 50
RT 90
FD 50
RT 90
FD 50
RT 90

Here, the student programmer can easily visualize walk-
ing and turning until he or she arrives back at the starting
point. In keeping with Piaget’s theories, the learning is con-
gruent with the physical world and daily activities.

Logo includes control structures similar to those in
other languages, so the above program can be rewritten as
simply:

REPEAT 4 [FD 50 RT 90]

Logo is much more than a set of simple drawing com-
mands, however. Students can also be encouraged to use the
list-processing commands to create everything from com-
puter-generated poetry to adventure games. Unlike LISP’s
obscurely named commands such as car and cdr, Logo’s list
commands are readily understandable. For example, first
returns the first item in a list, while butfirst returns all of
the list except the first item.

Logo procedures are introduced by the to keyword,
implying that the programmer is “teaching the computer”
how to do something. For example, a procedure to draw a
square with a variable size and starting position might look
like this:

284        Logo

to square :X :Y :Size
setxy :X :Y
repeat 4 [fd :Size rt 90]
end

Logo has been steadily enhanced over the years, and
includes not only a full set of math functions, but also many
versions include special sound, graphics, and multimedia func-
tions for Windows or Macintosh systems. By the mid-1980s,
Logo had been combined with the popular LEGO building
toy to create LEGO Logo. This popular kit enables students to
build and control a variety of robots and other gadgets.

By the 1990s, Logo had to some extent become a casu-
alty to the pressure on educators to provide “real world”
programming skills using languages such as C++ or Java.
However, Logo using educators have continued to flourish
in parts of Europe, Japan, and Latin America. Logo has also
been energized by the development of two recent versions.
MicroWorlds Logo took advantage of the Macintosh inter-
face to provide a full-featured multimedia environment,
and it was later adapted for Windows systems. Another
version, StarLogo, emphasizes parallel processing concepts,
and is able to control thousands of separate turtles that can
be programmed to simulate behaviors such as bird flocks or
traffic flows. As Brian Harvey’s books show, Logo’s acces-
sible, interactive nature continues to make it a good choice
for teaching computer science to adults as well.

Further Reading
Harvey, Brian. Computer Science Logo Style. Vols. 1–3, 2nd ed.

Cambridge, Mass.: MIT Press, 1997.
LCSI Microworlds. Available online. URL: http://www.

microworlds.com/. Accessed August 13, 2007.
Logo Foundation (MIT). Available online. URL: http://el.media.

mit.edu/Logo-foundation/. Accessed August 13, 2007.
Papert, Seymour. Mindstorms: Children, Computers, and Powerful

Ideas. New York: Basic Books, 1993.
“StarLogo on the Web.” MIT Dept. of Education. Available online.

URL: http://education.mit.edu/starlogo/. Accessed August 13,
2007.

“Welcome to MSWLogo.” Available online. URL: http://www.
softronix.com/logo.html. Accessed August 13, 2007.

loop
If computers were merely fast sequential calculators, they
would still be of some use. However, much of the power of
the computer comes from its ability to carry out repetitive
tasks without supervision. The loop is the programming
language structure that controls such activities. Virtually
every language has some form of loop construct, with vari-
ations in syntax ranging from the relatively English-like
COBOL and Pascal to the more cryptic C. We will use
BASIC for our examples, since its syntax is easy to read.

The standard while loop performs the specified actions
as long as the specified condition is true. For example:

While NOT EOF (Input_File)
Read_Record
Process_Record

Wend
Print “Done!”

This loop first checks to see whether the end of the input
file (opened earlier) has been reached. If not, it reads and
processes a record (using procedures defined elsewhere).
The “Wend” marks the end of the statements controlled by
the loop. When the end of the file is reached, the test fails
(returns false) and control skips to the statement following
Wend. See the accompanying flowchart for a visual depic-
tion of the operation of this loop.

A variant form of while loop performs the test after
executing the enclosed instructions. For example:

Do
Print “Enter a number: “
Input Number
Print “You entered: “;Number

While (Number <> 0)
Print “I’m Done!”

This loop will display each number the user enters, then
test it for zero. After a zero is encountered, control will skip
to the final print statement.

Note that because this second form of while loop does
not perform the test until it has performed the specified
actions at least once, it would not be appropriate for the
first example. In that case, the loop would attempt to get a
record before discovering it had reached the end of the file,
and an error would result.

The for loop is useful when an action is to be repeated
for each of a limited series of cases. For example, this loop
would print out the ASCII characters corresponding to the
codes from 32 through 65:

For CharVal = 32 to 65 Step 1
Print Char$(CharVal)

Flowchart for a loop that reads and processes records until it
reaches the end of the file. Programmers must make sure that the
end condition of a loop is properly defined, or the loop may run
endlessly, “hanging” the program.

loop        285

Next CharVal

Here Char$ is a function that output the character cor-
responding to the supplied ASCII character code. The step
clause specifies the interval over which the variable within
the loop is to be incremented. Here it’s not strictly neces-
sary, since it defaults to 1.

Loops of all sorts can be “nested” so that an inner loop
executes completely for each step of the outer loop. For
example:

For Vertical = 0 to 767
For Horizontal = 0 to 1023

Print_Pixel (Vertical, Horizontal)
Next Horizontal

Next Vertical

Here the program will move across each line of the
screen, printing the contents of each pixel. Each time the
inner loop finishes, the outer loop increments, moving the
scanning down to the next line. Indention is used to make
the relation between the outer and inner loops clear.

In programming loops it’s important to frame the test
conditions correctly so that they terminate appropriately.
An “endless loop” can cause a program to “hang” indefi-
nitely. However, some programs do code an endless outer
loop to indicate the program is to run indefinitely unless
closed by the operating system. For example, the loop

While (1)
’ Instructions go here

Wend

will execute indefinitely, since the value one is equiva-
lent to “true.”

Since many programs spend most of their time repeat-
edly executing loops, programmers seeking to improve
the performance of their code pay especial attention to the
code within the body of a loop. Any code such as a vari-
able assignment, conversion, or calculation that needs to be
done only once should be moved outside the loop.

Further Reading
“Control Flow.” Wikipedia. Available online. URL: http://

en.wikipedia.org/wiki/Control_flow. Accessed August 13,
2007.

Sebesta, Robert W. Concepts of Programming Languages. 8th ed.
Boston: Addison-Wesley, 2007.

Lua
Lua is a scripting language created by three programmers at
the Pontifical University of Rio de Janeiro, Brazil. (The word

Lua is Portuguese for “Moon”). The language has begun to
attract some attention, particularly among game and Web
programmers.

Lua has simple syntax and can support both traditional
(imperative) programming and functional programming
(see functional languages). Many of the features such as
inheritance and name spaces that are built into most object-
oriented languages are not part of Lua, but can be created
through the language’s extension methods (see object-ori-
ented programming).

A simple function in Lua looks like this:

function factorial(n)
if n = 0 then

return 1
end
return n * factorial(n - 1)
end

Note the lack of required semicolons.
Besides a simple assortment of built-in types, Lua uses

tables to create complex, user-defined types. Tables include
pairs of values and keys. The key can either be a number
(creating the equivalent of an array in other languages), or
a string. For example, the following table consists of three
values indexed by strings:

coin = { quarter = 25, dime = 10, nickel = 5,
penny = 1 }

printer (coin[“dime”])	 -- prints 10

By including functions and the data they use into a
table, classes similar to those used in object-oriented lan-
guages can also be created.

Implementation and Use
Lua programs are compiled to an intermediate form (byte-
code) that runs on a Lua virtual machine for each platform.
Lua is intended to work closely with C programs, transfer-
ring data via a stack.

Because of its compact runtime packages, Lua is often
included in applications to provide an interface for editing
or extending the application. This is particularly true of
games such as World of Warcraft.

Further Reading
Ierusalimschy, Roberto. Programming in Lua. 2nd ed. Rio de

Janeiro, Brazil: Lua.org, 2006.
Jung, Kurt, and Aaron Brown. Beginning Lua Programming. India-

napolis: Wiley, 2007.
Lua.org. Available online. URL: http://www.lua.org. Accessed Sep-

tember 26, 2007.

286        Lua

287

Macintosh
Since its inception in 1984, Apple’s Macintosh line of per-
sonal computers has offered a distinctive, innovative alterna-
tive to the more mainstream IBM-compatible PCs. When the
Macintosh came out, it was billed as the computer “for the
rest of us.” Unlike the text-based, command-driven DOS-
based IBM PC and its “clones,” the “Mac” offered an inter-
face that consisted of menus, folders, and icons that could
be manipulated by clicking and dragging (see user inter-
face and mouse). The system came out of the box with a
paint/draw program and a word processor that could show
documents using the actual font sizes and styles that would
appear in printed text. This “WYSIWYG” (What You See Is
What You Get) feature quickly made the Mac the machine
of choice for desktop publishers and graphic artists. The
Mac also met with some success in the educational market,
where the way had been paved by the earlier Apple II.

However, there were factors would limit the Mac
to a minority market share. The first models ran slowly.
Although its Motorola 68000 processor was comparable to
the Intel 80286 used by the IBM XT and AT series, the need
to draw extensive graphics placed a heavier burden on the
Mac’s CPU.

Marketing decisions also proved to be problematic. The
IBM PC had an “open architecture.” Clone makers were able
to legally produce machines that were functionally equiva-
lent, and Microsoft was able to license to clone manufactur-
ers essentially the same DOS operating system that IBM
used. This created a robust market as manufacturers com-
peted with added features or lower prices.

Apple, on the other hand, jealously guarded the Apple’s
hardware and the ROM (read only memory) that held the
key operating system code. Apple made only a brief and
half-hearted attempt to license the Mac OS to third parties
in 1995, and by then it was probably too late. Apple CEO
Steve Jobs (see Jobs, Steve) kept prices relatively high, bet-
ting that the Mac’s unique operating system and interface
would entice people to buy the more expensive machine.

But something of a vicious circle set in. Since the Mac
used a unique operating system, developing new applica-
tions (or porting existing ones) to the Mac was expensive.
And since the Mac market represented only a small fraction
of the PC-compatible market, developers were reluctant to
create such software. Some flagship products such as Aldus
PageMaker and Adobe Photoshop did cater to the Mac’s
graphic strengths. In general, however, the PC-compatible
owner had a far wider range of software to choose from,
and businesses were traditionally more comfortable with
IBM equipment, even if IBM didn’t make it.

Microsoft helped develop some successful Mac software,
including versions of its Word and Office programs. But
Microsoft CEO Bill Gates responded to the Mac’s interface
advantages over MS-DOS by developing a new operating
environment, Windows. Apple sued, claiming that Micro-
soft had gone beyond the license it had negotiated with
Apple for use of elements of the Mac interface. By the early
1990s, however, Apple had lost the lawsuit. While the early
versions of Windows were clumsy and met with little suc-
cess, version 3.0 and, later, Windows 95 succeeded in pro-
viding a user experience that was increasingly close to that
achieved by the Mac.

M

Apple kept trying to innovate and carve out a larger
market share, designing both Power Macs that used the
PowerPC RISC (reduced instruction set) microprocessor
and PowerBook laptops. Toward the end of the 1990s, Apple
tried to address the low end of the market with the iMac, a
colorful, sleek machine packed with features such as home
video editing, and achieved modest success in attracting
new customers.

New Insides, New Directions?
In 2000 Apple began to revamp what was becoming a some-
what aging architecture. First came the replacement of the
operating system with a UNIX variant (see unix) while
retaining the user interface (see os x). In 2006 Apple began
to transition the Mac’s processor from the Motorola/IBM
Power PC to the Intel chips that power Windows-compat-
ible PCs. The use of a widely available chip (and provision
for Windows via the “Boot Camp” utility) may make the
Mac cheaper and more attractive to mainstream PC users.
Meanwhile the Macintosh OS X operating system continued
to evolve from the “Tiger” edition to “Leopard,” released in
Fall 2007.

While the Mac continues to be a niche market, sales
have been strong, increasing steadily each year. However,
in recent years the Mac has been overshadowed somewhat
as an Apple icon, supplanted by the iPod and in 2007 by the
iPhone.

Further Reading
Levy, Steven. Insanely Great: The Life and Times of Macintosh, the

Computer that Changed Everything. New York: Penguin, 2000.
Litt, Samual A., et al. Mac OS X Bible, Tiger Edition. Indianapolis:

Wiley, 2005.

MacDailyNews. Available online. URL: http://www.macdailynews.
com/. Accessed August 14, 2007.

Mac Observer. Available online. URL: http://www.macobserver.
com/. Accessed August 14, 2007.

Macworld: The Mac Experts. Available online. URL: http://www.
macworld.com/. Accessed August 14, 2007.

Pogue, David, and Adam Goldstein. Switching to the Mac: The Miss-
ing Manual, Tiger Edition. Sebastapol, Calif.: O’Reilly Media,
2005.

macro
For both programmers and ordinary users, the ability to
“package” a group of instructions so that it can be invoked
with a single command can save a lot of effort. The term
macro is used for such instruction packages in a variety of
contexts.

In the early days, programmers had to work with low-
level machine instructions (see assembler). Developers
soon realized that a program could be used to write other
programs. This program, called a macro assembler, lets the
programmer write a group of instructions such as:

COMPARE macro

LOAD %1 ‘ load first data item
STOREX ‘ store in register X
LOAD %2 ‘ load second data item
STOREY ‘ store in register Y
CMPXY ‘ compare X and Y registers

endm

Now, if the programmer wants to compare the contents
of two memory locations (say COUNTER and LIMIT), he or
she can write simply:

COMPARE COUNT LIMIT

The assembler replaces COMPARE with the sequence of
instructions above, substituting COUNT and LIMIT for %1
and %2.

Macros are also used in some higher-level languages,
notably C. A module called the macro processor performs
the required substitutions into the source code before the
code is parsed and compiled. For example, a C programmer
might include this macro in a program file:

#define IS_LOWERCASE(x) (((x)>=‘a’) && (
(x) <=‘z’))

Somewhere in the program there might appear a state-
ment such as:

if IS_LOWERCASE (Letter)

The macro processor will replace this with:

if (((Letter)>=‘a’) && ((Letter) <=‘z’))

This saves typing as well as reducing the chance of a
typo creating a hard-to-find bug.

Macros are similar to procedures and functions (see
procedures and functions) in that they let the program-
mer treat a group of instructions as a single unit, simplify-

A Power Mac G5 with a 30-inch Apple Cinema HD display.  (Apple
Computer)

288        macro

ing coding. However, a given procedure appears in the code
only once, although it may be called upon from many differ-
ent parts of the program. A macro, on the other hand, is not
“called.” Each time it is mentioned, the macro is replaced by
the corresponding instructions. Thus macros increase the
size of the source code.

Many programmers today prefer using functions with
the appropriate code rather than macros. Using functions
saves space, since each function’s code need only appear
once. Although there is some processing overhead at run-
time in calling the function, the function approach also
ensures that the data sent to the function will be checked to
make sure it is of the proper type. The macro, on the other
hand, usually leaves it up to the programmer to make sure
the data type being used is appropriate.

Application Macros
The term macro is also used with applications software.
Here it can mean a series of commands (such as cursor posi-
tioning or text formatting) that are recorded and assigned
to a certain key combination. For example, a word proces-
sor user might define a macro called Letter and record the
keystrokes and/or mouse movements needed to open a new
document, insert a letterhead from a file, update the date,
insert a salutation, and position the cursor to continue writ-
ing the letter. The recorded keystrokes might be assigned to
the key combination Control + L.

More elaborate macros can be written to automate com-
plex tasks in spreadsheets and word processors. Microsoft
provides an entire language, Visual Basic for Applications
(VBA), for writing macros for its Office products.

Further Reading
Gonzalez, Juan Pablo, et al. Office VBA Macros You Can Use Today:

Over 100 Amazing Ways to Automate Word, Excel, PowerPoint,
Outlook and Access. Uniontown, Ohio: Holy Macro! Books,
2005.

Jelen, Bill. VBA and Macros for Microsoft Office Excel 2007. India-
napolis: Que, 2007.

Kochan, Stephen. Programming in C. 3rd ed. Indianapolis: Sams,
2004.

“Preprocessor Directives.” Available online. URL: http://www.
cplusplus.com/doc/tutorial/preprocessor.html. Accessed
August 14, 2007.

Maes, Pattie
(1961– )
Belgian/American
Computer Scientist

Pattie Maes is a pioneer in the creation of software agents,
intelligent programs that work with people to help them
find what they need online, whether it is relevant news
stories, a vacation itinerary, or a good place for a romantic
dinner for two in San Francisco.

Born June 1, 1961, in Brussels, Belgium, Maes was inter-
ested in science (particularly biology) from an early age.
She received bachelor’s (1983) and doctoral (1987) degrees

in computer science and artificial intelligence from the Uni-
versity of Brussels.

In 1989 Maes moved from Belgium to the Massachu-
setts Institute of Technology, where she joined the Artifi-
cial Intelligence Lab. There she worked with an innovative
researcher who had created swarms of simple but intrigu-
ing insectlike robots (see Brooks, Rodney). Two years later
Maes became an associate professor at the MIT Media Lab,
famed for innovations in how people interact with com-
puter technology (see MIT Media Lab). There she founded
the Software Agents Group to promote the development of a
new kind of computer program.

These programs (see software agent) have consider-
able autonomy and intelligence. Like a human travel or real
estate agent, an agent program must have detailed knowl-
edge of the appropriate area of expertise; the ability to ask
the client questions about preferences, priorities, and con-
straints; and the ability to find the best deals and negotiate
with service providers.

Maes’s goal has been to create software agents who think
and act much like their human counterparts. To carry out
a task using an agent, the user does not have to specify
exactly how it is to be done. Rather, the user describes the
task, and the software engages in a dialog with the user to
obtain the necessary guidance.

A software travel agent would know—or ask about—
such things as how much the user wants to spend and
whether he or she prefers sites involving nature, history, or
adventure. It would also ask about and take into consider-
ation constraints of budget, travel time, comfort, and so on.
The software agent would then use its database and proce-
dures to put together an itinerary based on the user’s needs
and desires. It would not only know where to find the best
fares and rates, it would also know how to negotiate with
hotels and other services. Indeed, it might negotiate with
their software agents.

In 1995 Maes cofounded Firefly Networks, a company
that attempted to create commercial applications for soft-
ware agent technology. Although the company was bought
by Microsoft in 1998, one of its ideas—“collaborative filter-
ing”—can be experienced by visitors to sites such as Ama-
zon.com. Users in effect are given an agent whose job it is to
provide recommendations for books and other media. The
recommendations are based upon observing not only what
items the user has already purchased, but also what else
has been bought by people who bought those same items.
More advanced agents can also tap into feedback resources
such as user book reviews on Amazon or auction feedback
on eBay (see social networking).

A listing of Maes’s current research projects at MIT con-
veys many aspects of and possible applications for software
agents. These include the combining of agents with interac-
tive virtual reality, using agent technology to create charac-
ters for interactive storytelling, the use of agents to match
people with the news and other information they are most
likely to be interested in, an agent that could be sent into an
online market to buy or sell goods, and even a “Yenta” agent
that would introduce people who are most likely to make a
good match.

Maes, Pattie        289

Maes has participated in many high-profile conferences
such as AAAI (American Association for Artificial Intelli-
gence) and ACM Siggraph, and her work has been featured
in numerous magazine articles. She was one of 16 modern
“visionaries” chosen to speak at the 50th anniversary of the
ACM. She has also been repeatedly named by Upside maga-
zine as one of the 100 most influential people for develop-
ment of the Internet and e-commerce. Time Digital featured
her in a cover story and selected her as a member of its
“cyber elite.” Newsweek put her on its list of 100 Americans
to be watched for in the year 2000. That same year the Mas-
sachusetts Interactive Media Council gave her its Lifetime
Achievement Award.

Further Reading
D’inverno, Mark, and Michael Luck, eds. Understanding Agent Sys-

tems. 2nd. ed. New York: Springer Verlag, 2003.
Maes, Pattie. “Intelligence Augmentation: A Talk with Pattie

Maes.” Available online. URL: http://www.edge.org/3rd_
culture/maes./ Accessed May 5, 2007.

Software Agents group at MIT Media Lab. http://agents.mit.edu.
Accessed May 5, 2007.

mainframe
In the era of vacuum tube technology, all computers were
large, room-filling machines. By the 1960s, the use of tran-
sistors (and later, integrated circuits), enabled the produc-
tion of smaller (roughly, refrigerator-sized) systems (see
minicomputer). By the late 1970s, desktop computers were
being designed around newly available computer chips (see
microprocessor). Although they, too, now use integrated
circuits and microprocessors, the largest scale machines are
still called mainframes.

The first commercial computer, the UNIVAC I (see Eck-
ert, J. Presper and Mauchly, John) entered service in
1951. These machines consisted of a number of large cabi-
nets. The cabinet that held the main processor and main
memory was originally referred to as the “mainframe”
before the name was given to the whole class of machines.

Although the UNIVAC (eventually taken over by Sperry
Corp.) was quite successful, by the 1960s the quintessen-
tial mainframes were those built by IBM, which controlled
about two-thirds of the market. The IBM 360 (and in the
1970s, the 370) offered a range of upwardly compatible sys-
tems and peripherals, providing an integrated solution for
large businesses.

Traditionally, mainframes were affordable mainly by
large businesses and government agencies. Their main
application was large-scale data processing, such as the
census, Social Security, large company payrolls, and other
applications that required the processing of large amounts
of data, which were stored on punched cards or transferred
to magnetic tape. Programmers typically punched their
COBOL or other commands onto decks of punched cards
that were submitted together with processing instructions
(see job control language) to operators who mounted
the required data tapes or cards and then submitted the
program cards to the computer.

By the late 1960s, however, time-sharing systems allowed
large computers to be partitioned into separate areas so that
they can be used by several persons at the same time. The
punched cards began to be replaced by Teletypes or video
terminals at which programs or other commands could be
entered and their results displayed or printed. At about
the same time, smaller computers were being developed by
Digital Equipment Corporation (DEC) with its PDP series
(see minicomputer).

With increasingly powerful minicomputers and later,
desktop computers, the distinction between mainframe,
minicomputer, and microcomputer became much less pro-
nounced. To the extent it remains, the distinction today is
more about the bandwidth or amount of data that can be
processed in a given time than about raw processor per-
formance. Powerful desktop computers combined into net-
works have taken over many of the tasks formerly assigned
to the largest mainframe computers. With a network, even
a large database can be stored on dedicated computers (see
file server) and integrated with software running on the
individual desktops.

Nevertheless, mainframes such as the IBM System/390
are still used for applications that involve processing large
numbers of transactions in near real-time. Indeed, many
of the largest e-commerce organizations have a mainframe
at the heart of their site. The reason is that while the raw
processing power of high-end desktop systems today rivals
that of many mainframes, the latter also have high-capacity
channels for moving large amounts of data into and out of
the processor.

Early desktop PCs relied upon their single processor to
handle most of the burden of input/output (I/O). Although
PCs now have I/O channels with separate processors (see
bus), mainframes still have a much higher data through-
put. The mainframe can also be easier to maintain than a
network, since software upgrades and data backups can
be handled from a central location. On the other hand, a

The IBM System/360 was the most successful mainframe in com-
puter history. It was actually a “family” of upwardly compatible
machines.  (IBM Corporate Archives)

290        mainframe

system depending on a single mainframe also has a single
point of vulnerability, while a network with multiple mir-
rored file servers can work around the failure of an indi-
vidual server.

Further Reading
Butler, Janet G. Mainframe to Client-Server Migration: Strategic

Planning Issues and Techniques. Charleston, S.C.: Computer
Technology Research Corporation, 1996.

Ebbers, Mike, Wayne O’Brien, and Bill Ogden. Introduction to the
New Mainframe: z/OS Basics. Raleigh, N.C.: IBM Publica-
tions, 2007. Available online. URL: ftp://www.redbooks.ibm.
com/redbooks/SG246366/zosbasics_textbook.pdf. Accessed
August 14, 2007.

“Mainframe Programming: Some Useful Resources for Practitioners
of the Craft.” Available online. URL: http://www.oberoi-net.
com/mainfrme.html. Accessed August 14, 2007.

Prasad, N. S. IBM Mainframes: Architecture and Design. 2nd ed.
New York: McGraw-Hill, 1994.

Pugh, Emerson W., Lyle R. Johnson, and John H. Palmer. IBM’s 360
and Early 370 Systems. Cambridge, Mass.: MIT Press, 1991.

management information system
The first large-scale use of computers in business in the late
1950s and 1960s focused on fundamental data processing.
Companies saw computers primarily as a way to automate
such functions as payroll, inventory, orders, and accounts
payable, hoping to keep up with the growing volume of data
in the expanding economy while saving labor costs associ-
ated with manual methods. The separate data files and pro-
grams used for basic business functions were generally not
well integrated and could not be easily used to obtain cru-
cial information about the performance of the business.

By the 1970s, the growing capabilities of computers
encouraged executives to look for ways that their infor-
mation systems could be used to competitive advantage.
Clearly, one possibility was that reporting and analysis
software could be used to help them make faster and bet-
ter decisions, such as about what products or markets to
emphasize. To achieve this, however, the “data process-
ing department” had to be transformed into a “manage-
ment information system” (MIS) that could allow analysis
of business operations at a variety of levels.

The MIS Pyramid
If one thinks of the information infrastructure of an enter-
prise as being shaped like a pyramid, the bottom of the
pyramid consists of the transactions themselves, where
products and services are delivered, and the supporting
point of sale, inventory, and distribution systems that keep
track of the flow of product.

The next layer up begins the process of integration and
operational control. For example, previously separate sales
and inventory system (perhaps updated through a daily
batch process) now become part of an integrated system
where a sale is immediately reflected in reduced inventory,
and the inventory system is in turn interfaced with the
order system so more of a product is ordered when it goes
out of stock.

The next layer can be called the operational analysis
layer. Here such functions as sales, inventory, and ordering
aren’t simply connected; they are part of the same system
of databases. This means that both simple and complex
queries and analysis can be run against a database contain-
ing every type of transaction that the business engages in.
In addition to routine reports such as sales by region or
product line, market researchers or strategic planners can
receive the data they need to answer questions such as:

• � What products are staying on the shelf the longest?

• � What is the ratio between profitability and shelf space
for particular items?

• � What is the relationship between price reductions,
sales, and profits for a certain category of items?

The goal of this layer is to help managers identify the
variables that affect the performance of their store or other
business division and to determine how to optimize that
performance (see also digital dashboard).

The very top level can be called the strategic planning
layer. Here top-level executives are interested in the overall
direction of the business: determining which divisions of a
company should receive the greatest long-term investment,
and which perhaps should be phased out. For example:

• � Which kind of sales are growing the fastest: in-store,
mail-order catalog, or Internet on-line store?

• � How is our market share trending compared to vari-
ous classes of competitors?

The activities involved in managing an enterprise’s information
infrastructure can be drawn as a pyramid. The raw material of
transactions at the bottom are stored in databases. Moving up the
pyramid, these data sources are integrated and refined to provide
better information about business operations as well as material for
operational analysis and strategic planning.

management information system        291

• � How are sales trending with regard to various types
(demographics) of customers?

Software Support
There are many considerations to choosing appropriate
software to support the users who are trying to answer
questions at the various levels of management. At mini-
mum, to create a true management information system, the
information from daily transactions must be made acces-
sible to a variety of query or analysis programs.

In the past three decades many established businesses
have had to go through a painful process of converting a
variety of separate databases and “legacy software” (often
written in COBOL in the 1960s or 1970s) into a modern
relational database such as Oracle or Microsoft Access.
Sometimes a company has decided that the cost of rewrit-
ing software and converting data is simply too high, and
instead, opts for a patchwork of utility programs to convert
data from one program to another.

The growth of networking in the 1980s and Web-based
intranets in the 1990s required that the old model of a large,
centralized data repository accessed directly by only a few
users be replaced by a less centralized model, sometimes
going as far as using a distributed database system where
data “objects” can reside throughout the network yet be
accessed quickly by any user (see database management
system). An alternative is the data repository that includes
queries and other tools (see data warehouse).

Future of MIS
With the prominence of the Internet and e-commerce today,
MIS has had to cope with an even more complex and fast-
moving world. On the one hand, widespread e-commerce
enables the capturing of more detailed data about transac-
tions and consumer behavior in general. New tools for ana-
lyzing large repositories of data (see data mining) make it
possible to continually derive new insights from the recent
past. It is thus clear that information is not just a tool but
also a corporate asset in itself. On the other hand, fierce
competition and often shrinking profit margins in e-com-
merce have placed increasing pressure on MIS departments
to find the greatest competitive advantage in the shortest
possible time.

The importance of MIS has also been reflected in its
place in the corporate hierarchy. The top-level executive
post of Chief Information Officer (CIO) has perhaps not
yet achieved parity with the Chief Financial Officer (CFO),
but healthy budgets for MIS even in constrained economic
times testify to its continuing importance.

Further Reading
Kroenke, David. Using MIS. Upper Saddle River, N.J.: Prentice

Hall, 2005.
Laudon, Kenneth C., and Jane P. Laudon. Management Information

Systems: Managing the Digital Firm. 10th ed. Upper Saddle
River, N.J.: Prentice Hall, 2006.

“MIS Resources.” Available online. URL: http://www3.uakron.edu/
management/index.html. Accessed August 14, 2007.

Turban, Efraim, et al. Information Technology for Management. 6th
ed. New York: Wiley, 2007

map information and navigation systems
A variety of online services use the integration of maps
and databases to provide detailed information ranging from
weather forecasts to traffic conditions to local shopping and
restaurants. Increasingly, these services can be customized
to the user’s needs. Further, when combined with global
positioning system (GPS) devices, the map display can be
focused on the user’s current location, providing naviga-
tion and/or “points of interest” information. (For mapping
systems primarily designed for scientific or other analytical
use, see geographical information systems.)

Mapquest
MapQuest has its roots in the Cartographic Services Divi-
sion of R. R. Donnelley, a leading maker of printed maps.
The company first went online in 1996, was renamed Map-
Quest in 1999, and was acquired by America Online (AOL)
in 2000.

The basic services offered by MapQuest are street maps
of a user-specified location, and driving routes between
an origin and a destination. In recent years the service
has been elaborated to allow users to customize routes, to
obtain location-related “Yellow Pages” service from AOL,
and to receive maps and driving directions on PDAs and
mobile phones.

Google Maps and Google Earth
Arriving on the Web in 2005 was Google Maps, a more
sophisticated and versatile mapping service. There are four
types of map view: street map, actual satellite or aerial photo,
street map overlaid on photo, and street-level photo views
(in selected cities.) Besides specifying a particular location
for the map, users can enter queries such as “pizza in Berke-
ley” to highlight locations where the pies are available.

A related application is Google Earth, which was based
on a product acquired by Google in 2004. Google Earth is
available for PCs running Windows, Mac OS, and Linux,
and shows detailed imagery of most terrain at 15-meters
resolution or smaller, with considerably more detailed imag-
ery of some cities. Views have also been enhanced to pro-
vide a better 3D visualization of features such as the Grand
Canyon or Mount Everest, as well as a significant number of
major buildings. In 2007 Google added sky views as well as
surface views of the Moon and Mars.

Like other Google services, Google Maps and Google
Earth offer extensive interfaces that can be used to link
maps and imagery with data from other programs. For
example, Wikipedia articles that include coordinate tags
will now be automatically linked to the corresponding
content from Google Earth. (For more on the creation of
new applications through combining existing services, see
mashups.)

Because mapping services (particularly Google) have
featured relatively high-resolution aerial and even street-
level photographic views, some government agencies around
the world have complained that the service is providing
too much detail of military or other sensitive installations.
(This is also a potential terrorism concern.) Also, privacy

292        map information and navigation systems

advocates are concerned that actual images of identifiable
persons show up in the street-level imagery.

Google has responded to security concerns by blurring
the imagery of some U.S. locations, presumably at govern-
ment request. They have also argued that pictures of people
who are in public places months or years earlier are not a
real privacy concern.

Mobile Navigation Systems
Mobile navigation systems can provide maps, driving direc-
tions, and sometimes additional information such as traffic
conditions and advisories. The system can be either built
into the dashboard (as with many higher-end vehicles) or
available as a mounted unit such as those from Garmin,
Tom Tom, and Magellan (see cars and computing).

Mobile navigation systems link the user’s current loca-
tion (obtained through the GPS system) to the unit’s stored
database of maps and other information, such as local
points of interest. (Some units have backup dead-reckon-
ing systems based on the car’s motion, for use when GPS
signals are lost or distorted because of buildings or other
obstacles.)

An alternative to in-car systems is the smartphone or
PDA equipped with GPS and navigation software. These
have the advantage of also being useful for pedestrians or
hikers.

Users should look for navigation systems that have fea-
tures such as:

• � large, clear, readable display

• � overhead display and display from driver’s point of
view

• � uncluttered user interface to avoid distracting the
driver

• � voice announcements of driving directions and other
information

• � comprehensive maps and database including the abil-
ity to load supplemental coverage for other areas

An important and sometimes overlooked issue with
mobile navigation systems is the need to design the display
and user interface so as to minimize distraction. A combi-
nation of large displays without unnecessary complexity
and the use of spoken driving directions can help. A more
controversial approach is to disable many functions of the
system (such as entering new destinations) while the car is
in motion.

Further Reading
Car GPS (Navigation) Reviews. CNET. Available online. URL:

http://reviews.cnet.com/4566-3430_7-0.html. Accessed Sep-
tember 30, 2007.

Crowder, David A. Google Earth for Dummies. Hoboken, N.J.:
Wiley, 2007.

Google Maps. Available online. URL: http://maps.google.com.
Accessed September 29, 2007.

Hofmann-Wellenhof, Bernhard, Klaus Legat, and Manfred Wieser.
Navigation: Principles of Positioning and Guidance. New York:
Springer, 2003.

“Introduction to In-Car Navigation.” Crutchfield Advisor. Avail-
able online. URL: http://www.crutchfieldadvisor.com/ISEO-
rgbtcspd/learningcenter/car/navigation.html. Accessed Sep-
tember 30, 2007.

Mapquest. Available online. URL: http://www.mapquest.com/.
Accessed September 29, 2007.

Purvis, Michael, Jeffrey Sambells, and Cameron Turner. Beginning
Google Maps Applications with PHP and Ajax: From Novice to
Professional. Berkeley, Calif.: APress, 2006.

marketing of software
The way software has been produced and marketed has
changed considerably in the past five decades. In the nascent
computer industry of the 1950s, commercial software was
developed and marketed by the manufacturers of computer
systems—firms such as Univac (later Sperry-Univac), Bur-
roughs, and of course, IBM (see mainframe). However, a
separate (third-party) software industry emerged as early
as 1955 with the founding of Computer Usage Corporation
(CUC) by two former IBM employees. Nevertheless, the pri-
mary competition was between hardware manufacturers,
with software seen as part of the overall package.

By the early 1960s, larger software companies emerged
such as Computer Science Corporation (CSC) and Elec-
tronic Data Systems (EDS), which became an empire under
the energetic, albeit often controversial leadership of H.
Ross Perot, as well as the European giant SAP. These com-
panies specialized in providing customized software solu-
tions for users who could not meet their needs with the
software library offered by the maker of their computer sys-
tem (see also business applications of computers).

By the 1970s, however, vendor-supplied and contracted
custom software alternatives were being increasingly
accompanied by “off the shelf” software packages. By 1976,
100 software products from 64 software companies had
reached the $1 million mark in sales.

The 1980s saw the emergence of a completely new sec-
tor: desktop computer (PC) users. Traditionally, software
had been marketed to programmers or managers, but now
individual users or office managers could buy and install
word processing programs, spreadsheets, database, and
other programs. At the same time, a market for software for
use in the home and schools, particularly education, per-
sonal creativity, and game programs required new methods
of marketing. For the first time ads for software began to
appear on TV and in general-interest magazines.

While large businesses still required custom-made soft-
ware, most small to medium businesses looked for powerful
and integrated office software solutions (see application
suite, office automation, and Gates, William). By the
mid-1990s, Microsoft’s Office suite had dominated this
market, although that dominance began to be threatened to
some extent by software written in Java or hosted on Linux
systems (see also open source movement).

The growth in the Internet (see e-commerce) has also
offered new venues for the marketing and distribution
of software. Sites such as ZDNet and CNet have to some
extent displaced computer magazines as sources for prod-
uct reviews. These sites also offer extensive libraries of “try

marketing of software        293

before you buy” software (see shareware), some of which
is trial versions of full-blown commercial products. The
local “mom and pop” PC software store has largely van-
ished, with software now marketed mainly by chain stores
such as Electronics Boutique or CompUSA, and increas-
ingly, through Web-based stores, often established by the
chains, as well as the giant on-line bookstore Amazon.com.

Another trend impacting the traditional package model
of software delivery is the hosting and serving of applica-
tions online (see application service provider) using a
subscription model. Google has offered a free suite of office
and communications applications online, including com-
ponents that can be used off-line. This and other emerg-
ing offerings may portend further splitting of the software
market into high-end or specialized applications on the one
hand, and added-value or premium versions of free software
on the other.

Further Reading
Campbell-Kelly, Martin. From Airline Reservations to Sonic the

Hedgehog: A History of the Software Industry. Cambridge,
Mass.: MIT Press, 2004.

Computer History Museum. Software Industry SIG. “Preserving
the History of the Software Industry.” Available online. URL:
http://www.softwarehistory.org/. Accessed August 14, 2007.

Cusumano, Michael. The Business of Software: What Every Man-
ager, Programmer, and Entrepreneur Must Know to Thrive and
Survive in Good Times and Bad. New York: Free Press, 2004.

Hasted, Edward. Software that Sells: A Practical Guide to Develop-
ing and Marketing Your Software Project. Indianapolis: Wiley,
2005.

Plunkett, Jack W. Plunkett’s InfoTech Industry Almanac. Houston,
Tex.: Plunkett Research, 2007.

mashups
Today the creative world has blurred the boundaries that
once separated works of art. Songs are sampled and remixed
from earlier songs. Star Wars fans create new chapters in
the saga by remixing existing footage and adding their own
new footage and effects. The fluidity and ease of manipula-
tion of all digital data, regardless of its original source, has
made it easier than ever before to reuse, repurpose, or rein-
vent content. It is not surprising, then, that software itself
can be mixed and matched to create new applications called
mashups.

Mashups are new applications created by putting
together data or features from existing applications, such as
maps and databases. Many Web applications are designed
to make their services available to other programs (see ser-
vice-oriented architecture and Web 2.0). This can be
done at the programming level by providing an application
programming interface (see api), or even through simpler
facilities that can be used easily by nonprogrammers.

A number of major Web sites and applications provide
resources for mashups, including Google (particularly
Google Maps), Amazon, eBay, Flickr, YouTube (image and
video sharing), the “social bookmarking” site del.iciou.us,
and many others. Some of these services (and third parties)
have provided mashup editors to simplify the process of
creating mashups.

As a simple example, suppose one wants to create a map
display showing rentals in San Francisco by neighborhood,
color coded by rent range. Google Maps can generate maps
for any area and plot points on them, given coordinates in a
standard tag. Craigslist has rental ads including addresses.
To create a mashup, a “screenscraper” can be used to extract
addresses and rents from the ads, and the colored points
can then be plotted on a map of the city via Google.

While the most common types of mashups are created
by and for ordinary users, mashup techniques can also
be used in business applications. For example, data from
several sources (such as Web feeds [see rss]) or various
databases can be brought together and provided with an
easy-to-use interface (see digital dashboard).

Mashups can also be considered to be an aspect of the
emerging new information economy. Developers may be
finding it in their interest to provide APIs and services suit-
able for mashups because, in turn, the mashups increase
the use of the original program. By providing these ser-
vices, developers are also contributing to a “digital com-
mons” that benefits all.

Further Reading
Feiler, Jesse. How to Do Everything with Web 2.0 Mashups.

Emeryville, Calif.: McGraw Hill-Osborne, 2007.
Google Mashup Editor. Available online. URL: http://code.google.

com/gme/. Accessed October 1, 2007.
“How to Create a Mashup.” Mashup Awards. Available online.

URL: http://mashupawards.com/create/. Accessed October 1,
2007.

Lewis, Andre, et al. Beginning Google Maps Applications with Rails
and Ajax: From Novice to Professional. Berkeley, Calif.: Apress,
2007.

Microsoft Popfly. Available online. URL: http://www.popfly.com/.
Accessed October 1, 2007.

QEDWiki (IBM). Available online. URL: http://services.alpha-
works.ibm.com/qedwiki/. Accessed October 1, 2007.

Yahoo! Pipes. Available online. URL: http://pipes.yahoo.com/
pipes/. Accessed October 1, 2007.

Yee, Raymond. Pro Web 2.0 Mashups: Remixing Data and Web Ser-
vices. Berkeley, Calif.: Apress, 2008.

mathematics of computing
The roots of modern computer science lie in an interest in
rapid computation. Simple mechanical calculators (see cal-
culator) may date back to ancient times; however, it is the
work of mathematicians Blaise Pascal (1623–1662) and Gott-
fried Leibniz (1646–1716) that gave rise to the first practical
mechanical calculators. By the mid-19th century, Charles
Babbage (1791–1871) had conceptualized and designed
mechanical computers that included the essential features
(programs, processor, memory, input/output) of the modern
digital computer (see Babbage, Charles). His motivation
was the need for rapid, accurate calculation of statistical
tables made necessary by the manufacturing economy of the
Industrial Revolution. By the end of the century, the volume
of such data had increased to the point where mechanical
calculators and tabulators (see Hollerith, Herman) had
become the only practical way to keep up.

294        mashups

Mathematically, a computer can be seen as a way to rap-
idly and automatically execute procedures that have been
proven to lead to reliable solutions to a problem (see algo-
rithm). Once computers came on the scene, mathemati-
cal principles for verifying or proving algorithms would
acquire new practical importance.

By the early 20th century, however, mathematicians
were beginning to examine the problem of determining
what propositions were provable, and in 1931 Kurt Godel
published a proof that any mathematical system necessar-
ily allowed for the formation of propositions that could not
be proven using the axioms of that system. An analogous
question was determining what problems were computable.
Working independently, two researchers (see Church,
Alonzo and Turing, Alan) formulated models that could
be used to test for computability. Turing’s model, in partic-
ular, provided a theoretical construct (the Turing Machine)
that could, using combinations of a few simple operations,
calculate anything that was computable.

By the 1940s, electromechanical (relays) or electronic
(tube) switching elements made it possible to build prac-
tical high-speed computers. Computer circuit designers
could draw upon the advances in symbolic logic in the 19th
century (see Boolean operators). Boolean logic, with its
true/false values, would prove ideal for operating comput-
ers constructed from on/off switched elements.

The mathematical tools of the previous 150 years
could now be used to design systems that could not only
calculate but also manipulate symbols and achieve results
in higher mathematics (see the next entry, mathematics
software).

Mathematics and Modern Computers
A variety of mathematical disciplines bear upon the design
and use of modern computers. Simple or complex algebra
using variables in formulas is at the heart of many pro-
grams ranging from financial software to flight simulators.
Indeed, one of the most enduring scientific and engineering
languages takes its name from the process of translating
formulas into computer instructions (see fortran).

Geometry, particularly the analytical geometry based
upon the coordinate system devised by Rene Descartes
(1596–1650) is fundamental to computer graphics dis-
plays, where the screen is divided into X (vertical) and Y
(horizontal) axes. Modern graphics systems have added 3D
depiction and sophisticated algorithms to allow the rapid
display of complex objects. Beyond graphics, the Carte-
sian insight that converted geometry into algebra makes a
variety of geometrical problems accessible to computation,
including the finding of optimum paths for circuit design.
Design of computer and network architectures also involves
the related field of topology. The fascinating field of fractal
geometry has found use in computer graphics and data stor-
age techniques (see fractals in computing).

Aspects of number theory, often considered the most
abstract branch of mathematics, have found surprising rel-
evance in computer applications. These include randomiza-
tion (random number generation) and the factoring of large
numbers, which is crucial for cryptography.

Mathematics also bears on computer networking with
regard to communications theory (see bandwidth and
Shannon, Claude) and techniques for error correction.

The Computer’s Contribution to
Mathematics
Mathematics as a discipline is thus essential to its younger
sibling, computer science. In turn, however, computer sci-
ence and technology have enriched the pursuit of math-
ematical truth in surprising ways. As early as 1956, a
program called Logic Theorist, written by Herbert Simon
(1916–2001) and Allen Newell (1927–1992) demonstrated
how a program (that is, a collection of algorithms) could
prove mathematical propositions given axioms and rules.
While these early programs worked on a somewhat hit-
or-miss basis, later theorem-solving programs produced
solutions different from the standard ones known to math-
ematicians, and sometimes more elegant. Thus the com-
puter, which began as an aid to calculation, became an aid
to symbol manipulation and to some extent an independent
creative source.

Further Reading
“Computers & Math News.” ScienceDaily. Available online.

URL: http://www.sciencedaily.com/news/computers_math/.
Accessed August 14, 2007.

Henderson, Harry. Modern Mathematics: Powerful Patterns in
Nature and Society. New York: Chelsea House, 2007.

Maxfield, Clive, and Alan Brown. The Definitive Guide to How
Computers Do Math. New York: Wiley-Interscience, 2005.

McCullough, Robert. Mathematics for Computer Technology. 3rd
ed. Engelwood, Colo.: Morton Publishing, 2006.

Took, D. James, and Norma Henderson. Using Information Tech-
nology in Mathematics Education. New York: Haworth Press,
2001.

Vince, John. Mathematics for Computer Graphics. 2nd ed. New
York: Springer, 2005.

mathematics software
As explained in the preceding article, computer science
looked to mathematics to create and verify its algorithms.
In turn, computer software has greatly aided many levels
of mathematical work, ranging from simple calculations to
manipulation of symbols and abstract forms.

At the simplest level, computers overlap the functions
of simple electronic calculators. Indeed, operating systems
such as Microsoft Windows and UNIX systems include
calculator utilities that can be used to solve problems
requiring a basic four function or more elaborate scientific
calculator.

The true power of the computer became more evident to
ordinary users when spreadsheet software was introduced
commercially in 1979 with VisiCalc (see spreadsheet).
Spreadsheets make it easy to maintain and update summa-
ries and other reports generated by formulas. Later versions
of spreadsheet programs such as Lotus 1-2-3 and Microsoft
Excel have the ability to create a wide variety of plots and
charts to show relationships between variables in visual
terms.

mathematics software        295

Moving from simple formulas to the manipulation of sym-
bolic quantities (as in algebra), the Association for Comput-
ing Machinery (ACM) classification system describes several
broad areas of computer-aided mathematics. These include
numerical analysis (techniques for solving, linear, non-linear,
and differential equations), discrete mathematics (combinato-
rial and graph theory), and probability and statistics.

There are two general approaches to mathematical
software. One is the creation of libraries of routines or
procedures that address particular kinds of problems. A
programmer who is creating software that must deal with
particular mathematical problems can link these routines
to the program, call the procedures with appropriate vari-
ables or data, and return the results to the main program
for further processing (see procedures and functions).
The language FORTRAN is still widely used for developing
mathematics libraries, and there is a legacy of tens of thou-
sands of routines available. Modern systems have the ability
to link these procedures to programs written in more recent
languages such as C.

The advantage of using program libraries is that they
don’t require learning new programming techniques. Each
routine can be treated as a “black box.” However, it is often
desirable to work with traditional mathematical notation
(what one might see on a blackboard in a calculus class,
rather than typed into computer code). A stand-alone soft-
ware package such as Mathcad, Matlab, or Mathematica
can automatically simplify or solve algebraic expressions or
perform hundreds of traditional mathematical procedures.
For statistical analysis, programs such as SPSS can apply all
of the standard statistical tests to data and provide a large
variety of graphics.

Further Reading
Field, Andy. Discovering Statistics Using SPSS. 2nd ed. Thousand

Oaks, Calif.: SAGE Publications, 2005.
Griffith, Arthur. SPSS for Dummies. Hoboken, N.J.: Wiley, 2007.
Netlib Repository of Mathematical Software, Papers, and Data-

bases. Available online. URL: http://www.netlib.org/. Accessed
August 14, 2007.

Press, William H., et al. Numerical Recipes. 3rd ed. New York:
Cambridge University Press, 2007.

Ruskeepaa, Heikki. Mathematica Navigator: Mathematics, Sta-
tistics, and Graphics. Burlington, Mass.: Elsevier Academic
Press, 2004.

Wellin, Paul, Richard Gaylord, and Samuel Kamin. An Introduc-
tion to Programming with Mathematica. New York: Cambridge
University Press, 2005.

Wolfram, Stephen. The Mathematica Book. 5th ed. Champaign, Ill.:
Wolfram Media, 2003.

Wolfram Mathematica Home Page. Available online. URL: http://
www.wolfram.com/. Accessed August 14, 2007.

Mauchly, John William
(1907–1980)
American
Inventor, Computer Scientist

John Mauchly was codesigner of the earliest full-scale digi-
tal computer, ENIAC, and its first commercial successor,

Univac (see also Eckert, J. Presper). His and Eckert’s work
went a long way toward establishing the viability of the
computer industry in the early 1950s.

Mauchly was born on August 30, 1907, in Cincinnati,
Ohio. He attended the McKinley Technical High School in
Washington, D.C., and then began his college studies at
Johns Hopkins University, eventually changing his major
from engineering to physics. The spectral analysis prob-
lems he tackled for his Ph.D. (awarded in 1932) and in
postgraduate work required a large amount of painstaking
calculation. So, too, did his later interest in weather pre-
diction, which led him to design a mechanical computer
for harmonic analysis of weather data (see analog com-
puter). He also learned about binary switching circuits
(“flip-flops”) and experimented with building electronic
counters, which used vacuum tubes and were much faster
than counters using electromagnetic relays.

Mauchly taught physics at Ursinus College in Philadel-
phia from 1933 to 1941. On the eve of World War II, how-
ever, he went to the University of Pennsylvania’s Moore
School of Engineering and took a course in military appli-
cations of electronics. He then joined the staff and began
working on contracts to prepare artillery firing tables for
the military. Realizing how intensive the calculations
would be, in 1942 he wrote a memo proposing that an
electronic calculator be built to tackle the problem. The
proposal was rejected at first, but by 1943 table calculation
by mechanical methods was falling even further behind.
Herman Goldstine, who had been assigned by the Aberdeen
Proving Ground to break the bottleneck, approved the cal-
culator project.

With Mauchly providing theoretical design work and
J. Presper Eckert heading the engineering effort, the Elec-
tronic Numerical Integrator and Computer, better known as
ENIAC, was completed too late to influence the outcome of
the war. However, when the machine was demonstrated in
February, 1946, it showed that a programmable electronic
computer was not only about a thousand times faster than
an electromechanical calculator, it could be used as a gen-
eral-purpose problem-solver that could do much more than
existing calculators.

Mauchly and Eckert left the Moore School after a dis-
pute about who owned the patent for the computer work.
They jointly founded what became known as the Eckert-
Mauchly Computer Corporation, betting on Mauchly’s con-
fidence that there was sufficient demand for computers not
only for scientific or military use, but for business applica-
tions as well. By 1950, however, they were struggling to sell
and build their improved computer, Univac, while fulfilling
existing government contracts for a scaled-down version
called BINAC. In 1950, they sold their company to Rem-
ington Rand, while continuing to work on Univac. In 1952,
Univac stunned the world by correctly predicting the presi-
dential election results on election night long before most of
the votes had come in.

Early on, Mauchly saw the need for a better way to write
computer programs. Univac and other early computers had
been programmed through a mixture of rewiring, setting of
switches, and entering numbers into registers. This made

296        Mauchly, John William

programming difficult, tedious, and error-prone. Mauchly
wanted a way that variables could be represented symboli-
cally: for example, Total rather than a register number such
as 101. Under Mauchly’s supervision William Schmitt wrote
what became known as Brief Code. It allowed two-letter
combinations to stand for both variables and operations
such as multiplication or exponentiation. A special pro-
gram read these instructions and converted them to the
necessary register and machine operation commands (see
interpreter). While primitive compared to later languages
(see assembler and programming languages), Brief Code
represented an important leap forward in making comput-
ers more usable.

Mauchly stayed with Remington Rand and its successor
Sperry Rand until 1959, but then left over a dispute about
the marketing of the Univac. He continued his career as a
consultant and lecturer. Mauchly and Eckert also became
embroiled in a patent dispute arising from their original
work with ENIAC. Accused of infringing Sperry Rand’s
ENIAC patents, Honeywell claimed that the ENIAC patent
was invalid, with another computer pioneer, John Atanasoff,
claiming that Mauchly and Eckert had obtained crucial
ideas after visiting his laboratory in 1940 (see Atanasoff,
John Vincent).

In 1973, Judge Earl Richard Larson ruled in favor of
Atanasoff and Honeywell. However, many historians of
the field give Mauchly and Eckert the lion’s share of the
credit because it was they who had built full-scale, practical
machines.

Mauchly played a key role in founding the Association
for Computing Machinery (ACM), one of the field’s premier
professional organizations. He served as its first vice presi-
dent and second president. He received many tokens of rec-
ognition from his peers, including the Howard Potts Medal
of the Franklin Institute. In turn, the ACM established an
Eckert-Mauchly award for excellence in computer design.
John Mauchly died on January 8, 1980.

Further Reading
“John W. Mauchly and the Development of the ENIAC Computer:

An Exhibition in the Department of Special Collections, Van
Pelt Library, University of Pennsylvania.” Available online.
URL: http://www.library.upenn.edu/exhibits/rbm/mauchly/
jwmintro.html. Accessed August 14, 2007.

McCartney, Scott. ENIAC: The Triumphs and Tragedies of the World’s
First Computer. New York: Berkeley Books, 1999.

Stern, N. “John William Mauchly: 1907–1980,” Annals of the His-
tory of Computing (April 1980): 100–103.

McCarthy, John
(1927– )
American
Computer Scientist, AI Pioneer

Starting in the 1950s, John McCarthy played a key role in
the development of artificial intelligence as a discipline, as
well as developing LISP, the most popular language in AI
research.

John McCarthy was born on September 4, 1927, in Bos-
ton, Massachusetts. He completed his B.S. in mathematics
at the California Institute of Technology, then earned his
Ph.D. at Princeton University in 1951. During the 1950s, he
held teaching posts at Stanford University, Dartmouth Col-
lege, and the Massachusetts Institute of Technology.

Although he seemed destined for a prominent career
in pure mathematics, he encountered computers while
working during the summer of 1955 at an IBM laboratory.
He was intrigued with the potential of the machines for
higher-level reasoning and intelligent behavior (see arti-
ficial intelligence). The following year he put together
a conference that brought together people who would
become key AI researchers, including Marvin Minsky (see
Minsky, Marvin). He proposed that “the study is to pro-
ceed on the basis of the conjecture that every aspect of
learning or any other feature of intelligence can in princi-
ple be so precisely described that a machine can be made
to simulate it. An attempt will be made to find how to
make machines use language, form abstractions and con-
cepts, solve kinds of problems now reserved for humans,
and improve themselves.”

Mathematics had well-developed symbolic sys-
tems for expressing its ideas. McCarthy decided that if
AI researchers were to meet their ambitious goals, they
would need a programming language that was equally
capable of expressing and manipulating symbols. Start-
ing in 1958, he developed LISP, a language based on lists
that could flexibly represent data of many kinds and even
allowed programs to be fed as data to other programs
(see lisp). LISP would be used in the coming decades to
code most AI research projects, and McCarthy continued
to play an important role in refining the language, while
moving to Stanford in 1962, where he would spend the
rest of his career.

McCarthy also contributed to the development of
Algol, a language that would in turn greatly influence
modern procedural languages such as C. He also helped
develop new ways for people to use computers. Con-
sulting with Bolt, Beranek and Newman (the company
that would later build the beginnings of the Internet),
he helped design time-sharing, a system that allowed
many users to share the same computer, bringing down
the cost of computing and making it accessible to more
people. He also sought to make computers more interac-
tive, designing a system called THOR, which used video
display terminals. Indeed, he pointed the way to the per-
sonal computer in a 1972 paper on “The Home Informa-
tion Terminal.”

In 1971, McCarthy received the prestigious A. M. Turing
award from the Association for Computing Machinery. In
the 1970s and 1980s, he taught at Stanford and remained a
prominent spokesperson for AI, arguing against critics such
as philosopher Hubert Dreyfus (see Dreyfus, Hubert),
who claimed that machines could never achieve true intel-
ligence. In 2000 McCarthy retired from Stanford, where he
remains a Professor Emeritus. In 2003 McCarthy received
the Benjamin Franklin Medal in Computer and Cognitive
Science.

McCarthy, John        297

Further Reading
“John McCarthy’s Home Page.” Available online. URL: http://www-

formal.stanford.edu/jmc/. Accessed August 14, 2007.
McCarthy, John. “The Home Information Terminal.” Man and

Computer: Proceedings of the International Conference, Bor-
deaux, France, 1970. Basel: S. Karger, 1972, 48–57.

———. “Philosophical and Scientific Presuppositions of Logical
AI,” in McCarthy, H. J. and Vladimir Lifschitz, eds., Formal-
izing Common Sense: Papers by John McCarthy. Norwood, N.J.:
Ablex, 1990.

McCorduck, Pamela. Machines Who Think. 2nd ed. Natick, Mass.:
A. K. Peters, 2004.

measurement units used in computing
Newcomers to the computing world often have difficulty
mastering the variety of ways in which computer capacity
and performance are measured. A good first step is to look
at the most common metric prefixes that indicate the mag-
nitude of various units (see table).

Common Metric Prefixes Used in
Computing

Prefix	 Magnitude

kilo	 103 (1 thousand)
mega	 106 (1 million)
giga	 109 (1 billion)
tera	 1012 (1 trillion)
milli	 10-3 (1 thousandth)
micro	 10-6 (1 millionth)
nano	 10-9 (1 billionth)
pico	 10-12 (1 trillionth)

Strictly speaking, most computer measurements are based
on the binary system, using powers of two. Thus kilo
actually means 210, which is actually 1,024, and mega is
actually 220, or 1,048,576. However, this distinction is
generally not important for gaining a sense of the magni-
tudes involved. In 1998, the International Electrotechni-
cal Commission promulgated a new set of prefixes for
these base two computer-related magnitudes, such that
for example, mebi- is supposed to be used instead of
mega-. There is little evidence thus far that this scheme is
being widely adopted.

We will now consider some of the main areas in which
computer capacity or performance is measured.

Storage Capacity
The smallest unit of information, and thus of data stor-
age, is a bit (binary digit). A bit can be either 1 or 0 and is
physically represented in different ways according to the
memory or storage device being used. On most computers
the most-used storage unit is the byte, which contains eight
bits. Since this represents eight binary digits, or 28, a byte
can hold values from 0 to 255 (decimal). The following table
gives some typical units of storage.

Data Storage Units

Unit	T ypical Use

bit	� Processor data handling capacity. Most
processors today can handle 32 or 64 bits at
a time.

byte (8 bits)	� Holds an ASCII character value or a small
number, 0–255.

kilobyte	� Used to measure RAM (random access
memory) and floppy disk capacity for
early PCs.

megabyte	� RAM capacity in older PCs; hard drive
capacity in older PCs.

gigabyte	 Memory and drive capacity in modern PCs.
terabyte	� Large modern hard drives; drive arrays (see

raid).

Graphics
Printed output is generally measured in dots per inch (dpi).
Screen images and images used in digital photography are
measured in pixels or megapixels. However, the amount of
data needed to specify (and thus store) a pixel in an image
depends on the number of colors and other information to
be stored. (See graphics formats.)

Processor Speed
Processor speed is measured in millions of cycles per sec-
ond (megahertz or MHz). The earliest microprocessors had
speeds measured in 1–2 MHz or so. PCs of the 1980s ranged
from about 8 to 50 MHz. In the 1990s, speeds ramped up to
the hundreds of MHz, and in today’s systems PC speeds are
often measured in gigahertz (GHz).

Calculation Speed
The speed at which a computer can perform calculations
depends on more than raw processor speed. For example,
a processor that can store or fetch 32-bit numbers can per-
form many calculations faster than one with only a 16-bit
capacity even if the two processors have the same clock
speed in cycles per second.

Calculation speed is often measured in “flops” or float-
ing-point operations per second (see numeric data), or for
modern processors, megaflops. While this measurement is
often touted in product literature, savvy users look to more
reliable benchmarks that re-create actual conditions of use,
including calculation-intensive, data transfer intensive, or
graphics-intensive operations.

Data Communications and Networking
The speed at which data can be transferred over a modem
or network connection is measured in bits per second
(BPS). A related term, baud, was used (somewhat inac-
curately) with the earlier modems (see bandwidth and
modem).

298        measurement units used in computing

Typical Data Transfer Speeds in  
Bits Per Second (BPS)

Device	A pproximate Speed

Ethernet	 (10 base) 10 Mbps
Fast Ethernet	 100 Mbps
Gigabit Ethernet	 1 Gbps
V.90 dial-up modem	 56 Kbps
ISDN phone line	 64 Kbps
DSL (ADSL)	 1–24 Mbps
Cable modem (DOCSIS)	 10–160 Mbps
Bluetooth 2.0 (see bluetooth)	 3 Mbps
802.11b wireless (see wireless 	 11 Mbps
  computing)
802.11g wireless (see wireless 	 54 Mbps
  computing)
802.11n wireless	 540 Mbps

Further Reading
How Many? A Dictionary of Units of Measurement. Available online.

URL: http://www.unc.edu/~rowlett/units/. Accessed August 14,
2007.

Online [unit] Conversion. Available online. URL: http://www.
onlineconversion.com/. Accessed August 14, 2007.

SG Bits/Bytes Conversion Calculator. Available online. URL:
http://www.speedguide.net/conversion.php. Accessed August
14, 2007.

media center, home
In recent years many families have acquired a plethora of
media and devices to play it—CD and DVD players, radios,
and of course TVs. Meanwhile, the family has likely also
acquired one or more PCs, which are also capable of play-
ing digital audio and video from various sources. The media
center is a way of integrating all of these media into one
centrally located device, the PC, and ideally being able to
serve it on demand anywhere in the home.

Modern PCs already have optical drives (see cd-rom
and dvd-rom). TV signals can be received using a TV tuner
card or, for digital cable signals, a “cable card.” (High-defi-
nition TV or HDTV is becoming increasingly popular.)
There are also tuners for AM/FM radio. Of course audio
and video files can also be received directly over the Inter-
net (see Internet radio; music and video distribution,
online; and streaming).

Media Storage and Distribution
Once media is received, it can be stored on one or more hard
drives (see also DVR). The media can also be distributed to
remote speaker units via the wired (or more often wireless)
network. Remote controls are usually provided to allow the
system to be controlled from anywhere in the building.

Of course software is needed to integrate these devices
and functions. Microsoft provides the Windows Media Cen-
ter for Vista and the Windows XP Media Center Edition.
(There is also third-party software for Windows.) Linux

systems can run programs such as MythTV (free) or the
commercial SageTV. For the Macintosh, a project called
CenterStage was under development as of 2008.

Prebuilt media centers with the PC and all the necessary
inputs and outputs are also available. They are often sold as
part of home theater systems.

Further Reading
Ballew, Joli. How to Do Everything with Windows Vista Media Cen-

ter. Emeryville, Calif.: McGraw-Hill/Osborne, 2007.
Knoppmyth (Knoppix and MythTV Linux media center). Avail-

able online. URL: http://www.knoppmythwiki.org/?id=
KnoppmythWiki. Accessed October 1, 2007.

Layton, Julia. “How Media-Center PCs Work.” Available online.
URL: http://computer.howstuffworks.com/media-center-pc.
htm. Accessed October 1, 2007.

Smith, Stewart, and Michael Still. Practical MythTV: Building a PVR
and Media Center PC. Berkeley, Calif.: Apress, 2007.

Windows Media Center (Vista). Available online. URL: http://www.
microsoft.com/windows/products/windowsvista/features/
details/mediacenter.mspx. Accessed October 1, 2007.

medical applications of computers
Since health care delivery is a business (indeed, one of the
largest sectors of the economy), any hospital, health plan, or
independent medical practice involves much the same soft-
ware as any other large business. This includes accounts
receivable and payable, payroll, and supplies inventory.
Both general and customized industry software can be used
for these functions; however, this article focuses on applica-
tions specific to medicine.

Medical Information Systems
The management of information specifically related to med-
ical care is sometimes called medical informatics. The type
of information gathered depends on many factors including
the type of institution, ranging from a small doctor’s office
to a large clinic to a full hospital and the nature and scope
of the treatment provided. However, one can make some
generalizations.

For outpatients, the required information includes
an extensive medical record for each patient, including
records of medical tests and their results, prescriptions and
their status, and so on. For hospital patients, there are also
admissions records, an extensive list of itemized charges,
and records that must be maintained for public health or
other governmental purposes. Hospitals increasingly use
customized, integrated hospital information systems (HIS)
that integrate billing, medical records, and pharmacy.

Additional record keeping needs arise from the mecha-
nisms used to pay for health care. Each health payment
system, whether government-run (such as Medicare or the
Veterans’ Administration) or a private health maintenance
organization (HMO), has extensive rules and procedures
about how each surgery, treatment, test, or medication can
be submitted for payment. The software must be able to
use recognized classifications systems such as the DSM-IV
(Diagnostic and Statistical Manual of Mental Disorders).

medical applications of computers        299

Clinical Information Management
The modern hospital generates extensive real-time data
about the condition of patients, particularly those in criti-
cal or intensive care or undergoing surgery. Many hospitals
have bedside or operating room terminals where physicians
or nurses can review summaries of data such as vital statis-
tics (blood pressure, heart function, and so on). Data can
also be entered or reviewed using handheld computers (see
portable computers). The ultimate goal of such systems
is to provide as much useful information as possible with-
out overwhelming medical personnel with data entry and
related tasks that might detract from patient care.

In 2001, a new group, the Patient Safety Institute, was
formed in an attempt to create a nationwide standardized
format for electronic patient records. This would make it
possible for emergency personnel to download a patient’s
record into a handheld computer and access potentially life-
saving information such as medications and allergies.

There has also been some progress in medical decision
support systems. Going beyond data summarization, such
systems can analyze changes or trends in medical data
and highlight those of clinical significance. Such systems
can also aid in the compilation of medical charts or pos-
sibly compile portions of the chart automatically for later
review.

Diagnostic and Treatment Systems
The diagnosis and treatment of many conditions has been
profoundly enhanced by the use of computer-assisted medi-
cal instruments. At the beginning of the last century the
use of X-rays revolutionized the imaging of the anatomy
of living things. X-rays, however, were limited in detail
and depth of imaging. Techniques of tomography, involving
synchronized movement of the X-ray tube and film, were
then developed to create a sharp focus deeper within the
target structure. The development of computerized tomog-
raphy (CT or CAT) scanning in the 1970s used a different
and more effective approach: A beam of X rays is swept
through the target area while computerized radiation detec-
tors precisely calculate the absorption of radiation, and thus
the density of the tissue or other structure at each point.
This results in a highly detailed image that can be viewed
as a series of layers or combined into a three-dimensional
holographic display.

Another widely used imaging technique is positron
emission tomography (PET) scanning, which tracks the
radiation emission from a short-lived radioisotope injected
into the patient. It is particularly helpful for studying the
flow of blood or gas and other physiological or metabolic
changes. Magnetic resonance imaging (MRI) uses the
absorption and re-emission of radio waves in a strong mag-
netic field to identify the characteristic signature of the
hydrogen nucleus (i.e. a proton) in water within the body,
and thus delineate the surrounding structures.

Besides controlling the scanning process (especially in
CAT scanning), the computer is essential for the creation
and manipulation of the resulting images. A typical image
processing (IP) system is actually an array of many individ-
ual processors that perform calculations and comparisons

on parts of the image to enhance contrast and extract infor-
mation that can lead to a more precise depiction of the area
of interest. The resulting images (consisting of an array of
pixels and associated information) can be further enhanced
in a variety of ways using video processing software. Other
software using pattern recognition techniques can be pro-
grammed to look for tumors or other anomalous structures
(see image processing).

Trends
Medical informatics is likely to be a strong growth area
in coming decades. As the population ages, demand for
medical care will increase. At the same time, there will be
growing pressure to control costs. Although technology is
expensive, there is a general belief that information can
be leveraged to provide more cost-effective treatment and
management of health care delivery.

Medical systems are likely to become more integrated.
There have been proposals to create permanent, extensive
electronic medical records that patients might even “wear” in
the form of a small implanted chip. However, concern about
the consequences of violation of privacy and misuse of medi-
cal information (such as by employers or insurers) raises sig-
nificant challenges (see also privacy in the digital age).

There are many exciting possibilities for computer-
assisted medical treatment. It may eventually be possible to
provide all the detail of a CAT scan or MRI while a medical
procedure is being performed. At any rate, surgeons will
be able to see ever more clearly what they are doing, and
robot-controlled surgical instruments (such as lasers) are
already operating with a precision that cannot be matched
by human hands. Such instrumentation also allows for the
possibility that skilled surgeons might be able to operate
through telepresence, bringing lifesaving surgery to remote
areas (see telepresence).

Information technology (and the World Wide Web in
particular) is also giving patients more data and choices

This NASA project is developing a “smart” probe that could provide
instant analysis of breast tumors to guide surgeons in their work.
Such instruments could make surgery more accurate and effective,
as well as reducing unnecessary operations.  (NASA photo)

300        medical applications of computers

about prospective drugs and treatments. (See personal
health information management.)

Further Reading
Chen, Hsinchun, et al., eds. Medical Informatics: Knowledge Man-

agement and Data Mining in Biomedicine. New York: Springer,
2005.

LinuxMedNews [open-source medical software]. Available online.
URL: http://www.linuxmednews.com/. Accessed August 14,
2007.

Medical Software (Yahoo! Directory). Available online. URL:
http://dir.yahoo.com/Business_and_Economy/Business_to_
Business/Health_Care/Software/Me dical/. Accessed August
14, 2007.

Shortliffe, Edward H., and James J. Cimino, eds. Biomedical Infor-
matics: Computer Applications in Health Care and Biomedicine.
New York: Springer, 2006.

Sullivan, Frank, and Jeremy Wyatt. ABC of Health Informatics. Mal-
den, Mass.: Blackwell, 2006.

Wooton, Richard. Introduction to Telemedicine. 2nd ed. London:
Royal Society of Medicine Press, 2006.

memory
Generally speaking, memory is a facility for temporarily
storing program instructions or data during the course
of processing. In modern computers the main memory is
random access memory (RAM) consisting of silicon chips.
Today’s personal computers typically have from between
64MB (megabytes) and 512MB of main memory.

Development of the Technology
In early calculators “memory” was stored as the positions
of various dials. Charles Babbage conceived of a “store” of
such dials that could hold constants or other values needed
during processing by his Analytical Engine (see Babbage,
Charles).

A number of forms of memory were used in early elec-
tronic digital computers. For example, a circuit with an
inherent delay could be used to store a series of pulses that
could be “refreshed” every fraction of a second to maintain
the data values. The Univac I, for example, used a mercury
delay line memory. Researchers also experimented with
cathode ray tubes (CRTs) to store data patterns.

The most practical early form of memory was the ferrite
core, which consisted of an array of tiny donut-shaped mag-
nets, crisscrossed by electrical lines so that any element
can be addressed by row and column number. By convert-
ing data into appropriate voltage levels, the magnetic state
of the individual elements can be switched on and off to
represent 1 or 0. In turn, a current can be passed through
any element to read its current state—although the element
must then be remagnetized. Ferrite cores were relatively
fast but expensive, and “core” became programmers’ short-
hand for the amount of precious memory available.

By the 1960s, the use of transistors and integrated circuits
made electronic solid-state memory systems possible. Since
then, the MOSFET (Metal Oxide Semiconductor Field Effect
Transistor) using CMOS (Complementary Metal Oxide) fab-
rication has been the dominant way to implement DRAM
(dynamic random access memory). Here “dynamic” means

that the memory must be “refreshed” by applying current
after data is read in each cycle, and “random access” means
that any desired memory location can be accessed directly
rather than requiring locations to be read sequentially.

Static RAM is used in some computer components where
maximum memory speed is desirable. Static memory is faster
because it does not need to be refreshed after each reading
cycle. However, it is also considerably more expensive.

Memory performance is also dependent on how quickly
locations in the memory can be addressed. The earliest
forms of DRAM required that the row and column of the
desired memory location be sent in separate cycles. EDO
(Extended Data Out) and more recent technologies allow
the row to be requested one time, and then just the column
given for adjacent or nearby locations. Timing and pipelin-
ing techniques can also be used to start a new request while
the previous one is still being processed.

For SDRAM (synchronous DRAM), memory speed is
limited by the inherent response time of the memory chip,
but also by the number of clock cycles per second initiated
by the data bus (see bus). Double data rate (DDR) SDRAM
is able to use both the “rising” and “falling” part of the
clock cycle to transfer data, doubling throughput. It is being
superseded by DDR2, which achieves another doubling
because it can run the data-transfer bus at twice the system
clock speed. However, this does increase latency (the time
needed to begin an access). On the horizon is DDR3, which
can run the bus at four times clock speed—yet another
doubling. Possible future memory technologies include
“spintronics,” or the use of the quantum state or “spin” of
electrons to hold data. The speed, compactness, and reli-
ability of this technology could exceed current devices by a
factor of hundreds to thousands.

As memory gets faster, it continues to get cheaper (at
least for all but the latest technology). At the same time,
memory demands continue to increase. Today’s PCs gener-
ally come with 1 GB (billion bytes) of RAM, and 2 GB or
more is often recommended, particularly for memory-hun-
gry operating systems such as Microsoft Windows Vista and
applications such as Adobe PhotoShop and video editing.

Another popular kind of memory is “flash” (nonvola-
tile) memory that does not require power to maintain its
contents. This kind of memory is used in a wide variety of
devices, including digital cameras, PDAs, and media play-
ers (see also flash drive).

In actual systems, a small amount of faster memory (see
cache) is used to hold the data that is most likely to be
immediately needed. A proper balance between primary
and secondary cache and main memory in the system chip-
set makes it less necessary to use the fastest, most expen-
sive form of main memory.

Many computers also have ROM (Read-Only Memory) or
PROM (Programmable Read-Only Memory). This memory
holds permanent system settings and data (see bios) that are
needed during the startup process (see boot sequence).

Further Reading
Jacob, Bruce, Spencer Ng, and David Wang. Memory Systems:

Cache, DRAM, Disk. San Francisco: Morgan Kaufmann, 2007.

memory        301

Tom’s Hardware: Motherboards and RAM. Available online. URL:
http://www.tomshardware.com/motherboard/index.html.
Accessed August 15, 2007.

“Ultimate Memory Guide.” Available online. URL: http://www.
kingston.com/tools/umg/default.asp. Accessed August 15,
2007.

memory management
Whatever memory chips or other devices are installed in a
computer, the operating system and application programs
must have a way to allocate, use, and eventually release
portions of memory. The goal of memory management is to
use available memory most efficiently. This can be difficult
in modern operating environments where dozens of pro-
grams may be competing for memory resources.

Early computers were generally able to run only one
program at a time. These machines didn’t have a true oper-
ating system, just a small loader program that loaded the
application program, which essentially took over control
of the machine and accessed and manipulated the memory.
Later systems offered the ability to break main memory into
several fixed partitions. While this allowed more than one
program to run at the same time, it wasn’t very flexible.

Virtual Memory
From the very start, computer designers knew that main
memory (RAM) is fast but relatively expensive, while sec-
ondary forms of storage (such as hard disks) are slower
but relatively cheap. Virtual memory is a way to treat such
auxiliary devices (usually hard drives) as though they
were part of main memory. The operating system allocates
some storage space (often called a swapfile) on the disk.
When programs allocate more memory than is available
in RAM, some of the space on the disk is used instead.
Because RAM and disk are treated as part of the same
address space (see addressing), the application request-
ing memory doesn’t “know” that it is not getting “real”
memory. Accessing the disk is much slower than accessing
main memory, so programs using this secondary memory
will run more slowly.

Virtual memory has been a practical solution since the
1960s, and it has been used extensively on PCs running
operating systems such as Microsoft Windows. However,
with prices of RAM falling drastically in the new century,
there is likely to be enough main memory on the latest sys-
tems available to run most popular applications.

Memory Allocation
Most programs request memory as needed rather than a
fixed amount being allocated as part of program compila-
tion. (After all, it would be inefficient for a program to try
to guess how much memory it would need, and possibly
tie up memory that could be used more efficiently by other
programs.) The operating system is therefore faced with the
task of matching the available memory with the amounts
being requested as programs run.

One simple algorithm for memory allocation is called
first fit. When a program requests memory, the operating

system looks down its list of available memory blocks and
allocates memory from the first one that’s large enough to
fulfill the request. (If there is memory left over in the block
after allocation, it becomes a new block that is added to the
list of free memory blocks.)

As a result of repeated allocations using this method, the
memory space tends to become fragmented into many left-
over small blocks of memory. As with fragmentation of files
on a disk, memory fragmentation slows down access, since
the hardware (see memory) must issue repeated instruc-
tions to “jump” to different parts of the memory space.

Using alternative memory allocation algorithms can
reduce fragmentation. For example, the operating system
can look through the entire list (see heap) and find the
smallest block that is still large enough to fulfill the alloca-
tion request. This best fit algorithm can be efficient. While
it still creates fragments from the small leftover pieces, the
fragments usually don’t amount to a significant portion of
the overall memory.

The operating system can also enforce standard block
sizes, keeping a “stockpile” of free blocks of each permitted
size. When a request comes in, it is rounded to the near-
est amount that can be made from a combination of the
standard sizes (much like making change). This approach,
sometimes called the buddy system, means that programs
may receive somewhat more or less memory than they want,
but this is usually not a problem.

Recycling Memory
In a multitasking operating system, programs should release
memory when it is no longer needed. In some programming
environments memory is released automatically when a
data object is no longer valid (see variable), while in other
cases memory may need to be explicitly freed by calling the
appropriate function.

Recycling is the process of recovering these freed-up
memory blocks so they are available for reallocation. To
reduce fragmentation, some operating systems analyze the
free memory list and combine adjacent blocks into a single,
larger block (this is called coalescence). Operating systems
that use fixed memory block sizes can do this more quickly
because they can use constants to calculate where blocks
begin and end.

Many more sophisticated algorithms can be used to
improve the speed or efficiency of memory management. For
example, the operating system may be able to receive infor-
mation (explicit or implicit) that helps it determine whether
the requested memory needs to be accessed extremely
quickly. In turn, the memory management system may be
designed to take advantage of particular processor architec-
ture. Combining these sources of knowledge, the memory
manager might decide that a particular requested memory
block be allocated from special high speed memory (see
cache).

While RAM is now cheap and available in relatively
large quantities even on desktop PCs, the never-ending
race between hardware resources and the demands of ever
larger database and other applications guarantees that
memory management will remain a concern of operat-

302        memory management

ing system designers. In particular, distributed database
systems where data objects can reside on many different
machines in the network require sophisticated algorithms
that take not only memory speed but also network load
and speed into consideration.

Further Reading
Blunden, Bill. Memory Management: Algorithms and Implementa-

tions in C/C++. Plano, Tex.: Wordware Publishing, 2002.
Jones, Richard, and Rafael D. Lins. Garbage Collection: Algorithms

for Automatic Dynamic Memory Management. New York:
Wiley, 1996.

“The Memory Management Reference Beginner’s Guide: Overview.”
Available online. URL: http://www.memorymanagement.
org/articles/begin.html. Accessed August 15, 2007.

message passing
In the early days of computing, a single program usually
executed sequentially, with interruptions for calls to vari-
ous procedures or functions that would perform data pro-
cessing tasks and then return control to the main program
(see procedures and functions). However, by the 1970s
UNIX and other operating systems had introduced the
capability of running several programs at the same time
(see multitasking). Additionally, it became common to
create a large program that would manage data and smaller
programs that could link users to that service (see client-
server computing). Further, programs themselves began
to be organized in a new way (see object-oriented pro-
gramming). A program now consisted of a number of enti-
ties (objects) representing data and methods (things that
can be done with the data).

Thus, both at the operating system and application level
it became necessary to have various objects communicate
with one another. For example, a client program requests
a service from the server. The server performs the required
service and reports its completion. The mechanism by
which information can be sent from one program to another
(or between objects in a program) is called message passing.

In one message-passing scheme, two objects (such as cli-
ent and server) agree on a standard memory location called
a port. Each program checks the port regularly to see if a
message (containing instructions, data, or an address where
data can be found) is pending. In turn, outgoing messages
can be left at the port.

The client-server idea can be found within operating
systems as well. For example, there can be a component
devoted to providing file-related services, such as opening
or reading a file (see file). An application that wants to
open a file leaves an appropriate message to the operating
system. The operating system has a message dispatcher that
examines incoming messages and routes them to the cor-
rect component (the file system manager in this case).

Within an object-oriented program, an object is sent a
message by invoking one of its methods (Smalltalk and other
languages) or member functions (C++ or Java). For example,
suppose there’s an object call Speaker that represents the
system’s internal speaker. As part of a user alert procedure,
there might be a call to

Speaker.Beep (500)

which might be defined to mean “sound a beep for 500 mil-
liseconds.”

There are a number of issues involved in setting up
message-passing systems. For example, it is convenient for
many programs or objects to use the same port or other
facility for leaving and retrieving messages, but that means
the operating system must spend additional time routing
or dispatching the messages. On the other hand, if two
objects create a bound port, no others can use it, so each can
assume that any message left there is from the other object.

During the 1992–1994 period, a standard called MPI
(Message Passing Interface) was established by a group
of more than 40 industry organizations. It has since been
superseded by MPI-2.

Further Reading
Gropp, William, Ewing Lusk, and Rajeev Thakur. Using MPI: Por-

table Parallel Programming With the Message-Passing Interface.
2nd ed. Cambridge, Mass.: MIT Press, 1999.

“The Message Passing Interface (MPI) Standard.” Available online.
URL: http://www-unix.mcs.anl.gov/mpi/. Accessed February
6, 2000.

Petzold, Charles. Programming Windows: the Definitive Guide to the
Win32 API. 5th ed. Redmond, Wash.: Microsoft Press, 1998.

Quinn, Michael J. Parallel Programming in C with MPI and OpenMP.
New York: McGraw-Hill Education, 2003.

microprocessor
A microprocessor is an integrated circuit chip that contains
all of the essential components for the central processing
unit (CPU) of a microcomputer system such as a personal
computer.

Schematic of a simple microprocessor. The control unit is respon-
sible for fetching and decoding instructions, as well as fetching or
writing data to memory. The Arithmetic Logic Unit (ALU) does the
actual computing (including arithmetic and logical comparisons).
The registers hold data being currently used by the ALU, while the
cache contains instructions that have been pre-fetched because they
are likely to be needed soon.

microprocessor        303

Microprocessor development began in the 1960s when
a new company called Intel was given a contract to develop
chips for programmable calculators for a Japanese firm.
Marcian E. “Ted” Hoff headed the project. He decided that
rather than hard-wiring most of the calculator logic into the
chips, he would create a general-purpose chip that could
read instructions and data, perform basic arithmetic and
logical functions, and transfer data between memory and
internal locations called registers.

The resulting microprocessor, when combined with some
RAM (random access memory), some preprogrammed ROM
(Read Only Memory), and an input/output (I/O) chip con-
stituted a tiny but complete CPU, soon dubbed “a computer
on a chip.” This first microprocessor, the Intel 4004, had
only a few thousand transistors, could handle data only 4
bits at a time, and ran at 740 KHz (about one three-thou-
sandth the speed of the latest Pentium IV chips).

Intel gradually refined the chip, giving it the logic cir-
cuits to enable it to perform additional instructions, more
internal stack and register space, and 8 KB of space to store
programs. The 8008 could handle 8 bits of data at a time,
while the 8080 became the first microprocessor that was
capable of serving as the CPU for a practical microcomputer
system. Its descendants, the 8088 and 8086 (16-bit) pow-
ered industry-standard IBM-compatible PCs. Meanwhile,
other companies such as Motorola (68000), Zilog (Z-80),
and MOS Technology (6502) powered competing PCs from
Apple, Atari, Commodore, and others.

With the dominance of the IBM PC and its clones (see
ibm pc), the Intel 80 × 86 series in turn dominated the
microprocessor market. (The x refers to successive digits, as
in 80286, 80386, and 80486.) At the next level this nomen-
clature was replaced by the Pentium series, which is up to
the Pentium 4 as of 2002.

According to a famous dictum called Moore’s Law, the
density (number of transistors per cubic area) and speed (in
terms of clock rate) of microprocessors has roughly doubled
every 18 months to two years. Intel expects to be making
microprocessors with 1 billion transistors by 2007.

Microprocessor and Microcomputer
A microcomputer is a system consisting of a microproces-
sor and a number of auxiliary chips. The microprocessor
chip serves as the central processing unit (CPU). It contains
a clock that regulates the flow of data and instructions
(each instruction takes a certain number of clock cycles to
execute). There is also an index register that keeps track of
the instruction being executed. A small number of locations
called registers within the CPU allow for storing or retriev-
ing the data being used by instructions much more quickly
than retrieval from main memory (RAM).

Typically, the instruction register advances to the next
instruction. The instruction is fetched, decoded, and sent to
the CPU’s ALU (arithmetic logic unit) for processing. Data
needed to be processed by the instruction are either fetched
from a register or, through an address register, fetched from
RAM. (Some processors store one operand for an arithmetic
operation in a special register called the accumulator.)

Floating-point operations (those involving numbers
that can include decimal points) require special registers
that can keep track of the decimal position. Until the mid-
1990s, many systems used a separate microprocessor called
a coprocessor to handle floating point operations. However,
later chips such as the Pentium series integrate floating
point operations into the main chip.

In order to function as the heart of a microcomputer,
the CPU must communicate with a variety of other devices
by interacting with special controller chips. For example,
there is a bus interface chip (see bus) that decodes memory
addresses and routes requests to the appropriate devices on
the motherboard. When data is requested from memory, a
memory controller must physically fetch the data from RAM
(see memory). There is also a cache controller that interfaces
with one or two levels of high-speed cache memory (see
cache). The algorithms implemented in the cache controller
aim to have the next instructions and the most-likely needed
data already in the cache when the CPU requests them.

Other devices such as disk drives, modems, printers,
and video cards are all connected to the CPU through input/
output (I/O) interfaces that connect to the system bus. Most
of the devices connected to the bus have their own micro-
processors. Software (see device driver) translates high-
level programming instructions (such as to open a file) to
the appropriate device commands.

The CPU and many other devices also contain ROM (read
only memory) chips that have permanent basic instructions
stored on them (see bios). This enables the CPU and other
devices to perform the necessary actions to enter into com-
munication when the system starts up (see boot sequence).

New Features Emerge
Improvements in microprocessors during the 1980s
included wider data paths and the ability to address a larger

The MITS Altair (1975) was the first microcomputer available
commercially. It was generally purchased in kit form. While the
Altair did not have much processing capacity, it aroused great inter-
est and inspired other computer builders such as Apple’s Steve Woz-
niak and Steve Jobs.  (Christopher Fitzgerald / The Image
Works)

304       � microprocessor

amount of memory. For example, the Intel 80386 was the
first 32-bit processor for PCs and could address 4 GB of
memory. (Earlier processors such as the 80286 had to divide
memory into segments or use paging to swap memory in
and out of a smaller space to make it look like a larger one.)
Over the years microprocessors tended to add more built-in
cache memory, enabling them to have more instructions or
data ready for immediate use.

Another way to get more performance out of a micro-
processor is to increase the speed with which instructions
can be executed. One technique, called pipelining, breaks
the processor into a series of segments, each of which can
execute a particular operation. Instead of waiting until an
instruction has been completely executed and then turn-
ing to the next one, a pipelined microprocessor moves the
instruction from segment to segment as its operations are
executed, with following instructions moving into the
vacated segments. As a result, two or more instructions can
be undergoing execution at the same time.

In addition to pipelining, the Pentium series and other
recent chips can have instructions executing simultane-
ously using different arithmetic logic units (ALUs) or float-
ing-point units (FPUs).

Another way to improve instruction processing is to use
a simpler set of instructions. First introduced during the
1980s for minicomputers and high-end workstations (such
as the Sun SPARC series), reduced instruction set computer
(RISC) chips have smaller, more uniform instructions that
can be more easily pipelined, as well as many registers for
holding the results of the intermediate processing. During
the 1990s, RISC concepts were also adopted in PC proces-
sor designs such as the 80486 and Pentium (see reduced
instruction set computer).

The latest major development has been the multicore
microprocessor, which has two, four, or more separate pro-
cessing units. The Intel Core Duo and Core 2 Duo chips
and similar processors from AMD are now included in most
new PCs.

The equivalent of a supercomputer on a chip is on the
way. Cisco’s 192-core Metro chip powers its most capable
network routers, while Nvidia’s GeForce 8800 graphics pro-
cessor sports 128 cores. In addition to these specialized
processors, in early 2007 Intel demonstrated a prototype
80-core processor that could form the basis of a new gen-
eration of general-purpose processors.

Another significant multicore processor architecture is
the Cell chip, developed by Sony, IBM, and Toshiba. This
chip includes a multithreaded (able to run multiple streams
of code) controller processor plus numerous architectural
features that maximize efficiency and throughput. The first
appearance of this 2 “teraflop” (trillion calculations per sec-
ond) chip was not on a scientific computer, but rather the
Sony Play Station 3—see game console.

Multicore processors create new challenges for program-
mers who have to create code that will apportion program
tasks efficiently among the cores (see multiprocessing).

In the new century, it is unclear when physical limita-
tions will eventually slow down the tremendous rate of
increase in microprocessor power. As the chips get denser

and smaller, more heat is generated with less surface
through which it can be removed. At still greater densities,
quantum effects may also begin to be a problem. On the
other hand, new technologies might take the elements of
the processor down to a still smaller level (see molecular
computing and nanotechnology).

While the stand-alone desktop, laptop, or handheld
computer is the most visible manifestation of the micro-
processing revolution, there are hundreds of “invisible”
microprocessors in use for every visible computer. Today
microprocessors help monitor and control everything from
home appliances to cars to medical devices (see embedded
systems).

Further Reading
Kim, Ryan. “New Era of Game Devices Arrives: Sony and Nin-

tendo Meet the Challenge of Microsoft Xbox.” San Francisco
Chronicle, November 13, 2006, p. F1, F6.

Markoff, John. “Intel Prototype May Herald a New Age of Process-
ing.” New York Times, February 12, 2007.

Sperling, Ed. “Special Report: Inside the New Multicore Proces-
sors.” Electronic News, April 13, 2007. Available online.
URL: http://www.edn.com/article/CA6434384.html. Accessed
August 15, 2007.

Stokes, John. Inside the Machine: An Illustrated Introduction to
Microprocessors and Computer Architecture. San Francisco: No
Starch Press, 2006.

Tom’s Hardware. “CPU.” Available online. URL: http://www.tom-
shardware.com/cpu/. Accessed August 15, 2007.

Microsoft Corporation
Microsoft Corporation (NASDAQ symbol: MSFT) is the
world’s largest computer software company, with almost
80,000 employees worldwide and annual revenue exceed-
ing $51 billion.

Microsoft was founded in the mid-1970s by Bill Gates
(see Gates, William) in order to sell his version of the
BASIC programming language for early microcomputers
such as the Altair 8800. The BASIC software was moderately
successful, but it would be an operating system called MS-
DOS (or PC-DOS) that would catapult Microsoft to industry
leadership, thanks to an agreement with IBM, which intro-
duced what would become the industry standard personal
computer in 1982 (see ibm pc).

In the mid-1980s Microsoft partnered with IBM to
develop OS/2, which was intended to be a more power-
ful multitasking operating system to replace DOS. How-
ever, Microsoft’s real interest was in the development of
Windows (see Microsoft Windows), which first became
successful with version 3.0 in 1990. Meanwhile, Microsoft
leveraged its experience with Windows to release Micro-
soft Office, which soon displaced WordPerfect, the previous
market leader.

Shifting Strategies and Legal Issues
Many observers have noted that Microsoft was slow in appre-
ciating the importance of networking and particularly the
World Wide Web in the mid-1990s. Novell was the market
leader in networking at the time, and Netscape’s graphical

Microsoft Corporation        305

browser had brought millions of users to the Web. Bill Gates
himself announced that the company would embark on a
“net-centered” strategy, and this was reflected in the develop-
ment of Windows NT, software for enterprise network and
Web servers, and the Internet Explorer browser, which domi-
nated the desktop by the end of the decade.

The continuing dominance of Microsoft operating sys-
tems and office applications on the desktop provided the
cash flow that gave the company the resources to catch
up and then dominate almost any market it chose. How-
ever, this same dominance raised legal issues that would
be litigated through the late 1990s and beyond. Micro-
soft was accused of using its knowledge of unpublished
Windows internal code to give products such as Microsoft
Office an advantage over competitors. A more prominent
accusation was that Microsoft’s “bundling” of products
such as Internet Explorer with Windows amounted to an
unfair advantage over competitors such as Netscape, since
Explorer would appear to be “free” to consumers. A series
of civil actions under the name United States v. Microsoft
resulted in a 2001 settlement with the U.S. Department
of Justice that required Microsoft to share all information
about its Windows API (see applications programming
interface) with competitors for at least five years. This
result was controversial, with defenders of Microsoft argu-
ing that the company had done no more than compete
effectively by using the results of its own previous work,
while opponents argued that Microsoft’s coercive monop-
oly power had scarcely been dented by the settlement. In
2008 the software giant continued to struggle with legal
pressures. A European Union court has upheld previous
rulings that the company had engaged in monopolistic and
anticompetitive practices.

Legal controversies aside, by the mid-2000s Microsoft
was facing some serious challenges, particularly from the
popularity of free and open-source software (see open-
source movement). This is particularly true of the Web
server market, where the combination of the Apache Web
server and Linux has gained a major market share. Mean-
while, on the desktop, Windows Vista (released in Janu-
ary 2007) did not sell as well as predicted during its first
six months. The Apple Macintosh is maintaining its small
but significant market share, and even Linux distributions
such as Ubuntu are beginning to appear as an option on
new PCs. Microsoft’s flagship Office suite is facing compe-
tition from products such as Open Office and particularly
the Web-based Google Apps. (In 2007 Microsoft began
to roll out Office Live Workspace, offering extensions
of Office applications rather than a complete suite.) In
other areas, the Microsoft Network (MSN) online service
has struggled, while the company has done better with
its Xbox gaming console as well as the best-selling game
Halo.

Despite some stumbling and many controversies, Micro-
soft’s vast resources and many ongoing research projects
(with a $6 billion annual budget) make it likely the company
will continue to adapt and sometimes innovate, remaining a
strong competitor for many years to come. For example, the
company is now putting more resources into Web search

technology, an area that has been dominated by Google, as
well as eyeing applications as diverse as home media servers
and social networking. Microsoft has also sought to expand
its Internet presence by acquiring Yahoo!, the extensive but
aging Web portal. (However, the first acquisition attempt
was rebuffed, and future plans remain uncertain as of mid-
2008).

Further Reading
Bank, David. Breaking Windows: How Bill Gates Fumbled the Future

of Microsoft. New York: Free Press, 2001.
Blakely, Rhys. “Microsoft’s Chief Executive Has Seen the Future—

and the Future is Advertising: Steve Ballmer’s Plans for the
Computer Software Giant Include Taking on Yahoo! and
Google in Their Own Internet Territory.” Times Online (U.K.).
Available online. URL: http://business.timesonline.co.uk/tol/
business/industry_sectors/technology/article2570485.ece.
Accessed October 2, 2007.

Microsoft Corporation. Available online. URL: http://www.
microsoft.com. Accessed October 2, 2007.

Microsoft Timeline. Available online. URL: http://www.thocp.
net/companies/microsoft/microsoft_company.htm. Accessed
October 2, 2007.

Microsoft Watch (eWeek). Available online. URL: http://www.
microsoft-watch.com/. Accessed October 2, 2007.

Page, William H., and John E. Lopatka. The Microsoft Case: Anti-
trust, High Technology, and Consumer Welfare. Chicago: Uni-
versity of Chicago Press, 2007.

Slater, Robert. Microsoft Rebooted: How Bill Gates and Steve Ballmer
Reinvented Their Company. New York: Portfolio, 2004.

Wallace, James, and Jim Erickson. Hard Drive: Bill Gates and the
Making of the Microsoft Empire. New York: Wiley, 1992.

Microsoft .NET
Microsoft .NET is a programming platform (see class and
object-oriented programming) that is intended to pro-
vide a clear and consistent way for applications written in
a variety of languages such as C++, C#, and Visual Basic
to access Windows functions and to interact with other
programs and services on the same machine or over the
Internet.

.NET consists of the following main parts:

• � Base Class Library of data types and common func-
tions (such as file manipulation and graphics) that is
available to all .NET languages

• � Common Language Runtime, which provides the
code that applications need to run within the operat-
ing system, manage memory, and so forth (“Common
language” means it can be used for any .NET pro-
gramming language.)

• � ASP .NET, a class framework for building dynamic
Web applications and services (the latest version of
ASP—see active server pages)

• � ADO .NET, a class framework that allows programs
to access databases and data services

The latest version (as of 2008) is .NET Framework 3.5
and is built into Windows Vista and Windows Server 2008.
New components include:

306        Microsoft .NET

• � Windows Presentation Foundation, providing a user
interface based on 3D graphics, with objects described
using Microsoft’s XAML markup language (see xml)

• � Windows Communication Foundation, providing
ways for .NET programs to communicate locally or
over the network

• � Windows Workflow Foundation, for structuring and
automating tasks and transactions

• � Windows CardSpace, for managing digital identities
in transactions

Platforms
In the relationship between language and runtime libraries,
Microsoft .NET, particularly when used with the C# lan-
guage (see c#), is similar to the use of Java and its libraries
as in the Java Enterprise Edition (EE). For Windows, .NET
has the advantage of being built specifically for that operat-
ing system; however, Java has the advantage of running on
all major platforms, including not only Windows, but also
Mac OS X and Linux, as well as being an open-source plat-
form. (However, the open-source Mono project has devel-
oped a partial implementation of .NET for non-Windows as
well as Windows platforms.)

Further Reading
Boehm, Anne. Murach’s ADO .NET 2.0 Database Programming with

VB 2005. Fresno, Calif.: Murrach, 2007.
Chappell, David. Understanding .NET. 2nd ed. Upper Saddle River,

N.J.: Addison-Wesley Professional, 2006.
MacDonald, Matthew. Beginning ASP.NET 3.5 in VB 2008: From

Novice to Professional. Berkeley, Calif.: APress, 2007.
.NET Framework Developer Center. Available online. URL: http://

msdn2.microsoft.com/en-us/netframework/default.aspx.
Accessed October 2, 2007.

Troelsen, Andrew. Pro C# with .NET 3.0, Special Edition. Berkeley,
Calif.: Apress, 2007.

Walther, Stephen. ASP .NET Unleashed. Indianapolis: Sams, 2006.

Microsoft Windows
Often simply called Windows, Microsoft Windows refers to
a family of operating systems now used on the majority of
personal computers. Windows PCs run Intel or Intel-com-
patible microprocessors and use IBM-compatible hardware
architecture.

History and Development
By 1984, the IBM PC and its first “clones” from other man-
ufacturers dominated the market for personal computers,
quickly overtaking the previously successful Apple II and
various machines running the CP/M operating system.
Through a combination of initiative and luck, Microsoft
CEO Bill Gates had licensed what became its MS-DOS oper-
ating system to IBM, while retaining the rights to license it
also to the clone manufacturers (see also Gates, William).

However, 1984 also brought Apple back into conten-
tion with the Macintosh. Using a graphical user interface
(GUI) largely based on research done at Xerox’s Palo Alto

Research Center (PARC) in the 1970s, the Macintosh was
strikingly more attractive and user-friendly than the all-
text, command-line driven MS-DOS. As third parties began
to offer GUI alternative to DOS, Microsoft rushed to com-
plete its own GUI, called Windows. Although it was actu-
ally announced well before the coming of the Macintosh,
Windows 1.0 was not released until 1985. Its poor fonts,
graphics, and window operation made it compare unfa-
vorably to the Macintosh. Through the rest of the 1980s,
Microsoft struggled to improve Windows. The acceptance
of Windows was aided by several large software manufac-
turers such as Aldus (PageMaker) writing software for the
new operating system as well as Microsoft’s designing or
porting its own software such as the Excel spreadsheet.

Windows 3.0, released in 1990, was considerably
improved and began to attract significant numbers of users
away from MS-DOS—based programs. Microsoft was also
greatly aided by its ability to leverage its operating system
dominance to make it economically imperative for PC man-
ufacturers to “bundle” Windows with new PCs.

About the same time, Microsoft had been working with
IBM on a system called OS/2. Unlike Windows, which was
actually a program running “on top of” MS-DOS, OS/2
was a true operating system that had sophisticated capa-
bilities such as multitasking, multithreading, and memory
protection. Microsoft eventually broke off its relationship
with IBM, abandoned OS/2, but incorporated some of the
same features into a new version of Windows called NT
(New Technology), first released in 1993. NT, which pro-
gressed through several versions, was targeted at the high-
end server market, while the consumer version of Windows
continued to evolve incrementally as Windows 95 and Win-
dows 98 (released in those respective years). These versions
included improved support for networking (including TCP/
IP, the Internet standard) and a feature called “plug and
play” that allowed automatic installation of drivers for new
hardware.

Toward the end of the century, Microsoft began to
merge the consumer and server versions of Windows. Win-
dows 2000 incorporated some NT features and provided
somewhat greater security and stability for consumers.
With Windows XP, released in 2001, the separate consumer
and NT versions of Windows disappeared entirely, to be
replaced by home and “professional” versions of XP.

Introduced in early 2007, Microsoft Windows Vista
includes a number of new features, including a 3D user
interface (“Aero”), easier and more robust networking, built-
in multimedia capabilities (such as photo management and
DVD authoring), improved file navigation, and desktop
search. Perhaps the most important, if problematic, fea-
ture is enhanced security, including User Account Control,
which halts suspect programs and requests permission for
them to continue. Although this makes it harder for mal-
ware to get a foothold, many users find the constant “nags”
to be annoying. (As of 2008 adoption of Vista has been
slower than expected, with many users opting to remain
with Windows XP.)

The next version of Windows, with the working name
Windows 7, should be released around 2010. Its focus

Microsoft Windows        307

appears to be a combination of “back to basics” (a response
to the sluggish performance of Vista) and more seamless
user access to data and media from a variety of sources.

User’s Perspective
From the user’s point of view, Windows is a way to control
and view what is going on with the computer. The user
interface consists of a standard set of objects (windows,
menus, buttons, sliders, and so on) that behave in gener-
ally consistent ways. This consistency, while not absolute,
reduces the learning curve for mastering a new application.
Programs can be run by double-clicking on their icon on
the underlying screen (called the desktop), or by means of
a set of menus.

Windows users generally manage their files through
a component called Windows Explorer or My Computer.
Explorer presents a treelike view of folders on the disk.
Each folder can contain either files or more folders, which
in turn can contain files, perhaps nested several layers deep.
Folders and files can be moved from place to place simply
by clicking on them with the mouse, moving the mouse
pointer to the destination window or folder, and releas-
ing the button (this operation is called dragging). Another
useful feature is called a context menu. Accessed by click-
ing with the right-hand mouse button, the menu brings
up a list of operations that can be done with the currently
selected object. For example, a file can be renamed, deleted,
or sent to a particular destination.

Windows includes a number of features designed to
make it easier for users to control their PC. Most settings
can be specified through windows called dialog boxes,
which include buttons, check boxes, or other controls. Most
programs also use Windows’s Help facility to present help
pages using a standard format where related topics can be
clicked. Most programs are installed or uninstalled using
a standard “wizard” (step-by-step procedure), and wizards
are also used by many programs to help beginners carry out
more complex tasks (see help systems).

Multitasking
From the programmer’s point of view, Windows is a mul-
titasked, event-driven environment (see multitasking).
Programmers must take multitasking into account in rec-
ognizing that certain activities (such as I/O) and resources
(such as memory) may vary with the overall load on the
system. Responsible programs allocate no more memory
than they need, and release memory as soon as it is no
longer needed. If the pool of free memory becomes too low,
Windows starts swapping the least recently used segments
of memory to the hard drive. This scheme, called virtual
memory, allows a PC to run more and larger programs than
would otherwise be possible, but since accessing the hard
drive takes considerably longer than accessing RAM, the
system as a whole starts slowing down.

Windows also has a rather small amount of memory
reserved for its GDI (Graphics Device Interface), a system
used for displaying graphical interface objects such as icons.
If this resource pool (which has been made somewhat more
flexible in later versions of Windows) runs out, the system
can grind to a halt.

Programming Perspective
Programmers moving to Windows from more traditional
systems (such as MS-DOS) must also deal with a new para-
digm called event-driven programming. Most traditional
programs are driven by an explicit line of execution through
the code—do this, make this decision, and depending on it,
do that—and so on. Windows programs, however, typically
display a variety of menus, buttons, check boxes, and other
user controls. They then wait for the user to do something.
The user thus has considerable freedom to move about in
the program, performing tasks in different orders.

A Windows program, therefore, is driven by events. An
event is generally some form of user interaction such as
clicking on a menu or button, moving a slider, or typing
into a text box. The event is conveyed by a message (see
message passing) that Windows dispatches to the affected
object. For example, if the user presses down (clicks) the left
mouse button while the mouse pointer is over a window, a
WM_BUTTONDOWN message is sent to that window.

Each of these interface objects (collectively called con-
trols) has a message-handling procedure that identifies
the message. The object must then have appropriate pro-
gram code that responds to each possible type of event. For
example, if the user clicks on the File menu and then clicks
on Open, the code will display a standard dialog box that
allows for selecting the file to be opened.

Fortunately for the programmer, Windows provides
developers with a large collection of types of windows, dia-
log boxes, and controls that can be displayed using a func-
tion call. For example, this code (after some preliminary
declarations), displays a type of window called a list box:

HWND MyWindow;	
hMyWindow = CreateWindow(“LISTBOX”,“Availabl
e Services”,

WS_CHILD|WS_VISIBLE,
0,0,100,200

hwndParent,NULL,hINst,NULL);

Introduced in 2007, Microsoft Windows Vista features bet-
ter security, a 3D look, new search facilities, and multimedia
features.  (Microsoft Corporation)

308        Microsoft Windows

Here the various parameters passed to the CreateWin-
dow function specify the type of window, window title,
characteristics, and location. The function returns a “win-
dow handle,” which is a pointer that holds the window’s
address and allows it to be accessed later.

Most Windows programming environments, including
C++ and particularly, Visual Basic, now let program design-
ers avoid having to specify code such as the above to create
windows and other objects. Instead, the programmer can
click and drag various objects onto a design screen to estab-
lish the interface that will be seen by the program’s user.
The programmer can then use Properties settings to specify
many characteristics of the screen objects without having
to explicitly program them.

Microsoft and third-party developers also provide ready-
made programming code in dynamic link libraries (DLLs).
These resources (see library, program) can be called by
any application, which can then use any object or func-
tion defined in the library. Windows also provides a facility
called OLE (Object Linking and Embedding). This lets an
application such as a word processor “host” another appli-
cation such as a spreadsheet. Thus, the Microsoft Word, for
example, can embed a Microsoft Excel spreadsheet into a
document, and the spreadsheet can be worked with using
all the usual Excel commands. In other words, OLE lets
applications make their features, controls, and functional-
ity accessible to other applications. Indeed, collections of
controls are often packaged as OCX (OLE controls) and
sold to developers.

Despite all this available help, Windows presents a steep
learning curve for many programmers. There are hundreds
of functions for handling interface objects, drawing graph-
ics, managing files, controlling devices, and other tasks.
With the growing use of object-oriented programming lan-
guages (see object-oriented programming and C++) in
the late 1980s and 1990s, Microsoft devised the Microsoft
Foundation Classes (MFC). This framework defines all of
the interface objects and other entities (such as data struc-
tures) as C++ classes.

Using MFC, a programmer, instead of calling a func-
tion to create a window, creates an object of a particular
Window class. To customize a window, the program-
mer can use inheritance to derive a new window class.
The various functions for controlling windows are then
defined as member functions of the window class. This
use of object-oriented, class-based design organizes much
of the great hodgepodge of Windows functions into a
logical hierarchy of objects and makes it easier to master
and to use.

For example, using the traditional Windows API (see
applications programming interface) one puts a text
string into a list box using this code:

LRESULT LRes;
LRes = SendMessage(hMyListBox,LB_
ADDSTRING,0,“Network Services”);

(LRes is a number that will hold a code that says whether
the item was successfully added)

Using MFC, this code can be rewritten as:

CListBox * pListBox;
int nRes;
nRes = pListBox->AddString (“Network Services”);

Here a pointer is declared to an object of the ListBox
class, and a member function of that class, AddString, is
then called. While this code may not look simpler, it uses a
consistent object-oriented approach.

The new common framework for Windows program-
ming is called .NET. Closely integrated with the latest
versions of Windows (XP SP2 and Vista), the class frame-
work has been revamped and expanded. .NET provides a
common language runtime (CLR) for access from different
languages such as C++, C#, and Visual Basic .NET. (See
Microsoft .NET.)

Trends
By just about any standard Microsoft Windows has achieved
remarkable success, capturing and largely holding the
lion’s share of the PC operating system market. However,
Windows has been persistently criticized on grounds of
reliability and security. Perhaps feeling the pressure from
users and potential regulators, Microsoft has placed greater
emphasis on security in recent years; Windows Vista inte-
grates security much more tightly into the structure of the
system. However, as long as Windows is the most widely
used operating system, it will continue to be the biggest tar-
get for creators of viruses and other malware.

Microsoft has included powerful facilities that allow
Windows applications to be controlled by other applications
or remotely (see scripting languages). Unfortunately,
these facilities have proven to be quite vulnerable to com-
puter viruses that can use them to damage systems con-
nected to the Internet. There seems to be a never-ending race
between developers of program “patches” designed to plug
security holes and inventive, albeit malicious virus writers.

Windows continues to face a variety of challenges. The
ability to deliver applications directly through Web browsers
on any platform may make it less compelling for a user with
simple computing needs to pay the premium for a Windows-
based PC. (For example, Google now delivers basic word
processing, spreadsheet, email, and other applications—see
application service provider.) Linux, too, may be gradu-
ally gaining a greater share on the desktop. Versions such
as the popular and frequently updated Ubuntu now install
about as easily as Windows, provide a similar user interface,
and include a variety of software, including Open Office (see
Linux and open-source movement).

While Windows still remains the dominant PC operat-
ing system with tens of thousands of applications and at
least several hundred million users around the world, it is
likely that the PC operating systems of 2020 will be as dif-
ferent from today’s Windows as the latter is from the MS-
DOS of the early 1980s.

Further Reading
Bellis, Mary. “The Unusual History of Microsoft Windows.” About.

com. Available online. URL: http://inventors.about.com/od/
mstartinventions/a/Windows.htm. Accessed August 15, 2007.

Microsoft Windows        309

Bott, Ed, Carl Siechert, and Craig Stinson. Microsoft Windows Vista
Inside Out. Redmond, Wash.: Microsoft Press, 2007.

Minasi, Mark, and Byron Hynes. Administering Windows Vista
Security: The Big Surprises. Indianapolis: Wiley/SYBEX, 2007.

Simpson, Alan. Alan Simpson’s Windows XP Bible. 2nd ed. India-
napolis: Wiley, 2005.

———. Alan Simpson’s Windows Vista Bible. Indianapolis: Wiley,
2007.

Smith, Ben, and Brian Komar. Microsoft Windows Security Resource
Kit. 2nd ed. Redmond, Wash.: Microsoft Press, 2005.

“Windows Products and Technologies History.” Microsoft. Avail-
able online. URL: http://www.microsoft.com/windows/
WinHistoryIntro.mspx. Accessed August 15, 2007.

middleware
Often two applications that were originally created for dif-
ferent purposes must later be linked together in order to
accomplish a new purpose. For example, a company selling
scientific instruments may have a large database of product
specifications, perhaps written in COBOL some years ago.
The company has now started selling its products on the
Internet, using its Web server and e-commerce applications
(see e-commerce). Prospective customers of the Web site
need to be able to access detailed information about the
products. Unfortunately, the Web software (perhaps written
in Java) has no easy way to get information from the compa-
ny’s old product database. Rather than trying to convert the
old database to a more modern format (which might take
too long or be prohibitively expensive), the company may
choose to create a middleware application that can mediate
between the old and new applications.

There are a variety of types of middleware applications.
The simplest and most general type of facility is the RPC
(Remote Procedure Call), which allows a program running
on a client computer to execute a program running on the
server. DCE (Distributed Computing Environment) is a
more robust and secure implementation of the RPC concept
that provides file-related other operating system services as
well as executing remote programs.

More elaborate architectures are used to link complex
applications such as databases where a program running on
one computer on the network must get data from a server.
For example, an Object Request Broker (ORB) is used in a
CORBA (Common Object Request Broker Architecture) sys-
tem to take a data request generated by a user and find serv-
ers on the network that are capable of fulfilling the request
(see CORBA).

Middleware is often inserted into a program to allow
for better monitoring or control of distributed processing.
For example a TP (transaction processing) monitor is a
middleware program that keeps track of a transaction that
may have to go through several stages (such as point of sale
entry, credit card processing, and inventory update). The
TP monitor can report whether any stage of the transaction
processing failed (see transaction processing).

Middleware can also be put in charge of load balancing.
This means distributing transactions so that they are evenly
apportioned among the servers on the network, in order to
avoid creating delays or bottlenecks.

While use of middleware may not be as “clean” a solution
as designing an integrated system from the bottom up, the
economic realities of a fast-changing information environ-
ment (particularly with regard to deployment on the Web)
often makes middleware an adequate second-best choice.

Further Reading
Britton, Chris, and Peter Bye. IT Architectures and Middleware:

Strategies for Building Large, Integrated Systems. 2nd ed. Upper
Saddle River, N.J.: Addison-Wesley Professional, 2004.

Myerson, Judith M. The Complete Book of Middleware. Boca Raton,
Fla.: CRC Press, 2002.

Puder, Arno, Kay Römer, and Frank Pilhofer. Distributed Systems
Architecture: A Middleware Approach. San Francisco: Morgan
Kaufman, 2006.

“What Is Middleware?” ObjectWeb. Available online. URL: http://
middleware.objectweb.org/. Accessed August 15, 2007.

military applications of computers
War has always been one of the most complex of human
enterprises. Even leaving actual combat aside, the U.S. mili-
tary and defense establishment constitute a huge employer,
research and training agency, and transportation network.
Managing all these activities require sophisticated database,
inventory, tracking, and communications systems. When
thousands of private defense contractors of varying sizes
are considered as part of the system, the complexity and
scope of the enterprise become even larger.

Specifically, military information technology applica-
tions can be divided into the following broad areas: logis-
tics, training, operations, and battle management.

Logistics
It is often said that colonels worry about tactics while gen-
erals preoccupy themselves largely with logistics. Logistics
is the management of the warehousing, distribution, and
transportation systems that supply military establishments
and forces in the field with the equipment and fuel they
need to train and to fight. Logistics within the United States
is analogous to similar problems for very large corpora-
tions. The same bar codes, point of use terminals, and other
tracking, inventory, and distribution systems that Amazon.
com uses to get books quickly to customers while avoiding
excessive inventory are, in principle, applicable to modern-
izing military logistic systems.

An added dimension emerges when logistical support
must be supplied to forces operating in remote countries,
possibly in the face of efforts by an enemy to disrupt sup-
ply. Such considerations as efficient loading procedures to
accommodate limited air transport capacity, prioritization
of shipping to provide the most urgently needed items, and
transportation security can all come into play. (The military
has pioneered the use of retinal scanners and other systems
for controlling access to sensitive areas. See biometrics.)

The need for mobility and compactness makes laptops
and even palmtops the form factors of choice. Military or
“milspec” versions of computer hardware are generally built
with more rugged components and greater resistance to
heat, moisture, or dust.

310        middleware

Training
The use of automated systems to provide training goes back
at least as far as the World War II era Link trainer, which
used automatic controls and hydraulics to place trainee
pilots inside a moveable cockpit that could respond to their
control inputs. Today computer simulations with sophisti-
cated graphics and control systems can provide highly real-
istic depictions of flying a helicopter or jet fighter or driving
a battle tank. The military has even adapted commercial
flight simulators for training purposes. Simulations can
also cover Special Forces operations and tactical decision
making. Indeed, many real-time simulations (RTS) sold as
popular commercial games and avidly played by young peo-
ple already contain enough realistic detail to be adopted
by the military as is. For example, the game Rainbow Six,
based on operations in Tom Clancy novels, simulates tacti-
cal counterterrorism operations. In turn, the U.S. Army has
used a simulation game called Full Spectrum Warrior to
give young gamers a taste of the military life.

Operations
Aircraft, ships, and land vehicles used by the military have
been fitted with a variety of computerized systems. The
“glass cockpit” in aircraft is replacing the increasingly
unmanageable maze of dials and switches with information
displays that can keep the pilot focused on the most crucial
information while making other information readily avail-
able. Traditional keyboards and joystick-type controllers
can be replaced by touch screens and even by systems that
can understand a variety of voice commands (see speech
recognition and synthesis). Similar control interfaces
can be used in tanks or ships.

Robotics offers a variety of intriguing possibilities for
extending the reach of military forces while minimizing
casualties. Remote-control robots can be used to clear
minefields, disarm roadside bombs, or perform reconnais-
sance. (The Predator armed reconnaissance drone was first
used successfully in anti-terrorist operations in Afghanistan
in 2002.) Armed robots could assault enemy strong points
without risking soldiers. The development of autonomous
robots that can plan their own missions, select targets, and
make other decisions is a longer-term prospect that depends
on the application of artificial intelligence in the extremely
challenging and chaotic battlefield environment.

Battle Management
Battle management is the ability to gather, synthesize, and
present crucial information about the environment around
the military unit and enable military personnel to make
rapid, accurate decisions about threats and the best way to
neutralize them.

The earliest example, the SAGE (Strategic Air Ground
Environment) computer system, resulted from a massive
development effort in the 1950s that strained the capac-
ity of early vacuum tube-based computers to its limit. The
purpose of SAGE was to provide an integrated tracking and
display system that could give the Strategic Air Command
(SAC) complete real-time information about any Soviet

nuclear bomber strikes in progress against the continental
United States Descendents of this system were able to track
ballistic missiles.

The Aegis system first deployed aboard selected navy
ships in the 1970s is a good example of a tactical battle
management system on a somewhat smaller scale. Aegis is
a computerized system that can integrate information from
sophisticated shipboard radar and sonar arrays as well as
receiving and merging data from other ships and recon-
naissance assets (such as helicopters). The captain of an
Aegis cruiser or destroyer therefore has a real-time picture
showing the locations, headings, and speeds of friendly and
enemy ships, aircraft, and missiles. The system can also
automatically distribute the available munitions to most
effectively engage the most threatening targets.

Ultimately, the military hopes to give each unit in the
field and even individual soldiers a battle management dis-
play that would pinpoint enemy vehicles and other activity.
Unpiloted drone aircraft such as the Predator can loiter over
the battlefield and feed video and other data into the battle
management system.

While the ability to transmit and process large amounts
of information can lead to strategic or tactical advantage, it
also demands increased attention to security. If an enemy
can jam the information processing system, its advantages
could be lost at a crucial moment. Worse, if an enemy can
“spoof” the system or introduce deceptive data, the mili-
tary’s information system could become a weapon in the
enemy’s hands (see computer crime, encryption, infor-
mation warfare and security).

Beyond the Battlefield
Today’s military faces the challenge of diverse types of con-
flict (including counterinsurgency and peacekeeping), the
need to interact with cultures that may be unfamiliar to
most soldiers, and the need to deal with the psychological
as well as physical casualties of war. A number of innova-
tive applications of simulation and information technology
are being developed.

In 2006 the U.S. military began to use a game called
“Tactical Iraqi” in which soldiers must learn not only con-
versational phrases, but the difference between appropriate
and culturally insensitive gestures and actions.

Another simulation, created at the University of South-
ern California, uses VR technology (see virtual reality)
to place soldiers suffering from posttraumatic stress disor-
der (PTSD) back into the combat environment under con-
trolled conditions. The goal is to gradually desensitize the
person to the traumatic sights, sounds, and events.

On the information and intelligence front, the need to
translate and interpret massive amounts of material in many
languages in near real time has led the Defense Advanced
Research Projects Agency (DARPA) to begin to develop a
system that would use separate “engines” for translation,
interpretation, and summarization.

Further Reading
Evans, Nicholas D. Military Gadgets: How Advanced Technology

Is Transforming Today’s Battlefield. Upper Saddle River, N.J.:
Prentice Hall, 2004.

military applications of computers        311

“How Military Robots Work.” HowStuffWorks. Available online.
URL: http://science.howstuffworks.com/military-robot.htm.
Accessed August 15, 2007.

Jardin, Xeni. “VR Goggles Heal Scars of War.” Wired, August 22,
2005. Available online. URL: http://www.wired.com/science/
discoveries/news/2005/08/68575. Accessed August 15, 2007.

Roland, Alex, and Philip Shiman. Strategic Computing: DARPA and
the Quest for Machine Intelligence, 1983–1993. Cambridge,
Mass.: MIT Press, 2002.

Strachan, Ian W. Jane’s Simulation and Training Systems, 2005–2006.
Alexandria, Va.: Jane’s Information Group, 2005.

Vargas, Jose Antonio. “Virtual Reality Prepares Soldiers for Real
War.” Washington Post, February 14, 2006, p. A01.

Vizard, Frank, and Phil Scott. 21st Century Soldier: The Weaponry,
Gear, and Technology of the Military in the New Century. New
York: Popular Science/Time Inc., 2002.

minicomputer
The earliest general-purpose electronic digital computers
were necessarily large, room-size devices. In the 1960s,
however, the replacement of tubes with transistors (and
gradually, integrated circuits) gave designers the choice of
either keeping computers large and packing more process-
ing and memory capacity into them, or making smaller
computers that still had considerable power. The latter
option led to the minicomputer as contrasted with the larger
mainframe (see mainframe).

Compared to mainframes, minicomputers often handled
data in smaller “chunks” (such as 16 bits as compared to 32
or 64) and had a smaller memory capacity. Minicomputers
also tended to have more limited input/output (I/O) capacity.
However, while large businesses still needed mainframes to
handle their large databases and volume of transactions, the
minicomputer offered a relatively low cost (tens of thousands
of dollars rather than hundreds of thousands), computing
facility for scientific laboratories, university computing cen-
ters, industrial control, and various specialized needs.

The pioneering and most successful minicomputer com-
pany was the Digital Equipment Corporation (DEC). In
1960, DEC introduced its PDP-1, which was followed in
1965 by the quite successful PDP-8, which sold for only
$18,000. By the early 1970s, DEC had been joined by com-
petitors such as Data General and the availability of inte-
grated memory circuits (RAM) and microprocessors packed
more speed and capacity into each succeeding model.

The minicomputer had several important effects on the
development of computer science and the “computer cul-
ture” as a whole (see hackers and hacking). Minicom-
puters gave university students direct, interactive access to
computers through time-sharing, Teletype terminals, or CRT
display terminals. Because minicomputers usually lacked
the extensive (and expensive) software packages that came
with mainframes, university users developed and eagerly
swapped software such as program editors and debuggers.
This cooperative effort achieved its most striking result in
the development of the UNIX operating system.

The reader has probably noticed that this article refers
to minicomputers in the past tense. The minicomputer
didn’t really disappear, but rather was transmogrified. By
the late 1980s and certainly the 1990s, the personal desk-

top computer had taken advantage of more powerful micro-
processors and ever more densely packed memory chips to
create workstations that rivaled or exceeded the power of
established minicomputers. Eventually, the minicomputer
as a category virtually disappeared, its functions taken over
by machines such as the powerful graphics workstations
developed by companies such as Sun Microsystems and Sil-
icon Graphics and today’s forests of Web and file servers.

Further Reading
Fottral, Jerry. Mastering the AS/400: A Practical Hands-On Guide.

Loveland, Colo.: 29th Street Press, 2000.
Hoskins, Jim, and Roger Dimmick. Exploring IBM eServer Series.

11th ed. Gulf Breeze, Fla.: Maximum Press, 2003.
PDP-1 Computer Exhibit. Computer History Museum. Avail-

able online. URL: http://www.computerhistory.org/pdp-1/.
Accessed August 15, 2007.

Rifkin, Glenn, and George Harrar. The Ultimate Entrepreneur: The
Story of Ken Olsen and Digital Equipment Corporation. Chi-
cago: Contemporary Books, 1988.

Minicomputers such as this DEC PDP-8 brought computing power
to many academic and scientific institutions for the first time. They
also encouraged a culture of cooperative software development
that led to such innovations as the UNIX operating system.  (Paul
Pierce Computer Collection)

312        minicomputer

Schein, Edgar H. DEC Is Dead, Long Live DEC: The Lasting Legacy
of Digital Equipment Corporation. San Francisco: Berrett-Koe-
hler, 2004.

Minsky, Marvin Lee
(1927– )
American
Computer Scientist

Starting in the 1950s, Marvin Minsky played a key role in
the establishment of artificial intelligence (AI) as a
discipline. Combining cognitive psychology and computer
science, Minsky developed ways to make computers func-
tion in “brain-like” ways (see neural network) and then
developed provocative insights about how the human brain
might be organized.

Marvin Minsky was born in New York City on August 9,
1927. His father was a medical doctor, and Marvin proved
to be a brilliant science student at the Bronx High School of
Science and the Phillips Academy. Although he majored in
mathematics at Harvard, he also showed a strong interest
in biology and psychology. In 1954, he received his Ph.D. in
mathematics at Princeton. In 1956, he was a key participant
in the seminal Dartmouth conference that established the
goals of the new discipline of artificial intelligence.

One of the most important of those goals was to explore
the relationship between thinking in the human brain and
the operation of computers. Earlier in the century, research
into the electrical activities of neurons (the brain’s infor-
mation-processing cells) had led to speculation that the
brain functioned something like an intricate telephone
switchboard, carrying information through millions of tiny
connections. During the 1940s, researchers had begun to
experiment with creating electronic circuits that mimicked
the activity of neurons.

In 1957, Fran Rosenblatt built a device called a per-
ceptron. It consisted of a network of electronic nodes that
can transmit and respond to signals that function much
like nerve stimuli in the brain (see neural network). For
example, a perceptron could “recognize” shapes by selec-
tively reinforcing the stimuli from light hitting an array
of photocells. In 1969, Minsky and Seymour Papert co-
authored a very influential book on the significance and
limitations of perceptron research. Their work not only
spurred research into neural networks and their possible
practical applications, but also proved a strong impetus for
the new field of cognitive psychology, bridging the study of
human mental processes and the insights of computer sci-
ence (see cognitive science).

Meanwhile, Minsky had joined with John McCarthy (see
McCarthy, John) to found the Artificial Intelligence Labo-
ratory at the Massachusetts Institute of Technology (MIT).
In moving from basic perception to the higher order ways
in which humans learn, Minsky developed the concept of
frames. Frames are a way to categorize knowledge about the
world, such as how to plan a trip. Frames can be broken
into subframes. For example, the trip-planning frame might
have subframes about air transportation, hotel reservations,

and packing. Minsky’s frames concept became a key to the
construction of expert systems that today allow computers to
advise on such topics as drilling for oil or medical diagnosis
(see expert systems and knowledge representation). In
the 1970s, Minsky and his colleagues at MIT designed robotic
systems to test the ability to use frames to accomplish simpler
tasks, such as navigating around the furniture in a room.

Minsky believed that the results of research into sim-
ulating cognitive behavior had fruitful implications for
human psychology. In 1986, Minsky published The Society
of Mind. This book suggests that the human mind is not a
single entity (as classical psychology suggests) or a system
with a small number of often-warring subentities (as psy-
choanalysis asserted). It is more useful, Minsky suggests,
to think of the mind as consisting of a multitude of inde-
pendent agents that deal with different parts of the task of
living and interact with one another in complex ways. What
we call mind or consciousness, or a sense of self is, there-
fore, what emerges from this ongoing interaction.

Minsky continues his exploration of human psychology
and cognition with his latest book, The Emotion Machine.
He has suggested that emotions are actually just alternative
ways of thinking and accessing mental resources. In effect,
the mind solves problems by looking among its “scripts”
for those that seem applicable to the current situation, and
then reflecting on them and revising as necessary.

Minsky continues his research at MIT. He has received
numerous awards, including the ACM Turing Award (1969)
and the International Joint Conference on Artificial Intel-
ligence Research Excellence Award (1991).

Further Reading
Henderson, Harry. Artificial Intelligence: Mirrors for the Mind. New

York: Chelsea House, 2007.
Marvin Minsky’s Home Page. Available online. URL: http://web.

media.mit.edu/~minsky/. Accessed April 10, 2007.
Minsky, Marvin. The Emotion Machine: Commonsense Thinking,

Artificial Intelligence, and the Future of the Human Mind. New
York: Simon & Schuster, 2006.

———. The Society of Mind. New York: Simon & Schuster, 1988.

MIT Media Lab
While often associated with innovations in computer inter-
faces and use of new technology, the Media Lab at the Mas-
sachusetts Institute of Technology (MIT) is actually a part
of the School of Architecture and Planning. This origin
is perhaps reflected in the organization’s multidisciplinary
research, including not only computer science and technol-
ogy but cognitive science, learning, art, and design.

The lab was founded in 1985 by Nicholas Negroponte
and former MIT President Jerome Wiesner (see Negro-
ponte, Nicholas). As of 2006 the lab’s directorship was
assumed by Frank Moss. The lab is funded mainly by cor-
porate donations, though some projects receive government
funding or are done in partnership with other schools or
other parts of MIT. There is some ongoing tension between
the specific needs and desires of corporate sponsors and the
lab’s research interests, and over the disposition of intellec-
tual property created by projects.

MIT Media Lab        313

Emphases and Projects
The focus of most of the lab’s diverse projects is on find-
ing innovative and productive new ways for people to use
computers and related technology. Recently there has been
an emphasis on more practical applications such as aiding
“disabled, disadvantaged, [and] disenfranchised” people
in becoming pioneers in using technology that everyone
may use someday. The “One Laptop per Child” project to
develop inexpensive computers for developing countries is
also a part of this effort.

As of 2007 there were 27 separate research groups at the
lab, including the following:

• � Object-Based Media—objects that can “understand”
and describe their environment

• � Personal Robots—robots that interact with people
socially (see Breazeal, Cynthia)

• � Computing Culture—relationships among art, tech-
nology, and culture

• �M olecular Machines—logical and mechanical devices
using molecular-scale parts

• � Software Agents—programs that can serve as assis-
tants for human activities

• � Ambient Intelligence—interfaces that are “pervasive,
intuitive, and intelligent” (see Maes, Pattie)

• � Society of Mind—applying models of human cogni-
tive processing to machines (see Minsky, Marvin)

• � Affective Computing—developing computers that can
recognize and respond intelligently to human emotion

Further Reading
Bourzac, Katherine. “Media Lab Courts Corporate Funding.”

Technology Review, February 21, 2006. Available online.
URL: http://www.technologyreview.com/Biztech/16383/?a=f.
Accessed October 2, 2007.

———. “The Media Lab’s New Pilot.” Technology Review. Avail-
able online. URL: http://www.technologyreview.com/article/
16851/. Accessed October 2, 2007.

Maeda, John. Maeda @ Media. New York: Universe Publications,
2001.

The Media Lab: Inventing a Better Future. Available online. URL:
http://www.media.mit.edu/. Accessed October 2, 2007.

Negroponte, Nicholas. Being Digital. New York: Vintage Books,
1996.

Mitnick, Kevin D.
(1963– )
American
Computer Cracker/Hacker, Consultant

Once notorious for breaking into computers and stealing
information, Kevin Mitnick later became a consultant and
author on computer security.

Mitnick was born October 6, 1963, in Van Nuys, Cali-
fornia. With little parental supervision and few other
friends, Mitnick became involved with “phone phreaks,”
people who had learned to manipulate the long-distance
phone system. However, Mitnick soon turned his attention
to breaking into computer systems. Mitnick first got in
trouble in high school for breaking into the school district’s
computer system. He also allegedly broke into the North
American Air Defense Command computer, though fortu-
nately without starting a nuclear war as in the movie War
Games. Despite being caught stealing Bell System technical
manuals and put on probation, Mitnick continued break-
ing into computers. In 1989 he received a one-year prison
sentence for breaking into computers at MCI and Digital
Equipment Corporation. After getting out he violated his
probation by stealing more Bell documents, and a warrant
was issued for his arrest.

Mitnick then went underground, eluding authorities
for two years and using a variety of fake identities. How-
ever, when Mitnick broke into the computer of physicist
and computer security expert Tsutomu Shimomura and
stole a large number of documents and programs, and
later taunted him on the phone, Shimomura resolved to
track down the intruder. Shimomura and several other
experts set up a tracking program at The Well (a computer
conferencing system where Mitnick had stashed the stolen
material). Mitnick attempted to disguise his location by
routing calls through a phone company switching office
in Raleigh, North Carolina, but when Shimomura figured
out that Mitnick was calling from Raleigh, he and a Sprint
phone technician drove around Raleigh scanning for the
calls from Mitnick’s cellular modem, tracking him to his
apartment building. They then called federal agents, who
arrested Mitnick.

Mitnick became a cause célèbre in the hacker commu-
nity. The controversy was heightened by two books writ-
ten about the case, one by Shimomura and New York Times
journalist John Markhoff and the other by Jonathan Litt
man, who argued that the charges against Mitnick were
overinflated and government prosecutors overzealous.

The MIT Media Lab has devised a variety of new ways for people
to use computers. This is an innovative laptop sketchbook that cre-
ates animations directly from drawings.  (Sam Ogden / Photo
Researchers, Inc.)

314        Mitnick, Kevin D.

Author and Security Expert
After serving a total of five years in prison (four and a half
before he was actually tried), Mitnick was released in Janu-
ary 2000 on condition that he not use any form of computer
network. (Mitnick appealed this restriction and it was later
lifted.) Meanwhile, Mitnick then wrote two books describ-
ing both technical and psychological or “social engineer-
ing” methods used by hackers, and giving advice on how
computer owners can protect themselves. Mitnick currently
owns his own computer security company.

Further Reading
Goodell, Jeff. The Cyberthief and the Samurai: The True Story of

Kevin Mitnick—and the Man Who Hunted Him Down. New
York: Dell, 1996.

Littman, Jonathan. The Fugitive Game: Online with Kevin Mitnick.
Boston: Little, Brown, 1996.

Mitnick, Kevin D. The Art of Deception: Controlling the Human Ele-
ment of Security. Indianapolis: Wiley, 2002.

———. The Art of Intrusion: The Real Stories behind the Exploits of
Hackers, Intruders & Deceivers. Indianapolis: Wiley, 2005.

Shimomura, Tsutomo, and John Markoff. Takedown: The Pursuit
and Capture of Kevin Mitnick, America’s Most Wanted Com-
puter Outlaw—by the Man Who Did It. New York: Hyperion,
1996.

modeling languages
Most significant modern software projects are not simply
programs, however large, but complex systems of programs
or modules. Such systems have to be designed and fully
described before they can be coded. Traditional methods
may be adequate for simple programs (see flowchart and
pseudocode), but they do not capture many aspects of
design and behavior. When used for software projects and
information systems, modeling languages allow for com-
ponents and their relationships to be described and dia-
grammed systematically.

UML
Unified Modeling Language, or UML, is the most widely
used modeling language for software projects. UML
describes software in three ways: the functions of the sys-
tem as seen by the user; the system’s objects, attributes, and
relationships (see class and object-oriented program-
ming); and how the system behaves, as seen by how objects
interact and how their state changes. A variety of diagrams
can be used to summarize this information:

• � activity—describes processes and data flow, as in busi-
ness transactions

• � class—shows classes and data types and their rela-
tionships

• � communication—the messages (data) exchanged
between classes

• � components—the major parts of the system

• � composite structure—the internal structure of a class
or component

• � deployment—where the system is executed, including
hardware and software servers

• � interaction overview—a way to show the overall flow
of control

• � object—objects and relationships at a particular point
in time

• � package—organization of elements of the model into
packages, showing dependencies

• � sequence—how messages are organized chronologi-
cally

• � state machine—the possible states an object or inter-
action can have, and how each type of input changes
the state (see finite-state machine)

• � timing—how the state of an object changes over time
as it responds to events

• � use case—actors and actions (such as a customer
making a purchase)

Some critics believe that UML can be overused, lead-
ing to large, complex descriptions and numerous diagrams
that can be almost as hard to work with as the code itself.
Further, the UML itself has to be maintained, being revised
and expanded as the design and code change. Integrating
modeling functions into programming environments and
providing a seamless path from model to specification to
code is a possible alternative, though hard to realize in
practice.

Further Reading
Chonoles, Michael Jesse, and James A. Schardt. UML 2 for Dum-

mies. New York: Wiley, 2003.
“Introduction to the Diagrams of UML 2.0.” Agile Modeling. Avail-

able online. URL: http://www.agilemodeling.com/essays/
umlDiagrams.htm. Accessed October 3, 2007.

Miles, Russ, and Kim Hamilton. Learning UML 2.0. Sebastapol,
Calif.: O’Reilly, 2006.

UML Forum. Available online. URL: http://www.uml-forum.com/.
Accessed October 3, 2007.

UML Resource Page. (Object Management Group). Available
online. URL: http://www.uml.org/. Accessed October 3, 2007.

modem
As computers proliferated and users experienced an increas-
ing need to exchange data and communicate, it became
logical to tap into the telephone system, a communications
technology that already linked millions of places around
the world.

The problem is that the conventional telephone is an
analog rather than digital device. It converts sound (such as
speech) into continuously varying electrical signals. Com-
puters, on the other hand, use discrete pulses of on/off
(binary) data. However, it proved relatively easy to build
a device that could “modulate” the data pulses, impos-
ing them on a sort of carrier wave and thus converting
them into electrical signals that could travel along tele-
phone lines. At the other end of the line a corresponding

modem        315

device could “demodulate” that telephone signal, convert-
ing it back into data pulses. This “modulator-demodulator”
device is known as a modem for short.

A modem contains both the modulator and demodula-
tor circuit, with a connection to a cable and a phone jack on
one side and a connection to the computer on the other. The
computer connection can be provided by connecting to a
standard port on the outside of the PC (see serial port) or
by mounting the modem on a card that slides into the PC’s
internal bus (see bus) and connects to the outside phone
line through a jack. The modem must also have a compo-
nent that generates the dialing pulses needed to establish a
phone connection.

The first modems for PCs appeared in the early 1980s
and were very slow by modern standards, transmitting
data at 300 bps (bits per second). However, speed steadily
improved, reaching 1,200, 2,400, 9,600 and so on up to
56,000, which is about the maximum practical speed for
this technology over ordinary phone lines.

Phone lines are far from hermetically sealed, and ran-
dom fluctuations called “line noise” can sometimes be mis-
interpreted by the modem as part of the data signal, leading
to errors. However, modern modems include sophisti-
cated error-correcting protocols (see error correction)
and can automatically negotiate with each other to reduce
data transmission speed over noisy lines. Data compres-
sion techniques also make it possible to have an effectively
greater transmission speed by packing more information
into less data. In the 1990s, there were some problems
caused by competing standards, but today most modems
meet the International Telecommunications Union (ITU)
v.90 standard for 56 kbps transmission. The modem is now
a reliable, stable commodity included as standard equip-
ment in most new PCs.

Modems have met with increasing competition as a
means to connect homes to the Internet. Data can be trans-
mitted over video cable or special phone lines (such as
DSL or ADSL) at 20–30 times faster than for a modem on
an ordinary phone line (see broadband). However, besides
being two to three more times expensive than typical dial-
up services, broadband technologies tend to be concen-
trated in urban areas. Nevertheless, the versatile modem
is becoming a secondary means of data communication for
most users.

Further Reading
Banks, Michael A. The Modem Reference: The Complete Guide to

PC Communications. 4th ed. Medford, N.J.: CyberAge Books,
2000.

Brain, Marshall. “How Modems Work.” Available online. URL:
http://www.howstuffworks.com/modem.htm. Accessed August
15, 2007.

Glossbrenner, Alfred, and Emily Glossbrenner. The Complete
Modem Handbook. New York: MIS Press, 1995.

molecular computing
While the electronic digital computer is by far the most
prevalent type of calculating device in use today, it is also
possible to build computational devices that exploit natural

laws and processes to solve problems (see analog com-
puter). One of the most intriguing approaches is based
upon chemistry and biology rather than electronics.

Consider that all living things possess a detailed “data-
base system” of coded information, namely, the DNA
sequences that define their genetic code. DNA consists of
strands composed of four bases: adenine (A), cytosine (C),
guanine (G), and thymine (T). There are a variety of ways
in which biologists can “sequence” a strand of DNA, that is,
determine the order of bases in it. It is also relatively easy to
make many copies of a given chain by using the polymerase
chain reaction (PCR) technique.

This stockpile of coded DNA strands can be used to solve
combinatorial problems. This type of problem becomes
exponentially harder to solve through “brute force” com-
putation as the number of elements increases. An example
is the famous “Traveling Salesman Problem.” Here the goal
is to determine a route that visits all of a list of cities while
visiting each city only once.

As Leonard Edelman pointed out in his 1994 article in
Science, a DNA-based approach to the traveling salesman
problem begins by assigning two sets of four bases to each
city. Next, a similar DNA combination is assigned to each
available direct route between two cities, using half (four
bases) of the sequence assigned to the respective cities.
That is, if one city is coded TCGTAGCT and another city
is coded GCATTAAG, then a route from the first city to the
second would be coded TCGTTAAG.

When binding one DNA strand to another, T always
binds with A, and C always binds with G. Therefore a “com-
plement” can be defined that will bind with a given DNA
string. For example, the complement of TCGTAGCT would
be AGCATCGA.

Next, the strands representing the complements for the
cities are mixed with the ones representing routes. If a city
complement runs into a route containing that city, they
bind together. The other end (representing the other end of
the route) might then encounter another route strand, thus
extending the route to a third city and so on, until there are
strands representing potentially complete routes to all the

Molecular computing takes advantage of the properties of mol-
ecules such as DNA to create what is in effect a massive array of
parallel processors. In this example, DNA strands can be coded to
represent cities and possible routes between them so that they will
chemically solve the Traveling Salesman Problem.

316        molecular computing

cities. After the mixing and combining is completed, sepa-
ration and sequencing techniques can be used to find the
shortest strand that includes all the cities. This represents
the solution to the problem.

The attractiveness of molecular computing lies in its
being “massively parallel” (see multiprocessing). Although
molecular operations are individually much slower than
electronics, DNA strands can be replicated and assembled
in great numbers, potentially allowing them to go through
quintillions (1018) of combinations at the same time. In
1996, Dan Boneh designed an approach using DNA com-
binations that could be used to break the Data Encryption
Standard (DES) encryption scheme by testing huge num-
bers of keys simultaneously.

In 2002 researchers at the Weizmann Institute of Sci-
ence in Rehovot, Israel, announced that they had con-
structed a DNA computer that could perform 330 teraflops
(trillions of operations per second). Two years later Weiz-
mann researchers described their new DNA computer,
which could be used to diagnose and treat cancer on the
cellular level.

Although this application suggests the potential power
in molecular computing, the approach has significant
drawbacks. There are many ways that damage can occur
to DNA strands during combination and processing, lead-
ing to errors. Even for the combinatorial problems that are
molecular computing’s strong suit, conventional electronic
computers using large arrays of parallel processors are able
to offer comparable power and a much easier interface.
However, molecular computing illustrates the rich way in
which information and information processing are embed-
ded in nature and the potential for harnessing it for practi-
cal applications.

Further Reading
Amos, Martyn. Genesis Machines: The New Science of Biocomputing.

New York: Overlook, 2008.
———. Theoretical and Experimental DNA Computation. New York:

Springer, 2005.
———, ed. Cellular Computing. New York: Oxford University

Press, 2004.

Calude, Christian, and Gheorghe Păun. Computing with Cells and
Atoms: An Introduction to Quantum, DNA and Membrane Com-
puting. New York: Routledge, 2001.

Păun, Gheorghe, Grzegorz Rozenberg, and Arto Salomaa. DNA
Computing: New Computing Paradigms. New York: Springer,
1998.

Ryu, Will. “DNA Computing: A Primer.” Ars Technica. Available
online. URL: http://arstechnica.com/reviews/2q00/dna/dna-1.
html. Accessed August 15, 2007.

monitor
As designers strove to make computers more interactive
and user-friendly, the advantages of the cathode ray tube
(CRT) already used in television became clear. Not only
could text be displayed without wasting time and resources
on printing but the individually addressable dots (pixels)
could be used to create graphics. While such displays were
used occasionally in defense and research systems in the
1950s, the first widespread use of CRT video monitors came
with the new generation of smaller computers developed
in the 1960s (see minicomputer). Since such computers
were often used for scientific, engineering, industrial con-
trol, and other real-time applications, the combination of
video display and keyboard (i.e., a Video Display Terminal,
or VDT) was a much more practical way for users to oversee
the activities of such systems. (This oversight function also
led to the term monitor.)

A monitor can be thought of as a television set that
receives a converted digital signal rather than regular TV
programming. To send an image to the screen, the PC first
assembles it in a memory area called a video buffer (mod-
ern video cards can store up to 64 MB of complex graphics
data. See computer graphics). Ultimately, the graphics are
stored as an array of memory locations that represent the
colors of the individual screen dots, or pixels. The video
card then sends this data through a digital to analog con-
verter (DAC), which converts the data to a series of voltage
levels that are fed to the monitor.

The monitor has electron “guns” that are aimed
according to these voltages. (A monochrome monitor has

A standard computer monitor works much like an ordinary color TV set. The difference is that the signal is derived not from a broadcast pro-
gram, but from the contents of video memory as processed and converted by the computer’s graphics card.

monitor        317

only one gun, while a color monitor, like a color TV, has
separate guns for red, blue, and green. The electrons from
the guns pass through a lattice called a shadow mask,
which keeps the beams properly separated and aligned.
Each pixel location on the inner surface of the CRT is
coated with phosphors, one that responds to each of the
three colors.

The intensity of the beam hitting each color determines
the brightness of the color, and the mixture of the red, blue,
and green color levels determines the final color of the
pixel. (Today’s graphics systems can generate more than
16.7 million different colors, although the human eye can-
not make such fine distinctions.)

The beam sweeps along a row of pixels and then turns
off momentarily as it is refocused and set to the next
row. The process of scanning the whole screen in this
way is repeated 60 times a second, too fast to be noticed
by the human eye. Less expensive monitors were some-
times designed to skip over alternate lines on each pass
so that each line is refreshed only 30 times a second. This
interlaced display can have noticeable flicker, and fall-
ing prices have resulted in virtually all current monitors
being noninterlaced.

Another factor influencing the quality of a CRT moni-
tor is the size of the screen area devoted to each pixel. The
spacing in the shadow mask that defines the pixel areas is
called the dot pitch. A smaller dot pitch allows for a sharper
image.

During the 1980s, emerging video standards offered
increasing screen resolution and number of colors, starting
with the first IBM PC color displays at 320 × 200 pixels, 4
colors up to video graphics array (VGA) displays at 1024 ×
768 pixels and at least 256 colors. The latter is considered
the minimum standard today, with some displays going as
high as 1600 × 1200 with millions of colors.

Meanwhile, the CRT monitor became a commodity item
with steadily falling prices. A 19-inch color monitor now
costs only a few hundred dollars. Ergonomically, it is impor-
tant for the combination of display size and resolution to be
set to avoid eyestrain. There has been some concern about
users receiving potentially damaging nonionizing radiation
from CRT displays, but studies have generally been unable
to confirm such effects. Modern monitors are generally
designed to minimize this radiation.

CRT displays are too bulky and power-hungry for lap-
top or handheld devices, which generally use liquid crystal
displays (LCDs). In recent years large LCD displays suitable
for desktop systems have also declined in price, and are
rapidly becoming the display of choice even for regular PCs
(see flat-panel display).

Further Reading
Carmack, Carmen, and Jeff Tyson. “How Computer Monitors

Work.” Available online. URL: http://www.howstuffworks.
com/monitor.htm. Accessed August 15, 2007.

Goldwasser, Samuel M. “Notes on the Troubleshooting and Repair
of Computer and Video Monitors.” Available online. URL:
http://www.repairfaq.org/sam/monfaq.htm. Accessed August
15, 2007.

Moore, Gordon E.
(1929– )
American
Entrepreneur

The microprocessor chip is the heart of the modern com-
puter, and Gordon Moore deserves much of the credit for
putting it there. His insight into the computer chip’s potential
and his business acumen and leadership would lead to the
early success and market dominance of Intel Corporation.

Moore was born on January 3, 1929, in the small coastal
town of Pescadero, California, south of San Francisco. His
father was the local sheriff and his mother ran the general
store. Young Moore was a good science student, and he
attended the University of California, Berkeley, receiving
a B.S. in chemistry in 1950. He then went to the California
Institute of Technology (Caltech), earning a dual Ph.D. in
chemistry and physics in 1954. Moore thus had a sound
background in materials science that would help prepare
him to evaluate the emerging research in transistors and
semiconductor devices that would begin to transform elec-
tronics in the later 1950s.

After spending two years doing military research at
Johns Hopkins University, Moore returned to the West
Coast to work for Shockley Semiconductor Labs in Palo
Alto. However, Shockley, who would later share in a Nobel
Prize for the invention of the transistor, alienated many of
his top staff, including Moore, and they decided to start
their own company, Fairchild Semiconductor, in 1958.

Moore became manager of Fairchild’s engineering
department and, the following year, director of research.
He worked closely with Robert Noyce, who was developing
a revolutionary process for placing the equivalent of many
transistors and other components onto a small chip.

Moore and Noyce saw the potential of this integrated-
circuit technology for making electronic devices including
clocks, calculators, and especially computers vastly smaller
yet more powerful. In 1965 he formulated what became
widely known in the industry as Moore’s law. This predic-
tion suggested that the number of transistors that could be
put in a single chip would double about every year (later
it would be changed to 18 months or two years). Remark-
ably, Moore’s law would still hold true into the 21st century,
although as transistors get ever closer together, the laws of
physics begin to impose limits on current technology.

Moore, Noyce, and Andrew Grove found that they could
not get along well with the upper management in Fair
child’s parent company, and decided to start their own com-
pany, Intel Corporation, in 1968, using $245,000 plus $2.5
million from venture capitalist Arthur Rock (see Grove
Andrew and Intel Corporation). They made the devel-
opment and application of microchip technology the cen-
terpiece of their business plan. Their first products were
RAM (random access memory) chips (see chip).

Seeking business, Intel received a proposal from Busi-
com, a Japanese firm, for 12 custom chips for a new calcu-
lator. Moore and Grove were not sure they were ready to
undertake such a large project, but then Ted Hoff, one of
their first employees, suggested that they could build a chip

318        Moore, Gordon E.

that had a general-purpose central processing unit (CPU)
that could be programmed with whatever instructions were
needed for each application. With the support of Moore and
other Intel leaders, the project got the go-ahead. The result
was the microprocessor, and it would revolutionize not only
computers, but just about every sort of electronic device
(see microprocessor).

Under the leadership of Moore, Grove, and Noyce, the
1980s would see Intel established as the leader in micro-
processors, starting when IBM chose Intel microprocessors
for its hugely successful IBM PC. IBM’s competitors, such
as Compaq, Hewlett-Packard, and later Dell, would also use
Intel microprocessors for most of their PCs.

In his retirement, Moore enjoyed fishing at his sum-
mer home in Hawaii while being active as a philanthro-
pist. Moore gave a record-setting $600 million donation to
Caltech in 2001, and in 2003 Moore and his wife, Betty, set
up a $5 billion foundation focusing on environmental and
social initiatives. Moore has also had a long-time interest in
SETI, or the search for extraterrestrial intelligence.

Moore has been awarded the prestigious National Medal
of Technology (1990), the IEEE Founders Medal, the W.
W. McDonnell Award, as well as the Presidential Medal of
Freedom (2002). In 2003 Moore was elected a fellow of the
American Association for the Advancement of Science.

Further Reading
Burgelman, Robert, and Andrew S. Grove. Strategy Is Destiny. New

York: Simon & Schuster, 2001.
“Calibrating Gordon Moore.” Caltech News 36 (2002). Available

online. URL: http://pr.caltech.edu/periodicals/CaltechNews/
articles/v36/moore.html. Accessed May 5, 2007.

“Laying Down the Law.” Technology Review 104 (May 2001): 65.
Available online. URL: http://www.technologyreview.com/
Infotech/12403/. Accessed October 3, 2007.

Mann, Charles. “The End of Moore’s Law?” Technology Review 103
(May 2000): 42. Available online. URL: http://www.technolo-
gyreview.com/Infotech/12090/. Accessed October 3, 2007.

motherboard
Large computers generally had separate large cabinets to
hold the central processing unit (CPU) and memory (see
mainframe). Personal computers, built in an era of inte-
grated electronics, use a single large circuit board to serve
as the base into which chips and expansion boards are
plugged. This base is called the motherboard.

The motherboard has a special slot for the CPU (see
microprocessor). Data lines (see bus) connect the CPU to
RAM (see memory) and various device controllers. Besides
compactness, use of a motherboard minimizes the use of
possibly fragile cable connections. It also provides expan-
sion capability. Assuming its pins are compatible with the
slot and it is operationally compatible, a PC user can plug a
more powerful processor into the slot on the motherboard,
upgrading performance. Memory expansion is also pro-
vided using a row of memory sockets. Memory, originally
inserted as rows of separate chips plugged into individual
sockets, is now provided in single modules called DIMMs
that can be easily slid into place.

The motherboard also generally includes about six gen-
eral-purpose expansion slots. These follow two different
standards, ISA (industry standard architecture) and PCI
(peripheral component interconnect) with PCI now pre-
dominating (see bus). These slots allow users to mix and
match such accessories as graphics (video) cards, disk con-
trollers, and network cards. Additionally, the motherboard
includes a chip that stores permanent configuration set-
tings and startup code (see bios), a battery, a system clock,
and a power supply.

The most important factors in choosing a motherboard
are the type and speeds of processor it can accommodate,
the bus speed, the BIOS, system chipset, memory and device
expansion capacity, and whether certain features (such
as video) are integrated into the motherboard or provided
through plug-in cards. Generally, users must work within
the parameters of their system’s motherboard, although
knowledgeable people who like to tinker can buy a mother-
board and build a system “from scratch” or keep their cur-
rent peripheral components and upgrade the motherboard.

Further Reading
Palmer, Charlie. How to Build Your Own PC: Save a Buck and Learn

a Lot. West St. Paul, Minn.: HCM Publishing, 2005.
Rosenthal, Morris. Build Your Own PC. 4th ed. Emeryville, Calif.:

McGraw-Hill/Osborne, 2004.
Soderstrom, Thomas. “Beginner’s Guide to Motherboard Selection.”

Tom’s Hardware. Available online. URL: http://www.toms
hardware.com/2006/07/26/beginners_guide_to_motherboard_
selection/. Accessed August 15, 2007.

Wilson, Tracy V. “How Motherboards Work.” Available online. URL:
http://www.howstuffworks.com/motherboard.htm. Accessed
August 15, 2007.

Schematic of a PC motherboard. Note the sockets into which addi-
tional RAM memory chips (DIMM) modules can be inserted, as
well as the slots for ISA and PCI standard expansion cards.

motherboard        319

Motorola Corporation
Motorola Corporation (NYSE symbol: MOT) is a venera-
ble American manufacturer of communications and other
electronic equipment, including computers and cell phones.
The company was founded in 1928 by Paul and Joseph
Galvin as Galvin Manufacturing Corporation. The name
Motorola arose in the early 1930s when the company began
manufacturing car radios (“motor” as in car plus “ola” as in
Victrola), and the company’s name was officially changed to
Motorola Corporation in 1947. Many of the company’s sub-
sequent products would relate to radio, such as police car
radios, walkie-talkies, and cordless phones. Motorola intro-
duced the first “brick” cell phone in 1983. Today Motorola
is best known for stylish cell phones with names such as
RAZR and KRZR.

Motorola also played an important role in building the
global satellite communications network through the Irid-
ium Company in the late 1990s. However, the company
filed for bankruptcy when it could not attract enough tele-
communications companies to use its services.

Microprocessors
Though the market came to be dominated by Intel (see
Intel Corporation), Motorola was an important manu-
facturer of microprocessors in the 1980s and 1990s. Motor-
ola’s 68000 series micrprocessors and later PowerPC series
(developed jointly with IBM) were used in several com-
puter systems of the early 1980s, including the Commodore
Amiga and the Atari ST, as well as workstation terminals
(Sun) and UNIX systems. The greatest consumer impact,
however, would be its use in the Apple Macintosh, starting
in 1984.

The later Power PC (PPC) series, launched in 1993, is a
RISC processor (reduced instruction set, see risc). This line
of processors would be used in the Power Mac and other
Macintosh systems until Apple adopted Intel chips in 2006.

Motorola’s fortunes declined in the early to mid 2000s.
In 2001 Motorola spun off its defense-related business to
General Dynamics. It spun off its computer chip manufac-
turing division in 2004 as Freescale Semiconductors, and
in 2007 Motorola sold its embedded communications chip
unit to Emerson Electric. Motorola has said it would focus
on its core communications business.

Despite strong demand for its cell phones and other
mobile devices, in 2006 Motorola earned 42.9 billion in
revenue, but its profits were down 48 percent from the pre-
vious year. This was attributed to strong price competition.
In 2007 the company said it would cut 3,500 of its 66,000
employees.

Further Reading
Motorola Web site. Available online. URL: http://www.motorola.

com/. Accessed October 3, 2007.
Pande, Meter S., Robert P. Neumann, and Roland R. Cavanagh.

The Six Sigma Way: How GE, Motorola, and Other Top Compa-
nies Are Honing Their Performance. New York: McGraw-Hill,
2000.

Petrakis, Harry Mark. The Founder’s Touch: The Life of Paul Gal-
vin of Motorola. 3rd ed. Chicago: Motorola University Press,
1991.

Schoenborn, Guenter. Entering Emerging Markets: Motorola’s Blue-
print for Going Global. Rev. ed. New York: Springer, 2006.

Wray, William C., Joseph D. Greenfield, and Ross T. Bannatyne.
Using Microprocessors and Microcomputers: The Motorola Fam-
ily. 4th ed. Upper Saddle River, N.J.: Prentice Hall, 1998.

mouse
Traditionally, computers were controlled by typing in com-
mands at the keyboard. However, as far back as the mid-
1960s researchers had begun to experiment with providing
users with more natural ways to interact with the machine.
In 1965, Douglas Engelbart at the Stanford Research Insti-
tute (SRI) devised a small box that moved over the desk on
wheels and was connected to the computer by a cable. As
the user moved the box around, it sent signals represent-
ing its motion. These signals in turn were used to draw a
pointer on the screen. Engelbart found that this system was
less taxing on users than alternative such as light pens or
joysticks (see Engelbart, Douglas).

This device, dubbed a “mouse,” remained largely a labo-
ratory novelty. In the 1970s, however, Xerox designed a
mouse-driven graphical user interface for its Alto system,
which saw only limited use. In 1984, however, Apple intro-

This Microsoft wireless optical mouse eliminates moving parts and
wires for smooth, accurate, reliable performance.  (Microsoft
Corporation)

320        Motorola Corporation

duced the mouse to millions of users of its Macintosh. By
the early 1990s, millions more users were switching their
IBM-compatible PCs from text commands (see ms-dos)
to the mouse-driven Windows interface. (See Microsoft
Windows.) Today a desktop PC without a mouse would be
as unthinkable as one without a keyboard.

Meanwhile, the mouse became smaller and sleeker.
Instead of wheels, the contemporary mouse uses a rolling
ball that turns two adjacent rollers inside the mouse. A
mouse pad with a special surface is generally used to pro-
vide uniform traction. A newer type of mouse uses optical
sensors instead of rollers to sense its changing position, and
does not require a mouse pad. Some mice are also cordless,
using infrared or wireless data connections.

Since mice are generally impracticable for laptop use
(see portable computers), designers have offered a variety
of alternatives. These include a trackball (a rolling ball built
into the keyboard), a touch-sensitive finger pad, or a small
stub that can be moved like a joystick by the fingertip.

Most mice now have at least two buttons. Generally, the
left button is used for selecting objects, opening menus, or
launching programs. The right button is used to bring up a
menu of actions that can be done with the selected object.
Activating a button is called clicking. It is the operating system
that assigns significance to clicking or double-clicking (click-
ing twice in rapid succession) or dragging (holding a button
down while moving the pointer). Some mice have a third but-
ton and/or a small wheel that can be used to scroll the display,
but only certain software recognizes these functions.

Further Reading
Brain, Marshall, and Carmen Carmack. “How Computer Mice

Work.” Available online. URL: http://computer.howstuffworks.
com/mouse.htm. Accessed August 15, 2007.

Pang, Alex Soojung-Kim. “The Making of the Mouse.” American
Heritage. Available online. URL: http://www.americanheritage.
com/articles/magazine/it/2002/3/2002_3_48.shtml. Accessed
August 15, 2007.

MS-DOS
The MS-DOS operating system became standard for per-
sonal computers built by IBM and its imitators (see IBM
PC) during the 1980s. Today it has been virtually displaced
by various versions of Microsoft Windows (see Microsoft
Windows). However, MS-DOS is important as an expres-
sion of both the limitations of the first generation of per-
sonal computers and the remarkable patience and ingenuity
of its developers and users.

Development
By the end of the 1970s, there were a number of rudimen-
tary operating systems for personal computers that used
a variety of microprocessors. Generally, their capabilities
were limited to loading and running programs and provid-
ing basic file organization and access.

The most sophisticated early PC operating system
was CP/M, developed by Gary Kildall’s Digital Research
for machines based on the Intel 8008 microprocessor. CP/
M offered more advanced capabilities such as the ability

to use not only floppy but also hard disks, and included
improved commands for listing file directories. CP/M even
offered rudimentary programming tools, such as an editor
and assembler, as well as an expandable architecture that
allowed programmers to write utilities that could be in
effect added to the operating system (see assembler).

In one of computer history’s greatest missed opportu-
nities, Kildall and IBM failed to come to an agreement in
1980 for creating a version of CP/M for the IBM PC, which
was being developed using the new 16-bit 8086 proces-
sor. IBM turned instead to Bill Gates and Microsoft, who
had achieved something of a reputation for their widely
used BASIC language package for personal computers (see
Gates, William). Gates agreed to provide IBM with an
operating system, and did so by buying a program called
QDOS (“quick and dirty operating system”), which had
been developed by Tim Paterson of Seattle Computer Prod-
ucts. This program was released for the IBM PC as PC-DOS
in 1981. However, Microsoft did not sell IBM an exclusive
license, so when “clone” makers proved able to legally build
IBM-compatible machines, Microsoft could sell them a
generic version called MS-DOS. As the PC market boomed,
this provided Microsoft with a large revenue stream, and
the company never looked back.

Features
MS-DOS offered a rather “clean” design that separates the
operating system into three parts. There is a hardware-
independent I/O system (stored as the file MSDOS.SYS),
which processes requests from programs for access to disk
files or to other devices such as the screen. The routines
needed to actually communicate with the devices are stored
in a separate file, IO.SYS, which is written by each computer
manufacturer. (As users from the early 1980s remember,
“PC-compatible” machines often had proprietary variations
in areas such as video.) Finally, the command processor
(COMMAND.COM) displays the once familiar C:\> prompt
and waits for the user to type commands. For example,
the DIR command followed by a path specification such as
C:\TEMP lists the contents of that directory. Programs, too,
can be run by typing their names at the prompt.

The MS-DOS file system, which remained largely
unchanged until the most recent versions of Windows, uses
a FAT (file allocation table) to indicate the disk allocation
units or “clusters” assigned to each file. Starting with MS-
DOS 2.0 in 1983, a hierarchical scheme of directories and
subdirectories was introduced, allowing for better organiza-
tion of the larger amount of space on hard disks.

One interesting feature of MS-DOS is the ability to load
a program into memory and keep it available even while
other programs are in use. This “terminate and stay resi-
dent” (TSR) function was soon used by enterprising devel-
opers to provide utilities such as notepads, calendars or
shortcuts (see macro) that users could activate through
special key combinations.

Users, however, had to struggle to keep enough memory
free for their applications, resident programs, and device
drivers. A combination of CPU addressing limitations and
the high price of memory meant that early IBM PCs had

MS-DOS        321

a maximum of 640 kB of memory to hold the operating
system and application programs. A trick called “expanded
memory” was developed to allow data to be swapped back
and forth between the 640 kB of usable memory and the
1–2 MB of additional memory that became available in the
later 1980s.

By the early 1990s, MS-DOS (then up to version 6.0) was
offering an alternative command processor (called DOS-
SHELL) that included some mouse operations, better sup-
port for larger amounts of memory, and the ability to switch
between different application programs. However, by that
time Windows 3.0 was proving increasingly successful, and
by 1995 most new PCs were being shipped with Windows.
Many new users scarcely used MS-DOS at all. Finally, with
the advent of Windows NT, 2000, and XP, the MS-DOS pro-
gram code that still lurked within the process of running
Windows disappeared entirely.

Further Reading
“Information and Help with Microsoft DOS.” Available online.

URL: http://www.computerhope.com/msdos.htm. Accessed
August 15, 2007.

Paterson, Tim. “An Inside Look at MS-DOS.” Byte, vol. 8, no.
6, June 1983, 250–252. Available online. URL: http://www.
patersontech.com/Dos/Byte/InsideDos.htm. Accessed Febru-
ary 6, 2008.

multimedia
The earliest computers produced only numeric output or
text (which itself actually consists of numbers—see char-
acters and strings). During the 1960s, CRT graphics (see
monitor) came into limited use, mainly on computers used
for scientific and engineering applications (see minicom-
puter). However, most business computer users continued
to receive only textual output. A notable exception in the
1970s was PLATO, a system of networked educational com-
puter terminals that combined text, graphics, and sound. It
is this combination that became known as multimedia.

While much less powerful than mainframes or mini-
computers, the hobbyist and early commercial PCs (see
graphics card) of the late 1970s generally did have the
capability of producing simple monochrome or color graph-
ics on a monitor or TV screen. The Apple Macintosh, first
released in 1984, was a considerable leap forward: Its user
interface was inherently graphical, with even text being
rendered as graphic bitmaps (see Macintosh).

The arrival of the PC greatly encouraged the develop-
ment of entertainment software (see computer games) as
well as educational programs. As PCs became more power-
ful and gained hard drives and, by the late 1980s, CD-ROM
drives (see CD-ROM), it became practical to put extensive
multimedia content on systems in the home and school.
One popular application has been encyclopedias, where the
text from the printed version can be enhanced with graph-
ics such as photographs, maps, and charts. Besides being
more compelling and easier to use than the printed version,
multimedia encyclopedias can be updated easily through
annual upgrades, as well as allowing for linking to Web
sites that can further amplify or update the content.

Encyclopedias and other educational programs also
benefited from the use of links that the user can click with
the mouse, bringing up additional or related information or
illustrations (see hypertext and hypermedia). Bill Atkin-
son’s Hypercard, released for the Macintosh in 1987, pro-
vided a multimedia “construction set” that could be used
by nonprogrammers to create simple hyperlinked presenta-
tions, educational programs, and even games. Hypertext
and linking are the “glue” that binds multimedia into an
integrated experience.

Multimedia business presentations are now routinely
created using software such as Microsoft PowerPoint, then
projected at meetings. While simple presentations can emu-
late the traditional “slide show,” one-upmanship inevitably
leads to more elaborate animations.

Multimedia and Daily Life
DVD-ROM drives, with about six times the storage capac-
ity of CDs, now make it practical to include video or even
feature-length movies as part of a PC multimedia package.
Meanwhile, the video capabilities of PCs continue to grow,
with many PCs as of 2008 having 256 MB or more of video
memory. Combined with processors running at up to 2.5
GHz, this allows computer-generated graphics to rival the
quality of live video.

However, the most important trend is probably the
delivery of online multimedia content (see Internet,
online services, and World Wide Web). The widespread
marketing of the Mosaic and Netscape browsers (see Web
browser) in the mid-1990s changed the Internet from an
arcane, text-driven experience to a multimedia platform.
The ability to deliver a continuous “feed” of video and audio
(see music and video distribution, online and stream-
ing) allows content such as TV news reports to be carried
with full video and radio broadcasts carried “live” with
good fidelity. Newspapers and broadcast outlets are increas-
ingly investing in online versions of their content, viewing
a Web presence as a business necessity. As more Internet
users gain access to high-speed cable and DSL services (see
broadband), multimedia is becoming as pervasive a part of
the computing experience as television is in daily life.

Many facets of that daily life are likely to be affected
by multimedia technology in coming years. The ability to
deliver real-time, high-quality multimedia content, as well
as the use of cameras (see videoconferencing and Web
cam) has made “virtual” meetings not only possible but
also routine in some corporate settings. When applied to
lectures, this technology can facilitate “distance learning”
where teachers work with students without them occupying
the same room (see distance education and education
and computers). Video “chat” services and immersive,
pervasive online games have become important social out-
lets for many people, with the experience becoming ever
more realistic (see online games and virtual reality).

Already, the concept of multimedia is becoming less
distinctive precisely because it is so pervasive. Today’s Web
users expect to see images, video, and sound, whether as
part of a news story or an educational presentation, and
multimedia is appearing on all sorts of new platforms (see

322        multimedia

music and video players, digital; smartphones; and dig-
ital convergence). Further, equipped with digital cam-
eras and camcorders (even cell-phone cameras), together
with easy-to-use editing software, more and more people
are becoming not just consumers of multimedia, but cre-
ators as well (see user-created content and YouTube).

Further Reading
Coorough, Calleen, and James E. Shuman. Multimedia for the Web:

Creating Digital Excitement. Boston: Thomson Course Tech-
nology, 2005.

Lauer, David, and Stephen Pentak. Design Basics: Multimedia Edi-
tion. 6th ed. Belmont, Calif.: Wadsworth Publishing, 2006.

MIT Media Lab. Available online. URL: http://www.media.mit.edu.
Accessed August 15, 2007.

“Multimedia and Authoring Resources on the Internet.” North-
western University Library. Available online. URL: http://
www.library.northwestern.edu/dms/mult imedia.html.
Accessed August 15, 2007.

Packer, Randall, and Ken Jordan. Multimedia: From Wagner to Vir-
tual Reality. Expanded ed. New York: Norton, 2002.

Vaughan, Tay. Multimedia: Making It Work. 7th ed. New York:
McGraw-Hill/Osborne Media, 2006.

multiprocessing
One way to increase the power of a computer is to use more
than one processing unit. In early computers (see main-
frame) a single processor handled both program execu-
tion and input/output (I/O) operations. In the late 1950s,
however, machines such as the IBM 709 introduced the
concept of channels, or separate processing units for I/O
operations. In such systems the central processor sends a
set of I/O commands (such as to read a file into memory) to
the channel, which has its own processor for carrying out
the operation.

True multiprocessing, however, involves the use of more
than one central processing unit (CPU). One successful
design, Control Data Corporation’s CDC 6600 (1964), con-
tained both multiple arithmetic/logic units (the part of the
CPU that does calculations) and multiple controllers for I/O
and memory access control. IBM soon added multiprocess-
ing capability to its 360 line of mainframes.

Multiprocessing can be either asymmetric or symmetric.
Asymmetric multiprocessing essentially maintains a single
main flow of execution with certain tasks being “handed
over” by the CPU to auxiliary processors. (For example,
the Intel 80386 processor could be purchased with an addi-
tional floating-point processor, allowing such calculations
to be performed using more efficient hardware. When the
Pentium line was developed, floating-point was integrated
into the main CPU).

Symmetric multiprocessing (SMP) has multiple, full-
fledged CPUs, each capable of the full range of opera-
tions. The processors share the same memory space, which
requires that each processor that accesses a given memory
location be able to retrieve the same value. This coherence
of memory is threatened if one processor is in the midst
of a memory access while another is trying to write data
to that same memory location. This is usually handled by
a “locking” mechanism (see concurrent programming)

that prevents two processors from simultaneously accessing
the same location.

A subtler problem occurs with the use by processors of
separate internal memory for storing data that is likely to
be needed (see cache). Suppose CPU “A” reads some data
from memory and stores it in its cache. A moment later,
CPU “B” writes to that memory location, changing the data.
At this point the data in “A’s” cache no longer matches that
in the actual memory. One way to deal with this problem
is called bus snooping. Each CPU includes a controller that
monitors the data line (see bus) for memory locations being
used by other CPUs. When it sees an address that refers to
an area of memory currently being stored in the cache, the
controller updates the memory from the cache. This write
operation sends a signal that lets other CPUs know that any
cached data they have for that location is no longer valid.
This means the other CPUs will go back to memory and
reread the current data.

Alternatively, all CPUs can be given a single shared
cache. While less complicated, this approach limits the
number of CPUs to the maximum data-handling capacity
of the bus.

Larger-scale multiprocessing systems consist of lat-
ticelike arrays of hundreds or even thousands of CPUs,
which are referred to as nodes. Indeed, small clusters of
CPUs using the architecture given above can be connected
together to form larger arrays. Each cluster can have its
own shared memory cache. Because accessing memory at
a remote node takes considerably longer than accessing

This example shows what can happen if processes do not properly
manage a shared memory resource. At (1) processor A retrieves
3 from the memory location. At (2) processor B copies 7 from its
cache to that same memory location. Finally, at (3) processor A
adds the 3 it had retrieved to a 2 in its register, storing 5 back in a
location where processor B probably expects there to still be a 7.

multiprocessing        323

“local” memory within the cluster, maintaining coherence
through bus monitoring is impracticable. Instead, memory
is usually organized into data objects that are distributed
optimally to reduce the necessity for remote access, and
the objects are shared by CPUs requesting them through a
directory system.

Multiprogramming
In order for a program to take advantage of the ability to run
on multiple CPUs, the operating system must have facilities
to support multiprocessing, and the program must be struc-
tured so its various tasks are most efficiently distributed
among the CPUs. These separate tasks are generally called
threads. A single program can have many threads, each
executing separately, perhaps on a different CPU, although
that is not required.

The operating system can use a number of approaches
to scheduling the execution of processes or threads. It can
simply assign the next idle (available) CPU to the thread.
It can also give some threads higher priority for access to
CPUs, or let a thread continue to “own” its CPU until it has
been idle for some specified time.

The use of threads is particularly natural for appli-
cations where a number of activities must be carried on
simultaneously. For example, a scientific or process control
application may have a separate thread reading the data
being returned from each instrument, another thread moni-
toring for alarm conditions, and other threads generating
graphical output.

Threads also allow the user to continue interacting with
a program while the program is busy carrying out earlier
requests. For example, the user of a Web browser can con-
tinue to use menus or navigation buttons while the browser
is still loading graphics needed for the currently displayed
Web page. A search program can also launch separate
threads to send requests to multiple search engines or to
load multiple pages.

Support for multiprogramming and threads can now be
found in versions of most popular programming languages,
and some languages such as Java are explicitly designed to
accommodate it.

Multiprogramming often uses groups or clusters of sep-
arate machines linked by a network. Running software on
such systems involves the use of communications protocols
such as the MPI (message-passing interface). This program-
ming interface has been widely deployed on many plat-
forms for use with languages such as C/C++ and Fortran.
Another popular programming interface is OpenMP, which
features the allocation of execution threads and the distri-
bution of work among them.	

A Multiprocessed World
The demand for software that can efficiently use multiple
processors is likely for some time to outstrip the supply of
programmers who can “think in parallel.” One reason is
that today most new PCs have two processing “cores,” with
four-core systems available and more to come (see micro-
processor). This means that many mainstream appli-
cations will eventually need to be rewritten for the new

hardware environment. Another factor is that as the price
per processor continues to decline and high-end multipro-
cessing machines are reaching 1 “petaflop” (1 quadrillion
operations per second), many supercomputer applications
will also need to be rewritten.

Meeting this demand not only takes training, it also
takes appropriate languages and other tools. In recent
years, therefore, the Defense Advanced Research Projects
Agency (DARPA) has funded research in “High Productiv-
ity Computer Systems” by such companies as Cray, Sun,
and IBM. New languages built “from the ground up” for
multiprocessing include Sun’s Fortress, Cray’s Chapel, and
IBM’s new project, code-named X10. Ultimately, systems
for developing multiprocessing software should take most
of the architectural details off the hands of the program-
mer, allowing performance to smoothly “scale up” with the
increasing number of processors.

Further Reading
Anthes, Gary. “Languages for Supercomputing Get ‘Suped’ Up.”

Computerworld, March 12, 2007. Available online. URL:
http://www.computerworld.com/action/article.do?command=
viewArticleBasic&articleId=283477. Accessed April 5, 2007.

Culler, David E., and Jaswinder Pal Singh. Parallel Computer Archi-
tecture: A Hardware/Software Approach. San Francisco: Mor-
gan Kaufmann, 1999.

Dongara, Jack, et al., eds. Sourcebook of Parallel Computing. San
Francisco: Morgan Kaufmann, 2003.

Feldman, Michael. “Our Manycore Future.” HPC Wire. Available
online. URL: http://www.hpcwire.com/hpc/1295541.html.
Accessed April 5, 2007.

Merritt, Rick. “Where Are the Programmers? Enrollment Wanes
Just as Computer Scientists Grapple with Problem of Paral-
lelism.” EE Times, March 12, 2007. Available online. URL:
http://www.eetimes.com/showArticle.jhtml?articleID=197801
653. Accessed April 5, 2007.

Quinn, Michael J. Parallel Programming in C with MPI and OpenMP.
New York: McGraw-Hill, 2003.

multitasking
Users of modern operating systems such as Microsoft Win-
dows are familiar with multitasking, or running several
programs at the same time. For example, a user might be
writing a document in a word processor, pause to check the
e-mail program for incoming messages, type a page address
into a Web browser, then return to writing. Meanwhile, the
operating system may be running a number of other pro-
grams tucked unobtrusively into the background, such as a
virus checker, task scheduler, or system resource monitor.

Each running program “takes turns” using the PC’s cen-
tral processor. In early versions of Windows, multitasking
was cooperative, with each program expected to periodically
yield the processor to Windows so it could be assigned to the
next program in the queue. One weakness of this approach
is that if a program crashes, the CPU might be “locked up”
and the system would have to be rebooted. However, Win-
dows NT, 2000, and XP (as well as operating systems such
as UNIX) use preemptive multitasking. The operating sys-
tem assigns a “slice” of processing (CPU) time to a program
and then switches it to the next program regardless of what

324        multitasking

might be happening to the previous program. Thus, if a pro-
gram “crashes,” the CPU will still be switched to the next
program, and the user can maintain control of the system
and shut down the offending program.

Systems with preemptive multitasking often give pro-
grams or tasks different levels of priority that determine
how big a slice of CPU time they will get. For example, the
“active” program (in Windows, the one whose window has
been selected for interaction by the user) will be given pref-
erence over a background program such as a print spooler.
Also, the operating system can more intelligently assign
CPU time according to what a given program is doing.
Thus, if a program is waiting for user input, it may be given
only an occasional slice of CPU time so it can check to see
whether input has been received. (The user, after all, is
millions of times slower than the CPU.) When some input
(such as a menu selection) is ready for processing, the pro-
gram can be given higher priority.

Priority can be expressed in two different ways. One
way is to move a program up in the list of running tasks (see
queue). This ensures it gets a turn before any lower-priority
task. The other way is to have turns of varying length, with
the higher-priority program getting a longer turn.

Even operating systems with preemptive multitasking
can provide facilities that programs can use to communi-
cate their own sense of their priority. In UNIX systems,
this is referred to as “niceness.” A “nice” program gives
the operating system permission to interrupt lengthy cal-
culations so other programs can have a turn, even if the

program’s priority would ordinarily entitle it to a greater
share of the CPU.

Multitasking should be distinguished from two several
similar-sounding terms. Multitasking refers to entirely sep-
arate programs taking turns executing on a single CPU.
Multithreading, on the other hand, refers to separate pieces
of code within a program executing simultaneously but
sharing the program’s common memory space. Finally, mul-
tiprocessing or parallel processing refers to the use of more
than one CPU in a system, with each program or thread
having its own CPU (see multiprocessing).

Further Reading
Silberschatz, Abraham, Peter Baer Galvin, and Greg Gagne. Oper-

ating System Concepts. 7th ed. New York: Wiley, 2004.
Tanenbaum, Andrew S., and Albert S. Woodhull. Operating Sys-

tems Design and Implementation. 3rd ed. Upper Saddle River,
N.J.: Prentice Hall, 2006.

music, computer
Computers have had a variety of effects on the performance,
rendering, and composition of music. At the same time,
the sound capabilities of standard personal computers have
improved greatly, and music and other sounds have become
an integral part of games and educational software (see
multimedia).

After the invention of the vacuum tube, a number of elec-
tronic instruments were devised. The best known is the ther-
emin, invented by Lev Termin, a Russian physicist, in 1919.
The instrument consists of a vacuum tube connected to two
antennas. The player varies the pitch and volume of its eerie
sound by moving his or her hands near the antennas.

Some composers became fascinated by electronic music,
both for its sense of modernity and its promise of breaking
the bonds of traditional form and instrumentation. In 1953,
German composer Karlheinz Stockhausen (1928–2007)
founded an Electronic Music Studio in Cologne and created
electronic works.

Meanwhile, inventors experimented with electronic syn-
thesizers such as the RCA MKI and MKII, which used vac-
uum tubes and could be programmed with punched paper
tape. The advent of solid-state circuitry in the 1960s made
synthesizers far more reliable and compact. The Moog syn-
thesizer in particular became a staple of leading-edge rock
and avant-garde music. It was now time for the computer to
catch up to the potential of electronic sound.

In the 1970s, digital music synthesizers with keyboards
and microprocessor-controlled sound generation became
available to adventurous (and fairly well-to-do) musicians.
Ray Kurzweil’s digital music synthesis system, introduced
in 1984, achieved a new level of sonic realism by using
programming stored in read-only memory (ROM) to emu-
late subtle characteristics such as attack and timbre, real-
istically re-creating the sounds of many types of orchestral
instruments.

Computer music synthesis enabled composers to exper-
iment with algorithmic composition. That is, they could use
programs to create new works by combining randomization
with the permutation of patterns (serialism). Compositions

Windows users can bring up a window listing all processes or tasks
running on the system, and shut down any task that has stopped
responding to input.

music, computer        325

have also been based on applying mathematical structures
(such as fractals) and the concepts being discovered by
computer scientists, including adaptive structures such as
neural nets and genetic algorithms.

Like most avant-garde music, computer music composi-
tion remained largely unknown to most people. However,
the technology of music synthesis was to become demo-
cratically available to everyday musicians as well. As the
personal computer began to bring increasingly powerful
microprocessors to consumers, it became practicable to
in effect add a music synthesizer to the PC. The musical
instrument digital interface, MIDI, provides a protocol for
connecting traditional musical instruments such as pianos
and guitars to a personal computer. MIDI specifies the pitch,
volume, attack (how a note increases to maximum volume),
and decay (how it dies away). The musician then uses the
instrument as an input device, with the notes played being
recorded as MIDI data. Different tracks can then be edited
(such as to transpose to a different key), and combined
in various ways to create complete compositions. Because
MIDI stores instructions, not actual digitized sound, it is a
quite compact way to store music. MIDI brought the synthe-
sizer within reach of just about any serious musician—and
many amateurs.

PC sound cards can play sound in two ways. Wave Table
Synthesis uses a table of stored digital samples of notes
played by various instruments, and algorithmically manip-
ulates them to reproduce the MIDI-encoded music. FM Syn-
thesis attempts to create waves that replicate the intended
sounds, based on a model of what happens in a given instru-
ment. It is less faithful to the original sound, since it does
not capture the detailed “texture” of a digital sample.

Today’s PCs have sound cards that can handle both
playback of audio CDs and rendering of digitized and syn-
thesized sounds. The cards have the capacity to support
many simultaneous voices (polyphony) as well as render-
ing speech faithfully. While early PCs tended to have only
tiny internal speakers, most PCs today come with speakers
(often including subwoofers and even multiple speakers for
“surround sound”) comparable to midrange home stereo
systems.

Of course great hardware would not be very useful with-
out software that can help even beginning composers turn
their ideas into sound. One example is GarageBand for the
Macintosh, which makes it easy to make compositions from
sampled and sequenced loops together with music played
using sampled and synthesized instrument sounds and a
MIDI keyboard. (Sony ACID Pro offers similar features for
Microsoft Windows users.)

Further Reading
Burns, Kristine H. “History of Electronic and Computer Music

Including Automatic Instruments and Composition Machines.”
Available online. URL: http://eamusic.dartmouth.edu/~wowem/
electronmedia/music/eamhistory.html. Accessed August 15,
2007.

Freebyte Music Zone. Available online. URL: http://www.freebyte.
com/music/. Accessed August 15, 2007.

Manning, Peter. Electronic and Computer Music. New York: Oxford
University Press, 2004.

Nelson, Mark. Getting Started in Computer Music. Boston: Thom-
son Course Technology, 2005.

White, Paul. Basic MIDI. London: Sanctuary, 2004.
Williams, Ryan. Windows XP Digital Music for Dummies. Hoboken,

N.J.: Wiley, 2004.

music and video distribution, online
Since most audio and much video is now recorded in digital
format, the Internet and media-player software for a variety
of platforms are an attractive way to sell or otherwise dis-
tribute the products of musicians and moviemakers.

For a time, online file swapping (see file-sharing and
p2p networks), particularly Napster, seemed to be mas-
sively eroding the market for online commercial music
sales. Legal action against file-sharing services and (starting
in 2003) their users has curtailed this erosion somewhat,
with a considerable number of former file-sharers switching
to buying paid downloads. As a result, several major online
music stores have become successful. The most common
model sells songs for about a dollar each—sometimes more
for higher quality audio or files that do not have copy pro-
tection (see digital rights management).

Apple’s iTunes Music store debuted in 2003 and soon
became the market leader. The combination of the iTunes
store, the iTunes media player software (available for both
Macintosh and PC), and the very popular iPod (see music
and video players, digital) has been very successful. As
of 2007 iTunes still had the largest selection of music avail-
able (about 6 million songs), and had sold more than 3
billion songs. The service also sells videos (television epi-
sodes, music videos, short films, and feature-length movies)
at varying prices.

Rhapsody, a service that predates iTunes, offers a sub-
scription model: The user has unlimited streaming access
to the music as long as the monthly fee is paid as well as the
pay-per-track option.

Alternative Models
There are also alternatives to the big, label-controlled
music services. A number of services now bring together
independent musicians and their audience. There are also
some innovative pricing models. Arnie Street, for example,
starts out with uploaded music being available free, but
then gradually raises the price (up to 98 cents) as more
people download it. The service also offers user participa-
tion (keyword tagging by users) and social-networking fea-
tures. Another service, eListeningPost, lets musicians post
music that people can download as a preview (playable a
limited number of times) or buy using PayPal. The service
also helps musicians build their fan base by collecting e-
mail addresses.

Video
Video-sharing sites are very popular (see YouTube). TV
networks are now providing selected episodes of popu-
lar shows online for free, hoping to entice more regular
viewers. However, only 7 percent of users surveyed by the
Pew Internet & American Life Project in 2007 said they

326        music and video distribution, online

had paid for any online video content. This may gradu-
ally change, particularly as more users move from basic
broadband connections to enhanced, higher-speed ones
(see broadband). Already video sales through iTunes and
Amazon’s new Unbox (and smaller services) are expected
by Forrester Research to generate $279 million in revenue
for 2007. However, some analysts believe that the business
model for selling video will soon shift to something more
like that of premium cable channels, with streaming video
available by subscription.

Further Reading
Arnie Street. Available online. URL: http://amiestreet.com/.

Accessed October 3, 2007.
Bove, Tony, and Cheryl Rhodes. iPod & iTunes for Dummies. 5th

ed. Hoboken, N.J.: Wiley, 2007.
eListeningPost. Available online. URL: http://elisteningpost.com/.

Accessed October 3, 2007.
iTunes. Available online. URL: http://www.apple.com/itunes/store.

Accessed October 3, 2007.
Madden, Mary. “Artists, Musicians, and the Internet.” Pew Inter-

net & American Life Project, December 5, 2004. Available
online. URL: http://www.pewinternet.org/pdfs/PIP_Artists.
Musicians_Report.pdf. Accessed October 3, 2007.

———. “Online Video.” Pew Internet & American Life Project,
July 25, 2007. Available online. URL: http://www.pewinter-
net.org/pdfs/PIP_Online_Video_2007.pdf. Accessed October
3, 2007

 Madden, Mary, and Lee Rainie. “Music and Video Downloading
Moves beyond P2P.” Pew Internet & American Life Project,
March 2005. Available online. URL: http://www.pewinternet.
org/pdfs/PIP_Filesharing_March05.pdf. Accessed October 3,
2007.

Muchmore, Michael. “New Ways to Get Music.” ExtremeTech.,
December 10, 2006. Available online. URL: http://www.
extremetech.com/article2/0,1697,2070636,00.asp. Accessed
October 3, 2007.

Rhapsody. Available online. URL: http://www.rhapsody.com/
home.html. Accessed October 3, 2007.

music and video players, digital
One characteristic of the rapidly evolving digital world
is the ability to play a variety of media (music, photos,
video) on many devices, ranging from desktop PCs to smart
phones and, of course, iPods and MP3 players (see digi-
tal convergence). The ability to organize and play media
requires suitable software and hardware.

On desktop and laptop PCs, media-playing software is
available for all operating systems. Examples include Win-
dows Media Player, Apple iTunes, and RealPlayer (which
also has a Linux version). This software typically includes
these features:

• � plays most types of media files (see graphics formats
and sound file formats)

• � plays content on CD/DVD, files on the hard drive, or
content being received directly from the Internet (see
CD-ROM and DVD-ROM; music and video distri-
bution, online; and streaming)

• � controls are modeled on those found on DVD players,
with customizable appearance

• � creates a music library that can be searched or reor-
ganized

• � can create playlists and queues and can play back
songs in order, shuffled (randomized), or according to
other preferences

• � can obtain additional information about media
(tracks, albums, and so on) online

Portable Players
First unveiled in 2001, the Apple iPod is the best-selling
example of a portable media player (often called a “digital
audio player”). Its compact, stylish design and simple user
interface quickly caught on, even though the first model was
only compatible with the Macintosh and it used Apple’s AAC
format rather than MP3. Later iPods added capacity, larger
screens, and features (such as being able to play video), while
Apple also offered the inexpensive iPod Shuffle. A competitor
is the Microsoft Zune player and music store, which, how-
ever, as of mid-2007 had made little headway against market
leader Apple. A third well-reviewed choice is the Creative
Labs Zen series. A variety of other portable players are avail-
able. Higher capacity units use tiny hard drives (up to 160 GB
capacity or so), while smaller capacity models use flash mem-
ory (2–32 GB) instead. A variety of other handheld devices
can play music and video (see PDA and smartphone).

With the ubiquitous use of iPods and other players,
particularly by young people, some health and safety con-
cerns have been raised. If played too loudly for long periods
of time through headphones or earbuds, the devices may
cause hearing damage. Drivers and pedestrians may also be

The Apple iPod is the most popular portable digital media player,
featuring a simple, effective interface and the ability to play music
and show video.  (Apple Corporation)

music and video players, digital        327

at greater risk if the music they are listening to cuts off the
sound of approaching vehicles.

Further Reading
Johnson, Brian. Zune for Dummies. Hoboken, N.J.: Wiley, 2007.
Kelby, Scott. The iPod Book: Doing Cool Stuff with the iPod and the

iTunes Store. 3rd. ed. Berkeley, Calif.: Peachpit Press, 2006.

MP3 Players (CNet Reviews). Available online. URL: http://reviews.
cnet.com/Music/2001-6450_7-0.html. Accessed October 3,
2007.

“MP3 Players: The Basics and History.” Available online. URL:
http://www.mp3playerlimelight.com/. Accessed October 3,
2007.

Rathbone, Andy. MP3 for Dummies. New York: Hungry Minds,
2001.

328        music and video players, digital

329

nanotechnology
Ordinary refining and manufacturing involve the use of
grinding, cutting, heating, application of chemicals, and other
processes that affect large numbers of atoms or molecules at
once. These processes are necessarily imprecise: Some atoms
or molecules will end up unprocessed or somehow out of
alignment. The resulting material will thus fall short of its
maximum theoretical strength or other characteristics.

In a talk given in 1959, physicist Richard Feynman sug-
gested that it might be possible to manipulate atoms indi-
vidually, spacing them precisely. As Feynman also pointed
out, the implications for computer technology are poten-
tially very impressive. A current commercial DIMM mem-
ory module about the size of a person’s little finger holds
about 250 megabytes (MB) worth of data. Feynman cal-
culated that if 100 precisely arranged atoms were used for
each bit of information, the contents of all the books that
have ever been written (about 1015 bits) could be stored in
a cube about 1/200 of an inch wide, just about the smallest
object the unaided human eye can see. Further, although
the density of computer logic circuits in microprocessors is
millions of times greater than it was with the computers of
1959, computers built at the atomic scale would be billions
of times smaller still. Indeed, they would be the smallest (or
densest) computers possible short of one that used quantum
states within the atoms themselves to store information
(see quantum computing). “Nanocomputers” could also
efficiently dissipate heat energy, overcoming a key problem
with today’s increasingly dense microprocessors.

Feynman offered some possible methods of manufacture,
and discussed some of the obstacles that would have to be

overcome to do engineering at a molecular or atomic scale.
These include lubrication, the effects of heat, and electrical
resistance. He invited adventurous high school students to
develop science projects to explore this new technology.

The idea of atomic-level engineering lay largely dormant
for about two decades. Starting with a 1981 paper, however,
K. Eric Drexler began to flesh out proposed structures and
methods for a branch of engineering he termed nanotech-
nology. (The “nano” refers to a nanometer, or one billionth
of a meter.) Research in nanotechnology today focuses
on two broad areas: assembly and replication. Assembly
is the problem of building tools (called assemblers) that
can deposit and position individual atoms. Since such tools
would almost certainly be prohibitively expensive to manu-
facture individually, research has focused on the idea of
making tools that can reproduce themselves. This area of
research began with John von Neumann’s 1940s concept of
self-replicating computers (see von Neumann, John). If an
assembler can assemble other assemblers from the available
“feedstock” of atoms, then obtaining the number of assem-
blers necessary to manufacture the intended product would
be no problem. (As science fiction writers have pointed out,
the ultimate problem would be making sure the self-repro-
ducing assemblers do not get out of control and start turn-
ing everything around them, potentially the whole Earth,
into more of themselves.)

Computing Applications
Science fiction aside, there are several potential applica-
tions of nanotechnology in the manufacture of computer
components. One is the possible use of carbon nanotubes in

N

place of copper wires as conductors in computer chips. As
chips continue to shrink, the connectors have also had to
get smaller, but this in turn increases electrical resistance
and reduces efficiency. Nanotubes, however, are not only
superb electrical conductors, they are also far thinner than
their copper counterparts. Intel Corporation has conducted
promising tests of nanotube conductors, but it will likely be
a number of years before they can be manufactured on an
industrial scale.

An obstacle to manufacturing carbon nanotubes is that
each newly made batch is a mixture of “metallic” (con-
ducting) and semiconducting tubes of different diameters.
Manufacturing, however, requires tubes that meet strict
requirements. Fortunately researchers at Northwestern
University in 2006 developed a way to sort the tubes by
adding substances that changed their density according to
both their diameter and their electrical conductivity.

Another alternative is “nanowires.” One design consists
of a germanium core surrounded by a thin layer of crys-
talline silicon. Nanowires are easier to manufacture than
nanotubes, but their performance and other characteristics
may make them less useful for general-purpose computing
devices.

The ultimate goal is to make the actual transistors in
computer chips out of nanotubes instead of silicon. An
important step in this direction was achieved in 2006 by
IBM researchers who created a complete electronic circuit
using a single carbon nanotube molecule.

Further Reading
Booker, Richard D. and Earl Boysen. Nanotechnology for Dummies.

Hoboken, N.J.: Wiley, 2005.
Bullis, Kevin. “Nanotube Computing Breakthrough: A Method for

Sorting Nanotubes by Electronic Properties Could Help Make
Widespread Nanotube-Based Electronics a Reality.” Technology
Review, October 30, 2006. Available online. URL: http://www.
technologyreview.com/Nanotech/17672/. Accessed August 16,
2007.

———. “Nanowire Transistors Faster than Silicon.” Technology
Review, June 20, 2006. Available online. URL: http://www.
technologyreview.com/Nanotech/17008/. Accessed August
16, 2007.

Edwards, Steven A. The Nanotech Pioneers: Where Are They Taking
Us? New York: Wiley, 2006.

Kanellos, Michael. “Intel Eyes Nanotubes for Future Chip Designs.”
CNET News, November 10, 2006. Available online. URL: http://
news.com.com/2100-1008_3-6134437.html. Accessed August
16, 2007.

Korkin, Anatoli, et al., eds. Nanotechnology for Electronic Materials
and Devices. New York: Springer, 2007.

Nanotech Web. Available online. URL: http://nanotechweb.org/.
Accessed August 16, 2007.

natural language processing
Since at least the days of Hal 9000 and early Star Trek, the
computer of the future was supposed to be able to under-
stand what people wanted, when expressed in ordinary lan-
guage and not programming code. Computer scientists have
been working on this capability, called natural language
processing (NLP), for decades.

NLP is a multidisciplinary field that draws from linguis-
tics and computer science, particularly artificial intelligence
(see also linguistics and computing and speech recog-
nition and synthesis). In terms of linguistics, a program
must be able to deal with words that have multiple mean-
ings (“wind up the clock” and “the wind is cold today”) as
well as grammatical ambiguities (in the phrase “little girl’s
school” is it the school that is little, the girls, or both?). Of
course each language has its own forms of ambiguity.

Programs can use several strategies for dealing with
these problems, including using statistical models to predict
the likely meaning of a given phrase based on a “corpus” of
existing text in that language (see language translation
software).

As formidable as the task of extracting the correct (lit-
eral) meaning from text can be, it is really only the first level
of natural language processing. If a program is to success-
fully summarize or draw conclusions about a news report
from North Korea, for example, it would also have to have
a knowledge base of facts about that country and/or a set of
“frames” (see Minsky, Marvin) about how to interpret vari-
ous situations such as threat, bluff, or compromise.)

Applications
There are a variety of emerging applications for NLP, includ-
ing the following:

• � voice-controlled computer interfaces (such as in air-
craft cockpits)

• � programs that can assist with planning or other tasks
(see software agents)

• � more-realistic interactions with computer-controlled
game characters

• � robots that interact with humans in various settings
such as hospitals

• � automatic analysis or summarization of news stories
and other text

• � intelligence and surveillance applications (analysis of
communication, etc.)

• � data mining, creating consumer profiles, and other e-
commerce applications

• � search-engine improvements, such as in determining
relevancy

Further Reading
Jackson, Peter, and Isabelle Moulinier. Natural Language Process-

ing for Online Applications: Text Retrieval, Extraction and Cat-
egorization. 2nd ed. Philadelphia: John Benjamins, 2007.

Kao, Anne, and Steve R. Poteet, eds. Natural Language Processing
and Text Mining. New York: Springer, 2007.

Manning, Christopher D., and Hinrich Schütze. Foundations of
Statistical Natural Language Processing. Cambridge, Mass.:
MIT Press, 1999. Available online. URL: http://www-nlp.
stanford.edu/fsnlp/. Accessed October 4, 2007.

Natural Language Toolkit. Available online. URL: http://nltk.
sourceforge.net/index.php/Main_Page. Accessed October 4,
2007.

330        natural language processing

Resources for Text, Speech and Language Processing. Available
online. URL: http://www.cs.technion.ac.il/~gabr/resources/
resources.html. Accessed October 4, 2007.

Negroponte, Nicholas
(1944– )
American
Computer Scientist

As founder and longtime director of the MIT Media Lab,
Nicholas Negroponte has overseen and contributed to some
of the most creative developments in human-computer
interaction and interface design.

Born in 1943, the son of a Greek shipping magnate,
Negroponte grew up in New York City. He attended the
Massachusetts Institute of Technology (MIT), earning his
master’s degree in architecture in 1966 and joining the
faculty. The following year Negroponte founded the MIT
Architecture Machine Group, which focused on developing
new ways for people to interact with computers. In 1985,
Negroponte and Jerome Wiesner founded the MIT Media
Lab, which has become world famous as a center of research
into new media and innovative computer interfaces (see
MIT Media Lab).

Negroponte made a different contribution to the new
computer culture in 1992 when he became a key investor in
Wired Magazine, where he also contributed a column until
1998. Many of the ideas in these columns were reworked
into Negroponte’s 1995 book Being Digital. This book was
widely influential in its predictions of a coming world where
information and entertainment would become a pervasive
web and people would interact actively with the new media
(see digital convergence and ubiquitous computing).
Negroponte’s slogan is “move bits, not atoms,” meaning that
the new economy will be focused more on information and
media than physical production. Some critics, however,
have argued that Negroponte’s work was filled with a naive
utopianism that did not consider the potential difficulties
and social consequences of the new technology.

As Negroponte observed how venture capitalists were
pursuing the digital revolution of the 1990s, he began to
seek similar funding for the Media Lab. This was contro-
versial, since the lab had a strong academic culture, with its
reluctance to become too involved with corporate agendas.
In 2000 Negroponte stepped down as director of the Media
Lab, gradually becoming less involved in the ongoing reor-
ganization of the institution. In 2006 he also relinquished
his post as chairman, though he has retained his post as
professor at MIT.

One Laptop per Child
In recent years Negroponte has focused his efforts on
designing and distributing low-cost laptop PCs to millions
of children in developing nations. (The project is called
“One Laptop per Child.”) In 2005 at the World Summit on
the Information Society held in Tunis, Negroponte unveiled
a $100 laptop called the Children’s Machine. However, in
the next few years commitments from participating nations

have been slower than anticipated. Undaunted, Negroponte
in 2007 announced a new way to distribute the machines—
make them such an attractive buy that consumers in devel-
oped countries would be willing to pay a few hundred
dollars for two of them—one for the consumer and one to
go to a student in a developing country.

Negroponte also continues to be active as an investor
or board member in technology startups as well as being a
board member of Motorola and a member of the editorial
board of the Wall Street Journal.

Further Reading
Hamm, Steve. “Give a Laptop and Get One.” BusinessWeek, Sep-

tember 24, 2007. Available online. URL: http://www.business-
week.com/technology/content/sep2007/tc20070923_960941.
htm. Accessed October 4, 2007.

Negroponte, Nicholas. Being Digital. New York: Vintage Books,
1996.

———. “Creating a Culture of Ideas.” Technology Review, February
2003. Available online. URL: http://www.technologyreview.
com/Biztech/13074/. Accessed October 4, 2007.

Nicholas Negroponte (home page). Available online. URL: http://
web.media.mit.edu/~nicholas/. Accessed October 4, 2007.

Pogue, David. “Laptop with a Mission Widens Its Audience.” New
York Times, October 4, 2007. Available online. URL: http://
www.nytimes.com/2007/10/04/technology/circuits/04pogue.
html. Accessed October 5, 2007.

netiquette
As each new means of communication and social interac-
tion is introduced, social customs and etiquette evolve in
response. For example, it took time before the practice of
saying “hello” and identifying oneself became the universal
way to initiate a phone conversation.

By the 1980s, a system of topical news postings (see
netnews and newsgroups) carried on the Internet was
becoming widely used in universities, the computer indus-
try, and scientific institutions. Many new users did not
understand the system, and posted messages that were
off topic. Others used their postings as to insult or attack
(“flame”) other users, particularly in newsgroups discuss-
ing perennially controversial topics such as abortion. When
a significant number of postings in a newsgroup are devoted
to flaming and counter-flaming, many users who had sought
civilized, intelligent discussion leave in protest.

In 1984, Chuq von Rospach wrote a document entitled
“A Primer on How to Work with the Usenet Community.” It
and later guides to net etiquette or “netiquette” offered use-
ful guidelines to new users and to more experienced users
who wanted to facilitate civil discourse. These suggestions
include:

• � Learn about the purpose of a newsgroup before you
post to it. If a group is moderated, understand the
moderator’s guidelines so your postings won’t be
rejected.

• � Before posting, follow some discussions to see what
sort of language, tone, and attitude seems to be appro-
priate for this group.

netiquette        331

• � Do not post bulky graphics or other attachments
unless the group is designed for them.

• � Avoid “ad hominem” (to the person) attacks when
discussing disagreements.

• � Do not post in ALL CAPS, which is interpreted as
“shouting.”

• � Check your postings for proper spelling and gram-
mar. On the other hand, avoid “flaming” other users
for their spelling or grammar errors.

• � When replying to an existing message, include
enough of the original message to provide context for
your reply, but no more.

• � If you know the answer to a question or problem
raised by another user, send it to that user by e-mail.
That way the newsgroup doesn’t get cluttered up with
dozens of versions of the same information.

In 1994, a firm of immigration attorneys enraged much
of the online community by posting messages offering their
services in each of the thousands of different newsgroups.
“Spam” was born. Technically savvy users responded by
creating “cancelbots” or programs that attempt to detect
and automatically delete postings containing spam. Today,
spam is mainly conveyed by e-mail, with mail servers and
client programs offering various options for blocking it
(see spam).

Netiquette in the 21st Century
In the new century, newsgroups and traditional conferenc-
ing systems have diminished in importance, but e-mail
is more pervasive than ever, and a variety of new online
media have emerged (see, for example, blogs and blog-
ging). Many of the tried-and-true rules for newsgroup post-
ings apply as well to other media, but there are also new
considerations.

As many politicians and business executives have
learned to their dismay, e-mail must be assumed to be
essentially as permanent as a handwritten letter. Similarly,
blogs, postings to sites such as MySpace (see social net-
working), and other online content can be copied, linked
to, archived, or otherwise persist for many years. Today’s
intemperate remarks may emerge years later when a pro-
spective employer “googles” a job candidate.

Blogs are meant to link and be linked to, so issues of
properly crediting material and respecting copyright can
be important. This can also apply to contributions to con-
tent-sharing sites and to articles for wikis (see wikis and
Wikipedia); Wikipedia has evolved a rather comprehensive
set of standards whereby readers can “flag” content that is
problematic.

Further Reading
Housley, Sharon. “Blog and RSS Feed Etiquette.” Available online.

URL: http://www.small-business-software.net/blog-etiquette.
htm. Accessed August 16, 2007.

Kallos, Judith. Because Netiquette Matters! Your Comprehensive
Guide to E-mail Etiquette and Proper Technology Use. Philadel-
phia: Xlibris 2004.

McKay, Dawn Rosenberg. “Email Etiquette.” Available online.
URL: http://careerplanning.about.com/od/communication/a/
email_etiquette.htm. Accessed August 16, 2007.

Netiquette Home Page. Available online. URL: http://www.albion.
com/netiquette/. Accessed August 16, 2007.

Strawbridge, Matthew. Netiquette: Internet Etiquette in the Age of
the Blog. Cambridge, U.K.: Software Reference Ltd., 2006.

Von Rospach, Chuq. “A Primer on How to Work with the Usenet
Community.” Available online. URL: http://faqs.cs.uu.nl/na-
dir/usenet/primer/part1.html. Accessed August 16, 2007.

Net Neutrality
In recent years there has been growing concern that Internet
users may eventually be treated differently by service pro-
viders depending on the kind of data they download or the
kind of application programs they use online. Advocates of
network (or net) neutrality (see for example Cerf, Vincent)
want legislation that would bar cable, DSL, or other provid-
ers (see broadband and Internet service provider) from
making such distinctions, such as by charging content pro-
viders higher fees for high volumes of data or even blocking
certain applications. Advocates of net neutrality believe that,
since there are rather limited choices for broadband Internet
service, discrimination on the basis of Web content could
lead to a loss of freedom for consumers and providers alike.

Critics of the net neutrality proposal tend to discount
such concerns. One analogy they use is traditional mail.
Users can choose different types of shipping service, but
having overnight service available does not mean that pack-
ages cannot be delivered using cheaper means. Likewise,
they believe that the market can provide “tiers” of Internet
service without disenfranchising any providers or users.

Increasing concern about the issue began in 2005 when
the Federal Communications Commission announced
that broadband (cable and DSL) Internet would be treated
under the less stringent Title I information service under
the Communications Act of 1934, rather than being treated
under Title II as a “common carrier” like traditional phone
service. At the same time, the agency issued policy guide-
lines that promoted free access, consumer choice, and com-
petition. However these guidelines have no legal force.

In June 2007 the Federal Trade Commission (FTC) more
or less sided with the critics of net neutrality by urging
regulators to be careful about imposing rules that would
prevent providers from innovating in offering premium ser-
vices. Meanwhile two proposed net neutrality bills failed to
pass Congress in 2006. However, in July 2008 the FCC in a
3-2 decision ordered Comcast, the largest U.S. cable service
provider, to stop degrading service to users who used file-
sharing protocols.

It should be noted that a number of rules restricting
certain kinds of Internet access already exist. Major service
providers have agreements called “peering arrangements”
that specify how certain kinds of transmissions will be
handled. Many service providers also block certain data
ports to reduce the spread of spam by insecure systems or
try to restrict the use of peer-to-peer (P2P) systems (see
file-sharing and p2p networks).

332        Net Neutrality

In the long run a balance will likely be struck between
providers’ need to control traffic to maintain efficiency and
quality of service (QoS) and the rights of users to exchange
information and resources freely.

Further Reading
“Crackdown: Comcast Blocks Peer-to-Peer Web Traffic.” Port-

folio.com, October 19, 2007. Available online. URL: http://
www.portfolio.com/views/blogs/daily-brief /2007/10/19/
crackdown-comcast-blocks-peer-to-peer-web-traf f ic.
Accessed October 21, 2007

Gilroy, Angela A. Net Neutrality: Background and Issues. Congres-
sional Research Service, May 16, 2006. Available online.
URL: http://fas.org/sgp/crs/misc/RS22444.pdf. Accessed
October 25, 2007.

Leonard, Thomas M., and Randolph J. May, eds. Net Neutrality or
Net Neutering: Should Broadband Internet Services Be Regu-
lated? New York: Springer, 2006.

“Network Neutrality in the United States.” Wikipedia. Available
online. URL: http://en.wikipedia.org/wiki/Network_neutrality_
in_the_US. Accessed October 21, 2007.

Nuechterlein, Jonathan E., and Philip J. Weiser. Digital Crossroads:
American Telecommunications Policy in the Internet Age. Cam-
bridge, Mass.: MIT Press, 2007.

netnews and newsgroups
Originally called Usenet and originating in the UNIX user
community in the late 1970s, netnews is distributed today
over the Internet in the form of thousands of newsgroups
devoted to just about every imaginable topic.

Development
By the late 1970s, researchers at many major universities
were using the UNIX operating system (see UNIX). In 1979,
a suite of utilities called UUCP was distributed with the
widely used UNIX Version 7. These utilities could be used
to transfer files between UNIX computers that were linked
by some form of telephone or network connection.

Two Duke University graduate students, Tom Truscott
and Jim Ellis, decided to set up a way in which users on dif-
ferent computers could share a collection of files containing
text messages on various topics. They wrote a simple set of
shell scripts that could be used for distributing and viewing
these message files. The first version of the news network
linked computers at Duke and at the University of North
Carolina. Soon these programs were revised and rewritten
in the C language and distributed to other UNIX users as
the “A” release of the News software.

During the 1980s, the news system was expanded and
features such as moderated newsgroups were added. As the
Internet and its TCP/IP protocol (see TCP/IP) became a
more widespread standard for connecting computers, a ver-
sion of News using the NNTP (Network News Transmission
Protocol) over the Internet was released in 1986. Netnews
is a mature system today, with news reading software avail-
able for virtually every type of computer.

Structure and Features
Netnews postings are simply text files that begin with a set
of standard headers, similar to those used in e-mail. (Like

e-mail, news postings can have binary graphics or program
files attached, using a standard called MIME, for Multipur-
pose Internet Mail Extensions.)

The files are stored on news servers—machines that
have the spare capacity to handle the hundreds of gigabytes
of messages now posted each week. The files are stored in
a typical hierarchical UNIX fashion, grouped into approxi-
mately 75,000 different newsgroups.

As shown in the following table, the newsgroups are bro-
ken down into 10 major categories. The names of individual
groups begin with the major category and then specify sub-
divisions. For example, the newsgroup comp.sys.ibm.pc
deals with IBM PC-compatible personal computers, while
comp.os.linux deals with the Linux operating system.

MAIN DIVISIONS OF  
NETNEWS NEWSGROUPS

Category	C overage

alt	� An alternative system with its own complete
selection of topics.

biz	 Business-related discussion, products, etc.
comp	� Computer hardware, software and operating

systems.
humanities	 Arts and literature, philosophy, etc.
misc.	� Various topics that don’t fit in another

category.
news	� Announcements and information relating to

the news system itself.
rec	 Sports, games, and hobbies.
sci	 The sciences.
soc	 Social and cultural issues.
talk	 Current controversies and debates.

Distribution and Reading
The servers are linked into a branching distribution system.
Messages being posted by users are forwarded to the near-
est major regional “node” site, which in turn distributes
them to other major nodes. In turn, when messages arrive
at a major node from another region, they are distributed
to all the smaller sites that share the newsfeed. Due to the
volume of groups and messages, many sites now choose to
receive only a subset of the total newsfeed. Sites also deter-
mine when messages will expire (and thus be removed from
the site).

There are dozens of different news reading programs
that can be used to view the available newsgroups and
postings. On UNIX systems, programs such as elm and tin
are popular, while other newsreaders cater to Windows,
Macintosh, and other systems. Major Web browsers such as
Netscape and Internet Explorer offer simplified news read-
ing features. To use these news readers, the user accesses
a newsfeed at an address provided by the Internet Service
Provider (ISP). There are also services that let users simply
navigate through the news system by following the links
on a Web page. The former service called DejaNews, now

netnews and newsgroups        333

Google Groups, is the best-known and most complete such
site.

Further Reading
Google Groups. Available online. URL: http://groups.google.com.

Accessed August 16, 2007.
Hauben, Michael, and Ronda Hauben. Netizens: On the History and

Impact of Usenet and the Internet. Los Alamitos, Calif.: IEEE
Computer Society Press, 1997.

Lueg, Christopher, and Danyel Fisher, eds. From Usenet to CoWebs:
Interacting with Social Information Spaces. London: Springer,
2003.

Pfaffenberger, Bryan. The USENET Book: Finding, Using, and Sur-
viving Newsgroups on the Internet. Reading, Mass.: Addison-
Wesley, 1995.

Spencer, Henry, and David Lawrence. Managing Usenet. Sebasto-
pol, Calif.: O’Reilly, 1998.

network
In the 1940s, the main objective in developing the first digi-
tal computers was to speed up the process of calculation. In
the 1950s, the machines began to be used for more general
data-processing tasks by governments and business. By the
1960s, computers were in use in most major academic, gov-
ernment, and business organizations. The desire for users
to share data and to communicate both within and outside
their organization led to efforts to link computers together
into networks.

Computer manufacturers began to develop proprietary
networking software to link their computers, but they were
limited to a particular kind of computer, such as a DEC PDP
minicomputer, or an IBM mainframe. However, the U.S.
Defense Department, seeing the need for a robust, decen-
tralized network that could maintain links between their
computers under wartime conditions, funded the devel-
opment of a protocol that, given appropriate hardware to
bridge the gap, could link these disparate networks (see
Internet, local area network).

Network Architecture
Today’s networks are usually defined by open (that is, non-
proprietary) specifications. According to the OSI (open sys-
tems interconnection) model, a network can be considered
to be a series of seven layers laid one atop another (see data
communication).

The physical layer is at the bottom. It specifies the phys-
ical connections between the computers, which can be any-
thing from ordinary phone lines to cable, fiber optic, or
wireless. This layer specifies the required electrical charac-
teristics (such as voltage changes and durations that consti-
tute the physical signal that is recognized as either a 1 or 0
in the “bit stream.”

The next layer, called the data link layer, specifies how
data will be grouped into chunks of bits (frames or packets)
and how transmission errors will be dealt with (see error
correction).

The network layer groups the data frames as parts of a
properly formed data packet and routes that packet from
the sending node to the specified destination node. A vari-

ety of routing algorithms can be used to determine the most
efficient route given current traffic or line conditions.

The transport layer views the packets as part of a com-
plete transmission of an object (such as a Web page) and
ensures that all the packets belonging to that object are
sorted into their original sequence at the destination. This
is necessary because packets belonging to the same mes-
sage may be sent via different routes in keeping with traffic
or line conditions.

The session layer provides application programs com-
municating over the network with the ability to initiate,
terminate, or restart an interrupted data transfer.

The presentation layer ensures that data formats are
consistent so that all applications know what to expect.
This layer can also provide special services (see encryp-
tion and data compression).

Finally, the application layer gives applications high-
level commands for performing tasks over the network,
such as file transfer protocol (ftp).

Most modern operating systems support this model.
The Internet protocol (see TCP/IP) has become the lingua
franca for most networking, so modern versions of Micro-
soft Windows and the Macintosh Operating System as well
as all versions of UNIX provide the services that applica-
tions need to make and manage TCP/IP connections.

Networks that link computers remotely (such as over
phone lines) are sometimes called wide area networks, or
WANs. Networks that link computers within an office,
home, or campus, usually using cables, are called local
area networks (LANs). See local area network for more
details about LAN architecture and software.

Trends
It has become the norm for desktop and portable comput-
ers to have access to the Internet. A computer from which
one cannot send or receive e-mail or view Web pages almost
gives the perception of being crippled, because so many
applications now assume that they can access the network.
For example, the latest antivirus programs regularly check
their manufacturer’s Web site and download the latest virus
definitions and software patches. Recent versions of Win-
dows, too, include a built-in update facility that can obtain
security patches and newer versions of device drivers.

The flip side of the power of networking to keep every
PC (and its user) up to date is the vulnerability to both
intrusion attempts and viruses (see computer crime and
security). Virtually all networks include a layer of software
whose job it is to attempt to block intrusions and protect
sensitive information (see firewall).

Besides attending to security, network administra-
tors and engineers must continually monitor the traffic
on the network, looking for bottlenecks, such as an often-
requested database being stored on a file server with a rela-
tively slow hard drive. Besides upgrading key hardware,
another approach to relieve congestion is to adopt a dis-
tributed database (see database management system)
that stores “data objects” throughout the network and can
dynamically relocate them to improve access.

334        network

The growing appetite for data-rich applications such as
high-fidelity audio and video (see streaming and multime-
dia) tends to put a strain on the capacity of most networks.
In response, institutional users look to optical fiber and
other high capacity connections (see bandwidth), while
home users are rapidly switch in from dial-up service on
regular phone lines (see modem) to DSL phone lines and
cable.

While existing network architectures have worked
remarkably well, they were designed for only a small frac-
tion of today’s traffic. There have been a number of ini-
tiatives and proposals for higher capacity networks and
for integrating new features (such as security and e-mail
sender verification). For a review of these developments, see
Internet architecture and governance.

Further Reading
Derfler, Frank J., Jr., and Les Freed. How Networks Work. 7th ed.

Indianapolis: Que, 2004.
Donahue, Gary. Network Warrior. Sebastapol, Calif.: O’Reilly

Media, 2007.
Komar, Brian. Sams Teach Yourself TCP/IP Networking in 21 Days.

2nd ed. Indianapolis: Sams, 2002.
Kozierok, Charles. “The TCP/IP Guide.” Available online. URL:

http://www.tcpipguide.com/free/index.htm. Accessed August
16, 2007.

Tanenbaum, Andrew S. Computer Networks. 4th ed. Upper Saddle
River, N.J.: Prentice Hall, 2002.

networked storage
With huge databases, e-commerce and other Web servers,
and even home media centers, more data needs to be served
over networks than ever before. There are two common
ways to provide storage for databases and other resources
on a network.

A network attached storage (NAS) unit can be thought of
as a dedicated data storage unit that is available to all users
of a network. Unlike a traditional dedicated file storage unit
(see file server), a NAS unit typically has an operating
system and software designed specifically (and only) for
providing data storage services. The actual storage is usu-
ally provided by an array of hard drives (see raid). Files
on the NAS are accessed through protocols such as SMB
(server message block), common on Windows networks,
and NFS (network file system), used on many UNIX and
some Linux networks. In recent years smaller, lower-cost
NAS devices have become available for smaller networks,
including home networks, where they can store music,
video, and other files (see also media center PC).

Storage Area Network (SAN)
Although it sounds similar, a storage area network (SAN)
does not function as its own file server. Rather, it attaches
storage modules such as hard drives or tape libraries to an
existing server so that it appears to the server’s operating
system as though it were locally attached. Typically the
protocol used to attach the storage is SCSI (see SCSI), but
the physical connection is fiber or high-speed Ethernet. The
emphasis for SAN applications is the need for fast access to

data, such as in large online databases, e-mail servers, and
high-volume file servers. SANs offer great flexibility, since
storage can be expanded without changing the network
structure, and a replacement server can quickly be attached
to the storage in case of hardware failure.

Further Reading
Bird, David. “Storage Basics: Storage Area Networks.” Available

online. URL: http://www.enterprisestorageforum.com/sans/
features/article.php/981191. Accessed October 5, 2007.

NAS. Network World. Available online. URL: http://www.
networkworld.com/topics/nas.html. Accessed October 5,
2007.

Network Attached Storage Reviews and Price Comparisons. PC
Magazine. Available online. URL: http://www.pcmag.com/
category2/0,1738,677853,00.asp. Accessed October 5, 2007.

Poelker, Christopher, and Alex Nikitin. Storage Area Networks for
Dummies. New York: Wiley, 2003.

Preston, W. Curtis. Using SANs and NAS. Sebastapol, Calif.:
O’Reilly, 2002.

Tate, Jon, Fabiano Lucchese, and Richard Moore. Introduction
to Storage Area Networks. 4th ed. IBM Redbooks. Available
online. URL: http://www.redbooks.ibm.com/redbooks/pdfs/
sg245470.pdf. Accessed October 5, 2007.

neural interfaces
In the kind of science fiction sometimes called “cyberpunk,”
people are able to “jack in” or connect their brains directly to
computer networks. Because of this direct input into the brain
(or perhaps the optic and other sensory nerves), a person
who is jacked in experiences the virtual world as fully real,
and can (depending on the world’s rules) manipulate it with
his or her mind. This kind of all-immersive virtual reality is
still science fiction, but today people are beginning to control
computers and artificial limbs directly with their minds.

Neuroprosthetics
Neuroprosthetics is the creation of artificial limbs or sensory
organs that are directly connected to the nervous system.
The first (and most widely used) example is the cochlear
implant, which can restore hearing by taking sound sig-
nals from a microphone and converting them to electrical
impulses that directly stimulate auditory nerves within the
cochlea, a part of the inner ear. Similarly, experimental reti-
nal implants that stimulate optic nerves are beginning to
offer crude but useful vision to certain blind patients.

Research in connecting the brain to artificial arms or
legs is still in its early stages, but scientists using micro-
electrode arrays have been able to record signals from the
brain’s neurons and correlate them to different types of
motor movements. In a series of experiments at Duke Uni-
versity, researchers first trained a monkey to operate a joy-
stick to move a shape in a video game. They then recorded
and analyzed the signals produced by the monkey’s brain
while playing the game, and correlated them with the
motor movements in the joystick. Next, they replicated
these movements with a robotic arm as the monkey moved
the joystick. Finally, they were able to train the monkey to
move the robotic arm without using the joystick at all, sim-
ply by “thinking” about the movements.

neural interfaces        335

Human subject are now performing similar feats. The
next step is to build robotic limbs that can be controlled
by the person thinking in a certain way. Ideally, a person
should be able to think about clenching a hand or tapping
an index finger and have the prosthetic hand replicate those
movements. One obvious application for this technology is
to enable quadriplegics who have little or no motion capa-
bility to control wheelchairs or other devices mentally.

Future Brain Implants
As more is learned about the detailed functioning of neuro-
nal networks inside the brain, “cognitive prosthetics” may
become feasible. One example might be computer mem-
ory modules that might act as a surrogate or extension of
human memory, perhaps helping compensate for loss of
memory due to age or disease. (Early experiments on inter-
facing to the hippocampus, a part of the brain important for
forming memories, have been underway since 2003.)

Other possibilities might include processors that could
give a person the ability to think about a mathematical
problem and “see” the answer, or to search databases or the
Web simply by visualizing or thinking about the informa-
tion desired.

Further Reading
“Brain Implants Move at the Speed of Thought.” WebMD Medi-

cal News, April 15, 2004. Available online. URL: http://www.

webmd.com/stroke/news/20040415/Brain-Implants. Accessed
October 5, 2007.

Cooper, Huw, and Louise Craddock, eds. Cochlear Implants: A
Practical Guide. 2nd ed. Hoboken, N.J.: Wiley, 2006.

Eisenberg, Anne. “What’s Next: Don’t Point, Just Think: The Brain
Wave as Joystick.” New York Times, March 28, 2002. Avail-
able online. URL: http://query.nytimes.com/gst/fullpage.htm
l?res=9C01E7D8103BF93BA15750C0A96 49C8B63. Accessed
October 5, 2007.

Graham-Rowe, Duncan. “World’s First Brain Prosthesis Revealed.”
New Scientist, March 12, 2003. Available online. URL: http://
www.newscientist.com/article/dn3488.html. Accessed Octo-
ber 5, 2007.

He, Bin, ed. Neural Engineering. New York: Kluwer Academic,
2005.

“New Prosthetic Devices Will Convert Brain Signals into Action.”
Science Daily, October 4, 2007. Available online. URL: http://
www.sciencedaily.com/releases/2007/10/071003130747.htm.
Accessed October 5, 2007.

neural network
When digital computers first appeared in the late 1940s, the
popular press often referred to them as “electronic brains.”
However, computers and living brains operate very differ-
ently. The human brain contains about 100 billion neu-
rons, and each neuron can form connections to as many
as a thousand neighboring ones. Neurons respond to elec-
tronic signals that jump across a gap (called a synapse)
and into electrodelike dendrons. The incoming signals form
combinations that in turn determine whether the neuron
becomes “excited” and in turn emits a signal through its
axon. Clumps of neurons, therefore, act as networks that in
effect sum up incoming signals and develop a response to
them. That is, they “learn.”

In a conventionally operated computer, the “neurons”
(memory locations) are not inherently connected, and the
central processing unit (CPU) uses arbitrary, interchange-
able memory locations for storing data. Algorithms written
by a programmer and implemented in instructions executed
by the CPU impose cognition, to the extent one can speak
of it in computers. In the brain, however, cognition seems
to be something that emerges from the cooperating activi-
ties and connections of the neurons in response to sense
stimuli, and possibly the creation of agentlike entities, as
described in Marvin Minsky’s book The Society of Mind.

Alan Turing and John von Neumann (see Turing, Alan
and von Neumann, John) had established the universality
of the computer. That is, any calculation or logical opera-
tion that can be performed at all can be performed by an
appropriate computer program. This means that the “brain”
model of a network of interconnected neurons can also be
implemented in a computer. During the 1940s, Warren S.
McCulloch and Walter Pitts developed an electronic “neu-
ron” in the form of a binary (on/off) switch that could be
linked into networks and used to perform logical functions.

During 1950s, Marvin Minsky, working at the MIT Arti-
ficial Intelligence Laboratory (see Minsky, Marvin) further
developed these concepts, and Frank Rosenblatt developed
a classic form of neural network called a Perceptron. This
consists of a network of processing elements (that is, func-

Experimental neural interfaces link nerve impulses to a computer,
allowing users to control computers (and even remote robots) liter-
ally by thinking.

336        neural network

tions), each of which are presented with weighted inputs
(called vectors) from which it calculates an output value
of either true (1) or false (0). The designer of the system
knows what the correct output should be. If a given ele-
ment (or node) produces the correct output, no changes are
made. If it produces the wrong output, however, the weights
given for each input are changed by some increment, plus
a further adjustment or “bias” factor. This adjustment is
repeated for all units as necessary until the output is cor-
rect. In other words, each neuron is constantly adapting
the way it evaluates its inputs and thus its output, and that
output is in turn being fed into the evaluation process of
the neighboring neurons. (In practice, a neural network can
have several layers of processing units, with one layer pro-
viding inputs to the next.)

For example, suppose a neural network is being trained
to recognize objects based on the light being received from
an array of sensors. The sensor readings are interpreted by
a number of “neurons,” which should output 1 if part of the
desired object exists at the location scanned by its sensor.
At first there will be many false readings—points at which
part of the object is not recognized, or is falsely recognized.
However, after many cycles of adjustment this “supervised
learning” process results in a neural network that has a
high probability of being able to identify all objects of a
given general form. What is significant here is that a gener-
alized ability has been achieved, and it has emerged without
any specific programming being required!

Neural networks have been making their way into com-
mercial applications. They can be used to help robots recog-
nize the key components of their environment (see robotics
and computer vision), for interpreting spoken language
(see speech recognition and synthesis), and for problems
in classification and statistical analysis (see data mining).
In general, the neural network approach is most useful for
applications where there is no clear algorithmic approach
possible—in other words, applications that deal with the
often “fuzzy” realities of daily life (see fuzzy logic).

Further Reading
Bishop, Christopher M. Neural Networks for Pattern Recognition.

New York: Oxford University Press, 1995.
Haykin, Simon. Neural Networks: A Comprehensive Foundation. 2nd

ed. Upper Saddle River, N.J.: Prentice Hall, 1998.
McNellis, Paul D. Neural Networks in Finance: Gaining Predictive

Edge in the Market. Burlington, Mass.: Elsevier Academic
Press, 2005.

“Neural Networks & Connectionist Systems.” Association for the
Advancement of Artificial Intelligence. Available online. URL:
http://www.aaai.org/AITopics/html/neural.html. Accessed
August 16, 2007.

nonprocedural languages
Most computer languages are designed to facilitate the
programmer declaring suitable variables and other data
structures, then encoding one or more procedures for
manipulating the data to achieve the desired result (see
data types and procedures and functions). A further
refinement is to join data and data manipulation procedures
into objects (see object-oriented programming).

However, since the earliest days of computing, program-
mers and language designers have tried to create higher-
level, more abstract ways to specify what a program should
do. Such higher-level specifications are, after all, easier for
people to understand. And if the computer can do the job
of translating a high-level specification such as “Find all
the customers who haven’t bought anything in 30 days and
send them this e-mail message” into the appropriate proce-
dural steps, people will be able to spend less time coding
and debugging the program.

It is actually best to think of a continuum that has at
one end highly detailed procedures (see assembler) and at
the other end an English-like syntax like that given above.
Already in an early language like FORTRAN the emphasis
is moving away from the details of how you multiply num-
bers and store the result to simply specifying the operation
much like the way a mathematician would write it on a
blackboard. such as T = I + M. COBOL can render such
specifications even more readable, albeit verbose: ADD I TO
M GIVING T, for example. However, these languages are
still essentially procedural.

Some languages are less procedural in that they hide
most of the details (or subprocedures) involved in carrying
out the desired operation. For example, in modern database
languages such as SQL what would be a procedure (or a set
of procedures) in some languages is treated as a query at a
high level (see SQL). For example:

In a computer neural network the “neurons” or nodes are “trained”
to detect a pattern by being reinforced when they successfully reg-
ister it.

nonprocedural languages        337

select customer where (today - customer.
lastpurchasedate) > 30

Programming packages such as Mathematica are also
nonprocedural in that they allow for problems to be stated
using the same symbolic notation that mathematicians
employ, and many standard procedures for solving or trans-
forming equations are then carried out automatically.

Other examples of relatively nonprocedural languages
include logic-programming languages (see Prolog and
expert systems) and languages where the desired results
are built up from defining functions rather than through a
series of procedural steps (see lisp and functional lan-
guages).

Further Reading
Abraham, Paul W., et al. Functional, Concurrent and Logic Pro-

gramming Languages. Vol. 4 of Handbook of Programming Lan-
guages, edited by Peter H. Salus. Indianapolis: Macmillan
Technical Publishing, 1998.

Gilmore, Stephen, ed. Trends in Functional Programming. Portland,
Ore.: Intellect, 2005.

Truitt, Thomas D., Stuart B. Mindlin, and Tarralyn A. Truitt. An
Introduction to Nonprocedural Languages: Using NPL. New
York: McGraw-Hill, 1983.

numeric data
Text characters and strings can be stored rather simply in
computer memory, such as by devoting 8 bits (one byte) or
16 bits to each character. The storage of numbers is more
complex because there are both different formats and dif-
ferent sizes of numbers recognized by most programming
languages.

Integers (whole numbers) have the simplest representa-
tion, but there are two important considerations: the total
number of bits available and whether one bit is used to hold
the sign.

Since all numbers are stored as binary digits, an unsigned
integer has a range from 0 to 2bits where “bits” is the total
number of bits available. Thus if there are 16 bits avail-
able, the maximum value for an integer is 65535. If negative
numbers are to be handled, a signed integer must be used
(in most languages such as C, C++, and Java, an integer is
signed unless unsigned is specified). Since one bit is used
to hold the sign and each bit doubles the maximum size, it
follows that a signed integer can have only half the range
above or below zero. Thus, a 16-bit signed integer can range
from -32,768 to 32,767.

One complication is that the available sizes of integers
depend on whether the computer system’s native data size
is 16, 32, or 64 bits. In most cases the native size is 32 bits,
so the declaration “int” in a C program on such a machine
implies a signed 32-bit integer that can range from - 231 or
-2,147,483,647 to 231-1, or 2,147,483,647. However, if one is
using large numbers in a program, it is important to check
that the chosen type is large enough. The long specifier is
often used to indicate an integer twice the normal size, or
64 bits in this case.

Floating Point Numbers
Numbers with a fractional (decimal) part are usually stored
in a format called floating point. The “floating” means that
the location of the decimal point can be moved as necessary
to fit the number within the specified digit range. A floating
point number is actually stored in four separate parts. First
comes the sign, indicating whether the number is negative
or positive. Next comes the mantissa, which contains the
actual digits of the number, both before and after the deci-
mal point. The radix is the “base” for the number system
used. Finally, the exponent determines where the decimal
point will be placed.

For example, the base 10 number 247.35 could be rep-
resented as 24735 × 10-2. The -2 moves the decimal point
at the end two places to the left. However, floating-point
numbers are normalized to a form in which there is just one
digit to the left of the decimal point. Thus, 247.35 would
actually be written 2.4735 × 102. This system is also known
as scientific notation.

As noted earlier, actual data storage in modern com-
puters is always in binary, but the same principle applies.
According to IEEE Standard 754, 32-bit floating-point num-
bers use 1 bit for the sign, 8 bits for the exponent, and 23
bits for the mantissa (also called the significand, since it
expressed the digits that are significant—that is, guaran-
teed not to be “lost” through overflow or underflow in pro-
cessing). The double precision float, declared as a “double”
in C programs, uses 1, 11, and 52 bits respectively.

Programmers who use relatively small numbers (such as
currency amounts) generally don’t need to worry about loss
of precision. However, if two numbers being multiplied are
large enough, even though both numbers fit within the 32-
bit size, their product may well generate more digits than
can be held within the 23 bits available for the mantissa.
This means that some precision will be lost. This can be
avoided to some extent by using the “double” size.

Since floating-point calculations use more proces-
sor cycles (see microprocessor) than integer calcula-
tions, processor designers have paid particular attention to
improving floating-point performance. Indeed, processors
are often rated in terms of “megaflops” (millions of floating-
point operations per second) or even “gigaflops” (billions of
flops).

Further Reading
“IEEE Standard for Floating Point Arithmetic.” Available online.

URL: http://www.psc.edu/general/software/packages/ieee/ieee.
html. Accessed August 16, 2007.

“Numeric Data Types and Expression Evaluation [in C].” Available
online. URL: http://www.psc.edu/general/software/packages/
ieee/ieee.html. Accessed August 16, 2007.

Sebesta, Robert W. Concepts of Programming Languages. 8th ed.
Boston: Addison-Wesley, 2007.

“Type Conversion and Conversion Operators in C#.” Available
online. URL: http://www.psc.edu/general/software/packages/
ieee/ieee.html. Accessed August 16, 2007.

“XML Schema Numeric Data Types.” Available online. URL: http://
www.psc.edu/general /software/packages/ieee/ieee.html.
Accessed August 16, 2007.

338        numeric data

339

object-oriented programming  (OOP)
During the last two decades the way in which programmers
view the data structures and functions that make up pro-
grams has significantly changed. In simplified form the ear-
liest approach to programming was roughly the following:

• � Determine what results (or output) the user needs.

• � Choose or devise an algorithm (procedure) for getting
that result.

• � Declare the variables needed to hold the input data.

• �G et the data from the file or user input.

• � Assign the data to the variables.

• � Execute the algorithm using those variables.

• � Output the result.

While this type of approach often works well for small
“quick and dirty” programs, it becomes problematic as the
complexity of the program increases. In real-world appli-
cations data structures (such as for a customer record or
inventory file) are accessed and updated by many differ-
ent routines, such as billing, inventory, auditing, summary
report generation, and so on. It is easy for a programmer
working on one part of the program to make a change in a
data field specification (such as changing its size or under-
lying data type) without other programmers finding out.
Suddenly, other parts of the program that relied on the
original definitions start to “break,” giving errors, or worse,
silently produce incorrect results.

During the 1970s, computer scientists advocated a vari-
ety of reforms in programming practices (see structured
programming) in an attempt to make code both more read-
able and safer from unwanted side effects. For example, the
“goto” or arbitrary jump from one part of the program to
another was discouraged in favor of strictly controlled itera-
tive structures (see loop). Also encouraged was the dec-
laration of local variables that could not be changed from
outside the procedure in which they were defined.

Development of Object-Oriented Languages
However, a more radical programming paradigm was also
in the making. In existing languages, there is no inherent
connection between data and the procedures that operate
upon that data. For example, the employee record may be
declared somewhere near the beginning of the program,
while procedures to update fields in the record, copy the
record, print the record, and so on may well be found many
pages deeper into the program.

A new approach, object-oriented programming is based
on the fact that in daily life we interact with thousands
of objects. An object, such as a ball, has properties (such
as size and color) and capabilities (such as bouncing). In
interacting with an object, we use its capabilities. It is much
more natural to think of an object as a whole than to have
its properties and capabilities jumbled together with those
of other objects.

Simula 67, developed in the late 1960s, was the first
object-oriented language (see Simula). It was followed in
the 1970s by Smalltalk, a language developed at the Xerox

O

PARC laboratory, home of innovative research in graphical
user interfaces. Smalltalk, like Windows today, treats each
window, menu, and other control on the screen as an object
(see Smalltalk). Finally, during the 1980s C++ came into
prominence, adding the essential features of object-ori-
ented programming to the already very popular C language.
Today most popular mainstream languages, including C++,
Java, and Visual Basic, are object-oriented (see C++ and
Java). Many specialized database languages are also object-
oriented.

Elements of Object-Oriented Programming
The various object-oriented languages differ somewhat in
capabilities, and of course in syntax. However, being object-
oriented generally implies that the language has the follow-
ing features.

Classes and Objects
An object is defined using a template called a class. A class
contains both the data needed to characterize the object
and the procedures (sometimes called methods or mem-
ber functions) needed to work with the object (see class).
Thus, there could be a class for circles to be drawn on a
graphics display. The class might include as its data the ×
and y coordinates for the center of the circle, the size of the
radius, whether the circle is filled, the color to be used for
filling, and so on. (See C++ for more examples.)

When the program needs to use an object of the class,
it declares it in the same way it would an ordinary built-in
data type such as an integer. Languages such as C++ pro-
vide for a special function called a constructor that can be
used to define the processing needed when a new object is
created—for example, memory allocation and setting initial
values for variables.

To access data or functions within a class, the name
of an object of that class is used, followed by a variable or
function. Thus, if there’s a class called circle, a program
might specify the following:

MyCircle Circle; // Declare an object of the
Circle class

MyCircle.X = 100; // X coordinate on screen
MyCircle.Y = 50; // Y coordinate on screen
MyCircle.Radius = 25; // Radius in pixels
MyCircle.Filled = True; // A Boolean con-

stant equal to 1
MyCircle.FillColor = Blue; // a previously

defined color constant

Once these specifications have been made, the circle
can be drawn by calling upon its “draw” method or member
function:

MyCircle.Draw;

The designer of a class can choose to restrict access to
certain data items or functions, using a keyword such as
private or protected. For example, instead of having the
part of the program that uses the class directly set the x
and y coordinates, it could keep those variables private and

instead provide a method called SetPos. The class might
then take the coordinates specified by the user and adjust
them to fit the screen dimensions. The Draw method would
then use the adjusted internal coordinates rather than those
supplied originally by the user.

Inheritance
Many objects are more elaborate or specialized variations of
more basic objects. For example, in Microsoft Windows the
various kinds of dialog boxes are specialized versions of the
general Window class. Therefore, the specialized version
is created by declaring it to be derived from a “base class.”
Put another way, the specialized class inherits the basic
data and functions available in the base (parent) class. The
programmer can then add new data or functions or modify
the inherited ones to create the necessary behavior for the
specialized class.

Languages such as C++ allow for a class to be derived
from more than one base class. This is called multiple
inheritance. For example, a Message Window class might
inherit its overall structure from the Window class and
its text-display capabilities from the Message class. How-
ever, it can sometimes be difficult to keep the relationships
between multiple classes clear. The Java language takes the
alternative approach of being limited to only single inheri-
tance of classes, but allowing interfaces (specifications of
how a class interacts with the program) to be multiply
inherited.

Polymorphism and Overloading
Different kinds of objects often have analogous methods.
For example, suppose there is a series of classes that rep-
resent various polygons: square, triangle, hexagon, and

In the object-oriented C++ programming language data within a
class can be restricted in several ways. Private data can be accessed
only from within the class itself, or from another class declared to
be a “friend” of the containing class. Protected data has these forms
of access, plus it can also be accessed from any class derived from
the containing class. Finally, Public data or functions (methods)
can be accessed from anywhere in the program, and provides the
interface by which the class is used.

340        object-oriented programming

so forth. Each class has a method called “perimeter” that
returns the total distance around the edges of the object. If
each of these classes is derived from a base polygon class,
each class inherits the base class’s perimeter method and
adapts it for its own use. Thus, a square might calculate
its perimeter simply by multiplying the length of a side by
four, while the rectangle would have to add up different-
sized pairs of sides, and so on.

Similarly, the same operator in a language can have dif-
ferent meanings depending on what data types it is being
applied to. The plus (+) operator, for example, is defined in
most languages so that various types of integers or floating-
point values can be added (see numeric data).

Object-oriented languages such as C++ allow opera-
tors to be given additional definitions so they can handle
additional data types, including classes defined by the
user. For example, what might adding the string “object”
and the string “oriented” yield? The most sensible answer
is a new string that contains both of the original strings:
“object oriented.” If one defines a String class, then one
can also define the + operator as a member function of that
class, such that when something like String1 + String2 is
encountered, the expression will be evaluated as the com-
bination (concatenation) of the two strings. The + opera-
tor is said to have been overloaded for use with the String
class.

Encapsulation
The ability to keep the detailed workings of a class pri-
vate promotes program reliability (see encapsulation).
Software developers can create well-organized libraries of
classes that other programmers can use simply by refer-
ring to the interface specifications (see library, program).
Encapsulation also makes programs more readable. Once
one understands the capabilities of the objects, it is rel-
atively easy to understand the overall operation of the
program without getting bogged down in details. Object-
oriented programming takes the encapsulation achieved
through the earlier structured programming movement and
makes it more integral to the language structure.

Trends
Object-oriented programming was initially decried as a fad
by some critics. The initial learning curve for tradition-
ally trained programmers and the overhead that made early
implementations of languages such as Smalltalk run slowly
inhibited acceptance of the new paradigm at first. However,
the introduction of C++ by Bjarne Stroustrup provided a
fairly easy path for C programmers into the object-oriented
world. For example, the class was syntactically similar to
the familiar struct.

The movement toward object-oriented programming and
design was also spurred by the more or less coincidental
popularity of graphical user interfaces such as Microsoft
Windows. Since these systems are built upon event-driven
programming using a variety of coexisting objects, the
object-oriented class approach fit such operating systems
much more naturally. Thus, during the late 1980s and 1990s,

many Windows programmers began to use the Microsoft
Foundation Classes (MFC) as their way to structure their
access to the operating system. Similarly, popular languages
for Web development (see for example Java and C#) are
thoroughly object-oriented, and even most scripting lan-
guages also contain object-oriented features.

An object-based approach also fits more naturally into
environments where programs and data may be running on
many interconnected computers (see network and mul-
tiprocessing). Treating the client and server programs as
interacting objects thus makes sense, as does treating data-
bases as collections of data objects (see database manage-
ment system). The object-oriented approach can also be
applied at a higher level of abstraction in designing systems
(see design patterns and modeling languages).

Further Reading
Hamilton, J. P. Object-Oriented Programming with Visual Basic

.NET. Sebastapol, Calif.: O’Reilly Media, 2002.
Josuttis, Nicolai. Object-Oriented Programming in C++. New York:

Wiley, 2002.
“Lesson: Object-Oriented Programming Concepts.” The Java

Tutorials. Available online. URL: http://www.psc.edu/general/
software/packages/ieee/ieee.html. Accessed August 16, 2007.

Lutes, Kyle, Alka Harriger, and Jack Purdum. An Information Sys-
tems Approach to Object-Oriented Programming Using Microsoft
Visual C# .NET. Boston: Course Technology, 2005.

Prata, Stephen. C++ Primer Plus. 5th ed. Indianapolis: Sams, 2004.
Weisfeld, Matt. “The Evolution of Object-Oriented Languages.”

Available online. URL: http://www.developer.com/design/
article.php/3493761. Accessed August 16, 2007.

office automation
The transition from manual to mechanical to electronic
processing of information in the office spanned most of
the 20th century. In the previous century, the typewriter
allowed for the mechanical production of letters and other
documents by skilled workers, accommodating (and per-
haps encouraging) a growing amount of paperwork. At
the turn of the century the card tabulator (see Hollerith,
Herman and punched cards and paper tape) began the
mechanization of information processing.

During the first half of the 20th century, mechanical or
electro-mechanical calculators made by such companies as
Burroughs came into more widespread use by bookkeepers
and clerks (see calculator). Meanwhile, one company,
International Business Machines (IBM) came to dominate
the area of card sorting and tabulating equipment.

When digital computers first came into commercial
use in the 1950s, they were too large and expensive to be
used in ordinary offices. Bookkeepers and other work-
ers did not deal with computers directly, but were sup-
ported by data processing departments or outside service
bureaus for what became known as electronic data pro-
cessing, or EDP.

By the 1970s, the advent of the microprocessor made
desk-size information processing systems possible (see
microprocessor). The first widespread application was the
dedicated word processing system, of which the most suc-
cessful version was developed by An Wang. These systems

office automation        341

provided for typing and printing documents and storing
them in a file system (see word processing).

During the 1980s, the general-purpose desktop com-
puter (see personal computer) became powerful enough
to supplant the dedicated word-processing system. Besides
providing word-processing functions through ever more
versatile versions of programs such as WordPerfect. Word-
Star, and Microsoft Word, the PC could also run programs
to support bookkeeping, accounting, mailing list, and other
functions (see database management system and spread-
sheet). Gradually, many of these separate programs were
merged into office suites such as Microsoft Office (see appli-
cation suite). Using a suite meant that information could
be easily transferred between word-processing documents,
spreadsheets, and database files, facilitating the generation
of many kinds of reports and presentations.

Later in the 1980s, two new aspects of office automation
began to emerge: communication and collaboration. The
use of special hardware and software to connect PCs within
an office or throughout the organization (see network and
local area network) made new applications possible. E-
mail began to replace printed memos or phone calls as the
preferred way for workers and management to communi-
cate. Programs such as Lotus Notes and Microsoft Outlook
added features such as the ability of workers to share a com-
mon calendar of tasks, while scheduling software offered
more elaborate ways to keep track of large, detailed team
projects (see project management software).

Today a variety of tools are available for facilitating col-
laboration. Most word-processing software now offers a fea-
ture called revision marking, which lets various editors and
reviewers comment on or make revisions to a document.
The author can then merge the revisions into a new draft.
“Whiteboard” programs let several users on the network
work simultaneously on the same virtual screen, drawing
diagrams or making outlines.

Trends
Even as desk space was being cleared for the first office PCs,
pundits began to claim that the “paperless office” was at
hand. Actually, the first stages of automation contributed
to an increase in the use of paper. On the one hand, word
processors and other programs made it easier to generate
documents and keep them up to date. On the other hand,
the documents were all printed on paper—in part because
the ability to share them electronically was nonexistent or
rudimentary, and in part because many workers, particu-
larly senior executives, still preferred to work with paper.

The growth of networking made it possible for more
people to distribute documents electronically, while higher-
resolution video displays made it easier to view pages on
the screen. During the 1990s, the inexpensive document
scanner (see scanner) made it practicable to scan incom-
ing paper documents into text files (see optical charac-
ter recognition). While the office is not yet paperless, the
tide of paper may now be receding at last.

The ubiquity of the Internet and the use of the HTML
format for documents (see html and lan) characterize the
latest phase in the evolution of office automation. Many cor-

porate procedure manuals and other resources are now being
stored on company Web sites where they can be updated eas-
ily and consulted with the aid of search engines. Databases
to which workers need shared access are also being hosted
through Web sites. HTML and XML are emerging as com-
mon formats for exchanging documents between systems,
along with Adobe’s Portable Document Format (PDF), which
offers a faithful reproduction of the printed page.

Changes in how the Internet is being used for com-
munication and collaboration are also having an impact
on the office. In particular, blogs are being used as a way
for key people to keep coworkers updated (see blogs and
blogging), and wikis can be an effective way for building a
common knowledge base for both employees and customers
(see wikis and Wikipedia).

Many workers can now access the full resources of the
office through laptop computers and Internet connections.
Workers on the go can also use handheld or palm com-
puters such as the PalmPilot (see pda) to access e-mail,
calendar, and other information. The growing use of video-
conferencing over the Internet using inexpensive cameras
and broadband connections is also promoting the “virtual
meeting” (see video conferencing).

Further Reading
Brown, M. Katherine, Brenda Huettner, and Char James-Tanny.

Managing Virtual Teams: Getting the Most from Wikis, Blogs,
and Other Collaborative Tools. Plano, Tex.: Wordware Publish-
ing, 2007.

Greenbaum, Joan. Windows on the Workplace: Technology, Jobs, and
the Organization of Office Work. New York: Monthly Review
Press, 2004.

Mobile Office Technology. Available online. URL: http://mobile
office.about.com/. Accessed August 16, 2007.

Obringer, Lee Ann. “How Virtual Offices Work.” Available online.
URL: http://communication.howstuffworks.com/virtual-office.
htm. Accessed August 16, 2007.

Sellen, Abigail J., and Richard H. R. Harper. The Myth of the Paper-
less Office. Cambridge, Mass.: MIT Press, 2002.

Scoble, Robert, and Shel Israel. Naked Conversations: How Blogs
Are Changing the Way Businesses Talk with Customers. Hobo-
ken, N.J.: Wiley, 2006.

Wibbels, Andy. Blogwild!: A Guide for Small Business Blogging. New
York: Penguin Group, 2006.

Omidyar, Pierre
(1967– )
French-Iranian/American
Entrepreneur, Inventor

One of the most remarkable stories of the development of e-
commerce has been the online auction pioneered by Pierre
Omidyar and the hugely successful eBay auction site he
founded (see online auctions.)

Omidyar was born on June 27, 1967, in Paris. His fam-
ily is of Iranian descent. While working in his high school
library Omidyar encountered his first computer and soon
wrote a program to catalog books. Omidyar enrolled at
Tufts University to study computer science. However, after
three years he became bored with classes and went to work

342        Omidyar, Pierre

as a programmer. Omidyar helped develop a drawing pro-
gram for the new Apple Macintosh, but after a year returned
to finish his degree, which he received in 1988. He then
went to work for Claris, a subsidiary of Apple. There he
developed MacDraw, a very popular application for the
Macintosh.

By 1991 Omidyar had become interested in an emerg-
ing application, “pen computing,” which uses a special pen
and tablet to allow computer users to enter text in ordinary
handwriting, which would be recognized and converted
to text by special software. Omidyar and three partners
formed a company called Ink Development to work on pen
computing technology. However, the market for such soft-
ware was slow to develop. The partners changed their com-
pany name to eShop and their focus to e-commerce, the
selling of goods and services online. But e-commerce would
not become big until the mid-1990s when the graphical
browser made the Web attractive and easy to use. Mean-
while Omidyar also did some graphics programming for the
movie effects company General Magic.

Omidyar retained his interest in e-commerce, with a
particular focus on finding new markets in which buyers
and sellers could meet. Online auctions offered one such
mechanism, and Omidyar created a site called AuctionWeb.
AuctionWeb was based on a simple idea: Let a user put up
something for bid, and have the software keep track of the
bids from other users until the ending time is reached, with
the highest bid being the winner.

At first Omidyar made AuctionWeb free for both buy-
ers and sellers, but as the site exploded in popularity he
began to charge sellers a small fee to cover his Internet

service costs. As the months passed, thousands of dollars in
small checks began to pour in. Using $1 million he received
from Microsoft for the sale of his former company eShop,
Omidyar decided to expand his auction site into a full-time
business.

Thanks to the Web, it was now possible to run an auc-
tion without cataloger, auctioneer, or hotel room. The job
of describing the item could be given to the seller, and of
course digital photos or scanned images could be used to
show the item to potential bidders. The buyer would pay
the seller directly, and the seller would be responsible for
shipping the item.

Because overhead costs are essentially limited to main-
taining the Web site and developing the software, the com-
pany could charge sellers about 2 percent instead of the
10–15 percent demanded by traditional auction houses.
Buyers would pay no fees at all. And because the cost for
selling is so low, sellers could sell items costing as little as
a few dollars, while regular auction houses generally avoid
lots worth less than $50–$100.

With the aid of business partner and experienced Web
programmer Jeff Skoll, Omidyar revamped and expanded
the site, renaming it eBay (combining the “e” in electronic
with the San Francisco Bay near which they lived). Unlike
the typical Web business that promised investors profit
sometime in the indefinite future, eBay made money from
the first quarter and just kept making more.

Through their relationship with a venture capital firm,
Benchmark, Omidyar and Skoll gained not only $5 million
for expansion but the services of Meg Whitman, an expe-
rienced executive who had compiled an impressive track
record with firms such as FTD (the flower delivery service),
the toy company Hasbro, Procter & Gamble, and Disney.
eBay’s growth continued: by the end of 1997 about 150,000
auctions were being held each day.

In 1998 they decided to take the company public. By the
time the first trading day ended, Omidyar’s stock was worth
$750 million, and Whitman and the other key players had
also done very well.

One possible weakness in the eBay model was that it
relied heavily on trust by the seller and especially the buyer.
What if a buyer won an item only to receive something that
was not as described or, worse, never received anything at
all? But while this happened in a small number of cases,
Omidyar through his attention to building communities
for commerce had devised an interesting mechanism called
“feedback.” Both sellers and buyers were encouraged to post
brief evaluations of each transaction, categorized as posi-
tive, neutral, or negative. A significant number of negative
feedbacks served as a warning signal, so both sellers and
buyers had an incentive to fulfill their part of the bargain.
The system was not perfect, but the continued patronage of
several million users suggested that it worked. (An escrow
system was also made available for use with more expensive
items.)

As the new century dawned, Omidyar became less per-
sonally involved with eBay. In 1998 he had stepped down as
CEO, the post going to Whitman. In 2004 Omidyar and his
wife, Pam, turned their attention to the Omidyar Network, a

Pierre Omidyar founded eBay, the world leader in online
auctions.  (Acey Harper / Time Life Pictures / Getty Images)

Omidyar, Pierre        343

new structure that replaces the traditional foundation with
a decentralized approach combining nonprofit and for-profit
initiatives focusing on empowering individuals and commu-
nities. Omidyar has also been investing in microfinancing
(the making of small loans directly to poor entrepreneurs in
developing countries).

Further Reading
Cohen, Adam. “Coffee with Pierre: Creating a Web Community

Made Him Singularly Rich.” Time, December 27, 1999, p. 78
ff.

———. The Perfect Store: Inside eBay. New York: Little, Brown &
Company, 2002.

Ericksen, Gregory K. Net Entrepreneurs Only: 10 Entrepreneurs Tell
the Stories of Their Success. New York: Wiley, 2000.

Pierre’s Web (blog). http://pierre.typepad.com/. Accessed May 6,
2007.

Sachs, Adam. “The Millionaire No One Knows.” Gentlemens’ Quar-
terly, May 2000, p. 235.

online advertising
In the late 1990s “banner ads” started to appear on Web
sites, and other forms of advertising soon followed. Compa-
nies rushed into the online world, either with the belief that
it had unlimited potential for finding new customers, or out
of fear that the competition would get there first. Unfor-
tunately it was hard to measure the actual effectiveness of
ads, and Web sites (such as for publications) that looked
to third-party advertising as a source of income found the
outlook bleak in the wake of the bursting of the “dot-com
bubble” of the early 2000 decade.

Only a few years later, however, advertisers using new
business models and targeting techniques have made online
advertising not only a viable business, but a rapidly grow-
ing one. (According to the Interactive Advertsing Bureau,
Internet advertising revenue in the United States in 2007
was $21.2 billion, up 26 percent from 2005.)

The effects of the online advertising revolution are rip-
pling outward, impacting traditional advertising media
such as newspapers (in particular see craigslist), maga-
zines, and even television.

Platforms and Types of Ads
There are many different applications that can be accompa-
nied by different types of advertising. These include e-mails
(free e-mail services usually include an ad in every message),
newspapers and other publications (often with ads related to
the subject of an accompanying article), and even blogs (see
blogs and blogging). Indeed, the most popular blogs can
actually make a reasonable income from advertising.

Types of ads include the following:

• � Banner ads are contained in rectangles, often at the top
of the Web page. (Sometimes they can mimic dialog
boxes from the operating system.) They still account
for about half of all online advertising, and can appear
on sites of all types.

• � Pop-up or pop-under ads appear above or beneath the
current window, respectively.

• � Floating ads appear over the main page content, often
moving across the screen.

• � Interstitial ads are displayed before the requested
content (such as an article or video) is shown. They
run for a specified period of time, although they can
sometimes be closed by the viewer.

Many ads are animated; some even contain video clips.
There are also ads formatted for mobile devices, including
text messages sent to cell phones.

Economics of Online Advertising
A company or organization can of course advertise its own
products or services on its Web site. Alternatively, a site
can arrange with an online advertiser to carry ads for other
peoples’ goods or services, in exchange for a fee. The adver-
tiser in turn gets paid by the company whose ads are being
run. The payment can be calculated in a variety of ways:
CPM (cost per thousand people who see the ad), the num-
ber of sales leads, or the number of people who actually buy
something.

As the first luster of the Web began to wear off, cor-
porate advertising departments increasingly wanted better
measurements of the exposure their ads were receiving, and
wanted ads that were better targeted to people more likely
to “click through” to the advertiser’s site. Since it involves
people who are already looking for specific things, Web
search is an effective and profitable activity to be linked to
contextually related ads. Google in particular has been very
successful in auctioning or selling the opportunity to have
one’s ad appear in the results of a search request containing
a specific keyword (see Google).

Another way that Google and other large search engines
or portals can make money from advertisers is through
“affiliate marketing”; Google’s version is called Ad Sense.
Participating Web sites are indexed, and the resulting key-
words are matched with ads awaiting placement. The site
carrying the ad generally gets a per-click payment. How-
ever, the problem of “click fraud” has also arisen: Scammers
can set up an affiliate site and then use special software to
generate the clicks, while making them come from a variety
of sources. Despite these problems, in 2006 about 40 per-
cent of revenue from online advertising was attributed to
search-related ads.

While search engine usage perhaps provides the most
direct indication of consumer interests, considerable atten-
tion has also been focused on developing systems that can
track where a given individual goes on a large e-commerce
site (see cookies), and look for clues about likely future
purchases (see data mining).

Maintaining User Interest
The dark side of online advertising is found in programs
that are surreptitiously installed on users’ PCs and then
download and display advertising from shady Web opera-
tions (see spyware and adware). While many users now
regularly run programs to block such malware, even legiti-
mate online advertising can irritate users, particularly

344        online advertising

when ads are too prominent, float over (and block) text, or
lurk behind the browser window. Modern Web browsers
have ad-blocking features that work with varying degrees
of effectiveness. As with TV, online advertisers increasingly
have to cope with impatient users who do not have to look
at ads unless they actually want to.

Advertisers can employ several strategies to keep users
willing to look at ads. One is to make the ad unobtrusive
and brief, and on the way to something the user really
wants to see. In 2007 YouTube began such advertising.
Another is to provide free versions of software or services
that, in exchange for being free, require the user to put up
with some screen real estate being devoted to ads. Finally,
as with TV, advertising can be woven into the content itself,
such as in online computer games.

A sensitive area is the attempt to balance advertisers’
desire to know as much as possible about consumers’ interests
and buying habits with the same consumers’ concern about
protecting their privacy (see privacy in the digital age).

Further Reading
“Click Fraud: The Dark Side of Online Advertising.” Business

Week, October 2, 2006. Available online. URL: http://www.
businessweek.com/magazine/content/06_40/b4003001.htm.
Accessed October 5, 2007.

Davis, Harold. Google Advertising Tools: Cashing In with AdSense,
AdWords, and the Google APIs. Sebastapol, Calif.: O’Reilly,
2006.

Interactive Advertising Bureau. Available online. URL: http://
www.iab.net/. Accessed October 5, 2007.

Plummer, Joe, et al. The Online Advertising Playbook: Proven Strate-
gies and Tested Tactics from the Advertising Research Founda-
tion. Hoboken, N.J.: Wiley, 2007.

Scott, David Meerman. The New Rules of Marketing & PR: How to
Use News Releases, Blogs, Podcasting, Viral Marketing & Online
Media to Reach Buyers Directly. Hoboken, N.J.: Wiley, 2007.

Search Engine Marketing Professional Organization (SEMPO).
Available online. URL: http://www.sempo.org. Accessed
October 5, 2007.

Sloan, Paul. “The Quest for the Perfect Online Ad: Web Advertis-
ers Are Moving beyond Search, Using Powerful Science to
Figure Out What You Want.” Business 2.0 [Magazine]. Avail-
able online. URL: http://money.cnn.com/magazines/busi-
ness2/business2_archive/2007/03/01/8401043/index.htm.
Accessed October 5, 2007.

online frauds and scams
In the old days con men and scammers went to where there
were a lot of people with loose cash and where anonymity
was the order of the day—perhaps a carnival or fair. Today
in all too many cases the Internet fills this bill. With mil-
lions of inexperienced new users coming online in recent
years, the opportunities for frauds and scams are signifi-
cant, as is the problem of fighting such crime. In 2007 the
Internet Crime Complaint Center (a partnership between
the FBI and the National White Collar Crime Center) logged
its one-millionth complaint. Of the 461,096 cases referred
to law enforcement agencies, the estimated dollar loss is
$647.1 million, with a median loss of $270 per complaint.

Many online frauds represent adaptations of traditional
criminal practices to the online world. E-mail (see spam)

carries offers for dubious cures for mostly imagined sexual
ills, or for prescription drugs at too-good-to-be-true prices,
or for “genuine replica Rolex watches.” Internet auction
sites also offer a venue for selling fakes and counterfeits of
various sorts. The primary protections for the consumer are
knowledge about the goods in question and taking advan-
tage of community resources such as feedback provided by
other buyers (see also auctions, online and eBay).

Entire fake businesses can appear online, complete with
professional-quality Web sites. If a prospective purchaser
has never heard of the company, checking with the Bet-
ter Business Bureau, or looking for a certification such as
Trust-E, is a good idea. (Scammers can also impersonate
legitimate businesses in order to get personal information
from customers—see phishing and spoofing.)

Investments are another fertile area for online scam-
mers. These include “pump and dump” schemes where chat-
room or blog postings are used to “talk up” some obscure
stock and then cash in when investors start buying it and
raising the price. Pyramid schemes and multilevel-market-
ing (MLM) programs where money from new participants
is used to pay back earlier investors also appear from time
to time.

A common theme of victimization seems to be that many
Web users seem to suspend their usual skepticism and cau-
tion when they go online. This is perhaps due to the relative
unfamiliarity of the online world and the lack of experience
in evaluating products, investments, or services.

A variety of other frauds and scams appear online or via
e-mail with some frequency:

• � the “419” or “Nigerian money letter” that promises a
rich cut for helping facilitate a money transfer for a
distressed official

• � fraudulent charitable solicitations, particularly after
such disasters as the Asian tsunami or Hurricane
Katrina

• � adoption and marriage scams

• � educational fraud, such as worthless degrees offered
by unaccredited institutions

• � dubious employment schemes or “home businesses”
involving preparing mailings or medical billing

• � services that offer to “repair” bad credit ratings

• � tax-avoidance schemes, often based on nonexistent
legal claims or loopholes

Fighting Online Fraud
Because perpetrators are hard to track down (see anonym-
ity and the Internet), and because of the ability to end-
lessly create new Web sites and e-mails, it is hard to control
this form of crime (see computer crime and security).
However, considerable resources are now being brought to
bear, with significant success. Depending on the type of
fraud, federal agencies such as the Securities and Exchange
Commission (SEC), Federal Trade Commission (FTC), and
the Food and Drug Administration (FDA) will investigate,

online frauds and scams        345

and agencies such as the FBI will pursue perpetrators. Every
state also has an office of consumer protection or consumer
affairs, and local district attorneys may become involved
when perpetrators are operating in their area or victimizing
residents.

Private agencies also play an important role. Besides the
Better Business Bureau, most industries or professions have
some form of certification of products or practices. There
are also professional services that will authenticate collect-
ibles such as stamps, coins, and sports cards.

Government and private agencies also offer a variety of
consumer education materials that explain common frauds
and suggest ways to shop prudently for goods or services.

Further Reading
Federal Bureau of Investigation. “Internet Fraud.” Available online.

URL: http://www.fbi.gov/majcases/fraud/internetschemes.htm.
Accessed October 6, 2007.

Henderson, Harry. Internet Predators (Library in a Book) New York:
Facts On File, 2005.

Internet Crime Complaint Center. Available online. URL: http://
www.ic3.gov/. Accessed October 6, 2007.

Securities and Exchange Commission. “Internet Fraud: How to
Avoid Internet Investment Scams.” Available online. URL:
http://www.sec.gov./investor/pubs/cyberfraud.htm. Accessed
February 7, 2008.

Silver Lake Editors. Phishing, Spoofing, ID Theft, Nigerian Advance
Schemes, Investment Frauds, False Sweethearts: How to Recog-
nize and Avoid Internet Era Rip-offs. Aberdeen, Wash.: Silver
Lake Publishing, 2006.

online gambling
Despite its illegality in the United States, Internet-based
gambling has been very popular—by 2004 more than 20
million Americans had tried some form of online gambling,
and in 2005 they bet about $5.9 billion.

Online casinos appeared in 1995, but at first they could
only be played “for fun,” with no actual money changing
hands. That soon changed: In 1996, InterCasino appeared—
it would be the first of hundreds of online casinos, sports
bookmakers, and other types of gambling. Generally these
operations are based outside of the United States—Carib-
bean islands such as Antigua and Curaçao are popular loca-
tions.

Online casinos offer traditional table games such as
blackjack, roulette, and craps. Generally odds and payoffs
are comparable to those at traditional casinos. Assuming
the game is honest and properly programmed, the house’s
revenue comes from a percentage of the amount bet—black-
jack having the lowest house percentage and roulette the
greatest. Slot machines (which give an even higher percent-
age to the house) can also be simulated online.

Although occasional cases of software programmed to
cheat have been documented, a more common problem is
failure to pay winnings promptly, or at all. Recourse is dif-
ficult, since the casino is offshore and the activity is illegal
for U.S. players. Players can, however, consult lists of so-
called rogue casinos to be avoided. Some players cheat as
well, typically by opening multiple accounts in order to get
the “signing bonus.”

Online Poker
Online poker has become very popular, particularly games
such as Texas Hold’Em. Estimated revenues from online
poker in the United States were $2.4 billion in 2005.
Unlike the case with casino games, online poker players
play against each other, not the house. The house’s revenue
comes from a “rake,” or percentage, of the pot. Many sites
offer organized tournaments, and some online players have
gone on to win traditional tournaments. (The aptly named
Chris Moneymaker won an online tournament, qualifying
him to enter the 2004 World Series of Poker, which he went
on to win.)

Like online casinos, online poker is illegal in the United
States. Proponents argue that while any given hand is ran-
dom, poker in the long run is a game of skill, not chance. A
group called the Poker Players Alliance has been lobbying
to exempt poker from Internet gambling laws.

A third type of online gambling is sports betting, which
is legal in many countries but only in Nevada in the United
States. The Web has also given sports bettors a forum for
discussing (or arguing about) teams and their prospects.

Legal and Other Issues
In 1998 the federal government charged more than 20
Americans with operating gambling services in violation
of the Federal Wire Act, which prohibits wagering over the
phone lines used for most Internet transmissions. Most of
the charges were subsequently dropped or plea-bargained,
with only one casino operator serving 17 months in federal
prison. In 2002 a federal appeals court ruled that while the
Wire Act applied to sports betting, it did not apply to online
betting on games of chance. However, subsequent legal
ambiguity has led major Internet services such as Google
and Yahoo! to remove online gambling advertisements
from their sites. Meanwhile, a suit by the Casino City gam-
bling portal on First Amendment grounds was dismissed,
although other legal challenges were underway in 2007.

In recent years antigambling activists have adopted
an indirect strategy of going after the infrastructure used
for gambling transactions. In 2006 Congress passed the
Unlawful Internet Gambling Enforcement Act, which pro-
hibits U.S. credit card companies and banks from transfer-
ring funds to or from Internet gambling sites. (One of the
arguments used by proponents was that terrorists might be
using online gambling sites to launder money.)

Another issue raised by online gambling opponents is
that the high-speed, highly interactive (click-and-response)
nature of online games of chance made it easier for people
prone to gambling addiction to get and stay “hooked.” Par-
ticular concern has been raised about teens who decide to
gamble using parents’ credit cards. However, studies such
as the British Gambling Prevalence Survey 2007 have sug-
gested that the growing popularity of online gambling has
not led to an increase in the rate of gambling addiction.

On the other hand, congressional liberals such as Rep.
Barney Frank (Dem.-Massachusetts) have sponsored legis-
lation that would legalize (and tax) Internet gambling, and
provide for programs to deal with underage and compul-

346        online gambling

sive gambling. Opponents have charged that the legaliza-
tion measure is being backed by major “brick and mortar”
casinos who want a piece of the online action, as well as the
credit card companies, which would also get a piece of each
transaction. (As of 2007 neither this nor other attempts
to legalize online gambling in the United States have been
passed.)

Further Reading
Dunnington, Angus. Gambling Online. Hassocks, West Sussex,

U.K.: D&B Publishing, 2004.
Norton, Kate. “Online Gambling Hedges Its U.S. Bets.” Business

Week, August 21, 2006. Available online. URL: http://www.
businessweek.com/globalbiz/content/aug2006/gb20060821_
544446.htm. Accessed October 9, 2007.

Somach, Tom. “Gambling Gold Rush? A Congressional Push
Last Year Stopped Many Americans from Playing the Games
Online, but the Law May Be Changed.” San Francisco Chroni-
cle, July 2, 2007, p. C1–2.

Vogel, J. Philip. Internet Gambling: How to Win Big Online Playing
Bingo, Poker, Slots, Lotto, Sports Betting & Much More. New
York: Black Dog & Leventhal Publishers, 2006.

Woellert, Lorraine. “A Web Gambling Fight Could Harm Free
Trade.” Business Week, August 12, 2007, p. 43. Available online.
URL: http://www.businessweek.com/magazine/content/07_33/
b4046041.htm. Accessed October 9, 2007.

online games
Online games today range from elaborate war games to
open-ended fantasy worlds to virtual universes that mirror
“real-world” activities, including economics, politics, and
even education.

The first online games appeared in the late 1970s on
PLATO, an educational network, as well as on the early
Internet of the 1980s. These MUDs (multiuser dungeons)
were generally based on pen-and-paper role-playing games
of the time, notably Dungeons & Dragons. These games were

text based, with players typing their characters’ actions
and dialog while the changing world as seen by the play-
ers was similarly described. By the early 1990s, however,
MUDs had spun off many variants. Many were still “hack
n’ slash” dungeon games (which were also offered on Amer-
ica Online and other commercial services). Many of these
MUD-like games such as AOL’s Neverwinter Nights offered
simple graphics. Meanwhile other games began to offer
more sophisticated social interactions as well as the ability
of players to make their own additions to the game world,
including buildings.

Massively Multiplayer Online
Role-Playing Games  (MMORPGs)
Today’s online games feature a “persistent world” hosted on
one or more servers that grows and develops from day to day
and in which the “avatars” or representatives of thousands
of players interact with game-generated creatures or one
another, using client software. Players can spend hundreds
of hours helping their characters develop skills, increasing
their levels through experience points gained from success-
ful combat or other activities. Players (and their charac-
ters) frequently form organizations such as guilds or clans,
because the tougher challenges generally require the coop-
eration of different types of classes of characters (fighters,
healers, and magic-users).

Modern MMORPGs began in the late 1990s with such
titles as Ultima Online and EverQuest. The most popular
MMORPG in the mid-2000s was World of Warcraft.

From Games to Alternative Worlds
Humans are social primates, and they tend to bring their
full repertoire of behavior to any new situation. Even games
such as World of Warcraft or Everquest are not entirely about
combat and character skills: they are also about alliance,
trust, betrayal, and bonding.

Back in the 1980s psychologists began to write about
the social interactions that were emerging in MUDs and
how players perceived their virtual world (see Turkle,
Sherry). However Second Life, launched by Linden Lab in
2003, is not a game at all, but a complete virtual world in
which participants, called “residents” (through their ava-
tars) can do just about anything—play and be entertained,
have relationships (including virtual sex), but also conduct
more mundane businesses and meetings and even attend
university courses.

The ability to do nearly anything also means the ability
to do things that may be offensive and even illegal. Indeed,
an emerging issue is how “real world” laws apply to these
virtual worlds. In Second Life, residents buy and sell in-
world real estate and goods, using a currency called Lin-
den Dollars (L$). These L$ and U.S. dollars can be traded
at the rate (as of early 2007) of 270 L$ to one dollar U.S.
This means that residents in the virtual world can actually
run profitable businesses (or make investments) that can be
cashed out for “real” money. Further, the avatars, property,
and other in-world creations developed by users remain
their intellectual property, not that of Linden Labs.

Second Life is not a “game,” but a virtual world that now includes
just about every known human activity—its money is even
exchangeable for real-world cash.  (Copyright 2006, Linden
Research Inc., All Rights Reserved)

online games        347

The close and growing ties between virtual worlds such
as Second Life and “real” world society raises many legal and
even social issues:

• � Should income made in the virtual world be taxable?

• � If residents of a virtual world make contracts with one
another, are they enforceable? If so, who has jurisdic-
tion? (See cyberlaw.)

• � Is the virtual world itself subject to national laws,
or might it eventually acquire a form of sovereignty?
(Already a few nations have “virtual embassies”
within Second Life.)

Meanwhile, representatives of major companies ranging
from Microsoft and Google to Second Life’s Linden Labs have
proposed making online identities and avatars “portable” so
that a person could use them in his or her online games and
virtual communities (see virtual community).

Further Reading
Castronova, Edward. Synthetic Worlds: The Business and Culture of

Online Games. Chicago: University of Chicago Press, 2006.
Jennings, Scott. Massively Multiplayer Games for Dummies. Hobo-

ken, N.J.: Wiley, 2005.
Rice, Robert A., Jr. MMO Evolution. Morrisville, N.C.: Lulu.com,

2006.
Terdiman, Daniel. “Tech Titans Seek Virtual World Interop-

erability.” CNet News. October 12, 2007. Available online.
URL: http://www.news.com/Tech-titans-seek-virtual-world-
interoperability/2100-1043_3-6213148. html. Accessed Octo-
ber 13, 2007.

v3image. A Beginner’s Guide to Second Life. Las Vegas, Nev.: Arche-
Books, 2007.

online investing
As with shoppers, investors have increasingly been attracted
to the interactivity and ease of online transactions. In addi-
tion to allowing stocks to be bought or sold with just a few
clicks, online brokers (also called discount brokers) charge
much lower transaction fees than their traditional counter-
parts, typically less than $10 per trade.

Some online brokers, such as E*Trade, Scottrade, and
TD Ameritrade, were established as Internet brokers. How-
ever, traditional brokerages such as Charles Schwab and
Waterhouse have also opened online discount brokerages.

In addition to fast, inexpensive trading, many online
brokers also offer a variety of resources and tools, includ-
ing stock quotes and charts, research reports, and screen-
ing programs to help investors pick the mutual funds or
individual investments that meet their objectives. For more
sophisticated investors, some brokers offer simulations for
testing investment strategies and programmed trading,
which will execute buy or sell orders automatically depend-
ing on specified conditions.

Online brokers can specialize, seeking customers who
want to make frequent trades but do not need other sup-
port, or investors who are interested in obtaining IPOs (ini-
tial public offerings) of up-and-coming companies. Some
brokers may emphasize mutual funds and cater to retire-

ment accounts, while others might offer government or cor-
porate bonds, foreign stocks, “penny stocks,” or more exotic
investments.

The interactivity and low transaction costs in online
investing may encourage people to become involved in
highly speculative penny stocks, options, day trading, for-
eign exchange markets, and other areas that are not suitable
for most individual investors. While there is a great deal
of useful information available online, it is a good idea to
begin by discussing investment goals and potential risks
with a trusted financial adviser.

Trends
Since trading fees have gone down about as far as they
can go and still allow for profitability, online brokerages
are increasingly competing by offering distinctive features
and enhanced customer service. In the course of rapid
expansion, service has become somewhat uneven: A 2006
J.D. Powers survey found that 41 percent of investors had
encountered at least one problem with accessing their
accounts or executing a trade.

Besides trying to improve reliability, online brokers
are also branching out by offering financial planning and
other personal services for their larger investors, and some
are opening retail outlets where people can actually see a
broker.

Further Reading
Choosing a Broker. Yahoo! Finance. Available online. URL: http://

biz.yahoo.com/edu/ed_broker.html. Accessed October 17,
2007.

Davidson, Alexander. The Complete Guide to Online Stock Market
Investing. 2nd ed. Philadelphia: Kogan Page, 2007.

Krantz, Matt. Investing Online for Dummies. 6th ed. Hoboken, N.J.:
Wiley, 2008.

Parmar, Neil. “Finding the Best Broker.” SmartMoney. July 10,
2007. Available online. URL: http://www.smartmoney.com/
brokers/index.cfm. Accessed October 17, 2007.

online job searching and recruiting
In the old days, people found jobs by word of mouth or by
reading newspaper classified ads. While word of mouth (or
at least e-mail) can still be very useful for finding job leads,
increasingly both employers and job seekers are turning
first to a variety of online sites. (Indeed, as of mid-2007 one
large site, Monster.com, claimed to have more than 73 mil-
lion resumes in its database and 42 million job seekers per
month.)

There are a number of large sites that list thousands
of jobs at any given time. Examples include Monster.com,
JobCentral, and CareerJournal (from The Wall Street Jour-
nal). Meanwhile, many of the “career classifieds” from
newspapers have been replaced by postings on Craigslist,
which has a number of regional sites and covers buy/sell,
apartment rentals, and other types of ads as well (see
craigslist).

In evaluating a job site it is important to get a feel for
the kinds of jobs offered and the target audience, such as
professionals, recent graduates, white-collar or service-

348        online investing

sector jobs, and so on. Other important features to look for
include:

• � powerful search or filtering capability, such as by type
of job or employer, keywords in job description, or
locality

• � the ability to put one’s resume online and edit or
update it as needed.

• � the ability to have several versions of one’s resume
tailored to different types of jobs

• � automatic e-mail alerts about newly added jobs that
meet the user’s criteria

• � privacy protections so that contact information from
resumes is not used for marketing or other nonem-
ployment purposes

• � lack of fees to job seekers (normally employers are the
service’s source of revenue)

Job seekers can use job search engines such as Career
Builder that will search the major job-finding sites and/or
employers’ own sites according to the user’s criteria.

In addition to dedicated job-hunting sites and recruit-
ing agencies, a less formal but rapidly growing trend is
the meeting of employers and would-be employees through
sites such as Facebook (see social networking), where
people often freely describe their interests. Employers in
turn are increasingly searching online for information
about applicants, which can cause a problem if the results
include “indiscreet” writings or perhaps photos, perhaps
dating back to high school. (On the other hand, there are
also social networks such as LinkedIn that specialize in
business contacts.)

Finally, online job seekers should beware of fake “job
offers” that ask for information such as social security num-
bers (see online frauds and scams).

Further Reading
CareerBuilder. Available online. URL: http://www.careerbuilder.

com. Accessed October 21, 2007.
Craigslist. Available online. URL: http://www.craigslist.com.

Accessed October 21, 2007.
Dikel, Margaret Riley, and Frances E. Roehm. Guide to Internet Job

Searching 2006–2007 Edition. New York: McGraw-Hill, 2006.
Job-Hunt: The Guide to Finding Employment Online. Available

online. URL: http://www.job-hunt.org/job-search.html.
Accessed October 21, 2007.

Kerber, Ross. “Online Job Hunters Grapple with Misuse of Personal
Data.” Boston Globe, October 1, 2007. Available online. URL:
http://www.boston.com/business/globe/articles/2007/10/01/
online_job_hunters_grapple_with_misuse_of_personal_
data/. Accessed October 21, 2007.

Monster.com. Available online. URL: http://www.monster.com.
Accessed October 21, 2007.

Napoli, Lisa. “New Job-Seeking Tool? It’s the Network.” Market-
place (American Public Media). October 19, 2007. Available
online. URL: http://marketplace.publicradio.org/display/
web/2007/10/19/online_job_networking. Accessed October
21, 2007.

USAJOBS [federal job information]. Available online. URL: http://
www.usajobs.gov/. Accessed October 21, 2007.

online research
The proliferation of online databases, information services
(see online services) and Web sites has made more infor-
mation accessible to more people than ever before. At the
same time, the complexity of the online world challenges
researchers to develop a new set of skills to cope with it.

It is useful to divide online offerings into three broad
categories: specialized databases, online information ser-
vices, and the Web as a whole (see World Wide Web).
Each of these areas requires a somewhat different approach
by the online researcher.

A common research task is to find and evaluate books
or articles on a given subject. Most local libraries have their
catalogs online, and the world’s largest library catalog, that
of the Library of Congress (LC), is also available in several
forms on the Web.

Newspaper and magazine articles can be found in a
number of general-purpose databases such as InfoTrac.
These databases can be searched in public libraries: Remote
access is generally restricted to the library’s cardholders.
These records can consist of a bibliographic description
only (that is, author, title, periodical, issue date, and so
on) or can include an abstract or in many cases the full
text of the article. In addition, most major newspapers now
offer free access to recent articles on their Web site, with
older articles available for a nominal fee. Magazines, too,
frequently offer selected articles or their complete contents
online.

Using the search facility for an online catalog or periodi-
cal database is generally simple, particularly if an author or
title is known. For subject searching, some familiarity with
LC subject headings is helpful. However, the ability of most
systems to search for matching words in titles or subjects
means that the researcher can be quickly led to the correct
subject in most cases.

Another way to get tables of contents, jacket copy, and
reviews of books is to browse the online catalogs of major
booksellers, particularly Amazon.com and BarnesandNo-
ble.com. Publishers’ Web sites are another good way to get
information about books, particularly new or forthcoming
titles.

Journalists need a broad familiarity with online research
tools and use computers and online services in many facets
of their work (see journalism and computers). Research-
ers looking for specialized articles in fields such as law or
medicine need more rigorous skills.

Most legal research is done using databases such as
LexisNexis. These databases are expensive but indispens-
able to practitioners. However, students and others who
can’t afford this access can still find U.S. Supreme Court,
Court of Appeals, and many state court decisions online,
thanks to the efforts of organizations such as the Legal
Information Institute at Cornell Law School. Because of
the complexity of multiple jurisdictions and the need to
trace chains of precedent (“shepardizing”), online legal
research has become an increasingly important parapro-
fessional task.

Medical research is similarly complex, due to the
thousands of precise terms for conditions, procedures,

online research        349

and drugs. The sheer volume of articles (MEDLINE has
more than 11 million citations dating back to the 1960s)
can make it hard to find and evaluate the most relevant
material.

By far the most extensive information resource today
is the World Wide Web with its millions of sites and pages
of information. There are two basic approaches to finding
material on the Web. The first is to use a search engine by
typing in keywords or phrases (see search engine). Even
though search engines such as Google index only a mod-
est fraction of the available pages on the Web, a search
on a topic such as “database design” can yield from thou-
sands to millions of possible “hits.” Most search engines do
attempt to rank results in decreasing order of matching or
relevance.

An alternative approach is to browse the categorized list
of topics presented by a site such as Yahoo! (www.yahoo.
com) or About.com (www.about.com). The advantage of
this approach is that the site’s researchers have selected the
links for each topic that they believe to be the most valu-
able, and the number of possibilities is likely to be more
manageable (see portal).

The tremendous increase in personal expression and
collaboration on the Web is opening new channels of infor-
mation (see blogs and blogging, user-created con-
tent, and wikis and Wikipedia). Wikipedia, for example,
has some articles that are as reliable and fully documented
as those found in a traditional encyclopedia, while oth-
ers might be best described as “works in progress.” The
researcher must decide whether a given article or posting
is definitive or perhaps just usefully suggestive of further
resources.

Online research remains more an art than a science. The
researcher must choose the appropriate tools—bibliograph-
ical resources, specialized databases, information services,
search engines, and portals—and evaluate and integrate
the results so they are useful for a given question or project.
Students and researchers now have unprecedented access to
information, but sophisticated critical thinking skills must
be employed. In particular, it can be difficult to evaluate the
background or credentials of the people behind Web sites
that are not associated with recognized media outlets or
other organizations.

Further Reading
Dornfest, Rael, Paul Bausch, and Tara Calishain. Google Hacks:

Tips and Tools for Finding and Using the World’s Information.
3rd ed. Sebastapol, Calif.: O’Reilly, 2006.

Hock, Randolph. The Extreme Searcher’s Internet Handbook: A
Guide for the Serious Searcher. 2nd ed. Medford, N.J.: Informa-
tion Today, 2007.

Internet Public Library. Available online. URL: http://www.ipl.
org/. Accessed August 16, 2007.

Research and Documentation Online. Available online. URL:
http://www.dianahacker.com/resdoc/. Accessed August 16,
2007.

Schlein, Alan M. Find It Online. 4th ed. Tempe, Ariz.: Facts on
Demand Press, 2004.

Tomaiuolo, Nicholas, Steve Coffman, and Barbara Quint. The Web
Library: Building a World Class Personal Library with Free Web
Resources. Medford, N.J.: Information Today, 2004.

online services
The ability of PC owners to connect to remote comput-
ers (see modem) led to the proliferation of both free and
commercial online information services during the 1980s.
At one end of the spectrum were bulletin board systems
(BBS), many run by hobbyists on PCs connected to a few
phone lines (see bulletin board systems). They offered
users the ability to read and post messages on various top-
ics as well as to download or contribute software (see also
shareware).

The growing number of connected PC owners soon
offered entrepreneurs a potential market for a commercial
online information service. One of the oldest, CompuServe,
had actually been started in 1969 as a business time-shar-
ing computer system. In 1979, it launched a service for
home computer users, offering e-mail and technical sup-
port forums. By the mid-1980s, the service had added an
online chat service called CB Simulator (see chat, online)
as well as news content. The service’s greatest strength,
however, remained its forums, which offered technical
support for just about every sort of computer hardware
or software, together with download libraries containing
system patches, drivers, utilities, templates, macros, and
other add-ons.

By then, however, the online service market had become
quite competitive. While CompuServe focused on com-
puter-savvy users, America Online (AOL), founded in
1985 by Steve Case, targeted the growing legion of new
PC users who needed an easy-to-navigate interface. AOL
grew steadily, reaching a million customers in 1994 (see
America Online). AOL chat groups became very popular,
spawning a vigorous online culture while raising contro-
versies about sexual content in some chat “rooms.” A third
service, Prodigy, also catered to the new user.

Meanwhile, the World Wide Web and the advent of
graphical Web browsers such as Netscape and Microsoft
Internet Explorer in the mid-1990s led millions of users
to connect to the Internet (see Internet, Web browser,
and World Wide Web). Internet service providers (ISPs)
offered direct, no-frills access to the Web. CompuServe and
AOL soon offered their users access to the Internet as well.
However, accessing the Web through an online information
service was usually more expensive, and often slower, than
using an ISP and a Web browser directly. Additionally, free
Web portal services such as Yahoo! began to offer extensive
information resources of their own.

The Internet thus threatened to shrink the market for
the commercial online services. AOL fought back in the late
1990s by cutting its monthly rates to make them competi-
tive with ISPs, flooding the mails with free disks and trial
offers, bundling introductory packages with new computer
systems, and promoting added-value information services
such as stock quotes. In 1998, the market consolidated
when AOL bought CompuServe, continuing to run the lat-
ter as a subsidiary targeted at more sophisticated users.
The same year AOL bought Netscape to gain access to its
browser technology. Finally, AOL merged with Time-War-
ner, hoping to leverage the latter’s huge media resources,
such as by offering classic TV fare. However, the flagship

350        online services

online service continued to struggle in the 2000s, essen-
tially abandoning the ISP part of its business. Meanwhile
CompuServe, after peaking in the 1990s, gradually shrank
to a shadow of its former self. Even mighty Microsoft has
had trouble growing its Microsoft Network (MSN), rein-
venting it in 1999 as a Web portal and then trying to inte-
grate it more closely with its operating system and software
products as “Windows Live” as well as providing services
such as instant messaging, blogging, and picture sharing.

The long-term prospects for AOL and other commer-
cial online services are uncertain. Many of the advantages
these services had until the late 1990s have diminished.
For example, the once mutually incompatible e-mail sys-
tems of online services have been replaced by standard
Internet e-mail protocols, so there is little advantage to
using a particular service for e-mail. Users can obtain
e-mail accounts from a variety of ISPs or through free
Web-based services such as hotmail.com. Content such as
news, video, and music (see streaming) is available from
many Web sites, and most companies now offer exten-
sive online technical support for their products. At the
same time, attempts to support content-rich sites through
either advertising or a subscription model have largely
foundered. For services such as AOL, the ultimate ques-
tion is whether the parts of the service still form a suf-
ficiently compelling whole.

Further Reading
America Online. Available online. URL: http://www.aol.com.

Accessed August 16, 2007.
Bourne, Charles P. A History of Online Information Services, 1963–

1976. Cambridge, Mass.: MIT Press, 2003.
Kaufeld, John. AOL for Dummies. Hoboken, N.J.: Wiley, 2004.
Microsoft Network. Available online. URL: http://www.msn.com.

Accessed August 14, 2007.
Swisher, Kara. There Must Be a Pony in Here Somewhere: The AOL

Time Warner Debacle. New York: Three Rivers Press, 2004.

ontologies and data models
A persistent problem in artificial intelligence (see artifi-
cial intelligence) is how to provide a software system
with a model that it can use to reason about a particular
subject or domain. A data model or ontology basically con-
sists of classes to which the relevant objects might belong,
relationships between classes, and attributes that objects in
that class can possess. (For implementation of these ideas
within programming languages, see classes and object-
oriented programming.)

For example, a business ontology might include classes
such as:

• � Entity—a business or person

• � Supplier—an Entity that provides wholesale goods or
services

• � Customer—an Entity that buys the company’s goods
or services

• � Contractor—an Entity that performs work for the
company on contract

In the above list it can be seen that the last three classes
all include as their parent or “superclass” the class Entity.
Another way to put this is to say that the Entity class “sub-
sumes” the last three classes. These relationships can be
easily shown in tree diagrams, with the most general or
“universal” class at the top and the more specialized classes
extending downward and outward. The process of defining
related classes and specifying criteria for the inclusion of
an object in a class is called “partitioning.” (Readers famil-
iar with set theory will also note that the language of sets,
subsets, and inclusion also works well with this scheme.)

Classes can have other types of relationships. For exam-
ple, a class can be defined as being “part of” a structure
built from several classes. For example, a Customer might
be part of a Transaction class.

Attributes are assigned to classes as appropriate. Note
in the example above that when attributes such as contact
information are defined for the Entity class, they will also
apply to the descendant classes Supplier, Customer, and
Contractor.

Implementation
Ontologies can be used to provide guidance to a variety of
types of programs (for example, see expert system, natu-
ral language processing, and software agent). Thus
if an automatic news summarizer program encounters a
story that includes references to opposing lawyers and legal
issues, it could apply an ontology that defines the likely
relationship of the participants in the case.

Creating useful ontologies is quite labor intensive in
terms of the human thinking and coding involved. How-
ever, there have been substantial efforts in recent years to
create anthologies for many fields, particularly in biology
and genetics. The Web Ontology Language (OWL) is a
popular tool for creating ontologies that can be used to
make Web content more understandable to programs (see
semantic web).

Meanwhile, an ambitious and long-running project
called Cyc (for Encyclopedia) under the direction of Doug-
las Lenat has been engaged in creating what amounts to
vast ontologies for many of the domains included in every-
day human life as well as specialized fields of knowledge. A
large portion of this work has been made available as open
source.

Further Reading
CYCorp. Available online. URL: http://www.cyc.com/. Accessed

October 21, 2007.
Gasevic, Dragan, Dragan Djuric, and Vladan Devedzic. Model

Driven Architecture and Ontology Development. New York:
Springer, 2006.

Macy, Lee W. OWL: Representing Information Using the Web Ontol-
ogy Language. Victoria, B.C., Canada: Trafford Publishing,
2005.

Nigro, Hector Oscar, Sandra Gonzalez Cisaro, and Daniel Xodo,
eds. Data Mining with Ontologies: Implementations, Findings,
and Frameworks. Hershey, Penn.: Idea Group, 2007.

Web Ontology Language (OWL), World Wide Web Consortium.
Available online. URL: http://www.w3.org/2004/OWL/.
Accessed October 21, 2007.

ontologies and data models        351

open-source movement
For a long time programmers have released programs as
freeware meaning that users did not have to buy or license
the software. There is also “try before you buy” software
(see shareware). However, while freeware sometimes
includes not only the executable program but the source
code (the actual program instructions), most shareware and
virtually all other commercially distributed software does
not. As a result, users wishing to fix, modify, or extend the
software are generally at the mercy of the company that
owns and distributes it.

In university and research computing environments,
however, it has been common for programmers to freely
share and extend utilities such as program editors. Indeed,
much of the necessary software for the earliest minicomput-
ers of the 1960s was created by clever, energetic hackers (see
hackers and hacking). Because the source code (usually
on paper tape) was freely distributed, people could easily
create and distribute new (and presumably, improved) ver-
sions. Having source code also made it possible to “port”
software to a newly released machine without having to wait
for the relatively ponderous efforts of the official developers.

In particular, although the licensing of the two major
versions of the UNIX operating system were controlled by
AT&T’s Bell Laboratories and the University of California’s
Berkeley Software Distribution (BSD) respectively, much
UNIX software including programming languages (see Perl
and Python) and the Web’s most popular server, Apache,
have been distributed using an open source model.

The best-known open-source effort is the GNU Project
created by Richard Stallman (1953– ). GNU, a recursive
acronym meaning “GNU’s Not UNIX,” is a collection of
software that provides much of the functionality of AT&T’s
UNIX without being subject to the latter’s licensing fees and
restrictions. When creating his own open source version of
UNIX (see Linux), Linus Torvalds (see Torvalds, Linus)
and his colleagues drew upon the considerable base of soft-
ware already created by GNU.

According to Stallman and many other advocates, “open
source” software is not necessarily free. What is required
is that users receive the full source code (or have it readily
available for free or at nominal charge). Users are free to
modify or expand the source code to create and distribute
new versions of the software. Following a legal mechanism
that Stallman calls “copyleft,” the distributor of open-
source software must allow subsequent recipients the same
freedom to revise and redistribute. However, not all soft-
ware that is billed as open source follows all of Stallman’s
requirements, including being copylefted. Formally, open-
source software is generally licensed according to various
versions of the General Public License (GPL). The latest
version, GPL3, released in 2007, has been controversial.
Among other things, it more aggressively attempts to pre-
vent open-source software from being restricted or other-
wise hampered by being combined with patented software
or proprietary hardware.

Open-source software has the potential for providing
diversity and alternatives in a world where some catego-
ries such as PC operating systems and office software are

dominated by one or a few large companies. Indeed, some-
times companies have converted an existing product to
open source, as is the case with Sun Microsystems and Star
Office, a suite that runs under Linux. Netscape also resorted
to open source as part of an unsuccessful attempt to fight
off Microsoft for dominance of the browser market in the
mid to late 1990s. By making a product open source, a com-
pany may hope to tap into the volunteer effort of many tal-
ented programmers to improve or expand the program. The
company is still free to create proprietary software upon
the “base” of a successful open source product. Moderately
successful companies such as Linux distributor Red Hat
have a business plan based upon providing superior pack-
aging, technical support, and customized solutions around
its Linux distribution.

While some critics have questioned whether viable busi-
ness models can be built directly upon open-source soft-
ware, there is little doubt that open-source development
has made a substantial contribution to the infrastructure
of the computer industry. Linux runs about a third of all
Web servers, and products such as the Apache Web server
and MySQL database are also in widespread use, as is the
Eclipse integrated development environment.

Many advocates see open source as part of a larger phi-
losophy and even a social movement (see user-created
content). They believe that by creating value through col-
laboration and sharing, open source may challenge classical
economics based on scarcity and competition.

Further Reading
Babcock, Charles. “Open Source Software: Who Gives and Who

Takes?” InformationWeek. May 15, 2006. Available online.
URL: http://www.informationweek.com/story/showArticle.
jhtml?articleID=187202790. Accessed August 16, 2007.

DiBona, Chris, Danese Cooper, and Mark Stone, eds. Open Sources
2.0: The Continuing Evolution. Sebastapol, Calif.: O’Reilly,
2005.

DiBona, Chris, Sam Ockman, and Mark Stone, eds. Open Sources:
Voices from the Open Source Revolution. Sebastapol, Calif.:
O’Reilly, 1999.

Enterprise Open Source (EOS) Directory. Available online. URL:
http://www.eosdirectory.com/. Accessed August 16, 2007.

LaMonica, Martin. “ ‘Free’ is the New ‘Cheap’ for Software Tools.”
CNET News. Available online. URL: http://news.com.
com/2100-7344_3-6032986.html. Accessed August 16, 2007.

Ohloh Open Source Directory. Available online. URL: http://www.
ohloh.net/. Accessed August 16, 2007.

Rosen, Lawrence. Open Source Licensing: Software Freedom and
Intellectual Property Law. Upper Saddle River, N.J.: Prentice
Hall, 2004.

Stallman, Richard. “Richard Stallman Sets the Free Software
Record Straight” [interview with Jennifer LeClaire]. Linux
Insider. Available online. URL: http://www.linuxinsider.com/
story/50122.html. Accessed August 14, 2007.

Weber, Steven. The Success of Open Source. Cambridge, Mass.: Har-
vard University Press, 2005.

operating system
An operating system is an overarching program that man-
ages the resources of the computer. It runs programs and
provides them with access to memory (RAM), input/output
devices, a file system, and other services. It provides applica-

352        open-source movement

tion programmers with a way to invoke system services, and
gives users a way to control programs and organize files.

Development
The earliest computers were started with a rudimentary
“loader” program that could be used to configure the sys-
tem to run the main application program. Gradually, a more
sophisticated way to schedule and load programs, link pro-
grams together, and assign system resources to them was
developed (see job control language and mainframe).

As systems were developed that could run more than
one program at a time (see multitasking), the duties of the
operating systems became more complex. Programs had to
be assigned individual portions of memory and prevented
from accidentally overwriting another program’s memory
area. A technique called virtual memory was developed to
enable a disk drive to be treated as an extension of the
main memory, with data “swapped” to and from the disk
as necessary. This enabled the computer to run more and/
or larger applications. The operating system, too, became
larger, amounting to millions of bytes worth of code.

During the 1960s, time sharing became popular par-
ticularly on new smaller machines such as the DEC PDP
series (see minicomputer), allowing multiple users to run
programs and otherwise interact with the same computer.
Operating systems such as Multics and its highly success-
ful offshoot UNIX developed ways to assign security levels
to files and access levels to users. The UNIX architecture
featured a relatively small kernel that provides essential
process control, memory management, and file system ser-
vices, while drivers performed the necessary low-level con-
trol of devices and a shell provided user control. (See UNIX,
kernel, device driver, and shell.)

Starting in the late 1970s, the development of personal
computers recapitulated in many ways the earlier evolu-
tion of operating systems in the mainframe world. Early
microcomputers had a program loader in read-only memory
(ROM) and often rudimentary facilities for entering, run-
ning, and debugging assembly language programs.

During the 1980s, more complete operating systems
appeared in the form of Apple DOS, CP/M, and MS-DOS for
IBM PCs. These operating systems provided such facilities
as a file system for floppy or hard disk and a command-line
interface for running programs or system utilities. These
systems could run only one program at a time (although
exploiting a little-known feature of MS-DOS allowed addi-
tional small programs to be tucked away in memory).

As PC memory increased from 640 kB to multiple mega-
bytes, operating systems became more powerful. Apple’s
Macintosh operating system and Microsoft Windows could
manage multiple tasks. Today personal computer operating
systems are comparable in sophistication and capability to
those used on mainframes. Indeed, PCs can run UNIX vari-
ants such as the popular Linux.

Components
While the architecture and features of operating systems
differ considerably, there are general functions common to
almost every system. The “core” functions include “booting”

the system and initializing devices, process management
(loading programs intro memory assigning them a share of
processing time), and allowing processes to communicate
with the operating system or one another (see kernel).
Multiprogramming systems often implement not only pro-
cesses (running programs) but also threads, or sections of
code within programs that can be controlled separately.

A memory management scheme is used to organize and
address memory, handle requests to allocate memory, free
up memory no longer being used, and rearrange memory to
maximize the useful amount (see memory management).

There is also a scheme for organizing data created or
used by programs into files of various types (see file). Most
operating systems today have a hierarchical file system that
allows for files to be organized into directories or folders
that can be further subdivided if necessary. In operating
systems such as UNIX, other devices such as the keyboard
and screen (console) and printer are also treated like files,
providing consistency in programming. The ability to redi-
rect input and output is usually provided. Thus, the output
of a program could be directed to the printer, the console,
or both.

In connecting devices such as disk drives to applica-
tion programs, there are often three levels of control. At the
top level, the programmer uses a library function to open
a file, write data to the file, and close the file. The library
itself uses the operating system’s lower-level input/output
(I/O) calls to transfer blocks of data. These in turn are
translated by a driver for the particular device into the low-
level instructions needed by the processor that controls the
device. Thus, the command to write data to a file is ulti-
mately translated into commands for positioning the disk
head and writing the data bytes to disk.

A typical operating system processes user commands or actions
using an interface (such as a shell). Both user commands and
requests from application programs communicate with the operat-
ing system through the application Programming Interface (API),
which provides services such as file, memory, process, and network
management.

operating system�         353

Operating systems, particularly those designed for mul-
tiple users, must also manage and secure user accounts.
The administrator (or sometimes, ultimately, the “super
user” or “root”) can assign users varying levels of access to
programs and files. The owners of files can in turn specify
whether and how the files can be read or changed by other
users (see data security).

In today’s highly networked world most operating sys-
tems provide basic support for networking protocols such
as TCP/IP. Applications can use this facility to establish
network connections and transfer data over the local or
remote network (see network).

The operating system’s functions are made available to
programmers in the form of program libraries or an applica-
tion programming interface (API). (See library, program
and application programming interface.)

The user can also interact directly with the operating
system. This is done through a program called a shell that
accepts and responds to user commands. Operating sys-
tems such as MS-DOS and early versions of UNIX accepted
only typed-in text commands. Systems such as Microsoft
Windows and UNIX (through facilities such as XWindows)
allow the user to interact with the operating system through
icons, menus, and mouse movements. Application program-
mers can also provide these interface facilities through the
API. This means that programs from different developers
can have a similar “look and feel,” easing the learning curve
for users.

Issues and Trends
As the tasks demanded of an operating system have become
more complex, designers have debated the best overall form
of architecture to use. One popular approach, typified by
UNIX, is to use a relatively small kernel for the core func-
tions. A community of programmers can then write the
utilities needed to manage the system, performing tasks
such as listing file directories, editing text, or sending e-
mail. New releases of the operating system then incorporate
the most useful of these utilities. The user also has a variety
of shells (and thus interfaces) available.

The kernel approach makes it relatively easy to port the
operating system to a different computer platform and then
develop versions of the utilities. (Kernels were also a neces-
sity when system memory was limited and precious, but
this consideration is much less important today.)

Designers of modern operating systems face a number
of continuing challenges:

• � security, in a world where nearly all computers are
networked, often continuously (see computer crime
and security and firewall)

• � the tradeoff between powerful, attractive functions
such as scripting and the security vulnerabilities they
tend to present

• � the need to provide support for new applications such
as streaming audio and video (see streaming)

• � ease of use in installing new devices (see device
driver and plug and play)

• � The continuing development of new user-interface
concepts, including alternative interfaces for the dis-
abled and for special applications (see user inter-
face and disabled persons and computing)

• � the growing use of multiprocessing and multiprogram-
ming, requiring coordination of processors sharing
memory and communicating with one another (see
multiprocessing and concurrent programming)

• � distributed systems where server programs, client
programs, and data objects can be allocated among
many networked computers, and allocations continu-
ally adjusted or balanced to reflect demand on the
system (see distributed computing)

• � the spread of portable, mobile, and handheld com-
puters and computers embedded in devices such as
engine control systems (see laptop computer, PDA,
and embedded system). (Sometimes the choice is
between devising a scaled-down version of an exist-
ing operating system and designing a new OS that is
optimized for devices that may have limited memory
and storage capacity.)

Further Reading
Bach, Maurice J. The Design of the UNIX Operating System. Engle-

wood Cliffs, N.J.: Prentice Hall, 1986.
Ritchie, Dennis M. “The Evolution of the UNIX Time-Sharing Sys-

tem.” Lecture Notes in Computer Science #79: Language Design
and Programming Methodology, New York: Springer-Verlag,
1980. Available online. URL: http://cm.bell-labs.com/cm/cs/
who/dmr/hist.html. Accessed August 14, 2007.

Silberschatz, Abraham, Peter Baer Galvin, and Greg Gagne. Oper-
ating System Concepts. 7th ed. New York: Wiley, 2004.

operators and expressions
All programming languages provide operators to specify
arithmetic functions. Some of them, such as addition +,
subtraction -, multiplication ×, and division ÷, are familiar
from elementary school arithmetic (although the asterisk
rather than the traditional x is used for multiplication in
program code, to avoid confusion with the letter x). Addi-
tional operators found in languages such as C, C++, and
Java include % (modulus, or remainder after division), ++
(adds one and stores the result back into the operand), and
-- (decrement; subtracts one and stores the result back into
the operand).

Operands are data items such as variables, constants, or
literals (actual numbers) that are operated on by the opera-
tor. An operator is called unary if it takes just one operand
(the increment operator ++ is an example). An operator that
takes two operands is considered to be binary, and this is
true of most arithmetic operations such as addition, multi-
plication, subtraction, and division.

A combination of operands and operators constitutes an
arithmetic expression that evaluates to a particular value
when the program runs. Thus in the C statement:

Total = SubTotal + SubTotal Tax × Tax_Rate;

354        operators and expressions

the value of the SubTotal Tax is multiplied by the value of
the variable Tax_Rate, the result is added to the value of
SubTotal, and the result of the entire expression is stored
in the variable Total. Compilers generally parse arithmetic
expressions by converting them from an “infix” form (as in
A + B) to a “postfix” form (as in + A B), resolving them into
a simple form that is ready for conversion to machine code.

Operator Precedence
The preceding example raises an important question. How
does one know that the subtotal is to be multiplied by the
tax rate and then the result added to the subtotal, as opposed
to adding the subtotal and tax and multiplying the result by
the tax rate? The former procedure is intuitively correct to
human observers, but since computers lack intuition, spe-
cific rules of precedence are defined for operators. These
rules, which are similar for all computer languages, tell the
compiler that when code is generated for arithmetic oper-
ations, multiplications and divisions are carried out first
(moving from left to right), and then additions and subtrac-
tions are resolved in the same way. The rules of precedence
do become more complex when the relational, logical, and
assignment operators are included. Finally, expressions can
be enclosed in parentheses to overrule precedence and force
them to be evaluated. Thus in the expression (A + B) * C the
addition will be carried out before the multiplication.

Generally speaking, the levels of precedence for most
languages are as follows:

	 1. � scope resolution operators (specify local v. global
versions of a variable)

	 2. � invoking a method from a class, array subscript,
function call, increment or decrement

	 3. � size of (gets number of bytes in an object), address
and pointer dereference, other unary operators
(such as “not” and complement); creation and deal-
location functions; type casts

	 4. � class member selection through a pointer
	 5. � multiplication, division, and modulus
	 6. � addition and subtraction
	 7. � left and right shift operators
	 8. � less than and greater than
	 9. � equal and not equal operators
	 10. � bitwise operators (AND, then exclusive OR, inclu-

sive OR)
	 11. � logical operators (AND, then OR)
	 12. � assignment statements

The basic arithmetic operators are built into each pro-
gramming language, but many of the newer object-oriented
languages such as C++ allow for programmer-defined oper-
ators and a process called overloading in which the same
operator can be defined to work with several different kinds
of data. Thus the + operator can be extended so that if it is
given character strings instead of numbers, it will “add” the
strings by combining (concatenating) them.

Further Reading
“Operators in C and C++.” Wikipedia. Available online. URL:

http://en.wikipedia.org/wiki /Operators_in_C_and_C++.
Accessed August 16, 2007.

Sebesta, Robert W. Concepts of Programming Languages. 8th ed.
Upper Saddle River, N.J.: Addison-Wesley, 2007.

Stroustrup, Bjarne C. The C++ Programming Language. 3rd ed.
Reading, Mass.: Addison-Wesley, 1997. See chap. 6 “Expres-
sions and Statements” and chap. 11 “Operator Overloading.”

“Summary of Operators.” Java Tutorials. Available online. URL:
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/
opsummary.html. Accessed August 16, 2007.

“Summary of Operators in Java.” Available online. URL: http://sunsite.
ccu.edu.tw/java/tutorial/java/nutsandbolts/opsummary.
html.

optical character recognition  (OCR)
Today it is easy to optically scan text or graphics printed on
pages and convert it into a graphical representation for stor-
age in the computer (see scanner). However, a shape such
as a letter c doesn’t mean anything in particular as a graphic.
Optical character recognition (OCR) is the process of identi-
fying the letter or other document element that corresponds
to a given part of the scanned image and converting it to
the appropriate character (see characters and strings). If
the process is successful, the result is a text document that
can be manipulated in a word processor, database, or other
program that handles text. Raymond Kurzweil (1948– )
marketed the first commercially practicable general-purpose
optical character recognition system in 1978.

Once the document page has been scanned into an image
format, there are various ways to identify the characters.
One method is to use stored templates that indicate the pat-
tern of pixels that should correspond to each character. Gen-
erally, a threshold of similarity is defined so that an exact
match is not necessary to classify a character: The template
most similar to the character is chosen. Some systems store
a set of templates for each of the fonts most commonly found
in printed text. (Recognizing cursive writing is a much more
complex process: See handwriting recognition.)

A compiler or interpreter processes a program statement by apply-
ing its operators in order of precedence. Here the multiplication is
done first, and then its result is used in the addition. The assign-
ment (=) operator has the lowest precedence and is applied last,
assigning the value of the entire expression to the variable Total.

optical character recognition        355

A more generalized method uses structural features
(such as “all t’s have a single vertical line and a shorter
crossbar line”) to classify characters. To analyze a character,
the different types of individual features are identified and
then compared to a set of rules to determine the character
corresponding to that particular combination of features.
Sometimes thresholds or “fuzzy logic” are used to decide
the probable identity of a character.

OCR systems have improved considerably, the process
also being speeded up by today’s faster processors. Most
scanners are sold with OCR software that is perhaps 95
percent accurate, with higher end systems being more accu-
rate still. This is certainly good enough for many purposes,
although material that is to be published or used in legal
documents should still be proofread by human beings.

Further Reading
More, Shunji, Hirobumi Nishida, and Hiromitsu Yamada, eds.

Optical Character Recognition. New York: Wiley, 1999.
Rice, S. V., G. Nagy and T. A. Nartker. Optical Character Recog-

nition: An Illustrated Guide to the Frontier. Boston: Kluwer,
1999.

optical computing
Light is the fastest thing in the universe, and the science
and technology of optics have developed greatly since the
invention of the laser in the 1960s. It is not surprising,
therefore, that computer designers have explored the pos-
sibility of using optics rather than electronics for computa-
tion and data storage.

An early idea was to use a grid of laser beams to create
logical circuits, exploiting the ability of one laser to be used
to “quench” or switch off another one. However, creating a
large number of tiny laser beams proved impracticable, as
did managing the heat created by the process. However, by
the 1980s, experimenters were interacting “microlasers” with
semiconductors, exploiting quantum effects. This brought
the energy (and heat) problem under control while vastly
increasing the potential density of the optical circuitry.

The incredible rate at which conventional silicon-based
electronic circuitry continued to increase in density and
capacity has limited the incentive to invest in the large-
scale research and development that would be needed to
develop a complete optical computer with processor and a
corresponding optical memory technology.

Instead, current research is exploring the possibility of
combining the best features of the optical and electronic
system. Silicon chips have a limited surface for connecting
data inputs, while light can carry many more channels of
data through micro-optics. It may be possible to couple a
micro-optic array to the surface of the silicon chip in such
a way that the chip could have the equivalent of thousands
of connecting pins to transmit data. In March 2007 IBM
unveiled a prototype hybrid chip that combines optical and
semiconductor technology to achieve eight times the data
transfer rate of conventional technologies.

The value of optics is more conclusively demonstrated
in data transmission and storage technology. Fiber optic
cables are being used in many cases to carry large quanti-

ties of data with very high capacity (see fiber optics) and
may gradually supplant conventional network cable in more
applications. The use of lasers to store and read informa-
tion is seen in CD-ROM and DVD-ROM technology, which
has replaced the floppy disk as the ubiquitous carrier of
software and handy backup medium (see CD-ROM and
DVD-ROM).

Further Reading
Goswami, Debabrata. “Optical Computing.” Resonance, June

2003. Available online. URL: http://www.ias.ac.in/resonance/
June2003/pdf/June2003p56-71.pdf. Accessed August 16, 2007.

Knight, Will. “Laser Chips Could Power Petaflop Computers.”
New Scientist.com. March 21, 2006. Available online. URL:
http://www.newscientist.com/article.ns?id=dn8876. Accessed
August 16, 2007.

“Now, Just a Blinkin’ Picosecond!: NASA Scientists Are Working
to Solve the Need for Computer Speed Using Light Itself to
Accelerate Calculations and Increase Data Bandwidth.” Sci-
ence & NASA. Available online. URL: http://science.nasa.
gov/headlines/y2000/ast28apr_1m.htm. Accessed August 16,
2007.

Saleh, Bahaa E. A., and Malvin Carl Teich. Fundamentals of Photon-
ics. 2nd ed. New York: Wiley Interscience, 2007.

Oracle Corporation
Founded in 1977, Oracle Corporation (NASDAQ symbol:
ORCL) is a leading developer of business database software
(see database management system) as well as systems
for other enterprise operations (see customer relation-
ship management and supply chain management). These
functions are integrated through a structure called Oracle
Information Architecture that can coordinate the opera-
tions of servers and storage systems (see grid computing).
Besides selling software, a major part of Oracle’s business
is providing consulting and support for fitting the software
to the needs of corporate customers, as well as training
(through Oracle University) and distributed application ser-
vices (Oracle on Demand). In 2007 Oracle had $18 billion
in sales, netting $4.74 billion in profit. The company had
over 73,000 employees.

Since its founding, Oracle’s CEO has been the dynamic
though often controversial Larry Ellison, who recognized
the importance of relational databases (with their ability to
connect information from many sources) as a way to meet
the growing information needs of modern business. In the
1970s IBM was the dominant leader in relational databases
for mainframe computers, but when personal computers
running Windows became prevalent around 1990, IBM was
slow to enter the new market. Ellison and competitors such
as Sybase and Informix were able to carve out strong niches,
with Oracle coming out on top by the end of the decade.
(However, by the 2000s IBM’s DB2 for UNIX/Linux and
Windows and Microsoft SQL Server [for Windows only]
were strong competitors, with open-source products MySQL
and PostgreSQL also gaining attention—see SQL.)

In recent years Oracle has also expanded through acqui-
sition, picking up other software companies, including Peo-
pleSoft; Retek, Inc.; and Siebel Systems, for a combined total
of over $16 billion. In 2007 Oracle filed a lawsuit against its

356        optical computing

major competitor in business management applications (see
sap), charging them with unfair practices.

Further Reading
Allen, Christopher, Simon Chatwin, and Catherine A. Creary.

Introduction to Relational Databases and SQL Programming.
Burr Bridge, Ill.: McGraw-Hill Technology Education, 2004.

Gerald, Bastin, Nigel King, and Dan Natcher. Oracle E-Business
Suite Manufacturing & Supply Chain Management. Berkeley,
Calif.: McGraw-Hill/Osborne, 2002.

Oracle Corporation. Available online. URL: http://www.oracle.
com/index.html. Accessed October 25, 2007.

Rittman, Mark. “Oracle Information Architecture Explained.”
Available online. URL: http://www.dba-oracle.com/oracle_
news/2004_8_11_rittman.htm. Accessed October 25, 2007.

Stackowiak, Robert, Joseph Rayman, and Rick Greenwald. Oracle
Data Warehousing and Business Intelligence Solutions. India-
napolis: Wiley, 2007.

Symonds, Matthew. Softwar: An Intimate Portrait of Larry Ellison
and Oracle. New York: Simon & Schuster, 2003.

OS X
Jaguar, panther, tiger, and leopard—these and other names
of sleek big cats represent versions of Apple’s Macintosh
operating system, OS X (pronounced “OS 10”—see Apple
Corporation and Macintosh). Unlike the previous Mac
OS, OS X, while broadly maintaining Apple’s user interface
style (see user interface), is based on a version of UNIX
called OpenStep, developed by NeXT starting in the 1980s
(see UNIX). OS X development began when Steve Jobs
returned as Apple CEO in 1997 (see Jobs, Steven Paul)
and the company bought NeXT, acquiring the software. The
first version, OS X 10.0, or Cheetah, was released in 2001,
but the system was not widely used until 10.1 (Puma) was
released later the same year.

At the core of OS X is a free and open-source version of
UNIX called “Darwin,” with a kernel called XNU. On top of
this Apple built a distinctive and subtly colorful user inter-

face called Aqua and a new version of the Macintosh Finder
file and program management system.

Applications and Development
Today OS X includes a variety of useful software packages—
some free and some optional. These include iLife (digital
media management), iWork (productivity), and Front Row
(home media center). OS X10.5 also includes Time Machine,
an automatic backup system that can restore files (including
deleted files) as well as earlier system settings.

For software developers, OS X provides an integrated
development environment called “Xcode,” which works
with modified open-source compilers for major program-
ming languages, including C, C++, and Java. Further,
because OS X is UNIX-based, many UNIX and Linux pro-
grams can be recompiled to run on it. Since mid-2005 Apple
(and OS X) have been transitioning from the earlier IBM/
Motorola processors to Intel processors. This transition was
largely complete by 2007, though OS X 10.5 (Leopard) still
provides support for applications written for the PowerPC.

OS X has been well received by critics, and together with
its bundled software has made the Macintosh a popular
platform for users who want a seamless computing experi-
ence, particularly with regard to graphics and media.

Further Reading
LeVitus, Bob. Mac OS X Leopard for Dummies. Hoboken, N.J.:

Wiley, 2007.
Mingis, Ken, and Michael DeAgonia. “In Depth: Apple’s Leopard

Leaps to New Heights.” Computerworld, October 25, 2007.
Available online. URL: http://www.computerworld.com/
action/article.do?command=viewArticleBasic&articleId=904
3838. Accessed October 26, 2007.

Pogue, David. Mac OS X Leopard: The Missing Manual. Sebastapol,
Calif.: Pogue Press/O’Reilly, 2007.

Singh, Amit. “A History of Apple’s Operating Systems.” Available
online. URL: http://www.kernelthread.com/mac/oshistory/.
Accessed October 26, 2007.

———. Mac OS X Internals: A Systems Approach. Upper Saddle
River, N.J.: Addison-Wesley Professional, 2006.

OS X        357

358

Page, Larry
(1973– )
American
Entrepreneur

Together with business partner Sergey Brin, Larry (Law-
rence Edward) Page revolutionized the role of Web search
in the modern Internet economy by developing the Google
search engine and building an industry-leading company
around it.

Page was born in East Lansing, Michigan, into a very
computer-oriented family (both his parents were computer
scientists and his brother became a computer engineer).
It was perhaps not surprising that Page received a BSE in
engineering at the University of Michigan in 1995, then
entered the doctoral program in computer science at Stan-
ford University. There he met Sergey Brin (see Brin, Ser-
gey). The two students soon developed an interest in the
burgeoning Web, particularly in finding a better way to
search for information. The result was their collaboration
on a page-ranking system that prioritized search results
based on the popularity of sites as shown by the number of
links to them (see also search engine). The other half of
Page and Brin’s achievement was in developing advertising
models that would turn users’ Web interests into revenue.
Their key insight was that sellers would be eager to adver-
tise to people who had already shown by searching that
they were interested in particular products or services.

By the early 2000s Google dominated Web search, which
would became a springboard to many other services, includ-

ing local searching, maps, and even free online office appli-
cations (see Google). In 2004 Page and Brin became rich
when Google offered its stock to the public (by 2006 Page’s
net worth was estimated at $16.6 billion, just behind Brin).

Google has profoundly changed the way people use the
Web, so much that “to google” has become a verb for search-
ing online. However, the company’s size and dominant posi-
tion in Web search advertising has raised concerns among
some critics that Google might be gaining too much control
over the market (see online advertising). Meanwhile in
2001 Page and Brin hired Eric Schmidt to become Google’s
CEO, giving Page more time to pursue other interests. one
of which is his investment in Tesla Motors, developer of
an advanced electric vehicle that can go up to 250 miles
on one battery charge. Another interest of Page and Brin is
spurring the private development of space travel, such as
through Google’s Lunar X Prize, announced in September
2007. It would award $20 million to the first team to land
and successfully operate a lunar surface rover.

Page’s impact on the Internet economy has been widely
recognized. In 2004 he was inducted into the National
Academy of Engineering for his work in developing the
Google search engine. In 2005 Time included Page in its
list of the world’s 100 most influential people, and in 2007
PC World placed him at number one on a list of the most
important people on the Web.

Further Reading
Battelle, John. The Search: How Google and Its Rivals Rewrote the

Rules of Business and Transformed Our Culture. New York:
Portfolio, 2006.

P

Carr, David F. “Brin, Page Show No Signs of Slowing Down.”
eWeek.com. March 15, 2007. Available online. URL: http://
www.eweek.com/article2/0,1895,2104091,00.asp. Accessed
October 27, 2007.

Google. Available online. URL: http://www.google.com. Accessed
October 27, 2007.

Papert, Seymour
(1928– )
South African/American
Computer Scientist

Seymour Papert is an artificial intelligence pioneer and
innovative educator who has brought computer science to a
wider audience, especially young people.

Papert was born in Pretoria, South Africa, on March 1,
1928. He attended the University of Witwatersrand, earn-
ing his bachelor’s degree in mathematics in 1949 and Ph.D.
in 1952. As a student he became active in the movement
against the racial apartheid system, which was becoming
entrenched in South African society. His unwillingness to
accept the established order and his willingness to be an
outspoken activist would serve him well later when he took
on the challenge of educational reform.

Papert went to Cambridge University in England and
earned another Ph.D. in 1952, then did mathematics
research from 1954 to 1958. During this period artificial
intelligence, or AI, was taking shape as researchers began
to explore the possibilities for using increasingly powerful
computers to create or at least simulate intelligent behav-
ior. In particular, Papert worked closely with another AI
pioneer in studying neural networks and perceptrons (see
Minsky, Marvin). These devices made electronic connec-
tions much like those between the neurons in the human

brain. By starting with random connections and reinforcing
appropriate ones, a computer could actually learn a task
(such as solving a maze) without being programmed with
instructions.

Papert’s and Minsky’s research acknowledged the value
of this achievement, but in their 1969 book Perceptrons they
also suggested that this approach had limitations, and that
researchers needed to focus not just on the workings of
brain connections but upon how information is actually
perceived and organized.

This focus on cognitive psychology came together with
Papert’s growing interest in the process by which human
beings assimilated mathematical and other concepts. From
1958 to 1963 he worked with Jean Piaget, a Swiss psycholo-
gist and educator. Piaget had developed a theory of learning
that was quite different from that held by most educators.
Traditional educational theory tended to view children as
being incomplete adults who needed to be “filled up” with
information.

Piaget, however, observed that children did not think
like defective adults. Rather, children at each stage of devel-
opment had characteristic forms of reasoning that made
perfect sense in terms of the tasks at hand. Piaget believed
that children best developed their reasoning skills by being
allowed to exercise them freely and learn from their mis-
takes, thus progressing naturally.

In the early 1960s Papert went to the Massachusetts
Institute of Technology, where he cofounded the MIT Arti-
ficial Intelligence Laboratory with Minsky in 1965. He also
began working with children and developing computer sys-
tems better suited for allowing them to explore mathemati-
cal ideas.

The tool that he created to enable this exploration was
the LOGO computer language (see Logo). Logo provided
a visual, graphical environment at a time when most pro-
gramming resulted in long, hard-to-read printouts. At the
center of the Logo environment is the “turtle,” which can be
either a screen cursor or an actual little robot that can move
around on the floor, tracing patterns on paper. Young stu-
dents can give the turtle simple instructions such as FOR-
WARD 50 or RIGHT 100 and draw everything from squares
to complicated spirals. As students continued to work with
the system, they could build more complicated programs by
writing and combining simple procedures. As they work,
the students are exploring and grasping key ideas such as
repetition and recursion (the ability of a program to call
itself repeatedly).

In creating Logo, Papert believed that he had demon-
strated that “ordinary” students could indeed understand
the principles of computer science and explore the wider
vistas of mathematics. But when he saw how schools were
mainly using computers for rote learning, he began to speak
out more about problems with the education system. Build-
ing on Piaget’s work, Papert called for a different approach.
Papert often makes a distinction between “instructivism,”
or the imparting of information to students, and “construc-
tivism,” or a student learning by doing.

Papert “retired” from MIT in 1998, but remains very
active, as can be seen from the many Web sites that describe

Seymour Papert has made it his life work to create computer
facilities (such as the Logo language) that reflect the psychology
of learning and enable even young students to experiment with
“powerful ideas.”  (Bill Pierce / Time Life Pictures / Getty
Images)

Papert, Seymour        359

his work. Papert lives in Blue-Hill, Maine, where he teaches
at the University of Maine. He has also established the
Learning Barn, a laboratory for exploring innovative ideas
in education. Papert has worked on ballot initiatives to
have states provide computers for all their students, as well
as working with teenagers in juvenile detention facilities.
Today, educational centers using Logo and other ideas from
Papert can be found around the world.

In December 2006, while attending a conference in
Hanoi, Papert was struck by a motorcycle and suffered seri-
ous brain injuries. As of 2008 his rehabilitation is progress-
ing well.

Papert has received numerous awards including a Gug-
genheim fellowship (1980), Marconi International fellow-
ship (1981), the Software Publishers Association Lifetime
Achievement Award (1994), and the Computerworld Smith-
sonian Award (1997).

Further Reading
Abelson, Harold, and Andrea DiSessa. Turtle Geometry: The Com-

puter as a Medium for Exploring Mathematics. Cambridge,
Mass.: MIT Press, 1981.

Harvey, Brian. Computer Science Logo Style. (3 vols.) 2nd ed. Cam-
bridge, Mass.: MIT Press, 1997.

Papert, Seymour. The Children’s Machine: Rethinking School in the
Age of the Computer. New York: Basic Books, 1993.

———. The Connected Family: Bridging the Digital Generation Gap.
Marietta, Ga.: Longstreet Press, 1996.

———. Mindstorms: Children, Computers and Powerful Ideas. 2nd
ed. New York: Basic Books, 1993.

“Seymour Papert.” Available online. URL: http://www.papert.org/.
Accessed May 6, 2007.

parallel port
There are two basic ways to send data from a computer to
a peripheral device such as a printer. A single wire can be
used to carry the data one bit at a time (see serial port), or
multiple parallel wires can be used to send the bits of a data
word or byte simultaneously.

Serial ports have the advantage of needing only one line
(wire), but sending a byte (eight-bit word) requires waiting
for each of the eight bits to arrive in succession at the des-
tination. With a parallel connection, however, the eight bits
of the byte are sent simultaneously, each along its own wire,
so parallel ports are generally faster than serial ports. Also,
since the data is transmitted simultaneously, the protocol
for marking the beginning and end of each data byte is sim-
pler. On the other hand, parallel cables are more expensive
(since they contain more wires) and are generally limited
to a length of 10 feet or so because of electrical interference
between the parallel wires.

The original parallel interface for personal computers
was designed by Centronics, and a later version of this 36-
pin connector remains popular today. Later, IBM designed a
25-pin version. In addition to the wires carrying data, addi-
tional wires are used to carry control signals.

Most modern parallel ports use two more advanced
interfaces, EPP (Enhanced Parallel Port) or ECP (Extended
Capabilities Port). Besides allowing for data transmission

up to 10 times faster than the original parallel port, these
enhanced ports allow for bi-directional (two-way) commu-
nications. This means that a printer can send signals back
to the PC indicating that it is low on toner, for example.
Printer control software running on the PC can therefore
display more information about the status of the printer
and the progress of the printing job. Besides printers, the
parallel interface has also been used to connect external
CD-ROM and other storage devices.

Although early PCs often provided their parallel port
connectors on plug-in expansion cards, most PCs today
have two parallel connectors built into the motherboard.
In recent years the faster and more flexible Universal Serial
Bus (see USB) interface has increasingly replaced the par-
allel port for printers, scanners, digital cameras, external
storage drives, and many other devices.

Further Reading
Parallel Port Central. Available online. URL: http://www.lvr.com/

parport.htm. Accessed August 17, 2007.
“Parallel Port Configuration.” Available online. URL: http://www.

geocities.com/nozomsite/parallel.htm. Accessed August 17,
2007.

Tyson, Jeff. “How Parallel Ports Work.” Available online. URL:
http://computer.howstuffworks.com/parallel-port.htm.
Accessed August 17, 2007.

parsing
Just as a speaker or reader of English must be able to rec-
ognize the significance of words, phrases, and other com-
ponents of sentences, a computer program must be able
to “understand” the statements, commands, or other input
that it is called upon to process.

For example, an interpreter for the BASIC language must
be able to recognize that

PRINT “End of Run”

contains a previously defined command or keyword
(PRINT) and that the quote marks enclose a string of char-
acters that are to be interpreted literally rather than stand-
ing for something else. Once the type of element or data
item is recognized, then the appropriate procedure can be
called upon for processing it. (See compiler and inter-
preter.)

Similarly, a command processor (see shell) for an oper-
ating system such as UNIX will look at a line of input such
as

ls -l /bin/MyProgs

and recognize that ls is an executable utility program. It
will pass the rest of the command line to the ls program,
which is then executed. In turn, ls must parse its command
line and recognize that -l is a particular option that controls
how the directory listing is displayed, and /bin/MyProgs is
a pathname that specifies a particular directory location in
the file system.

To parse its input, the language or command interpreter
begins by looking in the program language or command
statement for tokens. (This process is called lexical analy-

360        parallel port

sis.) A token is normally defined as a series of one or more
characters separated by “whitespace” (blanks, carriage
returns, and so on). A token is thus analogous to a word in
English.

The series of tokens is then sent to the parser. The pars-
er’s job is to identify the significance of each token and to
group the tokens into properly formed statements. Gener-
ally, the parser first checks the tokens for keywords—words
such as “if” or “loop” that have a special meaning in a
particular programming language. (In the BASIC example,
PRINT is a keyword: In many other languages such func-
tions are external rather than being part of the language
itself.) As keywords (and punctuation symbols such as the
semicolon used at the end of statements in C and Pascal)
are identified, the parser uses a set of rules to determine the
overall structure of the statement. For example, a language
might define an if statement as follows:

If <Boolean-expression> then <statement>
else <statement>

This means that when the parser encounters an “if” it will
expect to find between that word and “then” an expres-
sion that can be tested for being true or false (see Boolean
operators). Following “then,” it will expect to find a com-
plete statement. If it finds the optional keyword “else,” that
word will be followed by an alternative statement. Thus in
the statement

If Total > Limit Print “Overflow” else Print
Total

The elements would be broken down as follows:

If	 keyword

Total > Limit	 Boolean expression

Print	 keyword

“Overflow”	� String literal (characters
to be printed)

else	 keyword

Print	 keyword

Total	 variable

When writing a parser, the programmer depends on
a precise and exhaustive description of the possible legal
constructs in the language (see also Backus-Naur form).
In turn, these rules are turned into procedures by which
the parser can construct a representation of the relation-
ships between the tokens. This representation is often rep-
resented as an upside-down tree, rather like the sentence
diagrams used in English class.

In general form, an expression, for example, can be dia-
grammed as consisting of one or more terms (variables,
constants, or literal values) or other expressions separated
by operators.

Notice that these diagrams are often recursive. That is,
the definition of an expression can include expressions.
The number of levels that can be “nested” is usually limited
by the compiler if not by the definition of the language.

The underlying rules must be constructed in such a way
that they are not ambiguous. That is, any given string of
tokens must result in one, and only one parse tree.

Once the elements have been extracted and classified,
a compiler must also analyze the nonkeyword tokens to
make sure they represent valid data types, any variables
have been previously defined, and the language’s naming
conventions have been followed (see compiler).

Fortunately, people who are designing command proces-
sors, scripting languages, and other applications requiring
parsers need not work from scratch. Tools such as YACC (a
grammar definition compiler) and BISON and ANTLR (parser
generators) are available for UNIX and other platforms.

Further Reading
Aho, Alfred V., et al. Compilers: Principles, Techniques, & Tools. 2nd

ed. Boston: Pearson/Addison-Wesley, 2007.
Bowen, Jonathan P., and Peter T. Breuer. “Razor: The Cutting Edge

of Parser Technology.” Oxford University Computing Labora-
tory. Available online. URL: http://www.jpbowen.com/pub/
toulouse92.pdf. Accessed August 17, 2007.

Donnelly, Charles, and Richard M. Stallman. Bison Manual: Using
the YACC-Compatible Parser Generator. Boston, Mass.: GNU
Press, 2003.

A parse tree for the statement A = B + C × D. Notice how the
expression on the right-hand side of the equals (assignment) sign is
eventually parsed into the component identifiers and operators.

parsing        361

Levine, John R., Tony Mason, and Doug Brown. lex & yacc. Seba-
stapol, Calif.: O’Reilly, 1995.

Louden, Kenneth C. Compiler Construction: Principles and Practice.
Boston: PWS Publishing, 1997.

Metsker, Steven John. Building Parsers with Java. Boston: Pearson/
Addison-Wesley, 2001.

Pascal
By the early 1960s, computer scientists had become increas-
ingly concerned with finding ways to better organize or
structure programs. Indeed, one language (see Algol) had
already been developed in part to demonstrate and encour-
age sound programming practices, including the proper use
of control structures (see loop and structured program-
ming). However, Algol lacked a full range of data types
and other features needed for practical programming, while
arguably being too complex and inconsistent to serve as a
good teaching language.

Niklaus Wirth at ETH (the Swiss Federal Institute of
Technology) worked during the mid-1960s with a commit-
tee that was trying to overcome the problems with Algol
and make the language more practical and attractive to
computer manufacturers and users. However, Wirth gradu-
ally became disillusioned with the committee’s unwieldy
results, and proceeded to develop a new language, Pascal,
announcing its specifications in 1970.

Pascal both streamlined Algol and extended it. Besides
providing support for character, Boolean, and set data types,
Pascal allows users to define new data types by combining
the built-in types. This feature is particularly useful for
defining a “record” type that, for example, might combine
an employee’s name and job title (characters), ID number (a
long integer), and salary (a floating-point number). The rig-
orous use of data types also extends to the way procedures
are called and defined (see procedures and functions).

Pascal attracted much interest among computer scien-
tists and educators by providing a well-defined language
in which algorithms could be expressed succinctly. The
acceptance of Pascal was also aided by its innovative com-
piler design. Unlike the machine-specific compilers of the
time, the Pascal compiler did not directly create machine
code. Rather, its output was “P-code,” a sort of abstract
machine language (see also pseudocode). A run-time sys-
tem written for each computer interprets the P-Code and
executes the appropriate machine instructions. This meant
that Pascal compilers could be “ported” to a particular
model of computer simply by writing a P-Code Interpreter
for that machine. This strategy would be used more than
two decades later by the creators of a popular language for
Web applications (see Java).

Structure of a Pascal Program
The following simple program illustrates the basic structure
of a program in Pascal. (The words in bold type are key-
words used to structure the program.) The program begins
with a Type section that declares user-defined data types.
These can include arrays, sets, and records (composite types
that can include several different basic types of data). Here

an array of up to 10 integers (whole numbers) is defined as a
type called IntList.

The Var (variable) section then declares specific vari-
ables to be used by the program. Variables can be defined
using either the language’s built-in types (such as integer)
or types previously defined in the Type section. An impor-
tant characteristic of Pascal is that user-defined types must
be defined before they can be used in variable declarations,
and variables in turn must be declared before they can be
used in the program. Some programmers found this strict-
ness to be confining, but it guards against, for example, a
typographical error introducing an undefined variable in
place of the one intended. Today most languages enforce
the declaration of variables before use.

The word begin introduces the executable part of the
program. The variables needed for the loop are first initial-
ized by assigning them a value of zero. Note that in Pascal :=
(colon and equals sign) is used to assign values. The outer if
statement is used to ensure that the user does not input an
invalid number of items. The for loop then reads each input
value, assigns it to its place in the array, and keeps a run-
ning total. That total is then used to compute the average,
which is output by the writeln (write line) statement.

program FindAvg (input, output);
type IntList = array [1 . . 10] of inte-
ger;
var

Ints: IntList;
Items, Count, Total, Average: integer;

begin
Average := 0;
Total := 0;
Readln (Items);
If ((Items > 0) and (Items <= 10)) then

begin
for Count := 1 to Items do

begin
readln (Ints [Count]);
Total := Total + Ints [Count]
end;

Average := Total / Items;
Writeln (‘The average of the items is:’,
Average)
end

else
Writeln (‘Error: Number of items must be
between 1 and 10’)

end.

Impact of Pascal
Pascal achieved modest commercial success. The P-Code
idea was embraced by the UCSD P-System developed by
the University of California at San Diego. In the late 1970s
and early 1980s, the P-System brought the benefits of Pas-
cal’s structured programming to users of computers such
as the Apple II, for which the only alternatives had been
machine-language or a poorly structured version of BASIC.
Later in the 1980s, Borland International came out with

362        Pascal

Turbo Pascal. This compiler used direct compilation rather
than P-Code, sacrificing portability for speed and efficiency.
It included an integrated programming environment that
made development much cheaper and easier than with
existing “bulky” and expensive compilers such as those
from Microsoft. Turbo became very popular and eventu-
ally included language extensions that supported object-
oriented programming. But Pascal became best known in
its role as a first language for teaching programming and for
expressing algorithms.

However, by 1990 the tide had clearly turned in favor
of C and C++. These languages used a more cryptic syn-
tax than Pascal and lacked the latter’s rigorous data typing
mechanism. Systems programmers in particular preferred
C’s ability to get “close to the machine” and manipulate
memory directly without being confined by type defini-
tions. C had also received a big boost because its developers
were also among the key developers of UNIX, a very popu-
lar operating system in campus computing environments.

During the 1990s, C, C++, and Java even began to sup-
plant Pascal for computer science instruction. Nevertheless,
by encouraging structured programming concepts and help-
ing educate a generation of computer scientists, Pascal made
a lasting impact on the computer field. Wirth continued his
work with the development of Modula-2 and Oberon, which
were confined mainly to the academic world. However, Pas-
cal also was a major influence on the development of Ada, a
language endorsed by the U.S. federal government that com-
bines structured programming with object-oriented features
and the ability to manage extensive packages of routines
(see Ada).

Further Reading
Free Online Pascal and Delphi Tutorials and Documentation.

Available online. URL: http://www.thefreecountry.com/
documentation/onlinepascal.shtml. Accessed August 17, 2007.

Free Pascal Compiler. http://www.freepascal.org/
Jensen, Kathleen, Niklaus Wirth, and A. Mickel. Pascal User

Manual and Report: ISO Pascal Standard. 4th ed. New York:
Springer-Verlag, 1991.

Koffman, Elliot B. Turbo Pascal. 5th update ed. Reading, Mass.:
Addison-Wesley, 1997.

Rachele, Warren. Learn Object Pascal with Delphi. Plano, Tex.:
Wordware Publishing, 2000.

Wirth, Niklaus. Programming in Modula-2. 3rd, corr. ed. New York:
Springer-Verlag, 1985.

pattern recognition
After many years of effort researchers have been able to
create systems that can recognize particular human faces
(see computer vision). On the other hand, any normal
six-month-old child can effortlessly recognize familiar
faces (such as parents). The fundamental task of turning
raw data (whether from senses, instruments, or computer
files) into recognizable objects or drawing inferences is
called pattern recognition. Pattern recognition is at the
heart of many areas of research and application in com-
puting (see artificial intelligence and data mining).
Despite the challenge in getting machines to do what

comes naturally for biological organisms, the potential
payoffs are immense.

A pattern-recognition system begins with data, whether
stored or real-time (such as from a robot’s camera). The first
task in turning potentially billions of bytes of data into
meaningful objects is to extract features from what is likely
a high proportion of redundant or irrelevant data. (With
visual images, this often involves finding edges that define
shapes.) The extracted features are then classified to deter-
mine what objects they might represent. This can be done
by comparing structures to templates or previously classi-
fied data or by applying statistical analysis to determine the
likely correlation of the new data to existing patterns (see
Bayesian analysis).

Pattern recognition often includes learning algorithms
as well; indeed, the field is often considered to be a subtopic
of machine learning. For example, classification systems
can be refined by “training” them and reinforcing success-
ful determinations (see neural network).

Applications
There are numerous applications of pattern recognition,
often as part of intelligent systems used in such areas as lin-
guistics (see language translation software), commu-
nications, intelligence and surveillance, identity verification
(see biometrics), and the analysis of credit card transaction
patterns for signs of fraud. Some examples are shown in the
following table:

Data	P rocedures	R esults

speech	 phonemes, transition 	 text
	 rules
handwritten 	 character classification	 identified
address		 postal address
handwritten 	 character classification	 identify amount of
check (ATM)		 deposit
general text	 grammar and syntax	 structure and
		 meaning
e-mail	 identify characteristics	 spam detection
	 Bayesian filter
facial image	 feature templates, 	 identified person
	 statistics
biometric 	 feature extraction and 	 verified identity
(retina, finger-	 template comparison
print, etc.)

Further Reading
Bishop. Christopher M. Pattern Recognition and Machine Learning.

New York: Springer, 2006.
Duda, Richard O., Peter E. Hart, and David G. Stork. Pattern Clas-

sification. New York: Wiley, 2001.
International Association of Pattern Recognition. Available online.

URL: http://www.iapr.org/. Accessed November 3, 2007.
Pattern Recognition. American Association for Artificial Intelli-

gence. Available online. URL: http://www.aaai.org/AITopics/
html/pattern.html. Accessed November 4, 2007.

Recognition Technology and Pattern Analysis. Available online.
URL: http://alumnus.caltech.edu/~dave/pattern.html. Accessed
November 4, 2007.

pattern recognition        363

Theodoridis, Sergios, and Konstantinos Koutroumbas. Pattern Rec-
ognition. 3rd ed. San Diego, Calif.: Academic Press, 2006.

PDA  (personal digital assistant)
The first stage in making computing available away from
the office desk was the development of “portable” and then
laptop computers in the 1980s (see laptop computer).
Laptops, however, are relatively heavy and bulky, and thus
not suitable for activities such as making notes at meet-
ings or keeping track of appointments while on the go.
The logical solution to that need was to develop a com-
puter small enough to carry in a pocket or purse. The first
handheld computer to achieve widespread recognition was
Apple’s Newton, which the company referred to as a “per-
sonal digital assistant.” This term, usually abbreviated to
PDA, became a generic category with the introduction of
the Palm Pilot, which first appeared in 1996, followed by
the seemingly ubiquitous RIM Blackberry in 1999.

Features and Uses
Modern PDAs have sharp, readable displays, even given the
limited screen size. The role of the mouse is taken by navi-
gation buttons, and the ability to select items on the screen
by touch or using a stylus (see touchscreen). (Some PDAs
include small keyboards that can be typed on using two
fingers or thumbs.) The operating system (such as Palm OS,
Windows Mobile, or even Linux) is in read-only memory,
and working memory is provided, expandable through the
use of SD (Secure Digital) or Compact Flash memory cards.
Wireless connectivity provides access to the Internet and
for transferring data between the PDA and a regular PC (see
Bluetooth and wireless and mobile computing). A syn-
chronization program installed on the PC can be used to
ensure that the latest version of each file will be stored on
both devices. (This also allows larger programs on the PC
to work on and update data from the PDA—see personal
information manager.)

Typical PDA applications include an appointment cal-
endar, address book for contacts, a simple note-taking pro-
gram (see handwriting recognition), and increasingly,
e-mail and a special Web browser designed for small dis-
plays. Many PDAs can also use their Bluetooth connection
to place calls through suitably equipped cellphones.

PDAs can also be used for specialized applications that
involve the need to receive or update data while driving or
walking. Examples include navigation (with the use of a
GPS device), delivery services, warehouse inventory man-
agement, reading utility meters, taking orders electronically
in restaurants, and maintaining patient records in hospi-
tals. Besides allowing for the recording of data, PDAs can
also include task-specific references such as prescription
drug databases or a medical dictionary.

As with many other things in computing, the boundar-
ies of the PDA category are becoming more fluid. While
software-enhanced mobile phones evolved separately (see
smartphone), PDA increasingly functions and telephony
are being seamlessly integrated into a single device, as with
Palm’s Treo and especially Apple’s 2007 introduction of the

iPhone, which also introduced an innovative “multitouch”
interface that can respond to natural finger gestures such as
flicking, sliding, or pinching.

Further Reading
Al-Ubaydli, Mohammad. The Doctor’s PDA and Smartphone Hand-

book: A Guide to Handheld Healthcare. London: Royal Society
of Medicine Press, 2006.

Carlson, Jeff, and Agen G. N. Schmitz. Palm Organizers. 4th ed.
Berkeley, Calif.: Peachpit Press, 2004.

Hormby, Tom. “Early History of Palm.” Silicon User. Available
online. URL: http://siliconuser.com/?q=node/17. Accessed
November 4, 2007.

Kao, Robert, and Dante Sarigumba. BlackBerry for Dummies. New
York: Wiley, 2007.

Palm. Available online. URL: http://www.palm.com/us/. Accessed
November 4, 2007.

PDA Reviews. Brighthand. Available online. URL: http://www.
brighthand.com/. Accessed November 4, 2007.

RIM (Research in Motion). Available online. URL: http://www.
rim.com/. Accessed November 4, 2007.

PDF  (portable document format)
The PDF (portable document format) created by Adobe Sys-
tems has become a very common way to make documents
available in a way that preserves the appearance of the
original.

When PDF first came out in the early 1990s it was not
very suitable for use on the Web. PDF documents could
only be viewed using expensive proprietary software, they
could not include embedded links (and thus could not be
hypertext), and they were large enough to be slow for down-
loading on the dial-up connections of the time.

All this had changed by the end of the decade: Adobe
distributes the free Adobe Reader and plug-ins for all major
platforms and browsers.

Operation
The PDF specifications are open source, so anyone can
write software to create or read documents in the format.
PDF includes three elements: a subset of the PostScript page
description language (see PostScript), a system for speci-
fying and embedding common fonts (or referring to other
fonts), and a system for “packaging” the text and graphics
descriptions into a file in compressed form. Later versions
of the PDF specification also allow users to interact with
the document, such as by filling in fields in a form or add-
ing annotations to the text. PDF also includes support for
tags (see xml) and descriptors that can be used with pro-
grams such as screen readers for the blind.

PDF also includes support for encrypting documents so
they can only be read with a password, and for controlling
whether the document can be copied or printed, though this
depends on the user’s software understanding and obeying
the restrictions.

Although creating and editing PDF documents origi-
nally required the relatively expensive Adobe Acrobat soft-
ware, there are now a number of free or low-cost editors
and other PDF utilities for Windows, Mac OS X, and Linux/
UNIX platforms.

364        PDA

Further Reading
Adobe Creative Team. Adobe Acrobat 8 Classroom in a Book. San

Jose, Calif.: Adobe Press, 2007.
Adobe Reader (free download). Available online. URL: http://www.

adobe.com/products/acrobat /readstep2_allversions.html.
Accessed November 4, 2007.

Lowagie, Bruno. iText in Action: Creating and Manipulating PDF.
New York: Manning Publications, 2007.

Padova, Ted. Adobe Acrobat 8 PDF Bible. Indianapolis: Wiley, 2007.
Planet PDF: The Home of the PDF Community. Available online.

URL: http://www.planetpdf.com/. Accessed November 4,
2007.

Perl
The explosive growth of the World Wide Web has con-
fronted programmers with the need to find ways to link
databases and other existing resources to Web sites. The
specifications for such linkages are found in the Common
Gateway Interface (see CGI). However, the early facilities
for writing CGI scripts were awkward and often frustrating
to use.

Back in 1986, UNIX developer Larry Wall had created a
language called Perl (Practical Extraction and Report Lan-
guage). There were already ways to write scripts for simple
data processing (see scripting languages) as well as a
handy pattern-manipulation language (see awk). However,
Wall wanted to provide a greater variety of functions and
techniques for finding, extracting, and formatting data. Perl
attracted a following within the UNIX community. Since
much Web development was being done on UNIX-based
systems by the mid- and late-1990s, it was natural that
many webmasters and applications programmers would
turn to Perl to write their CGI scripts.

As with many UNIX scripting languages, Perl’s syntax
is broadly similar to C. However, the philosophy behind
C is to provide a sparse core language with most func-
tionality being handled by standard or add-in program
libraries. Perl, on the other hand, starts with most of the
functionality of UNIX utilities such as sed (stream editor),
C shell, and awk, including the powerful regular expres-
sions familiar to UNIX users. The language also includes
a “hash” data type (a collection of paired keys and values)
that makes it easy for a program to maintain and check
lists such as of Internet hosts and their IP addresses (see
hashing).

Wall made it a point to solicit and respond to feed-
back from Perl users, often by adding features or functions.
Wall’s approach has been to provide as much practical help
for programmers as possible, rather than worrying about
the language being well-defined, consistent, and thus easy
to learn. For example, in most languages, to make some-
thing happen only if a certain condition is not true, one
writes something like this:

If ! (test for valid data)
Print Error-Msg;

Else Process_Data;

In Perl, however, one can use the “unless” clause. It
looks like this:

Unless (Test for invalid data) {
Process_Data;

}

Syntactically, the unless clause does not provide anything
more than using an If and Else would, and it involves learn-
ing a different structure. However, it has the practical benefit
of making the program a little easier to read by keeping the
emphasis on what the program expects to be doing, not on
the possible error. Similarly, Perl offers an “until” loop:

Until (Condition is met) {
Do something;

}

In C, one would have to say

While (Condition is not met) {
Do something;

}

This “Swiss army knife” approach to providing language
features has been criticized by some computer scientists
as encouraging undisciplined and hard-to-verify program-
ming. However, Perl’s many aficionados see the language
as the versatile, essential toolbox for the ever-challeng-
ing world of Web programming. As the language evolved
through the late 1990s, it also added a full set of object-ori-
ented features (see object-oriented programming).

Sample Perl Program
The following very simple code illustrates a Perl program
that reads some lines of data from a file and prints them
out. The first line tells UNIX to execute the Perl interpreter.
The file name data.txt is assigned to the string variable
$file. The file is then opened and assigned to the variable
INFO. A single statement (not a loop) suffices to assign all
the lines in the file to the array @lines. The “foreach” state-
ment is a compact form of For loop that assigns each line
in the array to the string variable $line and then prints it to
the screen as HTML.

#!/usr/local/bin/perl
$file = ’data.txt’;
open(INFO, “<$file”) ;
@lines = <INFO> ;
foreach $line (@lines)
{

print “\n <P> $line </P>” ;
}
DONE

Although now somewhat overshadowed by newer script-
ing languages for Web development (see, for example, Python
and PHP), Perl is a mature technology in widespread use, par-
ticularly for data extraction, conversion, and manipulation.
The Comprehensive Perl Archive Network (CPAN) has over
12,000 modules that are freely available to programmers.

Further Reading
Comprehensive Perl Archive Network (CPAN). Available online.

URL: http://www.cpan.org/. Accessed August 17, 2007.

Perl        365

Conway, Damian. Perl Best Practices. Sebastapol, Calif.: O’Reilly,
2005.

Lee, James. Beginning Perl. 2nd ed. Berkeley, Calif.: Apress, 2004.
Schwartz, Randall L., Tom Phoenix, and Brian D. Foy. Learning

Perl. 4th ed. Sebastapol, Calif.: O’Reilly, 2005.
Wall, Larry, Tom Christiansen, and Jon Orwant. Programming

Perl. 3rd ed. Sebastapol, Calif.: O’Reilly, 2000.

personal computer  (PC)
The development of the “computer chip” (see microproces-
sor) and the increasing use of integrated circuit technology
made it possible by the mid-1970s to begin to think about
designing small computers as office machines or consumer
devices that could be individually owned or used. In about
a decade the personal computer, or PC, would become well
established in many businesses and a growing number of
homes. After another decade, it became almost as ubiq-
uitous as TV sets and microwaves. Parallel developments
in hardware, software, operating systems, and accessory
devices made this revolution possible.

The first commercial “personal computer” was the MITS
Altair, a microcomputer kit built around an Intel 8080
microprocessor. Building the kit required considerable
skill with electronics assembly, but enthusiasts (including
a young Bill Gates) were soon writing software and design-
ing add-on modules for the kit (see Gates, William). A
variety of publications, notably Byte magazine, as well as
the Homebrew Computer Club gave hobbyists a forum for
sharing ideas.

By the late 1970s, personal computing was starting to
become accessible to the general public. The Altair enthu-
siasts had moved on to more powerful systems that offered
such amenities as floppy disk drives and an operating sys-
tem (CP/M, developed by Gary Kildall). Meanwhile, less
technically experienced people could also begin to experi-
ment with personal computing, thanks to the complete,
ready-to-run PCs being offered by Radio Shack (TRS-80),
Commodore (Pet), and in particular, the Apple II.

In order to make serious inroads into the business
world, however, the PC needed useful, reliable software.
WordStar and later WordPerfect made it possible to replace
expensive special-purpose word processing machines (such
as those made by Wang) with the more versatile PC. One of
the biggest spurs to business use of PCs, however, was an
entirely new category of software—the spreadsheet. Dan
Bricklin’s VisiCalc (see spreadsheet) would make the PC
attractive to accountants and corporate planners.

The watershed year in personal computing was 1981
because it brought the computer giant IBM into the PC
arena (see IBM PC). The IBM PC had a somewhat more
powerful processor and could hold more memory than the
Apple II, but its main advantage was that it was backed
by IBM’s decades-long reputation in office machines. Busi-
nesses were used to buying IBM products, and conversely,
many corporate buyers believed that if IBM was offering
desktop computers, then PCs must be useful business
machines.

IBM (like Apple) had adopted the idea of open architec-
ture—the ability for third companies to make plug-in cards

to add functions to the machine. Thus, the IBM PC became
the platform for a burgeoning hardware industry. Further, it
turned out that other companies could reverse-engineer the
internal code that ran the system hardware (see bios) with-
out infringing IBM’s legal rights. This meant that companies
could make “clones” or IBM-compatible machines that could
run the same software as the genuine IBM PC. The first clone
manufacturers (such as Compaq) sometimes improved upon
IBM such as by offering better graphics or faster processors.
However, by the late 1980s the trend was toward compa-
nies competing through lower prices for roughly equivalent
performance. Facing a declining market share, IBM tried
to introduce a new architecture, called microchannel, that
provided a mainframelike bus architecture for more efficient
input/output control. However, whatever technical advan-
tages the new system (called PS/2) might have, the market
voted against it by continuing to buy the ever more powerful
clones built on the original IBM architecture.

Lower prices and more attractive options led to a grow-
ing number of users, which in turn encouraged greater
investment in software development. By the mid-1980s,
Lotus (headed by Mitch Kapor) dominated the spreadsheet
market with its Lotus 1-2-3, while WordPerfect dominated
in word processing.

However, Microsoft, whose MS-DOS (or PC-DOS) had
become the standard operating system for IBM-compat-
ible PCs, introduced a new operating environment with a
graphical user interface (see Microsoft Windows). By the
mid-1990s, Windows had largely supplanted DOS. Micro-
soft also committed resources and exploited its intimate
knowledge of the operating system to achieve dominance in
office software through MS Word, MS Excel (spreadsheet),
and MS Access (database).

At the margins Apple’s Macintosh (introduced in 1984
and steadily refined) has retained a significant following,
particularly in education, publishing, and graphic arts
applications (see Macintosh). Although Windows now
provides a similar user interface, Mac enthusiasts believe
their machine is still easier to use (and more stylish), and
often see it as a badge for those who “think different.”

PC Trends
When graphical Web browsing made the Internet widely
accessible in the mid-1990s, the demand for PCs increased
accordingly. The desire for e-mail, Web browsing, and help
with children’s homework led many families to purchase
their first PCs. By 2000, about two-thirds of American
children had access to computers at home, and virtually
all schools had at least some PCs in the classroom. Using
sophisticated manufacturing and order processing systems,
companies such as Dell and Gateway sell PCs directly to
consumers and businesses, largely displacing the neighbor-
hood computer store. These efficiencies (and lower prices
for memory, processors, and other hardware) have brought
the cost for a basic home PC down to less than $500, while
the capabilities available for those willing to spend $1,500
or so continued to increase. PC users now expect to be able
to play CD- and DVD-based multimedia while hearing good
quality sound.

366        personal computer

A number of challenges to the growth of the PC indus-
try have also emerged. As more and more of the activity of
PC users began to focus on the Internet, some companies
began to host office applications on servers (see applica-
tion service provider). Some pundits began to say that
with applications being moved to remote servers or offered
over the corporate LAN, the PC on the desk could be
stripped down considerably. The “network PC” could make
do with a slower processor, less memory, and no hard drive,
since all data could be stored on the server.

Generally, however, the attempts to supplant the full-
featured, general-purpose PC have made little progress.
One reason is that the cost of complete PC has declined so
much that the supposed cost savings of a network PC or
Internet appliance have become less significant. Further,
privacy issues and the desire of people to have control
over their own data are often cited as arguments in favor
of the PC.

Ironically, the PC industry’s greatest challenge may
come from its very success. As more and more households
in the United States and other developed countries have
PCs, it becomes harder to maintain the sales rate. By the
early 2000s, the power of recent PCs had become so great
that the desire to upgrade every few years may have become
less compelling and the recent economic downturn has hit
the computer industry particularly hard. So far it looks like
the fastest-growing areas in computer hardware no longer
involve the traditional desktop PC, but handheld (palm)
computers (see PDA) and the embedding of more powerful
computer capabilities into other machines such as automo-
biles (see embedded systems).

Further Reading
Freiberger, Paul, and Michael Swaine. Fire in the Valley: The Mak-

ing of the Personal Computer. New York: McGraw-Hill, 1999.
Long, Larry. Personal Computing Demystified. Emeryville, Calif.:

McGraw-Hill/Osborne, 2004.
Polsson, Ken. “Chronology of Personal Computers.” Available

online. URL: http://www.islandnet.com/~kpolsson/comphist/.
Accessed August 17, 2007.

Thompson, Robert, and Barbara Fritchman Thompson. Building
the Perfect PC. Sebastapol, Calif.: O’Reilly, 2006.

———. Repairing and Upgrading Your PC. Sebastapol, Calif.:
O’Reilly, 2006.

White, Ron, and Timothy Edward Downs. How Computers Work.
8th ed. Indianapolis: Que, 2005.

personal health information management
Health care is at once a complex endeavor with many play-
ers, a vast industry, and a major expense of individuals,
businesses, and governments. At the center of it all stands
the prospective patient (or consumer) seeking to maintain
or restore health.

While the health care industry has long been a major
user of computer technology (see medical applications
of computers), the modern Web has brought a variety of
services (many free) that can help health care consumers
learn more about conditions and treatments and compare
hospitals, doctors, and other providers.

Medical Information Sites
In today’s health care environment patients often have only
a few minutes to ask their doctor important questions about
their condition and possible treatments. Patients often feel
they have been left on their own when it comes to obtain-
ing detailed information. According to surveys by the Pew
Internet & American Life Project, by the end of 2005 about
20 percent of Web users were reporting that the Internet
“has greatly improved the way they get information about
health care.” Further, 7 million users had reported that
Web sites had “played a crucial or important role in coping
with a major illness.”

A variety of Web sites ranging from comprehensive and
excellent to dubious (at best) offer health-related informa-
tion. In evaluating them, it is important to determine who
sponsors the site and what is the source of the information
provided. The very extensive WebMD site, for example, is
reviewed for accuracy by an independent panel of experts.
One of the foremost medical institutions, the Mayo Clinic,
also has an authoritative site. The site OrganizedWisdom.
com offers a search engine that emphasizes information
that has been reviewed by doctors for accuracy, while elimi-
nating low-quality or duplicative results.

Even if information is accurate, however, users may
often lack the necessary background or context for inter-
preting it correctly. Understanding the results of medical
studies, for example, requires some knowledge of how stud-
ies are designed, the population used, and the statistical
significance and applicability of the results. As a practical
matter, therefore, patients should not make any major deci-
sions about diet, medication, or treatment options without
consulting a medical professional. Attempts at self-diagno-
sis can be particularly problematic.

Support Groups and Provider Ratings
On the other hand, carefully chosen online information can
be very useful and can even improve outcomes. Patients can
learn what questions to ask their physicians, and may even
be able to suggest relevant information of which the physi-
cian is unaware.

During treatment, patients can find emotional and
practical support online. In keeping with the trend toward
online social cooperation (see social networking and
user-created content) a number of sites are helping con-
sumers find or create support groups. Such groups have
long been important, particularly for patients with condi-
tions such as cancer or serious chronic disease. For exam-
ple, DailyStrength.org offers 500 online support groups for a
great variety of conditions. Users can create online journals
to describe their daily struggles and can send supportive
messages and “hugs.” According to a 2007 report by the Pew
Internet & American Life Project, about half of adults with
chronic conditions use the Internet regularly and extensively
to help them manage their treatment and life issues.

Selecting a compatible medical professional is another
area where online sites can help prospective patients. User
ratings have proven helpful on Amazon.com and other sites
for a variety of products and services (for example, Yelp.
com and the popular Angie’s List). A site called RateMDs.

personal health information management        367

com has applied the same mechanism to allow patients to
anonymously rate their doctors. (As with other user-pro-
vided reviews, however, one needs to be aware of the pos-
sibility that the reviews do not constitute a representative
sample of consumer experience.) Patients can also person-
ally share their experiences via a YouTube-like site called
ICYou.com.

Although social networking and content-sharing sites
have been most popular among the younger generation,
the increasing adoption of these venues by older adults
and seniors is likely to fuel growth in online health-related
services in years to come, as is the continuing need to find
cost-effective ways of serving growing patient populations.

Further Reading
Colliver, Victoria. “For These Startups, Patients Are a Virtue.”

San Francisco Chronicle, October 1, 2007, p. C1. Available
online. URL: http://www.sfgate.com/cgi-bin/article.cgi?f=/c/
a/2007/10/01/BUDKSGAF4.DTL. Accessed November 5, 2007.

Cullen, Rowena. Health Information on the Internet: A Study of Pro-
viders, Quality, and Users. Westport, Conn.: Praeger, 2006.

DailyStrength. Available online. URL: http://dailystrength.org/.
Accessed November 5, 2007.

Fox, Susannah. “E-Patients with a Disability or Chronic Disease.”
Pew Internet & American Life Project, October 8, 2007.
Available online. URL: http://www.pewinternet.org/pdfs/
EPatients_Chronic_Conditions_2007.pdf. Accessed Novem-
ber 6, 2007.

Lewis, Deborah, et al., eds. Consumer Health Informatics: Informing
Consumers and Improving Health Care. New York: Springer,
2005.

Madden, Mary, and Susannah Fox. “Finding Answers Online
in Sickness and in Health.” Pew Internet & American Life
Project. Available online. URL: http://www.pewinternet.org/
pdfs/PIP_Health_Decisions_2006.pdf. Accessed November
6, 2007.

Mayo Clinic. Available online. URL: http://www.mayoclinic.com/.
Accessed November 5, 2007.

Organized Wisdom. Available online. URL: http://organizedwisdom.
com/. Accessed November 5, 2007.

RateMDs.com. Available online. URL: http://www.ratemds.com.
Accessed November 5, 2007.

WebMD. Available online. URL: http://www.webmd.com/. Accessed
November 5, 2007.

personal information manager  (PIM)
A considerable amount of the working time of most busi-
nesspeople is taken up not by primary business tasks but
in keeping track of contacts, phone conversations, notes,
meetings, deadlines, and other information needed to plan
or coordinate activities. Software designers have responded
to this reality by creating software to help manage personal
information.

Early PC users improvised ways of using available soft-
ware applications for tracking their activities. For exam-
ple, a spreadsheet with text fields might be used to record
and sort contacts and their associated information such
as phone numbers or data could be organized in tables in
word processor documents. However, such improvisations
can be awkward to use. Loading a full-sized word processor
or spreadsheet application takes time (and until Windows
and other multitasking solutions came along, only one pro-

gram could be run at a time). Further, it is hard to integrate
information or keep track of the “big picture” with several
different kinds of information stored in different formats
with different programs.

What was needed was a single application that could
integrate the personal information and make it accessible
without the user having to shut down the main application
program. The first successful PIM was Borland Sidekick,
first released in 1984. Although MS-DOS was designed to
run only a single program at a time, it had an obscure fea-
ture that allowed additional small programs to be loaded
into memory where they could be triggered using a key
combination. Taking advantage of this feature, Sidekick
allowed someone while using, for example, a word proces-
sor, to pop up a note-taking window, an address book, cal-
endar, telephone dialer, calculator, or other features. When
Microsoft Windows replaced DOS, it became possible to
run more than one full-fledged application at a time. PIMs
could then become full-fledged applications in their own
right, and offer additional features.

As e-mail became more common on local networks in
the later 1980s and via the Internet in the 1990s, PIM fea-
tures began to be integrated with e-mail programs such
as Microsoft Outlook and Netscape Navigator’s commu-
nications facilities. New features included the automatic
creation of journal entries from various activities and the
creation of “rules” for recognizing and routing e-mail mes-
sages with particular senders or subjects. A variety of free-
ware and shareware PIMs are available for users who want
an alternative to the commercial products, and a number of
PIMs are available for Macintosh and Linux-based systems.
Web-based personal information management tools can
make it particularly easy to coordinate a widely scattered
workforce, since each user merely has to access the serving
Web site. Recently, low-cost (or even free) Web-based appli-
cations that include PIM as well as productivity features
have been introduced—for example, Google Apps.

The growth of handheld (or palm) computers (see PDA)
and more sophisticated cell phones has created a need to
provide PIM features for these devices (see smartphone).
Since the capacity of handheld devices is limited compared
to desktop PCs, there is also a need for software to allow
easy transfer of information between portable devices and
desktop PCs. This can be done with a serial, USB, or even
wireless connection.

In the future, the PIM is likely to become an integrated
system that operates on a variety of handheld and desktop
devices and seamlessly maintains all information regard-
less of how it is received. There will also be greater ability
to give voice commands (such as to dial a person or to ask
for information about a contact), and to have messages read
aloud (see speech recognition and synthesis). The soft-
ware is also likely to include sophisticated “agents” that can
be instructed to carry out such tasks as prioritizing mes-
sages or returning routine calls (see software agent).

Further Reading
Boyce, Jim, Beth Sheresh, and Doug Sheresh. Microsoft Outlook

2007 Inside Out. Redmond, Wash.: Microsoft Press, 2007.

368        personal information manager

Jones, William. Personal Information Management. Seattle: Univer-
sity of Washington Press, 2007.

Lineberger, Michael. Total Workday Control: Using Microsoft Out-
look. San Ramon, Calif.: New Academy Publishers, 2006.

“Over 160 Free Personal Information Managers.” Available online.
URL: http://www.lifehack.org/articles/lifehack/over-160-free-
personal-information-managers.html. Accessed August 17,
2007.

philosophical and spiritual  
aspects of computing
When modern digital computing emerged in the 1940s, it
evolved from two roots: engineering (particularly electrical
engineering) and mathematics. The goals of the earliest com-
puter designers were focused naturally enough on comput-
ing, although several early thinkers (see Bush, Vannevar;
Shannon, Claude; and Turing, Alan) had already begun
to think of computers as symbol-processing and knowledge-
retrieving machines, not just number crunchers.

As computer scientists began to become more concerned
about the structure of data and the modeling of real-world
objects in computer languages (see object-oriented pro-
gramming), they began to wrestle with some areas long
familiar to philosophers. As data structure involved into
knowledge representations, epistemology (the philosophi-
cal investigation of the meaning and accessibility of knowl-
edge) became more relevant, particularly in developing
systems for artificial intelligence and machine learning.
Also relevant is ontology (the nature and relationship of
entities—see ontologies and data models), particularly
with regard to the modern effort to encode relationships
between items of knowledge into Web pages (see semantic
Web).

The Computer as Philosophical Laboratory
Beyond investigating the potential for applying philosophi-
cal ideas to knowledge engineering, many philosophers
have also taken increasing notice of the possibilities that
artificial intelligence, highly complex dynamic structures
(particularly the Internet), and human-computer interac-
tion offer for investigating long-standing and often seem-
ingly intractable philosophical problems.

One of the knottiest problems is the nature of something
that people experience during every waking moment—con-
sciousness, that awareness of being an “I” or “self” that is
experiencing both an inner world of memories and thoughts
and the outer world conveyed by the senses. One reason
why the problem of consciousness is so difficult to resolve
is that cognitive scientists and philosophers lack the abil-
ity to compare human consciousness with other possible
consciousness. (Some “higher” animals may be conscious
in some sense, but they cannot tell us about it.) However,
as AI programs attempt to model aspects of human cogni-
tion, they can help us find similarities and possible differ-
ences between the way computers and people “think.” Of
course philosophers take a wide variety of positions on the
question of whether there is anything ultimately distinctive
about what we call consciousness, and whether comput-

ers or robots might someday become truly conscious. (For
examples of differing views see Dreyfus, Hubert; Kurz-
weil, Raymond; and McCarthy, John.)

Finally, a number of writers have related developments
in modern computing to ultimate philosophical or spiritual
concerns. For example, the World Wide Web can be com-
pared to the world-girdling “noosphere” of evolving knowl-
edge described by theologian-paleontologist Pierre Teilhard
de Chardin in the mid-20th century. Thus there has been
considerable speculation (and perhaps hype) about a new
form of collective consciousness emerging through the
interaction of people as well as increasingly intelligent pro-
grams on the Net. On the other hand, the experience of
immersive online environments (see online games and
virtual reality) revisits a question that goes back to Des-
cartes in the 17th century—whether what we perceive as
reality might actually be an illusion—and this question
resonates with the works of Western Gnostics and Eastern
Buddhists, not to mention Hollywood’s The Matrix.

The dialog among philosophy, spiritual practice, and
the rapidly changing computer world is likely to remain
fascinating.

Further Reading
Davis, Erik. Techgnosis: Myth, Magic, and Mysticism in the Age of

Information. New York: Harmony Books, 1998.
Floridi, Luciano. Philosophy and Computing: An Introduction. New

York: Routledge, 1999.
———, ed. Philosophy of Computing and Information. Malden,

Mass.: Blackwell, 2004.
Foerst, Anne. God in the Machine: What Robots Teach Us about

Humanity and God. New York: Dutton, 2004.
Hayles, N. Katherine. How We Became Posthuman: Virtual Bodies in

Cybernetics, Literature, and Informatics. Chicago: University
of Chicago Press, 1999.

International Association for Computing and Philosophy. Avail-
able online. URL: http://www.ia-cap.org/. Accessed Novem-
ber 6, 2007.

Irwin, William. The Matrix and Philosophy. Chicago: Open Court,
2002.

Tetlow, Philip. The Web’s Awake: An Introduction to the Field of Web
Science and the Concept of Web Life. Hoboken, N.J.: Wiley,
2007.

phishing and spoofing
Just about anyone with an e-mail account has received mes-
sages purporting to be from a bank, a popular e-commerce
site such as Amazon or eBay, or even a government agency.
Typically the message warns of a problem (such as a sus-
pended account) and urges the recipient to click on a link
in the message. If the user does so, what appears to look
like the actual site of the relevant institution is actually a
“spoof,” or fake site. If the user goes on to enter informa-
tion such as account numbers or passwords in order to fix
the “problem,” the information actually goes to the opera-
tor of the fake site, where it can be used for fraudulent pur-
chases or even impersonation (see identity theft). The
bogus site can also attempt to download viruses, spyware,
keyloggers, or other forms of “malware” to the unwitting
user’s computer.

phishing and spoofing        369

This all-too-common scenario is called “phishing,”
alluding to “fishing” for unwary users with various sorts of
bait, with the f changed to ph in keeping with traditional
hacker practice. Phishing is similar to other techniques for
manipulating people through deception, fear, or greed that
hackers often refer to as “social engineering.” Unlike one-
on-one approaches, however, phishing relies on the ability
to send large quantities of e-mail at virtually no cost (see
spam), the availability of simple techniques for disguising
both e-mail addresses and Web addresses (URLs), and the
ease with which the appearance of a Web site can be con-
vincingly replicated.

Although e-mail is the most common “hook” for phish-
ing, any form of communication, including text or instant
messages, can be used. Recently sites such as MySpace have
become targets for automated phishing expeditions that
changed links on pages to point to fraudulent sites (see
social networking).

Defenses and Countermeasures
Wary users have a number of ways to reduce their chance of
being “phished.” Some signs of bogus messages include:

• � The message is addressed generically (“dear PayPal
user”) or to the user’s e-mail address rather than the
account name.

• � The text of the message contains spelling errors or
poor grammar.

• � The URL shown for a link in the message (perhaps via
a “tool tip”) does not match the institution’s real Web
address.

There are even interactive games such as “Anti-Phishing
Phil” that users can play to test their ability to detect phish-
ing attempts.

Unfortunately, modern phishers are becoming increas-
ingly sophisticated. Some phishing messages can be per-
sonalized, using the target’s actual name. URLs can be
disguised so that discrepancies do not appear. When in
doubt, the safest thing to do is always to access the institu-
tion by typing (not copying) its name directly in the Web
browser rather than clicking on a link in e-mail. (In a prac-
tice called “pharming,” a legitimate Web site can in effect
be hijacked so that normal user accesses will be diverted
to the fraudulent site. Users have no real defense against
pharming; this is a matter for security professionals at the
relevant Web sites.)

Fortunately there are ways in which software can help
detect and block most phishing attempts. A good spam filter
is the first line of defense and can block many phishing mes-
sages from getting to the user in the first place. Anti-phish-
ing features are also increasingly included in Web browsers,
or available as plug-ins. Thus “blacklists” of known phish-
ing sites can be checked in real time and warnings given, or
the site’s address can be blocked from access by the system.
Web sites can also introduce an added layer of security:
Bank of America, for example, asks users to select and label
one of several images offered by the bank. The image and
label are subsequent displayed as part of the log-in process.
If the user does not see the image and the user’s label, then
the site is presumably not the real bank site.

Legislative Response
Phishing has been one of the fastest-growing types of online
crime in recent years (see computer crime and security
and online frauds and scams). By mid-2007 the Anti-
Phishing Working Group (an association of financial insti-
tutions and businesses) was reporting the appearance of
more than 30,000 new phishing sites per month (the largest
number operating from China), though a site typically stays
online for only a few days. Phishing contributed signifi-
cantly to the $49 billion cost of identity theft in 2006 as esti-
mated by Javelin Research. Further, industry surveys have
suggested that phishing has aroused considerable consumer
concern, slowing down the adoption or continued use of
some financial services (see banking and computers).

In response to this growing concern, the U.S. Federal
Trade Commission filed its first civil suit against a sus-
pected phisher in 2004. The United States and other coun-
tries have also arrested phishing suspects, generally under
some form of wire fraud statute. Starting in 2004, anti-
phishing bills have been introduced in Congress, though
none had passed as of 2007. However, the CAN-SPAM Act
of 2003 was used in 2007 to convict a defendant accused
of sending thousands of phishing e-mails purporting to be
from America Online (AOL). Many states have also intro-
duced anti-phishing legislation.

Further Reading
Anti-Phishing Working Group. Available online. URL: http://www.

antiphishing.org/. Accessed November 6, 2007.

“Phishing” messages such as this fake IRS e-mail try to trick users
into clicking on links to equally bogus Web sites that can steal per-
sonal information or infect computers with viruses.

370        phishing and spoofing

Jacobson, Markus, and Steven Myers, eds. Phishing and Counter-
measures: Understanding the Increasing Problem of Electronic
Identity Theft. Hoboken, N.J.: Wiley-Interscience, 2006.

James, Lance. Phishing Exposed: Uncover Secrets from the Dark Side.
Rockland, Mass.: Syngress Publishing, 2005.

Lininger, Rachael, and Russell Dean Vines. Phishing: Cutting the
Identity Theft Line. Indianapolis: Wiley, 2005.

PhishTank. Available online. URL: http://www.phishtank.com/.
Accessed November 6, 2007.

Sheng, Steve, et al. “Anti-Phishing Phil: The Design and Evalua-
tion of a Game That Teaches People Not to Fall for Phish.”
Carnegie Mellon University. Available online. URL: http://
cups.cs.cmu.edu/soups/2007/proceedings/p88_sheng.pdf.
Accessed November 6, 2007. (The game itself is available at
http://cups.cs.cmu.edu/antiphishing_phil/.)

U.S. Federal Trade Commission. “FTC Consumer Alert: How Not
to Get Hooked by a ‘Phishing’ Scam.” October 2006. Available
online. URL: http://www.ftc.gov/bcp/edu/pubs/consumer/
alerts/alt127.pdf. Accessed February 8, 2008.

photography, digital
For more than 150 years photography has depended on the
use of film made from light-sensitive chemicals. However,
digital photography, first developed in the 1970s, emerged
in the late 1990s as a practical, and in some ways superior,
alternative to traditional photography.

The basic idea behind digital photography is that light
(photons) can create an electrical charge in certain materi-
als. In 1969, engineers at Bell Labs invented a light-sensi-
tive semiconductor that became known as a charge-coupled
device (CCD). The original intention of the developers was
to use an array of CCDs to make a compact black-and-
white video camera for the videophone, a device that did
not prove commercially viable. However, astronomers were
soon using CCD arrays to capture images too faint for the
human eye or even for conventional film.

Digital photography remained confined to such special-
ized applications until the mid-1990s. By then, the growing

use of multimedia and the World Wide Web made digi-
tal photography an attractive alternative for getting images
online quickly, avoiding the need to scan traditional prints
or negatives. At the same time, cheaper, more powerful
processors and larger capacity memory storage made good
quality digital cameras more viable as a consumer product.

A digital camera uses the same type of lenses and opti-
cal systems as a conventional camera. Instead of falling
upon film, however, the incoming light strikes an array of
CCD “photosites.” Each photosite represents one picture
element, or pixel, which will appear as a tiny dot in the
resulting picture. (Camera resolution is typically measured
in millions of pixels, or “megapixels.”)

The surface of the array contains an abundance of free
electrons. As light strikes a photosite, it creates a charge
that draws and concentrates nearby electrons. The voltage
at a photosite is thus proportional to the intensity of the
light striking it. The charge of each row of photosites is
transferred to a corresponding read-out register, where it is
amplified to facilitate measurement.

The camera uses an analog-to-digital converter (see
analog and digital) to convert the amplified voltages to
digital numeric values. Early consumer digital cameras typ-
ically used 8-bit values, limiting the camera to a range of
gradated intensity from 0 to 255. However, many cameras
today use up to 12 bits, giving a range of 0 to 4096.

The CCD mechanism itself measures only light inten-
sities, not colors. To obtain color, many cameras use a
red, green, or blue (RGB) filter at each photosite. (Some
manufacturers use cyan, yellow, green, and magenta fil-
ters instead.) Since each photosite registers only a single
color, interpolation algorithms must be used to estimate the
actual color of each pixel by using laws of color optics and
comparing the colors and intensity of the adjacent pixels.

New high-end cameras are starting to eschew interpola-
tion in favor of using a complete, separate CCD array for

Digital cameras use a charge-coupled device (CCD) to convert incoming light to varying voltages that are digitized to create pixel values.
They have largely replaced traditional film cameras for most applications.

photography, digital        371

each of the three RGB colors and thus making and com-
bining three complete exposures that directly capture the
colors. This produces the best possible color accuracy but is
more expensive.

The final image data is stored using a standard file for-
mat, usually JPEG (see graphics formats). The most com-
monly used storage medium is an insertable “flash” memory
module. The major competing memory card standards are
CompactFlash, SD, and Sony Memory Stick. Storage capaci-
ties run to 4 GB. As with regular RAM, the cost of flash
memory has declined considerably in recent years.

In determining the adequacy of the camera’s storage
capacity, the user must also consider the camera’s resolu-
tion (number of pixels) and whether images will be com-
pressed before storage (see data compression). While a
certain amount of compression can be achieved without
discernable degradation of the image, more drastic “lossy”
compression sacrifices image quality for compactness. It
should also be noted that as image resolution (and thus file
size) increases, the time needed to process and store each
image will also increase, limiting how rapidly successive
exposures can be made.

Most digital cameras have a USB connector (see USB),
making it easy to upload the stored images from the camera
to a PC. Once in the PC, images can be edited or otherwise
manipulated using the basic photo editing software usually
included with the camera or a full-featured professional
product such as Adobe Photoshop.

The same trends that have brought more capability
per dollar spent on digital cameras have been even more
evident in printers (see printer). Using resolutions of
2880 dots per inch or more and special papers, digital
camera users can make prints with a quality similar to
that produced by traditional photo developers. Computer
prints are more subject to color fading over time than are
conventional prints, although some printer manufactur-
ers now offer toner that will resist fading for 25 years or
more.

Future Trends
High-end consumer digital cameras reached the 8–10 mega-
pixel range by 2008, allowing for images that can be “blown
up” to 10 by 12 inches or larger while retaining image qual-
ity comparable to conventional photos. Professional-grade
digital cameras (“digital SLRs”) are rated at 10 megapixels
or more. The need for such cameras for professional work
arises not only from the higher resolution requirements
but also because these cameras have the very high-qual-
ity optics used in fine 35 mm cameras, as well as having a
greater variety of available specialty lenses. (Consumer dig-
ital “superzoom” cameras, however, do offer zoom lenses
roughly comparable to those for low-cost 35-mm cameras.)
The quality and convenience of digital photography ensure
that digital cameras will supplant conventional cameras for
most consumer and many professional applications. Many
digital cameras also have the ability to shoot short video
sequences. The ubiquity of digital cameras and digital video
(even in many cell phones) has had important social conse-
quences by facilitating transmission of pictures of disasters,

political gaffes, and other events often outside the main-
stream media (see user-created content and YouTube).

Digital camcorders will also become more widely used.
Their resolution is generally from about a quarter million
pixels to a million pixels—considerably lower than for
digital still cameras, but adequate and likely to improve.
Digital video cameras are also rated according to lux value,
indicating the minimum light level for satisfactory record-
ing. Most digital videos store the captured image to tape
(either MiniDV or Hi-8), but some newer cameras use built-
in recordable DVD disks instead (see CD-ROM and DVD-
ROM). The ability to digitally edit video direct from the
camera is also an important advantage.

Further Reading
Busch, David D. Digital SLR Cameras & Photography for Dummies.

2nd ed. Hoboken, N.J.: Wiley, 2007.
Etchells, Dave. “Finding the Right Digital Camera.” Imaging

Resource Newsletter. Available online. URL: http://www.
imaging-resource.com /TIPS/ BUYGD/ BUYGUID.HTM.
Accessed August 17, 2007.

King, Julie Adair. Digital Photography for Dummies. 5th ed. Hobo-
ken, N.J.: Wiley, 2005.

Silva, Robert. “Digital Camcorder Formats.” Available online. URL:
http://hometheater.about.com/od/camcorders/a/camformats_
2.htm. Accessed August 17, 2007.

Wilson, Tracy V., K. Nice, and G. Gurevich. “How Digital Cameras
Work.” Available online. URL: http://www.howstuffworks.
com/digital-camera.htm. Accessed August 17, 2007.

PHP
PHP is a very popular scripting language primarily used
for creating dynamic Web pages (see Ajax and scripting
languages). PHP originated in 1994 as a way for Danish
programmer Rasmus Lerdorf to replace a set of Perl scripts
used to manage his own Web page—hence the original
name “personal home page.” Lerdorf released the first ver-
sion together with a “form interpreter” in 1995. In 1997 the
language parser was rewritten by Israeli developers Zeev
Suraski and Andi Gutmans, who launched PHP3 in 1998;
since then the initials PHP have (recursively) stood for PHP:
Hypertext Processor. In 2004 the current version, PHP5,
was released. As the language has evolved, it has improved
in its support for objects (see object-oriented program-
ming) as well as in its connectivity to MySQL and other
database and Web-application coordination technologies.

PHP normally runs on a Web server and processes PHP
code, which is often embedded within Web pages (see
HTML). The classic Hello World program would look like
this:

<? php
echo “Hello, World”;
?>

The PHP processor parses only the code within the delim-
iters <? and ?>. (An alternative set of delimiters is <script
language =‘php’> </script>.

Besides being embedded in HTML pages, PHP can
be used interactively at the command line, where it has
replaced older languages such as awk, Perl, or shell script-

372        PHP

ing for many users. PHP can also be linked to user-interface
libraries (such as GTK+ for Linux/UNIX) to create applica-
tions that run on the client machine rather than the server.

PHP has a basic set of data types plus one called
“resource” that represents data processed by special func-
tions that return images, text files, database records, and
so on. Additionally, PHP5 provides full support for objects,
including private and protected member variables, con-
structors and destructors, and other features similar to
those found in C++ and other languages.

There are numerous libraries of open-source objects
and functions that enable PHP scripts to perform common
Internet tasks, including accessing database servers (such as
MySQL) as well as extensions to the language to handle pop-
ular Web formats such as Adobe Flash animation. Program-
mers have access to a wide range of PHP resources through
PEAR (the PHP Extension and Application Repository).

The combination of sophisticated features and easy
interactive scripting has made PHP the language of choice
for many Web developers, who use it as part of the group of
technologies called LAMP, for Linux, Apache (Web server),
MySQL (database), and PHP.

Further Reading
Achour, Mehdi, et al. PHP Manual. Available online. URL: http://

www.php.net/manual/en/. Accessed November 7, 2007.
Lerdorf, Rasmus, Kevin Tatroe, and Peter MacIntyre. Programming

PHP. 2nd ed. Sebastapol, Calif.: O’Reilly Media, 2006.
PEAR-PHP Extension and Applications Repository. Available

online. URL: http://pear.php.net/. Accessed November 7,
2007.

PHP [official Web site]. Available online. URL: http://php.net/.
Accessed November 7, 2007.

Zandstra, Matt. PHP Objects, Patterns, and Practice. Berkeley, Calif.:
Apress, 2004.

PL/I
By the early 1960s, two programming languages were in
widespread use: FORTRAN for scientific and engineering
applications and COBOL for business computing. However,
applications were becoming larger and more complex, call-
ing for a wider variety of capabilities. For example, scien-
tific programmers needed to provide data-processing and
reporting capabilities as well as computation. Business pro-
grammers, in turn, increasingly needed to work with for-
mulas and statistics and needed floating-point and other
number formats.

Language developers thus began to look toward a gen-
eral-purpose language that could be equally at home with
words, numbers, and data files. Meanwhile, IBM was pre-
paring to replace its previously separate scientific and busi-
ness computer systems with the versatile System/360. They
and one of their user groups, SHARE, formed a joint com-
mittee to develop a new language for this new machine.

At first the designers thought in terms of extending
FORTRAN to provide better text and data-processing capa-
bilities, so they designated the new language FORTRAN
VI. However, their focus soon changed to designing a
completely new language, which was known until 1965 as

NPL (New Programming Language). Because this acronym
already stood for Britain’s National Physical Laboratory, the
name of the language was changed to PL/I (Programming
Language I).

Language Features
PL/I has been described as the “Swiss army knife of lan-
guages” because it provides so many features drawn from
disparate sources. The basic block structure and control
structures (see loop and branching statement) were
adapted from Algol, a relatively small language that had
been devised by computer scientists as a model for struc-
tured programming (see Algol) and is also similar to Pascal
(see Pascal). Blocks can be nested, and variables declared
within a block can be accessed only within that block and
its nested blocks, unless declared explicitly otherwise.

PL/I includes a particularly rich variety of data types
and can specify even the number of digits for numeric data.
A PICTURE clause similar to that in COBOL can be used to
specify exact layout. However, the language takes a more
pragmatic approach than Algol or Pascal; data need not
be declared and will be given default characteristics based
on context. Input/Output (I/O) is built into the language
rather than provided in an external library, and the flexible
options include character, streams of characters, blocks,
and records with either sequential or random access.

In general, PL/I provides more control over the low-
level operation of the machine than Algol or even succes-
sors such as C. For example, there is an unusual amount of
control over how variables are stored, ranging from STATIC
(present throughout the life of the program) to AUTO-
MATIC (allocated and deallocated as the containing block
is entered and exited) to CONTROLLED, where memory
must be explicitly allocated and freed. Pointers allow mem-
ory locations to be manipulated directly. PL/I also provided
more elaborate facilities for handling exceptions (errors)
arising from hardware condition, arithmetic, file-handling,
or other conditions.

Example Program
The following program executes a DO loop and counts from
one to the number of items specified. It then outputs the
total of the numbers and their average.

COUNTEM: PROCEDURE OPTIONS (MAIN);
DECLARE (ITEMS, COUNTER, SUM, AVG) FIXED;
ITEMS = 10;
SUM = 0;
DO COUNTER = 1 TO ITEMS;

SUM = SUM + COUNTER;
END;
AVG = SUM / ITEMS;
PUT SKIP LIST (“TOTAL OF ”);
PUT ITEMS;
PUT (“ITEMS IS ”);
PUT TOTAL;
PUT SKIP LIST (“THE AVERAGE IS: ”);
PUT AVG;
END COUNTEM;

PL/I        373

Impact of the Language
Because of its many practical features and its availability for
the popular IBM 360 mainframes, PL/I enjoyed consider-
able success in the late 1960s and 1970s. The language was
later ported to most major platforms and operating sys-
tems. When personal computers came along, PL/I became
available for IBM’s OS/2 operating system as well as for
Microsoft’s DOS and Windows, although the language never
really caught on in those environments.

Computer scientists such as structured programming
guru Edsger Dijkstra decried PL/I’s lack of a clear, well-
defined structure. In his Turing Award Lecture in 1972,
Dijkstra opined that “I absolutely fail to see how we can
keep our growing programs firmly within our intellectual
grip when by its sheer baroqueness the programming lan-
guage—our basic tool, mind you!—already escapes our
intellectual control.” (See Dijkstra, Edsger.)

On a practical level the sheer number of features in
the language meant that truly mastering it was a lengthy
process. A language like C, on the other hand, had a much
simpler “core” to master even though it was less versatile.
PL/I also tended to retain the mainframe associations from
its birth at IBM, while C grew up in the world of minicom-
puters and the UNIX community and proved more suitable
for PCs. Nevertheless, PL/I provided many examples that
language designers could use in attempting to design better
implementations.

Further Reading
The Essentials of PL/I Programming Language. Piscataway, N.J.:

Research and Education Association, 1993.
Hughes, Joan Kirby. PL/I Structured Programming. 3rd ed. New

York: Wiley, 1986.
“PL/I Frequently Asked Questions (FAQ).” Available online. URL:

http://www.faqs.org/faqs/computer-lang/pli-faq/. Accessed
August 17, 2007.

“The PL/I Language.” Available online. URL: http://home.nycap.
rr.com/pflass/pli.htm. Accessed February 9, 2008.

Sebesta, Robert W. Concepts of Programming Languages. 8th ed.
Boston: Pearson Addison-Wesley, 2007.

Plug and Play
In early MS-DOS systems installation of new hardware such
as a printer often had to be performed manually by copying
files (see device driver) to the hard drive from floppies
and then making specified settings to the system configu-
ration files AUTOEXEC.BAT and CONFIG.SYS. These set-
tings often involved unfamiliar concepts such as interrupts
(IRQs) and DMA (direct memory access) channels.

When Windows came along, device manufacturers gen-
erally provided an installation program that takes care of
copying the files and making the necessary changes to the
system registry. However, there was still the problem of
ensuring that one had a driver compatible with the version
of the operating system in use, and users were sometimes
asked to make choices for which they were not prepared
(such as choosing which port to use).

By the mid-1990s, Intel was promoting a standard for the
automated detection and configuration of devices. Known

as Plug and Play (PnP), this standard was incorporated in
versions of Microsoft Windows starting with Windows 95
(see Microsoft Windows). The required hardware support
soon appeared on PC motherboards and expansion cards.

With Plug and Play the user simply connects a printer,
scanner, or other device to the PC. Windows detects that
a device has been connected and queries it for its official
name and other information. If necessary, Windows can
then prompt the user for a disk containing the appropriate
driver or even search for a driver on a Web site.

The concept of Plug and Play extends beyond the Win-
dows world, however. In recent years there has been inter-
est in developing a Universal Plug and Play (UPnP) protocol
by which a variety of devices could automatically config-
ure themselves with any of a variety of different networks.
This would be particularly helpful for home users who are
increasingly setting up small networks so they can share
broadband Internet connections, as well as the growing
number of users who want their desktop PC to work with
handheld (palm) computers and other devices. Microsoft
supports UPnP in versions of Windows starting with ME
and XP.

Further Reading
Bigelow, Stephen J. The Plug & Play Book. New York: McGraw Hill,

1999.
Shanley, Tom. Plug and Play System Architecture. Reading, Mass.:

Addison-Wesley, 1995.
Universal Plug and Play Forum. Available online. URL: http://

www.upnp.org/. Accessed August 17, 2007.

plug-in
A number of applications programs include the ability for
third-party developers to write small programs that extend
the main program’s functionality. For example, thousands
of “filters” (algorithms for transforming images) have been
written for Adobe Photoshop. These small programs are
called plug-ins because they are designed to connect to
the main program and provide their service whenever it is
desired or required.

Perhaps the most commonly encountered plug-ins are
those available for Web browsers such as Firefox, Netscape,
or Internet Explorer. Plug-ins can enable the browser to dis-
play new types of files (such as multimedia). Many standard
programs for particular kinds of files are now provided
both as stand-alone applications and as browser plug-ins.
Examples include Adobe (PDF document format), Apple
QuickTime (graphics, video, and animation), RealPlayer
(streaming video and audio), and Macromedia Flash (inter-
active animation and presentation). These and many other
plug-ins are offered free for the downloading, in order to
increase the number of potential users for the formats and
thus the market for the development packages.

One of the most useful plug-ins found in most browsers
is one that allows the browser to run Java applets (see Java).
In turn, Java is often used to write other plug-ins.

Beyond such traditional workhorses, a number of inno-
vative browser plug-ins have appeared, particularly for the

374        Plug and Play

increasingly popular Firefox browser. For example, there
are plug-ins that enable the user to view and work with
the HTML and other elements of the page being viewed.
Another popular area is plug-ins that make it easier to
capture and organize material from Web pages, going well
beyond the standard favorites or bookmark facility.

Including plug-in support for an application enables vol-
unteer or commercial third-party developers to in effect
increase the feature set of the main application, which in
turn benefits the original developer. In the broader perspec-
tive, plug-ins are a way to harness the collaborative spirit
found in open-source development, creating a community
that is continually improving applications tools and making
them more versatile. (The open-source Eclipse program-
ming environment is a good example.)

Further Reading
Add-Ons for Internet Explorer. Available online. URL: http://www.

windowsmarketplace.com/category.aspx?bcatid=834&tabid=
1/. Accessed August 17, 2007.

Benjes-Small, Candice M., and Melissa L. Just. The Library and
Information Professional’s Guide to Plug-ins and Other Web
Browser Tools. New York: Neal Schuman, 2002.

Clayberg, Eric, and Dan Rubel. Eclipse: Building Commercial-Qual-
ity Plug-ins. 2nd ed. Upper Saddle River, N.J.: Addison-Wesley
Professional, 2006.

Drafahl, Jack, and Sue Drafahl. Plug-ins for Adobe Photoshop: A
Guide for Photographers. Buffalo, N.Y.: Amherst Media, 2004.

Firefox Add-ons: Common Plugins for Firefox. Available online.
URL: https://addons.mozilla.org/en-US/firefox. Accessed
August 17, 2007.

Google Desktop Gadgets [plug-ins] Available online. URL: http://
desktop.google.com/plugins/?hl=en. Accessed August 17,
2007.

Pilgrim, Mark. Greasemonkey Hacks: Tips & Tools for Remixing the
Web with Firefox. Sebastapol, Calif.: O’Reilly, 2005.

podcasting
Podcasting (from iPod plus broadcasting) lets users sub-
scribe to and automatically download regularly distributed
content (such as radio broadcasts) over the Internet. The
media files can be stored on an Apple iPod or other media
player (see music and video players, digital), personal
computer, or other device (see smartphone). Podcasting
became popular starting around 2004–05 and has become
widely used by individuals and organizations.

Typically, files to be podcast are put on a Web server. The
URLs for the files and other information (such as episode
titles) is provided in files called feeds, using a format such
as RSS or Atom (see RSS). The user installs client software
(such as iPodder), browses the feeds (such as through an
online directory), and decides what to subscribe to. The soft-
ware then periodically checks the feeds, obtains the URLs of
the latest files, and downloads them automatically. The soft-
ware can, if desired, then transfer the downloaded files to a
portable media player, such as over a USB connection.

Applications
There are many sources of podcasts. News organizations
can provide regular audio or video podcasts as a supple-

ment to regular text material. Podcasting also offers a way
for a small news organization or independent journalist to
build an audience using equipment as simple as a micro-
phone and perhaps a video camera. Podcasts also provide
a way for political organizations to keep in touch with sup-
porters (and perhaps supply them with talking points). Any
source of periodically distributed audio or video can be a
candidate for podcasting. These include class lectures, cor-
porate communications, and even religious services.

Further Reading
Geoghegan, Michael W., and Dan Hlass. Podcast Solutions: The

Complete How-To Guide to Getting Heard around the World.
Berkeley, Calif.: Apress, 2005.

Juice: The Cross-Platform Podcast Receiver. Available online.
URL: http://juicereceiver.sourceforge.net/. Accessed Novem-
ber 7, 2007.

King, Kathleen P., and Mark Gura. Podcasting for Teachers: Using a
New Technology to Revolutionize Teaching and Learning. Char-
lotte, N.C.: Information Age Publishing, 2007.

Mack, Steve, and Mitch Ratcliffe. Podcasting Bible. Indianapolis:
Wiley, 2007.

Morris, Tee, and Evo Terra. Podcasting for Dummies. Hoboken,
N.J.: Wiley, 2006.

Podcast Alley. Available online. URL: http://www.podcastalley.
com/. Accessed November 7, 2007.

Podcasting News. Available online. URL: http://www.podcasting-
news.com/. Accessed November 7, 2007.

pointers and indirection
The memory in a computer is accessed by numbering the suc-
cessive storage locations (see addressing). When a program-
mer declares a variable, the compiler associates its name with
a location in available memory (see variable). If the variable
is used in an expression, when the expression is evaluated,
the variable’s name is replaced by its current value—that is,
with the contents of the memory location associated with the
variable. Thus, the expression Total + 10 is evaluated as “the
contents in the address associated with Total” plus 10.

Sometimes, however, it is useful to have the general
capability to access memory locations without assigning
explicit variables. This is done through a special type of
variable called a pointer. The only difference between point-
ers and regular variables is that the value stored in a pointer
is not the data to be ultimately used by the program. Rather,
it is the address of that data. Here are some examples from
C, a language that famously provides support for pointers:

Int MyVar; 	 // Declare a regular variable
Int *MyPtr; 	 // Declare a pointer to an

integer
	 // (int) variable

MyVar = 10; 	 // Set the value of MyVar
to 10

MyPtr = &MyVar; // Store the address of
MyVar in

	 // the pointer MyPtr

In C, an asterisk in front of a variable name indicates
that the variable is a pointer to the type declared. In the

pointers and indirection        375

second line above, therefore, MyPtr is a pointer to an integer
variable. This means that the address of any integer variable
can be stored in MyPtr. The last line uses the & (ampersand)
to represent the address of the variable MyVar. Therefore, it
stores that address in MyPtr.

Examining the lines above, one sees that the variable
MyVar has the value 10. The pointer variable MyPtr has the
value of whatever machine address contains the contents
of the variable MyVar. In an expression, putting an asterisk
in front of a pointer name “dereferences” the pointer. This
means that it returns not the address stored in the pointer,
but the value stored at the address stored in the pointer (see
the diagram). Therefore if one writes:

AnotherVar = * MyPtr;

What is the value of AnotherVar? The answer is the
current value of MyVar (whose address had been stored in
MyPtr)—that value, as assigned earlier, is 10.

The general concept of storing the address of another
variable in a variable is called indirection, or indirect
addressing. It was first used in assembly language to work
with index registers—special memory locations in a pro-
cessor that store memory addresses.

Uses for Pointers
Although the concept may seem esoteric, pointers have a
number of uses. For example, suppose one has a buffer
(perhaps storing video graphics data) and one wants to
copy it from one area to another. One could declare the buf-
fer to be an array (see array) and then reference each ele-
ment, or memory location and copy it. However, this would
be rather awkward. Instead, one can declare a pointer, set it
to the starting address of the buffer, and then simply use a
loop to increment the pointer, pointing in turn to each loca-
tion in the buffer.

A similar approach applies to strings in C and related
languages. A string of characters in C is declared as an
array of char. In an array, the name of the array is actually
a pointer to the first data location. It is therefore easy to
manipulate strings by getting their starting address by ref-
erencing the name and then using one or more pointers to
step through the data locations. For example, the following
function copies the contents of one string into another:

strcpy(char *s1,char *s2)
{

while (*s2)
*s1++ = *s2++;

}

The function takes two strings, s1 and s2, declared as
pointers to char. It then steps (increments) them (using
the ++ operator) so that the value in each location in s2 is
copied into the corresponding location in s1. The loop exits
when the value at s2 is 0 (null), indicating that the end of
string marker has been reached.

Another common use for pointers is in memory alloca-
tion. Typically, a program requests memory by giving the
memory allocation function a pointer and the amount of
memory requested. The function allocates the memory and
then returns the starting address of the new memory in the
pointer, so the program knows how to access that memory.

Pointers are also useful for passing a “bulky” variable
such as a data record to a procedure or function. Suppose,
for example, a program needs to pass a 65,000 byte record
to a procedure for printing a report. If it passes the actual
record, the system has to make a copy of the whole record,
tying up memory. If, instead, a pointer to the record is used,
only the address is passed. The procedure can then access
the record at that address without having to make a copy.

In C and some other languages it is even possible to
have a pointer that points to another pointer. A common
case is an array of strings, such as

Char Form [80] [20];

representing a form that has 20 lines of 80 characters. Each
line is an array of characters and the form as a whole is thus
“an array of arrays of characters.” Therefore, to dereference
(get the value of) a character one would first dereference
the line, and then the column.

Problems with Pointers
Pointers may be useful, but they are also prone to caus-
ing programming problems. The simplest one is failing to
distinguish between a pointer and its value. For example,
suppose one writes:

Total = Total + MyPtr;

intending to add the value of the variable pointed to by
MyPtr to Total. Unfortunately, the asterisk (dereferenc-
ing operator) has been inadvertently omitted, so what gets
added to Total is the machine address stored in MyPtr!

Another problem comes when a pointer is used to allo-
cate memory, the memory is later deallocated, but the
pointer is left pointing to it.

Because pointers can potentially access any location in
memory (or at least attempt to), some computer scientists
view them as more dangerous than useful. It’s true that
most things one might want to do with a pointer can be
accomplished by alternative means. One attempt to tame
pointers is found in C++, which offers the “reference” data
type. A reference is essentially a constant pointer that once
assigned to a variable always dereferences that variable and

A pointer is a variable whose value is an address location. Here
MyPtr holds the address 101.

376        pointers and indirection

cannot be pointed anywhere else. Java has gone even fur-
ther by not including traditional pointers at all.

Further Reading
Jensen, Ted. “A Tutorial on Pointers and Arrays in C.” Available

online. URL: http://home.netcom.com/~tjensen/ptr/pointers.
htm. Accessed August 17, 2007.

Parlante, Nick. “Pointers and Memory.” Available online. URL:
http://cslibrary.stanford.edu/102/PointersAndMemory.pdf.
Accessed August 17, 2007.

Sebesta, Robert W. Concepts of Programming Languages. 8th ed.
Boston: Pearson Addison-Wesley, 2007.

Soulle, Juan. “Pointers [in C++].” Available online. URL: http://
www.cplusplus.com/doc/tutorial/pointers.html. Accessed
August 17, 2007.

political activism and the Internet
Although newspapers and particularly television remain the
most popular sources used by voters to obtain information
about candidates and issues, reports by the Pew Internet &
American Life Project found that online media was used
by about a third of American voters in the 2006 midterm
elections, and about 15 percent used it as their primary
information source. (The latter rate was about 35 percent
among young people who had access to broadband Inter-
net connections at home.) The researchers also found that
about half of the online users had sought information not
available elsewhere, while 41 percent believed that newspa-
pers and television did not provide them with all the infor-
mation they wanted.

It is true that much of the political information users
find online is news that originated with mainstream print
or broadcast news outlets. However, a growing role is also
being played by blogs, issue-oriented Web sites, or sites
created by candidates themselves, including profiles on the
MySpace social networking site.

A surprising number of people who look to the Internet
for political information participate actively, with about a
quarter engaging in blogs or other online postings, whether
expressing their own opinions or forwarding e-mail or
reposting material. As users become more active (see user-
created content), they are even becoming part of “offi-
cial” debates, as in 2007 when primary candidates were
asked questions submitted as 30-second YouTube videos.

Advantages and Pitfalls for Candidates
For political candidates and campaigns, the Internet is a
mixed blessing. Advantages include:

• � can reach a large number of people at relatively low
cost

• � can bypass a possibly indifferent mainstream media
and reach people directly

• � provides ways to organize and motivate supporters
(see blogs and blogging, podcasting, and social
networking)

• � allows for easier fund-raising, including potentially
millions of small donations

The first major candidate to put together a campaign
based on these principles was Howard Dean, who for a
time was frontrunner for the 2004 Democratic presidential
nomination. In the run-up to the 2008 race, libertarian
Republican Ron Paul, while barely registering in the polls,
startled the mainstream media by raising more than $4 mil-
lion in one day from thousands of supporters organized on
the Web.

However, there are pitfalls for politicians in the digital
age as well. It is hard to control or coordinate self-organized
activists, who may adopt positions that contradict the can-
didate’s stated platform or engage in intemperate attacks.
(In 2007 a video “mashup” by a Barack Obama supporter
portraying Hillary Clinton as “big brother” in the famous
1984 Apple Macintosh commercial led to denials that the
Obama campaign had anything to do with it.)

Further, the legions of independent bloggers virtually
guarantee that “stumbles” that might have been missed or
ignored by traditional media will be featured in blogs or
displayed on YouTube for millions to ponder. (An example
was Virginia senator George Allen, whose use of an obscure
racial epithet macaca may have cost him reelection in 2006
when it was captured by a video blogger.) It is unclear
whether the intense 24-hour scrutiny will force candidates
to become ever more tightly scripted in their public activi-
ties so as to avoid “macaca moments.”

Some critics also suggest that the Internet may actually
weaken democracy in some ways. Because of the increas-
ing ability to personalize or customize what news one sees
and whom one converses with, people could end up being
simply confirmed in their beliefs and isolated from larger
dialog. Extremist groups already use Web sites not only to
recruit people, but to keep followers motivated and focused
on their issues, while in effect filtering out opposing views.
The creation of such isolated constituencies, able to choose
to see only the kinds of things that make them comfortable,
could be bad for democracy. (This could be called a form of
self-censorship, as opposed to outwardly imposed censor-
ship, as in China—see censorship and the Internet.) On
the other hand, the sheer amount and variety of informa-
tion available may make it hard for people to cut themselves
off in this way.

Despite these misgivings, the importance of the Web
for political activism and campaigns is clear. No campaign,
whether political or issue advocacy, can afford not to have a
quality Web site and staff who are adept at the new media and
forms of communication, expression, and social networking.

Further Reading
Chadwick, Andrew. Internet Politics: States, Citizens, and New Com-

munication Technologies. New York: Oxford University Press,
2006.

Garofoli, Joe. “Blogger Fest a Magnet for Liberal Politicos.” San
Francisco Chronicle, July 29, 2007, p. A1. Available online.
URL: http://sfgate.com/cgi-bin/article.cgi?f=/c/a/2007/07/29/
MNGRVR91RU1.DTL. Accessed November 8, 2007.

Guynn, Jessica. “Growing Internet Role in Election.” San Francisco
Chronicle, June 4, 2007, p. C-1. Available online. URL: http://
sfgate.com/cgi-bin/article.cgi?f=/chronicle/archive/2007/06/04/
BUGI6Q5L181. DTL. Accessed November 8, 2007.

political activism and the Internet        377

Hogarth, Paul. “Hillary, Obama and the YouTube Election.” Beyond-
Chron, March 21, 2007. Available online. URL: http://www.
beyondchron.org/news/index.php?itemid=4322. Accessed Nov
ember 8, 2007.

Jakoda, Karen A. B., ed. Crossing the River: The Coming of Age of
the Internet in Politics and Advocacy. Philadelphia: Xlibris,
2005.

Nagourney, Adam. “Internet Injects Sweeping Change into U.S. Poli-
tics.” New York Times, April 2, 2006, p. 1 ff. Available online. URL:
http://www.nytimes.com/2006/04/02/washington/02campaign.
html?_r=1&or ef=slogin. Accessed November 8, 2007.

Rainie, Lee, and John Horrigan. “Election 2006 Online.” Pew Inter-
net & American Life Project, 2007. Available online. URL:
http://www.pewinternet.org/pdfs/PIP_Politics_2006.pdf.
Accessed November 8, 2007.

TechPresident: Personal Democracy Forum. Available online.
URL: http://www.techpresident.com/. Accessed November 8,
2007.

popular culture and computing
Computer technology first came to public consciousness
with the wartime ENIAC and the first commercial machines
such as Univac in the early 1950s. The war had shown the
destructive side of new technologies (particularly atomic
power), but corporate and government leaders were soon
promoting their beneficial prospects. Just as atomic energy
advocates promised to provide power that was abundant,
cheap, and clean, the computer, or “giant brain” was touted
for its ability to solve problems that had been beyond
human capabilities.

Ominous Machines
However, the computer, too, had its shadow in the popu-
lar consciousness. With their mysterious flashing lights
and white-coated programmer/priests, mainframe comput-
ers were often seen as modern embodiments of the “mad
scientist” trope, as in the movie Colossus: The Forbin Proj-
ect (1970), where American and Soviet supercomputers
joined forces to take over the world. Artificial intelligence
also usurped humanity in the more mystical 2001: A Space
Odyssey (1968).

On the domestic front, the mainframe computer also
became a symbol of misgivings about the bureaucratic
state and corporate conformity. The romantic comedy film
Desk Set, featuring Katharine Hepburn as a beleaguered
corporate librarian, at first seems to confirm these fears,
only to reveal that the computer had been misunderstood
and would bring about a happier future for all. (IBM, inci-
dentally, provided much of the technical support for the
film.)

The counterculture of the 1960s seemed much less san-
guine about the digital future. To many of the generation of
activists starting with the Free Speech Movement in 1964,
computers were the tools of the military-industrial com-
plex, and computing facilities were sometimes picketed or
even physically attacked.

However, a computer-savvy wing of the countercul-
ture was also rising (see hackers and hacking). Activists
began to see the machines as a tool for community orga-
nization and communication, as in 1973 with Community

Memory, the first computer bulletin board system, accessed
by teletype terminals.

Getting Personal
By the late 1970s the personal computer had arrived.
On the one hand, PCs would seem not to fit the main-
frame stereotype. After all, the desktop machines are
small and designed to be accessible helpers in everyday
life and work. Still, they could be connected to networks
and perhaps used to take over the Pentagon’s doomsday
weapons—as in the movie War Games (1983). As fear
of what malicious or criminal hackers could do took a
more practical turn in the 1990s, such movies as The Net
and Sneakers created a higher-tech incarnation of the spy
thriller. Finally, the series of movies beginning with The
Matrix extrapolated from the ultrarealistic movie effects
and games of the coming century to raise the question of
whether consensus reality could actually be a huge com-
puter simulation.

Meanwhile, the figure of the computer “geek” or “nerd”
has become a staple character in movies and TV shows—
clever, socially inept, but indispensable for keeping the
modern world running. In some eyes, the entrepreneurial
success of Silicon Valley and the dot-coms placed Bill Gates
and his colleagues in the same mold as Thomas Edison and
Henry Ford a century earlier.

Digitization of Culture
By the turn of the new century the network that had been
portrayed as the domain of hackers and spies had become
the all-pervasive World Wide Web. Today computers and
the Internet are not only reflected in American popular cul-
ture—they are profoundly reshaping it. Computer games
(particularly see online games) have become vast, persis-
tent social worlds, as are sites like MySpace and Facebook
(see social networking).

With the blending of formerly distinct media (see dig-
ital convergence) and the fluid sharing and re-creation
of images (see user-created content and mashups),
the digital world now permeates mainstream culture—or,
one might say, the culture itself has become digitized.
Meanwhile the line between fact and fiction, creator and
viewer, expert and amateur has become increasingly
blurred.

Further Reading
Fishwick, Marshall William. Probing Popular Culture: On and Off

the Internet. Binghamton, N.Y.: Haworth Press, 2004.
Friedman, Ted. Electric Dreams: Computers in American Culture.

New York: NYU Press, 2005.
King, Brad, and John Borland. Dungeons and Dreamers: The Rise of

Computer Game Culture from Geek to Chic. Emeryville, Calif.:
McGraw-Hill/Osborne, 2003.

“Machines (and more) in Movies, Books and Music.” Berkshire
Publishing Group. Available online. URL: http://www.
berkshirepublishing.com/HumanComputerInteractionAnd
PopCulture/list.asp. Accessed August 17, 2007.

Nelson, Theodore H. Computer Lib/Dream Machines: You Can and
Must Understand Computers Now. Chicago: Nelson, 1974.
(Expanded, reprinted by Microsoft Press, 1987).

378        popular culture and computing

Polsson, Ken. “Personal Computer References in Pop Culture.”
Available online. URL: http://www.islandnet.com/~kpolsson/
comppop/. Accessed August 17, 2007.

portal
The legion of new World Wide Web users who went online
in the mid-1990s could easily navigate and “surf” the Web,
using browsers such as Netscape and Internet Explorer (see
Web browser). However, the lack of a reliable starting point
and a systematic way to find information often led to frustra-
tion. Search engines such as AltaVista and Lycos (see search
engine) provided some help, but there was no single guide
that could present the most useful information at a glance.

Meanwhile, in 1994, two graduate students, Jerry Yang
and David Filo, had begun to circulate an organized listing
of their favorite Web sites by e-mail. When the list proved
very popular, they decided they could make a business out
of providing a Web site that could serve as a topical guide
to the Web. The result was Yahoo!, the most successful of
what would come to be called Web portals (see Yahoo).

Yahoo! and other portals such as MSN (Microsoft Net-
work), Excite, American Online (AOL), and Lycos gener-
ally provide a listing organized by topic and subtopic. For
example, the general topic “Computers and Internet” in
Yahoo! is divided into many subtopics such as communica-
tions and networking, hardware, software, and so on. Many
topics are further subdivided until, at the bottom, there is a
list of actual Web links that can be clicked upon to take the
user directly to the relevant site.

The advantage of using a portal over using a search
engine is that the links on a portal have generally been
selected for quality, relevance, and usefulness. The disad-
vantage is the flip side of that selectivity: The links may
reflect the tastes, agenda, or commercial interests of the
portal developers and thus exclude important points of
view. When seeking to learn more about a subject, many
researchers therefore both work “inward” from a portal and
“outward” via a search engine (see online research).

To gain a competitive edge and raise revenue, portals
typically include a considerable amount of advertising.
Some portals also charge companies for being included
or featured in listings or displays. General-purpose por-
tals usually also contain such information as current news,
stock prices, weather, and other timely information in an
attempt to become their user’s default page. Portals (par-
ticularly Yahoo!) have also sought to become more attrac-
tive (and profitable) by including such services as travel,
financial services, games, and auctions.

Some portals emphasize particular approaches to infor-
mation. For example, About.com goes beyond simply listing
links to providing extensive guides to hundreds of sub-
jects in a sort of newsletter format. There are also portals
designed to serve particular constituencies, such as pro-
fessional groups, industries, or hobby or interest groups.
Companies can also create “enterprise portals” that can
help employees keep in touch with developments and share
information. Such portals often serve as the Web-based
interface to the corporate local area network (LAN).

As with other information content providers, commer-
cial portal developers have struggled to obtain enough reve-
nue to keep up with the need to expand and compete in new
areas. It is unclear whether the market will support more
than a handful of large consumer portals in the long run,
but both commercial and specialized portals have become
an important part of the way most people access the Web.

Further Reading
About.com. Available online. URL: http://www.about.com.

Accessed August 17, 2007.
Angel, Karen. Inside Yahoo!: Reinvention and the Road Ahead. New

York: Wiley, 2002.
“Frequently Asked Questions about Portals (FAQs).” Traffick.

Available online. URL: http://www.traffick.com/article.
asp?aID=9. Accessed August 17, 2007.

Hock, Randolph. Yahoo! to the Max: An Extreme Searcher Guide.
Medford, N.J.: Information Today, 2005.

Kastel, Berthold. Enterprise Portals for the Business and IT Profes-
sional. Sarasota, Fla.: Competitive Edge International, 2003.

Linwood, Jeff, and Dave Minter. Building Portals with the Java Port-
let API. Berkeley, Calif.: Apress, 2004.

Sullivan, Dan. Proven Portals: Best Practices for Planning, Designing,
and Developing Enterprise Portals. Upper Saddle River, N.J.:
Addison-Wesley Professional, 2003.

Utvich, Michael, Ken Milhous, and Yana Beylinson. 1 Hour Web
Site: 120 Professional Web Templates and Skins to Let You Cre-
ate Your Own Web Sites—Fast. Hoboken, N.J.: Wiley, 2007.

Yahoo! Available online. URL: http://www.yahoo.com. Accessed
August 17, 2007.

PostScript
Early computer printers were limited to one or a few
built-in fonts, either stamped on typewriter style keys on
daisy wheels, or stored as patterns in the printer’s soft-
ware (with dot matrix printers). In the mid-1970s, when
Xerox researchers were developing the laser printer, they
realized they needed an actual programming language that
could describe fonts, graphics, and other elements that
could be printed on the more versatile new printers. PARC
researchers developed InterPress; meanwhile two of them,
John Warnock and Chuck Geschke, founded their own
company in 1982 (see Adobe Systems). They then created
a more streamlined version of InterPress that they called
PostScript. The first printer to include built-in PostScript
capability was Apple’s LaserWriter, in 1985. PostScript soon
became the standard for a burgeoning industry (see desk-
top publishing).

Because PostScript is an actual programming language
(for a somewhat similar language, see Forth), software
such as word processors can include functions that turn
a text document into a PostScript document, ready for
printing. A PostScript interpreter in the printer (or even in
another application) interprets the PostScript commands
to re-create the document. The commands specify rasters
(combinations of straight lines and curves), which can
be scaled and transformed to provide the specified out-
put, including fonts, which can be enhanced by including
“hints” to help the system identify key features. This pro-
cessor is thus sometimes called a Raster Image Processor
(RIP).

PostScript        379

Decline
By the late 1990s, however, PostScript was declining in
use. In part this was because of the advent of cheaper ink-
jet printers, which used simpler (and cheaper) software.
Further, PostScript’s role as a standard format for distrib-
uting documents has been largely replaced by one of Ado-
be’s other standards, the Portable Document Format (see
PDF). However, PostScript-equipped laser printers are still
favored for heavy-duty printing jobs, because the document
processing can be done in the printer instead of adding to
the burden of the main CPU.

Further Reading
Adobe Systems Incorporated. PostScript Language Reference. 3rd

ed. Reading, Mass.: Addison-Wesley, 1999. Available online.
URL: http://partners.adobe.com/public/developer/en/ps/
PLRM.pdf. Accessed November 8, 2007.

———. PostScript Language Tutorial and Cookbook. Upper Saddle
River, N.J.: Addison-Wesley Professional, 2007. Available
online. URL: http://www-cdf.fnal.gov/offline/PostScript/
BLUEBOOK.PDF. Accessed November 8, 2007.

Weingartner, Peter. “A First Guide to PostScript.” Available online.
URL: http://www.tailrecursive.org/postscript/postscript.html.
Accessed November 8, 2007.

presentation software
Whether at a business meeting or a scientific conference,
the use of slides or transparencies has been largely replaced
by software that can create a graphic presentation. Gener-
ally, the user creates a series of virtual “slides,” which can
consist of text (such as bullet points) and charts or other
graphics. Often there are templates already structured for
various types of presentations, so the user only needs to
supply the appropriate text or graphics. There are a variety
of options for the general visual style, as well as for transi-
tions (such as dissolves) between slides. Another useful fea-
ture is the ability to time the presentation and provide cues
for the speaker. Finished presentations can be shown on a
standard monitor screen (if the audience is small) or output
to a screen projector.

Microsoft PowerPoint is an example of presentation software. Such software uses a “slideshow” metaphor in which screens corresponding to
slides can be created and arranged on a timeline for playing. Many types of special effects are also available.

380        presentation software

Microsoft PowerPoint is the most widely used pre-
sentation program. It includes the ability to import Excel
spreadsheets, Word documents, or other items created by
Microsoft Office suite applications. The user can switch
between outline view (which shows the overall structure of
the presentation) to viewing individual slides or working
with the slides as a collection.

There are a number of alternatives available including
Apple’s Keynote and Open Office, which includes a presen-
tation program comparable to PowerPoint. Another alter-
native is to use HTML Web-authoring programs to create
the presentation in the form of a set of linked Web pages.
(PowerPoint and other presentation packages can also con-
vert their presentations to HTML.) Although creating pre-
sentations in HTML may be more difficult than using a
proprietary package and the results may be somewhat less
polished, the universality of HTML and the ability to run
presentations from a Web site are strong advantages of that
approach.

A number of observers have criticized the general same-
ness of most business presentations. Some presentation
developers opt to use full-fledged animation, created with
products such as Macromedia Director.

Further Reading
Impress: More Power to Your Presentations. Available online. URL:

http://www.openoffice.org/product/impress.html. Accessed
August 17, 2007.

Keynote (Apple iWork). Available online. URL: http://www.apple.
com/iwork/keynote/. Accessed August 17, 2007.

Lowe, Doug. PowerPoint 2007 for Dummies. Hoboken, N.J.: Wiley,
2007.

Rutledge, Patrice-Anne, Geetesh Bajaj, and Tom Muccolo. Special
Edition Using Microsoft Office PowerPoint 2007. Indianapolis:
Que, 2006.

printers
From the earliest days of computing, computer users needed
some way to make a permanent record of the machine’s out-
put. Although results of a program could be punched onto
cards or saved to magnetic tape or some other medium, at
some point data has to be readable by human beings. This
fact was recognized by the earliest computer and calcu-
lator designers: Charles Babbage (see Babbage, Charles)
designed a printing mechanism for his never-finished com-
puting “engine,” and Williams Burroughs patented a print-
ing calculator in 1888.

Typewriter-Like Printers
The large computers that first became available in the 1950s
(see mainframe) used “line printers.” These devices have
one hammer for each column of the output. A rapidly mov-
ing band of type moves under the hammers. Each ham-
mer strikes the band when the correct character passes by.
Printing is therefore done line by line, hence the name. Line
printers were fast (600 lines per minute or more) but like the
mainframes they served, they were bulky and expensive.

The typewriter offered another point of departure for
designing printers. A few early computers such as the

BINAC (an offshoot of ENIAC) used typewriters rigged
with magnetically controlled switches (solenoids). How-
ever, a more natural fit was with the Teletype, invented
early in the 20th century to print telegraph messages. Since
the Teletype is already designed to print from electrically
transmitted character codes, it was easy to rig up a circuit
to translate the contents of computer data into appropriate
codes for printing. (Since the Teletype could send as well as
receive messages, it was often used as a control terminal for
computer operators or for time-sharing computer users into
the 1970s.)

The daisy-wheel printer was another typewriter-like
device. It used a movable wheel with the letters embed-
ded in slim “petals” (hence the name). It was slow (about
10 characters a second), noisy, and expensive, but it was
the only affordable alternative for early personal computer
users who required “letter-quality” output.

Dot-Matrix Printers
The dot-matrix printer, which came into common use
in the 1980s, uses a different principle of operation than
typewriter-style printers. Unlike the latter, the dot-matrix
printer does not form solid characters. Instead, it uses an

A dot-matrix printer uses an array of pins controlled by solenoids.
Each character has a pattern of pins that are pushed against a type-
writer-like ribbon to form the character on the paper.

printers        381

array of magnetically controlled pins (9 pins at first, but 24
on later models). Each character is formed by pressing the
appropriate pins into a ribbon that pushes into the paper,
leaving a pattern of tiny dots.

Besides being relatively inexpensive, dot-matrix print-
ers are versatile in that a great variety of character styles
or fonts can be printed (see font), either by loading differ-
ent sets of bitmaps. Likewise, graphic images can also be
printed. However, because the characters are made of tiny
dots, they don’t have the crisp, solid look of printed type.

Laser and Ink-jet Printers
The majority of printers used today use laser or ink-jet tech-
nology. Both combine the versatility of dot-matrix with the
letter quality of typewriter-style printers. Xerox introduced
the first laser printer in the 1970s, although the technology
was too expensive for most users at first.

The laser printer converts data from the computer into
signals that direct the laser beam to hit precise, tiny areas
of a revolving drum. The drum is covered with a charged
(usually negative) film. The areas hit by the laser, however,

gain the opposite charge. As the drum continues to revolve,
toner (a black powder) is dispensed. Because the toner is
given a charge opposite to the places where the laser hit, the
toner sticks to those places. Meanwhile, the paper is drawn
into the drum. Because the paper is given the same charge
as that produced by the laser beam (but stronger), the toner
is pulled from the dots on the drum to the corresponding
parts of the paper, forming the characters or graphics. A
heating system then fuses the toner to the paper to make
the image permanent. Meanwhile, the drum is discharged
and the printer is ready for the next sheet of paper.

Color laser printers are also available, although they are
still relatively expensive. They work by using four revolu-
tions of the drum for each sheet of paper, depositing appro-
priate amounts of black, magenta, cyan, and yellow toner.

Laser printers fell in price throughout the 1990s (to
$500 or so), but were soon rivaled by a different technology,
the ink-jet printer.

The ink-jet printer has a print head that contains an ink
cartridge for each primary printing color. Each cartridge
has 50 nozzles, each thinner than a human hair. To print,
the appropriate nozzles of the appropriate colors are sub-
jected to electric current, which goes through a tiny resistor
in the nozzle. An intense heat results for a few microsec-
onds, long enough to create a tiny bubble that in turn forces
a droplet of ink onto the page.

Ink-jet printers are generally slower than lasers, although
fast enough for most purposes. Although the ink-jet is like
the dot-matrix in producing tiny dots, the dots are much
finer. With output at up to 2,880 dots per inch, the result-
ing characters are virtually indistinguishable from type-
printing. Using high resolution and special papers, ink-jet
printers can now also produce photo prints comparable to
those created by traditional processes.

An interesting offshoot of ink-jet printing technology
can be found in the development by HP of skin patches that
can deliver controlled doses of drugs using tiny, virtually
painless needles. The tiny droplets of drugs are transported
in much the same way as ink goes from cartridge reservoir
to page.

Trends
By the end of the 1990s, the ink-jet printer was declin-
ing steeply in price, and today quite capable units can
be purchased for as little as $30 or so. Because of their
greater speed, however, lasers are still used for higher-vol-
ume printing operations. “Multifunction” units combining
printer, scanner, copier, and fax functions are also popular
and cost less than a printer alone did only a few years ago.

Advocates of office automation have long predicted the
“paperless office,” but so far computers and their printers
have churned out more paper, not less. However, there are
some trends that might eventually reverse this course. Devel-
opment of practical “electronic books” (page-size displays
that can hold thousands of pages of text) may reduce the
need for printed output (see e-books and digital librar-
ies). Another possible replacement for printing is “electronic
ink,” a sheet of paper with charged ink held in suspension.
The text or graphics on the page can be changed electroni-

A laser printer uses a mirror-controlled laser beam to strike small
spots on a rotating drum (called an OPC or Organic Photoconduct-
ing Cartridge) that had been given an electrical charge (usually
positive) by a corona wire. The spots where the light beam hit are
given an opposite charge (usually negative). The drum is then
coated with a powdery toner that is charged opposite to the places
where the light hit, so the toner clings to the drum to form the pat-
terns of the characters or graphics. A piece of paper is then given
a strong negative charge so it can pull the toner off the drum as it
passes under it. Finally, heated rollers called fusers bind the toner
to the paper to form the final image.

382        printers

cally, so it can be reused indefinitely. Finally, the ability to
access data anywhere on handheld or laptop computers may
also reduce the need to make printouts.

Further Reading
Harris, Tom. “How Laser Printers Work.” Available online. URL:

http://home.howstuffworks.com/laser-printer.htm. Accessed
August 17, 2007.

“Printer Buying Guide” (Cnet Reviews). Available online. URL:
http://reviews.cnet.com/4520-7604_7-1016838-1.html.
Accessed August 17, 2007.

“Printers: The Essential Buying Guide.” PC Magazine. Available
online. URL: http://www.pcmag.com/article2/0,1895,1766,00.
asp. Accessed August 17, 2007.

Tyson, Jeff. “How Inkjet Printers Work.” Available online. URL:
http://www.howstuffworks.com/inkjet-printer.htm. Accessed
August 17, 2007.

privacy in the digital age
Quoted in Fred H. Cate’s Privacy in the Information Age,
legal scholar Alan F. Westin has defined privacy as “the
claim of individuals, groups, or institutions to determine
for themselves when, how, and to what extent information
about themselves is communicated to others.”

Since the mid-19th century, advances in communica-
tions technology have raised new problems for people seek-
ing to protect privacy rights. During the Civil War telegraph
lines were tapped by both sides. In 1928, the U.S. Supreme
Court in Olmstead v. U.S. refused to extend Fourth Amend-
ment privacy protections to prevent federal agents from tap-
ping phone lines without a warrant. Almost 50 years later,
the court would revisit the issue in Katz v. U.S. and rule
that telephone users did have an “expectation of privacy.”
The decision also acknowledged the need to adapt legal
principles to the realities of new technology.

In the second half of the 20th century the growing use
of computers would raise two basic kinds of privacy prob-
lems: surveillance and misuse of data.

Surveillance and Encryption
Since much sensitive personal and business information
is now transmitted between or stored on computers, such
information is subject to new forms of surveillance or inter-
ception. Keystrokes can be captured using surreptitiously
installed software and e-mails can be intercepted from serv-
ers or a user’s hard drive. Many employers now routinely
monitor employees’ computer activity at work, including
their use of the World Wide Web. When this practice is
challenged, courts have generally sided with the employer,
accepting the argument that the computers at work exist for
business purposes, not private communications, and thus
do not carry much of an expectation of privacy. Employers,
however, have been encouraged to spell out their employee
monitoring or surveillance policies explicitly. Outside the
workplace, some protection is offered by the Electronic
Communications Privacy Act (ECPA), passed in 1986.

Shadowy accounts about a secret system called Echelon
have suggested that the National Security Agency has in
place a massive system that can intercept worldwide com-

munications ranging from e-mail to cell phone conversa-
tions. Apparently, rooms full of supercomputers can sift
through this torrent of communication, looking for key
words that might indicate a threat to the United States or its
allies. (Much communication is in “clear” text; the ability of
the government to crack strong encryption is unclear.)

Technology can be used to penetrate privacy, but it can
also be used to safeguard it (see encryption). Public key
encryption programs such as Pretty Good Privacy (PGP)
can encode text so that it cannot be read without a very-
hard-to-crack key. The U.S. government, whose agencies
enjoyed powerful surveillance capabilities, initially fought
to suppress the use of encryption, but a combination of
unfavorable court decisions and the ability to spread soft-
ware across the Internet has pretty much decided the battle
in favor of encryption users.

In the aftermath of the terrorist attacks of September
11, 2001, the federal government pressed for expanded sur-
veillance powers, some of which were granted in the USA
PATRIOT Act of 2001. (The Foreign Intelligence Surveil-
lance Act [FISA] regulates wiretapping of U.S. persons to
obtain foreign intelligence information, requiring that a
warrant be obtained from a secret court. In 2008 after rev-
elations that the administration was engaging in warrant-
less domestic surveillance outside of FISA, Congress passed
an amendment that required FISA permission to wiretap
Americans living abroad.) Computerized surveillance and
identification systems (see biometrics) are also likely to be
expanded in airports in other public places as part of the
“War on Terrorism.”

Information Privacy
Many privacy concerns arise not from the activities of spy
or police agencies, but from the potential for the misuse of
the many types of personal information now collected by
businesses or government agencies. As far back as 1972, the
Advisory Committee on Automated Personal Data Systems
recommended the following standards to the secretary of
the Department of Health, Education, and Welfare:

	 1. � There must be no personal data record-keeping sys-
tems whose very existence is secret.

	 2. � There must be a way for an individual to find out
what information about him/her is on record and
how it is used.

	 3. � There must be a way for an individual to correct or
amend a record of identifiable information about
him/her.

	 4. � There must be a way for an individual to prevent
information about him/her that was obtained for
one purpose from being used or made available for
other purposes without his/her consent.

	 5. � Any organization creating, maintaining, using, or
disseminating records of identifiable personal data
must guarantee the reliability of the data for their
intended use and must take precautions to prevent
misuse of the data.

The Federal Privacy Act of 1974 generally implemented
these principles with regard to data maintained by federal

privacy in the digital age        383

agencies. Later, federal laws have attempted to address par-
ticular types of information, including school records, medi-
cal records, and video rentals.

However, much of the information collected from people
results from commercial transactions or other interactions
with businesses, particularly via the Internet. Although
encrypted processing systems have reduced the chance that
a credit card number submitted to a store will be stolen, so-
called identity thieves may be able to obtain credit reports
under false pretenses or collect enough information about
a person from various databases (including Social Security
numbers). With that information, the thief can take out
credit cards in the person’s name and run up huge bills (see
identity theft and phishing and spoofing). While the
direct financial liability from identity theft is capped, the
psychological impact and the effort required for victims to
rehabilitate their credit standing can be considerable. In a
few cases the same techniques have been used by stalkers,
sometimes with tragic consequences.

The ability of Web sites to track where a visitor clicks
by means of small files called “cookies” has also disturbed
many people (see cookies). As with the recording of
purchase information by supermarkets and other stores,
businesses justify the practice as allowing for targeted
marketing that can provide consumers with information
likely to be of interest to them. (Many e-mail addresses are
also gathered to be sold for use for unsolicited e-mail—see
spam.) An even more intrusive technique involves the sur-
reptitious installation of software on the user’s computer
for purposes of displaying advertising content or gathering
information. In turn, programmers have distributed free
utilities for identifying and removing such “adware” or
“spyware.”

While such consumer tracking is not as dangerous as
identity theft, it feels like an invasion of privacy to many
people as well as a source of insecurity, particularly because
there are as yet few regulations governing such practices.
However, in response to such concerns many businesses
have put “privacy statements” on their Web sites, explain-
ing what information about visitors will be collected and
how it may be used. Businesses that meet standards for dis-
closure of their privacy practices can also display the seal of
approval of organizations such as TRUSTe.

Many privacy advocates, however, believe that self-reg-
ulation is not sufficient to truly protect consumer privacy.
They support strong new regulations, including “opt-
in” provisions that would require businesses to receive
explicit permission from the consumer before collecting
information.

Privacy and Pervasive Computing
Beyond the Web and e-commerce, new challenges to pri-
vacy are emerging (see ubiquitous computing). In the
movie Minority Report, stores instantly mine data about
approaching consumers and project personalized holo-
graphic ads in front of their eyes. While that technology
is happily not here yet, many of the component pieces
are (see data mining and RFID). Add global positioning
(GPS) tracking to the mix, and another important part

of privacy is threatened: “locational privacy.” Certainly
one can envisage situations where knowing not only who
someone is but where they are can increase vulnerability
to abuse.

In response to these pervasive threats to privacy, many
advocates continue to push for regulation of data gathering
and ways to hold people legally responsible for misuse of
personal information. However, some writers such as sci-
ence fiction writer and futurist David Brin argue that the
battle for privacy is already lost, but the battle for transpar-
ency and mutual accountability may still be won—if the
watched can watch the watchers.

Further Reading
Brin, David. The Transparent Society. Reading, Mass.: Addison-

Wesley, 1998.
Cate, Fred H. Privacy in the Information Age. Washington, D.C.:

Brookings Institution, 1997.
Electronic Frontier Foundation. Available online. URL: http://

www.eff.org. Accessed August 17, 2007.
Electronic Privacy Information Center. Available online. URL:

http://www.epic.org. Accessed August 17, 2007.
Henderson, Harry. Privacy in the Information Age (Library in a

Book). 2nd ed. New York: Facts On File, 2006.
Hunter, Richard. World without Secrets: Business, Crime and Pri-

vacy in the Age of Ubiquitous Computing. New York: Wiley
2002.

Monmonier, Mark. Spying with Maps: Surveillance Technologies and
the Future of Privacy. Chicago: University of Chicago Press,
2002.

Solove, Daniel. The Digital Person: Technology and Privacy in the
Information Age. Rev. ed. New York: NYU Press, 2006.

procedures and functions
From the earliest days of programming, programmers and
language designers realized that it would be very useful to
organize programs so that each task to be performed by the
program had its own discrete section of code. After all, a pro-
gram will often have to perform the same task, such as sorting
or printing data, at several different points in its processing.
Instead of writing out the necessary code instructions each
time they are needed, why not write the instructions just once
and have a mechanism by which they can be called upon as
needed? Such callable program sections have been known as
procedures, subroutines, or subprograms.

The simplest sort of subroutine is found in assembly lan-
guages and early versions of BASIC or FORTRAN. In BASIC,
for example, a GOSUB statement contains a line number.
When the statement is encountered, execution “jumps” to
the statement with that line number, and continues from
there until a statement such as RETURN is encountered.
For example:

10 TOTAL = 10

20 GOSUB 40

30 END

40 PRINT “The total is: ”;

50 PRINT TOTAL

60 RETURN

384        procedures and functions

Here execution jumps from line 20 to line 40. After lines
40–60 are executed, the program returns to line 30, where
it ends.

Procedures with Parameters
The simple subroutine mechanism has some disadvantages,
however. The subroutine gets the information it needs from
the main part of the program implicitly through the global
variables that have been defined (see variable). If it needs
to return information, it does it by changing the value of one
or more of these global variables. The problem is that many
different subroutines may be relying upon the same vari-
ables and at the same time changing them, leading to unpre-
dictable results. Modern programming practice therefore
generally avoids using global variables as much as possible.

Most high-level languages today (including Pascal, C/
C++, Java, and modern versions of BASIC) define subpro-
grams as procedures that pass information through speci-
fied parameters. For example, a procedure in Pascal might
be defined as:

Procedure PrintChar (CharNum : integer);

This procedure has one parameter, an integer that speci-
fies the number of the character to be printed (see charac-
ters and strings).

The main program can call the procedure by giving its
name and an appropriate character number. For example:

PrintChar (32);

The code within the procedure does not work with the
parameter CharNum directly. Rather, it receives a copy that it
can use. Thus, the procedure might include the statements:

Writeln (‘Character number: ’, CharNum);
Writeln (chr (CharNum));

The program will print the character number and then
print the character itself on the next line (for character
number 32 this will actually be a blank).

This typical way of using parameters is called passing by
value. However, it is possible to pass a parameter to a proce-
dure and have the parameter itself used rather than working
with a copy. This is called “passing by reference.” Pascal uses
the var keyword for this purpose, while C passes a pointer to
the variable (see pointers and indirection), and C++ and
Java prefix the variable name with an ampersand (&). For
example, suppose one has a C function defined as follows:

int ByTwo (int * Val)
{

Val = Val * 2;
}

In the following statements in the calling program:

Int Value, NewValue;
Value = 10;
NewValue = By Two (Value);

NewValue would be set to 20 because the actual variable
Value has been multiplied by two inside the ByTwo function.

Functions
A function is a procedure that returns its results as a value
in place of the function name in the calling statement. For
example, a function in C to raise a specified number to a
specified power might be defined like this:

int Power (int base, int exp)

(C and related languages don’t use a keyword like Pas-
cal’s procedure or function because in C all procedures are
functions.)

This definition says that the Power function takes two
integer parameters, base and exp, and returns an integer
value.

Suppose somewhere in the program there are the fol-
lowing statements:

Int Base = 8;

Int Dimensions = 3;
Size = Power (Base, Dimensions);

The variable Size will receive the value of Power (8, 3) or 512.
Although the syntax for using procedures or functions

varies by language, there are some principles that are gener-
ally applicable. The type of data expected by a procedure
should be carefully defined (see data types). Modern com-
pilers generally catch mismatches between the type of data
in the calling statement and what is defined in the proce-
dure declaration. Procedures should also be checked for
unwanted “side effects,” which they can minimize by not
using global variables.

Procedures and functions relating to a particular task
are often grouped into separate files (sometimes called units
or modules) where they can be compiled and linked into a
program that needs to use them (see library, program).

Object-oriented languages such as C++ think of pro-
cedures in a somewhat different way from the examples
shown here. While a traditional program sees procedures
as blocks of code to be invoked for various purposes, an
object-oriented program sees procedures as “methods” or
capabilities of the program’s various objects (see object-
oriented programming).

Further Reading
“Introduction to Python: Functions.” Available online. URL: http://

www.penzilla.net/tutorials/python/functions/. Accessed August
17, 2007.

Kernighan, Brian W., and Dennis M. Ritchie. The C Programming
Language. 2nd ed. Englewood Cliffs, N.J.: Prentice Hall, 1988.

“Procedures and Functions” [in VBScript]. Available online. URL:
http://www.functionx.com/vbscript/Lesson06.htm. Accessed
August 17, 2007.

Sebesta, Robert W. Concepts of Programming Languages. 8th ed.
Boston: Pearson Addison Wesley, 2007.

“Subroutines” [in Perl]. Available online. URL: http://www.comp.
leeds.ac.uk/Perl/subroutines.html. Accessed August 17, 2007.

programming as a profession
All computer applications depend upon the ability to direct
the machine to perform instructions such as fetching or
storing data, making logical comparisons, or performing

programming as a profession        385

calculations. Although practical electronic computers first
began to be built in the 1940s, it took considerable time for
programming to emerge as a distinct profession. The first
programmers were the computer designers themselves, fol-
lowed by people (often women) recruited from clerical per-
sons who were good at mathematics. With machines like
ENIAC, programming was more like setting up a compli-
cated piece of factory machinery than like writing. Switches
or plugboards had to be set, and numeric instruction codes
punched on cards to instruct the machine to move each
piece of data from one location to another or to perform an
arithmetic or logical operation.

Two factors led to greater recognition for the art or craft
of programming. First, as more computers were built and
put to work for various purposes, more programmers were
needed, as well as more attention to their training and man-
agement. Second, as programs became larger and more com-
plex, a number of high-level languages such as COBOL and
FORTRAN came into use (see programming languages).
Besides making it easier to write programs, having just a
few languages in widespread use made skills more readily
transferable from one computer installation to another. And
as with any profession, programming developed bodies of
knowledge and practice.

At the same time, advances in language development
would raise a recurrent question: Are professional program-
mers really necessary? Since FORTRAN looked a lot like
ordinary mathematical notation, couldn’t scientists and
engineers just write the programs they need without hir-
ing specialists for the job? Similarly, some enthusiasts led
managers to think that with COBOL accountants (or even
managers) could write their own business programs.

Sometimes part-time or “amateur” programming did
prove to be practicable, particularly for scientists who found
that writing a quick FORTRAN routine to solve a problem
was easier than trying to explain the problem to a pro-
fessional programmer. However, the professional program-
mer’s job was never really in danger. Businesspeople were
less inclined to try to learn COBOL and entrust something
like the company’s payroll processing to ad hoc efforts. In
addition, the programs that controlled the operation of the
computer itself, which became known as operating systems,
required both arcane knowledge and the ability to design,
verify, test, and debug increasingly complex systems (see
software engineering).

Development of Practice
In response to this growing complexity, computer scientists
approached the improvement of programming practice on
several levels. New languages developed in the 1960s and
1970s featured well-defined control structures, data types,
and procedure calls (see Algol, Pascal, C, data types,
loop, and structured programming.) The management
of programming teams and the factors affecting productiv-
ity were examined by pioneers such as Frederick Brooks,
author of The Mythical Man-Month, and IBM sponsored
workshops and study groups.

While many mainframe business programmers contin-
ued to write and maintain programs written in the older

languages (such as COBOL), starting in the 1970s a new
generation of systems and applications programmers used
C and worked in a different environment—campus mini-
computers running UNIX. Unlike the hierarchical, system-
atic approach of the “mainframe culture,” the minicomputer
programmers tended toward a decentralized but coopera-
tive approach (see open-source movement and hackers
and hacking).

When the personal computer revolution began to arrive
at the end of the 1970s, much of the evolution of program-
ming culture would be recapitulated. Since early micro-
computer systems had very limited memory, programmers
who wanted to get useful work out of machines such as the
Apple II had to work mainly in assembly language or write
quick and dirty programs in a limited dialect of BASIC. The
hobbyists and early adopters often knew little about the
academic world of computer science and software engineer-
ing, but they were good at wringing the most out of each
clock cycle and byte of memory.

As personal computers gained in power and capability
through the 1980s, programmers were able to use higher-
level languages such as C. Applications such as word pro-
cessors, spreadsheets, and graphics programs became more
complex, and programmers had to work in larger teams like
their mainframe counterparts.

At the same time, the sharp demarcation between pro-
grammer and user became less distinct with the personal
computer. Many users who were not professional program-
mers used applications software that included programma-
ble features, such as spreadsheets and simple data bases (see
macro and scripting language). New languages such as
Visual Basic let even relatively inexperienced programmers
plug in user interfaces and other components and create
useful programs (see programming environment).

Each sector of programming seems to go through a
cycle of improvisation and innovation followed by stan-
dardization and professionalization. Just as the early
ENIAC programmers evolved into the organized hierarchy
of corporate programming departments, the individuals
and small groups who wrote the first personal computer
software evolved into large teams using sophisticated soft-
ware to track to the modules, versions, and development
steps of major programming projects. Similarly, when the
explosion of the World Wide Web starting in the mid-1990s
brought a new demand for people who could code HTML,
CGI, and Java, much of the most interesting work was done
by individuals and small companies. But if history repeats
itself, the Internet applications field will undergo the same
process of professionalization, with increasingly elaborate
standards and expectations (see certification of com-
puter professionals).

Throughout the history of programming, visionaries
have announced that the time was coming when most if
not all programming could be automated. All a person will
have to do is give a reasonably coherent description of the
desired results and the required program will be coded by
some form of artificial intelligence (see expert systems,
genetic algorithms, and neural network). But while
users have now been given the ability to do many things

386        programming as a profession

that formerly required programming, it seems there is still
a demand for programmers who can move the bar another
step higher. The profession continues to evolve without any
signs of impending extinction.

Further Reading
Brooks, Frederick. The Mythical Man-Month, Anniversary Edition:

Essays on Software Engineering. Reading, Mass.: Addison-Wes-
ley, 1995.

Ceruzzi, Paul. A History of Modern Computing. Cambridge, Mass.:
MIT Press, 1998.

Henderson, Harry. Career Opportunities in Computers and Cyber-
space. 2nd ed. New York: Facts On File, 2004.

Kohanski, Daniel. Moths in the Machine: The Power and Perils of
Programming. New York: St. Martin’s Press, 2000.

Ullmann, Ellen. Close to the Machine: Technophilia and its Discon-
tents. San Francisco: City Lights Books, 1997.

programming environment
The first programmers used pencil and paper to sketch out
a series of commands, or punched them directly on cards
for input into the machine. But as more computer resources
became available, it was a natural thought that programs
could be used to help programmers create other programs.
The availability of Teletype or early CRT terminals on time-

sharing systems by the 1960s encouraged programmers to
write simple text editing programs that could be used to
create the computer language source code file, which in turn
would be fed to the compiler to be turned into an executable
program (see terminal and text editor). The assemblers
and BASIC language implementations on the first personal
computers also included simple editing facilities.

More powerful programming editors soon evolved, par-
ticularly in academic settings. One of the best known is
EMACS, an editor that contains its own LISP-like language
that can be used to write macros to automatically generate
program elements (see LISP and macro). With the many
other utilities available in the UNIX operating system, pro-
grammers could now be said to have a programming envi-
ronment—a set of tools that can be used to write, compile,
run, debug, and analyze programs.

More tightly integrated programming environments
also appeared. The UCSD “p-system” brought together a
program editor, compiler, and other tools for developing
Pascal programs. While this system was somewhat cumber-
some, in the mid-1980s Borland International released (and
steadily improved) Turbo Pascal. This product offered what
became known as an “integrated development interface”
or IDE. Using a single system of menus and windows, the

As the name suggests, Microsoft Visual Basic provides a visual programming environment in which the controls that make up a program’s user
interface can be placed on a form. Various properties (characteristics) of the controls can then be set, and program code is then written and
attached to govern how the objects will behave.

programming environment        387

programmer could edit, compile, run, and debug programs
without leaving the main window.

The release of Visual Basic by Microsoft a few years
later brought a full graphical user interface (GUI). Visual
Basic not only ran in Windows, it also gave programmers
the ability to design programs by arranging user interface
elements (such as menus and dialog boxes) on the screen
and then attaching code and setting properties to control
the behavior of each interface object. This approach was
soon extended by Microsoft to development environments
for C and C++ (and later, Java) while Borland released
Delphi, a visual Pascal development system. Today visual
programming environments are available for most lan-
guages. Indeed, many programming environments can
host many different languages and target environments.
Examples include Microsoft’s Visual Studio .NET and the
open-source Eclipse, which can be extended to new lan-
guages via plug-ins.

Modern programming environments help the program-
mer in a number of ways. While the program is being writ-
ten, the editor can highlight syntax errors as soon as they’re
made. Whether arising during editing or after compilation,
an error message can be clicked to bring up an explana-
tion, and an extensive online help system can provide infor-
mation about language keywords, built-in functions, data
types, or other matters. The debugger lets the programmer
trace the flow of execution or examine the value of variables
at various points in the program.

Most large programs today actually consists of dozens
or even hundreds of separate files, including header files,
source code files for different modules, and resources such
as icons or graphics. The process of tracking the connec-
tions (or dependencies) between all these files, which used
to require a list called a makefile can now be handled auto-
matically, and relationships between classes in object-ori-
ented programs can be shown visually.

Researchers are working on a variety of imaginative
approaches for future programming environments. For
example, an interactive graphical display (see virtual
reality) might be used to allow the programmer to in
effect walk through and interact with various representa-
tions of the program.

Further Reading
Burd, Barry. Eclipse for Dummies. Hoboken, N.J.: Wiley, 2004.
Hladni, Ivan. Inside Delphi 2006. Plano, Tex.: Wordware Publish-

ing, 2006.
Kernighan, Brian W., and Rob Pike. The UNIX Programming Envi-

ronment. Englewood Cliffs, N.J.: Prentice Hall, 1984.
Parsons, Andrew, and Nick Randolph. Professional Visual Studio

2005. Indianapolis: Wiley, 2006.

programming languages
There are many ways to represent instructions to be car-
ried out by a computer. With early machines like ENIAC,
programs consisted of a series of detailed machine instruc-
tions. The exact movement of data between the processor’s
internal storage (registers) and internal memory had to be
specified, along with the appropriate arithmetic operations.

This lowest level, least abstract form of programming lan-
guages is hardest for humans to understand and use.

The first step toward a more symbolic form of pro-
gramming is to use easy-to-remember names for instruc-
tions (such as ADD or CMP for “compare”) as well as
to provide labels for storage locations (variables) and
subroutines (see procedures and functions). The file
of symbolic instructions (called source code) is read by
a program called an assembler (see assembler), which
generates the low-level instructions and actual memory
addresses to be used by the program. Because of its abil-
ity to closely specify machine operations, assembly lan-
guage is still used for low-level hardware control or when
efficiency is at a premium.

Most languages in use today are higher-level. The
mainstream of programming languages consists of lan-
guages that are procedural in nature. That is, they specify
a main set of instructions that are executed in sequence,
although the program can branch off (see branching
statements) or repeat a series of statements until a con-
dition is satisfied (see loop). A program can also call
a set of instructions defined elsewhere in the program.
Constant or variable data is declared to be of a certain
type such as integer or character (see data types) before
it is used. There are also rules that determine what parts
of a program can access what data (see variable). For
examples of procedural languages, see Algol, BASIC, C,
COBOL, FORTRAN, and Pascal.

A variant of procedural languages is the object-oriented
language (see object-oriented programming). Such lan-
guages (see C++, Java, and Smalltalk) still use sequential
execution and procedures, but the procedures are “pack-
aged” together with relevant data into objects. In order to
display a picture, for example, the program will call upon
a particular object (created from a class of such objects) to
execute its display function with certain parameters such as
location and dimensions.

The evolution of a few major programming languages through five
decades. There are actually hundreds of different programming lan-
guages that have seen at least some use in the past 50 years.

388        programming languages

Nonprocedural Languages
Although the bulk of today’s software is written using pro-
cedural languages, there are some important languages con-
structed using quite different paradigms. LISP, for example,
is a powerful language used in artificial intelligence applica-
tions. LISP is written by putting together layers of functions
that carry out the desired processing (see nonprocedural
languages, LISP, and functional languages). There are
also “logic programming” languages, of which Prolog is
best known (see Prolog). Here a chain of logical steps is
constructed such that the program can traverse it to find
the solution of a problem.

Context and Change in
Programming Languages
Because of the amount of effort it takes to truly mas-
ter a major programming language, most programmers
are fluent in only a few languages and developers tend
to standardize on one or two languages. The store of
tried-and-true code and lore built up by the programming
community tends to make it disadvantageous to radi-
cally change languages. Thus, FORTRAN and COBOL,
although more than 40 years old, are still in considerable
use today. C, which is about 30 years old, has been gradu-
ally supplanted by C++ and Java, but the latter languages
represent an object-oriented evolution of C, intentionally
designed to make it easy for programmers to make the
transition. (Smalltalk, which was designed as a “pure”
object-oriented language, never achieved widespread use
in commercial development.)

Similarly, when programmers had to cope with parallel
processing (programs that can have several threads of execu-
tion going at the same time), they have tended to favor “par-
allelized” versions of familiar languages rather than wholly
new ones (see concurrent programming and parallel
processing).

While the basic elements of computer languages tend
to persist in the same recognizable forms, the way pro-
grammers experience their use of languages has changed
considerably through the use of modern visual integrated
development environments (see programming environ-
ment). A variety of languages have also been designed for
tasks such as data management, interfacing Web pages, and
system administration (see scripting languages, awk,
Perl, PHP, and Python).

Further Reading
Bergin, Thomas J., and Richard G. Gibson, eds. History of Program-

ming Languages-II. Reading, Mass.: Addison-Wesley/ACM
Press, 1996.

Sebesta, Robert W. Concepts of Programming Languages. 8th ed.
Boston: Pearson Addison-Wesley, 2007.

project management software
Whether a project involves only a few people in the same
department or thousands of people and several years, there
is a variety of software to help managers plan and monitor
the status of their projects.

At the simplest level, PIM software (see personal
information manager) can be used by an individual to
monitor simple personal projects. Such software generally
includes the ability to record the description, priority, due
date, and reminder date for a task.

Project management software is generally used to
plan larger projects involving many persons or teams. A
complex project must first be broken down into tasks.
(Large projects often have subprojects as an intermediate
entity.) Next, dependencies must be taken into account.
For example, the user testing program for a software
product can’t begin until a usable preliminary (“alpha”
or “beta”) version of the program is available. The vari-
ous “resources” assigned to a subproject or task must
also be tracked, including personnel and number of hours
assigned and budget allocations. In tracking personnel
assigned to a project, their availability (who is on vaca-
tion and who is assigned to what location) must also be
considered.

Once the scheduling and priorities are arranged, the
inevitable divergences between what was planned and what
is actually happening must be monitored. Good project
management software provides many tools for the purpose.
Available charts and reports often include:

• �G antt charts that use bars to show the duration and
percentage of completion of the various overlapping
subprojects or tasks.

• � PERT (Program Evaluation and Review Technique)
charts that show each subproject or task as a rectan-
gular “node” with information about the task. The
connections between nodes show the relationships
(dependencies) between the items. PERT charts are
usually used at the beginning stages of planning.

• � Analysis tools that show critical paths and bottle-
necks (places where one or more tasks falling behind
might threaten large portions of the project). Gener-
ally, the more preceding items a task is dependent on,
the more likely that task is to fall behind.

• � Tools for estimating the probability for completion
of a given task based on the probabilities of tasks it
is dependent on, as well as other factors such as the
likelihood of certain resources becoming available.

• � A system of alerts or “stoplights” that show slow-
downs, potential problems, or areas where work has
stopped completely. These can be set to be triggered
when various specified conditions occur.

• � Integration between project management and budget
reporting so tasks and the project as a whole can be
monitored in relation to budget constraints.

• � Integration between the project management software
and individual schedules kept in PIM software such as
Microsoft Outlook or in handheld computers (PDAs)
such as the PalmPilot.

• � Integration between project management and soft-
ware for scheduling meetings.

project management software        389

Given the scope and pace of today’s business, scientific, and
other projects, project management software is often a vital
tool. However, using too elaborate a project tracking system
for a relatively small and well-defined project may divert
time and energy away from the work itself. Fortunately, a
wide variety of project management programs are avail-
able, ranging from full-fledged products such as Microsoft
Project or Primavera Project Planner to simpler shareware
or free products.

Further Reading
Marmel, Elaine. Microsoft Office Project 2007 Bible. Indianapolis:

Wiley, 2007.
Muir, Nancy C. Microsoft Office Project 2007 for Dummies. Hobo-

ken, N.J.: Wiley, 2007.
Open Workbench: Open-Source Project Scheduling for Windows.

Available online. URL: http://www.openworkbench.org/.
Accessed August 17, 2007.

“Project Management Software.” Wikipedia. Available online.
URL: http://en.wikipedia.org/wiki/Project_management_
software. Accessed August 17, 2007.

Prolog
Since the 1950s, researchers have been intrigued by the
possibility of automating reasoning behavior, such as logi-
cal inference (see artificial intelligence). A number of
demonstration programs have been written to prove theo-
rems starting from axioms or assumptions. In 1972, French
researcher Alain Colmerauer and Robert Kowalski at Edin-
burgh University created a logic programming language
called Prolog (for Programmation en Logique) as a way of
making automated reasoning and knowledge representation
more generally available.

A conventional procedural program begins by defin-
ing various data items, followed by a set of procedures for
manipulating the data to achieve the desired result. A Pro-
log program, on the other hand, begins with a set of facts
(axioms) that are assumed to be true. (This is sometimes
called declarative programming.)

For example, the fact that Joe is the father of Bill would
be written:

Father (Joe, Bill).

The programmer then defines logical rules that apply to
the facts. For example:

father (X, Y) :- parent (X, Y), is male (X)
grandfather (X, Y) :- father (X, Z), parent
(Z, Y)

Here the first assertion says that a person X is the father
of Y if he is the parent of Y and is male. The second asser-
tion says that X is Y’s grandfather if he is the father of a
person Z who in turn is a parent of Y.

When a program runs, it processes queries, or asser-
tions whose truth is to be proven. Using a process called
unification, the Prolog system looks for facts or rules that
apply to the query and attempts to create a logical chain
leading to proving the query is true. If the chain breaks
(because no matching fact or rule can be found), the system

“backtracks” by looking for another matching fact or rule
from which to attempt another chain.

Prolog aroused considerable interest among artificial
intelligence researchers who were hoping to create a power-
ful alternative to conventional programming languages for
automating reasoning. This interest was further spurred
by the Japanese Fifth Generation Computer Program of the
1980s, which sought to create logical supercomputers and
made Prolog its language of choice. Although some such
machines were built, the idea never really caught on. How-
ever, Borland International (makers of the highly success-
ful Turbo Pascal) released a Turbo Prolog that made the
language more accessible to students using PCs, although it
used some nonstandard language extensions.

Despite its commercial success being limited, Prolog
has been used in a number of areas of artificial intelli-
gence research. Its rules-based structure is naturally suited
for expert systems, knowledge bases, and natural language
processing (see expert systems and knowledge repre-
sentation). It can also be used as a prototyping language
for designing systems that would then be recoded in con-
ventional languages for speed and efficiency.

Further Reading
Bratck, Ivan. Prolog Programming for Artificial Intelligence. 3rd ed.

Reading, Mass.: Addison-Wesley, 2000.
Clocksin, W. F., and C. S. Mellish. Programming in Prolog: Using

the ISO Standard. 5th ed. New York: Springer, 2003.
Fisher, J. R. “Prolog: Tutorial.” Available online. URL: http://www.

csupomona.edu/~jrfisher/www/prolog_tutorial /contents.
html. Accessed August 17, 2007.

Sterling, Leon, and Ehud Shapiro. The Art of Prolog: Advanced Pro-
gramming Techniques. 2nd ed. Cambridge, Mass.: MIT Press,
1994.

SWI-Prolog [free Prolog for Windows, Linux, and Mac OS]. Avail-
able online. URL: http://www.swi-prolog.org/. Accessed
August 17, 2007.

pseudocode
Because humans generally think on a higher (or more
abstract) level than that provided by even relatively high-
level programming languages such as BASIC or Pascal, it
is sometimes suggested that programmers use some form
of pseudocode to express how the program is intended to
work. Pseudocode can be described as a language that is
more natural and readable than regular programming lan-
guages, but sufficiently structured to be unambiguous. For
example, the following pseudocode describes how to calcu-
late the cost of wall-to-wall carpet for a room:

Get room length (in feet)
Get room width
Multiply length by width to get area (in
square feet)
Get price of carpet per square foot
Multiply price/sq. foot by area to get total
cost.

Pseudocode generally includes the basic control struc-
tures used in programming languages (see branching

390        Prolog

statements and loop) but is not concerned with small
details of syntax. For example, this pseudocode might
determine whether to charge sales tax for an online pur-
chase:

Get customer’s state of residence
If state is “CA” then

Tax = Price * .085
Total = Price + Tax

End If

Once the pseudocode has been written and reviewed,
the statements can be recoded in the programming lan-
guage of choice. For example, the preceding example might
look like this in C:

If (state == “CA”) {
Tax = Price * .085;
Total = Price + Tax;

}

The term pseudocode can also be applied to “intermedi-
ate languages” that provide a generic, machine-independent
representation of a program. For example, in the UCSD Pas-
cal system the language processor generates a “p-code” that
is turned into actual machine language by an interpreter
written for each of the different types of computer sup-
ported. Today Java takes a similar approach.

Further Reading
Bailey, T. E., and Kris Lundgaard. Program Design with Pseudocode.

3rd ed. Pacific Grove, Calif.: Brooks/Cole, 1989.
Daviduck, Brent. “Introduction to Programming in C++: Algo-

rithms, Flowcharts and Pseudocode.” Available online. URL:
http://www.allclearonline.com/applications/DocumentLi-
braryManager/upload/program_intro .pdf. Accessed August
17, 2007.

Gilberg, Richard F,. and Behrouz A. Forouzan. Data Structures: a
Pseudocode Approach with C++. 2nd ed. Boston: Course Tech-
nology, 2004.

Neapolitan, Richard E. Foundations of Algorithms Using C++
Pseudocode. 2nd ed. Sudbury, Mass.: Jones and Bartlett, 1998.

psychology of computing
Computing is a complex, pervasive, and increasingly vital
human activity. It is not surprising that human psychol-
ogy can play an important role in many aspects of com-
puter use.

Since the 1960s psychology (in particular see cognitive
science) has contributed to the structuring of interaction
between computer systems and users (see user interface).
It is important to note the significant differences between
how computers and humans perceive and process informa-
tion: computers are extremely fast in processing in a highly
structured setting (e.g., a program). The human brain, on
the other hand, while thousands of times slower, is thus
far greatly superior in coping with loosely structured data
through pattern recognition, the making of analogies, and
generalization. A number of researchers (see, for example,
Licklider, J. C. R.) have promoted the idea of creating a
human-computer synergy where the structure of the sys-

tem takes advantage of both the machine’s computational
and data-retrieval abilities and the human user’s ability to
work with the larger picture. Such research is continuing as
autonomous software (see software agent) and is begin-
ning to interact with Web users.

Psychology of Cyberspace
The Internet and its perception as a shared cyberspace adds
new dimensions to the psychology of computing. In fact,
the emphasis here is not on computation per se but on the
representation of ideas and images, communication, social
interaction, and identity. In particular, pioneering work
(see Turkle, Sherry) has illuminated ways in which online
interactions affect identity and sense of self—even encour-
aging the assumption of multiple identities (see identity
in the online world and online games). Indeed, virtual
worlds such as Second Life offer new ways to study the for-
mation of communities and social interactions.

On the positive side, it has been argued that cyberspace
has encouraged people (particularly adolescents) to experi-
ment with new identities in a relatively safe environment,
but lack of inhibition and experience can lead to risky
behavior such as involvement with sexual predators. The
very fact that many people (particularly the young) may
spend several hours a day or more immersed in the online
world has also led to concerns; some psychologists have
even suggested that “Internet addiction disorder” (IAD) be
included as an official mental disorder similar to compul-
sive gambling. However, as of 2007, the American Medical
Association has not recommended that IAD be classified
as a mental disorder, and the American Society of Addic-
tion Medicine has resisted such a status. Generally, exces-
sive or inappropriate use of the Internet has been seen as a
symptom of more traditional diagnoses such as obsession
or compulsion.

Further Reading
Card, Stuart K., Thomas P. Moran, and Allen Newell, eds. The Psy-

chology of Human-Computer Interaction. Grand Rapids, Mich.:
CRC, 1986.

Joinson, Adam N. Understanding the Psychology of Internet Behav-
iour: Virtual Worlds, Real Lives. New York: Palgrave Macmil-
lan, 2003.

Suler, John. “Computer and Cyberspace Addiction.” International
Journal of Applied Psychoanalytic Studies 1 (2004): 359–382.
Available online. URL: http://www-usr.rider.edu/~suler/
psycyber/cybaddict.html. Accessed November 8, 2007.

———. “The Psychology of Cyberspace.” Available online. URL:
http://www-usr.rider.edu/~suler/psycyber/psycyber.html.
Accessed November 8, 2007.

Turkle, Sherry. Life on the Screen: Identity in the Age of the Internet.
New York: Touchstone, 1995.

———. The Second Self: Computers and the Human Spirit. Twentieth
anniversary ed. Cambridge, Mass.: MIT Press, 2005.

Wallace, Patricia. The Psychology of the Internet. New York: Cam-
bridge University Press, 1999.

Weinberg, Gerald. The Psychology of Computer Programming. Silver
anniversary ed. New York: Dorset House, 1998.

Whitty, Monica T., and Adrian N. Carr. Cyberspace Romance: The
Psychology of Online Relationships. New York: Palgrave Mac-
millan, 2006.

psychology of computing        391

punched cards and paper tape
In 1804, the French inventor Joseph-Marie Jacquard
invented an automatic weaving loom that used a chain of
punched cards to control the pattern in the fabric. A gen-
eration later, a British inventor (see Babbage, Charles)
decided that punched cards would be a suitable medium for
inputting data into his proposed mechanical computer, the
Analytical Engine.

Although Babbage’s machine was never built, by 1890
an American inventor was using an electromechanical tabu-
lating machine to process census data punched into cards
(see Hollerith, Herman). Card tabulating machines were
improved and marketed by International Business Machines
(IBM) throughout the first part of the 20th century. IBM
would also create the 80-column standard punched card
that would become familiar to a generation of programmers.

Later machines included features such as mechanical
sorting, enhanced arithmetic functions, and the ability to
group cards by a particular criterion and print subtotals,
counts, or other information about each group. Although
these machines were not computers, they did introduce the
idea of automated data processing.

During the 1930s, a number of companies introduced
punch card tabulators that could work with alphanu-
meric data (that is, letters as well as numbers). With these
expanded capabilities, punch card systems could be used
to keep track of military recruits, taxpayers, or custom-
ers (such as insurance policy holders). IBM emphasized
the new machines’ features by calling them “accounting
machines” instead of tabulators.

While tabulators and calculators using punched cards
gave a taste of the power of automated data processing,
they had a very limited programming ability. For example,
they could not make more than very simple comparisons or
decisions, and could not repeat steps under program con-
trol (looping). The desire to create a general-purpose data
processing system led in the 1940s to the development of
the electronic computer.

When the first computers were developed, it was natural
to turn to the existing punched cards and their machinery
for a medium for inputting data and program instructions
into the new machines. Because computers contained work-
ing memory, the program could be stored in its entirety
during processing, enabling looping, subroutines, and other
ways to control processing. Because the amount of avail-
able memory or “core” was severely limited, not much data
could be stored inside the computer. However, complicated
processing could be broken into a series of steps where a
program was loaded and run, the input data cards read and
processed, and the intermediate results punched onto a set
of output cards. The card could then be input to another
program to carry out the next phase.

By the 1970s, however, faster and easier to use media
such as magnetic tape and disk drives were being employed
for program and data storage. Instead of having to use a
keypunch machine to create each program statement, pro-
grammers could type their commands at a terminal, using
a text editor (see programming environment). Even the
government began to phase out punched cards. Today some

“legacy” punch card systems are maintained, and there
is sometimes a need to read and convert archival data in
punch card form.

Ironically, this workhorse of early data processing
would surface again in the U.S. presidential election of
2000, when problems with the interpretation of partly
punched “chads” on ballot punch cards would lead to
great controversy.

Further Reading
Cardamation Company. Available online. URL: http://www.carda-

mation.com/. Accessed August 17, 2007.
Dyson, George. “The Undead: The Little Secret That Haunts Cor-

porate America: A Technology That Won’t Go Away.” Wired
7.03 (March 1999): 141–145, 170–172. Available online. URL:
http://www.wired.com/wired/archive/7.03/punchcards.html.
Accessed August 17, 2007.

Philips, N. V. “Everything About Punch Cards.” Available online. URL:
http://www.museumwaalsdorp.nl/computer/en/punchcards.
html. Accessed August 17, 2007.

Province, Charles M. “IBM Punch Cards in the Army.” Available
online. URL: http://www.geocities.com/pattonhq/ibm.html.
Accessed February 9, 2008.

Python
Created by Guido van Rossum and first released in 1990,
Python is a relatively simple but powerful scripting lan-
guage (see scripting languages and Perl). The name
comes from the well-known British comedy group Monty
Python.

Python is particularly useful for system administrators,
webmasters, and other people who have to link various
files, data source, or programs to perform their daily tasks.
The language currently has a small but growing (and quite
enthusiastic) following.

Python dispenses with much of the traditional syntax
used in the C family of languages. For example, the follow-
ing little program converts a Fahrenheit temperature to its
Celsius equivalent:

temp = input(“Farenheit temperature:”)
print (temp-32.0) *5.0/9.0

Without the semicolons and braces found in C and
related languages, Python looks rather like BASIC. Also
note that the type of input data doesn’t have to be declared.
The runtime mechanism will assume it’s numeric from the
expression found in the print statement. Python programs
thus tend to be shorter and simpler than C, Java, or even
Perl programs. The simple syntax and lack of data typing
does not mean that Python is not a “serious” language,
however. Python contains full facilities for object-oriented
programming, for example.

Python programs can be written quickly and easily by
trying commands out interactively and then converted the
script to bytecode, a machine-independent representation
that can be run on an interpreter designed for each machine
environment. Alternatively, there are translation programs
that can convert a Python script to a C source file that can
then be compiled for top speed.

392        punched cards and paper tape

Perl is still a popular scripting language for UNIX and
Web-related applications. Perl contains a powerful built-
in regular expression and pattern-matching mechanism, as
well as many other built-in functions likely to be useful for
practical scripting. Python, on the other hand, is a more
generalized and more cleanly structured language that is
likely to be suited for a wider variety of applications, and
it is more readily extensible to larger and more complex
applications.

Further Reading
Lutz, Mark. Learning Python. 3rd. ed. Sebastapol, Calif.: O’Reilly,

2007.
———. Programming Python. 3rd ed. Sebastapol, Calif.: O’Reilly,

2006.
Python Programming Language—Official Web site. Available online.

URL: http://www.python.org/. Accessed August 17, 2007.
Zelle, John M. Python Programming: An Introduction to Computer

Science. Wilsonville, Ore.: Franklin, Beedle & Associates,
2004.

Python        393

394

quality assurance, software
Modern software programs are large and complex, and con-
tain many interrelated modules. If a program is not thor-
oughly tested before it goes into service, it may contain
errors that can result in serious consequences (see risks of
computing).

In the early days of computing, programmers gener-
ally tested their code informally and nonsystematically. The
assumption was that after the program was given to the users
any problems that arose could be fixed through “patches”
or replacement versions containing bug fixes. Today, how-
ever, it is increasingly recognized that assuring the quality
and reliability of software requires a systematic, comprehen-
sive process that begins when software requirements are first
specified and continues after the program has been released.

Any program is designed to meet the needs of a spe-
cific type of users for specific applications. Therefore, the
first step must be to make sure that users are able to com-
municate their requirements and that the software engi-
neers understand the users’ needs and concerns. Detailed
written specifications, flowcharts, and other depictions of
the program can be reviewed by user representatives (see
flowchart and case). The specifications can be further
explored by creating a prototype or demonstration of the
program’s features (see presentation software). Since a
prototype can be dynamic and let users have simulated
interactions with the program, it may reveal usability prob-
lems that would be hard to spot from charts or documenta-
tion. The result of this initial verification process should
be that the users agree that the program will do what they
need and that they will be comfortable using it.

In moving from design to implementation (writing the
actual code), the developers must first choose an appro-
priate approach (see algorithm) and data representation.
Choosing an algorithm that is known to be sound is prefer-
able, but if an algorithm must be modified (or a new one
developed), developers may be able to take advantage of
mathematical techniques that will suggest, if not totally
prove, the algorithm’s accuracy and reliability.

As the programmers write the code, they should try to
use best practices (see software engineering). Doing so
ensures that the code will be readable and organized in
such a way that the source of a problem area can be iden-
tified easily, and any “fix” that must be made will be less
likely to have unforeseen side effects.

Developers can also include special code that will facilitate
testing. This code can include assertions—statements that test
specified conditions (such as variable values) at key points in
the program, displaying appropriate messages if the values
are not within the proper range. Large, complex programs
can also include diagnostic modules that give the developers a
sort of virtual console that they can use to monitor conditions
while the program is running, or “drill into” particular areas
for closer inspection (see bugs and debugging).

Although a certain amount of testing and debugging can
and should be done while the code is being written, more
extensive and systematic testing is usually performed after
a preliminary version of the program has been completed.
(This is sometimes called an alpha version.) There are two
basic approaches to designing the tests. “White box” tests use
the developer’s knowledge of the code to design test data that
will test all of the program’s structural features (see proce-

Q

dures and functions, branching statements, and loop).
The testers may be aided by mathematical analysis that iden-
tifies “partitions” or ranges within the data that should result
in a particular execution path being taken through the pro-
gram. “Fault coverage” tests can also be designed to test
for various specific types of errors (such as input/output,
numeric overflow, loss of precision, and so on).

A shortcoming of white box tests is that because the
tester knows how the program works, he or she may uncon-
sciously select mainly “reasonable” data or situations. (It
has been observed that users are under no such compul-
sion!) One way to compensate for this bias is to also per-
form “black box” tests. These tests assume no knowledge of
the inner workings of the program. They approach the pro-
gram from the outside, submitting data (or otherwise inter-
acting with the program) either through the user interface
or using an automated process that simulates user input.
The tester tries to generate as wide a variety of input data
as possible, often by using randomization techniques. The
result is that the ability of the program to deal with “unrea-
sonable” data will also be tested, and unforeseen situations
may arise and have to be dealt with.

Once this cycle of testing and fixing problems is fin-
ished, the program will probably be given to a selected
group of users who will operate it under field conditions—
that is, in the same sort of environment the program will be
used once it is sold or deployed. This process is sometimes
called beta testing. (Game companies have traditionally
relied upon the willingness of gamers to test a new game in
exchange for getting to play it sooner.)

The priority (and thus the resources) devoted to testing
will vary according to many factors, including

• � the complexity of the program (and thus the likeli-
hood of problems)

• � the presence of strong competitors who could take
advantage of significant problems with the program

• � the potential financial impact or legal exposure from
bugs or problems

• � the ability to “amortize” the costs of developing test-
ing tools and procedures over a number of years as
new versions of the program are developed

The Holy Grail for quality assurance would be to develop
powerful artificially intelligent automatic testing programs
that could analyze a program and develop and execute a
variety of thorough tests. However, such a program would
itself be very complex, difficult and expensive to develop,
and subject to its own bugs. Nevertheless, a number of
organizations (notably, IBM) have devoted considerable
attention to the problem.

Further Reading
Ginac, Frank P. Customer-Oriented Software Quality Assurance.

Upper Saddle River, N.J.: Prentice Hall PTR, 1997.
Godbole, Nina S. Software Quality Assurance: Principles and Prac-

tice. Pangbourne, U.K.: Alpha Science International, 2004.
Schulmeyer, G. Gordon, ed. Handbook of Software Quality Assur-

ance. 4th ed. Boston: Artech House, 2007.
Software QA and Testing Resource Center. Available online. URL:

http://www.softwareqatest.com/. Accessed August 17, 2007.

quantum computing
The fundamental basis of electronic digital computing is the
ability to store a binary value (1 or 0) using an electromag-
netic property such as electrical charge or magnetic field.

However, during the first half of the 20th century,
physicists discovered the laws of quantum mechanics that
apply to the behavior of subatomic particles. An electron
or photon, for example, can be said to be in any one of sev-
eral “quantum states” depending on such characteristics as
spin. In 1981, physicist Richard Feynman came up with the
provocative idea that if quantum properties could be “read”
and set, a computer could use an electron, photon, or other
particle to store not just a single 1 or 0, but a number of val-
ues simultaneously. The simplest case, storing two values at
once, is called a “qubit” (short for “quantum bit”). In 1985,
David Deutsch at Oxford University fleshed out Feynman’s
ideas by creating an actual design for a “quantum com-
puter,” including an algorithm to be run on it.

At the time of Feynman’s proposal, the techniques for
manipulating individual atoms or even particles had not
yet been developed (see nanotechnology), so a practi-
cal quantum computer could not be built. However, during
the 1990s considerable progress was made, spurred in part
by the suggestion of Bell Labs researcher Peter Shor, who
outlined a quantum algorithm that might be used for rapid
factoring of extremely large integers. Since the security of
modern public key cryptography (see encryption) depends
on the difficulty of such factoring, a working quantum com-
puter would be of great interest to spy agencies.

The reason for the tremendous potential power of quan-
tum computing is that if each qubit can store two values
simultaneously, a register with three qubits could store
eight values, and in general, for n qubits one can operate on
2n values simultaneously. This means that a single quan-
tum processor might be the equivalent of a huge number of
separate processors (see multiprocessing). Clearly many
problems that have been considered not practical to solve
(see computability and complexity) might be tackled
with quantum computers.

However, the practical problems involved in designing
and assembling a quantum computer are expected to be very
formidable. Although scientists during the 1990s achieved
the ability to arrange individual atoms, the precise place-
ment of atoms and even individual particles such as photons
would be difficult. Furthermore, as more of these compo-
nents are assembled in very close proximity, it becomes
more likely that they will interfere with one another, causing
“decoherence,” where the superimposed values “break down”
to a single 1 or 0, thus causing loss of information. However,
some researchers are hopeful that standard mathematical
techniques (see error correction) could be used to keep
this problem in check. For example, redundant components
could be used so that even if one decoheres, the others could
be used to regenerate the information.

Another approach is to use a large number of quantum
components to represent each qubit. In 1998, Neil Gersh-
enfeld and Isaac L. Chuang reported successful experi-
ments using a liquid with nuclear magnetic resonance
(NMR) technology. Here each atom in a molecule (for

quantum computing        395

example, chloroform), would represent one qubit, and
a large number of molecules would be used, for redun-
dancy. Since each “observation” (that is, setting or read-
ing data) affects only a few of the many molecules for
each qubit, the stability of the information in the system
is not compromised. However, this approach is limited by
the number of atoms in the chosen molecule—perhaps to
30 or 40 qubits.

There are many potential applications for quantum
computing. While the technology could be used to crack
conventional cryptographic keys, researchers have sug-
gested that it could also be used to generate unbreak-
able keys that depend on the “entanglement” of observers
and what they observe. The sheer computational power
of a quantum computer might make it possible to develop
much better computer models of complex phenomena
such as weather, climate, the economy—or of quantum
behavior itself.

Further Reading
Burda, Ioan. Introduction to Quantum Computation. Boca Raton,

Fla.: Universal Publishers, 2005.
Kaye, Phillip, Raymond LaFlamme, and Michele Mosca. An Intro-

duction to Quantum Computing. New York: Oxford University
Press, 2007.

Quantum Computer News. Science Daily. Available online.
URL: http://www.sciencedaily.com/news/computers_math/
quantum_computers/. Accessed August 17, 2007.

West, Jacob. The Quantum Computer. Available online. URL: http://
www.cs.caltech.edu/~westside/quantum-intro.html. Accessed
August 17, 2007.

queue
A queue is basically a “line” of items arranged according to
priority, much like the customers waiting to check out in a
supermarket. Many computer applications involve receiving,
tracking, and processing requests. For example, an operating
system running on a computer with a single processor must
keep track of which application should next receive the pro-
cessor’s attention. A print spooler holds documents waiting to
be printed. A web or file server must keep track of requests for
Web pages, files, or other services. Queues provide an orderly
way to process such requests. Queues can also be used to
efficiently store data in memory until it can be processed by a
relatively slow device such as a printer (see buffering).

As a data structure, a queue is a type of list (see list
processing). New items are inserted at one end and
removed (deleted) from the other end. This contrasts with
a stack, where all insertions and deletions are made at the
same end (see stack). Just as the next person served at the
supermarket is the one at the head of the line, the end of a
queue from which items are removed is called the head or
front. And just as new people arriving at the supermarket
line join the end of the line, the part of the queue where
new items are added is called the tail or rear. Since the first
item in line is the first to be removed, a queue is called a
FIFO (first in, first out) structure.

To create a queue, a program first allocates a block of
memory. It then sets up to pointers (see pointers and indi-
rection). One pointer stores the address of the item at the
head of the queue; the other has the address of the item at
the tail. When the queue starts out, it is empty. This means
that both the head and tail pointer start out pointing to the
same location.

In an empty queue, the head and tail pointers point to the first
cell in memory. To add a value, it is placed at the cell pointed to
by the head pointer, and the tail pointer is moved up one cell. If an
item is removed, the head and tail pointers are moved down one
place. (Note that items must be added at the tail and removed at
the head.)

A circular queue works in the same way as a “straight” queue,
except that when the last cell in the allotted memory block is
reached, the pointer or data “wraps around” to the first cell.

396        queue

To add an item, the tail pointer is moved back one loca-
tion and the item is stored there. To remove an item, the
head pointer is simply moved back one location. (The data
that had been pointed to by the head pointer can be either
retrieved or discarded, depending on the application.)

In actuality it’s not quite so simple. As items are added
to the queue, the tail pointer keeps moving back in memory
with the head pointer trailing behind as items are deleted. If
the queue is sufficiently active (many items are being added
and removed), the queue will end up “crawling” through
memory somewhat like a worm until all the memory is
consumed.

In a real line at the supermarket, as a customer leaves
the checkout stand, each of the persons in line moves
up one space. In a computer queue this could be accom-
plished by moving each item up one location whenever
an item is removed at the head. However, having to move

all the data items each time one is changed would be very
inefficient. Instead, one could allow the head of the queue
to move only up to some specified location. At that point,
the head is moved back to the beginning of the memory
block, and thus the space that had been vacated by the
tail as it moved up is reutilized. In effect this wraps the
memory around into a circle, so this is called a circular
queue.

Further Reading
Brookshear, J. Glenn. Computer Science: An Overview. 6th ed. Read-

ing, Mass.: Addison-Wesley, 2000.
Skiena, Steven S. “Priority Queues.” Available online. URL: http://

www2.toki.or.id/book/AlgDesignManual/BOOK/BOOK3/
NODE130.HTM. Accessed August 17, 2007.

Suh, Eric. “The Queue Data Structure.” Available online. URL:
http://www.cprogramming.com/tutorial/computerscience
theory/queue.html. Accessed August 17, 2007.

queue        397

398

RAID  (redundant array of inexpensive disks)
Computer storage is relatively cheap today (see hard disk),
but having continued access to data in the event of hard-
ware failure is essential to any enterprise. RAID, or redun-
dant array of inexpensive disks, is a way to turn plentiful
storage into higher reliability and/or speed of access. RAID
works by turning a group of drives into a single logical

unit; the operating system need not deal with this internal
organization, but simply reads or writes data as usual.

To improve reliability, data can be mirrored, or copied to
two or more disks. While the data obviously takes up more
space, the advantage is that the data remains intact and
recoverable if any one drive fails. Further reliability can be
achieved by storing redundant data (such as parity bits or
Hamming codes), to diagnose and fix some disk problems
(see error correction and fault tolerance).

To achieve greater speed of data access, data can be
“striped,” where a file is broken into pieces, with each piece
stored on a sector on a different drive. Thus instead of the
head of a single drive having to jump around to multiple
sectors to read the data, the heads on all the drives can
simultaneously read many parts of the file, which are then
assembled into the proper order.

Levels and Compromises
By combining mirroring, error correction, and/or striping,
different “levels” of RAID can be implemented to suit differ-
ent needs. There are various trade-offs: Striping can increase
access speed, but uses more storage space and, by increasing
the number of disks, also increases the chance that one will
fail. Implementing error correction can make failure recov-
erable, but slows data access down because data has to be
read from more than one location and compared.

The most commonly used RAID levels are:

• � RAID 0—striping data across disks, higher speed but
no error correction; failure of any disk can make data
unrecoverable

R

Striping spreads data across several disk drives so that a single
head movement on each drive can fetch a large amount of data.
Mirroring duplicates each sector of data on a second disk drive,
ensuring that if one drive fails the data can still be retrieved. Com-
binations of both techniques are often used, trading space for reli-
ability (or vice versa).

• � RAID 1—mirroring (data stored on at least two disks),
data intact as long as one disk is still operating

• � RAID 3 and 4—striping plus a dedicated disk for par-
ity (error checking)

• � RAID 5—striping with distributed parity; data can be
restored automatically after a failed disk is replaced

• � RAID 6—like RAID 5 but with parity distributed so
that data remains intact unless more than two drives
fail

In actuality, RAID configurations can be very complex,
where different levels can be “layered” above one another,
with each treating the next as a virtual drive, until one
gets down to the actual hardware. Although RAID is often
implemented using a physical (hardware) controller, oper-
ating systems can also create a virtual RAID structure in
software, interposed between the logical drive as seen by
the read/write routines and the physical drives.

Although RAID is most commonly used with large
shared storage units (see file server and networked
storage), with the drastic decline in hard drive prices,
simple RAID configurations (such as two mirrored drives)
are also appearing in higher-end desktop PCs.

Further Reading
Leider, Joel. “How to Select a RAID Disk Array.” Enterprise Storage

Forum. Available online. URL: http://www.enterprisestorage-
forum.com/hardware/features/article.php/726491. Accessed
November 8, 2007.

“Redundant Array of Inexpensive Disks (RAID).” PC Guide. Avail-
able online. URL: http://pcguide.com./ref/hdd/perf/raid/index.
htm. Accessed November 8, 2007.

random number generation
Computer applications such as simulations, games, and
graphics applications often need the ability to generate one
or more random numbers (see simulation and computer
games). Random numbers can be defined as numbers that
show no consistent pattern, with each number in the series
neither affected in any way by the preceding number, nor
predictable from it.

One way to get random digits is to simply start with an
arbitrary number with a specified number of digits, perhaps
10. This first number is called the seed. Multiply the seed by
a constant number of the same length, and take that number
of digits off the right end of the product. The result becomes
the new seed. Multiply it by the original constant to generate
a new product, and repeat as often as desired. The result is
a series of digits that appear randomly distributed as though
generated by throwing a die or spinning a wheel. This type
of algorithm is called a congruential generator.

The quality of a random number generator is propor-
tional to its period, or the number of numbers it can pro-
duce before a repeating pattern sets in. The period for a
congruential generator is approximately 232, quite adequate
for many applications. However, for applications such as
very large-scale simulations, different algorithms (called
shift-register and lagged-Fibonacci) can be used, although

these also have some drawbacks. Combining two different
types of generators produces the best results. The widely
used McGill Random Number Generator Super-Duper com-
bines a congruential and a shift-register algorithm.

Generating a random number series from a single seed
will work fine with most simulations that rely upon gen-
erating random events under the control of probabilities
(Monte Carlo simulations). However, although the sequence
of numbers generated from a given seed is randomly distrib-
uted, it is always the same series of numbers for the same
seed. Thus, a computer poker game that simply used a given
seed would always generate the same hands for each player.
What is needed is a large collection of potential seeds from
which one can be more or less randomly chosen. If there
are enough possible seeds, the odds of ever getting the same
series of numbers become vanishingly small.

One way to do this is to read the time (and perhaps date)
from the computer’s system clock and generate a seed based
on that value. Since the clock value is in milliseconds, there
are millions of possible values to choose from. Another
common technique is to use the interval between the user’s
keystrokes (in milliseconds). Although they are not perfect,
these techniques are quite adequate for games.

So-called true random number generators extract ran-
dom numbers from physical phenomena such as a radioac-
tive source (the HotBits service at Fourmilab in Switzerland)
or even atmospheric noise as detected by a radio receiver.
For the ultimate in random numbers, researchers have
looked to quantum processes that are inherently random.
In 2007 researchers at an institute in Zagreb, Croatia, began
to offer the Quantum Random Bit Generator Service, which
is keyed to unpredictable emissions of photons in a semi-
conductor. The output of most random number services can
be interfaced with MATLAB and other popular mathemati-
cal software packages.

Further Reading
Gentle, James E. Random Number Generation and Monte Carlo

Methods. 2nd ed. New York: Springer, 2004.
HotBits: Genuine Random Numbers, Generated by Radioactive

Decay. Available online. URL: http://www.fourmilab.ch/
hotbits/. Accessed August 18, 2007.

“Introduction to Randomness and Random Numbers.” Available
online. URL: http://www.random.org. Accessed August 18,
2007.

real-time processing
There are many computer applications (such as air traffic
control or industrial process control) that require that the
system respond almost immediately to its inputs.

In designing a real-time system there are always two
questions to answer: Will it respond quickly enough most
of the time? How much variation in response time can we
tolerate? A system that responds to real-time environmental
conditions (such as the amount of traction or torque acting
on a car’s wheels) needs to have a sampling rate and a rate
of processing the sampled data that’s fast enough so that
the system can correct a dangerous condition in time. The
responsiveness required of course varies with the situation

real-time processing        399

and with the potential consequences of failure. An air traffic
control system may be able to take a few seconds between
processing radar samples, but it better get it right in time.
Systems like this where real-time response is absolutely
crucial are sometimes called “hard real-time systems.”

Other systems are less critical. A streaming audio sys-
tem has to keep its buffer full so it can play in real time,
but if it stutters once in a while, no one’s life is in danger.
(And since download rates over the Internet can vary for
many reasons it’s not realistic to expect too perfect a level
of performance.) A slower “soft real-time system” like a
bank’s ATM system should be able to respond in tens of sec-
onds, but if it doesn’t, the consequences are mainly poten-
tial loss of customers and revenue. A fairly wide variation in
response time may be acceptable as long waits don’t occur
often enough to drive away too many customers.

To put together the system, the engineer must look at
the inherent speed of the sampling device (such as radar,
camera, or simply the keyboard buffer). The speed of the
processor(s) and the time it takes to move data to and from
memory are also important. The structure, strengths, and
weaknesses of the host operating system can also be a fac-
tor. Some operating systems (including some versions of
UNIX) feature a guaranteed maximum response time for
various operating system services. This can be used to help
calculate the “worst case scenario”—that combination of
inputs and the existing state of the system that should result
in the slowest response.

Another approach available in most operating systems is
to assign priority to parts of the processing so that the most
critical situations are guaranteed to receive the attention of
the system. However, things must be carefully tuned so that
even lower priority tasks are accomplished in an acceptable
length of time.

The design of the data structure or database used to
hold information about the process being monitored is also
important. In most databases the age of the data is not that
important. For a payroll system, for example, it might be
sufficient to run a program once in a while to weed out
people who are no longer employees. For a nuclear power
plant, if data is getting too old such that it’s not keep-
ing up with current condition, some sort of alarm or even
automatic shutdown might be in order. With a system that
has softer constraints (such as an automatic stock trading
system), it may be enough to be able to get most trades done
within a specified time and to gather data about the perfor-
mance of the system so the operators can decide whether it
needs improvement.

Real-time systems are increasingly important because
of the importance of the activities (such as air traffic con-
trol and power grids) entrusted to them, and because of
their pervasive application in everything from cars to cell
phones to medical monitors (see embedded system and
medical applications of computers). The systems also
tend to be increasingly complex because of the increasing
interconnection of systems. For example, many real-time
systems have to interact with the Internet, with communi-
cations services, and with ever more sophisticated multime-
dia display systems. Further, many real-time systems must

use multiple processors (see multiprocessing), which can
increase the robustness and reliability of the system but
also the complexity of its architecture, and thus the diffi-
culty in determining and ensuring reliability.

Further Reading
Buttazzo, Giorgio C. Hard Real-Time Computing Systems: Predict-

able Scheduling Algorithms and Applications. 2nd ed. New
York: Springer, 2005.

Cheng, Albert M. K. Real-Time Systems: Scheduling, Analysis, and
Verification. Hoboken, N.J.: Wiley, 2002.

Resources for Real-Time Computing. TechRepublic. Available
online. URL: http://search.techrepublic.com.com/search/
real-time+computing.html. Accessed August 19, 2007.

recursion
Even beginning programmers are familiar with the idea
that a series of program statements can be executed repeat-
edly as long as (or until) some condition is met (see loop).
For example, consider this simple function in Pascal. It
calculates the factorial of an integer, which is equal to the
product of all the integers from 1 to the number. Thus fac-
torial 5, or 5! = 1 * 2 * 3 * 4 * 5 = 120.

Function Factorial (n: integer) : integer
Begin

i: integer;
For i = 1 to n do

Factorial := Factorial * i;
End.

If the main program has the line:

Writelin (Factorial (5));

then the 5 is sent to the function, where the loop simply
multiplies the numbers from 1 to 5 and returns 120.

However, it is also possible to have a function call itself
repeatedly until a specified condition is met. This is called

In recursion, a procedure calls itself until some defined condition
is met. In this example of a Factorial procedure, F(1) is defined to
return 1. Once it does, the returned value is plugged into its caller,
which then returns the value of 1 * 2 to its caller, and so on.

400        recursion

recursion, and it allows for some compact but powerful
coding. A recursive version of the Factorial function in Pas-
cal might look like this:

function Factorial (n:integer) :integer
begin

if (n = 1) then
Factorial := 1

else
Factorial := Factorial (n - 1) * n;

end;

Why does this work? An alternative way to define a fac-
torial is to say that the factorial of a number is that number
times the factorial of one less than the number. Thus, the
factorial of 5 is equal to 5 * 4! or 5 * 4 * 3 * 2 * 1. But in turn
the factorial of 4 would be equal to 4 * (3 * 2 * 1), and so on
down to the factorial of 1, which is simply 1. Thus, in general
terms the factorial of n is equal to n * factorial (n - 1).

What happens if this function is called by the program
statement:

Writeln (“Factorial of 5 is ”); Factorial (5)

First, the Factorial function is called with the value 5
assigned to n. The If statement checks and sees that n is
not 1, so it calls factorial (i.e., itself) with the value of n - 1,
or 4. This new instance of the factorial function gets the
4, sees that it is not 1, and calls factorial again with n - 1,
which is now 4 - 1 or 3. This continues until n is 2, at which
point factorial 1 is called. But this time n is 1, so it returns
the value of 1 rather than calling itself yet again.

Now the returned value of 1 replaces the call to Facto-
rial (n - 1) in the preceding instance of Factorial (where n
had been 2). That 1 is therefore multiplied by 2, and 1 *
2 = 2 is returned to the preceding instance, where n had
been 3. Now that 2 gets multiplied by 3 and returned to the
instance where n had been 4. This continues until we’re
back at the first call to factorial 5, where the value of 4 * 3 *
2 * 1 now gets multiplied by that 5, giving 120, or factorial
5. (See the accompanying diagram for help in visualizing
this process.)

A Recursive Sorting Algorithm
In the preceding example recursion does no more than a
simple loop could, but many problems lend themselves more
naturally to a recursive formulation. For example, suppose
you have an algorithm to merge (combine) two lists of inte-
gers that have been sorted into ascending values. The proce-
dure simply takes the smaller of the two numbers at the front
of the two lists until one list runs out of numbers (any num-
bers in the remaining list can then simply be included).

Using an English-like syntax, one can write a recursive
procedure to sort a list of numbers by calling itself repeat-
edly, then using the Merge procedure:

Procedure Sort
Begin

If the list has only one item, return
Else

Sort the first half of the list

Sort the second half of the list
Merge the two sorted lists

End If
End (Sort)

Sort will call itself until one of the lists has only one
item (which by definition is “sorted”), and the Merge proce-
dure will build the sorted list.

To implement recursion, the run-time system for the
language must use an area of memory (see stack) to tem-
porarily store the values associated with each instance of a
function as it calls itself. Depending on the implementation,
there may be a limit on how many levels of recursion are
allowed, or on the size of the stack. (However, the plentiful
supply of available memory on most systems today makes
this less of an issue.)

The first generation of high-level computer languages
(such as FORTRAN and COBOL) did not allow recursion.
However, the second generation of procedural languages
starting around 1960 with Algol, as well as successors such
as Pascal and C do allow recursion. The LISP language
(see LISP and functional languages) uses recursive
definitions extensively, and recursion turns out to be very
useful for processing the grammars for artificial and natu-
ral languages (see parsing). Recursion can also be used
to generate interesting forms of graphics (see fractals in
computing).

Further Reading
Hillis, W. Daniel. The Pattern in the Stone: The Simple Ideas that

Make Computers Work. New York: Basic Books, 1998.
McHugh, John. “The Animation of Recursion.” Available online.

URL: http://www.animatedrecursion.com/home. Accessed
August 19, 2007.

Roberts, E. S. Thinking Recursively. New York: Wiley, 1986.

reduced instruction set computer  (RISC)
All things being equal, the trend in computer design is
to continually add new features. There are several reasons
why this is the case with computer processors:

• � to create a “family” of upwardly compatible computers
(see compatability and portability)

• � to make a new machine more competitive with exist-
ing systems, or to give it a competitive advantage

• � to make it easier to write compilers for popular lan-
guages

• � to allow for more operations to be done with one
(or a few) instructions rather than requiring many
instructions

There are certainly exceptions to the trend toward com-
plexity. The minicomputer, for example, represented in
some ways a simplification of the exiting mainframe design.
It didn’t have as many ways of working with memory (see
addressing) and lacked the multiple input/output “chan-
nels” and their separate processors. But once minicom-
puters were introduced and achieved success, the same

reduced instruction set computer        401

competitive and other pressures led their designers to start
adding complexity.

One way processor designers coped with the demand
for more complicated instructions was to give the main pro-
cessor a microprocessor with its own set of simple instruc-
tions. When the main processor received one of the complex
instructions, it would be executed by being broken down
into simpler instructions or “microcode” to be executed by
the sub-processor.

This approach gave processor designers greater flex-
ibility. It also made things easier for compiler designers,
because the compiler could translate higher-level language
statements into fewer, more complex instructions, leaving
it to the hardware with its micro engine to break them
down into the ultimate machine operations. However, it
also meant that the processor had to decode and execute
more instructions in every processor cycle, making it less
efficient and slower and losing some of the benefits of the
faster processors that were becoming available.

In 1975, John Cocke and his colleagues at IBM decided
to build a new minicomputer architecture from the ground
up. Instead of using complex instructions and decoding
them with a micro engine, they would use only simple
instructions that could be executed one per cycle. The clock
(and thus the cycle time) would be much faster than for
existing machines, and the processor would use pipelining
so it could decode the next instruction while still executing
the previous one. Similarly, in many cases the next item
of data needed could be fetched at the same time the data
from the previous step was being written (stored). This
approach became known as reduced instruction set com-
puting (RISC), because the number of instructions had been
reduced compared to exiting systems, which then became
known as complex instruction set computing (CISC).

Since the RISC system had only simple instructions,
compilers could no longer use many complicated but handy
instructions. The compiler would have to take over the job
of the micro engine and break all statements down into
the basic instructions. It became important that the com-
piler be able to generate the optimal set of instructions by
analyzing how data would have to be moved around in
the machine’s registers and memory. In other words, RISC
hardware gained higher performance through simplification
at the hardware level but at the cost of making compilers
more complicated. Fortunately, both hardware and software
designers were able to meet the challenge and in the process
learn how to get the most out of new technology.

RISC would also play a part in the design of the micro-
processors that began to power personal computers. For
example, the DEC Alpha, a “pure” RISC chip introduced
in 1992, provided a level of power that made it suitable for
high-performance workstations. Another successful RISC-
based development has been the SPARC (Scalable Processor
ARChitecture) developed by Sun Microsystems for servers,
computer clusters, and workstations.

Perhaps the most interesting development, however, has
been the gradual application of RISC principles to main-
stream processors such as the Intel 80×86 series used in
most personal computers today. Increasingly, the recent

Pentium series chips, while supporting their legacy of CISC
instructions, are processing them using an inner architec-
ture that uses RISC principles and takes advantage of pipe-
lining, as well as using more registers and a larger data
cache. However, the sheer increase in clock cycle speed and
performance in the newer chips has made the old tradeoff
between complicated and simple instructions less relevant.

Further Reading
Dandamudi, Sivarama P. Guide to RISC Processors for Programmers

and Engineers: Introduction to Assembly Language Programming
for Pentium and RISC Processors. New York: Springer, 2005.

Knuth, Donald E. MMIX—A RISC Computer for the New Millen-
nium. Vol. 1, fascicle 1 of Art of Computer Programming. Upper
Saddle River, N.J.: Addison-Wesley Professional, 2005.

regular expression
Many users of UNIX and the old MS-DOS are familiar with
the ability to use “wildcards” to find filenames that match
specified patterns. For example, suppose a user wants to list
all of the TIF graphics files in a particular directory. Since
these files have the extension .tif, a UNIX ls command or a
DOS dir command, when given the pattern *.tif, will match
and list all the TIF files. (One does have to be aware of
whether the operating system in question is case-sensitive.
UNIX is, while MS-DOS is not.)

The specification *.tif tells the command “match all files
whose names consist of one or more characters and that end
with a period followed by the letters tif.” It is one of many
possible regular expressions. (See the accompanying table
for more examples.) The asterisk here is a “metacharacter.”
This means that it is not treated as a literal character, but as
a pattern that will be matched in a specified way.

Most operating systems that have command processors
(see shell) allow for some form of regular expressions, but
don’t necessarily implement all of the metacharacters. UNIX
provides the most extensive use for regular expressions (see
UNIX). UNIX has an operating system facility called glob
that expands regular expressions (that is, substitutes for
them whatever matches) and passes them on to the many
UNIX tools or utilities designed to work with regular expres-
sions. These tools include editors such as ex and vi, the
character translation utility (tr), the “stream editor” (sed),
and the string-searching tool grep. For example, sed can be
used to remove all blank lines from a file by specifying

sed ‘s/^$/d’ list.txt

This command finds all lines with no characters (̂ $) in
the file list.txt and deletes them from the output. Even more
extensive use of pattern-matching with regular expressions
is found in many scripting languages (see scripting lan-
guages, awk, and Perl).

It is true that most of today’s computer users don’t enter
operating system commands in text form but instead use
menus and manipulate icons (see user interface and
Microsoft Windows). If such a user wants to change one
word to another throughout a word processing document,
he or she is likely to open the Edit menu, select Find,

402        regular expression

and type the “before” and “after” words into a dialog box.
However, even in such cases if the user has some familiar-
ity with regular expressions, more sophisticated substitu-
tions can be accomplished. In Microsoft Word, for example,
a variety of wildcards (i.e., metacharacters) can be used
for operations that would be hard to accomplish through
mouse selections.

Further Reading
Friedl, Jeffrey. Mastering Regular Expressions. 3rd ed. Sebastapol,

Calif.: O’Reilly, 2006.
Regular Expressions Tutorial, Tools & Languages, Examples,

Books & Reference. Available online. URL: http://www.
regular-expressions.info/. Accessed August 19, 2007.

Stubblebine, Tony. Regular Expression Pocket Reference: Regular
Expressions for Perl, Ruby, PHP, Python, C, Java and .NET.
Sebastapol, Calif.: O’Reilly, 2007.

Watt, Andrew. Beginning Regular Expressions. Indianapolis: Wiley,
2005.

research laboratories in computing
The value of creating and maintaining environments for
long-term research in computer science and engineering
has long been recognized by academic institutions, indus-
try organizations, and corporations.

Academic Research Institutions
Artificial intelligence and robotics have been the focus of
many academic computer science research facilities (see
artificial intelligence and robotics). They are exam-
ples of areas that show great potential but that demand
a substantial investment in long-term research. There are
many research organizations in the AI field, but a few stand
out as particularly important examples.

The Massachusetts Institute of Technology (MIT) Arti-
ficial Intelligence Lab has a wide-ranging program but has
emphasized robotics and related fields such as computer
vision and language processing.

The MIT Media Lab has become well known for work
with new media technologies and the digital and graphi-
cal representation of data. However, in recent years it has

expanded its focus to the broader area of human-machine
interaction and the pervasive presence of intelligent devices
in the home and larger environment.

The Stanford Artificial Intelligence Laboratory (SAIL)
played an important role in the development of the LISP
language (see LISP) and other AI research. Today Stanford’s
important role in AI is continued by its Robotics Laboratory
and the Knowledge Systems Laboratory. Carnegie Mellon
University also has a number of influential AI labs and
research projects.

On the international scene Japan has had strong research
programs in academic and industrial AI, such as the Neural
Computing Center at Keio University and the Knowledge-
Based Systems Laboratory at Shizuoka University. There are
a number of important AI research groups in the United
Kingdom, such as at Cambridge, Oxford, King’s College,
and the University of Edinburgh (where the logic language
Prolog was developed).

Some of the most interesting research sometimes
emerges from outside the main concerns of an institution.
The World Wide Web, for example, was developed by Tim
Berners-Lee (see Berners-Lee, Tim) while he was working
with the coordination of scientific computing at CERN, the
giant European particle physics laboratory.

Corporate Research Institutions
The challenging nature of computer applications and the
competitiveness of the industry have also led a number of
major companies to underwrite permanent research institu-
tions. Much corporate-funded research has gone into devel-
oping the basic infrastructure of computing rather than to
the more esoteric topics pursued by academic departments.
However, corporations have also funded “pure” research
that may have little short-term application but can ulti-
mately lead to new technologies.

The concept of the industrial laboratory is often attrib-
uted to Thomas Edison, whose famous Menlo Park, New
Jersey, facility (founded in 1876) put experimentation and
development of new inventions on a systematic, continuous
basis. Instead of an invention forming the basis for a com-
pany, Edison saw invention itself as the core business.

METACHARACTERS IN REGULAR EXPRESSIONS

Metacharacter	 Meaning

. (period)	 Matches any single character in that position
?	 Matches zero or one of any character
*	 Matches zero or more of the preceding character (thus * matches any number of characters)
+	 Matches one or more of the preceding character (thus 9+ matches 9, 99, 999, etc.)
[]	 Matches any of the characters enclosed by the brackets
–	� Specifies a range of characters. Placing the range in brackets will match any character within the

range. For example, [0–9] matches any digit, [A–Z] matches any uppercase character, and [A–Za–z]
matches any alphabetic character.

\	� “Quotes” the following character. If it is a metacharacter, the following character will be treated as an
ordinary character. Thus \? matches an actual question mark.

^	 Matches the beginning of a line
$	 Matches the end of a line

research laboratories in computing        403

A similar approach motivated the founding of Bell Labo-
ratories. Bell Labs would play a direct role in making mod-
ern digital electronics possible when three of its researchers,
John Bardeen, Walter H. Brattain, and William B. Shockley
invented the transistor in 1947.

On the software side, Bell supported the work of Claude
Shannon, whose fundamental theorems of information
transmission would become a key to the design of the com-
puter networks (see Shannon, Claude). The development
of the UNIX operating system at Bell in the early 1970s (see
Ritchie, Dennis and UNIX) would provide much of the
infrastructure that would be used for computing at univer-
sities and other research institutions and ultimately in the
development of the Internet. Similarly, Ritchie and Thomp-
son also developed C, the language that together with its
offshoots C++ and Java would become the most widely used
general-purpose programming languages for the rest of the
century and beyond.

IBM built its first research lab in 1945, beginning a
network that would eventually include facilities in Switzer-
land, Israel, Japan, China, and India. IBM research has gen-
erally focused on core hardware and software technologies,
including the development of the first hard drive in 1956
and the development of the FORTRAN language by John
Backus in 1957 (see FORTRAN). Other IBM innovations
have included online commerce (the SABRE airline reserva-
tion system), the relational database, and the first prototype
RISC (reduced instruction set computer).

Xerox is best known for its photocopiers and printers,
but in the late 1960s the company decided to try to diversify
its products by recasting itself as developer of a comprehen-
sive “architecture of information” in the office. During the
1970s, its Palo Alto Research Center (PARC) invented much
of the technology (such as the mouse, graphical user inter-
face, and notebook computer) that would become familiar
to consumers a decade later in the Macintosh and Microsoft
Windows.

In 1991, Microsoft, then a medium-sized company,
established its Microsoft Research division, which has
since grown to include four laboratories in Redmond,
Washington, the San Francisco Bay Area, Cambridge,
England, and Beijing. The labs maintain close ties with
universities, and their research areas have included data
mining and analysis, geographic information systems
(Terraserver), natural language processing, and computer
conferencing and collaboration.

The role of government agencies in funding com-
puter-related research should not be overlooked (see
government funding of computer research). The
Internet evolved from a project funded by the Depart-
ment of Defense’s ARPA (Advanced Research Projects
Agency) in 1968 (see Internet). The network architec-
ture and hardware in turn were developed by a contrac-
tor, Bolt, Beranek and Newman (BBN). In the late 1970s,
the Defense Department would issue contracts for devel-
opment of the Ada computer language. Other projects
funded by Defense and other government agencies can be
found in areas such as robotics, autonomous vehicles, and
mapping systems.

Coordinating Research
Two large professional organizations for computer scien-
tists and engineers, the Association for Computing Machin-
ery (ACM) and the Computer Society of the Institute of
Electrical and Electronics Engineers (IEEE), serve as clear-
inghouses and disseminators of research. The Computing
Research Association (CRA) brings together more than 200
North American university computer science departments,
government-funded research institutions, and corporate
research laboratories. Its goal is to improve the opportuni-
ties for and quality of research and education in the com-
puter field. (For contact information for these and other
selected computer-related organizations, see Appendix IV.)

Other Types of Research
The social impact of computing technology is also the sub-
ject of considerable ongoing research. Topics include con-
sumer behavior, the use of media, and sociological analysis
of online communities. A particularly useful effort is the
extensive surveys and overviews produced by the Pew Cen-
ter for the Internet and American Life project. The com-
puter hardware, software, and e-commerce sectors are of
course also the subject of research by economists, experts
in organizational behavior, investment analysts, and so on.

Further Reading
Computing Research Association. Available online. URL: http://

www.cra.org/. Accessed August 19, 2007.
Open Directory Project. Computer Science Research Institutes.

Available online. URL: http://www.dmoz.org/Computers/
Computer_Science/Research_Institutes/. Accessed August
19, 2007.

Pew Internet & American Life Project. Available online. URL:
http: //www.dmoz.org /Computers /Computer_ Science /
Research_Institutes/. Accessed August 19, 2007.

TRN’s Research Directory: A Worldwide Listing of Technology
Research Laboratories. Available online. URL: http://www.trn
mag.com/Directory/directory.html. Accessed August 19, 2007.

reverse engineering
Back in the days of mechanical clocks, curious kids would
sometimes take a clock apart to try to figure out how it
worked. A few were even able to reassemble the clock cor-
rectly—these youngsters were likely to become engineers!
With software, reverse engineering is the process of “taking
apart” software and analyzing its operation without having
access to the program code itself. Among other possibili-
ties, reverse engineering may allow one to:

• � provide equivalent functions without violating copy-
right laws

• � emulate one operating system within another (see
emulation)

• � determine a file format so other programs can use it
as well (interoperability)

• � document the operation of a program whose docu-
mentation is lost or no longer available

• � determine whether a competing product violates one’s
patents or copyrights

404        reverse engineering

Techniques
Reverse engineering can be thought of as running the devel-
opment process backwards (see software development).
Instead of starting with the specification of the system and
writing code, one starts with the operating program and
constructs a detailed description of its organization. Several
general techniques can be used:

• � disassembly (turning the machine-level code into
somewhat higher-level code with symbolic labels, etc.)
(see assembler)

• � decompilation (which attempts to turn machine code
into a higher-level language such as C) (see compiler)

• � systematically supplying data of various types and
analyzing the program’s response (this is especially
used when analyzing communications protocols)

Perhaps the most significant example of reverse engi-
neering occurred in the early 1980s when competitors
reverse engineered the built-in code (see BIOS) that con-
trolled the low-level functions of the original IBM PC, thus
enabling the manufacture of legal “clones” by such compa-
nies as Compaq. This was done by creating a “clean room”
staffed with engineers who had no involvement with IBM
and were not privy to any of the internal secrets of the BIOS.

Reverse engineering has been widely used to provide
open-source implementations of formerly proprietary tech-
nologies. Examples include Samba (Windows SMB file
sharing), Open Office (similar to Microsoft Office), Mono
(Windows .NET API), and especially Windows emulators
for Linux such as Wine.

Generally, under the Digital Millennium Copyright Act
of 1998, courts have been sympathetic to reverse engineer-
ing that enables users to exercise what would be consid-
ered “fair use” under copyright laws or to provide more
widespread compatibility with other products. However,
reverse engineering may be illegal when the intent is to
bypass software “locks” (see copy protection) in order to
make illegal copies, or when the machine code is copied or
manipulated (such as by decompiling).

There are a number of ways in which reverse engineer-
ing (or similar practices) can be applied to technology other
than software. Perhaps the most unusual example was the
successful reconstruction of an ancient Greek astronomical
calculator called the Antikythera mechanism. In general,
the process of reverse engineering, by spreading knowledge
of how to access and interface systems and provide func-
tionality, ultimately contributes to the development of new
technology and software.

Further Reading
Eilam, Eldad. Reversing: Secrets of Reverse Engineering. Indianapo-

lis: Wiley, 2005.
James, Dick. “Reverse Engineering Delivers Product Knowledge,

Aids Technology Spread.” Available online. URL: http://elec-
tronicdesign.com/Articles/Index.cfm?AD=1&ArticleID=1
1966. Accessed November 11, 2007.

Musker, David C. “Reverse Engineering.” Available online. URL:
http://www.jenkins-ip.com/serv/serv_6.htm. Accessed Novem-
ber 11, 2007.

Perry, Mike, and Nasko Oskov. “Introduction to Reverse Engineer-
ing Software.” Available online. URL: http://www.acm.uiuc.
edu/sigmil/RevEng/. Accessed November 11, 2007.

Raja, Vinesh, and Kiran J. Fernandes, eds. Reverse Engineering: An
Industrial Perspective. New York: Springer, 2008.

RFID  (radio frequency identification)
For some years now people have become used to swip-
ing credit or debit cards to buy things in stores, or have
used magnetic cards to access transit systems. Increasingly,
however, the information needed for identification, whether
of goods in a warehouse or customers in a store, is being
scanned wirelessly using radio frequency identification
(RFID) systems.

An RFID system uses a tag or card (see smart card)
that is able to store and modify information in memory,
together with a tiny antenna and transmitter for communi-
cating the information.

Passive vs. Active
Passive RFID tags have no power supply; the power induced
by the reading signal is used to transmit the response.
Because this power is very small, passive tags can only be
read at distances from about 4 inches (10 cm) to a few yards
(meters), depending on the antenna size and type. The main
advantage of passive tags is that the lack of a battery makes
them small, lightweight, and inexpensive, making them
ideal for attaching to merchandise (they have also been
embedded under the skin of pets and, in a few cases, even
people). Smart cards for use in transit systems and similar
applications are also passive; the system is activated by
“tagging” or bringing the card near the reader.

Active RFID tags have their own battery. Their advan-
tage is that they are able to initiate communication with
the reader, and the signal they send is much stronger, more
reliable, and with greater range (up to about 1,500 feet
[500 m]). The stronger signal allows for communication in
rougher environments (such as outdoors for tracking cattle
or shipping containers).

There is also a sort of hybrid called a semipassive tag. This
also has a battery, but only uses it for internal processing, not
sending signals. The tag can gather information (such as log-
ging temperature) and send it when queried by a reader.

Current uses for RFID tags and cards of various types
include:

• � automatic fare payments systems for transit systems

• � automatic toll payments for bridges and turnpikes

• � automatic book checkout systems for libraries, where
it reduces repetitive strain injury (RSI) in staff and
simplifies checking shelves

• � student ID cards

• � passports (RFID has been included in new U.S. pass-
ports since 2006)

• � tracking cattle, including determining the origin of
unhealthy animals

RFID        405

• � identification chips placed beneath the skin of pets

• � experimental human RFID implants (pioneered by
British computer scientist Kevin Warwick) and now
used by VIP customers in a few nightclubs

• � tracking goods from original shipment to inventory
(Wal-Mart now requires its major suppliers to include
RFID labels with shipments)

• � scientific sensors, such as seismographic instruments

Privacy and Security Issues
The benefits of RFID technology are numerous: better
inventory control (see supply chain management); more
secure passports and other forms of ID; faster, easier access
to transportation systems; and potentially, the avoidance of

mishaps in hospitals, such as the wrong patient receiving a
drug or procedure.

However, there are privacy and security concerns that
remain to be fully resolved. The primary threat is that
unauthorized persons could illicitly obtain information or
track people or goods, for purposes ranging from simple
larceny to identity theft. Privacy rights organizations have
also raised concerns that information about consumer pur-
chases could be used for unwanted marketing (or sold to
third parties), while information about a library patron’s
reading habits could trigger unwarranted government
investigations in the name of fighting terrorism.

There is an incentive to produce RFID cards and tags
that are resistant to unauthorized reading or tampering. A
cryptographic protocol can be used such that no information
will be sent or received unless the reader and tag “know” the
correct keys. Another possibility is to create a device that
can “jam” reading attempts in the device’s vicinity, perhaps
protecting a customer’s grocery cart from being scanned.
Finally, RFID cards can be put inside in a sleeve of material
that blocks the signals. However, cryptographic and other
security technologies raise the cost of RFID devices and may
make them impracticable for some applications.

In September 2006 the National Science Foundation
awarded a $1.1 million grant to the RFID Consortium for
Security and Privacy to study potential risks and safeguards
for the technology. That same year a group of major cor-
porations together with the National Consumers League
released a draft set of standards and guidelines for best
practices in using RFID, with broader scope than the exist-
ing EPC (electronic product code) standards.

Further Reading
EPC Global. Available online. URL: http://www.epcglobalinc.org/.

Accessed November 12, 2007.
Feder, Barbara. “Guidelines for Radio Tags Aim to Protect Buyer

Privacy.” New York Times, May 1, 2006. Available online.
URL: http://query.nytimes.com/gst/fullpage.html?res=9805E
FDF113FF932A35756C0A96 09C8B63. Accessed November
12, 2007.

Parts of an RFID system. Depending on whether the chip is active or passive, the reader can be inches or yards away.

A Radio Frequency ID (RFID) “chip” from 3M. RFID is finding
many applications, but has also raised privacy concerns. 
(3M Corporation)

406        RFID

Glover, Bill, and Himanashu Bhatt. RFID Essentials. Sebastapol,
Calif.: O’Reilly, 2006.

Newitz, Annalee. “The RFID Hacking Underground.” Wired, May
2006. Available online. URL: http://www.wired.com/wired/
archive/14.05/rfid.html. Accessed November 12, 2007.

“Privacy Best Practices for Deployment of RFID Technology,
Interim Draft.” CDT Working Group on RFID, May 1, 2006.
Available online. URL: http://www.nclnet.org/advocacy/tech-
nology/rfid_guidelines_05012006.htm. Accessed November
12, 2007.

Sweeney, Partick J., II. RFID for Dummies. Hoboken, N.J.: Wiley,
2005.

Rheingold, Howard
(1947– )
American
Writer

On his Web site, Howard Rheingold says that he “fell into
the computer realm from the typewriter dimension, then
plugged his computer into his telephone and got sucked
into the net.” A prolific writer, explorer of the interaction
of human consciousness and technology, and chronicler of
virtual communities, Rheingold has helped people from stu-
dents to businesspersons to legislators understand the social
significance of the Internet and communications revolution.

Born on July 17, 1947, in Phoenix, Arizona, he was later
educated at Reed College in Portland, Oregon, but lived and
worked for most of his life in the San Francisco Bay Area.
A child of the counterculture, his interests included the
exploration of consciousness and cognitive psychology. His
books in this area would include Higher Creativity (written
with Willis Harman, 1984), The Cognitive Connections (writ-
ten with Howard Levine, 1986), and Exploring the World
of Lucid Dreaming (written with Stephen LaBerge, 1990).
In 1994 he updated the Whole Earth Catalog, a remarkable
resource book by Stewart Brand that had become a bible for
the movement toward a more self-sufficient and human-
scale life in the 1970s.

Rheingold bought his first personal computer, mainly
because he thought word processing would make his work
as a writer easier. In 1983 he bought a modem and was soon
intrigued by the thousands of PC bulletin board systems
that were an important way to share files and ideas in the
days before the World Wide Web (see bulletin board sys-
tems). Interacting with these often tiny cyberspace villages
helped Rheingold explore his developing ideas about the
nature and significance of virtual communities.

In 1985 Rheingold joined The WELL (Whole Earth ’Lec-
tronic Link), a unique and remarkably persistent commu-
nity that began as an unlikely meeting place of Deadheads
(Grateful Dead fans) and computer hackers. Compared to
most bulletin boards, the WELL was more like the virtual
equivalent of the cosmopolitan San Francisco Bay Area.

The sum and evaluation of these experiences can be
found in what is perhaps Rheingold’s most seminal book,
The Virtual Community (1993; revised, 2000), which repre-
sents both a participant’s and an observer’s tour through the
online meeting places that had begun to function as com-

munities (see virtual community). Rheingold chronicled
the romances, feuds (“flame wars”), and growing pains that
made The WELL seem much like a small town or perhaps
an artist’s colony that just happened to be in cyberspace.

In addition to The WELL, Rheingold also explores
MUDs (Multi-User Dungeons) and other elaborate online
fantasy role-playing games, NetNews (also called Usenet)
groups, chat rooms, and other forms of online interaction
(see conferencing systems and netnews and news-
groups). Rheingold continues to manage the Brainstorms
Community, a private Web-conferencing community that
allows for thoughtful discussions about a variety of topics.

Rheingold saw the computer (and computer networks
in particular) as a powerful tool for creating new forms
of community. The original edition of his book Tools for
Thought (1985 and revised 2000), with its description of
the potential of computer-mediated communications, seems
prescient today after a decade of the Web. Rheingold’s Vir-
tual Reality (1991) introduced that immersive technology.

Around 1999 Rheingold started noticing the emergence
of a different kind of virtual community—a mobile, highly
flexible, and adaptive one. In his book Smart Mobs, Rhein
gold gives examples of groups of teenagers coordinating
their activities by sending each other text messages on their
cell phones (see flash mobs). Rheingold believes that the
combination of mobile and network technology may be cre-
ating a social revolution as important as that triggered by
the PC in the 1980s and the Internet in the 1990s.

In 1996 Rheingold launched Electric Minds, an innova-
tive company that tried to offer virtual-community-build-
ing services while attracting enough revenue from contract
work and advertising to become self-sustaining and profit-
able in about three years. He received financing from the
venture capital firm Softbank. However, the company failed,
and Rheingold came to believe that there was a fundamen-
tal mismatch between the profit objectives of most venture
capitalists and the patience needed to cultivate and grow a
new social enterprise. Rheingold then started a more mod-
est effort, Rheingold Associates.

According to Rheingold and coauthor Lisa Kimball, some
of the benefits of creating such communities include the abil-
ity to get essential knowledge to the community in times
of emergency, to connect people who might ordinarily be
divided by geography or interests, to “amplify innovation,”
and to “create a community memory” that prevents impor-
tant ideas from getting lost. Rheingold continues to both
create and write about new virtual communities, working
through such efforts as the Cooperation Commons (a collab-
oration with the Institute for the Future). He is also a nonres-
ident Fellow of the Annenberg School for Communication.

Rheingold’s writings have garnered a variety of awards.
In 2003 Utne Reader magazine gave an Independent Press
Award for a blog based on Smart Mobs. That year Rheingold
also gave the keynote speech for the annual Webby Awards
for Web-site design.

Further Reading
Cooperation Commons. Available online. URL: http://www.

cooperationcommons.com/. Accessed November 12, 2007.

Rheingold, Howard        407

Hafner, Katie. The Well: A Story of Love, Death & Real Life in the
Seminal Online Community. New York: Carol & Graf, 2001.

Howard Rheingold [home page]. Available online. URL: http://
www.rheingold.com. Accessed November 12, 2007.

Kimball, Lisa, and Howard Rheingold. “How Online Social Net-
works Benefit Organizations.” Available online. URL: http://
www.rheingold.com/Associates /onlinenetworks.html.
Accessed November 12, 2007.

Rheingold, Howard. Smart Mobs: The Next Social Revolution. New
York: Basic Books, 2003.

———. Tools for Thought: The History and Future of Mind-Expand-
ing Technology. 2nd rev. ed. Cambridge, Mass.: MIT Press,
2000.

———. The Virtual Community: Homesteading on the Electronic
Frontier. Revised ed. Cambridge, Mass.: MIT Press, 2000.
[The first edition is also available online. URL: http://www.
rheingold.com/vc/book/. Accessed November 12, 2007.]

Smart Mobs Blog. Available online. URL: http://www.smartmobs.
com/. Accessed November 12, 2007.

The WELL Available online. URL: http://www.well.com. Accessed
November 12, 2007.

risks of computing
Programmers and managers of software development are
generally aware of the need for software to properly deal
with erroneous data (see error handling). They know
that any significant program will have bugs that must be
rooted out (see bugs and debugging). Good software engi-
neering practices and a systematic approach to assuring the
reliability and quality of software can minimize problems
in the finished product (see software engineering and
quality assurance, software). However, serious bugs are
not always caught, and sometimes the consequences can be
catastrophic. For example, in the Therac 25 computerized
X-ray cancer treatment machine, poorly thought-out com-
mand entry routines plus a counter overflow resulted in
three patients being killed by massive X-ray overdoses. The
overdoses ultimately occurred because the designers had
removed a physical interlock mechanism they believed was
no longer necessary.

Any computer application is part of a much larger envi-
ronment of humans and machines, where unforeseen inter-
actions can cause problems ranging from inconvenience to
loss of privacy to potential injury or death. Seeing these
potential pitfalls requires thinking beyond the specifica-
tions and needs of a particular project. For many years the
Usenet newsgroup comp.risks (and its collected form, Risks
Digest) have chronicled what amounts to an ongoing sym-
posium where knowledgeable programmers, engineers, and
others have pointed out potential risks in new technology
and suggested ways to minimize them.

Unexpected Situations
A common source of risks arises from designers of con-
trol systems failing to anticipate extreme or unusual envi-
ronmental conditions (or interactions between conditions).
This is a particular problem for mobile robots, which unlike
their tethered industrial counterparts must share elevators,
corridors, and other places with human beings. For exam-
ple, a hospital robot was not designed to recognize when it

was blocking an elevator door—a situation that could have
blocked a patient being rushed into surgery. A basic princi-
ple of coping with unexpected situations is to try to design
a fail-safe mode that does not make the situation worse. For
example, an automatic door should be designed so that if it
fails it can be opened manually rather than trapping people
in a fire or other disaster.

Unanticipated Interactions
The more systems there are that can respond to external
inputs, the greater the risk that a spurious input might trig-
ger an unexpected and dangerous response. For example,
the growing number of radio-controlled (wireless) devices
have great potential for unexpected interactions between
different devices. In one case reported to the Risks Forum, a
Swedish policeman’s handheld radio inadvertently activated
his car’s airbag, which slammed the radio into him. Several
military helicopters have crashed because of radio interfer-
ence. Banning the use of electronic devices at certain times
and places (for example, aboard an aircraft that is taking off
or landing) can help minimize interference with the most
safety-critical systems.

At the same time, regulations themselves introduce the
risk that people will engage in other forms of risky behavior
in an attempt to either follow or circumvent the rule. For
example, the Japanese bullet train system imposed a stiff
penalty for operators who failed to wear a hat. In one case
an operator left the train cabin to retrieve his hat while the
train kept running unsupervised. This minor incident actu-
ally conceals two additional sorts of risks—that of automat-
ing a system so much that humans no longer pay attention,
and the inability of the system to sense the lack of human
supervision.

Unanticipated Use of Data
The growing number of different databases that track even
the intimate details of individual lives has raised many pri-
vacy issues (see privacy in the digital age). Designers and
maintainers of such databases had some awareness of the
threat of unauthorized persons breaking into systems and
stealing such data (see computer crime and security).
However, most people were surprised and alarmed by the
new crime of identity theft, which began to surface in signifi-
cant numbers in the mid- to late-1990s (see identity theft).

It turned out that while a given database (such as cus-
tomer records, bank information, illicitly obtained DMV
records, and so on) usually did not have enough informa-
tion to allow someone to successfully impersonate another’s
identity, it was not difficult to use several of these sources
together to obtain, for example, the information needed to
apply for credit in another’s name. In particular, while most
people guarded their credit card numbers, they tended not
to worry as much about Social Security numbers (SSN).
However, since many institutions use the SSN to index
their records, the number has become a key for unlocking
personal data.

Further, as more organizations put their records online
and make them Web-accessible, the ability of hackers, pri-
vate investigators (legitimate or not), and “data brokerage”

408        risks of computing

services to quickly assemble a dossier of sensitive informa-
tion on any individual was greatly increased. Here we have
a case where a powerful tool for productivity (the Internet)
also becomes a facilitator for using the vulnerabilities in
any one system to compromise others.

In an increasingly networked and technologically-depen-
dent world, the anticipation and prevention of computer
risks has become very important. To the extent companies
may be legally liable for the more direct forms of risk, there
is more incentive for them to devote resources to risk ame-
lioration. However, many computer-related risks are at least
as much social as technological in nature, and are beyond
the scope of concern of any one company or organization.
Social risks ultimately demand a broader social response.

Technology itself can be used to help ameliorate techno-
logical risks. Artificial intelligence techniques (see expert
systems and neural network) might be used improve the
ability of a system to adapt to unusual conditions. However,
any such programming then becomes prone to bugs and
risks itself.

So far, the most successful way to deal with the broad
range of computer risks has been through human collabora-
tion as facilitated by the Internet. Through venues such as
the Risks Forum computer-mediated communications and
collaboration allows for the pooling of human intelligence in
the face of the growing complexity of human inventiveness.

Further Reading
Comp.risks [access via Google Groups]. Available online. URL:

http://groups.google.com/group/comp.risks/topics. Accessed
August 19, 2007.

Glass, Robert L. Software Runaways: Monumental Software Disas-
ters. Upper Saddle River, N.J.: Prentice Hall, 1997.

Neumann, Peter G. Computer-Related Risks. Reading, Mass.: Addi-
son-Wesley, 1994.

Peterson, Ivars. Fatal Defect: Chasing Killer Computer Bugs. New
York: Vintage Books, 1996.

Ritchie, Dennis
(1941– )
American
Computer Scientist

Together with Ken Thompson, Dennis Ritchie developed
the UNIX operating system and the C programming lan-
guage—two tools that have had a tremendous impact on
the world of computing for three decades.

Ritchie was born on September 9, 1941, in Bronxville,
New York. He was exposed to communications technology
and electronics from an early age because his father was
director of the Switching Systems Engineering Laboratory
at Bell Laboratories. (Switching theory is closely akin
to computer logic design.) Ritchie attended Harvard Uni-
versity and graduated with a B.S. in physics. However, by
then his interests had shifted to applied mathematics and in
particular, the mathematics of computation, which he later
described as “the theory of what machines can possibly
do” (see computability and complexity). For his doctoral
thesis he wrote about recursive functions (see recursion).

This topic was proving to be important for the definition of
new computer languages in the 1960s (see Algol).

In 1967, however, Ritchie decided that he had had enough
of the academic world. Without finishing the requirements
for his doctorate, he started work at Bell Labs, his father’s
employer. Bell Labs has made a number of key contributions
to communications and information theory (see research
laboratories in computing).

By the late 1960s, computer operating systems had
become increasingly complex and unwieldy. As typified by
the commercially successful IBM System/360, the operating
system was proprietary, had many hardware-specific func-
tions and tradeoffs in order to support a family of upwardly
compatible computer models, and was designed with a top-
down approach.

During his graduate studies, however, Ritchie had
encountered a different approach to designing an operating
system. A new system called Multics was being designed
jointly by Bell Labs, MIT, and General Electric. Multics was
quite different from the batch-processing world of main-
frames: It was intended to allow many users to share a
computer. He had also done some work with MIT’s Project

Together with Ken Thompson, Dennis Ritchie developed the UNIX
operating system and the C programming language, two of the
most important developments in the history of computing.  (Photo
courtesy of Lucent Technologies’ Bell Labs)

Ritchie, Dennis        409

Mac. The MIT computer students, the original “hackers” (in
the positive meaning of the term), emphasized a coopera-
tive approach to designing tools for writing programs. This,
too, was quite different from IBM’s highly structured and
centralized approach.

Unfortunately, the Multics project itself grew increas-
ingly unwieldy. Bell Labs withdrew from the Multics proj-
ect in 1969. Ritchie and his colleague Ken Thompson then
decided to apply many of the same principles to creating
their own operating system. Bell Labs wasn’t in a mood to
support another operating system project, but they eventu-
ally let Ritchie and Thompson use a DEC PDP-7 minicom-
puter. Although small and already obsolete, the machine
did have a graphics display and a Teletype terminal that
made it suitable for the kind of interactive programming
they preferred. They decided to call their system UNIX,
punning on Multics by suggesting something that was sim-
pler and better integrated.

Instead of designing from the top down, Ritchie and
Thompson worked from the bottom up. They designed a
way to store data on the machine’s disk drive (see file), and
gradually wrote the necessary utility programs for listing,
copying, and otherwise working with the files. Thompson
did the bulk of the work on writing the operating system,
but Ritchie did make key contributions such as the idea that
devices (such as the keyboard and printer) would be treated
the same way as other files. Later, he reconceived data con-
nections as “streams” that could connect not only files and
devices but applications and data being sent using different
protocols. The ability to flexibly assign input and output, as
well as to direct data from one program to another, would
become hallmarks of UNIX.

When Ritchie and Thompson successfully demonstrated
UNIX, Bell Labs adopted the system for its internal use.
UNIX turned out to be ideal for exploiting the capabilities
of the new PDP-11 minicomputer. As Bell licensed UNIX to
outside users, a unique community of user-programmers
began to contribute their own UNIX utilities (see open-
source movement).

In the early 1970s, Ritchie also collaborated with Thomp-
son in creating C, a streamlined version of the earlier BCPL
and CPL languages. C would be a “small” language that
was independent of any one machine but could be linked
to many kinds of hardware thanks to its ability to directly
manipulate the contents of memory. C became tremendously
successful in the 1980s. Since then, C and its offshoots C++
and Java became the dominant languages used for most pro-
gramming today.

Ritchie still works at Bell Labs’s Computing Sciences
Research Center. (When AT&T spun off many of its divi-
sions, Bell Labs became part of Lucent Technologies.)
Ritchie developed an experimental operating system called
Plan 9 (named for a cult sci-fi movie). Plan 9 attempts to
take the UNIX philosophy of decentralization and flexibil-
ity even further, and is designed especially for networks
where computing resources are distributed.

Ritchie has received numerous awards, often given
jointly to Thompson. These include the ACM Turing Award
(1985), the IEEE Hamming Medal (1990), the Tsutomu

Kanai Award (1999), and the National Medal of Technology
(also 1999).

Further Reading
Dennis Ritchie Home Page. Available online. URL: http://www.

cs.bell-labs.com/who/dmr/. Accessed August 27, 2007.
Kernighan, B. W., and Dennis M. Ritchie. The C Programming

Language. Upper Saddle River, N.J., Prentice Hall, 1978. (A
second edition was published in 1989.)

Lohr, Steve. Go To. New York: Basic Books, 2001.
Plan 9 from Bell Labs. 4th ed. Available online. URL: http://plan9.

bell-labs.com/plan9/. Accessed August 19, 2007.
Ritchie, Dennis M., and Ken Thompson. “The UNIX Time-Sharing

System.” Communications of the ACM 17, 7 (1974): 365–375.
Slater, Robert. Portraits in Silicon. Cambridge, Mass.: MIT Press,

1987.

robotics
The idea of the automaton—the lifelike machine that per-
forms intricate tasks by itself—is very old. Simple automa-
tons were known to the ancient world. By the 18th century,
royal courts were being entertained by intricate humanlike
automatons that could play music, draw pictures, or dance.
A little later came the “Turk,” a chess-playing automaton
that could beat most human players.

However, things are not always what they seem. The
true automatons, controlled by gears and cams, could play
only whatever actions had been designed into them. They
could not be reprogrammed and did not respond to changes
in their environment. The chess-playing automaton held a
concealed human player.

True robotics began in the mid-20th century and has
continued to move between two poles: the pedestrian but
useful industrial robots and the intriguing but tentative
creations of the artificial intelligence laboratories.

Industrial Robots
In 1921, the Czech playwright Karel Capek wrote a play
called R.U.R. or Rossum’s Universal Robots. Robot is a Czech
word that has been translated as work(er), serf, or slave. In the
play the robots, which are built by factories to work in other
factories, eventually revolt against their human masters.

During the 1960s, real robots began to appear in factory
settings (see also Engelberger, Joseph). They were an out-
growth of earlier machine tools that had been programmed
by cams and other mechanisms. An industrial robot is basi-
cally a movable arm that ends in a “hand” called an end
effector. The arm and hand can be moved by some com-
bination of hydraulic, pneumatic, electrical, or mechani-
cal means. Typical applications include assembling parts,
welding, and painting. The robot is programmed for a task
either by giving it a detailed set of commands to move to,
grasp, and manipulate objects, or by “training” the robot by
moving its arm, hand, and effectors through the required
motions, which are then stored in the robot’s memory. By
the early 1970s, Unimation, Inc. had created a profitable
business from selling its Unimate robots to factories.

The early industrial robots had very little ability to
respond to variations in the environment, such as the “work

410        robotics

piece” that the robot was supposed to grasp being slightly
out of position. However, later models have more sophis-
ticated sensors to enable them to adjust to variations and
still accomplish the task. The more sophisticated computer
programs that control newer robots have internal represen-
tations or “frames of reference” to keep track of both the
robot’s internal parameters (angles, pressures, and so on)
and external locations in the work area.

Mobile Robots and Service Robots
Industrial robots work in an extremely restricted environ-
ment, so their world representation can be quite simple.
However, robots that can move about in the environment
have also been developed. Military programs have devel-
oped automatic guided vehicles (AGVs) with wheels or
tracks, capable of navigating a battlefield and scouting
or attacking the enemy (see military applications of
computers). Space-going robots including the Sojourner
Mars rover also have considerable onboard “intelligence,”
although their overall tasks are programmed by remote
commands.

Indeed, the extent to which mobile robots are truly
autonomous varies considerably. At one end is the “robot”
that is steered and otherwise controlled by its human
operator, such as law enforcement robots that can be sent
into dangerous hostage situations. (Another example is the
robots that fight in arena combat in the popular Robot Wars
shows.)

Moving toward greater autonomy, we have the “service
robots” that have begun to show up in some institutions
such as hospitals and laboratories. These mobile robots
are often used to deliver supplies. For example, the Help-
Mate robot can travel around a hospital by itself, navigating
using an internal map. It can even take an elevator to go to
another floor.

Service robots have had only modest market penetra-
tion, however. They are relatively expensive and limited in
function, and if relatively low-wage more versatile human
labor is available, it is generally preferred. For now mobile
robots and service robots are most likely to turn up in
specialized applications in environments too dangerous for

human workers, such as in the military, law enforcement,
handling of hazardous materials, and so on.

Smart Robots
Robotics has always had great fascination for artificial intel-
ligence researchers (see artificial intelligence). After
all, the ability to function convincingly in a real-world envi-
ronment would go a long way toward demonstrating the
viability of true artificial intelligence.

Building a smart, more humanlike robot involves sev-
eral interrelated challenges, all quite difficult. These include
developing a system for seeing and interpreting the environ-
ment (see computer vision) as well a way to represent the
environment internally so as to be able to navigate around
obstacles and perform tasks.

One of the earliest AI robots was “Shakey,” built at the
Stanford Research Institute (SRI) in 1969. Shakey could
navigate only in a rather simplified environment. However,
the “Stanford Cart,” built by Hans Moravec in the late 1970s
could navigate around the nearby campus without getting
into too much trouble.

An innovative line of research began in the 1990s at MIT
(see Brooks, Rodney and Breazeal, Cynthia). Instead of
a “top down” approach of programming robots with explicit
logical rules, so-called behavior-based robotics works from
the bottom up, coupling systems of sensors and actuators
that each have their own simple rules, from which can
emerge surprisingly complex behavior. The MIT “sociable
robots” Cog and Kismet were able to explore the world and
learn to interact with people in somewhat the way a human
toddler might.

Today it is possible to buy an AI robot for one’s home, in
the form of toys such as Sony’s AIBO robot dog, which can
emulate various doggy behaviors such as chasing things and
communicating by body language. Some robot toys not only
have an extensive repertoire of behavior and vocalizations,
but also can learn to some extent (see neural network.)

It is also possible to experiment with robotics at home
or school, thanks to kits such as the LEGO Logo, which
combines a popular building set with a versatile educa-
tional programming language (see Logo).

Future Applications
A true humanoid robot with the kind of capabilities writ-
ten about by Isaac Asimov and other science fiction writ-
ers is not in sight yet. However, there are many interesting
applications of robots that are being explored today. These
include the use of remote robots for such tasks as per-
forming surgery (see telepresence) and the application of
robotics principles to the design of better prosthetic arms
and legs for humans (bionics). Farther afield is the possibil-
ity of creating artificial robotic “life” that can self-reproduce
(see artificial life).

Further Reading
Breazeal, Cynthia. Designing Sociable Robots. Cambridge, Mass.:

MIT Press, 2004.
Brooks, Rodney A. Flesh and Machines: How Robots Will Change Us.

New York: Pantheon Books, 2002.

An experimental NASA robot arm.  (NASA photo)

robotics        411

Henderson, Harry. Modern Robotics: Building Versatile Machines.
New York: Chelsea House, 2006.

Humanoid Robotics Group [MIT Artificial Intelligence Labora-
tory]. Available online. URL: http://www.ai.mit.edu/projects/
humanoid-robotics-group/. Accessed August 19, 2007.

Menzel, Peter, and Faith D’Alusio. Robo Sapiens: Evolution of a New
Species. Cambridge, Mass.: MIT Press, 2001.

Nof, Shimon Y. Handbook of Industrial Robotics. 2nd ed. New York:
Wiley, 1999.

Pires J. Norberto. Industrial Robots Programming: Building Applica-
tions for the Factories of the Future. New York: Springer, 2007.

Schraft, Rolf Dieter, and Gernot Schmierer. Service Robots: Prod-
ucts, Scenarios, Visions. Natick, Mass.: A. K. Peters, 2000.

Severin, E. Oliver. Robotic Companions: Mentorbots and Beyond.
New York: McGraw-Hill, 2004.

Tesler, Pearl. Universal Robots: The History and Workings of Robot-
ics. TheTech Museum. Available online. URL: http://www.
thetech.org/exhibits/online/robotics/universal/index.html.
Accessed August 19, 2007.

RPG  (Report Program Generator)
Many business computer programs written for mainframe
computers involved reading data from files, performing rel-
atively simple procedures, and outputting printed reports.
During the 1960s, some people believed that COBOL, a
general-purpose (but business-oriented) computer lan-
guage, would be easy enough for nonprogrammers to use
(see COBOL). Although this turned out not to be the case,
IBM did succeed in creating RPG (Report Program Genera-
tor), a language designed to make it easier for programmers
(including beginners) to generate business reports.

Most COBOL programs read data, perform tests and cal-
culations, and print the results. RPG, first released in 1964
for use with the new System/360 mainframe and the smaller
System/3, simplifies this process and eliminates most writ-
ing of program code statements.

A “classic” RPG program is built around the “RPG
cycle,” consisting of three stages. During the input stage,
the input device(s), file type, access specifications, and data
record structure are specified. (These specifications can be
quite elaborate.) The heart of the program specifies calcula-
tions to be performed with the various data fields, while the
output section specifies how the results will be laid out in
report form, including such things as headers, footers, and
sections.

Subsequent versions of RPG added more features. RPG-
IV, released in 1994, includes the ability to define subrou-
tines, for example. IBM has also released VisualAge RPG,
which allows for the creation and running of RPG pro-
grams in the Microsoft Windows environment. There are
also tools for interfacing RPG programs with various data-
base systems and to use RPG for writing Web-based (CGI)
programs.

Further Reading
Cozzi, Robert. The Modern RPG IV Language. 4th ed. Lewisville,

Tex.: MC Press Online, 2006.
Martin, Jim. Free-Format RPG IV: How to Bring Your RPG Programs

into the 21st Century. Lewisville, Tex.: MC Press Online, 2005.
Meyers, Bryan, and Jef Sutherland. VisualAge for RPG by Example.

Loveland, Colo.: Duke Press, 1998.

RSS  (Really Simple Syndication)
Web sites such as news providers and blogs (see blogs
and blogging) are constantly posting new material. While
readers can periodically visit a site to look for new material,
an increasingly popular option is to subscribe to a “Web
feed” and receive the latest information automatically. The
most commonly used tool for Web feeds is RSS, which can
stand for Really Simple Syndication, Rich Site Summary, or
RDF Site Summary, depending on the format used.

The data in an RSS feed can include article titles, sum-
maries, excerpts (such as the first paragraph), or the com-
plete article or posting. Feeds can also include multimedia
such as graphics, video, or sound. The data (and any linked
material) is formatted using standard markup elements (see
HTML and XML). The following is an excerpt of a simple
RSS feed provided by the RSS Advisory Board:

<?xml version=“1.0”?>
<rss version=“2.0”>

<channel>
<title>Liftoff News</title>
<link>http://liftoff.msfc.nasa.gov/</
link>
<description>Liftoff to Space Explora-
tion.</description>
<language>en-us</language>
<pubDate>Tue, 10 Jun 2003 04:00:00 GMT</
pubDate>
<lastBuildDate>Tue, 10 Jun 2003 09:41:01
GMT</lastBuildDate>
<docs>http://blogs.law.harvard.edu/tech/
rss</docs>
<generator>Weblog Editor 2.0</generator>
<managingEditor>editor@example.com</man-
agingEditor>
<webMaster>webmaster@example.com</web-
Master>
<item>

<title>Star City</title>
<link>http://liftoff.msfc.nasa.gov/
news/2003/news-starcity.asp</link>
<description>How do Americans get
ready to work with Russians aboard
the International Space Station? They
take a crash course in culture, lan-
guage and protocol at Russia’s <a
href=“http://howe.iki.rssi.ru/GCTC/
gctc_e.htm”>Star City.</
description>
<pubDate>Tue, 03 Jun 2003 09:39:21
GMT</pubDate>
<guid>http://liftoff.msfc.nasa.
gov/2003/06/03.html#item573</guid>

</item>
</channel>

</rss>

As part of the process of setting up a feed on the Web
server, the feed is “published” so that it can be found and
read using a client program called a reader or aggrega-

412        RPG

tor (the latter can combine feeds or organize them in a
newspaper-like format for convenience). RSS readers can
be stand-alone applications or be included with many mod-
ern Web browsers and e-mail clients. Alternatively, Web-
based readers or aggregators such as NewsGator Online can
allow feeds to be read using any Web browser. Readers of
Web pages can find RSS feeds by looking for a “subscribe”
icon or the words RSS or XML. Specialized search engines
such as Bloglines can also help users find interesting feeds.
Additionally, information on the server can also be used
by software to automatically deliver the latest content (see
podcasting).

History and Development
Forerunners of RSS go back to the mid-1990s, with RDF
Site Summary first appearing in 1999 for use on Netscape’s
portal. The adoption of RSS by the New York Times in 2002
greatly aided the popularization of the format, as did the
growing number of blogs that needed a way for contributors
and readers to keep in touch. Today Web browsers such as
Internet Explorer, Mozilla Firefox, and Safari support RSS.
File-sharing services such as BitTorrent can be combined
with RSS to deliver content automatically to users’ hard
drives. An offshoot of RSS called Atom has been less widely
adopted, but offers better compatibility with XML standards
and better management of multimedia content.

Further Reading
Bloglines. Available online. URL: http://www.bloglines.com/.

Accessed November 19, 2007.
Calishain, Tara. Information Trapping: Real-Time Research on the

Web. Berkeley, Calif.: New Riders, 2007.
Finkelstein, Ellen. Syndicating Web Sites with RSS Feeds for Dum-

mies. Hoboken, N.J.: Wiley, 2005.
RSS Advisory Board. Available online. URL: http://www.rssboard.

org. Accessed November 19, 2007.
Sherman, Chris. “What Is RSS, and Why Should You Care?” Search

Engine Watch, August 30, 2005. Available online. URL: http://
searchenginewatch.com/showPage.html?page=3530926.
Accessed November 19, 2007.

RTF  (Rich Text Format)
Rich Text Format was developed in the later 1980s by pro-
grammers at Microsoft. Its purpose is to allow for inter-
change of documents between Microsoft Word and other
software, while preserving the original formatting.

An RTF file is itself a plain text file containing the docu-
ment text enclosed in control codes that determine the for-
matting. For example:

{\rtf1\ansi{\fonttbl{\f0\froman\fprq2\
fcharset0 Times New Roman;}\f0\pard
This is some {\b bold} text.\par
}

The backslash starts a control code, such as for specify-
ing a font or a style, such as Times New Roman and bold
in the example. Curly brackets { } enclose the text to be
affected by the control code. Thus the example above would
be rendered in a word processor as:

This is some bold text.

Although RTF is an 8-bit format, special escape
sequences can be used to specify 16-bit Unicode characters,
such as for non-Roman alphabets.

Libraries and utilities are available for reading and
writing RTF from most popular programming languages,
including Perl, PHP, and Ruby.

In practice, RTF created by word processors tends to
contain many control codes needed to ensure compatibility
with older programs, making the files bulky and not prac-
ticable to edit directly. However, saving a file in RTF is a
good way to ensure that a document can be used by recipi-
ents who may have, for example, older versions of Word. (It
is quite typical for the latest default Word format to not be
compatible with earlier versions.)

Further Reading
Burke, Sean M. RTF Pocket Guide. Sebastapol, Calif.: O’Reilly,

2003.
Microsoft Corporation. Word 2007: Rich Text Format (RTF),

Specification, Version 1.9. Available online. URL: http://www.
microsoft.com/downloads/details.aspx?FamilyID=DD422B8D-
FF06-420 7-B476-6B5396A18A2B. Accessed November 13,
2007.

Ruby
Ruby is a versatile yet consistent programming language
that has become popular in recent years, particularly for
Web development. Designed by Yukihiro Matsumoto and
first released in 1995, Ruby has a compact syntax familiar
to many users of Perl and other scripting languages (see
Perl and Scripting language), avoiding, for example,
the need to declare variable types. However, Ruby is also
a thoroughgoing object-oriented language somewhat like
Smalltalk (see Smalltalk). Matsumoto has stressed that
the design of the language is intended to stress being natu-
ral and enjoyable for the programmer, rather than focusing
on the needs of the machine.

Structure
In Ruby, every data type is an object (see class, data type,
and object), even those defined as primitive types in other
languages, such as integers and Booleans. Although one can
use the traditional procedural method of defining variables
and then working with them, they are still implicitly treated
as part of the root object called “Self.”

Every function is a method that belongs to some class.
Thus -5.abs invokes the absolute value method on the inte-
ger -5, returning 5. Similarly, “wireless wombat”.length
would return the length of the string, 15. Ruby includes
many built-in methods for working with data structures
such as arrays and hashes, and there are many additional
libraries and applications available.	

There are Ruby interpreters for all major operating sys-
tems. In addition to reading and executing a program from

Ruby        413

a file, as with many scripting languages, Ruby can also be
used interactively to test statements:

% ruby eval.rb
ruby> puts “Hello, world.”
Hello, world.

nil
ruby> exit

Here the Ruby interpreter is told to run eval.rb, a special
program that interactively evaluates statements and expres-
sions. The puts command puts (outputs) the string Hello,
world. The evaluator then reports that the puts method
returned no value (nil).

Although Ruby is traditionally an interpreted language,
a version that will produce byte code for a virtual machine
(similar to Java) is in development, and a more direct com-
piler is certainly possible.

Ruby on Rails
The most popular programming environment for Ruby
is Ruby on Rails, an open-source application framework
aimed particularly at writing programs that connect Web
sites to databases. The framework is based on the model-

view controller approach (separating data access and logic
from the user interface) and includes “scaffolding” that can
be quickly filled in to provide data-driven Web sites with
basic functionality. Developers can also create plug-ins to
extend the built-in packages.

Further Reading
Baird, Kevin. Ruby by Example: Concepts and Code. San Francisco:

No Starch Press, 2007.
Burd, Barry. Ruby on Rails for Dummies. Hoboken, N.J.: Wiley,

2007.
Cooper, Peter. Beginning Ruby: From Novice to Professional. Berke-

ley, Calif.: Apress, 2007.
“Ruby: A Programmer’s Best Friend.” Available online. URL: http://

www.ruby-lang.org/en/. Accessed November 13, 2007.
Slagell, Mark. “Ruby User’s Guide.” Available online. URL: http://

www.mentalpointer.com/ruby/index.html. Accessed Novem-
ber 13, 2007.

Stewart, Bruce. “An Interview with the Creator of Ruby.” O’Reilly
Linux devcenter, November 29, 2001. Available online. URL:
http://www.linuxdevcenter.com/pub/a/linux/2001/11/29/
ruby.html. Accessed November 13, 2007.

Thomas, Dave. Programming Ruby: The Pragmatic Programmer’s
Guide. 2nd ed. Raleigh, N.C.: Pragmatic Bookshelf, 2004.

414        Ruby

415

SAP
SAP (NYSE symbol: SAP) is a German acronym for Systeme,
Anwendungen, und Produkete in der Datenverarbeitung (“Sys-
tems, Applications, and Products in Data Processing”). Five
former IBM engineers in Germany founded the company in
1972.

Although unfamiliar to the American public, unlike IBM
and Microsoft, SAP is the world’s largest business software
company, and fourth-largest software provider in general
(behind Microsoft, IBM, and Oracle). The company oper-
ates worldwide through three geographical divisions.

Applications and Products
SAP specializes in Enterprise Resource Planning (ERP),
enhancing a corporation’s ability to manage its key assets
and needs and to plan for the future. This software consists
of three tiers: the database, an application server, and the
client. Early versions of this software were designed to run
on mainframes. Other major products include:

• � SAP NetWeaver, which integrates all other SAP mod-
ules using modern open-standard Web technologies
(see service-oriented architecture)

• � Customer Relationship Manager (see crm)

• � Supply Chain Management (see supply chain man-
agement)

• � Supplier Relationship Management

• � Human Resource Management System

• � Product Lifestyle Management

• � Exchange Infrastructure

• � Enterprise Portal

• � SAP Knowledge Warehouse

Challenges
SAP has recognized for some time that while its base of
large Fortune 500 companies has given it steady income,
changing trends in business have been limiting the soft-
ware giant’s growth. In particular, the trend has been
toward smaller, simpler, more scalable applications that
can be integrated with modern Web services. In September
2007 SAP announced SAP Business ByDesign, a flexible set
of enterprise management services that are delivered over
the Web. However, it remains to be seen how well SAP will
be able to compete with more agile companies such as Net-
Suite and Salesforce.com, and whether the company will be
able to upgrade its existing large company user base with-
out disaffecting it.

SAP’s major competitor in the United States is Oracle
(see Oracle), which has sued SAP in 2007 for unfairly
downloading and using patches and support materials from
Oracle and using them to support former Oracle customers.
SAP and Oracle have generally had quite different growth
strategies: SAP grows by expanding and extending its own
products, while Oracle has grown mainly through acquiring
other companies. However, in October 2007 SAP acquired
Business Objects, a leader in “business intelligence” sys-
tems, for $6.8 billion. This may signal SAP’s willingness to
engage in further strategic acquisitions.

S

Further Reading
McDonald, Kevin, et al. Mastering the SAP Business Information

Warehouse: Leveraging the Business Intelligence Capabilities of
SAP NetWeaver. 2nd ed. Indianapolis: Wiley, 2006.

Ricadela, Aaron. “SAP’s Down-Market Gamble.” Business Week,
September 19, 2007. Available online. URL: http://www.
businessweek.com/technology/content/sep2007/tc20070919_
181869.htm. Accessed October 5, 2007.

SAP.com. Available online. URL: http://www.sap.com/usa/index.
epx. Accessed October 8, 2007.

“SAP History: From Start-Up Software Vendor to Global Mar-
ket Leader.” Available online. URL: http://www.sap.com/
company/history.epx. Accessed October 8, 2007.

Vogel, Andreas, and Jan Kimbell. mySAP for Dummies. Hoboken,
N.J.: Wiley, 2004.

Woods, Dan, and Jeffrey Word. SAP NetWeaver for Dummies. Hobo-
ken, N.J.: Wiley, 2004.

satellite Internet service
As with television, satellite Internet service can provide
access to areas (such as remote locations, ships, or land
vehicles) where wired service is not available (see broad-
band). Besides the satellite, the system includes a terrestrial
facility that has two connections: routers and proxy servers
that manage the flow of traffic to and from the Internet, and
an “uplink” transmitter that communicates with the satel-
lite. In addition, there may be a connection to the public
telephone network.

Each user has a satellite dish and associated equipment
similar to those used for receiving satellite TV, though the
dish is larger and existing TV dishes cannot be used. In the
Northern Hemisphere, the user must have an unobstructed
view of the southern sky (most satellites orbit over the
equator). The equipment is also adapted for use on ships
and recreational vehicles.

The user also has a modem (either external or on a card
in the PC) to convert the satellite signals to data, and soft-
ware supplied by the satellite service.

There are two types of systems for sending data from the
user back to the Internet. In a dial-return system, the user
has a conventional telephone dial-up modem that connects
by phone to a hub at the terrestrial facility. Download-
ing is at broadband speeds (comparable to low-end DSL or
cable), but uploading is at dial-up speeds. (This is not usu-
ally a problem unless the user is uploading large files.) In a
two-way system, the user has a transmitter that sends data
directly back to the satellite. This is usually several times
faster than dial-up, but is more expensive.

Because of the time it takes signals to travel between a
satellite and the ground, all satellite Internet systems have a
built-in delay, or latency. Satellites in geosynchronous orbit
(about 22,000 miles [35,405.6 km] high) have wider cover-
age but higher latency, while using lower orbits reduces
latency but requires more satellites to provide continuous
coverage. Latency can be problematic for applications such
as Internet telephony (see VOIP).

Although small compared with that for cable or DSL,
the satellite user base is growing, particularly in areas and
countries that lack wired infrastructure. Users who have
cable or DSL available in their neighborhood would have

little reason to obtain satellite Internet, since the initial and
monthly costs are considerably higher and download speeds
are somewhat slower. Also, the need to use encrypted vir-
tual private networks (VPN) to secure business data can
lower effective speeds substantially. Finally, though the sat-
ellites themselves are very reliable, satellite service is sub-
ject to interruption during heavy rain or snow.

Further Reading
Brodkin, Jon. “Satellite Services and Telecommuting Not Always

a Pretty Mix.” NetworkWorld, July 24, 2007. Available
online. URL: http://www.networkworld.com/news/2007/
072407-satellites-for-telecommuting.html. Accessed Novem-
ber 14, 2007.

“How Does Satellite Internet Operate?” HowStuffWorks. Available
online. URL: http://computer.howstuffworks.com/question
606.htm. Accessed November 14, 2007.

Kota, Sastri L., Kaveh Pahlavan, and Pentti Leppanen. Broadband
Satellite Communication for Internet Access. Norwell, Mass.:
Kluwer Academic Publishers, 2004.

Nutter, Ron. “Getting More Performance from a Satellite Internet
System.” Network World, April 16, 2007. Available online. URL:
http://www.networkworld.com/columnists/2007/041607nutter.
html. Accessed November 14, 2007.

scanner
In order for a computer to work with information, the
information must be digitized—converted to data that
application programs can recognize and manipulate (see
characters and strings). Computer users have thus
been confronted with the task of converting millions of
pages of printed words or graphics into machine-readable
form. Since it is expensive to re-key text (and impractical to
redraw images), some way is needed to automatically con-
vert the varying shades or colors of the text or images into a
digitized graphics image that can be stored in a file.

This is what a scanner does. The scanner head contains
a charge-coupled device (CCD) like that used in digital cam-
eras (see photography, digital). The CCD contains thou-
sands or millions of tiny regions that can convert incoming
light into a voltage level. Each of these voltage levels, when
amplified, will correspond to one pixel of the scanned image.
(A color scanner uses three different diodes for each pixel,
each receiving light through a red, green, or blue filter.)

The operation of the head depends on the type of scan-
ner. In the most common type, the flatbed scanner, a motor
moves the head back and forth across the paper, which lies
facedown on a glass window. In a sheet-fed scanner, the
head remains stationery and the paper is fed past it by a set
of rollers. Finally, there are handheld scanners, where the
job of moving the scanner head is performed by the user
moving the scanner back and forth over the page.

The resolution of a scanner depends on the number of
pixels into which it can break the image. The color depth
depends on how many bits of information that it can store
per pixel (more information means more gradations of color
or gray). Resolutions of 2,400 dots per inch (dpi) or more
are now common, with up to 36 bit color depth, allowing
for about 68.7 billion colors or gradations (see color in
computing).

416        satellite Internet service

Besides considerations of resolution and color depth, the
quality of a scanned image depends on the quality of the
scanner’s optics as well as on how the page or other object
reflects light. As anyone who has browsed eBay listings
knows, the quality of scans can vary considerably. Most
scanners come with software that allows for the scanner to
be controlled and adjusted from the PC, and image-editing
software can be used to further adjust the scanned image.

Even if the input is a sheet of text, the scanner’s output
is simply a graphical image. Special software must be used
to interpret scanned images of text and identify which char-
acters and other features are present (see optical charac-
ter recognition). Since such software is not 100 percent
accurate, human proofreaders may have to inspect the
resulting documents.

Like printers, scanners have become quite inexpensive
in recent years. Quite serviceable units are available for
around $100 or so. (Popular multifunction devices often
include scanner, copier, fax, and printer capabilities. A
scanner can be used as a copier or fax by sending its output
to the appropriate mechanism.)

Many home users now use scanners to digitize images
for use in personal Web pages, online auctions, and other
venues. Since sheet-fed scanners can only process individual
sheets (not books, magazines, or objects) they are now less
popular. Handheld scanners are somewhat tedious to use
and require a steady hand, so they are generally used only in
special circumstances where a flatbed scanner is not avail-
able. For capturing images of three-dimensional objects it is
often easier to use a digital camera than a scanner.

Specialized scanners are also available. For example,
although many flatbed scanners have a holder for scanning
film negatives, a dedicated film scanner (costing perhaps
$500) is a better choice if one wants to scan and possibly
retouch or restore photographs. There are also high-end
drum-type scanners that can scan at resolutions of 10,000
dpi or more.

Further Reading
Busch, David D. Mastering Digital Scanning with Slides, Film, and

Transparencies. Boston: Muska & Lipman, 2004.
Chambers, Mark L. Scanners for Dummies. Hoboken, N.J.: Wiley,

2004.
PC Tech. Guide: Scanners. Available online. URL: http://www.

pctechguide.com/55Scanners.htm. Accessed August 20, 2007.

scheduling and prioritization
Often in computing, a fixed resource must be parceled out
among a number of competing users. The most obvious
example is the operating system’s scheduling the running
of programs. Most computers have a single central proces-
sor (CPU) to execute programs. However, today virtually
all operating systems (except for certain dedicated applica-
tions—see embedded system) are expected to have many
programs available simultaneously. For example, a Micro-
soft Windows user might have a word processor, spread-
sheet, e-mail program, and Web browser all open at the
same time. Not only might all of these programs be carry-
ing out tasks or waiting for the user’s input, but dozens of

“hidden” system programs are also running in the back-
ground, providing services such as network support, virus
protection, and printing services (see multitasking).

In this environment each executing program (or “pro-
cess”) will be in one of three possible states. It may be
actively executing (that is, its code is being run by the
CPU). It may be ready to execute—that is, “wanting” to
perform some activity but needing access to the CPU. Or,
the program may be “blocked”—that is, not executing and
unable to execute until some external condition is met.
Blockage is usually caused by an input/output (I/O) opera-
tion. An example would be a program that’s waiting for data
to finish loading from a file.

In this sort of single-processor multiple-program sys-
tem, the simplest arrangement is to have the operating
system dole out fixed amounts of execution time to each
program. Each program that indicates that it’s ready to run
gets placed in a list (see queue) and given its turn. When
the amount of time fixed for a turn has passed, the operat-
ing system saves the program’s “state” in the processor—the
contents of the registers, address pointed to by the pointer
to the next instruction to be executed, and so on. This
stored information can be considered to be a “virtual pro-
cessor.” When the program’s turn comes around again, the
processor is reloaded with the contents of the virtual pro-
cessor and execution continues where it had left off.

Use of Priority
The above scheme assumes that all programs should have
equal priority. In other words, that the timely completion
of one program is not more important than that of another,
or that no program should be “bumped up” in the queue for
some reason. In reality, however, most operating systems do
give some programs preference over others.

For example, suppose the word processor has just
received a user’s mouse click on a menu. The next program
in the queue for execution, however, is an antivirus pro-
gram that’s checking all the files on the hard drive for pos-
sible viruses. The latter program is important, but since the
user is not waiting for it to finish, a delay in its execution
won’t cause a significant problem. The user, on the other
hand, is expecting the menu just clicked on to open almost
instantly, and will become irritated with even a short delay.
Therefore, it makes sense for the operating system to give
a program that’s responding to immediate user activity a
higher priority than a program that’s carrying out tasks
that don’t require user intervention.

There are other times when a program must (or should)
be given a higher priority. A program may be required to
complete a task within a guaranteed time frame (for exam-
ple, to dispatch emergency services personnel). The operat-
ing system must therefore provide a way that the program
can request priority execution.

In general, an operating system that supports real-time
applications or that requires great attention to efficiency in
using valuable devices may need a much more sophisticated
scheduling algorithm that factors in the availability of key
devices or services and adjusts program priorities in order
to minimize bottlenecks and guarantee that the system’s

scheduling and prioritization        417

response will be within required parameters. Indeed, the
method used for assigning priorities may actually be changed
in response to changes in the various “loads” on the system.
Sophisticated systems may also include programs that can
predict the likely future load on the system in order to adjust
for it as quickly as possible.

Scheduling Multiprocessor Systems
These general principles also apply to systems where more
than one processor is available (see multiprocessing),
but there is the added complication of deciding where the
scheduling program will be run. In a multiprocessing sys-
tem that has one “master” and many “slave” processors,
the scheduling program runs on the master processor. This
arrangement is simple, but it means that when a slave pro-
cessor wants to schedule a program it must wait until the
scheduling program gets its next time-slice on the master
processor.

One alternative is to allow any processor that has free
time to run the scheduling algorithm. This is harder to
set up because it requires a mechanism to make sure two
processors do not try to run the scheduling program at the
same time, but it smoothes out the bottleneck that would
arise from relying on a single processor.

A variant of this approach is “distributed scheduling.”
Here each processor runs its own scheduling program.
All the schedulers share the same set of information about
the status and queuing of processes on the system, and
a locking mechanism is used to prevent two processors
from changing the same information at the same time. This
approach is easiest to “scale up” since added processors can
come with their own scheduling programs.

Two trends in recent years have changed the empha-
sis in scheduling algorithms. One is the continuing drop
in price per unit of processing power and memory. This
means that maximum efficiency in using the hardware
can often give way in favor of catering to the user’s conve-
nience and perceptions by giving more priority to interac-
tion with the user. The other development is the growing
use of systems where much of the burden of graphics and
interactivity is placed on the user’s desktop, thus simpli-
fying the complexity of scheduling for the server (see cli-
ent-server computing).

Principles of scheduling and priority can be applied
in areas other than computer operating systems. Schedul-
ing human activities (such as factory work) adds further
complications such as the dependence of one task upon
the prior performance of one or more other tasks (see
project management software) and the “just-in-time”
scheduling for minimizing the investment in materials or
inventory.

Further Reading
Brucker, Peter. Scheduling Algorithms. 5th ed. New York: Springer-

Verlag, 2007.
Leung, Joseph Y-T., ed. Handbook of Scheduling Algorithms, Mod-

els, and Performance Analysis. Boca Raton, Fla.: CRC Press,
2004.

Pinedo, M. Scheduling: Theory, Algorithms, and Systems. 2nd ed.
Upper Saddle River, N.J.: Prentice Hall, 2001.

science fiction and computing
The image of the mechanical brain or “knowledge engine”
has a surprisingly long history in Western literature. As far
back as Jonathan Swift’s Gulliver’s Travels (1726), we find
a gigantic engine that can create books on every conceiv-
able subject. While this was a satirical jab at thinkers who
were ushering in a rational, mechanistic cosmos, the idea
that the cunning mechanical automatons being created for
the amusement of princes might someday think did not
seem so far-fetched. This belief would be strengthened in
the coming two centuries by the triumph of the Industrial
Revolution. In Jules Verne’s Paris in the Twentieth Century
(written in 1863), giant calculating machines and facsimile
transmissions were used to coordinate business activities.

As early as the beginning of the 20th century, writers
had been exploring what might happen if some combination
of artificial brains and robots offered the possibility of cater-
ing to all human needs. In E. M. Forster’s “The Machine
Stops,” published in 1909, people no longer even have to
leave their insectlike cells because even their social needs
are provided through machine-mediated communication
not unlike today’s Internet. In the 1930s and 1940s, other
writers such as John W. Campbell and Jack Williamson
wrote stories in which a worldwide artificial intelligence
became the end point of evolution, with humans either
becoming extinct or living static, pointless lives.

Science fiction writers had also been considering the
ramifications of a related technology, robotics. The term
robot came from Karel Čapek’s R.U.R. (Rossum’s Universal
Robots). Although the robot had a human face, it could
have inhuman motives and threaten to become Earth’s new
master, displacing humans. Isaac Asimov offered a more
benign vision, thanks to the “laws of robotics” embedded
in his machines’ very circuitry. The first law states, “A robot
shall not harm a human being or, through inaction, cause a
human being to come to harm.” In the real world, of course,
artificial intelligence had no such built-in restrictions (see
artificial intelligence).

Science fiction of the “Golden Age” of the pulp magazines
had only limited impact on popular culture as a whole. Once
actual computers arrived on the scene, however, they became
the subject for movies as well as novels. D. F. Jones’s novel
Colossus: The Forbin Project (1966), which became a film in
1970, combined cold war anxiety with fear of artificial intel-
ligence. Joining forces with its Soviet counterpart, Colossus
fulfills its orders to prevent war by taking over and insti-
tuting a world government. Similarly, Hal in the film 2001:
A Space Odyssey (based on the work of Arthur C. Clarke)
puts its own instinct for self-preservation ahead of the frantic
commands of the spaceship’s crew. However, the artificial
can also strive to be human, as in the 2001 movie A.I.

During the 1940s and 1950s science fictional comput-
ers tended to be larger, more powerful versions of existing
mainframes, sometimes aspiring to godlike status. How-
ever, in Murray Leinster’s book A Logic Named Joe (1946),
a “Logic” is found in every home, complete with keyboard
and television screen. All the Logics are connected to a
huge relay circuit called the Tank, and the user can obtain
everything from TV broadcasts to weather forecasts or even

418        science fiction and computing

the answers to history trivia questions. Although the Logic
is essentially an electronic-mechanical system, its function-
ality is startlingly similar to that achieved by the Internet
almost half a century later.

Writers such as William Gibson (Neuromancer) and Ver-
nor Vinge (True Names) later began to explore the world
mutually experienced by computer users as a setting where
humans could directly link their minds to computer-gener-
ated worlds (see virtual reality). A new elite of cyber-
space masters were portrayed in a futuristic adaptation
of such archetypes as the cowboy gunslinger, samurai, or
ninja. Unlike the morally unambiguous world of the old
western movies, however, the novels and movies with the
new “cyberpunk” sensibility are generally set in a jumbled,
fragmented, chaotic world. That world is often dominated
by giant corporations (reflecting concerns about economic
globalism) and is generally dystopian.

Meanwhile as cyberspace continues to become reality,
cyberpunk has lost its distinctiveness as a genre. Gibson’s
latest work (and that of other writers such as Bruce Sterling
and Vernor Vinge) is more apt to explore ways of commu-
nicating and networking that belong to just the day after
tomorrow, if not already appearing (particularly among
young people) today.

Cyberpunk and Beyond
As personal computers and networking began to burgeon
in the 1980s, the focus began to shift from computers as
“characters” to the ways in which people interact with, and
are changed by, new technology.

Although the term cyberspace was introduced by writer
William Gibson in his 1982 short story “Burning Chrome,”
the word did not come into greater prominence until his
1984 novel Neuromancer, where it was described as “a con-
sensual hallucination experienced daily by billions. . . .” (See
cyberspace.) It became the arena for a new style of science

fiction called cyberpunk, where outlaws and murderous cor-
porations duel on the virtual frontier. Beyond the high-tech
chases, questions of the ultimate meaning of cyberspace and
of reality itself emerge, as in the Matrix trilogy of movies, or
in the ultimate transformation of consciousness in human
and machine (see singularity, technological).

Further Reading
Asimov, Isaac, Patricia S. Warrick, and Martin H. Greenberg, eds.

Machines That Think: The Best Science Fiction Stories about
Robots and Computers. New York: Holt, Rinehart, and Win-
ston, 1984.

Computer in Science Fiction. Available online. URL: http://www.
technovelgy.com/ct/Science_List_Detail.asp?BT=Computer.
Accessed November 14, 2007.

Conklin, Groff, ed. Science-Fiction Thinking Machines: Robots,
Androids, Computers. New York: Vanguard Press, 1954.

Franklin, H. Bruce. “Computers in Fiction,” 2000. Available
online. URL: http://andromeda.rutgers.edu/~hbf/compulit.
htm. Accessed November 14, 2007.

Frenkel, James, ed. True Names by Vernor Vinge and the Opening of
the Cyberspace Frontier. New York: Tor, 2001.

Gibson, William. Neuromancer. New York: Ace Books, 1984.
———. Pattern Recognition. New York: G. P. Putnam’s Sons, 2003.
Vinge, Vernor. Rainbow’s End. New York: Tor, 2006.
Warrick, Patricia S. The Cybernetic Imagination in Science Fiction.

Cambridge, Mass.: MIT Press, 1980.

scientific computing applications
From microbiology to plasma physics, modern science
would be impossible without the computer. This is not
because the computer has replaced the scientific method
of observation, hypothesis, and experiment. Modern scien-
tists essentially follow the same intellectual procedures at
did Galileo, Newton, Darwin, and Einstein. Rather, under-
standing of the layered systems that make up the universe
has now reached so complex and detailed a level that there
is too much data for an individual human mind to grasp.
Further, the calculations necessary to process the data usu-
ally can’t be performed by unaided humans in any rea-
sonable length of time. This can be caused either by the
inherent complexity of the calculation (see computability
and complexity) or the sheer amount of data (as in DNA
sequencing; see bioinformatics and data mining).

Instrumentation
Some apparatus such as particle accelerators are complicated
enough to make it expedient to control the operation by
computer. It is simply more convenient to have instruments
such as spectrocopes process samples automatically under
computer control and produce printed results.

Most instruments for gathering data use electronics
to turn physical measurements into numeric representa-
tions (see analog and digital and data acquisition).
The modern instrument’s built-in processor and software
performs preliminary processing that used to have to be
done later in the lab. This can include scaling the data to
an appropriate range of values, eliminating “noise” data,
and providing an appropriate time framework for interpret-
ing the data. Use of electronics also enables the data to be

Perhaps the most famous science fiction movie of all is 2001: A
Space Odyssey (1968). However, the millennial year passed with-
out either an AI like Hal or passenger space lines.  (©ArenaPal /
Topham / The Image Works)

scientific computing applications        419

transmitted from a remote location (telemetry). See space
exploration and computers.

Data Analysis
The analysis of data to obtain theoretical understanding of
the processes of nature also greatly benefits from the power
of computers ranging from ordinary PCs to high-perfor-
mance scientific workstations to large supercomputers. The
possible significance of variables can be determined by sta-
tistical techniques (see also statistics and computing).

The fundamental task in understanding any system
is to isolate the significant variables and determine how
they affect one another. In many cases this can be done by
solving differential equations, where a dependent variable
changes as a result of changes in one or more indepen-
dent variables. For example, the classical Maxwell theory
of wave behavior is a system of differential equations that
could be used to understand, for example, how radar waves
will bounce off an object with a given shape and reflectiv-
ity. However, real-world objects have complicating factors:
A given problem may include aspects of wave behavior,
electromagnetic interaction, deformation of material, and
so on. While the great scientists of the late 19th to mid-20th
century could develop elegant formulas showing key rela-
tionships in nature, the interaction of many different phe-
nomena often requires much more formidable computation
that must be applied to many individual components.

It might be considered fortunate that the computer came
along at about the time that it was required for further
scientific progress. However, another way to look at it is
to note that much of the pressure that led to investment in
the development of computers came from that very need
for computational resources, albeit primarily for wartime
projects.

Simulation and Visualization
Even if scientists have a basic understanding of a system,
it may be hard to determine what the overall results of the
interaction of the many particles (or other elements) in the
system will be. This is true, for example, in the analysis of
events taking place in nuclear reactors. Fortunately com-
puters can apply the laws of the system to each of many
particles and determine the resulting actions from their
aggregate behavior (see simulation). Simulation is particu-
larly important in fields where actual experiments are not
possible because of distance or time. Thus, a hypothesis
about the formation of the universe can be tested by apply-
ing it to a set of initial conditions believed to reflect those at
or near the time of the big bang.

However, even the most skilled scientists have trouble
relating numbers to the shape and interaction of real-world
objects. Computers have greatly aided in making it possible
to visualize structures and phenomena using high-resolu-
tion 3D color graphics (see computer graphics). Features

Computer processing of photographic or scanned data can provide detailed information about our environment. In this NASA test project,
aerial and satellite imagery is analyzed to yield information about the ripeness of grapes in a vineyard, as well as moisture, soil conditions,
and plant disease.  (NASA photo)

420        scientific computing applications

of interest can be enhanced, and arbitrary (“false”) colors
can be used to visually show such things as temperature
or blood flow. These techniques can also be used to cre-
ate interactive models where scientists can, for example,
combine molecules in new ways and have the computer
calculate the likely properties of the result. Finally, com-
puter visualization and modeling can be used both to teach
science and to give the general public some visceral grasp of
the meaning of scientific theories and discoveries.

Further Reading
Heath, Michael T. Scientific Computing: An Introductory Survey.

2nd ed. New York: McGraw-Hill, 2002.
Jahne, Bernd. Practical Handbook of Image Processing for Scientific

Applications. 2nd ed. Boca Raton, Fla.: CRC Press, 2004.
Langtangen, H. P., A. M. Bruaset, and E. Quak, eds. Advances in

Software Tools for Scientific Computing. New York: Springer,
2000.

Linux Software: Scientific Applications. Available online. URL:
http://linux.about.com/od/softscience/Linux_Software_
Scientific_Applications.htm. Accessed August 20, 2007.

Oliveira, Suely, and David E. Stewart. Writing Scientific Software: A
Guide to Good Style. New York: Cambridge University Press,
2006.

Scientific Computing and Numerical Analysis FAQ. Available online.
URL: http://www.mathcom.com/corpdir/techinfo.mdir/index.
html. Accessed August 20, 2007.

scripting languages
There are several different levels at which someone can
give commands to a computer. At one end, an applications
programmer writes program code that ultimately results in
instructions to the machine to carry out specified process-
ing (see programming languages and compiler). The
result is an application that users can control in order to get
their work done.

At the other end, the ordinary user of the application
uses menus, icons, keystrokes, or other means to select
program features in order to format a document, calculate
a spreadsheet, create a drawing, or perform some other
task. Today most users also control the operating system by
using a graphical user interface to, for example, copy files.

However, there is an intermediate realm where text com-
mands can be used to work with features of the operating
system, to process data through various utility programs,
and to create simple reports. For example, a system admin-
istrator may want to log the number of users on the system
at various times, the amount of disk capacity being used,
the number of hits on various pages on a Web server, and
so on. (See system administrator.) It would be expen-
sive and time-consuming to write and compile full-fledged
application programs for such tasks, particularly if chang-
ing needs will dictate frequent changes in the processing.

The use of the operating system shell and shell script-
ing (see shell) has traditionally been the way to deal with
automating routine tasks, especially with systems running
UNIX. However, the complexity of modern networks and
in particular, the Internet, has driven administrators and
programmers to seek languages that would combine the
quick, interactive nature of shells, the structural features of

full-fledged programming languages, and the convenience
of built-in facilities for pattern-matching, text processing,
data extraction, and other tasks. The result has been the
development of a number of popular scripting languages
(see awk, Perl, and Python).

Working with Scripting Languages
Although the various scripting languages differ in syntax
and features, they are all intended to be used in a similar
way. Unlike languages such as C++, scripting languages are
interpreted, not compiled (see interpreter). Typically, a
script consists of a number of lines of text in a file. When
the file is invoked (such as by someone typing the name
of the language followed by the name of the script file at
the command prompt), the script language processor parses
each statement (see parser). If the statement includes a ref-
erence to one of the language’s internal features (such as an
arithmetic operator or a print command), the appropriate
function is carried out. Most languages include the basic
types of control structures (see branching statements
and loop) to test various variables and direct execution
accordingly.

The trend in higher-level languages has been to require
that all variables be declared to be used for particular kinds
of data such as integer, floating-point number, or charac-
ter string (see data types). Scripting languages, however,
are designed to be easy to use and scripts are relatively
simple and easy to debug. Since the consequences of errors
involving data types are less likely to be severe, scripting
languages don’t require that variables be declared before
they are used. The language processor will make “common
sense” assumptions about data. Thus if an integer such as
23 and a floating-point number like 17.5 must be added
together, the integer will be converted to floating point and
the result will be expressed as the floating-point value 40.5.

Similarly, scripting languages take a relaxed view about
scope, or the parts of a program from which a variable’s
value can be accessed. Scripting languages do provide for
some form of subroutine or procedure to be declared (see
procedures and functions). Generally, variables used
within a subroutine will be considered to be “local” to that
subroutine, and variables declared outside of any subrou-
tine will be treated as global.

With compilers for regular programming languages, a
great deal of attention must be paid to creating fast, efficient
code. A scientific program may need to optimize calcula-
tions so that it can tackle cutting-edge problems in physics
or engineering. A commercial application such as a word
processor must implement many features to be competi-
tive, and yet be able to respond immediately to the user and
complete tasks quickly.

Scripting languages, on the other hand, are typically
used to perform housekeeping tasks that don’t place much
demand on the processor, and that often don’t need to be
finished quickly. Because of this, the relative inefficiency of
on-the-fly interpretation instead of optimized compilation is
not a problem. Indeed, by making it easy for users to write
and test programs quickly, the interpreter makes it much
easier for administrators and others to create simple but

scripting languages        421

useful tools for monitoring the system and extracting nec-
essary information. Scripting languages can also be used to
quickly create a prototype version of a program that will be
later recoded in a language such as C++ for efficiency.

Scripting languages were originally written for operat-
ing systems that process text commands. However, with the
popularity of Microsoft Windows, Macintosh, and various
UNIX-based graphical user interfaces, many users and even
system administrators now prefer a visual scripting envi-
ronment. For example, Microsoft Visual Basic for Windows
(and the related Visual Basic for Applications and VBScript)
allow users to write simple programs that can harness
the features of the Windows operating system and user
interface and take advantage of prepackaged functionality
available in ActiveX controls (see BASIC). In these visual
environments the tasks that had been performed by script
files can be automated by setting up and linking appropri-
ate objects and adding code as necessary.

Web Scripting
Aside from shell programming, the most common use of
scripting languages today is to provide interactive features
for Web pages and to tie forms and displays to data sources.
On the Web server, such technologies as ASP (see active
server pages) use scripts embedded in (or called from) the
HTML code of the page. On the client side (i.e., the user’s
Web browser) languages such as JavaScript and VBScript
can be used to add features.

(For specific scripting languages, see awk, Javascript,
Lua, VBScript, Perl, PHP, and TCL. For general-purpose
languages that have some features in common with script-
ing languages, see Python and Ruby.)

Further Reading
Barron, David. The World of Scripting Languages. New York: Wiley,

2000.
Brown, Christopher. “Scripting Languages.” Available online. URL:

http://cbbrowne.com/info/scripting.html. Accessed August 20,
2007.

Foster-Johnson, Eric, John C. Welch, and Micah Anderson. Begin-
ning Shell Scripting. Indianapolis: Wiley, 2005.

Ousterhout, John K. “Scripting: Higher Level Programming for the
21st Century.” IEEE Computer, March 1998. Available online.
URL: http://www.tcl.tk/doc/scripting.html. Accessed August
20, 2007.

“Scriptorama: A Slightly Skeptical View on Scripting Languages.”
Available online. URL: http://www.softpanorama.org/Script-
ing/index.shtm. Accessed August 20, 2007.

Sebesta, Robert W. Concepts of Programming Languages. 8th ed.
Boston: Pearson/Addison-Wesley, 2007.

search engine
By the mid-1990s, many thousands of pages were being
added to the World Wide Web each day (see World Wide
Web). The availability of graphical browsing programs such
as Mosaic, Netscape, and Microsoft Internet Explorer (see
Web browser) made it easy for ordinary PC users to view
Web pages and to navigate from one page to another. How-
ever, people who wanted to use the Web for any sort of sys-

tematic research found they needed better tools for finding
the desired information.

There are basically three approaches to exploring the
Web: casual “surfing,” portals, and search engines. A user
might find (or hear about) an interesting Web page devoted
to a business or other organization or perhaps a particular
topic. The page includes a number of featured links to other
pages. The user can follow any of those links to reach other
pages that might be relevant. Those pages are likely to have
other interesting links that can be followed, and so on.
Most Web users have surfed in this way: It can be fun and
it can certainly lead to “finds” that can be bookmarked for
later reference. However, this approach is not systematic,
comprehensive, or efficient.

Alternatively, the user can visit a site such as the famous
Yahoo! started by Jerry Yang and David Filo (see portal
and Yahoo!). These sites specialize in selecting what their
editors believe to be the best and most useful sites for each
topic, and organizing them into a multilevel topical index.
The portal approach has several advantages: The work of
sifting through the Web has already been done, the index
is easy to use, and the sites featured are likely to be of good
quality. However, even Yahoo!’s busy staff can examine only
a tiny portion of the estimated 1 trillion or so Web pages
being presented on about 175 million different Web sites
(as of 2008). Also, the sites selected and featured by portals
are subject both to editorial discretion (or bias) and in some
cases to commercial interest.

Anatomy of a Search Engine
Search engines such as Lycos and AltaVista were intro-
duced at about the same time as portals. Although there
is some variation, all search engines follow the same basic
approach. On the host computer the search engine runs
automatic Web searching programs (sometimes called “spi-
ders” or “Web crawlers”). These programs systematically
visit Web sites and follow the links to other sites and so on
through many layers. Usually, several such programs are
run simultaneously, from different starting points or using
different approaches in an attempt to cover as much of the
Web as possible. When a Web crawler reaches a site, it
records the address (URL) and compiles a list of significant
words. The Web crawlers give the results of their searches
to the search engine’s indexing program, which adds the
URLs to the associated keywords, compiling a very large
word index to the Web.

Search engines can also receive information directly
from Web sites. It is possible for page designers to add a
special HTML “metatag” that includes keywords for use by
search engines. However, this facility can be misused by
some commercial sites to add popular words that are not
actually relevant to the site, in the hope of attracting more
hits.

To use a search engine, the user simply navigates to the
search engine’s home page with his or her Web browser.
(Many browsers can also add selected search engines to a
special “search pane” or menu item for easier access.) The
user then types in a word or phrase. Most search engines
accept logical specifiers (see Boolean operators) such as

422        search engine

AND, OR, or NOT. Thus, a search for “internet and sta-
tistics” will find only pages that have both words. Some
engines also allow for phrases to be put in quote marks so
they will be searched for as a whole. A search for “internet
statistics” will match only pages that have these two words
next to each other.

Because of the huge size of the Web, even seem-
ingly esoteric search words can yield thousands of “hits”
(results). Therefore, most search engines rank the results
by analyzing how relevant they are likely to be. This can
be done in a simple way by comparing the frequency with
which the search terms appear on the various pages. More
sophisticated search engines such as Google can deter-
mine how relevant a word or phrase seems to be because
of its placement or presence in a heading or how often a
site is referred to from other sites (see Google). Some
search engines also offer the ability to “refine” searches by
adding further words and performing a new match against
the set of results.

Limitations and Future of Search Engines
Search engines do provide many useful “hits” for both
casual and professional researchers, but the current tech-
nology does have a number of limitations. Even the most
comprehensive search engines now reach and index only a
small fraction of the total available Web pages. One way to
maximize the number of pages searched is to use a “metase-
arch” program such as Copernic, which submits a user’s
search to many different search engines. It then collates the
results, removing duplicates and attempting to rank them
in relevance.

Even with “relevancy” algorithms, searches for broad,
general topics are likely to retrieve many less-than-use-
ful hits. Also, current search engines have difficulty find-
ing image and sound (music) files, which are among the
most sought-after Web content. This is because the search
engine cannot recognize graphics or sound as such, only
file names or extensions or text descriptions. Search
engines also vary considerably in their ability to read and
index files in proprietary text formats such as Microsoft
Word or Adobe PDF.

Once mainly an auxiliary tool for Web portals, search
engines have become a major business, and a variety of
new types of search engines have proliferated. By combin-
ing search with paid advertising and delivery of a variety
of services, Google in particular has become one of the
Web’s biggest success stories. In turn, Web-site owners have
attempted to use various techniques to “optimize” or raise
the ranking of their pages in search results, while Google
has quietly tweaked its “page rank” algorithm to keep such
efforts in check.

Two major search trends that can be seen in Google
are specialized searches and local search. Google offers a
variety of search options to target images, video, news, even
blogs. Local search (such as Google Maps) combines maps
with lists of local businesses, making it easier for users to
find, for example, hotels near a given airport (see mapping
and navigation systems). Services such as Google Maps
Street View even provide for a street-level closeup view of

a neighborhood—almost a virtual tour, although this has
raised privacy concerns. Google offers an extensive pro-
gramming interface that is available to Web developers, as
well as an easier-to-use facility for creating custom map
displays (see mashups).

In the future artificial intelligence techniques may make
it possible for search engines to recognize types of images
or sounds through pattern recognition. Search engines may
be able to respond more appropriately to “natural language”
queries such as “How many pages are there on the Web?”
and find the answer, or at least Web pages that are likely to
have the answer. (Current services of this type such as Ask.
com tend to give hit-and-miss results.)

For now, search engines remain a useful tool, but system-
atic researchers should complement their results with links
from portals and recommendations from authoritative sites.

Further Reading
Batelle, John. The Search: How Google and Its Rivals Rewrote the

Rules of Business and Transformed Our Culture. New York:
Penguin, 2005.

Dornfest, Rael, Paul Bausch, and Tara Calishain. Google Hacks:
Tips & Tools for Finding and Using the World’s Information. 3rd
ed. Sebastapol, Calif.: O’Reilly, 2006.

Kent, Peter. Search Engine Optimization for Dummies. Hoboken,
N.J.: Wiley, 2006.

Milstein, Sarah, J. D. Biersdorfer, and Matthew MacDonald. Google:
The Missing Manual. 2nd ed. Sebastapol, Calif.: O’Reilly
Media, 2005.

Moran, Mike, and Bill Hunt. Search Engine Marketing, Inc.: Driving
Search Traffic to Your Company’s Web Site. Upper Saddle River,
N.J.: IBM Press, 2005.

Purvis, Michael, Jeffrey Sambells, and Cameron Turner. Beginning
Google Maps Applications with PHP and Ajax: From Novice to
Professional. Berkeley, Calif.: Apress, 2006.

Copernic, a “metasearch engine,” can pass a user’s request to many
different search engines and then prioritize and collate the results,
weeding out duplicates. (Unfortunately some results are still much
less useful than others.)

search engine        423

Search Engine Watch. Available online. URL: http://searchengine-
watch.com/. Accessed August 21, 2007.

semantic Web
The ever-growing World Wide Web consists of billions of
linked HTML documents (and other resources), but most of
the links contain no information about why the linkage has
been made or what it might mean. Services such as Google
can automatically trace the links and index each page (see
search engine) with the aid of “metadata” such as key-
words that summarize page content. However, discovering
the relationships between data items on pages, or between
pages—and their meaning, or semantics—requires human
scrutiny.

In his 1999 book Weaving the Web, World Wide Web cre-
ator Tim Berners-Lee (see Berners-Lee, Tim) described a new
way in which Web pages might be organized in the future:

I have a dream for the Web [in which computers] become
capable of analyzing all the data on the Web—the content,
links, and transactions between people and computers. A
“Semantic Web,” which should make this possible, has yet
to emerge, but when it does, the day-to-day mechanisms of
trade, bureaucracy and our daily lives will be handled by
machines talking to machines. The “intelligent agents” peo-
ple have touted for ages will finally materialize.

In other words, by encoding definitions of objects and
their relationships into the text of Web pages, programs
(see software agent) can be written to use this infor-
mation to answer sophisticated questions such as “which
devices from this vendor use open-source software?”

Approaches
The development of “machine understandable” Web resources
requires that several layers of language be used. At bottom
is the basic description of the structure of a document and
its elements, such as titles or descriptions (see xml). Next
comes RDF (Resource Description Format), which describes
the relationship between data objects (“resources”). These
relationships might include “a motherboard is a part of a
computer” or “John owns this computer.” Programs are now
available to automatically create RDF statements given a
database and its defined characteristics.

For these relationships to be truly useful, they must be
part of a larger structure that describes their meaning. This
can be provided via an RDF scheme or through the use of a
language such as the Web Ontology Language (OWL)—see
ontologies and data models.

Programs can then query for these relationships using a
language such as SPARQL.

Applications
The semantic Web is not something that can appear over-
night—after all, it will take considerable human effort to
encode the information needed for machines to understand
Web resources, and additional effort to code the applica-

tion programs that will take advantage of that information.
However, the potential payoff is huge, allowing both human
and automated searchers to tackle much more sophisticated
tasks.

For example, the University of Maryland is developing
a prototype semantic search engine called Swoogle. It can
extract information and determine relationships between
documents that include RDF or OWL elements. Swoogle
can also help users find appropriate ontologies for explor-
ing a subject (see ontologies and data models).

Much research needs to be done. For example, there is
the problem of deriving a measure of “reliability” or “trust”
based on the data sources used to answer the query, which
may be scattered all over the world and represent very dif-
ferent kinds of sources.

Further Reading
Alesso, H. Peter, and Craig F. Smith. Thinking on the Web: Berners-

Lee, Gödel, and Turing. New York: Wiley, 2006.
Antoniou, Grigoris, and Frank van Harmelen. A Semantic Web

Primer. Cambridge, Mass.: MIT Press, 2004.
Davies, John, Rudi Studer, and Paul Warren. Semantic Web Tech-

nologies: Trends and Research in Ontology-Based Systems.
Hoboken, N.J.: Wiley, 2006.

Swartz, Aaron. “The Semantic Web in Breadth.” Available online.
URL: http://logicerror.com/semanticWeb-long. Accessed Novem
ber 13, 2007.

Swoogle [semantic Web search engine]. Available online. URL:
http://swoogle.umbc.edu/index.php. Accessed November 3,
2007.

senior citizens and computing
A growing number of people 50 and older have been
learning how to use computer technology and especially
applications such as e-mail and Web browsing. However,
a substantial number of seniors have expressed reluc-
tance to join the digital world—as of January 2006, the
Pew Internet & American Life Project found that only 34
percent of persons 65 and over were online. Some reasons
why seniors have avoided the technology include the fol-
lowing:

• � the belief that it would be too hard to learn to use it

• � uncertainty about what can be done online and
whether it is worth the effort

• � fear of well-publicized dangers such as viruses and
identity theft

• � the expense of a personal computer and Internet
access

Fortunately a number of these factors are gradually
being ameliorated. There are numerous books and courses
(such as at adult education or senior centers) that introduce
the essentials of computing to seniors. Properly installed
security and filtering software, together with some user
education, can minimize the chances of being victimized
online. Finally, Internet-capable PCs are now available for
around $300 or less, though the cost of broadband access
has not fallen as rapidly as that of hardware.

424        semantic Web

Seniors and the Internet
According to research by the Pew Internet & American
Life Project, for seniors who do go online, e-mail is the
most popular activity (and something shared with other
age groups). While teens are most prolific at adopting new
technologies such as instant messaging, content sharing,
and social networking, older users are less likely to adopt
emerging services, but more likely to bank or make travel
reservations online—perhaps reflecting their having more
money for leisure travel. Older people also tend to be more
avid in pursuing health information. On the other hand,
buying things online seems to be equally popular with all
age groups.

Computer technology can also assist seniors with the
activities of daily life. At the Quality of Life Technologies
Center, researchers from Pitt and Carnegie Mellon Univer-
sities are developing technologies including:

• � robotic wheelchairs with arms that can manipulate
objects and even assist in cooking meals

• � systems to help people get out of bed, dress, bathe,
and so on

• � pervasive sensor networks that can monitor persons
as they move around

• � monitoring systems that can detect growing confu-
sion or cognitive impairment and call for help

• � systems to supervise daily activities and make sure
medications are taken on time

• � “coaching” software that can help maintain memory
and cognitive skills, even in persons with Alzheimer’s
disease

(See disabled persons and computing.)

Further Reading
“Abby & Me.” Available online. URL: http://www.abbyandme.com.

Accessed November 14, 2007.
Fox, Susannah, and Mary Madden. “Are ‘Wired Seniors’ Sitting

Ducks?” Pew Internet & American Life Project, April 2006.
Available online. URL: http://www.pewinternet.org/pdfs/
PIP_Wired_Senior_2006_Memo.pdf. Accessed November 14,
2007.

———. “Generations Online.” Pew Internet & American Life
Project, December 2005. Available online. URL: http://www.
pewinternet.org/pdfs/PIP_Generations_Memo.pdf. Accessed
November 13, 2007.

Rolstein, Gary. “Robotic Aids for the Disabled and Elderly.” Pitts-
burgh Post-Gazette, November 14, 2007. Available online.
URL: http://www.post-gazette.com/pg/07318/833537-114.stm.
Accessed November 14, 2007.

Stokes, Abby. It’s Never Too Late to Love a Computer: Everything You
Need to Know to Plug In, Boot Up and Get Online. Revised ed.
New York: Workman Publishing, 2005.

Stuur, Addo. Internet and E-mail for Seniors with Windows Vista.
Visual Steps Publishing, 2006.

serial port
There are basically two ways to move data from a computer
to or from a peripheral device such as a printer or modem.

A byte (8 bits) of data can be moved all at once, with each
bit traveling along its own wire (see parallel port). Alter-
natively, a single wire can be used to carry the data one bit
at a time. Such a connection is called a serial port.

The serial port receives data a full byte at a time from
the computer bus and uses a UART (Universal Asynchro-
nous Receiver-Transmitter) to extract the bits one at a time
and send them through the port. A corresponding circuit
at the other end accumulates the incoming bits and reas-
sembles them into data bytes.

The data bits for each byte are preceded by a start-bit to
signal the beginning of the data and terminated by an stop-
bit. Depending on the application, an additional bit may be
used for parity (see error correction). Devices connected
by a serial port must “negotiate” by requesting a particular
connection speed and parity setting. Failure to agree results
in gibberish being received.

The official standard for serial transmission is called RS-
232C. It defines various additional pins to which wires are
connected, such as for synchronization (specifying when
the device is ready to send or receive data) and ground.
Physically, the old-style connectors are called DB-25
because they contain 25 pins (many of which are not used).
Most newer PCs have DB-9 (i.e. nine pin) connectors. A
“gender changer” can be used in cases where two devices
both have male connectors (with pins) or female connectors
(with corresponding sockets).

Because they use a single data transmission line and
include error-correction, serial cables can be longer than
parallel cables (25 feet or more, as opposed to 10–12 feet).
Serial transmission is generally slower (at up to 115,200
bits/second) than parallel transmission. Serial connec-
tions have generally been used for such devices as modems
(whose speed is already limited by phone line characteris-
tics), keyboards, mice, and some older printers. Today the
faster and more flexible USB (see universal series bus)
is replacing serial connections for many devices including
even keyboards.

Further Reading
Peacock, Craig. “Interfacing the Serial / RS232 Port.” Available

online. URL: http://www.beyondlogic.org/serial/serial.htm.
Accessed August 21, 2007.

Tyson, Jeff. “How Serial Ports Work.” Available online. URL: http://
computer.howstuffworks.com/serial-port.htm. Accessed August
21, 2007.

service-oriented architecture  (SOA)
The traditional model for organizing information process-
ing, particularly in large installations, is in terms of install-
ing and maintaining large applications that each provide
many functions, and then devising ways for the applications
to exchange data and otherwise coordinate with each other.
As the information environment has become more com-
plex (particularly with regard to databases and Web-related
services), this approach has become more cumbersome, less
flexible, and harder to maintain.

service-oriented architecture        425

Service-oriented architecture is a new approach that
focuses on services (basic functions, such as displaying
and processing forms or formatting data) and provides
standardized ways for them to be accessed by programs.
Applications in turn are then built up by “plugging in” the
required services and organizing them to meet the required
logic and sequence of processing.

In order to be accessed, each service provides “meta-
data” (usually in XML files) that describes what data is
used by a service and what it provides. The description
itself can be provided using Web Services Description Lan-
guage (WSDL), including network addresses (ports) for
connecting to the service, the operations supported, and
the abstract format of the expected data. (For more on the
message protocol, see soap.)

There are three basic roles that must be filled in design-
ing an SOA system: The service provider creates a service
(often a Web service) and “exposes” aspects of the service
and controls access to it (through security policies). The
service broker provides a registry of available services and
tells requesters how to connect to them. (For more on bro-
kers, see corba.) Finally, the requestor in an application
finds and requests services as needed.

In general SOA can be seen as part of the trend toward
decentralized, loosely coupled computing (see distributed
computing). Because all services communicate through
the network, it is easy to reallocate or scale up services as
needed. It is also easier to upgrade software and reuse it for
new applications. (For more on combining services pro-
vided by applications, see mashups.) However, SOA brings
challenges of its own in terms of making services truly
interoperable and conforming to standards that are still
evolving.

Further Reading
Erl, Thomas. SOA Principle of Service Design. Boston: Pearson Edu-

cation/Prentice Hall, 2007.
Hurwitz, Judith, et al. Service Oriented Architecture for Dummies.

Hoboken, N.J.: Wiley, 2007.
Josuttis, Nicolai M. SOA in Practice: The Art of Distributed System

Design. Sebastapol, Calif.: O’Reilly, 2007.
QAT SOA Resource Center. Available online. URL: http://www.

soaresourcecenter.com/. Accessed November 14, 2007.
Service-Oriented Architecture (SOA). TechRepublic. Available

online. URL: http://search.techrepublic.com.com/search/
Service-Oriented+Architecture+(SOA).html. Accessed Novem-
ber 14, 2007.

Weerawarana, Sanjiva, et al. Web Services Platform Architecture.
Upper Saddle River, N.J.: Prentice Hall PTR, 2005.

Shannon, Claude E.
(1916–2001)
American
Mathematician, Computer Scientist

The information age would not have been possible with-
out a fundamental understanding of how information could
be encoded and transmitted electronically. Claude Elwood
Shannon developed the theoretical underpinnings for mod-
ern information and communications technology and then

went on to make important contributions to the young dis-
cipline of artificial intelligence (AI).

Shannon was born in Gaylord, Michigan, on April 30,
1916. He received bachelor’s degrees in both mathematics
and electrical engineering at the University of Michigan in
1936. He went on to MIT, where he earned a master’s degree
in electrical engineering and a Ph.D. in mathematics, both
in 1940. Shannon’s background thus well equipped him
to relate mathematical concepts to practical engineering
issues.

While a graduate student at MIT, Shannon was in
charge of programming an elaborate analog computer
called the Differential Analyzer that had been built by
Vannevar Bush (see analog computer and Bush, Van-
nevar). Actually “programming” is not quite the right
word: To solve a differential equation with the Differential
Analyzer, it had to be translated into a variety of physical
settings and arrangements of the machine’s intricate elec-
tromechanical parts.

The Differential Analyzer was driven by electrical relay
and switching circuits. Shannon became interested in the
underlying mathematics of these control circuits. He real-
ized that their fundamental operations corresponded to the
Boolean algebra he had studied in undergraduate mathemat-
ics classes (see Boolean operators). It turned out that the
seemingly abstract Boolean AND, OR and NOT operations
had a practical engineering use. Shannon used the results
of his research in his 1938 M.S. thesis, titled “A Symbolic
Analysis of Relay and Switching Circuits.” This work was
honored with the Alfred Nobel prize of the combined engi-
neering societies (this is not the same as the more famous
Nobel Prize).

Claude Shannon developed the fundamental theory underlying
modern data communications, as well as making contributions to
the development of artificial intelligence.  (Lucent Technolo-
gies Bell Labs)

426        Shannon, Claude E.

Along with the work of Alan Turing and John von Neu-
mann (see Turing, Alan and von Neumann John), Shan-
non’s logical analysis of switching circuits would become
essential to the inventors who would build the first digital
computers in just a few years. (Demonstrating the breadth of
his interests, Shannon’s Ph.D. thesis would be in an entirely
different application—the algebraic analysis of problems in
genetics.)

In 1941, Shannon joined Bell Laboratories, perhaps
America’s foremost industrial research organization. The
world’s largest phone company had become increasingly
concerned with how to “scale up” the burgeoning tele-
phone system and still ensure reliability. The coming of war
also highlighted the importance of cryptography—secur-
ing one’s own transmissions while finding ways to break
opponents’ codes. Shannon’s existing interests in both data
transmission and cryptography neatly dovetailed with these
needs.

Shannon’s paper titled “A Mathematical Theory of Cryp-
tography” would be published after the war. But Shannon’s
most lasting contribution would be to the fundamental the-
ory of communication. His formulation would explain what
happens when information is transmitted from a sender to
a receiver—in particular, how the reliability of such trans-
mission could be analyzed (see information theory).

Shannon’s 1948 paper, “A Mathematical Theory of
Communication” was published in The Bell System Tech-
nical Journal. Shannon identified the fundamental unit of
information (the binary digit, or “bit” that would become
familiar to computer users). He showed how to measure the
redundancy (duplication) within a stream of data in rela-
tion to the transmitting channel’s capacity, or bandwidth.
Finally, he showed methods that could be used to automati-
cally find and fix errors in the transmission. In essence,
Shannon founded modern information theory, which would
become vital for technologies as diverse as computer net-
works, broadcasting, data compression, and data storage on
media such as disks and CDs.

One of the unique strengths of Bell Labs is that it did
not limit its researchers to topics that were directly related
to telephone systems or even data transmission in general.
Like Alan Turing, Shannon became interested after the war
in the question of whether computers could be taught to
perform tasks that are believed to require true intelligence
(see artificial intelligence). He developed algorithms
to enable a computer to play chess and published an article
on computer chess in Scientific American in 1950. He also
became interested in other aspects of machine learning, and
in 1952 he demonstrated a mechanical “mouse” that could
solve mazes with the aid of a circuit of electrical relays.

The mid-1950s would prove to be a very fertile intel-
lectual period for AI research. In 1956, Shannon and AI
pioneer John McCarthy (see McCarthy, John) put out a
collection of papers titled “Automata Studies.” The volume
included contributions by two other seminal thinkers, John
von Neumann and Marvin Minsky (see Minsky, Marvin).

Although he continued to do research, by the late 1950s
Shannon had changed his emphasis to teaching. As Don-
ner Professor of Science at MIT (1958–1978) his lectures

inspired a new generation of AI researchers. During the
same period Shannon also explored the social impact of
automation and computer technology as a Fellow at the
Center for the Study of Behavioral Sciences in Palo Alto,
California.

Shannon received numerous prestigious awards, includ-
ing the IEEE Medal of Honor and the National Medal of
Technology (both in 1966). Shannon died on February 26,
2001, in Murray Hill, New Jersey.

Further Reading
Shannon, Claude Elwood. “A Chess-Playing Machine.” Scientific

American, February 1950, 48–51.
———. Collected Papers. Ed. N. J. A. Sloane and Aaron D. Wyner.

New York: IEEE Press, 1993.
———. “A Mathematical Theory of Communication.” Bell System

Technical Journal 27; July and October, 1948, 379–423, 623–
656. Available online. URL: http://plan9.bell-labs.com/cm/
ms/what/shannonday/shannon1948.pdf. Accessed August 21,
2007.

Waldrop, M. Mitchell. “Claude Shannon: Reluctant Father of the
Digital Age.” Technology Review, July/Aug. 2001. Available on
line. URL: http://www.technologyreview.com/Infotech/12505/.
Accessed August 21, 2007.

shareware and freeware
The early users of personal computers generally had con-
siderable technical skill and a desire to write their own
programs. This was partly by necessity: If one wanted to
get an Apple, Atari, Commodore, or Radio Shack machine
to perform some particular task, chances were one would
have to write the software oneself. Commercial software
was scarce and relatively expensive. However, given enough
time, it was possible for hobbyists to write programs using
the machine’s built-in BASIC language or (with more effort)
assembly language.

Programs such as utilities and games were often freely
shared at gatherings of PC enthusiasts (see user groups).
Many talented amateur programmers considered trying to
turn their avocation into a business. However, a utility to
provide better file listings or a colorful graphics program
that creates kaleidoscopic images was unlikely to interest
the commercial software companies who developed large
programs in-house for marketing primarily to business.

In 1982, Andrew Fuegelman created a program called
PC-Talk. This program provided a better way for users with
modems to connect to the many bulletin board systems
that were starting to spring up. Fluegelman was familiar
with the common practice of public radio and TV broad-
casters of soliciting pledge payments to help support their
“free” service. He decided to do something similar with his
program. He distributed it to many bulletin boards, where
users could download it for free. However, he asked users
who liked the program and wanted to continue to use it to
pay him $25.

Fluegelman dubbed his method of software distribution
“freeware” (because it cost nothing to try out the program).
Other programmers began to use the same method with
their own software. This included Jim Knopf, author of the
PC-File database program, and Bob Wallace, who offered

shareware and freeware        427

PC-Write as a full-featured alternative to expensive com-
mercial word processing program. Because Fluegelman had
trademarked the term freeware, these other authors began
to call their offerings shareware.

Today freeware means software that can be downloaded
at no cost and for which there is no charge for continued
use. The program may be redistributed by users as long as
they don’t charge for it.

Shareware, on the other hand, follows Fluegelman’s
original concept. The software can be downloaded for free.
The user is allowed to try the program for a limited period
(either a length of time such as 30 days, or a maximum
number of times that the program can be run). After the
trial period, the user is expected to pay the author the
specified fee of continued use. (Today this is usually done
through the author’s Web site or a service that can accept
secure credit card payments online.) Once the user pays,
he or she receives either an unrestricted version of the soft-
ware or frequently, an alphanumeric key that can be typed
into the program to remove all restrictions. At this point
the program is said to be “registered.”

Users can be encouraged (or forced) to pay in various
ways. Some programs keep working after the trial period,
but display continual “nag” messages or remove some func-
tionality, such as the ability to print or save one’s work.
(“Demos” of commercial games or other programs also have
limited functionality, but cannot be registered or upgraded.
They are there simply to entice consumers to buy the com-
mercial product.)

Alternatively, some shareware authors prefer to entice
their users to register by offering bonuses, such as addi-
tional features, free upgrades, or additional technical sup-
port. Sometimes (as with the RealPlayer streaming sound
and video player and the Eudora e-mail program) a useful
but limited “lite” version is offered as freeware, but users
are encouraged to upgrade to a more full-featured “profes-
sional” version.

Shareware has been a moderately successful business
for a number of program authors. For example, Phil Katz’s
PKZip file compression and packaging program is so useful
that it has found its way onto millions of PCs, and enough
users paid for the program to keep Katz in business. (PKZip
and its cousin WinZip are examples of shareware programs
that became so popular that they spawned commercially
packaged versions.)

Shareware and freeware should be distinguished from
public domain and open source software (see open-source
movement). Public domain software is not only free (as
with freeware), but the author has given up all rights includ-
ing copyright, and users are free to alter the program’s code
or to use it as part of a new program. Open-source software,
on the other hand, allows users free access to the software
and its source code, but with certain restrictions—notably,
that it not be used in some other product for which access
will be restricted.

Today tens of thousands of shareware and freeware pro-
grams are available on the Internet via ftp archives, author’s
Web sites, and giant online libraries maintained by zdnet.
com, cnet.com, tucows.com, and others.

Further Reading
Association of Shareware Professionals. Available online. URL:

http://www.asp-shareware.org. Accessed August 21, 2007.
Ellis, Robert. Handpicked Software for Mac OS X: The Best New

Freeware, Shareware, and Commercial Software for Mac OS X.
Petaluma, Calif.: Futurosity, 2002.

Hasted, Edward. Software That Sells: A Practical Guide to Developing
and Marketing Your Software Project. Indianapolis: Wiley, 2005.

Lehnert, Wendy G. The Web Wizard’s Guide to Freeware and Share-
ware. Boston: Addison-Wesley, 2002.

Shareware.com. Available online. URL: http://www.shareware.
com. Accessed August 21, 2007.

Tucows.com. Available online. URL: http://www.tucows.com.
Accessed August 21, 2007.

shell
During the 1950s, using a computer generally meant that
operators submitted batch-processing command cards (see
job control language) that controlled how each pro-
gram would use the computer’s resources. One program
ran at a time, and interaction with the user was minimal.
However, when time-sharing computers began to appear
in the 1960s, users gained the ability to control the com-
puter interactively from terminals. The operating system
therefore needed to have a facility that would interpret and
execute the commands being typed in by the users, such as
a request to list the files in a directory or to send a file to the
printer. This command interpreter is called a shell.

To see a simple shell in action, a Windows user need
only bring up a command prompt, type the word dir, and
press Enter. A shell called command.com provides the user
interface for users of IBM PC-compatible systems running
MS-DOS. The command processor displays a prompt on
the screen. It then interprets (see parsing) the user’s com-
mands. If the command involves one of the shell’s internal
operations (such as “dir” to list a file directory), it simply
executes that routine. For example the command:

dir temp /p

would be interpreted as a call to execute the dir function,
passing it the name “temp” (a directory) and the /p, which dir
interprets as a “switch” or instruction telling it to pause the
directory listing after each screenful of text. If the command
is an external MS-DOS utility such as “xcopy” (a file copying
program), the shell runs that program, passing it the infor-
mation (mainly file names) from the command line. Finally,
the shell can run any other executable program on the sys-
tem. It is then that program’s responsibility to interpret and
act upon any additional information that was provided.

MS-DOS also has the ability for the command.com shell to
read a series of commands stored in a text file called a batch
file, and having the *.bat (batch) extension. This allowed for
rudimentary scripting of system housekeeping operations or
other routine tasks (see scripting languages).

UNIX Shells
MS-DOS largely faded away in the 1990s as more users
switched to Microsoft Windows and begun to use a graphi-
cal user interface to control their machines. However, shells

428        shell

have achieved their greatest proliferation and elaboration
with UNIX, the operating system developed by Ken Thomp-
son and Dennis Ritchie starting in 1969 and widely used for
academic, scientific, engineering, and Web applications.

UNIX shells serve the same basic purposes as the MS-
DOS shell: interactive control of the operating system and
the ability to run stored command scripts. However, the
UNIX shells have considerably more complex syntax and
capabilities.

Part of the design philosophy of the UNIX system was
to place the core operating system functions in the kernel
(see Kernel and UNIX). This modular design meant that
UNIX, unlike most other operating systems, did not have to
commit itself to a particular form of user interface or com-
mand processor. Accordingly, a number of such processors
(shells) have been developed, reflecting the programming
style preferences of their originators.

The first shell to be developed was the Bourne Shell,
named for its creator, Steven R. Bourne, who developed it
at Bell Labs, the original home of UNIX. The Bourne shell
implemented some basic ideas that are characteristic of
UNIX: the ability to redirect input and output to and from
files, devices or other sources (using the < and > characters),
and the ability to use “pipes” (the | character) to connect
the output of one command to the input of another.

The next major development was the C shell (csh). The
Bourne shell used a relatively simple and clean syntax
devised by its creator. As the name suggests, the C shell
(developed at the University of California, Berkeley) takes
its syntax from the C programming language, which was
by far the most commonly used language on UNIX systems.
One logical reason for this choice was that C programmers
could quickly learn to write scripts with the C shell. The
C shell also added support for job control (that is, moving
processes between foreground and background operation)
and in general was easier to use for interactively controlling
programs from the command line.

UNIX users sometimes used both shells, since the sim-
pler and more consistent syntax of the Bourne shell is gen-
erally thought to be better for writing scripts. (The two
shells also reflected the split in the UNIX world between
the version of the operating system provided by AT&T and
the variant developed at UC Berkeley.)

David Korn at AT&T then decided to combine the best
features of both shells. His Korn shell (Ksh) kept the better
scripting language features from the Bourne shell but added
job-control and other features from the C shell. He also
added the programming language concept of functions (see
procedures and functions), allowing for cleaner organi-
zation of code.

Another popular shell, BASH (Bourne Again Shell) was
developed by the Free Software Foundation for GNU, an
open-source version of UNIX. BASH and Ksh share most
features and both are compatible with POSIX, a standard
specification for connecting programs to the UNIX operat-
ing system.

The surge of interest in open-source UNIX in recent
years (see Linux) has brought a new generation of shell
users. Although modern Linux distributions provide a full

graphical user interface (GUI)—indeed, a choice of them—
such tasks as software installation and configuration often
involve entering shell commands. Experienced users can
also find, copy, move, or otherwise manipulate batches of
files more efficiently in the shell than in using windows and
mouse movements.

Shell Scripts
Regardless of the version of the shell used, shell scripts
work in the same basic way. A shell script is a text file
containing commands to the shell. The commands can use
control statements (see branching statements and loop)
and invoke both the shell’s internal features and the many
hundreds of utility programs that are available on UNIX
systems (see scripting languages).

Once the script is written, there are two ways to execute
it. One way is to type the name of the shell at the command
prompt, followed by the name of the script file, as in:

$ sh MyScript

Alternatively, the chmod (change mode) command can be
used to mark the script’s file type as executable, and the first
line of the script then contains a statement that invokes the
shell, which will parse the rest of the script. The script can
now be executed simply by typing its name at the command
prompt (or it can be included as a command in another
script).

Here is a simple example of a shell script that prints out
various items of information about the user and the current
session on a UNIX system:

#! /sbin/sh

echo My username: `whoami`
echo My current directory: `pwd`
echo
echo My disk usage:
du -k
echo
echo System status:
uptime
if test -f log.txt; then

cat log.txt
else echo Log file not found
fi

The first line tells UNIX which shell to use to inter-
pret the script (in this case the Bourne shell, sh, will be
executed). The echo command simply outputs the text that
follows it to the screen. “whoami” is a UNIX command that
prints the user’s name. The script takes advantage of an
interesting UNIX feature: The whoami command is put in
“backquotes” (`)̀. This inserts the output of the whoami
command (the user name) in place of that command, and
the resulting text is output by the echo command.

The du command gives the user’s disk usage, while the
uptime command gives some statistics about how many
users are on the system and how long the system has been
running. Finally, the if statement at the end of the script

shell        429

tests for the presence of the file log.txt. If the file exists, its
contents are displayed by the “cat” command.

When “myinfo” is typed at the UNIX prompt, the output
might look like the following:

$ myinfo
My username: hrh
My current directory: /home/h/r/hrh

My disk usage:
132 ./.nn
4 ./Mail
48 ./.elm
296 .

System status:
7:34pm up 56 day(s), 20:39, 73 users, load
average: 3.62, 3.45, 3.49

This is a test file.

Further Reading
Gite, Vivek G. “Linux Shell Scripting Tutorial.” Available online.

URL: http://www.freeos.com/guides/lsst/. Accessed August
21, 2007.

Kochan, Stephen, and Patrick Wood. Unix Shell Programming. 3rd
ed. Indianapolis: Sams, 2003.

Newham, Cameron. Learning the Bash Shell. 3rd ed. Sebastapol,
Calif.: O’Reilly Media, 2005.

Quigley, Ellie. UNIX Shells by Example. 4th ed. Upper Saddle River,
N.J.: Prentice Hall, 2004.

Robbins, Arnold, and Bill Rosenblatt. Learning the Korn Shell. 2nd
ed. Sebastapol, Calif.: O’Reilly Media, 2002.

Sobell, Mark G. A Practical Guide to Linux Commands, Editors, and
Shell Programming. Upper Saddle River, N.J.: Prentice Hall,
2005.

Simonyi, Charles
(1948– )
Hungarian-American
Software Engineer, Entrepreneur

Born in Budapest, Hungary, on September 10, 1948, Charles
Simonyi shaped the architecture of Microsoft’s dominant
software applications for many years, devised a new pro-
gramming paradigm and established a company to promote
it, and, along the way, became the fifth civilian “space tour-
ist” to visit the International Space Station.

Simonyi’s father was a professor of electrical engineer-
ing. In high school, Simonyi worked as a night watchman
at a computer laboratory. When he expressed his interest,
one of the engineers taught him how to program; he soon
wrote a compiler and sold it to a government department.
After working for a Danish company for a couple of years,
Simonyi moved to the United States in 1968, attending the
University of California, Berkeley, and earning a B.S. in
engineering mathematics in 1972. Moving to Stanford Uni-
versity for graduate study, Simonyi was also hired by Xerox
PARC, where he shared ideas with innovators in computer
interfaces and networking. Simonyi received his Ph.D. in

computer science from Stanford in 1977. In his disserta-
tion Simonyi showed his early interest in “metaprogram-
ming”—the development of ways to coordinate programs
and provide them with a higher-level context.

In 1981 Simonyi applied directly to Bill Gates for a job
(see Gates, Bill and Microsoft Corporation). At Micro-
soft Simonyi took charge of the development of the prod-
ucts that would dominate the office software market by
the end of the 1980s, including Word and Excel. Simonyi
also brought to Microsoft new program structure ideas that
he had seen at Xerox PARC—see object-oriented pro-
gramming. At this time Simonyi also developed a standard
system for naming variables that soon became known as
Hungarian notation in honor of his ancestry.

The tremendous success of Simonyi as a software devel-
oper (and Microsoft’s gargantuan revenue) made Simonyi
independently wealthy. However, in 2002 he decided to
strike out on his own, founding a company called Inten-
tional Software with his business partner Gregor Kicza-
les. The company develops and promotes an approach to
software design called intentional programming. (Simonyi
had developed forerunners of this concept at Microsoft, but
apparently the latter company lost interest in it, perhaps
prompting Simonyi’s departure.)

To develop an application, software engineers using
intentional programming begin by building a “toolbox” of
specific functions needed for the area in which the pro-
gram is intended to operate (such as insurance or banking).
Domain experts—people who have “real world” knowledge
of that area—use a special editor to create a description of
how the application must operate; thus the program is in a
sense designed not by the programmers, but by the people
who will guide its use. The program development system
then connects the tools to the description to generate the
final code, which can then be refined. An important feature
of this process is that the specific intentions about what the
program needs to do are preserved along with the code,
with the result largely self-documenting. It is argued that
this makes subsequent testing and modification of the soft-
ware much faster and easier. The first commercial version
of this development system is expected in 2008.

Space Tourist and Philanthropist
In April 2007 Simonyi, an experienced pilot, fulfilled a life-
long interest in space by riding a Russian Soyuz spacecraft
to the International Space Station; the 10-day “vacation” cost
him about $20 million. Simonyi chronicled his preparations
and the trip itself via his “Nerd in Space” Web site. (Simo-
nyi also sails in his sleek luxury yacht Skat.)

As a philanthropist, Simonyi established a professorship
for the Public Understanding of Science at Oxford Univer-
sity, as well one for Innovation in Teaching at Stanford. He
has given tens of millions of dollars to various programs
in the arts and sciences. As of 2007 Simonyi was dating
domestic arts entrepreneur and author Martha Stewart.

While it remains uncertain how successful and influ-
ential intentional programming will become, Simonyi has
been hailed by Bill Gates as “one of the great programmers
of all time.”

430        Simonyi, Charles

Further Reading
Charles in Space. Available online. URL: http://www.charlesinspace.

com/. Accessed November 14, 2007.
Greene, Stephen G. “Entrepreneur Seeks to Promote Excellence

through Philanthropy.” Chronicle of Philanthropy 16 (Febru-
ary 19, 2004): 20.

Intentional Software. Available online. URL: http://www.intent
soft.com/. Accessed November 14, 2007.

Rosenberg, Scott. “Anything You Can Do, I Can Do Meta: Space
Tourist and Billionaire Programmer Charles Simonyi
Designed Microsoft Office. Now He Wants to Reprogram
Software.” Technology Review, January 2007. Available online.
URL: http://www.technologyreview.com/Infotech/18047/?a=f.
Accessed November 14, 2007.

Simula
One of the most interesting applications of computers is
the simulation of systems in which many separate actions
or events are happening simultaneously (see simulation).
During the 1950s, Norwegian computer scientist Kristen
Nygaard began to develop a more formal way of describing
and designing simulations. A typical simulation consists
of a number of “objects,” such as cars in a traffic flow or
customers waiting in a bank line. In a bank simulation,
for example, the objects (customers) would demand ser-
vice from particular serving objects (teller windows). They
would move in a queue and their motion would be captured
at various points of time.

Nygaard used his ideas to create symbols and flow dia-
grams to represent the events going on in a simulation.
However, existing computer languages such as Algol 60
were designed to carry out procedures sequentially and one
at a time, not simultaneously. This made it difficult to write
a program representing a situation in which many cars or
customers were moving simultaneously.

In the early 1960s, Nygaard was joined by Ole-Johan
Dahl, who had more experience with systems programming
and computer language design. They worked together to
create a new language that they called Simula, reflecting
their emphasis on simulation programming. In designing
Simula, the authors sought to create a data structure that
was better suited to simultaneous actions or events. For
example, in a simulation of automobile traffic, each car
would be an “object” with data such as its location and
speed as well as actions or capabilities such as changing
speed or direction. The data for each object must be main-
tained separately and updated frequently.

The Algol 60 language already had a way to define code
“blocks” (see procedures and functions) that could con-
tain their own local data as well as actions to be performed.
Further, such blocks could be called repeatedly such that
many copies could be “open” at the same time. However,
these calls were still essentially sequential, not simultane-
ous. In their new Simula 1 language (introduced in 1965),
Dahl and Nygaard created a way to simulate simultaneous
processing. Even though the computer would (probably)
only have a single processor such that only one copy of
a block of code could be executing at a given time, Sim-
ula set up special variables for keeping track of simulated

time. Control would “jump” from one instance of a block to
another such that all blocks would, for example, have their
actions for the time 20:15 executed, then actions for 20:16
would be executed, and so on. A list kept track of processes
in time order. Thus, Simula 1 kept all the features of Algol
but made it more suitable for modeling simultaneous events
(see multiprocessing).

Simula 1 was quite successful as a simulation language,
but the authors soon realized that the ability to use separate
invocations of a procedure to create individual “objects”
had a more general application to representing data in
applications other than simulations. In creating Simula 67
(the version of the language still used today), they therefore
introduced the formal concept of the class as a specifica-
tion that could be used to create objects of that type. They
also introduced the key idea of inheritance (where one class
can be derived from an earlier class), as well as a way that a
derived class could redefine a procedure that it had inher-
ited from the original (base) class (see object-oriented
programming and class).

Although Simula 67 would continue to be used primar-
ily for simulations rather than as a general-purpose pro-
gramming language, its object-oriented ideas would prove
to be very influential. The designers of Smalltalk and Ada
would look to Simula for structural ideas, and the popu-
lar C++ language began with an effort to create a “C with
classes” language along the lines of Simula. (See Small-
talk, Ada, and C++.)

Further Reading
Holmevik, Jan-Rune. “Compiling Simula: a Study in the History of

Computing and the Construction of the SIMULA Programming
Languages.” STS Report (Trondheim). Available online. URL:
http://staff.um.edu.mt/jskl1/simula.html. Accessed August 21,
2007.

Nygaard, K., and O.-J. Dahl. “The Development of the Simula Lan-
guages” in The History of Programming Languages, R. L. Wex-
elblat, ed. New York: Academic Press, 1981.

Pooley, R. Introduction to Programming with Simula. Oxfordshire,
U.K.: Alfred Waller, 1987.

Sebesta, Robert W. Concepts of Programming Languages. 7th ed.
Boston: Addison-Wesley, 2006.

Sklenar, J. “Introduction to OOP in Simula.” Available online.
URL: http://staff.um.edu.mt/jskl1/talk.html. Accessed August
21, 2007.

simulation
A simulation is a simplified (but adequate) model that rep-
resents how a system works. The system can be an existing,
real-world one, such as a stock market or a human heart,
or a proposed design for a system, such as a new factory or
even a space colony.

If a system is simple enough (a cannonball falling from
a height, for example), it is possible to use formulas such
as those provided by Newton to get an exact answer. How-
ever, many real-world systems involve many discrete enti-
ties with complex interactions that cannot be captured with
a single equation. During the 1940s, scientists encountered
just this problem in attempting to understand what would
happen under various conditions in a nuclear reaction.

simulation        431

Together with physicist Enrico Fermi, two mathemati-
cians, John von Neumann (see von Neumann, John) and
Stanislaw Ulam, devised a new way to simulate complex
systems. Instead of trying fruitlessly to come up with some
huge formula to “solve” the whole system, they applied
probability formulas to each of a number of particles—
in effect, “rolling the dice” for each one and then observ-
ing their resulting distribution and behavior. Because of
its analogy to gambling, this became known as the Monte
Carlo method. It turned out to be widely useful not only
for simulating nuclear reactions and particle physics but for
many other activities (such as bombing raids or the spread
of disease) where many separate things behave according to
probabilities.

A number of other models and techniques have made
important contributions to simulation. For example, the
attempt to simulate the operation of neurons in the brain
has led to a powerful technique for performing tasks such
as pattern recognition (see neural network). The applica-
tion of simple rules to many individual objects can result in
beautiful and dynamic patterns (see cellular automata),
as well as ways to model behavior (see artificial life).
Here, instead of a system being simplified into a simulation,
a simulation can be created in order to see what sort of sys-
tems might emerge.

Software Implementation
Because of the number of calculations (repeated for a single
object and/or applied to many objects) required for an accu-
rate simulation, it is obviously useful for the simulation
designer to have as much computer power as possible. Simi-
larly, having many processors or a network of separate com-
puters not only increases the available computing power,
but may make it more natural to represent different objects
or parts of a system by assigning each to its own processor.
(This naturalness goes the other way, too: Simulation tech-
niques can be very important in modeling or predicting the
performance of computer networks including the Internet.)

However, it is also important to have programming lan-
guages and techniques that are suited for representing the
simultaneous changes to objects (see also multiprocess-
ing). Using object-oriented languages such as Simula or
Smalltalk makes it easier to package and manage the data
and operations for each object (see object-oriented pro-
gramming, Simula, and Smalltalk).

Applications
Simulations and simulation techniques are used for a tre-
mendous range of applications today. Besides helping with
the understanding of natural systems in physics, chemis-
try, biology, or engineering, simulation techniques are also
applied to human behavior. For example, the behavior of
consumers or traders in a stock market can be explored
with a simulation based on game theory concepts. Artifi-
cial intelligence techniques (such as expert systems) can
be used to give the individual “actors” in a simulation more
realistic behavior.

Simulations are often used in training. A modern flight
simulator, for example, not only simulates the aerodynam-

ics of a plane and its response to the environment and
to control inputs, but detailed graphics (and simulated
physical motion) can make such training simulations feel
very realistic, if not quite to Star Trek holodeck standards.
Whether for flight, military exercises, or stock trading, sim-
ulations can provide a much wider range of experiences in
a relatively short time than would be feasible (or safe) using
the real-world activity. Simulations can also play an impor-
tant part in testing software or systems or in predicating
the results of business decisions or strategies.

Simulations are also frequently sold as entertainment.
Many commercial strategy and role-playing games as well
as vehicle simulators contain surprisingly complex simula-
tions that make the games both absorbing and challenging
(see computer games and online games). Such games can
also have considerable educational value.

Further Reading
Gilbert, Nigel, and Klaus G. Troitzsch. Simulation for the Social

Scientist. 2nd ed. Maidenhead, Berkshire, U.K.: Open Univer-
sity Press, 2005.

Laguna, Manuel, and Johan Marklund. Business Process Model-
ing, Simulation, and Design. Upper Saddle River, N.J.: Prentice
Hall, 2004.

Rizzoli, Andrea Emilio. “A Collection of Modelling and Simulation
Resources on the Internet.” Available online. URL: http://
www.idsia.ch/~andrea/simtools.html. Accessed August 21,
2007.

Ross, Sheldon M. Simulation. Burlington, Mass.: Elsevier Academic
Press, 2006.

Shelton, Brett E., and David A. Wiley, eds. The Design and Use of
Simulation Computer Games in Education. Rotterdam, Nether-
lands: Sense Publishers, 2007.

singularity, technological
The idea that an incomprehensible future is rushing down
on us goes back at least as far as Alan Toffler’s book Future
Shock (1970). Toffler suggested that fundamental changes
in society brought about by industrial and postindustrial
developments were creating psychological stress and dis-
orientation.

Future shock can be thought of as a steep line on a graph
that represents the complexity of technological society. But
what if the line were asymptotic, approaching the vertical
and then disappearing? This is what science fiction writer
Vernor Vinge described in the 1980s as the “technologi-
cal singularity.” In physics, a singularity is a place where
laws break down, such as at the center of a black hole. By
analogy, Vinge suggested that the development of artificial
intelligence and related technologies would reach a point
where intelligent machines would drive their own further
development, with their design and operation far outstrip-
ping human understanding. Once intelligent machines
create even more intelligent machines (and so on), more
technological progress might occur in a decade or two than
in the preceding thousands of years.

An obvious question is whether the singularity is in fact
coming, and if so, when. Inventor and futurist Ray Kurzweil
argues that history (including the accuracy of Moore’s law
of doubling computational power) shows that technological

432        singularity, technological

progress is indeed exponential. In his book The Singular-
ity Is Near, Kurzweil predicts that the threshold will be
reached in the 2040s, leading to “technological change so
rapid and profound it represents a rupture in the fabric of
human history.”

There are a number of contrary views. First, there are
those who argue that there are fundamental reasons why
computers will never achieve truly human-equivalent intel-
ligence, let alone surpass it (see, for example, Dreyfus,
Hubert). Others argue that the present rate of accelera-
tion will not necessarily continue, and that human-level AI
may still be achievable, but only in centuries rather than a
decades.

Responding to the Singularity
What happens if there is a singularity is the stuff of much
speculation and science fiction. “Super AI” might lead to
the development of technologies such as the ability to store
or transfer the contents of a human brain, making peo-
ple effectively immortal. On the other hand, superhuman
intelligences might be indifferent to, or worse, hostile to,
humanity. Super AI might also foster technologies such as
genetic engineering or nanotechnology that have promises
and dangers of their own.

There have been a number of responses to such dangers.
Some critics (see, for example, Joy, Bill) urge that a limit-
ing framework be put in place to prevent certain areas of
research from getting out of hand. Others, such as Eliezer
Yudkowsky of the Singularity Institute for Artificial Intelli-
gence, want to ensure that “seed” AIs (intelligences capable
of improving themselves) have safeguards and dispositions
that would make them place a high regard on human inter-
ests, rather like Isaac Asimov’s “three laws of robotics.”

Another suggested approach is to use the growing
knowledge of the detailed structure and function of the
human brain to enhance or augment cognitive function. For
example, a mathematician might think about a problem and
seamlessly retrieve data from both personal memory and the
World Wide Web, then carry out symbolic manipulations
and calculations at electronic speed, all via brain implants.

A “Soft Singularity?”
While the likelihood of computer software exceeding
human intelligence remains a subject for speculation and
controversy, existing phenomena (and trends) in software
design and computer-mediated communication (see social
networking) suggest that a new level of complexity and
sophistication is rapidly emerging. As information is being
increasingly coded for meaning (see semantic Web) and
programs are acting more autonomously (see artificial
life and software agent), one might say the Web is start-
ing to understand itself, if not yet becoming conscious in
the human sense. In turn, the augmentation of human
cognition is already well underway. Thus many potential
effects of the singularity are already significant issues.

Further Reading
Brin, David. “Singularities and Nightmares: Extremes of Opti-

mism and Pessimism about the Human Future.” Avail-

able online. URL: http://lifeboat.com/ex/singularities.and.
nightmares. Accessed November 15, 2007.

Kurzweil, Raymond. The Singularity Is Near: When Humans Tran-
scend Biology. New York: Viking, 2005.

KurzweilAI.net. Available online. URL: http://www.kurzweilai.
net. Accessed November 15, 2007.

Lifeboat Foundation. Available online. URL: http://lifeboat.com.
Accessed November 15, 2007.

Singularity Institute for Artificial Intelligence. Available online.
URL: http://www.singinst.org/. Accessed November 15, 2007.

Vinge, Vernor. “The Coming Technological Singularity: How
to Survive in the Post-Human Era.” Available online. URL:
http://www-rohan.sdsu.edu/faculty/vinge/misc/singularity.
html. Accessed November 15, 2007.

Smalltalk
Working during the 1970s at the Xerox Palo Alto Research
Laboratory (PARC), computer scientist Alan Kay created
many ideas and devices that have found their way into
today’s personal computers. While designing a proposed
notebook computer called the Dynabook, Kay decided to
take a new approach to creating its operating system. The
result would be a language (and system) called Smalltalk.

In developing Smalltalk, Kay built upon two important
ideas. The first was that people could master the power
of the computer most easily by being able to create, test,
and revise programs interactively rather than having to go
through the cumbersome process of traditional compila-
tion. Seymour Papert had already created Logo, an inter-
active, graphics-rich language that proved especially good
for teaching children surprisingly sophisticated computer
science concepts. The name Smalltalk reflects how the first
implementation of this language was also designed to be a
simple, child-friendly language.

The other key idea Kay used in Smalltalk was object-ori-
ented programming, which had first been developed in the
language Simula 67 (see Simula and object-oriented pro-
gramming). However, instead of simply adding classes and
objects to existing language features, Kay designed Small-
talk to be object-oriented from the ground up. Even the
data types (such as integer and character) that are used to
declare variables in traditional languages become objects in
Smalltalk. Users can define new classes that are treated just
like the “built-in” ones. There is no need to worry about
having to declare variables to be of a certain type before
they can be used; in Smalltalk variables can be associated
with any object.

To get a program to perform an action, a “message” is
sent to an object, which invokes one of the object’s defined
capabilities (methods). For a very simple example, consider
the BASIC assignment statement:

Total = Total + 1

In a traditional language like BASIC, this is conceptu-
alized as “add 1 to the value stored at the location labeled
Total and store the result back in that location.” In the
object-oriented Smalltalk language, however, the equivalent
statement would be:

Total <- Total + 1

Smalltalk        433

This means “send the message + 1 to the object that
is referenced by the variable called Total.” This message
references the + method, one of the methods that numeric
objects “understand.” The object therefore adds 1 to its
value, and returns that value as a new object, which in turn
is now referenced by the variable Total.

A “program” in Smalltalk is simply a collection of objects
with the capabilities to carry out whatever processes are
required. The objects and their associated variables make
up the “workspace,” which can be saved to disk periodi-
cally.

For the Smalltalk programmer there is no distinc-
tion between Smalltalk and the host computer’s operat-
ing system. The operating system’s capabilities (such as
file handling) are provided within the Smalltalk system as
predefined objects. Kay envisaged Smalltalk as a complete
environment that could be extended by users who were not
necessarily experienced programmers, and he designed its
pioneering graphical user interface as a way to make it easy
for users to work with the system.

Smalltalk includes a “virtual machine,” whose instruc-
tions are then implemented in specific code for each major
type of computer system. Because of Smalltalk’s consistent
structure and ability to build everything up from objects,
almost all of the Smalltalk system is written in Smalltalk
itself, making it easy to transplant to a new computer once
the machine-specific details are provided.

Because of its elegance and consistency and its avail-
ability on personal computers, by the 1980s Smalltalk had
aroused considerable interest. The language has not been
widely used for mainstream applications, in part because
the mechanisms needed to kept track of classes and inheri-
tance of methods are hard to implement as efficiently as
the simpler mechanisms used in traditional languages. The
approach of building object-oriented features onto exist-
ing languages (as with developing C++ from C) had greater
appeal to many because of efficiency and a less steep learn-
ing curve.

Nevertheless, the conceptual power of Smalltalk has
made it attractive for certain AI and complex simulation
projects, and it appeals to those who want a pure object-
oriented approach where an application can cleanly mirror
a real-world situation. Smalltalk also remains a good choice
for teaching programming to children (and others). A ver-
sion called Squeak provides a rich environment of graphics
and other functions. Squeak and a number of other Small-
talk implementations are available for free download for a
number of different computer systems.

Further Reading
Ducasse, Stéphane. Squeak: Learn Programming with Robots. Berke-

ley, Calif.: Apress, 2005.
Klimas, Edward J., Suzanne Skublics, and David A. Thomas. Small-

talk with Style. Englewood Cliffs, N.J.: Prentice Hall, 1996.
Lewis, Simon. The Art and Science of Smalltalk. Englewood Cliffs,

N.J.: Prentice Hall, 1995.
Smalltalk. Available online. URL: http://smalltalk.org. Accessed

August 21, 2007.
Squeak. Available online. URL: http://www.squeak.org/. Accessed

August 21, 2007.

smart buildings and homes
A smart building, whether commercial space or a home, is
one in which components ranging from HVAC (heating,
ventilation, and air conditioning) to appliances, computers,
communications, security, and entertainment systems are
integrated into a network for easy control.

Some typical features of a smart building include the
following:

• � lighting that is controlled by time of day, scheduling,
and occupancy sensors

• � temperature and air-flow sensors to determine the
amount of cooling, heating, or fresh air needed

• � controls for central heating, hot water, and air condi-
tioning systems, optimizing efficiency and minimiz-
ing energy use

• � alarms for intrusion, fire, carbon monoxide/dioxide,
and other hazards

• � alarms indicating failure or unsafe operating condi-
tions for various devices

• � integration of alarm and status messages with
communications systems, enabling users to receive
them by e-mail, text message, phone, or other
means

Using a secure link, the user can connect to the build-
ing via mobile phone or perhaps Internet connection and
give it commands, such as to turn the heating or porch light
on, close the drapes, and so on. The system can also let the
remote user know who is at the door and allow for commu-
nication, or let them in.

Smart office or other buildings use many of the same
technologies as smart homes, but the priorities and empha-
ses may be different. Smart buildings are more likely to
be centrally controlled and fully automated rather than
allowing individuals to interact with them. (Regulatory and
safety requirements are also likely to be different and more
complex.)

Applications and Questions
The integrated controls in a smart house are potentially
very useful for disabled persons or seniors who have lim-
ited mobility. Lighting could automatically be turned on
as a person gets up from bed and goes to the bathroom, for
example. Appliances could be controlled remotely, and even
cupboards or tables could be designed to raise or lower at
the touch of a button. (See disabled persons and com-
puting and seniors and computing.) If such systems are
effective, their cost may be well worth the psychological
benefits of allowing people to remain in their homes, and in
comparison to the cost of assisted living or residence facili-
ties. Smart homes could also help parents monitor toddlers
or small children as well as restrict them from entering
potentially hazardous parts of the house.

Critics of the smart-house concept point out that install-
ing and integrating all the required equipment for a full

434        smart buildings and homes

implementation is quite expensive. Incorporating the nec-
essary features when building a new house would be easier,
since infrastructure such as cabling can be incorporated
in the building design. However, much of the technology
is not fully mature. There are several standards for inter-
connection, including the venerable X10, Z-Wave, and
Insteon—and they are incompatible with one another.

Further Reading
Briere, Danny, and Pat Hurley. Smart Homes for Dummies. 3rd ed.

Hoboken, N.J.: Wiley, 2007.
Eisenpeter, Robert C., and Anthony Volte. Build Your Own Smart

Home. Emeryville, Calif.: McGraw-Hill/Osborne, 2003.
“Home Automation for the Elderly and Disabled.” Wikipedia.

Available online. URL: http://en.wikipedia.org/wiki/Home_
automation_for_the_elderly_and_disabled. Accessed Novem-
ber 15, 2007.

Lee, Jeanne. “Smart Homes: The Best of Today’s Intelligent, Net-
worked Home Appliances Aren’t Just Cool and High-Concept.
Believe It or Not, They also Make Sense.” Money, Oct. 1,
2002, p. 120 ff.

Mitchell, Robert. “The Rise of Smart Buildings.” Computer-
world, March 14, 2005. Available online. URL: http://www.
computerworld.com/networkingtopics/networking/story/
0,10801,100318,00.html. Accessed November 15, 2007.

smart card
The smart card is the next generation of transaction devices.
Magnetically coded credit, debit, and ATM cards have been
in use for many years. These cards contain a magnetic strip
encoded with a small amount of fixed data to identify the

account. All the actual data (such as account balances) is
kept in a central server, which is why credit cards must
be validated and transactions approved through a phone
(modem) link. Some magnetic strip cards such as those
used in rapid transit systems are rewritable, so that, for
example, the fare for the current ride can be deducted. Tele-
phone cards work the same way. Nevertheless, these cards
are essentially passive tokens containing a small amount of
data. They have little flexibility.

However, since the mid-1970s it has been possible to
put a microprocessor and rewritable memory into a card
the size of a standard credit card. These smart cards can

A smart house or building makes it easy to control essential functions such as heating, air conditioning, lighting, and security systems.

A smart card is “smart” because it does not just hold and update
data, but has an embedded program and the ability to respond to a
variety of requests.

smart card        435

store a hundred or more times the data of a magnetic strip
card. Further, because they have an onboard computer (see
embedded system), they can interact with a computer at
the point of service, exchanging and updating information.

Magnetic strip cards have no way to verify whether
they’re being used by their legitimate owner, and it is rela-
tively easy for criminals to obtain the equipment for creat-
ing counterfeits. With a smart card, the user’s PIN can be
stored on the card and the terminal can require that the user
type in that number to authorize a transaction. Again, the
PIN can be validated without reference to a remote server.

Hardware and Programming
Besides the microprocessor and associated circuitry, the
smart card contains a small amount of RAM (random
access memory) to hold “scratch” data during processing,
as well as up to 64 kB of ROM (read-only memory) contain-
ing the card’s programming instructions. The program is
created on a desktop computer and written to the ROM
that is embedded in the card. Finally, the card includes up
to 64 kB of EEPROM (Electrically Erasable Programmable
Read Only Memory) for holding account balances and other
data. This memory is nonvolatile (meaning that no power is
needed to maintain it), and can be erased and rewritten by
the card reader.

“Contact” cards must be swiped through the reader and
are most commonly used in retail, phone, pay TV, or health
care applications. “Contactless” cards need only be brought
into the proximity of the reader, which communicates with
it via radio signals or a low-powered laser beam. Contact-
less cards are more practical for applications such as col-
lecting bridge tolls (see also rfid).

The card reader (or terminal) at the point of sale con-
tains its own computer, which runs software that requests
particular services from the card’s program, including pro-
viding identifying information and balances, updating bal-
ances, and so on.

Microsoft and some other companies have introduced
the PC/SC standard for programming smart cards from
Windows-based systems. Another standard, Open Card,
promises to be compatible with a wide range of platforms
and languages, including Java. (Java, after all, descended
from a project to develop a language for programming
embedded systems.) However, the first commercially avail-
able Java-based smart card programming system is based
on another standard called JavaCard.

Applications
The same smart card might also be programmed to handle
several different types of transactions, and could function
as a combination phone card, ATM card, credit card, and
even medical insurance card. Europe has been well ahead of
the United States in adopting smart card technology, with
both France and Germany beginning during the 1980s to
use smart cards for their phone systems. During the 1990s,
they began to develop infrastructure for universal use of
smart cards for their national health care systems. In 2002,
Ontario, Canada, began to replace citizenship papers with a

smart card, as well as creating a health services card. Other
innovative uses for smart cards include London’s city pass
for tourists, which can be programmed to provide not only
prepaid access but also various bonuses and promotions.

The packing of many services and the associated infor-
mation onto a smart card raises greater concern that the
information might be illicitly captured and abused (see pri-
vacy in the digital age). Smart chips about the size of
a grain of rice can be implanted beneath the skin. When
scanned by hospital personnel, the patient’s entire medi-
cal record can be retrieved, which can be vital for deciding
which drugs to administer in an emergency when the patient
is unable to communicate. However, the chips might be sur-
reptitiously scanned by, for example, employers seeking to
screen out workers with expensive medical conditions.

Smart cards (such as for digital TV access) have been
counterfeited with the aid of sophisticated programs and
intrusion equipment. Card makers try to design the card’s
circuits so that it resists intrusion and tampering and rejects
programming attempts from unauthorized equipment.

Another way to prevent unauthorized use is to have
the card store identifying information that can be verified
through fingerprint scanners or other means (see biomet-
rics). Smart ID and access cards are being deployed by
more U.S. government agencies to control access to sensi-
tive areas in the wake of the September 11, 2001, terrorist
attacks. The newest smart cards, such as one called the
Ultra Card, can hold 20 MB of information, allowing the
use of much more extensive biometric data. The contro-
versial “national ID card,” if implemented, is likely to be a
smart card.

A service called GSM (Global System of Mobile Com-
munications) is gradually being adopted. Through the use
of a smart card “subscriber identity module,” it allows wire-
less phone users in any participating country to make calls
and have the appropriate fees deducted. Further, the GSM
can route calls to a person’s number automatically to that
person’s handset, regardless of the country of origin and
destination.

There is a very large investment in the current credit
card technology, but the flexibility and potential security of
smart credit and debit cards is attractive. Already some issu-
ers have released credit cards with smart chip technology.

Further Reading
Jurgensen, Timothy M., and Scott B. Guthery. Smart Cards: The

Developer’s Toolkit. Upper Saddle River, N.J.: Prentice Hall,
2002.

Paret, Dominique. RFID and Contactless Smart Card Applications.
New York: Wiley, 2005.

Rankl, Wolfgang, and Wolfgang Effing. Smart Card Handbook. 3rd
ed. New York: Wiley, 2004.

Smart Card Basics. Available online. URL: http://www.smartcard
basics.com/. Accessed August 21, 2007.

smartphone
In biology, convergent evolution is when two very different
types of creatures evolve similar structures or traits to cope
with similar environments—for example, wings in insects,

436        smartphone

birds, and bats. Something like this has happened with hand-
held mobile devices that are used to manage personal infor-
mation and for communication. Personal digital assistants
(see PDA) can maintain lists of phone numbers and other
contact information, as well as running a variety of useful or
entertaining applications. However, the first models had no
provision for actually making phone calls, while later models
offered the ability to make calls through a wireless connec-
tion (see Bluetooth) to an appropriately equipped mobile
phone. This meant, though, that the user had to carry two
separate devices, the PDA and the phone, somewhat defeat-
ing the objectives of portability and convenience.

Meanwhile, of course, mobile phones were a booming
industry—and a very competitive one, hence the pressure
to add new features. Some of these features overlap typical
PDA features, such as storing contact lists, appointments,
and other personal information. Further, users want to be
able to not only send text messages, but read and send e-
mail, and browse the Web. But providing all these applica-
tions really calls for a full-fledged (albeit compact) operating
system and facilities for creating user interfaces. The result
is the smartphone, which in effect is a phone that is grown
into a PDA while maintaining its phone capabilities. Thus
the smartphone aims to be the way to meet all communica-
tions, information management, Web, and entertainment
needs in a single device. Typical features also include a
camera and an audio-video media player (see music and
video players, digital) and a small but increasingly sharp
screen.

Some of the major smartphone manufacturers and their
operating systems include the following:

• � Symbian (Symbian OS), used by Nokia, Motorola,
Samsung, and others

• � Windows Mobile (enhanced Windows CE), popular
in phones used in Asia

• � Blackberry (RIM), the popular PDA/smartphone

• � Linux, used as the base on which to build a variety
of PDA/phone operating systems, including products
from Motorola, Palm, and Nokia (Maemo)

• � OS X (Apple), used in Apple’s innovative and very
popular iPhone

Convergence
As a practical matter, the PDA and smartphone categories
now overlap so much that a device such as the Apple iPhone
can be called either, and then some. Although Apple ini-
tially locked out full access to the iPhone operating sys-
tem for developing third-party applications (and locked the
phone itself to only a few providers), the overall trend in the
industry is to provide more flexibility and accessibility.

Although not yet accompanied by an actual device, the
2007 announcement by Google of an open-source phone
software platform called Android has been greeted by con-
siderable interest. The product will be developed further
by the Open Handset Alliance, a consortium of Google and
more than 30 other companies, including T-Mobile and

Motorola. The use of open-source software should reduce
costs to developers and consumers, in part by making it
possible for a developer to create an application that can
run on dozens of different smartphone models.

Further Reading
Ames, Patrick, and David Maloney. Now You Know: Treo 700w

Smartphone. Berkeley, Calif.: Peachpit Press, 2007.
Best, Jo. “Analysis: What Is a Smart Phone?” Silicon.com, Febru-

ary 13, 2006. Available online. URL: http://networks.silicon.
com/mobile/0,39024665,39156391,00.htm. Accessed Novem-
ber 16, 2007.

Jipping, Michael J. Smartphone Operating System Concepts with
Symbian OS. Hoboken, N.J.: Wiley, 2007.

McPherson, Frank. How to Do Everything with Windows Mobile.
New York: McGraw-Hill, 2006.

Open Handset Alliance. Available online. URL: http://www.open
handsetalliance.com/. Accessed November 16, 2007.

Smartphone or PDA? Sometimes it is just a matter of semantics
what to call a handheld device such as this Palm Treo 700w that
can make phone calls and send e-mail or text messages as well as
manage information.  (Palm, Inc.)

smartphone        437

Pogue, David. iPhone: The Missing Manual. Sebastapol, Calif.:
O’Reilly, 2007.

Smartphone & Pocket PC [magazine Web site]. Available online.
URL: http://www.pocketpcmag.com/defaults.asp. Accessed
November 16, 2007.

SOAP
Originally standing for Simple Object Access Protocol, but
now no longer an acronym, SOAP is a standard way to
access Web services (see service-oriented architecture
and Web services). In today’s Web, where what appears to
users to be a single site or application is usually built from
many services, such a facility is essential.

Prior to SOAP, Web applications usually communicated
through remote procedure calls (RPC). However there were
problems with compatibility of applications running under
different operating systems (and perhaps using different
programming languages), as well as security problems that
often led to such facilities being blocked.

SOAP, on the other hand, uses the same HTTP recog-
nized by all Web servers and browsers (see Web browser,
Web server, and World Wide Web)—indeed, it can also
use secure HTTP (https).

A SOAP request (or message) is an ordinary XML file
(see xml) that includes an “envelope” element specifying
it to be a SOAP message, an optional header, a body ele-
ment containing the information pertaining to the func-
tion or transaction requested, and an optional fault element
to specify error processing. After receiving the message,
the destination server returns a message providing the
requested information.

A very simple SOAP message might look like this:

<SOAP:Envelope
xmlns:SOAP=“http://schemas.xmlsoap.org/soap/
envelope/”>

<SOAP:Body>
<m:getPrice

xmlns:m=“http://www.soapware.org/”>
<itemnum>311</itemnum>

</m:getPrice>
</SOAP:Body>

</SOAP:Envelope>

The message asks for the price for item number 311.
Despite its advantages in terms of security, versatil-

ity, and readability, SOAP does have some disadvantages.
The main one is that XML files can be quite lengthy, mak-
ing transactions slower than with the much more compact
CORBA (see CORBA).

Further Reading
Burd, Barry. Java & XML for Dummies. Indianapolis: Wiley, 2002.
Freeman, Adam, and Allen Jones. Microsoft .NET XML Web Ser-

vices Step by Step. Redmond, Wash.: Microsoft Press, 2003.
“SOAP Tutorial.” W3schools.com. Available online. URL: http://

www.w3schools.com/soap. Accessed November 17, 2007.
“What Is SOAP” [Flash presentation]. Available online. URL:

http://searchwebservices.techtarget.com/searchWebServices/
downloads/what_is_soap.swf. Accessed November 17, 2007.

Zimmermann, Olaf, Mark Tomlinson, and Stefan Peuser. Perspec-
tives on Web Services: Applying SOAP, WSDL, and UDDI to
Real-World Projects. New York: Springer, 2003.

social impact of computing
In 2001, the Computer Professionals for Social Respon-
sibility (CPSR) held a conference titled “Nurturing the
Cybercommons, 1981–2021.” Speakers looked back at the
amazing explosion in computing and computer-mediated
communications in the last two decades of the 20th cen-
tury. They then turned to the next 20 years, discussing
how computing technology offered both the potential for
a more robust democracy and the threat that control of
information by the few could disenfranchise the many.
Their challenge was to create a “cybercommons”—a way
in which the benefits of technology could be shared more
equitably.

It is sobering to realize just how much happened in only
two decades. The computer went from being an esoteric
possession of large institutions to a ubiquitous companion
of daily work and home life. At the same time, the Inter-
net, which in 1981 had been a tool for a small number of
campus computing departments and government-funded
researchers, has burgeoned to a medium that is fast chang-
ing the way people buy, learn, and socialize.

The use of computing for specific applications generally
brings risks along with benefits (see risks of computing).
Sometimes risks can go beyond a specific program into the
interaction between that program and other systems. In the
broadest sense, however, computer use as a human activity
affects all other human activities. The ultimate infrastruc-
ture is not the computer, the software program, or even the
entire Internet. Rather, it is society as a whole. There are a
several dimensions along which both positive and negative
possibilities can be seen.

One of the earliest hints that computers might have a broader
impact on society came in 1952, when Univac’s prediction of
an Eisenhower election victory was relayed by anchor Walter
Kronkite.  (Al Fenn / Time Life Pictures/Getty Images)

438        SOAP

Stratification v. Opportunity
In the past 30 years, the computer has created millions of
new jobs, ranging from webmaster to support technician
to Internet café proprietor (see employment in the com-
puter field). Millions of other jobs have been redefined:
The typist has become the word processor, for example.
Many other jobs have disappeared or are in the process
of disappearing—such as travel agents, who have found
themselves under pressure both from do-it-yourself Inter-
net booking and the airlines deciding that they no longer
needed to give agents incentives for booking.

In a rapidly changing technological and economic land-
scape, there are always emerging opportunities. The pri-
macy of computer skills in the job market has, however,
exacerbated a trend that was seen throughout the 20th
century. New, well-paid jobs increasingly require techni-
cal training and skills—expanding the definition of “func-
tional literacy.” Throughout the second half of the century,
the traditional blue-collar factory jobs that could assure a
comfortable living for persons with only a high school edu-
cation have become increasingly scarce. This has been the
result both of increasingly competitive (and lower-priced)
overseas labor and factory automation (see robotics) at
home. Essentially, the well-paid tech sector and the low-
paid service sector have grown rapidly, while the ground in
between has eroded.

Sometimes jobs don’t disappear, but are “dumbed down,”
becoming low-skill and low-paid. Fifty years ago, a store
clerk had to be able to count up from the cash register total
to the amount of money presented by the customer. Today,
computerized cash registers tell the clerk exactly how much
change to give (and often dispense the coins automatically).
Old-style clerks had to know about prices, discounts, and
special offers. Today these are handled automatically by
bar codes and smart cards. Although the supermarket clerk
still is moderately well paid, the ultimate end of the process
is seen in the fast food clerk, who often needs only push
buttons with pictures of food on them. He or she is likely
to be paid little more than minimum wage. The impact of
technology on jobs can even go through several stages. For
example, skilled photo technicians have been replaced by
the use of automated photo processing equipment. In turn,
however, the growing use of digital cameras is reducing the
use of film-based photography in general.

The result of these trends may well be increased social
stratification. The best jobs in the information age require
skills such as programming, systems analysis, or the abil-
ity to create multimedia content. However, the opportunity
to acquire such skills varies and is not evenly distributed
through all groups in the population (see digital divide).
Although minority groups are now catching up in terms of
access to computers at home and in school, disparities in
the quality of education will only be magnified as technical
skills increasingly correlate with good pay and benefits.

At the same time the computer offers powerful new
tools for education (see education and computers).
Potentially, this could overcome much of the disadvantages
of poverty because once the threshold of access is met, the
poor person’s Internet is much the same as that available

to the privileged. However, mastering the necessary skills
requires both provision of adequate resources and that pre-
vailing cultural attitudes support intellectual achievement.

Dependency v. Empowerment
Computers have made people more dependent in some
ways while empowering them in others. Society is increas-
ingly dependent on computers to operate the systems that
provide transportation, power, and communications infra-
structure. The “y2k” scare at the end of the century proved
to be unfounded, but it did give people a chance to consider
what a major, prolonged failure in the information infra-
structure would mean for maintaining the physical neces-
sities of life, the viability of the economy, and the cohesion
of society itself (see Y2K problem). The terrorist attacks of
September 11, 2001, brought to greater public awareness
the concerns about “cyberterrorism” that experts had been
debating since the late 1990s. (See cyberterrorism.)

At the same time, computers—and particularly the
Internet—have give individuals a greater feeling of empow-
erment in many respects. The savvy Web user now has
numerous ways to shop for everything from airline tick-
ets to Viagra pills at prices that reflect disintermediation—
the elimination of the middleman. Many people are less
inclined to take the word of traditional authority figures
(such as doctors) and instead are tapping into the sort of
information that had been previously been accessible only
to professionals. However, access to information is not the
same thing as having the necessary background and skills
to evaluate that information. Whether falling victim to an
outright scam or simply not fully understanding the conse-
quences of a decision, the Web user finds little in the way
of a regulatory safety net. The tension between the high
degree of regulation now existing in much of our society
and the frontierlike qualities of cyberspace will no doubt be
a major theme in the next few decades.

Centralization v. Democracy
With new forms of media technology (such as radio and
television in the 20th century), early innovators and experi-
menters have considerable freedom to experiment and
express themselves. This freedom is largely the result of
lack of pressure from powerful economic interests while
the new technology is largely still “under the radar.” How-
ever, as a technology matures, large corporate interests tend
to consolidate the market, leaving fewer opportunities for
smaller, independent operators.

By the late 1990s there was some concern that the
Internet and World Wide Web were entering such a con-
solidation stage in the wake of such developments as the
AOL/Time-Warner merger. However, while there are now
large corporate presences online, the diversity of the means
of expression has actually increased (see blogs and blog-
ging, user-created content, wikis and Wikipedia, and
YouTube). Further, the influence of activist groups has
increased to the point where any serious political campaign
gives high priority to its Internet presence and the cultiva-
tion of influential bloggers (see political activism and
the Internet).

social impact of computing        439

There continue to be centralizing or antidemocratic
pressures in the online world (for example, see censorship
and the Internet). There is also the conflict between the
desire to protect intellectual property and the free sharing
of images and other media (see distribution of music and
video, online and intellectual property and comput-
ing). Loss of privacy can also inhibit untrammeled political
discourse (see privacy in the digital age). At the same
time, organizations such as the Electronic Frontier Founda-
tion, Electronic Privacy Information Center, and Center for
Democracy and Technology work to protect and advocate
democratic expression.

Isolation v. Community
There are many online facilities that allow individuals and
groups to maintain an ongoing dialog (see chat, online
and conferencing systems). Students at a school in Iowa
can now collaborate with their counterparts in Kenya or
Thailand on projects such as measuring global environmen-
tal conditions. Senior citizens who have become isolated
from family members and lack access to transportation can
find social outlets online.

However, critics such as Clifford Stoll believe that the
growth of online communication (see also virtual com-
munity) may be leading to a further erosion of physical
communities and a sense of neighborhood. For many years,
it has been observed that people in suburbia often don’t
know their neighbors: The car and the phone let them form
relationships and “communities” without much regard to
geography. It is possible that the growth in online commu-
nities will accelerate this effect. Further, with people being
able to order an increasing array of goods and services
online, might the market plaza and its modern counter-
part the mega mall become less of a meeting place? Even
the proposal to allow people to vote online might promote
democracy at the expense of the contact between citizens
and the shared rituals that give people a stake in the larger
community.

Thus, computer technology offers many opposing pros-
pects and visions. The social changes that are cascading
from information and communications technology are
likely to be at least as pervasive in the early 21st century as
the those wrought by the telephone, automobile, and televi-
sion were in the 20th.

Further Reading
Association for Computing Machinery. Special Interest Group on

Computers and Society. Available online. URL: http://www.
sigcas.org/. Accessed August 21, 2007.

Center for Democracy & Technology. Available online. URL:
http://www.cdt.org/. Accessed August 21, 2007.

Computer Professionals for Social Responsibility. Available online.
URL: http://www.cpsr.org. Accessed August 21, 2007.

De Paula, Paul. Annual Editions: Computers in Society 06/07. Guil-
ford, Conn.: McGraw-Hill/Duskin, 2006.

Electronic Frontier Foundation. Available online. URL: http://
www.eff.org. Accessed August 21, 2007.

Kizza, Joseph Migga. Ethical and Social Issues in the Information
Age. 2nd ed. New York: Springer, 2002.

Morley, Deborah, and Charles S. Parker. Computers and Technology in
a Changing Society. 2nd ed. Boston: Course Technology, 2004.

Pew Internet & American Life Project. Available online. URL:
http://www.pewinternet.org/. Accessed August 21, 2007.

social networking
Today, millions of people—middle, high school, and college
students, but increasingly adults as well—have pages on
popular Web sites such as MySpace and Facebook. These
sites are significant examples of social networking: the use
of Web sites and communications and collaboration tech-
nology to help people find, form, and maintain social rela-
tionships.

The origins of social networking can be traced to online
venues that arose in the 1970s and 1980s, notably Usenet
and, later, online chat boards (see bulletin board system,
conferencing system, netnews, and virtual commu-
nity). In the late 1990s social networking Web sites began
to appear, including Classmates.com (helping people find
and communicate with former schoolmates) and SixDe-
grees.com, which emphasized “knows someone who knows
someone who . . .” kinds of links.

By the mid-2000s the two biggest sites were Facebook
and MySpace. Founded in 2006 by Mark Zuckerberg, Face-
book was originally restricted to Harvard students, but
eventually became open to any college student, and then
high schools and even places of employment. (The name
comes from a book given to incoming students in some
schools to familiarize them with their peers.) As of late
2007 Facebook had more than 55 million active members
and had become the seventh most visited of all Web sites.

Facebook users have profile pages that include a “wall”
on which their designated circle of friends can post brief
messages. (Longer or private messages similar to e-mail can
also be sent.) Users can also send each other “gifts” repre-
sented by colorful icons. Finally, users in a given Facebook
community can keep track of each other’s status (where
they are and what they are doing).

Beverly Hills, California-based, MySpace is an even
larger site, near the top of the Web site popularity statistics
through much of 2007. Founded in 2003, the site was cre-
ated and marketed by a company called eUniverse (later
Intermix), and its launch was greatly boosted by being able
to tap many of eUniverse’s 20 million existing subscribers.
User profiles are broadly similar to those in Facebook, but
are less structured and more colorful, with uploaded graph-
ics and a blog for each user. Profiles can be elaborately
customized using a variety of tools and utilities. The site
has also expanded into other areas such as instant messag-
ing (MySpaceIM), video sharing (MySpactTV), and mobile
phones (MySpace Mobile).

Social network applications are also expanding behind
the linking of classmates or colleagues. Companies can use
social networking software to set up user groups and pro-
vide support and incentives. Medical professionals are often
forming social networks to share knowledge and news—
and not surprisingly, drug company representatives have
moved in to make their pitch as well. Business executives
and professionals can meet on LinkedIn, a site that links
people only if they have an existing relationship or an “invi-

440        social networking

tation” from an existing member. As further proof that the
technology is maturing, about 20 percent of adult Internet
users have reported visiting a social networking site in the
past 30 days.

Commercialization
Indeed, because they are now bringing so many people
together, social networking sites have become a very attrac-
tive platform for online products and businesses. Facebook,
for example, is explicitly allowing selected businesses to
use the site, in exchange for a portion of the revenue gener-
ated. (Even without formal relationships, many sites allow
users to add code enabling third-party services.) Some utili-
ties (often sponsored by advertising) help users make their
profiles more attractive, while one called MySpacelog serves
users who are anxious to see who is viewing their sites.
Looming on the horizon by 2007 was Google, which is
releasing OpenSocial, a set of programming interfaces that
is expected to enable developers to create applications that
will run on a wide variety of social networking sites.

While social networking sites generally want to encour-
age products that can add revenue (and value to users), some
add-on applications can be problematic. In 2006 a site called
Stalkerati let users automatically search for a person’s profiles
on popular social networking sites and consolidate them into
a summary. However, the perhaps unfortunately named sited
was soon blocked by MySpace and other sites, which cited
privacy and security concerns. These concerns have become
increasingly important as networks such as MySpace have
proven attractive to spammers, identity thieves, and sexual
predators. (A 2007 survey by the Pew Internet & American
Life Project found that 23 percent of teens on social networks
had felt “scared or uncomfortable” because of an online
encounter with a stranger. However, that same report showed
that many parents and teens themselves have become aware
of potential risks and the need to more carefully manage
where and how information is disclosed.)

Social networking is also attracting the attention of
social scientists and academics: For example, the University
of Michigan now has a graduate program in social comput-
ing. Meanwhile sociologist Michael Macy of Cornell Uni-
versity is directing a multiyear research project, funded by
the National Science Foundation and Microsoft, titled “Get-
ting Connected: Social Science in the Age of Networks.”

Note: the term social network is also used to refer to a
method of mathematical and sociological analysis of social
links within organizations. Such methods can of course be
applied to the online social networking sites.

Further Reading
Baloun, Karel M. Inside FaceBook: Life, Works, and Visions of Great-

ness. Victoria, B.C., Canada: Trafford, 2007.
Facebook. Available online. URL: http://www.facebook.com/.

Accessed November 18, 2007.
Hupfer, Ryan, Mitch Maxson, and Ryan Williams. MySpace for

Dummies. Hoboken, N.J.: Wiley, 2007.
Lavallee, Andrew. “At Some Schools, Facebook Evolves from Time

Waster to Academic Study.” Wall Street Journal Online, May
29, 2007. Available online. URL: http://online.wsj.com/article/
SB117917799574302391.html. Accessed November 18, 2007.

Lenhart, Amanda, and Mary Madden. “Social Networking Web-
sites and Teens: An Overview.” Pew Internet & American Life
Project, January 7, 2007. Available online. URL: ttp://www.
pewinternet.org/pdfs/PIP_SNS_Data_Memo_Jan_2007.pdf.
Accessed November 18, 2007.

———. “Teens, Privacy & Online Social Networks: How Teens
Manage Their Online Identities and Personal Informa-
tion in the Age of MySpace.” Pew Internet & American Life
Project, April 18, 2007. Available online. URL: http://www.
pewinternet.org /pdfs/PIP_Teens_Privacy_SNS_Report_
Final.pdf. Accessed November 18, 2007.

MySpace. Available online. URL: http://www.myspace.com/.
Accessed November 18, 2007.

Shepherd, Lauren. “Social Networking Breeds Creation of Third-
Party Sites.” Associated Press/San Francisco Chronicle, June
18, 2007, p. C5.

Weber, Larry. Marketing to the Social Web: How Digital Customer
Communities Build Your Business. Hoboken, N.J.: Wiley, 2007.

social sciences and computing
Broadly speaking, social scientists study the structure and
dynamics of human societies as well as groups of all kinds.
Depending on subject matter, the research can fall within
one or more disciplines, for example, anthropology, psy-
chology, economics, geography, history, political science,
or sociology. As with other scientific fields, computers have
greatly enhanced and expanded the ability to carry out,
analyze, and communicate research findings.

Applications
Social scientists can use a variety of software throughout
the research process. For example, researchers might use
the following:

• � Web and bibliographical search tools to find existing
research on their topic

• � note-taking and concept-diagramming (“mind-map-
ping”) software

• � software to conduct polls or surveys and compile the
results

• � social networking analysis to better understand a
group’s structure and dynamics

• � statistical analysis tools to analyze the findings (see
statistics and computing)

• � map-based systems for studying geographical aspects
(see geographical information systems)

• � modeling software to simulate the mechanism being
studied, using mathematical techniques such as the
Monte Carlo and Markov-Chain methods

Games and virtual worlds in particular are being used
in innovative ways. Games such as the classic SimCity or
the “social simulator” The Sims can be used to help stu-
dents understand and experiment with economic and social
dynamics. However, virtual worlds can also be studied in
their own right—for example Tufts University research-
ers Nina Fefferman and Eric Lofgren have written a paper
describing how the spread of a “virtual plague” in Second

social sciences and computing        441

Life could be studied to learn how people would be most
likely to react to a real disease outbreak. And at Carnegie
Mellon University, a National Science Foundation–funded
project will be studying interactions in online venues as
disparate as World of Warcraft and Wikipedia.

Further Reading
Dochartaigh, Niall O. The Internet Research Handbook: A Practi-

cal Guide for Students and Researchers in the Social Sciences.
Thousand Oaks, Calif.: Sage Publications, 2002.

Gilbert, Nigel, and Klaus G. Troitzsch. Simulation for the Social
Scientist. Philadelphia: Open University Press, 1999.

“The Impoverished Social Scientist’s Guide to Free Statistical Soft-
ware and Resources.” Available online. URL: http://www.
hmdc.harvard.edu/micah_altman/socsci.shtml. Accessed
October 5, 2007.

Patterson, David A. “Using Spreadsheets for Data Collection, Sta-
tistical Analysis, and Graphical Representation.” Available
online. URL: http://web.utk.edu/~dap/Random/Order/Start.
htm. Accessed October 5, 2007.

Saam, Nicole J., and Bernd Schmidt. Cooperative Agents: Applica-
tions in the Social Science. Norwell, Mass.: Kluwer Academic
Publishers, 2001.

Summary of Survey Analysis Software (Harvard). Available online.
URL: http://www.hcp.med.harvard.edu/statistics/survey-soft/.
Accessed October 5, 2007.

software agent
Most software is operated by users giving it commands
to perform specific, short-duration tasks. For example, a
user might have a word processor change a word’s typ-
estyle to bold, or reformat a page with narrower margins.
On the other hand, a person might give a human assistant
higher-level instructions for an ongoing activity: for exam-
ple, “Start a clippings file on the new global trade treaty and
how it affects our industry.”

In recent years, however, computer scientists and devel-
opers have created software that can follow instructions
more like those given to the human assistant than those
given to the word processor. These programs are variously
called software agents, intelligent agents, or bots (short
for “robots”). Some consumers have already used software
agents to comb the Web for them, looking, for example,
for the best online price for a certain model of digital cam-
era. Agent programs can also assist with online auctions,
travel planning and booking, and filtering e-mail to remove
unwanted “spam” or to direct inquiries to appropriate sales
or technical support personnel. (See also Maes, Pattie.)

Practical agents or bots can be quite effective, but they
are relatively inflexible and able to cope only with narrowly
defined tasks. A travel planning agent may be able to inter-
face with online reservations systems and book airline tick-
ets, for example. However, the agent is unlikely to be able to
recognize that a recent upsurge in civil strife suggests that
travel to that particular country is not advisable.

Researchers have, however, been working on a variety
of more open-ended agents that, while not demonstrably
“intelligent,” do appear to behave intelligently. The first pro-
gram that was able to create a humanlike conversation was
ELIZA. Written in the mid-1960s by Joseph Weizenbaum,

ELIZA simulated a conversation with a “nondirective” psy-
chotherapist. More recently, Internet “chatterbots” such as
one called Julia have been able to carry on apparently intel-
ligent conversations in IRC (Internet Relay Chat) rooms,
complete with flirting. Other “social bots” have served as
players in online games (see chatterbots).

Chatterbots are effective because they can mirror human
social conventions and because much of casual human
conversation contains stereotyped phrases or clichés that
can be easily imitated. Ideally, however, one would want
bots to be able to combine the ability to carry out practical
tasks with a more general intelligence and a more “socia-
ble” interface. This requires that the bot have an extensive
knowledge base (see knowledge representation) and a
greater ability to understand human language (see linguis-
tics and computing). Small strides have been made in
providing online help systems that can deal with natural
language questions, as well as being able to interactively
help users step through a particular tasks.

Agents or bots have also suggested a new paradigm for
organizing programs. Currently, the most widely accepted
paradigm treats a program as a collection of objects with
defined capabilities that respond to “messages” asking for
services (see object-oriented programming). A move to
“agent-oriented programming” would carry this evolution a
step further. Such a program would not simply have objects
that wait passively for requests. Rather, it would have multi-
ple agents that are given ongoing tasks, priorities, or goals.
One approach is to allow the agents to negotiate with one
another or to put tasks “up for bid,” letting agents that
have the appropriate ability contract to perform the task.
With each task having a certain amount of “money” (ulti-
mately representing resources) available, the negotiation
model would ideally result in the most efficient utilization
of resources.

If Marvin Minsky’s (see Minsky, Marvin) “society of
mind” theory is correct and the human brain actually con-
tains many cooperating “agents,” then it is possible that
systems of competing and/or cooperating agents might
eventually allow for the emergence of a true artificial intel-
ligence.

In the future, agents are likely to become more capa-
ble of understanding and carrying out high-level requests
while enjoying a great deal of autonomy. Some possible
application areas include data mining, marketing and sur-
vey research, intelligent Web searching, security, and intel-
ligence gathering. However, autonomy may cause problems
if agents get out of control or exhibit viruslike behavior.

Further Reading
Denison, D. C. “Guess Who’s Smarter.” Boston Globe, May 26,

2003, p. D1. Available online. URL: http://web.media.mit.edu/
~lieber/Press/Globe-Common-Sense.html. Accessed August
21, 2007.

D’Inverno, Mark, and Michael Luck. Understanding Agent Systems.
2nd ed. New York: Springer, 2004.

Lieberman, H., et al. “Commonsense on the Go: Giving Mobile
Applications an Understanding of Everyday Life.” Available
online. URL: http://agents.media.mit.edu/projects/mobile/BT-
Commonsense_on_the_Go.pdf. Accessed August 21, 2007.

442        software agent

Padgham, Lin, and Michael Winikoff. Developing Intelligent Agent
Systems: A Practical Guide. New York: Wiley, 2004.

Software Agents Group (MIT Media Lab). Available online. URL:
http://agents.media.mit.edu/. Accessed August 21, 2007.

software engineering
By the late 1960s, large computer programs (such as the
operating systems for mainframe computers) consisted
of thousands of lines of computer code. In what became
known as “the software crisis,” managers of software devel-
opment were facing great uncertainty about both program
development schedules and the reliability of the resulting
programs.

Programming had started out in the 1940s as an off-
shoot of mathematics, just as the building of computers was
an offshoot of electrical or electronic engineering. Increas-
ingly, however, programmers were searching for a new pro-
fessional identity. What paradigm was truly appropriate?
Should programmers strive to be more like mathematicians,
seeking to rigorously prove the correctness of their pro-
grams? On the other hand, many programmers thought of
their work as a craft, performed using individual experi-
ence and intuition, and not easily subject to standardiza-
tion. Between the two poles of mathematics (or science) and
craft came another possibility: engineering.

The concept of software engineering proved to be attrac-
tive. Mathematics (and science in general) are usually car-
ried on without being immediately and directly applied to
creating a particular device or process. Outside of research
programs, however, computer applications were written to
perform real-world tasks (such as flight control) that have
real-world consequences. Thus, although the notation of
a computer program resembles that of mathematics, the
operation of a program more nearly resembles that of com-
plex mechanical systems created by engineers. By attaching
the label of engineering to what programmers do, advo-
cates of software engineering hoped to develop a body of
practices and standards comparable in some way to those
used in engineering. Some critics, however, believe that

this paradigm is inappropriate, either because they believe
one should strive for the greater rigor of science or out of a
preference for individual craft over standardization.

Programming Practices
One of the most pervasive contributions to software engi-
neering has been in computer language design and coding
practices. At about the same time that the concept of software
engineering was being promulgated, computer scientists
were advocating better facilities for defining and structuring
programs (see structured programming). These included
well-defined control structures (see branching statements
and loop), use of built-in and user-defined kinds of data (see
data types), and the breaking of programs into more man-
ageable modules (see procedures and functions).

The next paradigm came in the late 1970s and had
taken hold by the late 1980s (see object-oriented pro-
gramming). The ability to “hide” details of function within
objects that mirrored those in the real world provided a fur-
ther way to make complex programs easier to understand
and maintain. The growing use of well-tested collections
of procedures or objects (see library, program) has been
essential for keeping up with the growing complexity of
application programs.

Software engineers are also concerned with developing
tools that will better manage the programming process and
help ensure that standards are being followed (see pro-
gramming environment). The use of CASE (Computer-
Aided Software Engineering) tools such as sophisticated
program editors, documentation generators, class dia-
grammers, and version control systems has also steadily
increased. Today many of these tools are available even on
modest desktop computing environments (see case).

The Program Development Process
Perhaps the most important task for software engineering
has been seeking to define and improve the process by
which programs are developed. In general, the overall steps
in developing a program are:

The Waterfall, or Cascade, model sees software development as a more linear process going through the requirements, design, implementation,
integration and testing, and maintenance phases. The results of each phase cascade down into the next.

software engineering        443

• � Detailed specification of what the program will be
required to do. This can include developing a proto-
type and getting user’s reaction to it.

• � Creation of a suitable program architecture—
algorithm(s) and the data types, objects, or other struc-
tures needed to implement them (see algorithm).

• � Coding—writing the program language statements
that implement the structure.

• � Verification and testing of the program using realis-
tic data and field testing (see quality assurance,
software).

• �M aintenance, or the correction of errors and adding
of requested minor features (short of creating a new
version of the program).

There are a number of competing ways in which to view
this software development cycle. The “iterative” or “evo-
lutionary” approach sees software development as a linear
process of progress through the above steps.

The “spiral” approach, on the other hand, sees the steps
of planning, risk analysis, development, and evaluation
being applied repeatedly, until the risk analysis and evalua-
tion phases result in a go/no go to finish the project.

The most commonly used approach is called waterfall.
In it the results (output) of each stage become the input
of the next stage. This approach is easiest for scheduling
(see project management software), since each stage is
strictly dependent on its predecessor. However, some advo-
cates of this approach have included the ability for a given
stage to feed back to the preceding stage if necessary. For
example, a problem found in implementation (coding) may
require revisiting the preceding design phase.

Developing Software Engineering Standards
Two organizations have become prominent in the effort to
promote software engineering. The federally funded Soft-
ware Engineering Institute (SEI) at Carnegie Mellon Uni-
versity was established in 1984. Its mission statement is to:

	 1. � Accelerate the introduction and widespread use
of high-payoff software engineering practices and
technology by identifying, evaluating, and maturing
promising or underused technology and practices.

	 2. �M aintain a long-term competency in software engi-
neering and technology transition.

	 3. � Enable industry and government organizations to
make measured improvements in their software engi-
neering practices by working with them directly.

	 4. � Foster the adoption and sustained use of standards
of excellence for software engineering practice.

Since 1993, the IEEE Computer Society and ACM Steer-
ing Committee for the Establishment of Software Engineer-
ing as a Profession has been pursuing a set of goals that are
largely complementary to those of the SEI:

	 1. � Adopt Standard Definitions
	 2. � Define Required Body of Knowledge and Recom-

mended Practices (In electrical engineering, for

example, electromagnetic theory is part of the body
of knowledge while the National Electrical Safety
Code is a recommended practice.)

	 3. � Define Ethical Standards
	 4. � Define Educational Curricula for (a) undergradu-

ate, (b) graduate (MS), and (c) continuing education
(for retraining and migration).

Further Reading
Booch, Grady. “The Promise, the Limits, the Beauty of Software.”

March 8, 2007. Lecture before the British Computer Society.
Available online. URL: http://www.bcs.org/server.php?show=
ConWebDoc.10367. Accessed August 21, 2007.

Brooks, Frederick. The Mythical Man-Month: Essays on Software
Engineering. 20th anniversary ed. Reading, Mass.: Addison-
Wesley, 1995.

Christensen, Mark J., and Richard H. Thayer. The Project Manag-
er’s Guide to Software Engineering’s Best Practices. Los Alami-
tos, Calif.: IEEE Computer Society Press, 2001.

McConnell, Steve. After the Gold Rush: Creating a True Profession
of Software Engineering. Redmond, Wash.: Microsoft Press,
1999.

Software Engineering Coordinating Committee (IEEE Computer
Society and Association for Computing Machinery.) Available
online. URL: http://www.acm.org/serving/se/homepage.html.
Accessed August 21, 2007.

Sommerville, Ian. Software Engineering. 8th ed. Boston: Addison-
Wesley, 2006.

software piracy and counterfeiting
According to surveys by analysis firm IDC, software piracy
accounted for $7.3 billion in losses to the U.S. software
industry in 2006, while reducing its expansion and thus job
creation. (This is part of a larger picture in which, according
to a Gallup study, 22 percent of adults in the United States
reported having bought some sort of counterfeit product.) A
bit of Web searching (or even reading spam in one’s in-box)
suggests that thousands of sites offer “cracked” software

The Spiral Model visualizes software development as a process of
planning, risk analysis, development, and evaluation. The cycle
repeats until the project is developed to its full scope.

444        software piracy and counterfeiting

that has been stripped of copy protection. The Business
Software Alliance estimates that 35 percent of new software
installed on PCs in 2006 was obtained illegally.

Although piracy can involve many forms of distribution
including Web sites, file-sharing services (see file-sharing
and P2P networks), and even software found on “bargain”
PCs, the most visible form involves physical packages com-
plete with box, CDs, and even holograms. These counter-
feits, which range from crude to nearly indistinguishable,
are often produced in full-scale factories. China has been
a major source for many types of product counterfeiting,
although the government has periodically cracked down
on the practice. Counterfeiting has also flourished in such
unlikely locales as Bangladesh and Serbia.

Industry groups also assert that the misuse of legiti-
mately purchased software (such as running more copies
than have been licensed) is also a form of piracy. The poten-
tial legal liability is enormous, so companies make rigorous
policies involving software use and install monitoring sys-
tems to detect or prevent licensing violations. (For their
part, industry groups have offered large cash rewards to
employees who reveal their company’s violations.)

Countermeasures
As perhaps the largest potential victim, Microsoft has been
diligent in fighting software piracy. Recent versions of Win-
dows, Office, and other products require that users “val-
idate” the software, associating the license number with
details of the system’s hardware configuration. When the
user wants to download later updates or patches, the soft-
ware validation is checked. Failure of validation leads to
warning messages and disabling of many features of the
software.

Microsoft has also been active in suing alleged pirates,
and educating consumers about the dangers of buying
pirated software, which include the risk of exposure to
viruses, spyware, and other harmful programs. An industry
antipiracy group, the Business Software Alliance, has vigor-
ously investigated corporate software use (often with the
aid of tipsters), finding violations and making companies
pay fines and buy licenses in lieu of legal action.

Meanwhile, growing pressure from the software indus-
try has led in turn to U.S. pressure on China and other
countries to go after software counterfeiting operations. In
summer 2007, a joint operation by the FBI and Chinese
officials led to the seizure of more than $500 million in
counterfeit software.

Critics of antipiracy efforts, such as the Electronic Fron-
tier Foundation, argue that estimates of losses from piracy
assume that every pirated copy of a program represents a
lost sale, ignoring the possibility that people (such as stu-
dents) would not have the money to buy legitimate copies.
They also point to what they consider to be heavy-handed
enforcement of copyright laws and point to proposed leg-
islation such as the Inducing Infringement of Copyrights
Act, which they argue would in effect outlaw all file-sharing
networks and subject people to prison sentences for minor
infractions.

Further Reading
Business Software Alliance. Available online. URL: http://www.

bsa.org. Accessed November 18, 2007.
Donoghue, Andrew. “Counting the Cost of Counterfeiting.” CNet

News, May 22, 2006. Available online. URL: http://www.
news.com/Counting-the-cost-of-counterfeiting/2100-7348_
3-6074831.html?tag=item. Accessed November 18, 2007.

Evers, Joris. “Fighting Microsoft’s Piracy Check.:” CNet News,
June 20, 2006. Available online. URL: http://www.bsa.org.
Accessed November 18, 2007.

Hopkins, David, Lewis T. Kontnik, and Mark T. Turnage. Counter-
feiting Exposed: How to Protect Your Brand and Market Share.
Hoboken, N.J.: Wiley, 2003.

Plastow, Alan L. Modern Pirates: Protect Your Company from the
Software Police. Garden City, N.Y.: Morgan James, 2006.

“Protect Yourself from Piracy.” Microsoft Corporation. Available
online. URL: http://www.microsoft.com/piracy/. Accessed
November 18, 2007.

Sony
Sony Corporation (NYSE symbol: SNE) is the electronics
business unit of Sony Group, a large Japanese multinational
company that plays a leading role in worldwide electronics,
games, and entertainment media (movies and music), intro-
ducing and shaping many now-familiar standards.

The company traces its origin to a radio repair shop
started by Masaru Ibuka in a bombed-out building in
Tokyo in 1945. He was soon joined by Akio Morita, and
the men started an electronics company whose name trans-
lates in English to Tokyo Telecommunications Engineering
Corporation. They started by building tape recorders, but
in the early 1950s the two entrepreneurs were among the
earliest to realize the potential of the transistor, marketing
transistor radios starting in 1956. The devices essentially
established the modern consumer electronics field, per-
fectly fitting with a new music fad among American teen-
agers—rock and roll.

With their marketing success, Ibuka and Morita realized
that they needed a simple, catchy name that would appeal
to Americans and other non-Japanese customers. In 1958
they came up with Sony. Although the name did not exist in
any language (and thus could be made proprietary), “Sony”
evokes English words such as “sound” and “sonic.” (It also
resembled a Japanese slang phrase “sony-sony,” for some-
thing like what we would call “geeks” or “nerds” today.)

Influence on Media and Computing
One of Sony’s most enduring impacts has been its establish-
ment of standards for media and storage technologies. The
company was not always successful: A famous also-ran was
its Betamax videotape format, which lost out to VHS. How-
ever, the company’s successful consumer products have
included the following:

• � Trinitron tubes for televisions and computer monitors
(no longer sold in the United States)

• � Walkman portable music player (1979)

• � 3.5″ floppy disk (1983), which flourished until the
later 1990s

Sony        445

• � Discman CD-based music player (1984)

• � Handycam camcorder and Video format (1985)

• � Digital audio tape, or DAT (1987)

• � Blu-ray optical disc

Sony would also become a major player in the console
gaming market (see gaming console). In 1994 the com-
pany introduced the PlayStation, followed by later models
in 2000 and 2006. Sony is also a significant seller of digital
cameras, including the Mavica floppy disc (later CD), since
discontinued. The company also introduced its proprietary
“memory stick” for storage.

Stumbles and Successes
In 2005 a controversy erupted when it was revealed that
Sony music CDs included as part of their copy protection
(see also digital rights management) a “rootkit” that could
allow PCs to be compromised. Sony eventually agreed with
the Federal Trade Commission (FTC) to exchange the
affected CDs and to reimburse damage to consumers’ com-
puters that might have occurred while attempting to remove
the software. However, in 2007 a similar problem arose with
third-party software packaged with Sony memory sticks.

Around the same time, Sony had to recall laptop batter-
ies that had serious flaws that could cause them to overheat
and catch fire. In 2006 Sony and Dell agreed to replace over
4.1 million laptop batteries—this was followed by 1.8 mil-
lion Sony batteries in Apple laptops and 526,000 in IBM
and Lenovo laptops.

Despite these setbacks, Sony continues to be very success-
ful, with $70.3 billion in revenue and a net income of $1.07
billion in 2007, and about 163,000 employees worldwide.

Further Reading
Luh, Shu Shin. Business the Sony Way: Secrets of the World’s Most

Innovative Electronics Giant. New York: Wiley, 2003.
Nathan, John. Sony. New York: Houghton Mifflin, 1999.
Sony America. Available online. URL: http://www.sony.com/.

Accessed November 18, 2007.
Sony Playstation. Available online. URL: http://www.us.playstation.

com/. Accessed November 18, 2007.

sorting and searching
Because they are so fundamental to maintaining databases,
the operations of sorting (putting data records in order) and
searching (finding a desired record) have received extensive
attention from computer scientists. A variety of different
and quite interesting sorting methods have been devised
(see algorithm).

Any application that involves keeping track of a signifi-
cant number of data records will have to keep them sorted
in some way. After all, if records are simply inserted as they
arrive without any attempt at order, the time it will take to
find a given record will, on the average, be the time it would
take to search through half the records in the database.
While this might not matter for a few hundred records on

a fast modern computer, it would be quite unacceptable for
databases that might have millions of records.

Sorting Considerations
While some sorting algorithms are better than others in
almost all cases, there are basic considerations for choos-
ing an approach to sorting. The most obvious is how fast
the algorithm can sort the number of records the applica-
tion is likely to encounter. However, it is also necessary to
consider whether the speed of the sort increases steadily
(linearly) as the number of records increases, or it becomes
proportionately worse. That is, if an algorithm can sort a
thousand records in two seconds, will it take 20 seconds for
10,000 records, or perhaps five minutes?

In most cases one assumes that the records to be sorted
are in more or less random order, but what happens if the
records to be sorted are already partly sorted . . . or almost
completely sorted? Some algorithms can take advantage of
the partial sorting and complete the job far more quickly
than otherwise. Other algorithms may slow down drasti-
cally or even produce errors under those conditions.

The range or variation in the key (the data field by which
records are being sorted) may also play a role. In some cases
if the keys are close together, some algorithms may be able
to take advantage of that fact.

Finally, the available computer resources must be con-
sidered. Today many desktop PCs have 1 GB (gigabyte) or
more of main memory (RAM), while servers or mainframes
may have several GBs. If the database is small enough that it
can be entirely kept in main memory, sorting is fast because
any record can be accessed in the same amount of time at
electronic speeds. If, however, part of the database must be
kept in secondary storage (such as hard drives), the sorting
program will have to be designed so that it reads a number
of records from the hard drive in a single reading opera-
tion, in order to avoid the overhead of repeated disk opera-
tions. Most likely the individual batches will be read from
the disk, sorted in memory, written back to disk, and then
merged to sort the whole database.

Sorting Algorithms
There are numerous sorting algorithms ranging from the
easy-to-understand to the commonly used to the exotic and
quirky. Only the highlights can be covered here; see Fur-
ther Reading for sources for more detailed discussions.

Selection Sort
The simplest and least efficient kind of sort is called the selec-
tion sort. Rather like a bridge player organizing a hand, the
selection sort involves finding the record with the lowest key
and swapping it with the first record, then scanning back
through for the next lowest key and swapping it with the sec-
ond record, and so on until all the records are sorted. While
this uses memory very efficiently (since the records are sorted
in place), it is not only slow, but also gets worse fast. That is,
the time taken to sort n records is proportional to n2.

The selection approach suffers because on each pass the
sort determines not only the record with the lowest key but

446        sorting and searching

the one with the next lowest key. However, that information
is not retained. The heapsort, invented by John Williams in
1964, uses a binary tree to store a heap of sorted records
(see tree and heap). Once the heap is built, the tree nodes
can be used to store record numbers in a corresponding
array that will represent the sorted database. The heapsort
is efficient because no records are physically moved, and
the only memory needed is for the heap and array. The hea-
psort is generally considered the fastest and most reliable
general-purpose sorting algorithm, with a maximum run-
ning time of log n.

Bubble Sort
The bubble sort is based on making comparisons and swaps.
It makes the most convenient comparison possible: each
record with its neighbor. The algorithm looks at the first
two records. If the second has a lower key than the first,
the records are swapped. The procedure continues with the
second and third records, then the third and fourth, and
so on through all the records, swapping pairs of adjacent
records whenever they are out of order. After one pass the
record with highest key will have “bubbled up to” the end
of the list. The procedure is then repeated for all but the last
record until the two highest records are at the end, and so
on until all the records are sorted. Unfortunately, the num-
ber of comparisons and swaps that must be made makes the
bubble sort as slow as the selection sort.

Quicksort
The quicksort improves on the basic bubble sort by first
choosing a record with a key approximately midway between
the lowest and highest. This key is called the pivot. The
records are then moved to the left of the pivot if they are
lower than it, and to the right if higher (that is, the records
are divided into two partitions). The process is then repeated

to split the left side with a new pivot, and then the right side
likewise. This is continued until the partition size is one,
and the records are now all sorted. (Because of this repeated
partitioning, quicksort is usually implemented using a pro-
cedure that calls itself repeatedly—see recursion.)

Devised by C. A. R. Hoare in 1962, quicksort is much
faster than the bubble sort because records are moved over
greater distances in a single operation rather than simply
being exchanged with their neighbors. Assuming an appro-
priate initial pivot value is chosen, running time is propor-
tional to the logarithm of n rather than to the square of n.
The difference becomes dramatic as the size of the database
increases.

Insertion Sort
The bubble sort and quicksort are designed to work with
records that are in random order. However, in many appli-
cations a database grows slowly over time. At any given
time the existing database is already sorted, so it hardly
makes sense to have to resort the whole database each time
a new record is added.

Instead, an insertion sort can be used. In its simplest
form, the algorithm looks sequentially through the sorted
records until it finds the first record whose key is higher
than that of the new record. The new record can then be
inserted just before that record, much like the way a bridge
player might organize the cards in a hand. (Since insert-
ing a record and physically moving all the higher records
up in memory can be time-consuming, a linked list of key
values and associated record number is often used instead.
(See list processing.) That way only the links need to be
changed rather than any records being moved.

The insertion sort was improved by Donald L. Shell in
1959. His “shellsort” takes a recursive approach (like that
in the quicksort), and applies the insertion sort procedure
to successively smaller partitions.

Another improvement on the insertion sort is the merge-
sort. As the name implies, this approach begins by creating
two small lists of sorted records (using a simple comparison
algorithm), then merging the lists into longer lists. Merging
is accomplished by looking at the two keys on the top of
two lists and taking whichever is lowest until the lists are
exhausted. The merge sort also lends itself to a recursive

In a bubble sort, pairs of adjacent numbers are compared and
switched if they are out of order. Eventually the lowest values (such
as 2 in this case) will “bubble up” to the front of the list.

The Quicksort uses a value called the pivot to partition the list into
two smaller lists. This process is repeated until the list has been
divided and “conquered” (sorted).

sorting and searching        447

approach, and it is comparable in speed and stability to the
heapsort.

Hash Sorts
All of the sorting algorithms discussed so far rely upon
some form of comparison. However, it also possible to sort
records by calculating their relative positions or distribu-
tion (see hashing). In its simplest form, an array can be
created whose range of indexes is equal to 1 to the maxi-
mum possible key value. Each key is then stored in the
index position equal to its value (that is, a record with a key
of 2314 would be stored in the array at position Array[2314].
This procedure works well, but only if the keys are all inte-
gers, the range is small enough to fit in memory, and there
are no duplicate keys (since a duplicate would in effect
overwrite the record already stored in that position).

A more practical approach is to use a formula (hash
function) that should create a unique hash value for each
key. The function must be chosen to minimize “collisions”
where two keys end up with the same hash value, which
creates the same problem as with duplicate keys. A hash
sort is quite efficient within those constraints.

Searching
Once one has a database (sorted or not), the next question
is how to search for records in it. As with sorting, there
are a variety of approaches to searching. The simplest and
least efficient is the linear search. Like the selection sort,
the linear search simply goes through the database records
sequentially until it finds a matching key or reaches the end
without a “hit.” If there is indeed a matching record, on the
average it will be found in half the time needed to process
the whole database.

In most real applications the database will have been
sorted using one of the methods discussed earlier. Here, the
basic approach is to do a binary search. First the key in the
middle record in the database is examined. The key is com-
pared with the search key. If the search key is smaller, then
any matching key must be in the first half of the database.
Otherwise, it must be in the second half (unless, of course,
it happens to be the matching key). The process is then
repeated. That is, if the key is somewhere in the first half,
that portion of the list is in turn split in half and its middle
value is examined, and the comparison to the search key is
made. Thus, the area in which the matching key must be
found is progressively cut in half until either the matching
key is found or there are no more records to check. Because
of the power of successive division, the binary search is
very quick, and doubling the size of the database means
adding only one more comparison on the average.

Sometimes knowledge about the distribution of keys
in the database can be used to improve even the binary
search. For example, if keys are alphabetical and the search
key begins with S, it is likely to be faster to pick a starting
point near the end of the list rather than from the middle. A
binary tree (see tree) can be constructed from the keys in a
database in order to analyze the most likely starting points
for a search.

Finally, hashing (as previously discussed) can be used
to quickly calculate the expected location of the desired
record, provided there are no collisions.

Further Reading
Knuth, Donald E. Art of Computer Programming, Volume 3: Search-

ing and Sorting. 2nd ed. Upper Saddle River, N.J.: Addison-
Wesley Professional, 1998.

Ploedereder, Erhard. “The Sort Algorithm Animator V1.0.” Avail-
able online. URL: http://www.iste.uni-stuttgart.de/ps/Ploede-
reder/sorter/sortanimation2.html. Accessed August 21, 2007.

Sedgewick, Robert. Algorithms in C++: Parts 1–4: Fundamentals,
Data Structures, Sorting, Searching. Upper Saddle River, N.J.:
Addison-Wesley, 1998.

Wilt, Nicholas. Classical Algorithms in C++: With New Approaches
to Sorting, Searching, and Selection. New York: Wiley, 1995.

sound file formats
There are a number of ways that sound can be sampled,
stored, or generated digitally (see music, computer). Here
we will look at some of the most popular sound file formats.

WAV
The WAV (wave) file format is specific to Microsoft Win-
dows. It essentially stores the raw sample data that rep-
resents the digitized audio content, including information
about the sampling rate (which in turns affects the sound
quality). Since WAV files are not compressed, they can con-
sume considerable disk space.

AIFF
AIFF stands for Audio Interchange File Format, and is spe-
cific to the Apple Macintosh and to Silicon Graphics (SGI)
platforms. Like WAV, it stores actual sound sample data. A
variant, AIFF-C, can store compressed sound.

AU
The AU (audio) file format was developed by Sun Microsys-
tems and is used mainly on UNIX systems, and also in Java
programming.

MIDI
MIDI stands for Musical Instrument Digital Interface.
Unlike most other sound formats, MIDI files don’t represent
sampled sound data. Rather, they represent virtual musical
instruments that synthesize sound according to complex
algorithms that attempt to mirror the acoustic character-
istics of real pianos, guitars, or other instruments. Since
MIDI is like a “score” for the virtual instruments rather
than storing the sounds, it is much more compact than
sampled sound formats. MIDI is generally used for music
composition rather than casual listening.

MP3
MP3 is actually a component of the MPEG (Moving Picture
Expert Group) multimedia standard, and stands for MPEG-
1 Audio Layer 3. It is now the most popular sound format,
using compression to provide a balance of sound quality

448        sound file formats

and compactness that is comparable to that of standard
audio CDs and suitable for most listeners. The compres-
sion algorithm relies upon psychoacoustics (the study of
how people perceive the components of sound) to identify
frequencies that humans can’t hear, and thus may be safely
discarded. The digitized sound on a CD is compressed up
to 1/12 or less of its original size, so a 630 MB CD becomes
about 50 MB in MP3 files.

Since most PC users now have hard drives rated in the
hundreds of gigabytes (GB), it is easy to store an exten-
sive music library in MP3 form. Most PCs now come with
software that can play MP3 files (such as Windows Media
Player), and there are also free and shareware programs
from a variety of sources, as well as plug-ins for playing
sound files directly from the Web browser.

Since MP3 is much more compact than “raw” CD for-
mat, users with inexpensive CD-RW drives can “burn”
large amounts of music in MP3 form onto a single CD. This
is typically done using software that “rips” the raw tracks
from an audio CD and converts them to an MP3 file, which
can then be stored on the PC’s hard drive.

In recent years portable media players such as the iPod
have become ubiquitous (see music and video players,
digital). MP3 is the most popular format for music that is
not digitally protected from copying (see digital rights
management). However, because MP3 involves a number
of patents, it is not included by default in Linux distribu-
tions, which instead provide Ogg, a “container” that can be
used for a variety of formats (see codecs).

Further Reading
Audio File Types. Available online. URL: http://www.fileinfo.net/

filetypes/audio. Accessed August 22, 2007.
Johnson, Dave, and Rick Broida. How to Do Everything with MP3

and Digital Music. New York: McGraw Hill Professional, 2001.
Young, Robert. The MIDI Files. 2nd ed. New York: Prentice Hall,

2001.

space exploration and computers
It might have been barely possible to put a satellite (or per-
son) in orbit without the use of computers, but any more
extensive exploration of space requires many types of com-
puter applications.

Human Space Exploration
Flying to the Moon required precisely calculated and con-
trolled “burns” to inject the Apollo spacecraft from orbit
into its arcing trajectory to the Moon. The detachable
Lunar Excursion Module (LEM) also had a computer on
board (roughly comparable in power to something found
in today’s programmable calculators). Although the pilot
controlled the final landing manually, the computer inter-
preted radar data to fix the lander’s position, monitored fuel
consumption, and provided other key data.

The Space Shuttle, the most complex vehicle ever built
by human beings, has five onboard computer systems that
control flight maneuvers (including rendezvous and dock-
ing operations), monitor and control environmental condi-
tions, keep track of fuel, batteries, life support, and other

consumables, and provide many other functions to support
the crew’s tasks and experiments.

Automated Space Exploration
Thus far, human explorers have flown no farther than the
Moon. However, in the last 40 years an extensive survey of
most of the solar system has been carried out by robot (that
is to say, computerized) probes and landers. These probes
have landed on Mars and visited every planet except Pluto,
as well as making close approaches to asteroids and comets.

The control computer aboard a space probe has sev-
eral jobs. It must keep the probe oriented in such a way
that its solar panels can receive energy from the Sun, as
well as keeping an antenna pointed toward Earth so it can
receive commands and return data from the probe’s scien-
tific instruments.

Starting with Voyager 2 (a probe that is still returning
data from more than 7 billion miles from Earth), space probe
computers have been more autonomous, able to make attitude
corrections and course corrections as needed. The onboard
computer can even be reprogrammed with new instruc-
tions sent from Earth. Space probes have returned incredibly
detailed pictures of the surface of the Moon and planets, pre-
paring the way for human missions or robot landers.

Landers reach a fixed point on a planetary surface and
transmit photographs, temperature, radiation, and other
readings. Probes can survive only for minutes on the hos-
tile surface of Venus, but have functioned for many months
on Mars. In a remarkably ambitious mission beginning in
1976, the two Viking Mars landers were able to carry out
experiments on soil samples in an unsuccessful attempt to
find evidence of life while a third probe mapped the planet’s
surface from orbit. Besides demonstrating remarkable reli-
ability (Viking 2 was still operating in 1982 when it was
accidentally turned off by a remote command), the mis-
sion also demonstrated the ability to coordinate surface and
orbital exploration.

In July 1997, the Mars Pathfinder probe landed on the red
planet, rolling and bouncing to a stop inside a sort of giant
airbag. After deflating, the Pathfinder base station deployed
the Sojourner mobile robot. This vehicle (see robotics)
was controlled by operators on Earth, but because of the
10–15-minute time delay in signals arriving from Earth,
the Sojourner had some autonomous ability to avoid colli-
sions or other hazards. The onboard computer also had to
compress and transmit images and other data. The follow-
on Mars Exploration Rover (MER) program began in 2003
with the launching of two larger surface rovers dubbed
Spirit and Opportunity. Landing in January 2004, the rovers
have shown remarkable durability, still functioning in early
2008, far beyond their original three-month mission life.

The need to build compact computers and other electron-
ics for space exploration helped spur the development of tech-
niques now found in garden-variety consumer electronics.
Space computers are also important for demonstrating the
reliability and robustness that is necessary for applications
on Earth (such as in the military). Space electronics must be
shielded and “hardened” to withstand the intense solar radia-
tion, extreme changes in temperature, and electromagnetic

space exploration and computers        449

fluxes or surges. Redundancy can be used where possible, but
weight is always at a high premium. With the exception of
certain satellites and the Hubble Space Telescope, space com-
puters cannot receive on-site service visits.

Because of the high cost and risk of maintaining human
life for long periods in space, it is likely that robotic probes
and rovers will remain the main means for space explora-
tion in the early 21st century.

Further Reading
Furmiss, Tim. A History of Space Exploration and Its Future. Lon-

don: Mercury Books, 2006.
Hall, Eldon C. Journey to the Moon: The History of the Apollo Guid-

ance Computer. Reston, Va.: American Institute of Aeronau-
tics, 1996.

Mars Exploration Rover Mission (Jet Propulsion Laboratory).
Available online. URL: http://marsrovers.jpl.nasa.gov/home/
index.html. Accessed August 22, 2007.

Mars Pathfinder [archive]. Available online. URL: http://mpfwww.
jpl.nasa.gov/MPF/index1.html. Accessed August 22, 2007.

Matloff, Gregory L. Deep Space Probes: To the Outer Solar System
and Beyond. 2nd ed. New York: Springer, 2005.

Squyres, Steve. Roving Mars: Spirit, Opportunity, and the Explora-
tion of the Red Planet. New York: Hyperion, 2005.

Spafford, Eugene H.
(1956– )
American
Computer Scientist

Eugene (Gene) H. Spafford is a computer scientist and pioneer
in network security. Spafford earned a B.A. in mathematics

and computer science from the State University of New York
at Brockport. He then earned M.S. (1981) and Ph.D. (1986)
degrees at the Georgia Institute of Technology, with his grad-
uate work focused on distributed operating systems.

Usenet and Beyond
Spafford played a key role in the development of the Usenet
(see netnews and newsgroups), including the backbones
and connections that provided for the efficient distribution
of a growing volume of news posts, as well as the system
for naming newsgroups. He also created basic introductory
documentation to help new users participate in the system
responsibly.

On the night of November 2, 1988, sites throughout
the Internet began to shut down. The culprit was a worm
program (see computer virus) that Spafford analyzed in
a technical paper. The worm would unfortunately only be
the first of a legion of worms and viruses that would infect
the network, and Spafford would apply considerable effort
to helping cope with them. Since then Spafford has been
a computer security consultant and adviser for numerous
organizations including Microsoft, Intel, the U.S. Air Force,
the National Security Agency, the FBI, and the National Sci-
ence Foundation.

Spafford has been on the faculty at Purdue University
since 1987. In 2007, he was appointed an adjunct professor
of computer science at the University of Texas at San Anto-
nio. He is also executive director of the university’s new
Institute for Information Assurance.

Spafford has served on the boards of a number of pro-
fessional societies, including the Computer Research
Association and the U.S. Public Policy Committee of the
Association for Computing Machinery (ACM). He has writ-
ten several books and hundreds of papers on UNIX and
Internet security and related ethical issues. Spafford became
an ACM Fellow in 1997 and a Fellow of the American Asso-
ciation for the Advancement of Science in 1999. He was
inducted as a Fellow of the Institute for Electrical and Elec-
tronics Engineers (IEEE) in 2000 and received its Technical
Achievement Award in 2006. In 2007 Spafford received the
ACM President’ Award.

Further Reading
Garfinkel, Simson L., and Eugene H. Spafford. Practical UNIX

Security. Sebastapol, Calif.: O’Reilly, 2003.
Rospach, Chuq von, with editing additions by Eugene H. Spafford.

“A Primer on How to Work with the Usenet Community.”
Available online. URL: http://www.faqs.org/faqs/usenet/primer/
part1/. Accessed November 18, 2007.

Spafford, Eugene H. “The Internet Worm: Crisis and Aftermath.”
Communications of the ACM 32 (June 1989): 678–687. Avail-
able online. URL: http://vx.netlux.org/lib/aes01.html. Accessed
November 18, 2007.

Spaf’s Home Page. Purdue University. Available online. URL: http://
homes.cerias.purdue.edu/~spaf/. Accessed November 18, 2007.

spam
In a well-known 1970 sketch by the British comedy troupe
Monty Python, a customer is trying to order a breakfast item

How do scientists look at images that are sent back from another
planet and determine what is interesting and needs further inves-
tigation? Mars rover scientists do this very task during surface
mission operations. Each day, rovers send to Earth new images
that the science team must examine. These images allow the sci-
entists to think of hypotheses that relate to help the science team
decide what to study and determine what experiments they will
conduct.  (NASA photo)

450        Spafford, Eugene H.

that does not include Spam (the popular luncheon meat). A
group of Vikings then keeps interrupting the conversation
by loudly singing “Spam, lovely Spam, wonderful Spam. . . .”
Segue to the mid-1990s when people (including a legal firm)
began automatically posting hundreds of identical messages
on Usenet (see netnews and newsgroups) groups; the
sketch came to mind and the postings were quickly dubbed
“spam”—although the term may actually date back to the
1980s. As news of the spam grew, some administrators and
users used “cancelbots” to automatically delete the offend-
ing messages; others opposed this as censorship, and many
newsgroups became effectively unreadable.

While spam can appear in any communications medium
(including chat, instant messaging, and even blogs), the
most prevalent type is e-mail spam, which costs U.S. busi-
nesses billions of dollars a year in processing expenditures,
lost time, and damage caused by malicious software (mal-
ware) for which spam can be either a delivery vehicle or an
inducement. In 2007 an estimated 90 billion spam messages
were sent each day.

The fundamental driving force of spam is the fact that,
given one has Internet access, sending e-mail costs essen-
tially nothing, no matter how many messages are sent. Thus
even if only a tiny number of people respond to a spam
solicitation (such as for sexual-enhancement products), the
result is almost pure profit for the spammer.

Besides directly making fraudulent solicitations for
products that are ineffective, counterfeit, or nonexistent,
spam carries two other dangers: inducements to click to
visit fake Web sites (see phishing and spoofing) and
attachments containing viruses or other dangerous soft-
ware (see computer virus and spyware and adware).

Fighting Spam
Much spam is spread by first compromising thousands of
systems (via viruses) and planting in them “bots,” or soft-
ware that can be programmed to mail spam. The control-
lers of “botnets” can then sell their service to spammers
who want to get their message distributed widely. The
spammers can also buy lists of e-mail addresses that have
been “harvested” from postings, poorly secured Web sites,
and so on.

Ways to stop the spread of spam include the following:

• � e-mail filtering software, using a combination of text
analysis by keyword or statistical correlation (see
Bayesian analysis) and lists of Internet locations
(domains) associated with spamming; filtering can be
done both by service providers and individual users,
or collaboratively

• � tightening the technical requirements for messages to
be accepted by mail servers (much spam has poorly
formatted headers)

• � improving techniques for blocking the viruses used
by spammers to set up their bots—see computer
virus and firewall

• � attempting to shut down the infrastructure that sup-
ports spam operations, such as hosts who allow bulk

e-mail, and sellers of spamming software and illicitly
gathered address lists

Spam is illegal in a number of respects. Spamming is against
the “acceptable use policy” of most Internet Service Provid-
ers (ISP), though willingness to enforce these rules var-
ies. In 2003 Congress passed the CAN-SPAM act, which
bans bulk e-mail that contains misleading subject or header
lines, but has been criticized for being weak and for pre-
empting more stringent state laws. (The law also requires
that messages include an opt-out provision, but spammers
simply use this to verify that the e-mail address is valid.)

Although filtering software and other measures can
reduce the amount of spam seen by the average user, spam-
mers and spam-fighters continue their relentless battle with
each countermeasure, leading to altering the spam to make
it more likely to pass through. In the long run probably
only a Net-wide authentication of all e-mail senders and/or
a small per-message e-mail fee could effectively banish the
scourge of spam.

Further Reading
Boutin, Paul. “Can E-mail Be Saved?” InfoWorld, April 16, 2004.

Available online. URL: http://www.infoworld.com/article/04/
04/16/16FEfuturemail_1.html. Accessed November 18, 2007.

Garretson, Cara. “12 Spam Research Projects That Might Make a
Difference.” Network World, November 2007. Available online.
URL: http://www.networkworld.com/news/2007/112007-spam-
research.html. Accessed April 28, 2008.

Gregory, Peter H., and Michael A. Simon. Blocking Spam & Spyware
for Dummies. Hoboken, N.J.: Wiley, 2005.

Lee, Nicole. “How to Fight Those Surging Splogs” [spam blogs].
Wired News, October 27, 2005. Available online. URL: http://
www.wired.com/culture/lifestyle/news/2005/10/69380.
Accessed November 18, 2007.

Markoff, John. “Attack of the Zombie Computers Is a Growing
Threat.” New York Times, January 7, 2007. Available online.
URL: http://www.nytimes.com/2007/01/07/technology/07net.
html. Accessed November 18, 2007.

McWilliams, Brian S. Spam Kings: The Real Story behind the High-
Rolling Hucksters Pushing Porn, Pills, and %*@)# Enlargements.
Sebastapol, Calif.: O’Reilly, 2004.

Naughton, Philippe. “Arrest of ‘Spam King’ No Relief for Inboxes.”
Times (London) online, June 1, 2007. Available online. URL:
http://technology.timesonline.co.uk/tol/news/tech_and_web/
article1870548.ece. Accessed November 18, 2007.

Spammer-X. Inside the Spam Cartel: Trade Secrets from the Dark
Side. Rockland, Mass.: Syngress, 2004.

Zeller, Tom. “The Fight Against V1@gra (and Other Spam).” New
York Times, May 21, 2006. Available online. URL: http://www.
nytimes.com/2006/05/21/business/yourmoney/21spam.
html?_r=1&oref=slogin. Accessed November 18, 2007.

speech recognition and synthesis
The possibility that computers could use spoken language
entered popular culture with Hal 2001, the self-aware talk-
ing computer in the film 2001: A Space Odyssey. On a practi-
cal level, the ability of users to communicate using speech
rather than a keyboard would bring many advantages, such
as mobile, hands-free computing and greater independence
for disabled persons. Considerable progress has been made
in this technology since Hal “talked” in 1968.

speech recognition and synthesis        451

Speech recognition begins with digitizing the speech
sounds and converting them into a standard, compact repre-
sentation. The analysis can be based on matching the input
sounds to one of about 200 “spectral equivalence classes”
from which the representation can be created. Alternatively,
algorithms can use data based on modeling how the human
vocal tract produces speech sounds, and extract key fea-
tures that then become the speech representation. Neural
networks can also be “trained” to recognize speech fea-
tures (see neural network). The latter two approaches
are potentially more flexible but also considerably more dif-
ficult, and tend to be used in research rather than in com-
mercial voice recognition systems.

Whichever form of representation is used, it must then
be matched to the characteristics of particular words or
phonemes, usually with the aid of sophisticated statistical
and time-fitting techniques. The simplest systems work on
a word level, which may suffice if the system is restricted
to a simple vocabulary and the user speaks slowly and dis-
tinctly enough. Such systems usually require that the user
“train” the system by speaking selected words and phrases.
The user can then control the system with a set of voice
commands.

Creating a system that can handle the full range of lan-
guage is much more difficult. This kind of system breaks
the language down into phonemes, its basic sound constitu-
ents (English has about 40 phonemes). The system includes
a stored dictionary of phoneme sequences and the corre-
sponding words. However, “understanding” which words
are being spoken is more than a matter of matching pho-
neme sequences to a dictionary. For one thing, the sound of
the first or last phoneme in a word can change depending
on the phoneme in an adjacent word.

Once the speech has been recognized, it can be con-
verted to character data (see characters and strings)
and treated as though the text had been entered from the
keyboard. This means, for example, that a user could dic-
tate text to be placed in a word processor document as well
as using voice commands to perform tasks such as format-
ting text. (Special words can be used to introduce and end
commands.)	

Voice control and dictation have been offered commer-
cially by such companies as Dragon Systems and Kurzweil.
Microsoft now includes speech recognition and synthesis
facilities in the latest version of its popular office suite,
Office 2007.

Voice Synthesis
The other part of the speech equation is the ability to have
the computer turn character codes into spoken words. The
most primitive approach is to digitally record appropri-
ate spoken words or phrases, which can then be replayed
when speech is desired. Naturally, what is spoken is limited
to what is available in the recorded library, although the
words and phrases can be combined in various ways. Since
the combinations lack the natural transitions that speakers
use, the result sounds “mechanical.” Common applications
include automated announcements in train stations or in
prompts for voicemail systems.

To produce a synthesizer that can “speak” any natural
language text, the system must have a dictionary that gives
the phonemes found in each word. The 40 or so different
phonemes can then be digitally recorded and the system
would then identify the phonemes in each word and play
them to create speech. While this solves the limited vocab-
ulary problem, the synthesized speech is rather unnatural
and hard to understand. This is because, as noted earlier,
the way phonemes are sounded changes under the influ-
ence of adjacent phonemes, and these nuances are lacking
in a simple phoneme playback.

More sophisticated voice synthesis systems record natu-
ral speech and identify all the possible combinations of half
of a phoneme and half of an adjacent phoneme. That way the
possible transition sounds are also recorded, and the result-
ing speech sounds considerably more natural. The drawback
is that more memory and processing power are required, but
these commodities are becoming increasingly cheaper.

Speech recognition and synthesis technology has made
only slow inroads into the computing mainstream, such
as office applications. Given the costs of hardware, soft-
ware, and training, the keyboard remains more produc-
tive and cost-effective for most applications. However, voice
technology does have a growing number of specialty uses,
including security and access systems, speech synthesis for
disabled persons who cannot see or speak, and enabling
service robots to interact with people in the environment.
Speech technology has also been a long-standing topic in
artificial intelligence and robotics research.

Further Reading
Brown, Robert. “Exploring New Speech Recognition and Synthesis

APIs in Windows Vista.” MSDN Magazine. Available online.
URL: http://msdn.microsoft.com/msdnmag/issues/06/01/
speechinWindowsVista/. Accessed August 22, 2007.

Holmes, John, and Wendy Holmes. Speech Synthesis and Recogni-
tion. 2nd ed. Boca Raton, Fla.: CRC Press, 2001.

Huang, Xuedong, Alex Acero, and Hsiao-Wuen Hon. Spoken Lan-
guage Processing: A Guide to Theory, Algorithm, and System
Development. Upper Saddle River, N.J.: Prentice Hall, 2001.

Jurafsky, Daniel, and James H. Martin. Speech and Language Pro-
cessing: An Introduction to Natural Language Processing, Com-
putational Linguistics and Speech Recognition. Upper Saddle
River, N.J.: Prentice Hall, 2000.

Speech Technology (Google Directory). Available online. URL:
http://www.google.com/Top/Computers/Speech_Technology/.
Accessed August 22, 2007.

Speech Technology Research, Development, and Deployment
(Carnegie Mellon University). Available online. URL: http://
www.speech.cs.cmu.edu/. Accessed August 22, 2007.

spreadsheet
With the possible exception of word processing, no per-
sonal computer application caught the imagination of the
business world as quickly as did the spreadsheet, which
first appeared as Daniel Bricklin’s VisiCalc in 1979. Visi-
Calc quickly became the “killer app”—the application that
could justify corporate purchases of Apple II computers.
When the IBM PC began to dominate the office computing
industry in the mid-1980s, it had a new spreadsheet, Lotus
1-2-3. By the end of the decade, however, Microsoft’s Excel

452        spreadsheet

spreadsheet had come to the forefront, running on Micro-
soft Windows. It remains the market leader today.

How Spreadsheets Work
A spreadsheet is basically a tabular arrangement of rows
and columns that define many individual cells. Typically,
the columns are lettered (A to Z, then AA, AB, and so on)
while the rows are numbered. A particular cell is referenced
using its column and row coordinates; thus A1 is the cell in
the upper left corner of the spreadsheet.

Any cell can contain a numeric value, a formula, or a label
(such as for giving a title to the spreadsheet or some section of
it). Formulas reference the values in other cell locations. For
example, if the formula =SUM (A1:B1) is inserted into cell C1,
when the spreadsheet is calculated the sum of the contents of
cells A1 and B1 will be inserted into C1. Modern spreadsheets
let users select from a variety of functions (predefined formu-
las) for such things as interest or rates of return. Instead of
having to type the individual coordinates of cells to be used
in a formula, he or she can simply click on or drag across the
cells to select them. Formulas can also include conditional
evaluation (similar to the If statements found in program-
ming languages—see branching statements).

Spreadsheets provide a variety of “housekeeping” com-
mands that can be used for functions such as copying or
moving a range of cells or “cloning” a cell’s value into a
range of cells. Large spreadsheets can be broken down into
multiple linked spreadsheets to make it easier to under-
stand and maintain.

Macros offer a powerful way to simplify and automate
spreadsheet operations. A macro is essentially a set of pro-
grammed instructions to be carried out by the spreadsheet
(see macro). One use of macros is to carry out compli-
cated procedures by taking advantage of features similar
to those found in programming languages such as Visual
Basic. Macros can also be used to automate data entry into
the spreadsheet and validate the data. Depending on their
complexity, macros can either be typed in as a series of
statements or recorded as the user takes appropriate menu
and mouse actions. “Solver” utilities can also simplify the
process of tweaking input variables in order to achieve a
defined goal. Although spreadsheets can certainly solve
many types of algebraic equations, symbolic manipulation
is better handled by programs such as Mathematica (see
mathematics software).

Besides having extensive graphics and charting capa-
bilities, modern spreadsheets are often part of integrated
office programs (see application suite). Thus, a Microsoft
Excel spreadsheet could obtain data from an Access data-
base and create charts suitable for Web pages or PowerPoint
presentations.

Further Reading
Balakrishnan, Nagraj, Barry Render, and Ralph M. Stair, Jr. Man-

agerial Decision Modeling with Spreadsheets. 2nd ed. Upper
Saddle River, N.J.: Prentice Hall, 2006.

Google Docs and Spreadsheets. Available online. URL: http://docs.
google.com. Accessed August 22, 2007.

Harvey, Greg. Microsoft Office Excel 2007 for Dummies. Hoboken,
N.J.: Wiley, 2007.

Hayden, Yvonne. So You Need to Make a Spreadsheet: A Quick Start
to Microsoft Excel 2003. Chandler, Ariz.: Copadego Publish-
ing, 2006.

Jelen, Bill, ed. The Spreadsheet at 25: The 25 Year Evolution of the
Invention that Changed the World. Uniontown, Ohio: Holy
Macro! Books, 2005.

Neuwirth, Ertich. “Spreadsheets, Mathematics, Science, and
Statistics Education.” Available online. URL: http://sunsite.
univie.ac.at/Spreadsite/. Accessed August 22, 2007.

spyware and adware
Spyware and adware are two pervasive threats to computer
users. Both are programs that are installed more or less
surreptitiously, often accompanying an attractive-looking
“free” software package or media download. Depending on
how widely it is defined, as many as eight out of 10 PCs
may be infected by some sort of spyware. Signs of infection
can include the system slowing down or periodically freez-
ing, Web browsers that fail to display the expected home
page or search results, and the appearance of numerous
unwanted pop-up windows (a sign of adware).

Ranging from least to most harmful, spyware and
adware can do the following:

• � Display annoying advertising that can clog up the
screen or cover up information (some adware can also
be spyware that uses information about the user to tar-
get advertising)

• � Track Web browsing to provide information to sell to
marketers (see cookies)

• � Obtain personal information for use in identity theft

• � Install keyloggers (programs that record keystrokes,
such as passwords being entered) or other “back
door” or “trojan” programs

Stopping Spyware
Growing concern about spyware has prompted the use of
antispyware programs such as Ad-Aware and Spybot-Search
& Destroy, as well as a free program from Microsoft. Anti-
spyware programs are also being included in popular secu-
rity suites from companies such as Symantec and McAfee.
The programs work similarly to antivirus programs, watch-
ing for suspicious behavior or “signatures” matching known
spyware or adware. Depending on the program, the spy-
ware can be blocked from executing at all or removed from
the system.

The software varies considerably in effectiveness, so
users may have to run several different programs to com-
pletely remove an “infestation.”

Spyware has been generally given a lower priority than
viruses or even spam. When challenged, spyware makers
generally claim that the user authorized its installation (at
least implicitly) by installing the utility or other software
that contains it. Although antispyware legislation has been
introduced in Congress, it has not passed as of mid-2008.
However, state officials such as former New York State
Attorney General Eliot Spitzer successfully sued a spyware
company, winning a $7.5 million settlement.

spyware and adware        453

Further Reading
“Antispyware.” PC Magazine. Available online. URL: http://www.

pcmag.com/category2/0,1738,1639157,00.asp. Accessed Novem-
ber 18, 2007.

Chadbrow, Eric. “Spyware and Adware Continue to Plague PCs.”
InformationWeek. March 27, 2006. Available online. URL:
http://www.informationweek.com/story/showArticle.jhtml?ar
ticleID=183702594. Accessed November 18, 2007.

Gregory, Peter H., and Michael A. Simon. Blocking Spam & Spyware
for Dummies. Hoboken, N.J.: Wiley, 2005.

“Magoo’s Wise Words: Guide to Eliminating Spyware.” Avail-
able online. URL: http://guides\radified.com/magoo/guides/

spyware/remove_spyware_01.htm. Accessed November 18,
2007.

Shetty, Sachin. “Introduction to Spyware Keyloggers,” April 14,
2005. Available online. URL: http://www.securityfocus.com/
infocus/1829. Accessed November 18, 2007.

SQL
Structured query language was originally developed in the
early 1970s as a command interface for IBM mainframe
databases. Today, however, SQL has become the lingua

Modern spreadsheets have many sophisticated features. Microsoft Excel, for example, has a “Solver” module that can be used to solve for par-
ticular values or to maximize or minimize specified values.

454        SQL

franca for relational database systems (see database man-
agement system).

A relational database (such as Oracle, Sybase, IBM DB2,
and Microsoft Access) stores data in tables called relations.
The columns in the table describe the characteristics of
an entity (corresponding to data fields). For example, in a
customer database the Customer table might include attri-
butes such as customer number, First_name, Last_Name,
Street, City, Phone_number, and so on. The rows in the
table (sometimes called tuples) represent the data records
for the various customers.

Many database systems have more than one table. For
example, a store’s database might contain a Customers table
(for information identifying a customer), an Item table (giv-
ing characteristics of an item, such as price and number in
stock), and a Transaction table (whose characteristics might
be customer number, date, item bought, and so on). Notice
that the Transaction record contains both a customer num-
ber and an item number. It thus serves as a sort of bridge or
link between the Customer and Item tables.

SQL provides commands that can be used to specify and
access components of a database. For example, the INSERT
and DELETE commands can be used to add or remove rows
(records) from tables.

To query a database means to give criteria for selecting
certain records from a table. For example, the query

SELECT * FROM CUSTOMERS WHERE LAST_NAME =
“Howard”

would return the complete records for all customers whose
last name is Howard. If only selected fields are desired, they
can be specified like this:

SELECT NUMBER, NAME, PRICE FROM ITEMS WHERE
PRICE > = 50.00

This query will display the Number, Name, and Price fields
for all items whose price is greater than or equal to $50.00.

SQL includes many commands to further refine data
processing and reporting. There are built-in mathemati-

cal functions as well as a GROUP BY command for fur-
ther breaking down a report by a particular field name or
value.

SQL can be used interactively by typing commands at
a prompt, but database applications designed for less tech-
nical users often provide a user-friendly query form (and
perhaps menus or buttons). After the user selects the appro-
priate fields and values, the program will then generate the
necessary SQL statements and send them to the internal
“database engine” for processing. The results will then be
displayed for the user.

SQL procedures can be stored and managed as part of
a database. SQL can also be “embedded” within a more
complete programming language environment so that, for
example, a Java program can perform SQL operations while
using Java for processing that cannot be specified in SQL.
In the mid-1990s an object-oriented version of SQL called
OQL (object query language), allowing the use of that popu-
lar paradigm for database operations (see object-oriented
programming).

One of the most popular implementations of SQL is
MySQL, which is privately owned and developed but avail-
able for free license on many platforms, including Windows
and Linux. A number of applications are designed to work
with MySQL databases: see, for example, wikis and Wiki-
pedia and YouTube.

Further Reading
Forta, Ben. Sams Teach Yourself SQL in 10 Minutes. 3rd ed. India-

napolis: Sams, 2004.
Kofler, Michael. The Definitive Guide to MySQL 5. 3rd ed. Berkeley,

Calif.: Apress, 2005.
MySQL home page. Available online. URL: http://mysql.org/.

Accessed August 22, 2007.
Rankins, Ray, et al. Microsoft SQL Server 2005 Unleashed. India-

napolis: Sams, 2006.
Tahaghoghi, Seyed M. M., and Hugh Williams. Learning MySQL.

Sebastapol, Calif.: O’Reilly Media, 2006.
Taylor, Allen G. SQL for Dummies. 6th ed. Hoboken, N.J.: Wiley,

2006.

Structured Query Language (SQL) is a standardized way to query and manipulate databases. Here the statement SELECT NUMBER, NAME,
PRICE WHERE PRICE >= 50.00 extracts only the records meeting that criterion.

SQL        455

stack
Often a temporary storage data area is needed during
processing. For example, a program that calls a procedure
(see procedures and functions) usually needs to pass
one or more data items to the procedure. These items
are specified as arguments that will be matched to the
procedure’s defined parameters. For example, the proce-
dure call

Square (50, 50, 20)

could draw a square whose upper left corner is at the
screen coordinates 50, 50 and whose length per side is 20
pixels.

When the compiler generates the machine code for this
statement, that code will probably instruct the processor
to store the numbers 50, 50, and 20 onto a stack. A stack is
simply a list that represents successive locations in mem-
ory into which data can be inserted. The operation of a
stack can be visualized as being rather like the spring-
loaded platform onto which dishes are stacked for washing
in some restaurants. As each dish (number) is added, the
stack is “pushed.” Because only the item “on top” (the last
one added) can be removed (“popped”) at any given time,
a stack is described as a LIFO (last in, first out) structure.
(Note that this is different from a queue, where items can
be added or removed from either end [see queue].)

Stacks are useful whenever nested items must be
tracked. For example, a procedure might call a procedure
that in turn calls another procedure. The stack can keep
track of the parameters (as well as the calling address) for
each pending procedure.

Stacks can also be used to evaluate nested arithmetic
expressions. For example, the expression that we write in
conventional (prefix) notation as

7 * 5 + 2

can be represented internally in postfix form as:

* + 5 7 2

Here one stack can be used to hold the operators (* +) and
one the operands (5 7 2). The evaluation then proceeds in
the following steps:

Pop the * from the operator stack

Since * is a binary operator (one that needs
two operands), pop the 5 and 7 from the
operand stack

Multiply 5 and 7 to get 35.

Pop the + from the operator stack.

Pop the 35 (which is now on the top of the
operand stack) and the 2

Add 35 and 2 to get 37.

An interesting programming language uses this stack
mechanism for all processing (see forth). In working with

stacks, it may be necessary to keep in mind any limitations
on the amount of memory allocated to the stack, although a
stack can also be implemented dynamically as a linked list
(see list processing).

Further Reading
“Data Structures/Stacks and Queues.” Wikibooks. Available

online. URL: http://en.wikibooks.org/wiki/Data_Structures/
Stacks_and_Queues. Accessed August 22, 2007.

Stallman, Richard
(1953– )
American
Computer Scientist

Richard Stallman created superb software tools—the pro-
grams that help programmers with their work. He went
on to spearhead the open source movement, a new way to
develop software.

Stallman was born on March 16, 1953, in New York
City. He quickly showed prodigious talent for mathematics
and was exploring calculus by the age of eight. Not much
later, his summer camp reading included a manual for the
IBM 7094 mainframe belonging to one of the counselors.
Fascinated with the idea of programming languages, young
Richard began writing simple programs, even though he
had no access to a computer.

Fortunately, a high school honors program let him
obtain some time on a mainframe, and his programming
talents led to a summer job with IBM. While studying
for his B.A. in physics at Harvard (which he received in
1970), Stallman found himself sneaking across town to
the MIT Artificial Intelligence Lab. There he developed
Emacs, a powerful text editor that could be programmed
with a language modeled after LISP, the favorite language
of AI researchers. While working on Emacs and other
system software for the AI Lab, Stallman participated
in the unique MIT “hacker culture.” (During the 1970s,
“hacker” still meant a creative computing virtuoso, not a
cyber-criminal.)

Stallman’s experience in the freewheeling, competi-
tive yet cooperative atmosphere at MIT led him to decide
in 1984 to start the Free Software Foundation, which
would become his life’s work. Stallman and his colleagues
at the FSF worked through the 1980s to develop GNU.
At the time, UNIX, the operating system of choice for
most campuses and researchers, required an expensive
license from Bell Laboratories. GNU (a recursive acronym
for “GNU’s Not UNIX”) was intended to include all the
functionality of UNIX but with code that owed nothing
to Bell Labs. Stallman’s key contributions to the project
included the GNU C compiler and debugger, as well as
his management of a cooperative effort in which many
talented programmers would coordinate their efforts over
the Internet.

By the early 1990s, most of GNU was complete except
for a key component: the kernel containing the essential
functions of the operating system. A Finnish programmer

456        stack

named Linus Torvalds decided to write the kernel and inte-
grate it with much of the existing GNU software. The result
would become known as Linux, and today it is a popular
operating system that runs on many servers and worksta-
tions. While acknowledging Torvalds’s efforts, Stallman
insists that the operating system is more properly called
GNU Linux, to reflect the large amount of GNU code it
employs.

In recent years Stallman has best been known as a vig-
orous advocate for free software (see open-source move-
ment) and for creating alternative structures for controlling
its distribution, such as the various forms of the General
Public License (GPL). Stallman has been accused of being
rigid and abrasive, such as in his urging that certain termi-
nology be used, or, in the case of the phrase “intellectual
property,” not used.

Stallman has received a number of important awards,
including the ACM Grace Hopper Award (1990), Electronic
Frontier Foundation Pioneer Award (1998), and a MacAr-
thur Foundation fellowship (1990).

Further Reading
Free Software Foundation. Available online. URL: http://www.fsf.

org/. Accessed August 22, 2007.
Stallman, Richard M. Free Software, Free Society: Selected Essays

of Richard M. Stallman. Boston: Free Software Foundation,
2002.

Williams, Sam. Free as in Freedom: Richard Stallman’s Crusade for
Free Software. Sebastapol, Calif.: O’Reilly Media, 2002.

standards in computing
One hallmark of the maturity of a technology is the devel-
opment of a variety of kinds of standards that are accepted
by a majority of practitioners. There are several reasons
why standards develop.

Marketplace Standards
In many cases, a particular product gains a prominent
position in an emerging market, and would-be competi-
tors adopt its interface and specifications. For example,
the parallel port printer interface (and plug) developed
by Centronics for its printers was adopted by virtually all
printer manufacturers. Since it would be impracticable for
computer manufacturers to provide many different paral-
lel connectors on their machines, there was a clear market
advantage in setting a standard. When a particular product
(Centronics in this case) becomes that standard, it is mainly
a matter of timing.

Once a marketplace standard is established, manufactur-
ers and consumers will generally not want products that are
incompatible with it. When the IBM PC and its ISA expan-
sion card became the standard followed by many “clone”
manufacturers, IBM discovered that even Big Blue flouted
the standard at its peril. When IBM came out with its MCA
(Microchannel Architecture) in the late 1980s, the new
machines, although possessing some technical advances,
did not sell as well as expected. Most people stayed with
the existing IBM standard and built upwardly compatible
machines upon it.

Official Standards
Some standards are developed by official bodies. For exam-
ple, the International Standards Organization (ISO) has an
elaborate formal process where panels of experts develop
standards for a huge variety of technologies, including many
relating to computing. In an increasingly global economy,
international standards allow equipment (or software) from
one country to be used with that from another. For exam-
ple, credit cards, phone cards, and “smart cards” around the
world have a common format established by ISO standards.
(Standards specific to electrical and electronic engineering
are developed by a similar body, the International Electro-
technical Commission, or IEC.) Standards that have become
widely accepted but are not yet official ISO standards take
the form of Publicly Available Specifications, or PAS. Gov-
ernment contracts often specify ISO standards as well as a
variety of other standards developed by various government
agencies. The ISO 9001 standards apply specifically to com-
puter systems, software, and its development.

Evolution of Standards
The extent of standardization within the broad information
technology (IT) industry varies widely among applications.
Generally, things that have been established for a long time
(meaning, in computing terms, a couple decades or so) are
likely to be well standardized. An example is the standards
for character sets.

For areas in which new applications are emerging, practi-
tioners tend to have less interest (or patience) with the idea of
standards. For example, the World Wide Web is still relatively
new, and standards for the operation of Web sites are emerg-
ing only slowly. In this case, it is mainly concern about such
matters as privacy protection that has encouraged the adop-
tion of standards for matters such as the secure transmission
of credit card information on-line or privacy policies regard-
ing the use of information obtained from Web users. The
potential threat of government regulation often encourages
the development of marketplace standards as an alternative.

Technical societies such as the Institute for Electrical
and Electronic Engineering (IEEE) and the World Wide
Web Consortium are an important forum for the discussion
and development of standards.

Further Reading
Dargan, P. A. Open Systems and Standards for Software Product

Development. Norwood, Mass.: Artech House, 2005.
Hoyle, David. ISO 9000 Quality Systems Handbook. 2nd. ed. Burl-

ington, Mass.: Butterworth-Heinemann, 2006.
“ISO IEC 90003 2004 Software Standard Translated into Plain

English.” Paxiom Research Group. Available online. URL:
http://www.praxiom.com/iso-90003.htm. Accessed August
22, 2007.

Lund, Susan K., and John W. Walz. Practical Support for ISO 9001
Software Project Documentation: Using IEEE Software Engineer-
ing Standards. New York: Wiley, 2006.

statistics and computing
The application of computing technology to the collection
and analysis of statistics is as old as computing itself. Indeed,

statistics and computing        457

Charles Babbage was an early proponent of the collection of
social and economic statistics in order to understand how
society was being changed by the Industrial Revolution in
the early 19th century. By the end of that century, Herman
Hollerith had come to the rescue of the U.S. Census Bureau
by providing his card tabulation machines for the 1890 Cen-
sus. (See Babbage, Charles and Hollerith, Herman.)

In the era of the mainframe, performing statistical
analysis with a computer generally required writing a cus-
tomized program (although the development of FORTRAN
around 1960 gradually led the accumulation of an extensive
library of subroutines that could be employed to perform
statistical functions). Programs generally run in a batch
mode, with data supplied from punched cards or tape.

When the personal computer arrived, it wasn’t yet pow-
erful enough for much statistical work, although a program
such as VisiCalc (see spreadsheet) could be used for sim-
ple operations. Gradually, spreadsheets grew more power-
ful, but statisticians truly rejoiced when software packages
specifically designed for statistical work began to appear.

Today there are hundreds of statistical packages avail-
able, of which the best known one for personal computers
is SPSS. Most packages can be used to perform the stan-
dard forms of statistical analysis, including analysis of vari-
ance, regression analysis, discrete data analysis, time series
analysis, and cluster analysis. There are also packages for
specialized applications. Moving in the direction of greater
generality, mathematical software such as Mathematica and
MATLAB can also be used for statistical applications (see
mathematics software). This category of software expe-
riences steady growth because the ability to analyze data
quickly and interactively is increasingly important given the
growing pace of human activity, whether one is confronted
with a rapidly spreading disease or a volatile economy.

Other areas related to statistical computing include the
extraction of useful correlations from existing data bases
(see data mining) and the development of dynamic models
based on probability and statistics (see simulation).

Further Reading
American Statistical Association. Available online. URL: http://

www.amstat.org. Accessed August 22, 2007.
Givens, Geof H., and Jennifer A. Hoeting. Computational Statistics.

New York: Wiley-Interscience, 2005.
Griffith, Arthur. SPSS for Dummies. Hoboken, N.J.: Wiley, 2007.
Linnemann, Jim. “Statistical Software Resources on the Web.”

Available online. URL: http://www.pa.msu.edu/people/
linnemann/stat_resources.html. Accessed August 22, 2007.

McKenzie, John, and Robert Goldman, Jr. The Student Guide to
MINITAB Release 14 + MINITAB Student Release 14. Upper
Saddle River, N.J.: Addison-Wesley, 2004.

Stoll, Clifford
(1950– )
American
Astrophysicist, Computer Critic

Until he became famous for tracking down a computer hacker,
Clifford Stoll, born on June 4, 1950, in Buffalo, New York, was

an astronomer who had received his Ph.D. from the University
of Arizona in 1980. (In the 1960s and 1970s Stoll had worked
as an engineer at a public radio station in Buffalo.)

In 1986, while working at the Lawrence Berkeley Labora-
tory as a system administrator, Stoll was asked to track down
a 75-cent accounting discrepancy. As he delved into computer
files, Stoll discovered that an unknown hacker had penetrated
supposedly secure systems housing secret data relating to mil-
itary technology. Alarmed, Stoll and his colleagues decided
against immediately shutting down the intruder’s accounts.
Instead, they painstakingly traced him, and discovered an
even more alarming possibility: that he was using the lab’s
computers to reach other computers operated by the military
and defense contractors. Despite being virtually ignored when
reporting his findings to the FBI, Stoll and his impromptu
team soldiered on, even planting false data to keep the intrud-
er’s interest while continuing to trace his movements. Finally
Stoll was able to get the attention of federal authorities. The
intrusion was traced to a West German hacker spy ring that
was selling secrets to the Soviet KGB.

Stoll’s book Cuckoo’s Egg recounted this adventure in
vivid, accessible terms, and made the New York Times best-
seller list for 16 weeks in 1990. For many readers, this was
their first introduction to the vulnerabilities of computer
systems.

Cyber-Critic
In writing and lectures, Stoll is engaging if sometimes a bit
frenetic. He soon turned his iconoclastic attitude toward
computers themselves, warning about the dangers of over-
reliance on them. Stoll’s books Silicon Snake Oil and High
Tech Heretic particularly target the use of computers in edu-
cation. Stoll believes that the technology has been embraced
as a panacea for the endemic problem of underperforming
schools. However, Stoll notes that the technology is often
used for superficial purposes, with little attention to read-
ing and writing skills, while the needs of teachers and stu-
dents and their vital relationship remain neglected. In turn,
advocates of computers in education have criticized Stoll as
being superficial and lacking understanding of what good
software can really do (see computers and education).

In more recent years Stoll has devoted more time to his
first love, astronomy. He also has an unusual hobby: mak-
ing one-sided Klein bottles.

Further Reading
Stoll, Clifford. The Cuckoo’s Egg: Tracking a Spy through the Maze of

Computer Espionage. New York: Doubleday, 1989.
———. High-Tech Heretic: Why Computers Don’t Belong in the Class-

room, and Other Reflections by a Computer Contrarian. New
York: Doubleday, 1999.

———. Silicon Snake Oil: Second Thoughts on the Information High-
way. New York: Doubleday, 1995.

“When Slide Rules Ruled.” Scientific American, May 2006, pp. 80–
87.

streaming
Web users increasingly have access to such content as news
broadcasts, songs, and even full-length videos. The problem

458        Stoll, Clifford

is that the user must receive the content in real time at a
steady pace, not in sputters or jerks. However, factors such
as load on the Web server and network congestion between
the server and user can cause delays in transmission. One
way to reduce the problem would be to compress the data
(see data compression). However, excessive compression
would compromise audio or picture quality to an unac-
ceptable extent. Fortunately, a technology called stream-
ing offers a way to smooth out the transmission of large
amounts audio or video content (see also multimedia).

When a user clicks on an audio or video link, the player
software (or Web browser plug-in) is loaded and the trans-
mission begins. Typically, the player stores a few seconds
of the transmission (see buffering), so any momentary
delays in the transmission of data packets will not appear
as the data starts to play. Assuming the rate of transmis-
sion remains sufficient, enough data remains in the buffer
so that data can be “fed” to the playing software at a steady
pace. If, however, there is too much delay due to network
congestion, the playback will pause while the player refills
its buffer.

The most popular media players for PCs (such as
WinAmp, RealPlayer, and Windows Media Player) provide
for streaming data. Despite streaming, connections of fewer
than about 56 kbps are likely to result in occasional inter-
ruption of content. Together with the use of streaming, the
move to faster cable or DSL connections (see broadband)
is improving the multimedia experience for Web users. In
turn, the ability to easily access video online has fueled
video-sharing services (see user-created content and You-
Tube). Meanwhile, the growing use of fiber and other high-
speed connections into homes is beginning to make “on
demand” streaming video services and IPTV (television
programming delivered via the Internet) competitive with
existing cable and satellite systems.

Further Reading
Follansbee, Joe. Get Streaming!: Quick Steps to Delivering Audio and

Video Online. Burlington, Mass.: Focal Press, 2004.
“Introduction: How to Create Streaming Video.” Media College.

Available online. URL: http://www.mediacollege.com/video/
streaming/overview.html. Accessed August 22, 2007.

IPTV news. Available online. URL: http://www.iptvnews.net/.
Accessed August 22, 2007.

Mack, Steve. Streaming Media Bible. New York: Wiley, 2002.
Stolarz, Damien. Mastering Internet Video: A Guide to Streaming and

On-Demand Video. Upper Saddle River, N.J.: Addison-Wesley
Professional, 2004.

Stroustrup, Bjarne
(1950– )
Danish
Computer Scientist

Bjarne Stroustrup created C++, an object-oriented successor
to the popular C language that has now largely supplanted
the original language.

Stroustrup was born on December 30, 1950, in Aarhus,
Denmark. As a student at the University of Aarhus his inter-

ests were far from limited to computing (indeed, he found
programming classes to be rather dull). However, unlike lit-
erature and philosophy, programming did offer a practical
job skill, and Stroustrup began to do contract programming
for Burroughs, an American mainframe computer company.
To do this work, Stroustrup had to pay attention to both the
needs of application users and the limitations of the machine,
on which programs had to be written in assembly language
to take optimal advantage of the memory available.

By the time Stroustrup received his master’s degree in
computer science from the University of Aarhus, he was an
experienced programmer, but he soon turned toward the
frontiers of computer science. He became interested in dis-
tributed computing (writing programs that run on multiple
computers at the same time) and developed such programs
at the Computing Laboratory at Cambridge University in
England, where he earned his Ph.D. in 1979.

The 1970s was an important decade in computing. It
saw the rise of a more methodical approach to program-
ming and programming languages (see structured pro-
gramming). It also saw the development of a powerful and
versatile new computing environment: the UNIX operating
system and C programming language developed by Dennis
Ritchie (see Ritchie, Dennis) and Ken Thompson and Bell
Laboratories. Soon after getting his doctorate, Stroustrup
moved to Bell Labs, where he became part of that effort.

As Stroustrup continued to work on distributed com-
puting, he decided that he needed a language that was bet-
ter than C at working with the various modules running
on the different computers. He studied an early object-ori-
ented language (see object-oriented programming and
Simula). Simula had a number of key concepts including
the organization of a program into classes, entities that
combined data structures and associated capabilities (meth-
ods). Classes and the objects created from them offered a
better way to organize large programs, and was particularly

In the 1980s Bjarne Stroustrup created the object-oriented C++ lan-
guage that became the most popular language for general applica-
tions programming.  (Bjarne Stroustrup)

Stroustrup, Bjarne        459

suited for distributed computing and parallel programming
where there were many separate entities running at the
same time.

However, Simula was fairly obscure, and it was unlikely
that the large community of systems programmers who
were using C would switch to a totally different language.
Instead, starting in the early 1980s, Stroustrup decided to
add object-oriented features (such as classes with member
functions, user-defined operators, and inheritance) to C. At
first he gave the language the rather unwieldy name of “C
with Classes.” However, in 1985 he changed the name to
C++. (The ++ is a reference to an operator in C that adds one
to its operand, thus C++ is “C with added features.”)

At first some critics criticized C++ for retaining most of
the non-object oriented features of C (unlike pure object
languages such as Smalltalk), while others complained
that the overhead required in processing classes made C++
slower than C. During the 1990s, however, C++ became
increasingly popular, aided by its relatively smooth learn-
ing curve for C programmers and the development or more
efficient compilers. C++ is now the most widely used gen-
eral purpose computer language.

Stroustrup has been honored for his contributions to
computer science. In 1993 he received the ACM Grace Hop-
per Award for his work on C++, and became an AT&T
Fellow. After leaving AT&T Stroustrup became a professor
holding the College of Engineering Chair in Computer Sci-
ence at Texas A&M University. In 2004 Stroustrup received
the IEEE Computer Society Computer Entrepreneur
Award, and in 2005 the William Procter Prize for Scientific
Achievement.

Further Reading
Bjarne Stroustrup [home page]. Available online. URL: http://para-

sol.tamu.edu/people/bs/. Accessed August 22, 2007.
Dolya, Aleksey. “Interview with Bjarne Stroustrup.” Linux Jour-

nal, August 28, 2003. Available online. URL: http://www.
linuxjournal.com/article/7099. Accessed August 22, 2007.

Pontin, Jason. “The Problem with Programming: Bjarne Stroust-
rup, the Inventor of the C++ Programming Language, Defends
His Legacy and Examines What’s Wrong with Most Software
Code.” Technology Review, November 28, 2006. Available
online. URL: http://www.techreview.com/Infotech/17831/
page1/. Accessed August 22, 2007.

Stroustrup, Bjarne. The C++ Programming Language. Special 3rd
ed. Upper Saddle River, N.J.: Addison-Wesley, 1997.

———. The Design and Evolution of C++. Reading, Mass.: Addison-
Wesley, 1995.

structured programming
As programs grew longer and more complex during the
1960s, computer scientists began to pay more attention to
the ways in which programs were organized. Most pro-
gramming languages had a statement called “GOTO” or its
equivalent. This statement transfers control to some arbi-
trary other point in the program, as identified by a label or
line number.

In 1968, computer scientist Edsger Dijkstra (see dijks-
tra, edsger) sent a letter to the editor of the Proceedings of
the ACM with the title “GO TO Statement Considered Harm-

ful.” In it he pointed out that the more such jumps programs
made from place to place, the harder it was for someone to
understand the logic of the program’s operation.

The following year, Dijkstra introduced the term struc-
tured programming to refer to a set of principles for writing
well-organized programs that could be more easily shown
to be correct. One of these principles is statements such as
If . . . Then . . . Else be used to organize a choice between
two or more alternatives (see branching statements) and
that statements such as While be used to control repetition
or iteration of a statement (see loop).

Other computer scientists added further principles, such
as modularization (breaking down a program into separate
procedures, such as for data input, different stages of pro-
cessing, and output or printing). Modularization makes it
easier to figure out which part of a program may be causing a
problem, and to fix part of a problem without affecting other
parts. A related principle, information hiding, keeps the data
used by a procedure “hidden” in that procedure so that it
can’t be changed from some other part of the program.

Structured programming also encourages stepwise
refinement, a program design process described by Niklaus
Wirth, creator of Pascal. This is a top-down approach in
which the stages of processing are first described in high-
level terms (see also pseudocode), and then gradually
fleshed out in their details, much like the writing of an
outline for a book.

The principles of structured programming were soon
embodied in a new generation of programming languages
(see Algol, Pascal, and c). Although use of well-struc-
tured language didn’t guarantee good structured program-
ming practice, it at least made the tools available.

The ideas of structured programming form a solid basis
for programming style today. They have been supplemented
rather than replaced by a new paradigm developed in the
1970s and 1980s (see object-oriented programming).

Further Reading
Dhal, Ole-Johan, Edsger W. Dijkstra, and C. A. R. Hoare, eds.

Structured Programming. New York: Academic Press, 1972.
Dijkstra, Edsger. A Discipline of Programming. Englewood Cliffs,

N.J.: Prentice Hall, 1976.
———. “Go To Statement Considered Harmful.” Communications

of the ACM 11, no. 3 (1968): 147–148.
———. “Notes on Structured Programming.” Available online. URL:

http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF.
Accessed August 22, 2007.

Orr, Kenneth T. Structured Systems Development. New York: Your-
don Press, 1977.

Sun Microsystems
Founded in 1982, Sun Microsystems (NASDAQ symbol:
JAVA) has played an important role in the development
of computer workstations and servers, UNIX-based operat-
ing systems, and the Java programming language (see Java,
unix, and workstation).

During the 1980s, Sun was known mainly for its work-
stations for programmers and graphics professionals, run-
ning on its own SPARC series microprocessors. However,

460        structured programming

by the 1990s the growing power of regular desktop PCs was
reducing the need for special-purpose workstations. As the
Web grew starting in the 1990s, Sun’s line of multiprocess-
ing Web servers became quite successful, though the “dot-
bust” of the early 2000s cut revenues.

One of Sun’s founders was a key developer of UNIX
software (see Joy, Bill). Sun developed its own version of
UNIX (SunOS) for its workstations in the 1980s, and then
joined with AT&T to develop the widely used UNIX System
V Release 4, which in turn became the basis for Sun’s new
operating system, Solaris. (Sun has also supported the use
of Linux on its hardware.)

Sun’s biggest impact on software development, however,
has been its development of the Java language and platform
since the early 1990s. Although newer languages such as
Python, PHP, and Ruby have come along to challenge it,
Java, with its ability to run via “virtual machines” on all
major platforms, is widely used and has a rich set of library
routines and programming frameworks.

Scott McNealy, one of the company’s founders, remains
its chairman. Sun had $13.87 billion revenue in 2007 ($473
million net income), and employs about 36,400 people.

Further Reading
Boyous, Jon. “Java Technology: The Early Years.” Sun Devel-

oper Network. Available online. URL: http://java.sun.com/
features/1998/05/birthday.html. Accessed November 18, 2007.

Southwick, Karen. High Noon: The Inside Story of Scott McNealy
and the Rise of Sun Microsystems. New York: Wiley, 1999.

Sun Microsystems. Available online. URL: http://www.sun.com/.
Accessed November 18, 2007.

Sun Multimedia Center [videos]. Available online. URL: http://
sunfeedroom.sun.com. Accessed November 18, 2007.

Sun Wikis. Available online. URL: http://wikis.sun.com. Accessed
November 18, 2007.

supercomputer
The term supercomputer is not really an absolute term
describing a unique type of computer. Rather, it has been
used through successive generations of computer design
to describe the fastest, most powerful computers available
at a given time. However, what makes these machines the
fastest is usually their adoption of a new technology or
computer architecture that later finds its way into standard
computers.

The first supercomputer is generally considered to be
the Control Data CDC 6600, designed by Seymour Cray
in 1964. The speed of this machine came from its use of
the new, faster silicon (rather than germanium) transistors
and its ability to run at a clock speed of 10 MHz (a speed
that would be achieved by personal computers by the mid-
1980s). Even with transistors, these machines generated
so much heat that they had to be cooled by a Freon-based
refrigeration system.

Cray then left CDC to form Cray Research. He designed
the Cray 1 in 1976, the first of a highly successful series
of supercomputers. The Cray 1 took advantage of a new
technology, integrated circuits, and new architecture: vec-
tor processing, in which a single instruction can be applied

to an entire series (or array) of numbers simultaneously.
This innovation marked the use of parallel processing as
one of the distinguishing features of supercomputers. The
machine’s monolithic appearance gave it a definite air of
science fiction, and the first one built was installed at the
secretive Los Alamos National Laboratory.

The next generation, the Cray X-MP, carried parallelism
further by incorporating multiple processors (the successor,
Cray Y-MP, had 8 processors, which together could perform
a billion floating-point operations per second [1 gigaflop]).

Soon Cray no longer had the supercomputer field to
itself, and other companies (particularly the Japanese man-
ufacturers NEC and Fujitsu) entered the market. The num-
ber of processors in supercomputers increased to as many
as 1,024 (in the 1998 Cray SV1), which can exceed 1 trillion
floating-point operations per second (1 teraflop).

Meanwhile, processors for desktop computers (such as
the Intel Pentium) also continued to increase in power, and
it became possible to build supercomputers by combining
large numbers of these readily available (and relatively low-
cost) processors.

The ultimate in multiprocessing is the series of Con-
nection Machines built by Thinking Machines Inc. (TMI)
and designed by Daniel Hillis. These machines have up
to 65,000 very simple processors that run simultaneously,
and can form connections dynamically, somewhat like
the process in the human brain. These “massively paral-
lel” machines are thus attractive for artificial intelligence
research. It is also possible to achieve supercomputerlike
power by having many computers on a network divide the
work of, for example, cracking a code or analyzing radio
telescope data for signs of intelligent signals.

Programs for supercomputers must be written using
special languages (or libraries for standard languages) that
are designed to provide for many processes to run at the
same time and that allow for communication and coordina-
tion between processing (see multiprocessing).

A Cray 190 A supercomputer. Seymour Cray’s leading-edge
machines defined supercomputing for many years.  (NASA photo)

supercomputer        461

Applications
Supercomputers are always more expensive and somewhat
less reliable than standard computers, so they are used only
when necessary. As the power of standard computers con-
tinues to grow, applications that formerly required a mul-
timillion-dollar supercomputer can now run on a desktop
workstation (a good example is the creation of detailed 3D
graphics).

On the other hand, there are always applications that will
soak up whatever computing power can be brought to bear on
them. These include analysis of new aircraft designs, weather
and climate models, the study of nuclear reactions, and the
creation of models for the synthesis of proteins. The never-
ending battle of organizations such as the National Security
Agency (NSA) to monitor worldwide communications and
crack ever-tougher encryption also demands the fastest avail-
able supercomputers (see quantum computing).

Architecture
The fastest “conventional” supercomputers as of 2007 were
IBM’s Blue Gene series, expected to reach a speed of 3 pflop
(peta, or quadrillion floating point operations per second).
Machines of this magnitude are usually destined for institu-
tions such as the Los Alamos National Laboratory (see gov-
ernment funding of computer research).

However, for many applications it may be more cost-effec-
tive to build systems with numerous coordinated proces-
sors (a sort of successor to the 1980s Connection Machine).
For example, the Beowulf architecture involves “clusters” of
ordinary PCs coordinated by software running on UNIX or
Linux. The use of free software and commodity PCs can
make this approach attractive, though application software
still has to be rewritten to run on the distributed processors.

Recently a new resource for parallel supercomputing
came from an unlikely place: the new generation of cell
processors found in game consoles such as the Sony Play-
station 3. This architecture features tight integration of a
central “power processor element” with multiple “synergis-
tic processing elements.” IBM is currently developing a new
supercomputer called Roadrunner that will include 16,000
conventional (Opteron) and 16,000 cell processors, and is
expected to reach a speed of 1 pflop.

Finally, an ad hoc “supercomputer” can be created
almost for free, using software that parcels out calcula-
tion tasks to thousands of computers participating via the
Internet, as with SETI@Home (searching for extraterres-
trial radio signals) and Folding@Home (for protein-folding
analysis). (See cooperative processing.)

Further Reading
“Blue Gene.” IBM. Available online. URL: http://www-03.ibm.

com/servers/deepcomputing/bluegene.html. Accessed August
22, 2007.

Gropp, William, Ewing Lusk, and Thomas Sterling. Beowulf Clus-
ter Computing with Linux. 2nd ed. Cambridge, Mass.: MIT
Press, 2003.

“IBM to Build World’s First Cell Broadband Engine Based Supercom-
puter.” September 6, 2006. Available online. URL: http://www-
03.ibm.com/press/us/en/pressrelease/20210.wss. Accessed
August 22, 2007.

Murray, C. J. The Supermen: The Story of Seymour Cray and the
Technical Wizards behind the Supercomputer. New York: Wiley,
1995.

National Center for Supercomputing Applications (NCSA). Avail-
able online. URL: http://www.ncsa.uiuc.edu/. Accessed August
22, 2007.

National Research Council. Getting Up to Speed: The Future of
Supercomputing. Washington, D.C.: National Academies Press,
2005.

Scientific American. Understanding Supercomputing. New York:
Warner Books, 2002.

Top 500 Supercomputer Sites. Available online. URL: http://www.
top500.org/. Accessed August 22, 2007.

supply chain management
Few consumers are aware of the complexity of the network
of organizations, transportation and storage facilities, and
information processing facilities that are needed to turn
raw materials into finished products. The term supply chain
management was developed in the 1980s to refer to the sys-
tematic efforts to improve the efficiency and reliability of
this vital business activity. Although the details will vary
with the industry, a supply chain can include the following
activities:

• � obtaining the raw materials or components needed for
the product

• � manufacturing finished products

• � marketing the product

• � distributing the product to retailers or other outlets

• � servicing the product and supporting customers

• � (increasingly) providing for the ultimate recycling or
disposal of the product

At all stages of the chain, planners must take into con-
sideration what location for operations is most advanta-
geous and how materials will be transported, warehoused,
and tracked. Potential suppliers must be evaluated for cost
and reliability. Schedules must be monitored. Finally, every-
thing should be part of a comprehensive plan that spells out
the objectives and how they will be measured.

Software
Of course such a complex process involving a great deal of
information, monitoring, and decision making is ripe for
software assistance. Some companies offer comprehensive
solutions (see, for example, sap), but they must still be
adapted to the needs of a particular industry and manu-
facturer. Software must be interfaced and integrated with
existing databases, management information systems, and
other software. Nevertheless, in a very competitive world
market, enterprises have little choice but to develop an
effective way to manage and optimize their supply chains.

Further Reading
Blanchard, David. Supply Chain Management Best Practices. Hobo-

ken, N.J.: Wiley, 2007.
Chopra, Sunil, and Peter Meindl. Supply Chain Management. 3rd

ed. Upper Saddle River, N.J.: Prentice Hall, 2006.

462        supply chain management

Simchi, David, Philip Kaminsky, and Edith Simchi-Levi. Designing
and Managing the Supply Chain. 2nd ed. New York: McGraw-
Hill, 2002.

Worthen, Ben. “ABC: An Introduction to Supply Chain Manage-
ment.” CIO. Available online. URL: http://www.cio.com/article/
40940. Accessed November 18, 2007.

Sutherland, Ivan Edward
(1938– )
American
Computer Scientist

Today it is hard to think about computers without interac-
tive graphics displays. Whether one is flying a simulated
747 jet, retouching a photo, or just moving files from one
folder to another, everything is shown on the screen in
graphical form. For the first two decades of the computer’s
history, however, computers lived in a text-only world,
except for a few experimental military systems. During
the 1960s and 1970s Ivan Sutherland would almost sin-
gle-handedly create the framework for modern computer
graphics while designing Sketchpad, the first computer
drawing program.

Sutherland was born on May 16, 1938, in Hastings,
Nebraska, but the family later moved to Scarsdale, New
York. His father was a civil engineer, and as a young boy
Sutherland was fascinated by the drawing and survey-
ing instruments his father used. When he was about 12,
Sutherland and his brother Bert got a job working for
a pioneer computer scientist named Edmund Berkeley.
Berkeley gave Sutherland the opportunity to play with
“Simon,” a suitcase-sized electromechanical computer that
could add numbers as long as the total did not exceed 30.
Simon eventually rewired the machine so it could divide
numbers as well.

Sutherland first attended Carnegie Mellon University,
where he received a B.S. in electrical engineering in 1959.
The following year he earned an M.A. from the California
Institute of Technology (Cal Tech). He then went to MIT to
do his doctoral work under Claude Shannon at the Lincoln
Laboratory (see Shannon, Claude).

At MIT Sutherland was able to work with the TX-2, an
advanced (and very large) transistorized computer that was
a harbinger of the minicomputers that would become preva-
lent later in the decade. Unlike the older mainframes, the
TX-2 had a graphics display and could accept input from a
light pen as well as switches that could serve something like
the functions that mouse buttons do today. The machine
also had 70,000 36-bit words of memory, an amount that
would not be achieved by personal computers until the
1980s. Having this much memory made it possible to store
the pixel information for detailed graphics objects.

Having access to this interactive machine gave Suther-
land the idea for his doctoral dissertation (submitted in
1963). He developed a program called Sketchpad, which
required that he develop algorithms for drawing realistic
objects by plotting pixels and polygons as well as scal-
ing objects in relation to the viewer’s position. Sutherland’s
Sketchpad could even automatically “snap” lines into place

as the user drew on the screen with the light pen. Besides
drawing, Sketchpad demonstrated the beginnings of the
“graphical user interface” that would be further developed
by researchers at Xerox PARC in the 1970s and would reach
the consumer in the 1980s.

After demonstrating Sktechpad in 1963 and receiving
his Ph.D. from MIT, Sutherland took on a quite different
task. He became the director of the Information Process-
ing Techniques Office (IPTO) of the Defense Department’s
Advanced Research Projects Agency (ARPA)—see Lick-
lider, J. C. R. While continuing his research on graphics
Sutherland thus also oversaw the work on computer time-
sharing and the networking research that would eventually
lead to the ARPANet and the Internet.

In 1968 Sutherland and David Evans went to the Uni-
versity of Utah, where they established an Information
Processing Technology Office (IPTO)–funded computer
graphics research program. There, Sutherland’s group
brought computer graphics to a new level of realism. For
example, they developed the ability to place objects in front
of other objects, which required intensive calculations to
determine what was obscured. They also developed an idea
suggested by Evans called incremental computing. Instead of
drawing each pixel in isolation, they used information from
previously drawn pixels to calculate new ones, considerably
speeding up the rendering of graphics. The results began to
approach the realism of a photograph. (The two researchers
also founded a commercial enterprise, Evans and Suther-
land, to exploit their graphics ideas. It became one of the
leaders in the field.)

In 1976 Sutherland left the University of Utah to serve
as the chairman of the computer science department at Cal
Tech. Working with a colleague, Carver Mead, Sutherland
developed a systematic concept and curriculum for inte-
grated circuit design, which became the main specialty of
the department. He would later point out that it was the
important role that geometry played in laying out compo-
nents and wires that had intrigued him the most.

Sutherland left Caltech in 1980 and started a consulting
and venture capital firm with Bob Sproull, whom he had
met years earlier at Harvard. In 1990 Sun Microsystems
bought the company for its technical expertise, making it
the core of Sun Labs, where Sutherland continues to work
as a Sun Microsystems Fellow and vice president. Suther-
land received the prestigious ACM Turing Award in 1988.

Further Reading
“An Evening with Ivan Sutherland: Research and Fun” [partial

transcript and online video]. Computer History Museum,
October 19, 2005. Available online. URL: http://www.mprove.
de/script/05/sutherland/index.html. Accessed November 18,
2007.

Frenkel, Karen A. “Ivan E. Sutherland, 1988 A. M. Turing Award
Recipient” [Interview]. Communications of the ACM 32 (June
1989): 711.

Sutherland, Ivan E. “Sketchpad—A Man-Machine Graphical Com-
munication System.” University of Cambridge Computer
Laboratory. Technical Report No. 574 [with new preface],
September 2003. Available online. URL: http://www.cl.cam.
ac.uk/TechReports/UCAM-CL-TR-574.pdf. Accessed Novem-
ber 18, 2007.

Sutherland, Ivan Edward        463

system administrator
A system administrator is the person responsible for man-
aging the operations of a computer facility to ensure that it
runs properly, meets user needs, and protects the integrity
of users’ data. Such facilities range from offices with just a
few users to large campus or corporate facilities that may be
served by a large staff of administrators.

The system administrator’s responsibilities often include:

• � setting up accounts for new users

• � allocating computing resources (such as server space)
among users

• � configuring the file, database, or local area network
(LAN) servers

• � installing new or upgraded software on users’ work-
stations

• � keeping up with new versions of the operating system
and networking software

• � using various tools to monitor the performance of
the system and to identify potential problems such as
device “bottlenecks” or a shortage of disk space

• � ensuring that regular backups are made

• � configuring network services such as e-mail, Internet
access, and the intranet (local TCP/IP network)

• � using tools such as firewalls and virus scanners to
protect the system from viruses, hacker attacks, and
other security threats (see also computer crime and
security)

• � providing user orientation and training

• � creating and documenting policies and procedures

System administrators often write scripts to automate many
of the above tasks (see scripting languages). Because of
the complexity of modern computing environments, an
administrator usually specializes in a particular operating
system such as UNIX or Windows.

A good system administrator needs not only techni-
cal understanding of the many components of the system,
but also the ability to communicate well with users—good
“people skills.” Larger organizations are more likely to have
separate network and database administrators, while the
administrator of a small facility must be a jack (or jill) of all
trades.

Further Reading
Culp, Brian. Windows Vista Administration: The Definitive Guide.

Sebastapol, Calif.: O’Reilly Media, 2007.
Frisch, Æleen. Essential System Administration. 3rd ed. Sebastapol,

Calif.: O’Reilly Media, 2002.
———. Essential Windows NT System Administration. Sebastapol,

Calif.: O’Reilly Media, 1998.
Information for Linux System Administration (Librenix). Available

online. URL: http://librenix.com/. Accessed August 22, 2007.
Limoncelli, Thomas A., Christina J. Horgan, and Strata R. Chalup.

The Practice of System and Network Administration. 2nd ed.
Upper Saddle River, N.J.: Addison-Wesley Professional, 2007.

Nemeth, Evi, Garth Snyder, and Trent R. Hein. Linux System
Administration Handbook. 2nd ed. Upper Saddle River, N.J.:
Prentice Hall PTR, 2006.

systems analyst
The systems analyst serves as the bridge between the needs
of the user and the capabilities of the computer system. The
systems analyst goes into action when users request that
some new application or function be provided (usually in a
corporate computing environment).

The first step is to define the user’s requirements and to
prepare precise specifications for the program. In doing so,
the systems analyst is aided by methodologies developed
by computer scientists over the last several decades (see
structured programming and object-oriented pro-
gramming). Often flowcharts or other aids are used to help
visualize the operation of the program (see also case).

After communicating with the user, the systems analyst
must then communicate with the programmers, helping
them understand what is needed and reviewing their work
as they begin to design the program. Although the systems
analyst may do little actual programming, he or she must be
familiar with programming tools and practices. This may
make it possible to suggest existing software or components
that could be adapted instead of undertaking the cost and
time involved with creating a new program. As a program
is developed, systems analysts are often responsible for
designing tests to ensure that the software works properly
(see quality assurance, software).

Depending on the organizational structure, all or part of
the analysis function may be included in the job description
“programmer-analyst” or included as part of the duties of a
senior software engineer or manager of program develop-
ment. Experienced systems analysts are likely to be called
upon to participate in the evaluation of possible invest-
ments in new software or hardware, and other aspects of
long-term planning for computing facilities.

Further Reading
Satzinger, John W., Robert B. Jackson, and Stephen D. Burd. Sys-

tems Analysis & Design in a Changing World. 4th ed. Boston:
Course Technology, 2006.

Shelly, Gary B., Thomas J. Cashman, and Harry J. Rosenblatt. Sys-
tems Analysis & Design. 7th ed. Boston: Course Technology,
2007.

Systems Analysis Web Sites. Available online. URL: http://www.
umsl.edu/~sauterv/analysis/analysis_links.html. Accessed
August 22, 2007.

Whitten, Jeffrey L., and Lonnie D. Bentley. Introduction to Systems
Analysis & Design. New York: McGraw-Hill/Irwin, 2007.

———. Systems Analysis & Design Methods. 7th ed. New York:
McGraw-Hill/Irwin, 2005.

systems programming
Applications programmers write programs to help users
work better, while systems programmers write programs
to help the computer itself work better (see operating sys-
tem). Systems programmers generally work for companies
in the computer industry that develop operating systems,

464        system administrator

network facilities, program language compilers and other
software development tools, utilities, and device drivers.
However, systems programmers can also work for applica-
tions developers to help them interface their programs to
the operating system or to devices (see device driver and
applications programming interface).

Modern operating systems are highly complex, so sys-
tems programmers tend to specialize in particular areas.
These might include device drivers, software development
tools, program language libraries, applications program-
ming interfaces (APIs), and utilities for monitoring system
conditions and resources. Systems programmers develop
the infrastructure needed for networking, as well as mul-
tiple-processor computers and distributed computing sys-
tems. Systems programmers also play a key role when an
application program must be “ported” to a different plat-
form or simply modified to run under a new version of the
operating system.

Generally, an application programmer works at a fairly
high level, using language functions and APIs to have the
program ask the operating system for services such as load-
ing or saving files, printing, and so on. The systems pro-

grammer, on the other hand, must be concerned with the
internal architecture of the system (such as the buffers allo-
cated to hold various kinds of temporary data) and with
how commands are constructed for disks and other devices.
Generally, the systems programmer must also have a more
thorough knowledge of data structures and how they are
physically represented in the machine as well as the com-
parative efficiency of various algorithms. Because it deter-
mines how efficiently the system’s resources can be used,
systems programming must often be “tight” and optimized
for peak performance. Thus, although lower-level assembly
language is no longer used for much applications program-
ming, it can still be found in systems programming.

Further Reading
Beck, Leland L. System Software: An Introduction to Systems Pro-

gramming. 3rd ed. Reading, Mass.: Addison-Wesley, 1996.
Hart, Johnson M. Windows System Programming. 3rd ed. Upper

Saddle River, N.J.: Addison-Wesley Professional, 2004.
Love, Robert. Linux System Programming. Sebastapol, Calif.:

O’Reilly Media, 2007.
Robbins, Kay A., and Steven Robbins. UNIX Systems Programming.

Upper Saddle River, N.J.: Prentice Hall PTR, 2003.

systems programming        465

466

tablet PC
As the name suggests, a tablet PC is a small computer about
the size of a notebook (not to be confused with a “notebook
PC,” which is a small, light laptop). The user can write on
the screen with a stylus to take notes (for similar function-
ality, see graphics tablet), draw, and make selections with
stylus or fingertip.

If the user writes on the screen, software converts the
writing to the appropriate characters and stores them in a
file (see handwriting recognition). As with some PDAs,
there may also be a system of shorthand “gestures” that can
be used to write more quickly. Alternatively, the user can
type with stylus or fingertips on a “virtual keyboard” dis-
played on the screen (see touchscreen).

A more versatile and natural interface is becoming avail-
able: “multitouch,” pioneered by the Apple iPhone and
Microsoft Surface, can recognize multiple motions and
pressure points simultaneously. This allows the user to, for
example, flick the finger to “turn a page” or use a pinching
motion to “pick up” an object.

Applications for tablet PCs include many PDA-type
applications (see personal information management
and pda), field note taking, inventory, and other tasks that
require a device that is not encumbering. Because of its
compactness, a tablet PC can also be a good reader for e-
books (see e-books and digital libraries).

Tablet PCs generally follow common specifications
developed by Microsoft, and often use Windows XP Tab-
let PC Edition or, later, Windows Vista, which has built-in
support for tablet PCs. These operating systems include
support for sophisticated handwriting recognition that

can be “trained” by the user and that can store handwrit-
ten input in special data formats. Voice recognition is
also supported.

A “convertible” tablet PC is a hybrid in which the tablet
is attached to a base containing a keyboard. The display can
be used vertically (laptop style) or rotated and folded down
over the keyboard for tablet use.

Internet Tablets
An interesting variant is the Internet tablet, best known in
Nokia’s N-series. These are smaller and lighter than a tablet
PC. The Nokia N810, for example, has a slide-out keyboard
as well as a virtual screen keyboard. The most notable
feature is the Internet browser and related applications,
such as e-mail and instant messaging, and built-in wireless
connections (see bluetooth and wireless computing).
Although there is no phone, Internet-based services such as
Skype can be used to place calls, or a Bluetooth-equipped
mobile phone. The Nokia series uses a variant of Linux and
can run a large variety of open-source applications.

Further Reading
Linenberger, Michael. Seize the Work Day: Using the Tablet PC to

Take Control of Your Work and Meeting Day. San Ramon, Calif.:
New Academy Publishers, 2004.

Stevenson, Nancy. Tablet PCs for Dummies. New York: Wiley, 2003.
Tablet PC Review. Available online. URL: http://www.tabletpcreview.

com/. Accessed November 19, 2007.
“What Is a Tablet PC?” Microsoft, February 9, 2005. Available

online. URL: http://www.microsoft.com/windowsxp/tabletpc/
evaluation/about.mspx. Accessed November 19, 2007.

T

tape drives
Anyone who has seen computers in old movies is familiar
with the row of large, freestanding tape cabinets with their
spinning reels of tape. The visual cue that the computer
was running consisted of the reels thrashing back and forth
vigorously while rows of lights flashed on the computer
console. Magnetic tape was indeed the mainstay for data
storage in most large computers (see mainframe) in the
1950s through the 1970s.

In early mainframes the main memory (corresponding
to today’s RAM chips) consisted of “core”—thousands of
tiny magnetized rings crisscrossed with wires by which
they could be set or read. Because core memory was lim-
ited to a few thousand bytes (kB), it was used only to hold
the program instructions (see punched cards and paper
tape) and to store temporary working data while the pro-
gram was running.

The source data to be processed by the program was
read from a reel of tape on the drive. If the program updated
the data (rather than just reporting on it), it would generally
write a new tape with the revised data. In large facilities a
person called a tape librarian was in charge of keeping the
reels of tape organized and providing them to the computer
operators as needed.

Operation
A mainframe tape drive had two reels, the supply reel and
the take-up reel. Because each reel had its own motor, they
could be spun at different speeds. This allowed a specified
length of tape to be suspended between the two reels,
serving as sort of a buffer and allowing the take-up reel to
accelerate at the start of a read or write operation without
danger of breaking the tape. The “buffer” tape was actu-
ally suspended in a partial vacuum, which both kept the
tape taut enough to prevent snarling and allowed for air
pressure sensors to activate the appropriate motor when
the amount of tape in the buffer went above or below pre-
set points.

Data was read or written by the read and write heads
respectively, in units called frames. In addition to the 1 or
0 data bits, each frame included parity bits (see error cor-
rection). The frames were combined into blocks, with each
block having a header in front of the data frames and one or
more frames of check (parity) bits following the data.

The two predominant tape formats were the IBM format,
which used variable-length data blocks (and thus could not
be rewritten) and the DEC format, which used fixed-length
blocks, allowing data to be rewritten in place, albeit at some
cost in speed and efficiency.

During the 1960s, magnetic disks (see hard disk)
increasingly came into use, and more of the temporary data
being used by programs began to be stored on disk rather
than on tape. Eventually, tapes were relegated to storing
very large data sets or archiving old data.

However, when the first desktop microcomputers (such
as the Apple II and Radio Shack TRS-80) came along in
the late 1970s and early 1980s, they, like the first main-
frames, had very limited main memory and disk drives
were unavailable or expensive. As a result, programs (such

as Bill Gates’s Microsoft Basic) often came on tape cas-
settes, and the computer included an interface allowing it to
be connected to an ordinary audio cassette recorder. How-
ever, this use of tapes was quite short-lived, and was soon
replaced by the floppy disk drive and later, hard drives and
CD-ROM drives.

Tapes as Backup Devices
By the 1990s, PC users generally used tapes only for mak-
ing backups. A typical backup tape drive uses DAT (digital
audio tape) cartridges that hold from hundreds of mega-
bytes to several gigabytes of data. Most drives use a rotating
assembly of four heads (two read and two write) that verify
data as it’s being written. As a backup medium, tape has a
lower cost per gigabyte than disk devices. It is easy to use
and can be set up to run unattended (except for periodically
changing cartridges).

However, since tapes are written and read sequentially,
they are not convenient for restoring selected files (see
backup and archive systems). Many smaller installations
now prefer using a second (“mirror”) hard drive as backup,
using disk arrays (see raid) or using recordable CDs or
optical drives for smaller amounts of data (see cd-rom and
dvd-rom).

Many large companies and government agencies have
thousands of reels of tape stored away in their vaults since
the 1960s, including data returned from early NASA space
missions. As time passes, it becomes increasingly difficult to
guarantee that this archived data can be successfully read.
This is due both to gradual deterioration of the medium and
the older data formats becoming obsolete (see backup and
archive systems).

Further Reading
Brain, Marshall. “How Tape Drives Work.” Available online. URL:

http://electronics.howstuffworks.com/cassette.htm. Accessed
August 22, 2007.

A NASA automated tape library. These facilities can store trillions
of bytes of data.  (NASA Photo)

tape drives        467

Haylor, Phil. Computer Storage: A Manager’s Guide. Victoria, B.C.,
Canada: Trafford, 2005.

Scapicchio, Mark. “How Tape Drives Work: Tape Backup Still a
Good Option.” Smart Computing, October 2002, pp. 69–72.
Available online. URL: http://www.smartcomputing.com/
editorial/article.asp?article=articles/archive/r0608/13 r08/
13r08.asp&guid=. Accessed August 22, 2007.

White, Ron, and Timothy Edward Downs. How Computers Work.
8th ed. Indianapolis: Que, 2005.

Tcl
Developed by John Ousterhout in 1988, Tcl (Tool command
language) is used for scripting, prototyping, testing inter-
faces, and embedding in applications (see scripting lan-
guages).

Tcl has an unusually simple and consistent syntax. A
script is simply a series of commands (either built in or user
defined) and their arguments (parameters). A command
itself can be an argument to another command, creating the
equivalent of a function call in other languages.

For example, setting the value of a variable uses the set
command:

set total 0

The value of the variable can now be referenced as
$total.

Control structures are simply commands that run other
commands. A while loop, for example, consists of a com-
mand or expression that performs a comparison, followed
by a series of commands to be executed each time it returns
“true”:

while { MoreInFile } {
GetData
DisplayData

}
In practice, many of the commands used are utilities

from the operating system, usually UNIX or Linux. Tcl
also includes a number of useful data structures such as
associative arrays, which consist of pairs of data items
such as:

set abbr (California)	 CA

Extensions and Applications
Tcl includes a number of extensions that, for example,
provide access to popular database formats such as MySQL
and can interface with other programming languages such
as C++ and Java. The most widely used extension is Tk,
which provides a library for creating user interfaces for a
variety of operating systems and languages such as Perl,
Python, and Ruby.

Tcl has been described as a “glue” to connect existing
applications. It is relatively easy to write and test a script
interactively (often at the command line), and then insert it
into the code of an application. When the application runs,
the Tcl interpreter runs the script, whose output can then
be used by the main application (see interpreter).

Further Reading
Foster-Johnson, Eric. Graphical Applications with Tcl & Tk. 2nd ed.

New York: Hungry Minds, 1997.
Wall, Kurt. Tcl and Tk Programming for the Absolute Beginner. Bos-

ton: Course Technology, 2007.
Welch, Brent B., and Ken Jones. Practical Programming in Tcl and

Tk. 4th ed. Upper Saddle River, N.J.: Prentice Hall, 2003.

TCP/IP
Contrary to popular perception, the Internet is not e-mail,
chat rooms, or even the World Wide Web. It is a system by
which computers connected to various kinds of networks
and with different kinds of hardware can exchange data
according to agreed rules, or protocols. All the applications
mentioned (and many others) then use this infrastructure
to communicate.

TCP/IP (Transmission Control Protocol/Internet Proto-
col) provides the rules for transmitting data on the Internet.
It consists of two parts. The IP (Internet Protocol) routes
packets of data. The header information also includes:

• � The total length of the packet. In theory packets can
be as large as 65 kbytes; in practice they are limited to
a smaller maximum.

• � An identification number that can be used if a packet
is broken into smaller pieces for efficiency in trans-
mission. This allows the packet to be reassembled at
the destination.

• � A “time to live” value that specifies how many hops
(movements from one intermediate host to another)
the packet will be allowed to take. This is reduced by
1 for each hop. If it reaches 0, the packet is assumed
to have gotten “lost” or stale, and is discarded.

• � A protocol number (the protocol is usually TCP, see
below).

• � A checksum for checking the integrity of the header
itself (not the data in the packet).

• � The source and destination addresses.

The source and destination are given as IP addresses,
which are 32 bits long and typically written as four sets of
up to three numbers each—for example, 208.162.106.17

A Network of Networks
As the name implies, the Internet is a network that con-
nects many local networks. The IP address includes an ID
for each network (called a subnet) and each host computer
on the network. The arrangement and meaning of these
fields differs somewhat among five classes of IP addresses.
The first three classes are designed for different sizes of
networks, and the latter two are used for special purposes
such as “multicasting” where the same data packet is sent
to multiple hosts.

Many Internet users (at home as well as in offices) are
part of a local network (see local area network). Typi-
cally, all users on the local network share a single Inter-
net connection, such as a DSL or cable line. This sharing

468        Tcl

is enabled by having one computer (or a hardware device
called a router) connected to the Internet, serving as the
link between the local network and the rest of the world. A
facility called Network Address Translation (NAT) assigns a
private IP address to each computer on the network. When
a computer wants to make an Internet connection, its out-
going packet is assigned a public IP address from a pool.
When packets replying to that public address are received,
they are converted back to the private address and thus
routed to the appropriate user.

NAT has the benefit of providing some security against
intrusion, since from the outside only the single public IP
address is visible, not the private addresses of the various

machines on the network. However, using NAT (and a simi-
lar scheme called PAT that allows difference hosts to use the
same IP address by being assigned different port numbers)
causes some slowdown because of the translation process.

Another facility, Dynamic Host Configuration Protocol
(DHCP), is used to assign an arbitrary available public IP
address to each host when it connects to the network. This
system is now used by most DSL and cable systems, and it
reduces the danger of running out of IP numbers (each net-
work is assigned a range of numbers, and is thus limited to
that many IP addresses).

A more lasting and flexible solution to address deple-
tion is the new Internet Protocol version 6 (IPv6). The new
addressing scheme allows for about 3 × 1038 addresses,
more than enough to accommodate every star in the known
universe if it were a networked computer! The scheme is
being rolled out gradually but should be well established by
the end of the 2000 decade.

Domain Name System
Internet users typically don’t have to worry about IP num-
bers, except perhaps when configuring their software.
Instead they use alphabetic addresses, such as http://www.
factsonfile.com. The Domain Name System (DNS) sets up a
correspondence between the names (which include domains
such as .com for commercial or .edu for educational institu-
tions) and the IP numbers (see dns).

Transmission Control Protocol
The Transmission Control Protocol (the TCP part of TCP/
IP) controls the flow of packets that have been structured as
described above. To use TCP, the sending computer opens
a special file called a socket, which is identified by the
computer’s IP number plus a port number. Standard port
numbers are used for the various protocols such as www
(Web) and ftp (File Transfer Protocol). The receiving com-
puter connects using a corresponding socket. TCP includes
basic flow control and error-checking features similar to
those used for most data transmissions. For some applica-
tions (such as connecting to the domain name server) error
control is not needed, so a simpler protocol called the User
Datagram Protocol is used.

The Big Picture
How does TCP/IP fit into the use of the Internet? When an
application such as an e-mail program, Web browser, or ftp
client makes a connection, IP packets using TCP flow con-
trol carry the requests from the client to the server and the
server’s response back to the client. Each application has its
own protocol to specify these requests (such as for a Web
page). For e-mail the protocol is SMTP (Simple Mail Trans-
fer Protocol); Web servers and browsers use HTTP (Hyper-
text Transfer Protocol); and for file transfers it is FTP (File
Transfer Protocol). (See also e-mail, html, hypertext and
hypermedia, and file transfer protocols.)

Further Reading
Hagen, Silvia. IPv6 Essentials. 2nd ed. Sebastapol, Calif.: O’Reilly,

2006.

The header fields and data for an IP (Internet Protocol) packet. The
packets can travel over different routes to the destination address
and then be reassembled in the correct order.

Network Address Translation (NAT) can protect computers on a
local network by giving outgoing packets an arbitrary public source
address in place of a computer’s actual (private) address. Incoming
packets addressed to that public address are then routed to the cor-
rect private address using a table.

TCP/IP        469

IPv6 Information Page. Available online. URL: http://www.ipv6.
org/. Accessed August 22, 2007.

Kozierok, Charles M. The TCP/IP Guide: A Comprehensive, Illus-
trated Internet Protocols Reference. San Francisco, Calif.: No
Starch Press, 2005.

Leiden, Candace, and Marshall Wilensky. TCP/IP for Dummies. 5th
ed. New York: Wiley, 2003.

Raz, Uri. “Uri’s TCP/IP Resources List.” Available online. URL:
http://www.private.org.il/tcpip_rl.html. Accessed August 22,
2007.

technical support
Competition and user demand have led to modern software
becoming increasingly complex and often stuffed with eso-
teric features. Despite improvement in programs’ own built-
in help systems (see help systems), users will often have
questions about how to perform particular tasks. There will
also be times when a program doesn’t perform as the user
expects because the user misunderstands some feature of
the program, the program has an internal flaw (see bugs and
debugging), or there is a problem in interaction between the
application program, the user’s operating system, or the user’s
hardware (see device driver).

To get help when problems arise, users often turn to
the technical support facility, often called a help desk. This
facility can either be internal to an organization (help-
ing the organization’s computer users with a wide range
of problems), or belong to the maker of the software (and
available in varying degrees to all licensed users of that
software).

Large help desks often have two or more levels or tiers
of assistants. The first tier assistant can respond to the sim-
plest (and usually most common) situations. For example, a
first-tier support person for a cable or DSL Internet Service
Provider could tell a caller whether service has been inter-
rupted in their area and if not, take the caller through a set
of steps to reset a “hung” modem. If the situation is more
complex (or the basic steps do not resolve it), the call will be
“escalated” to the next tier, where a more experienced tech-
nician can address detailed software configuration issues.

Advanced technical support representatives can use
tools such as remote operation software that lets them take
over control of the user’s PC in order to see exactly what is
going on. They can also submit detailed problem reports to
engineers in cases were a modification (patch) to the soft-
ware might be needed.

Support Alternatives
Users who are dissatisfied with the wait for phone support
or dealing with poorly trained support personnel may be
able to take advantage of alternative sources of information
and support. Most software companies now have Web sites
that include a support section that offers services such as

• � Frequently Asked Questions (FAQ) files with answers
to common problems.

• � A searchable “knowledge base” of articles relating to
various aspects of the software, including compat-

ibility with other products, operating system issues,
and so on.

• � Forms or e-mail links that can be used to submit
questions to the company. Typically questions are
answered in one or two working days.

• � A bulletin board where users can share solutions and
tips relating to the software.

Web sites for publications such as PC Magazine and ZDNet
also offer articles and other resources for working with the
various versions of Microsoft Windows and popular appli-
cations.

Technical Support Issues
As with many other aspects of the computer industry, the
changing economic climate has had an impact on technical
support practices. Many companies are hoping that pro-
viding more extensive Web-based technical support will
reduce the need for help desk representatives. Companies
that don’t want to create their own support Web sites can
turn to consultants such as Expertcity.com or PCSupport.
com to create and manage such services for a fee.

Another way companies have sought to reduce help desk
costs is to outsource their technical support operations.
Most software companies are in areas with a relatively high
cost of labor. With modern communications and network
services, there is no need for the help desk personnel to be
at the company headquarters. Workers in less expensive
parts of the United States or even in countries such as India
that have a large pool of technically trained, English-speak-
ing persons can often offer help services at a lower cost
than running an in-house help desk, even when the cost of
training and phone line charges are taken into account. On
the other hand, there have been complaints by customers
that some overseas support staff have language problems or
are poorly trained, using only rote “scripts” to try to diag-
nose problems.

Poor technical support can lead customers to switch
to competing products. While this may not be much of a
concern in a rapidly expanding industry (where new cus-
tomers seem to be available in abundance), the situation
is different in stagnant or contracting economic condi-
tions. Trying to reduce technical support costs may bring
some short-term help to the bottom line, but in the longer
run the result might be fewer customers and less revenue.
An alternative approach is to consider technical support
to be part of a broad effort to maintain customer loyalty;
this is often called Customer Relationship Management
(see customer relationship management). With regard
to technical support, CRM is implemented by using soft-
ware to better track the resolution of customer’s problems
as well as to use information obtained in the support pro-
cess to offer the customer additional products or services
custom-tailored to individual situations. With such an
approach the effort to provide better technical support is
seen not simply as a necessary business expense but as an
investment with an expected (though hard to measure)
return.

470        technical support

Further Reading
Best Free Technical Support Sites. Available online. URL: http://

www.techsupportalert.com/best_free_tech_support_sites.
htm. Accessed August 22, 2007.

Czegel, Barbara. Help Desk Practitioner’s Handbook. New York:
Wiley, 1999.

Fleischer, Joe, and Brendan Read. The Complete Guide to Customer
Support: How to Turn Technical Assistance into a Profitable
Relationship. New York: CMP Books, 2002.

Tourniaire, Françoise, and Richard Farrell. The Art of Software
Support: Design & Operation of Support Centers and Help
Desks. Upper Saddle River, N.J.: Prentice Hall, 1997.

Tyman, Dan. “Tech Nightmares: Customer Service.” CNET
Reviews, January 24, 2005. Available online. URL: http://
reviews.cnet.com/4520-10168_7-5621441-1.html. Accessed
August 22, 2007.

technical writing
Users of complex systems require a variety of instructional
and reference materials, which are produced by technical
writers and editors. (It should be noted that technical writ-
ing covers many areas other than computer software and
systems. However, it is the latter that fall within the scope
of this book.)

The traditional products produced by technical writers
in the computer industry can be divided into three broad
categories: software manuals, trade books, and in-house
documentation for developers.

Software Manuals
Until the mid-1990s, just about every significant software
product came with a manual (or a set of manuals). A typi-
cal manual might include an overview of the program, an
introductory tutorial, and a complete, detailed reference
guide to all commands or functions.

In theory, staff technical writers (or sometimes contrac-
tors) develop the manuals during the time the program is
being written. They have access to the programmers for
asking questions about the program’s operation, and they
receive updates from the developers that describe changes
or added features. In practice, however, writers may not
be assigned to a project until the program is almost done.
The programmers, who are under deadline pressure, may
not be very communicative, and the writers may have to
make their best guess about some matters. The result can
be a manual that is no longer “in synch” with the program’s
actual feature set.

Technical writers often work in a publications depart-
ment with other professionals including editors, desktop
publishers, and graphics specialists. While manuals can be
written using an ordinary word processing program, many
departments use programs such as FrameMaker that are
designed for the production and management of complex
documents.

In recent years, many software manufacturers have
stopped including printed user manuals with their pack-
ages, or include only slim “Getting Started” manuals. As
a money-saving measure the traditional documentation is
often replaced by a PDF (Adobe Portable Document For-
mat) document on the CD. There is also a greater reli-

ance on extensive on-line help, using either a Windows or
Macintosh-specific format or the HTML format that is the
lingua franca of the World Wide Web. (See documenta-
tion, user.)

Technical writers have thus had to learn how to con-
struct Help files in these various formats (see authoring
systems, help systems, and html). Creation of interactive
tutorials also requires knowledge of multimedia formats
and even animation (such as Flash).

Trade Books
As millions of people became new computer users during
the 1980s, a thriving computer book publishing industry
offered users a more user-friendly approach than that usu-
ally provided in the manuals issued by the software com-
panies. The “Dummies” books, offering bite-sized servings
of information written in a breezy style and accompanied
by cartoons, eventually spread beyond computers into hun-
dreds of other fields and the format was then copied by
other publishers. Publishers such as Sams, Coriolis, and par-
ticularly O’Reilly have aimed their offerings at more experi-
enced users, programmers, and multimedia developers.

Computer trade books are often written by experi-
enced developers and systems programmers who can offer
advanced knowledge and “tips and tricks” to their less
experienced colleagues. Since many technical “gurus” are
not experienced writers, the best results often come from
collaboration between the expert and an experienced tech-
nical writer and/or editor who can review the material for
completeness, organization, and clarity.

In recent years there has been some contraction in
the computer book industry. This has arisen from several
sources: improved on-line help included in products; the
dominance of many applications areas by a handful of prod-
ucts; and fewer people needing beginner-level instruction.

In-House Documentation
Many technical writers work within software companies or
in the information systems departments of other corpora-
tions, universities, or government agencies. Their work is
generally more highly structured than that of the manual
or book writer. As part of a development team, a technical
writer may be in charge of creating documentation describ-
ing the data structures, classes, and functions within the
program. This task is aided by a variety of tools including
facilities for extracting such information automatically from
C++ or Java programs. The writer may also be responsible for
maintaining logs that show each change or addition made to
the program during each compiled version or “build.”

This type of technical writing requires detailed knowl-
edge of operating systems, programming languages,
software development tools, and software engineering
methodology. It also requires the ability to work well as
part of a team, often under conditions of high pressure.

Technical Writing as a Profession
Until the 1980s, few institutions offered degrees in techni-
cal writing. Programmers with an interest in writing or
writers with a technical bent entered the field informally.

technical writing        471

During the 1980s, the number of degree offerings increased,
and people began to specifically prepare for the field, often
by earning a computer science degree with a specialization
in technical writing. Organizations such as the Society for
Technical Communication have offered technical writers
and editors a forum for discussing their profession, includ-
ing issues relating to certification.

Further Reading
Alred, Gerald J., Charles T. Brusaw, and Walter E. Oliu. The Handbook

of Technical Writing. 8th ed. Boston: St. Martin’s Press, 2006.
Lindsell-Roberts, Sheryl. Technical Writing for Dummies. New York:

Hungry Minds, 2001.
Pringle, Alan S., and Sarah S. O’Keefe. Technical Writing 101: A

Real-World Guide to Planning and Writing Technical Documen-
tation. 2nd ed. Research Triangle Park, N.C.: Scriptorium
Publishing Services, 2003.

Society for Technical Communication. Available online. URL:
http://www.stc.org/. Accessed August 22, 2007.

technology policy
Policy makers have found themselves increasingly con-
fronted with difficult issues relating to the Internet, the
information industry, and an economy increasingly depen-
dent on computing and communications technology. As
with other complex issues such as health care, there has
been difficulty reaching a consensus or formulating com-
prehensive or consistent policies.

Historically many of the early innovators in modern
computing (even Microsoft) have tended to keep aloof from
politics and lobbying. This may have been due in part to
libertarian or laissez-faire beliefs that the best thing the
government could do for the information highway was to
stay out of its way.

Today, however, with vital economic interests and thou-
sands of jobs at stake, major computer companies have joined
the political game with a vengeance. In turn, candidates in the
run up to the 2008 presidential election have not neglected
to court technology leaders. (For example, in 2008 leading
Democratic candidates Hillary Rodham Clinton and Barack
Obama both outlined extensive technology agendas.)

Major policy issues involving information technology
industries include:

• � foreign trade and the protection of intellectual prop-
erty (see intellectual property and computing
and software piracy and counterfeiting)

• � attempts to reform the patent system to prevent what
is seen as dubious and expensive litigation

• � the need for an increasing number of trained workers
and providing a sufficient number of visas for foreign
workers (see globalization and the computer
industry)

• � preserving equal access to the Internet (see net neu-
trality), which pits content providers against tele-
communications companies

• � promoting the development of a next-generation
Internet infrastructure (“Internet 2”)

• � government support for computer research (such as
through the National Science Foundation)—see gov-
ernment funding of computer research

• � favorable treatment of online businesses with regard
to taxation (often objected to by traditional brick-
and-mortar businesses)—see e-commerce

• � laws against computer-related fraud and other crime
(see computer crime and security and online
frauds and scams)

• � Privacy regulations (see identity theft and privacy
in the digital age)

The computer industry is also involved in issues that
will affect its future over the longer term, such as the need
to improve math and science education in elementary and
high schools, energy and environmental policy, and issues
such as health care and pensions that affect all sectors of
the economy.

International Aspects
In a global industry, American information technology pol-
icy cannot be considered without looking at the policies
of other nations (both industrialized and developing) and
their potential impacts. For example, China’s success (or
lack thereof) in protecting intellectual property has a direct
impact on the revenue of major software companies. Simi-
larly, issues of censorship (see censorship and the Inter-
net) create dilemmas for companies that must balance
concern for human rights with the opportunity to enter
huge new markets. Other important aspects of comparative
technology policy include research funding, subsidies, pat-
ent and copyright law, and labor standards.

Further Reading
Aspray, William, ed. Chasing Moore’s Law: Information Technology

Policy in the United States. Raleigh, N.C.: SciTech Publishing,
2004.

Coopey, Richard, ed. Information Technology Policy: An Interna-
tional History. New York: Oxford University Press, 2004.

Marcus, Alan I., and Amy Sue Bix. The Future Is Now: Science
and Technology Policy in America since 1958. Amherst, N.Y.:
Humanity Books, 2006.

MIT Center for Technology, Policy, and Industrial Development.
Available online. URL: http://web.mit.edu/ctpid. Accessed
November 27, 2007.

Nuechterlein, Jonathan E., and Philp J. Weiser. Digital Crossroads:
American Telecommunications Policy in the Internet Age. Cam-
bridge, Mass.: MIT Press, 2007.

Ricadela, Aaron. “Technology Companies Have Much at Stake in
2008.” Business Week, September 19, 2007. Available online.
URL: http://www.businessweek.com/technology/content/sep
2007/tc20070917_079427.htm. Accessed November 26, 2007.

U.S. Technology Administration. Available online. URL: http://
www.technology.gov/. Accessed November 27, 2007.

telecommunications
Since its birth in the mid-20th century, the digital computer
and the telephone have had a close mutual relationship.
Many of the first programmable calculators and comput-
ers built in the early 1940s used relays and other compo-

472        technology policy

nents that were being manufactured for the increasingly
automated phone system (see Aiken, Howard). The phone
industry contributed ideas as well as hardware. Scientists at
the Bell Laboratories carried out fundamental research into
information theory that would soon be applied to data com-
munications (see Shannon, Claude).

As computers became more capable in the 1950s and
1960s, they began to return the favor, making possible
increasing automation for the phone system. Meanwhile,
computers were starting to be hooked up to telephone lines
(see modem) so they could exchange data and allow their
users to communicate (see network).

The development of a global network (see Internet)
and its growth through the 1980s provided a universal plat-
form for data communications. At first, the Internet was
used mostly by academics and engineers, but the advent
of the World Wide Web and in particular, graphical Web
browsers made Internet access ubiquitous among small
businesses and home users by the late 1990s.

Institutional Internet users often had fast access through
dedicated phone lines (designated T-1, and so on), while
homes, small businesses, and schools were limited to much
slower dial-up access. This began to change in the late 1990s
as alternatives to POTS (“plain old telephone service”)
emerged in the form of DSL (a much faster service running
over regular phone lines) and cable modems that used the
infrastructure that already brought TV to millions of homes.

Impact of Deregulation
Prior to the court-ordered breakup of AT&T in 1984, the
phone industry functioned in a monolithic way and was
not very responsive to the needs of the growing computer
networking industry.

The breakup of AT&T led to growing competition, pro-
viding a wider variety of telecommunications equipment
and lower phone rates just as PC users were starting to
buy modems and sign up with online services and bul-
letin boards. The growing deregulation movement in the
1990s (culminating in the Telecommunications Act of
1996) furthered this process by opening cable and broad-
cast television, radio, and other wireless communication to
competition.

With more than half of American Internet users on
high-speed connections (see broadband), the delivery of
communications and media over the Net can only grow.
Wireless and mobile services (satellite, cell network,
and 802.11—see wireless computing) have also been
growing vigorously. The result is that the “information
highway” now has many lanes, with some being express
lanes.

Convergence and the Future
The ability of the Internet to transmit any sort of data virtu-
ally anywhere at relatively low cost has created new alter-
natives to traditional communications technologies. For
example, sending digitized voice telephone calls as pack-
ets over the Internet can provide a lower-cost alternative
to conventional long distance calling (see VoIP). At the
same time, previously separate functions are converging

into “smarter” devices. Thus, the handheld computer and
the cell phone seem to be converging into a single device
that can provide data management (see smartphone). Web
browsing, and communications in a single package.

Computers and communications technology will continue
to grow more intertwined. Today it is increasingly hard to dis-
tinguish information technology, media content, and commu-
nications technology as being distinctive sectors. After all, a
consumer can watch a movie in the theater or later on broad-
cast, cable, or satellite TV, rent it on commercial videotape
or DVD disk (playable on PCs as well as portable players),
or even view it as a streaming file direct from the Internet.
Although these technologies have differing technical con-
straints, their end products are the same for the consumer.

This multiplicity of function means that the competitive
environment is increasingly hard to predict, since there are
so many possible players. The companies offering content
through this variety of technologies are also increasingly
intertwined.

For analysts, studying any technology requires aware-
ness of the many possible alternatives, while studying any
application means considering the many possible techno-
logical implementations. For policy makers and regulators,
the challenge is to provide for such public goods as equal
access, privacy, and protection of intellectual property in a
communications infrastructure that is truly global in scope
and evolving at a pace that frequently outdistances the
political process.

Further Reading
Benjamin, Stuart Minor, et al. Telecommunications Law and Policy.

2nd ed. Durham, N.C.: Carolina Academic Press, 2006.
———. Telecommunications Law and Policy, 2007 Supplement. Dur-

ham, N.C.: Carolina Academic Press, 2007.
Goleniewski, Lillian. Telecommunications Essentials: The Complete

Global Source. 2nd ed. Upper Saddle River, N.J.: Addison-
Wesley, 2007.

Hill Associates. Telecommunications: A Beginner’s Guide. Berkeley,
Calif.: McGraw-Hill/Osborne, 2002.

“Media and Telecommunications Policy and Legislation.” Moffitt
Library, UC Berkeley. Available online, URL: http://www.lib.
berkeley.edu/MRC/MediaPolicy.html. Accessed August 22,
2007.

Olejniczak, Stephen P. Telecom for Dummies. Hoboken, N.J.: Wiley,
2006.

telecommuting
Telecommuting (also called telework) is the ability to work
from home or from some location other than the main
office. According to a report by the nonprofit organization
WorldatWork, 28.7 million people worked from home at
least one day a month in 2006. (Self-employed persons, of
course, have a much higher rate of working from home.)

Telecommuting was made possible by the growing capa-
bilities of home computers and the availability of network
connections that allow the worker at home to have access
to most of the people and facilities that would be available
if the worker were on site. Workers and companies that pro-
mote telecommuting often cite the following advantages:

telecommuting        473

• � elimination of stressful, time-wasting commutes

• � workers may be more productive because they have
fewer office distractions, unnecessary meetings, etc.

• � reduction of traffic, air pollution, and fuel costs

• � greater flexibility in working hours

• � the ability of working parents with small children to
combine child care and work to some extent

• � reduction of costs associated with office facilities

However, telecommuting has its critics in management.
Some of the problems or disadvantages cited include:

• � Worker productivity may decrease due to lack of suf-
ficient discipline and workers becoming distracted at
home.

• �M anagers may have trouble keeping track of or evalu-
ating the activities of workers who are not physically
present.

• � Telecommuters may miss critical information and go
“out of the loop.”

• � Security can be compromised, particularly through
theft of laptops containing sensitive personal data.

• � Possible legal liabilities and application of OSHA rules
to home working situations.

It is true that telecommuting is suitable mainly for
jobs that involve information processing rather than per-
son-to-person contact, such as service jobs. However, the
use of videoconferencing or Web conferencing technology
increasingly makes it possible for suitably equipped tele-
commuters to participate in meetings almost as directly
as if they were physically present (see conferencing sys-
tems and telepresence).

In some cases involving videoconferencing or other
activities that require high-powered computer systems and
high bandwidth connections, telecommuters physically
commute to a “satellite work center” near their home that
has the appropriate equipment. This can provide some of
the advantages of telecommuting such as flexibility and
lower commute and office costs.

A number of issues must be worked out between workers
and management for any telecommuting program, including:

• � Who will pay for the equipment used by the telecom-
muter

• � Procedures for monitoring the work

• � How telecommuters will participate in meetings
(either remotely or in person)

• � The portion of the worker’s hours involving telecom-
muting, and the portion requiring attendance in-
house

Trends
Telecommuting was touted in the mid-1990s as the wave
of the future. In reality, the statistics given earlier sug-
gest while it is a viable option for a significant minority of

workers, telecommuting is not growing as rapidly as had
been predicted. The growing power of desktop PCs and the
availability of broadband (DSL or cable) network connec-
tions should help facilitate telecommuting. In the longer
term new technologies may make the distinction between
telecommuters and physically present workers much less
important (see telepresence and virtual reality).

Further Reading
American Telecommuting Association. Available online. URL:

http://www.yourata.com/index.html. Accessed August 22,
2007.

Dziak, Michael. Telecommuting Success: A Practical Guide for Stay-
ing in the Loop While Working Away from the Office. Indianap-
olis: Park Avenue, 2001.

Messmer, Ellen. “Telecommuting Security Concerns Grow.” Info-
World, April 18, 2006. Available online. URL: http://www.
infoworld.com/article/06/04/18/77520_HNtelecommunting-
security_1.html. Accessed August 22, 2007.

Zetlin, Minda. Telecommuting for Dummies. New York: Hungry
Minds, 2001.

telepresence
An old phone company slogan asserted that “long distance
is the next best thing to being there.” Today technology
has made the ability to “be there” a much more complete
experience. It is now quite common for businesspersons
to “attend” a meeting in a distant city using video cameras
to see and be seen, with images and voice traveling over
special leased lines or high speed Internet connections (see
videoconferencing).

While videoconferencing and suitable software allows
remote interaction and collaboration (such as being able
to build a spreadsheet or diagram together), the remote
participant has little ability to physically interact with the
environment. He or she can’t walk freely around, perhaps
joining other meeting participants in an adjacent room
while they have pastries and coffee. The remote participant
also cannot handle physical objects such as models.

There are two basic approaches to letting persons have
an unconstrained experience in a remote environment. The
first is to use technology to create a virtual presence where a
person can experience a simulated environment from many
different angles and move freely through it while grasping
and manipulating objects (see virtual reality). In a vir-
tual environment each participant can be represented by an
“avatar” body that can be programmed to move in response
to head trackers, gloves, and other devices.

However, a virtual reality is an artificial representation
of the world. A group of people having a meeting in a physi-
cal space can’t interact with someone who is in virtual space
except in the most rudimentary ways. To be on an equal
footing, all participants would have to be in either physical
or virtual space.

Telerobotics
The alternative is to connect the remote participant to a
mobile robot (this is sometimes called telerobotics). Such
robots already exist, although their capabilities are limited

474        telepresence

and they are not yet widely used for meetings. Rodney
Brooks, director of the MIT Artificial Intelligence Labora-
tory, foresees a not very distant future in which such robots
will be commonplace.

The robot will have considerable built-in capabili-
ties, so the person who has “roboted in” to it won’t need to
worry about the mechanics of walking, avoiding obstacles,
or focusing vision on particular objects. Seeing and acting
through the robot, the person will be able to move around
an environment as freely as persons who are physically pres-
ent. The operator can give general commands amounting to
“walk over there” or “pick up this object” or perform more
delicate manipulations by using his or her hands to manipu-
late gloves connected to a force-feedback mechanism.

Brooks sees numerous applications for robotic telepres-
ence. For example, someone at work could “robot in” to his
or her household robot and do things such as checking to
make sure appliances are on or off, respond to a burglar
alarm, or even refill the cat’s food dish. Robotic telepres-
ence could also be used to bring expertise (such as that of a
surgeon) to any site around the world without the time and
expense of physical travel. Indeed, robots may be the only
way (for the foreseeable future) that humans are likely to
explore environments far beyond Earth (see space explo-
ration and computers).

Further Reading
Ballantyne, Garth H., Jacques Marescaux, and Pier Cristoforo Giu-

lianotti. The Primer of Robotic and Telerobotic Surgery: A Basic
Guide to Heart Disease. 4th ed. Baltimore: Lippincott Wil-
liams & Wilkins, 2004.

Frere, Manuel, et al., eds. Advances in Telerobotics. New York:
Springer, 2007.

Goldberg, Ken, ed. The Robot in the Garden: Telerobotics and Tel-
epistemology in the Age of the Internet. Cambridge, Mass.: MIT
Press, 2000.

NASA Space Telerobotics Program. Available online. URL: http://
ranier.hq.nasa.gov/telerobotics_page/telerobotics.shtm.
Accessed August 22, 2007.

Sheppard, P. J., and G. R. Walker, eds. Telepresence. New York:
Springer, 1998.

Tele-Robotics Links [Online robots, etc.]. Available online. URL:
http://queue.ieor.berkeley.edu/~goldberg/art /telerobotics-
links.html. Accessed August 22, 2007.

template
The term template is used in a several contexts in comput-
ing, but they all refer to a general pattern that can be cus-
tomized to create particular products such as documents.

In a word processing program such as Microsoft Word, a
template (sometimes called a style sheet) is a document that
comes with a particular set of styles for various elements
such as titles, headings, first and subsequent paragraphs,
lists, and so on. Each style in turn consists of various char-
acteristics such as type font, type style (such as bold), and
spacing. The template also includes properties of the docu-
ment as a whole, such as margins, header, and footer.

To create a new document, the user can select one of
several built-in templates for different types of documents
such as letters, faxes, and reports, or design a custom tem-

plate by defining appropriate styles and properties. Special
sequences of programmed actions can also be attached to a
template (see macro).

Templates can be created and used for applications other
than word processing. A spreadsheet template consists of
appropriate macros and formulas in an otherwise blank
spreadsheet. When it is run, the template prompts the user
to enter the appropriate values and then the calculations
are performed. A database program can have input forms
that serve in effect as templates for creating new records by
inputting the necessary data.

Class Templates
Some programming languages use the term template to refer
to an abstract definition that can be used to create a variety
of similar classes for handling different types of data, which
in turn are used to create actual objects. For example, once
the programmer defines the following template:

template<class ANY_TYPE>
ANY_TYPE maximum(ANY_TYPE a, ANY_TYPE b)
{

return (a > b) ? a : b;

This template provides any class with the maximum
function, which can compare any two objects of that class
and return the larger one. (See c++, class, and object-
oriented programming.)

Further Reading
Abrams, David, and Aleksey Gurtovoy. C++ Template Metapro-

gramming: Concepts, Tools, and Techniques from Boost and
Beyond. Upper Saddle River, N.J.: Addison-Wesley Profes-
sional, 2004.

Free Templates for Work, Home, and Play. Microsoft Office Online.
Available online. URL: http://office.microsoft.com/en-us/tem-
plates/FX100595491033.aspx. Accessed August 22, 2007.

“Introduction to the Standard Template Library” [for C++]. SGI.
Available online. URL: http://www.sgi.com/tech/stl/stl_intro-
duction.html. Accessed August 22, 2007.

Krieger, Stephanie. Advanced Microsoft Office Documents Inside Out.
2007 ed. Redmond, Wash.: Microsoft Press, 2007.

Vandevoorde, David, and Nicolai M. Josuttis. C++ Templates: The Com-
plete Guide. Upper Saddle River, N.J.: Addison-Wesley, 2002.

Utvich, Michael, Ken Milhous, and Yana Beylinson. 1 Hour Web
Site: 120 Professional Templates and Skins. Hoboken, N.J.:
Wiley, 2006.

Walkenbach, John. Microsoft Office Excel 2007 Bible. Indianapolis:
Wiley, 2007.

terminal
Throughout the 1950s, operators interacted with computers
primarily by punching instructions onto cards that were
then fed into the machine (see punched cards and paper
tape). Although this noninteractive batch processing proce-
dure would continue to be used with mainframe computers
during the next two decades, another way to use computers
began to be seen in the 1960s.

With the beginning of time-sharing computer systems,
several users could run programs on the computer at the
same time. The users communicated with the machine by

terminal        475

typing commands into a Teletype or similar device. Such a
device is called a terminal.

The simple early terminals did little more than accept
lines of text commands from the user and print responses
or lines of output coming from the computer. However, a
newer type of terminal began to replace the Teletype. It
consisted of a keyboard attached to a televisionlike cathode
ray tube (CRT) display. User still typed commands, but the
computer’s output could now be displayed on the screen.

Gradually, CRT terminals gained additional capabilities.
The text being entered was now stored in a memory buf-
fer that corresponded to the screen and the user could use
special control commands or keys to move the input cursor
anywhere on the screen when creating a text file. This made
it much easier for users to revise their input (see text edit-
ing). These “smart terminals” had their own small proces-
sor and ran software that provided these functions.

During the 1970s, the UNIX operating system devel-
oped a sophisticated way to support the growing variety of
terminals. It provided a library of cursor-control routines
(called curses) and a database of terminal characteristics
(called termcap).

When the personal computer came along, it had a
keyboard, a processor, the ability to run software, and a
connection for a TV or monitor. The PC thus had all the
ingredients to become a smart terminal. Indeed, a modern
PC is a terminal, but users don’t usually have to think in
those terms. The exception is when the user runs a commu-
nications program to connect to a remote computer (per-
haps a bulletin board) with a modem. These programs, such
as the Hyperterminal program that comes with Windows,
allow the PC to emulate (work like) one of the standard ter-
minal types such as VT-100. This ability to emulate a stan-
dard terminal means that any software that supports that
physical terminal should also work remotely with a PC.

Today most interaction with remote programs is through
a Web browser, although protocols such as telnet are still
used to provide terminallike access to remote programs.
Many commands previously entered as text lines in a ter-
minal are now given using the mouse with menus and icons
(see user interface).

The relationship between a terminal and remote computer
is analogous to that between a workstation (or desktop PC)
and the network server in that the burden of processing is
divided between the two devices in various ways (see client-
server computing). A “thin client” PC performs relatively
little processing with the server doing most of the work.

Specialized terminals are still used for many applica-
tions. An ATM, for example, is a special-purpose banking
terminal driven by a keypad and touchscreen.

Further Reading
Archive of Video Terminal Information. Available online. URL:

http://www.cs.utk.edu/~shuford /terminal /index.html.
Accessed August 22, 2007.

Free Software Foundation. The Termcap Library. Available online.
URL: http://www.gnu.org/manual/termcap-1.3/termcap.html.
Accessed August 22, 2007.

Linux Terminal Server Project. Available online. URL: http://www.
ltsp.org/. Accessed August 22, 2007.

text editor
As noted in the previous article (see terminal), an alterna-
tive to batch-processing punch card driven computer opera-
tions emerged in the 1960s in the form of text commands
typed at an interactive console or terminal. At first text
could be typed only a line at a time and there was no way to
correct a mistake in a previous line.

Soon, however, programmers began to create text edit-
ing programs. The first editors were still line-oriented, but
they stored the lines for the current file in memory. To dis-
play a previous line, the user might simply type its number.
To correct a word in the line the user might type something
like

c/fot/for

to change the typo “fot” to the word “for” in the current line.
Starting in the early 1970s, the UNIX system provided

both a line editor (ed or ex) and a “visual editor” (vi). The lat-
ter editor works with terminals that can display full screens
of text and allow the cursor to be moved anywhere on the
screen. This type of editor is also called a screen editor.

Most ordinary PC users use word processors rather than
text editors to create documents. Unlike a text editor, a
word processor’s features are designed to create output that
looks as much like a printed document as possible. This
includes the ability to specify text fonts and styles. How-
ever, most systems also include a simpler text editor that
can be useful for making quick notes (in Windows this pro-
gram is indeed called Notepad).

The primary use of text editors today is to create pro-
grams and scripts. These must generally be created using
only standard ASCII characters (see characters and
strings), without all the embedded formatting commands
and graphics found in word processing documents. Pro-
grammer’s text editors can be very sophisticated in their
own right, providing features such as built in syntax check-
ing and formatting or (as with the Emacs editor) the ability
to program the editor itself. Ultimately, however, program
editors must create a source code file that can be processed
by the compiler.

Text editors are also useful for writing quick, short
scripts (see scripting languages) and can be handy for
writing HTML code for the Web. However, many Web pages
are now designed using word processor–like programs that
convert the WYSIWYG (what you see is what you get) for-
matting into appropriate HTML codes automatically.

Further Reading
Cameron, Debra, et al. Learning GNU Emacs. 3rd ed. Sebastapol,

Calif.: O’Reilly, 2005.
Chassell, Robert J. An Introduction to Programming in Emacs Lisp.

2nd ed. Boston, Mass.: GNU Press, 2004.
Robbins, Arnold, and Linda Lamb. Learning the vi Editor. 6th ed.

Sebastapol, Calif.: O’Reilly, 1998.
Shareware Text Editors, Word Processors, etc. Available online.

URL: http://www.passtheshareware.com/c-txtwp.htm. Accessed
August 22, 2007.

Smith, Larry L. How to Use the UNIX-LINUX vi Text Editor: Tips,
Tricks, and Techniques (And Tutorials Too!) Charleston, S.C.:
BookSurge, 2007.

476        text editor

texting and instant messaging
Although they use different devices and formats, text
messaging on cell phones and PDAs and instant messag-
ing through online services have much in common. Both
involve sending short messages to other users who can
receive them and reply as soon as they are online. (This
is an ad hoc connection that differs from a chat room [see
chat, online] in that the latter is an established location
where people go to converse with other members. It also
differs from an online discussion group [see conferenc-
ing systems and netnews and newsgroups] where mes-
sages are posted and may be replied to later, but there is no
real-time communication.)

Text messaging or texting uses a protocol called Short
Message Service (SMS), which is available with most cell
phones and service plans as well as PDAs that have wire-
less connections. When a user sends a message to a des-
ignated recipient, it goes to a service center where it is
routed to the destination phone; if that phone is not con-
nected, the message is stored and retried later. Typically
messages are limited to 160 characters, though up to six
or so messages can be concatenated and treated as a lon-
ger message.

While texting did not become popular until the late
1990s, instant messaging began in the 1970s as a way for
multiple users on a shared computer or network (such as
a UNIX system) to communicate in real time using com-
mands such as send and talk (the latter being more conver-
sational—see chat, online). In the late 1980s and early
1990s, various dial-up services (see America Online and
online services) provided for sending text messages (AOL
was the first to use the term instant messages for its facility).
By the mid-1990s instant messaging was well established on
the Internet, often employing a graphical user interface, as
with ICQ and AOL Instant Messenger (AOL later acquired
ICQ as well).

There have been efforts to allow users of different instant
messaging systems to communicate with one another, but
resistance on the part of the proprietary networks (often
citing security concerns) has hobbled this process thus far.
Instant messaging has also been implemented as an applica-
tion for phones and other mobile devices (an effort headed
by the Open Mobile Alliance). Generally this involves
reworking the IM software to use the SMS text service to
carry messages.

Cultural Impact
Between 2000 and 2004 the numbers of text messages sent
worldwide soared from 17 billion to 500 billion. At about a
dime a message, texting became a major source of revenue
for phone companies. Since then, texting has continued
to grow, particularly in parts of Europe, the Asia-Pacific
region (particularly China), and Japan (where it has largely
become an Internet-based service).

In the United States texting is most popular among
teenagers (see young people and computing). It is not
uncommon to see a bench full of teens talking excitedly to
one another while carrying on simultaneous texting with
unseen friends in what, to many adult onlookers, appears

to be an incomprehensible code, their conversation perhaps
ending with ttyl (talk to you later).

Loosely affiliated groups communicating by text (see
flash mobs) have organized everything from “happenings”
to serious protest campaigns (as in the anti-WTO [World
Trade Organization] demonstrations in Seattle in 1999 and
in the Philippines uprising in 2001.)

The popularity of texting has increasingly attracted the
attention of fraudsters (see phishing and spoofing and
spam) as well as more legitimate marketers.

Further Reading
All about Instant Messengers. Available online. URL: http://

aboutmessengers.com/. Accessed November 29, 2007.
Hord, Jennifer. “How SMS Works.” Available online. URL: http://

communication.howstuffworks.com/sms.htm. Accessed
November 29, 2007.

Le Bodic, Gwenael. Mobile Messaging Technologies and Services:
SMS, EMS and MMS. 2nd ed. New York: John Wiley and Sons,
2005.

Rheingold, Howard. Smart Mobs: The Next Social Revolution. Cam-
bridge, Mass.: Perseus Books, 2003.

SMS Speak Translator. Available online. URL: http://smspup.com/
smsSpeak.php. Accessed November 29, 2007.

“Web Messengers Handbook.” Available online. URL: http://web2.
ajaxprojects.com/web2/newsdetails.php?itemid=35. Accessed
November 29, 2007.

Torvalds, Linus
(1969– )
Finnish
Software Developer

Linus Torvalds developed Linux, a free version of the UNIX
operating system that has become the most popular alterna-
tive to proprietary operating systems.

Torvalds was born on December 28, 1969, in Helsinki,
Finland. His childhood coincided with the microproces-
sor revolution and the beginnings of personal computing.
At the age of 10, he received a Commodore PC from his
grandfather, a mathematician. He learned to write his own
software to make the most out of the relatively primitive
machine.

In 1988, Torvalds enrolled in the University of Helsinki
to study computer science. There he encountered UNIX, a
powerful and flexible operating system that was a delight
for programmers who liked to tinker with their computing
environment. Having experienced UNIX, Torvalds could
no longer be satisfied with the operating systems that ran
on most PCs, such as MS-DOS, which lacked the powerful
command shell and hundreds of utilities that UNIX users
took for granted.

Torvalds’s problem was that the UNIX copyright was
owned by AT&T, which charged $5,000 for a license to run
UNIX. To make matters worse, most PCs weren’t powerful
enough to run UNIX anyway.

At the time there was already a project called GNU
underway (see open source and Stallman, Richard). The
Free Software Foundation was attempting to replicate all the
functions of UNIX without using any of AT&T’s proprietary

Torvalds, Linus        477

code. This would mean that the AT&T copyright would
not apply, and the functional equivalent of UNIX could be
given away for free. Stallman and the FSF had already pro-
vided key tools such as the C compiler and the Emacs pro-
gram editor. However, they had not yet created the heart of
the operating system (see kernel). The kernel contains the
essential functions needed for the operating system to con-
trol the computer’s hardware, such as creating and manag-
ing files on the hard drive.

In 1991, Torvalds wrote his own kernel and put it
together with the various GNU utilities to create what soon
became known as Linux. Torvalds adopted the open source
license (GPL) pioneered by Stallman and the FSF, allowing
Linux to be distributed freely. The software soon spread
through ftp sites on the Internet, where hundreds of enthu-
siastic users (mainly at universities) helped to improve
Linux, adding features and writing drivers to enable it to
work with more kinds of hardware.

By the mid-1990s, the free and reliable Linux had
become the operating system of choice for many Web site
developers. Torvalds, who still worked at the University of
Helsinki as a researcher, faced an ever-increasing burden
of coordinating Linux development and deciding when to
release successive versions. As companies sprang up to mar-
ket software for Linux, they offered Torvalds very attractive
salaries, but he did not want to be locked into one particu-
lar Linux package (distribution).

Instead, in 1997 Torvalds moved to California’s Silicon
Valley, where he became a key software engineer at Trans-
meta, a company that makes Crusoe, a processor designed
for mobile computing.

In 2003 Torvalds left Transmeta. In 2004 he moved
to Portland, Oregon, where the Linux Foundation, a non-
profit consortium dedicated to promoting the growth of
Linux, supports his work. There he concentrates on guiding
the continuing development of the Linux core, or kernel.
Although he strongly supports open-source software, Tor-
valds has been criticized by some advocates for his prag-
matic approach of using proprietary software when it seems
to be more suitable to a given task.

Further Reading
Dibona, Chris. Open Sources: Voices from the Open Source Revolu-

tion. Sebastapol, Calif.: O’Reilly, 2001.
“FM Interview with Linus Torvalds: What Motivates Free Software

Developers?” First Monday, vol. 3 (1998). Available online.
URL: http://www.firstmonday.org/issues/issue3_3/torvalds/.
Accessed August 23, 2007.

Linux Foundation. Available online. URL: http://www.linux-
foundation.org/en/Main_Page. Accessed August 23, 2007.

Richardson, Marjorie. “Interview: Linus Torvalds.” Linux Journal,
November 1, 1999. Available online. URL: http://www.linux-
journal.com/article/3655. Accessed August 23, 2007.

Torvalds, Linus, and David Diamond. Just for Fun: The Story of an
Accidental Revolutionary. New York: HarperCollins, 2001.

touchscreen
As the name implies, a touchscreen is a screen display that
can respond to various areas being touched or pressed.
Invented in 1971, the first form of touchscreens to become

part of daily life were found on automatic teller machines
(ATMs) and point-of-sale credit card processors.

Touchscreens can detect the pressure of a finger or sty-
lus in several ways: A “resistive” touchscreen uses two lay-
ers of electrically conductive metallic material separated by
a space. When an area is touched, the two layers are electri-
cally connected, and the change in electrical current is reg-
istered and converted to a code that identifies the location
touched. Surface acoustic wave (SAW) touchscreens use
an ultrasonic wave that is interrupted by a touch; capaci-
tive touchscreens respond to the change in electron storage
(capacitance) caused by contact with a human body. Vari-
ous other acoustic, mechanical (strain-based), or optical
systems can also be used, with the latter being particularly
popular.

Touchscreens can have drawbacks ranging from prob-
lems with long fingernails to screen “keys” placed too close
together for normal fingers. Responsiveness is also consid-
erably slower than with a keyboard. Depending on the tech-
nology used, dirt or grease can also become a problem.

Other Applications
In addition to dedicated uses such as banking and retail-
ing, touchscreens are a common form of input for mobile
phones, PDAs, and similar devices (see pda and smart-
phone) where a “virtual” on-screen keyboard is often used
for entering text. Particularly versatile systems such as
Apple’s iPhone combine proximity sensors with touchscreen
technology in order to be able to recognize gestures such
as pinching and flicking. Another example is Microsoft’s
“Surface” interface. (For related technologies, see graphics
tablet and tablet pc.)

Further Reading
Baig, Edward C. iPhone for Dummies. New York: Wiley, 2007.
Buxton, Bill. “Multi-Touch Systems That I Have Known and

Loved.” Available online. URL: http://www.billbuxton.com/
multitouchOverview.html. Accessed November 29, 2007.

Microsoft Surface. Available online. URL: http://www.microsoft.
com/surface/. Accessed November 29, 2007.

Plaisant, Catherine. “High-Precision Touchscreens: Museum
Kiosks, Home Automation and Touchscreen Keyboards.”
University of Maryland Human-Computer Interaction Lab,
January 31, 1999. Available online. URL: http://www.cs.umd.
edu/hcil/touchscreens/. Accessed November 29, 2007.

Woyke, Elizabeth. “Reach Out and Touch—A Phone Screen.”
Forbes.com, November 28, 2007. Available online. URL:
h t t p : / / w w w. f o r b e s . c o m / t e c h n o l o g y / 2 0 07/ 11 / 2 8 /
touch-screens -phone s - t ech-hol id ay tech07- c x _ ew_
1128touch.html. Accessed November 29, 2007.

transaction processing
Many computer applications involve the arrival of a set of
data that must be processed in a specified way. For exam-
ple, a bank’s ATM system receives a customer’s request to
deposit money together with identification of the account
and the amount to be deposited. The system must accept the
deposit, update the account balance, and return a receipt to
the customer. This is an example of real-time transaction
processing.

478        touchscreen

Some applications process transactions in batches. For
example, a company may run a program once a month that
generates paychecks and withholding stubs from employee
records that include hours worked, number of dependents
claimed, and so on. Indeed, in the ATM example, the
account balance is typically not updated during the on-line
transaction, but instead a batch transaction is stored. Over-
night that transaction will be processed together with other
transactions affecting that account (such as checks), and
the balance will then be officially updated. (The program
module that keeps track of the progress of transactions is
called a transaction monitor.)

There are several considerations that are important in
designing transaction systems. While some transactions
may simply involve a request for information and do not
update any files, many transactions may require that several
files or database records be updated. For example, a transfer
of funds from a saving account to a checking account will
require that both accounts be updated: the first with a debit
and the second with a credit. What happens if the computer
performs the savings debit but then goes down before the
checking account can be credited? The result would be an
upset customer whose money seems to have disappeared.

The solution to this problem is to design a process where
the various updates are done not to the actual databases
but to associated temporary databases. Once these potential
transactions are posted, the system issues a “commit” com-
mand to the databases. Each database must send a reply
acknowledging that it’s ready to perform the actual update.
Only if all databases reply affirmatively is the commit com-
mand given, which updates all the databases simultaneously.

Further Reading
Lewis, Philip M., Arthur Bernstein, and Michael Kifer. Databases

and Transaction Processing: An Application-Oriented Approach.
Upper Saddle River, N.J.: Addison-Wesley, 2002.

Little, Mark, Jon Maron, and Greg Pavlik. Java Transaction Pro-
cessing: Design and Implementation. Upper Saddle River, N.J.:
Prentice Hall PTR, 2004.

tree
The tree is a data structure that consists of individual inter-
sections called nodes. The tree normally starts with a single
root node. (Unlike real trees, data trees have their root at
the top and branch downward.) The root connects to one
or more nodes, which in turn branch into additional nodes,
often through a number of levels. (A node that branches
downward from another node is called that node’s child
node.) A node at the bottom that does not branch any fur-
ther is called a terminal node or sometimes a leaf.

Trees are useful for expressing many sorts of hierarchi-
cal structures such as file systems where the root of a disk
holds folders that in turn can hold files or additional fold-
ers, and so on down many levels. (A corporate organization
chart is a noncomputer example of a hierarchical tree.)

The most common type of tree used as a data struc-
ture is the binary tree. A binary tree is a tree in which no
node has more than two child nodes. To move through data

stored in a binary tree, a program can use two pointers, one
to the current node’s left child and one to its right child
(see pointers and indirection). The pointers can then be
used to trace the paths through the nodes. If the tree repre-
sents a file that has been sorted (see sorting and search-
ing), comparing nodes to the desired value and branching
accordingly quickly leads to the desired record.

Alternatively, the data can be stored directly in con-
tiguous memory locations corresponding to the successive
numbers of the nodes. This method is faster than having
to trace through successive pointers, and a binary search
algorithm can be applied directly to the stored data. On the
other hand it is easier to insert new items into a linked list
(see list processing).

A common solution is to combine the two structures,
storing the linked list in a contiguous range of memory by
storing its root in the middle of the range, its left child at
the beginning of the range, its right child at the end, and
then repeatedly splitting each portion of the range to store
each level of children. Intuitively, one can see that algo-
rithms for processing such stored trees will take a recursive
approach (see recursion).

In a binary tree each node either has two branch (child) nodes or
is a terminal node. Here a binary tree is shown with the equivalent
representation in an array of memory locations. Notice that the
numbers are stored level by level (50 in the top level, 25 and 75 in
the second level, and so on.) Null would be a special value (such
as -1) representing an empty node.

tree        479

For efficiency it’s important to keep all branches of a tree
approximately the same length. A B-tree (balanced tree) is
designed to automatically optimize itself in this way.

Trees lend themselves to game programs where a series
of moves and their possible replies must be explored to
varying levels. A chess program will typically create a tree
from the current position, but use various criteria to deter-
mine which moves should be explored beyond just a few
levels, thus “pruning” the game tree.

Further Reading
Brookshear, J. Glenn. Computer Science: An Overview. 9th ed. Bos-

ton: Addison-Wesley, 2006.
Lafore, Robert. Data Structures & Algorithms in Java. 2nd ed. India-

napolis: Sams, 2002.
Parlante, Nick. “Binary Trees.” Available online. URL: http://

cslibrary.stanford.edu/110/BinaryTrees.html. Accessed August
23, 2007.

trends and emerging technologies
Because of the complexity of computer systems, software,
and business models, it is easy to “fail to see the forest for
the trees.” Stepping back once in a while to see what is
changing (or likely to change) is recommended. Such a per-
spective is particularly useful for professionals who need to
periodically evaluate their skills against the market, inves-
tors, venture capitalists, journalists, and educators.

It is nearly a commonplace to say that the future is com-
ing at an accelerating rate (for the ultimate speculation, see
singularity, technological). What adds to the challenge
is the way each new technology (and social adaptation)
has multiple consequences, whether it is social networking,
“viral marketing,” or individually targeted, location-aware
advertising. At the same time, attempting to distinguish
short-term hype from genuine trends is always difficult—
anyone in the computing field can compile a glossary of
now-obsolete buzzwords. Thus reading a variety of perspec-
tives from advocates to pundits to critics is essential.

Overall Trends
That said, the following table suggests some activities that
are in transition from a traditional model to one that reflects
emerging technological and social trends.

From	T o

desktop PC	 mobile and pervasive computing
wired networks	 wireless and mobile computing
separate handling of media	 integrated media servers
broadcasting	� user-driven, customizable chan-

nels of media
user as consumer	 user as contributor and sharer
individual consumers	 social networking
software as product	 software as service
proprietary code	 open source
interface-driven tasks	 search-driven interfaces
arbitrarily organized data	� semantically retrievable

information.
e-commerce	� integration of online and tradi-

tional channels

For more information about emerging trends, see the
following entries: digital convergence, open-source
movement, service-oriented architecture, smart
buildings and homes, social networking, ubiqui-
tous computing, user-created content, Web 2.0 and
beyond, Web services.

Further Reading
Haskin, David. “Don’t Believe the Hype: The 21 Biggest Technol-

ogy Flops.” Computerworld, April 4, 2007. Available online.
URL: http://www.computerworld.com/action/article.do?a
rticleId=9012345&comm and=viewArticleBasic. Accessed
November 29, 2007.

Piquepaille, Roland. “Emerging Technology Trends” [blog]. ZDNet.
Available online. URL: http://blogs.zdnet.com/emergingtech/.
Accessed November 29, 2007.

Plunkett Research. “Plunkett’s E-Commerce & Internet Indus-
try.” Available online. URL: http://www.plunkettresearch.
com/Industries/ECommerceInternet/tabid/151/Default.aspx.
Accessed November 29, 2007.

———. “Plunkett’s InfoTech, Computers & Software Industry.”
Available online. URL: http://www.plunkettresearch.com/
Industries/InfoTechComputersSoftware/tabid/152/Default.
aspx. Accessed November 29, 2007.

Seidensticker, Bob. Future Hype: The Myths of Technology Change.
San Francisco: Berrett-Koehler, 2006.

trust and reputation systems
Trust and reputation are inherently connected. Participants
in any transaction (such as respondents to classified ads or
participants in an online auction) want assurance that they
will receive the promised value in exchange for what they
are giving up. The default anonymity of online transactions
(see anonymity and the Internet) presents a challenge:
How does one obtain information about someone’s reputa-
tion (how he or she has behaved previously) and thus be
assured of his or her reliability?

One solution is to collect and characterize the expe-
riences of participants in previous transactions with that
person or entity. For an auction (see auctions, online and
eBay), the system can solicit and tabulate ratings (“feed-
back”) by participants in each transaction. However, this
kind of simple system must guard against being subverted
by people who create false identities (fronts) and transac-
tions and use them to inflate the feedback score.

A more sophisticated reputation system can be used for
ranking Web pages, contributions (such as blogs or product
reviews), or other works. Instead of giving each participant
the same single “vote,” the feedback is weighted accord-
ing to the responder’s own reputation. Thus if a number
of people whose own product reviews have been highly
recommended also recommend another review, that review
will be much more highly rated. Examples of this sort of
system include the PageRank algorithm used by Google,
the consumer review site Epinions.com, and the “techie”
favorite Slashdot.

Developing a trust and reputation system that is effec-
tive but unobtrusive is particularly important for the col-
laborative creation of content such as for search engines
and wikis (see user-created content and wikis and
Wikipedia).

480        trends and emerging technologies

Online attacks on reputation (defamation) are also a
growing problem for both businesses and individuals. Even
if the perpetrator is legally prosecuted or otherwise forced
to stop, removing the defamatory material (and links to it)
can be difficult, since the material may have been exten-
sively cached, archived, or otherwise copied. Thus consul-
tants in “reputation management” have begun to offer their
services to the victims of undeserved negative reputations.
(This includes optimizing for search engines so that nega-
tive material will be pushed to the bottom of the results.)

Further Reading
Dellarocas, Chrysanthos. “Reputation Mechanisms” [overview

and resources]. University of Maryland, R. H. Smith School of
Business. Available online. URL: http://www.washingtonpost.
com/wp-dyn/content/article/2007/07/01/AR2007070101355.
html? hpid=artslot. Accessed November 29, 2007.

Kinzie, Susan, and Ellen Nakashima. “Calling In Pros to Refine
Your Google Image.” Washington Post.com, July 2, 2007.
Available online. URL: http://www.washingtonpost.com/
wp-dyn/content/article/2007/07/01/AR2007070101355.html?
hpid=artslot. Accessed November 29, 2007.

Masum, Hassan, and Yi-Cheng Zhang. “Manifesto for the Repu-
tation Society.” First Monday, vol. 9 (July 2004). Available
online. URL: http://www.firstmonday.org/issues/issue9_7/
masum/index.html. Accessed November 29, 2007.

Solove, Daniel J. The Future of Reputation: Gossip, Rumor, and Pri-
vacy on the Internet. New Haven, Conn.: Yale University Press,
2007.

Trust Metrics Evaluation Project. Available online. URL: http://
www.trustlet.org/wiki/Trust_Metrics_Evaluation_project.
Accessed November 29, 2007.

Turing, Alan Mathison
(1912–1954)
British
Mathematician, Computer Scientist

Alan Turing’s broad range of thought pioneered many
branches of computer science, ranging from the fundamen-
tal theory of computability to the question of what might
constitute true artificial intelligence.

Turing was born in London on June 23, 1912. His father
worked in the Indian (colonial) Civil Service, while his
mother came from a family that had produced a number of
distinguished scientists. As a youth Turing showed great
interest and aptitude in both physical science and math-
ematics. When he entered King’s College, Cambridge, in
1931, his first great interest was in probability, where he
wrote a well-regarded thesis on the Central Limit Theorem.

Turing’s interest then turned to the question of what
problems could be solved through computation (see com-
putability and complexity). Instead of pursuing conven-
tional mathematical strategies, he re-imagined the problem
by creating the Turing Machine, an abstract “computer”
that performs only two kinds of operations: writing or
not writing a symbol on its imaginary tape, and possibly
moving one space on the tape to the left or right. Tur-
ing showed that from this simple set of states (see finite
state machine) any possible type of calculation could be
constructed. His 1936 paper “On Computable Numbers”

together with another researcher’s different approach (see
Church, Alonzo) defined the theory of computability.
Turing then came to America, studied at Princeton Univer-
sity, and received his Ph.D. in 1938.

Turing did not remain in the abstract realm, however,
but began to think about how actual machines could per-
form sequences of logical operations. When World War II
erupted, Turing returned to Britain and went into service
with the government’s Bletchley Park code-breaking facility.
He was able to combine his previous work on probability
and his new insights into computing devices to help analyze
cryptosystems such as the German Enigma cipher machine
and to design specialized code-breaking machines.

As the war drew to an end, Turing’s imagination brought
together what he had seen of the possibilities of automatic
computation, and particularly the faster machines that
would be made possible by harnessing electronics rather
than electromechanical relays. In 1946, he received a British
government grant to build the ACE (Automatic Computing
Engine). This machine’s design incorporated advanced pro-
gramming concepts such as the storing of all instructions
in the form of programs in memory without the mechani-
cal setup steps required for machines such as the ENIAC.
Another important idea of Turing was that programs could
modify themselves by treating their own instructions just
like other data in memory. However, the engineering of the
advanced memory system led to delays, and Turing left the
project in 1948 (it would be completed in 1950). Turing also
continued his interest in pure mathematics and developed a
new interest in a completely different field, biochemistry.

Turing’s last and perhaps greatest impact would come in
the new field of artificial intelligence. Working at the Uni-
versity of Manchester, Turing devised a concept that became
known as the Turing Test. In its best-known variation, the
test involves a human being communicating via a Teletype
with an unknown party that might be either another person
or a computer. If a computer at the other end is sufficiently
able to respond in a humanlike way, it may fool the human
into thinking it is another person. This achievement could
in turn be considered strong evidence that the computer is
truly intelligent. Since Turing’s 1950 article computer pro-
grams such as ELIZA and Web “chatterbots” have been able
to temporarily fool people they encounter, but no computer
program has yet been able to pass the Turing Test when
subjected to extensive probing questions by a knowledge-
able person.

Alan Turing had a secret that was very dangerous in that
time and place: He was gay. In 1952, the socially awkward
Turing stumbled into a set of circumstances that led to his
being arrested for homosexual activity, which was illegal
and heavily punished at the time. The effect of his trial and
forced medical “treatment” suggested that his death from
cyanide poisoning on June 7, 1954, was probably a suicide.

Alan Turing’s many contributions to computer science
were honored by his being elected a Fellow of the British
Royal Society in 1951 and by the creation of the prestigious
Turing Award by the Association for Computing Machinery,
given every year since 1966 for outstanding contributions
to computer science.

Turing, Alan Mathison        481

Further Reading
Henderson, Harry. Modern Mathematicians. New York: Facts On

File, 1996.
Herken, R. The Universal Turing Machine. 2nd ed. London: Oxford

University Press, 1988.
Hodges, A. Alan Turing: The Enigma. New York: Simon & Schuster,

1983. Reprinted New York: Walker, 2000.
———. “Alan Turing” [Web site]. Available online. URL: http://

www.turing.org.uk/. Accessed August 23, 2007.
Turing, Alan M. “Computing Machinery and Intelligence.” Mind,

vol. 49, 1950, 433–460.
———. “On Computable Numbers, with an Application to the

Entscheidungsproblem.” Proceedings of the London Mathemat-
ical Society, vol. 2, no. 42, 1936–1937, 230–265.

———. “Proposed Electronic Calculator.” In Carpenter, B. E. and
R. W. Doran, eds. A. M. Turing’s ACE Report of 1946 and other
Papers. Charles Babbage Institute Reprint Series in the His-
tory of Computing, vol. 10. Cambridge, Mass.: MIT Press,
1986.

Turkle, Sherry
(1948– )
American
Scientist, Writer

From the time cyberspace began to become a reality in the
1980s, Sherry Turkle has been a pioneer in studying the
psychological, social, and existential effects of computer
use and online interaction.

Turkle was born Sherry Zimmerman on June 18, 1948,
in Brooklyn, New York. After graduating from Abraham
Lincoln High School as valedictorian in 1965, she enrolled
in Radcliffe College (which later became part of Harvard
University) in Cambridge, Massachusetts. However, when
she was a junior her mother died, she quarreled with her
stepfather, and dropped out of Radcliffe because she was no
longer able to keep up with her studies.

Turkle then went to France, which by the late 1960s had
become the scene of social and intellectual unrest. A new
movement called poststructuralism was offering a radical
critique of modern institutions. Turkle became fascinated
by its ideas and attended seminars by such key figures as
Michael Foucault and Roland Barthes. In particular, per-
sonal experience and intellectual interest joined in spurring
her to investigate personal identity in the modern world.

Poststructuralism and postmodernism see identity as
something constructed by society or by the individual, not
something inherent. The new philosophers spoke of peo-
ple as having multiple identities between which they could
move “fluidly.” In being able to try on a new identity for
herself, Turkle could see the applicability of these ideas
to her own life and began to explore how they may also
explain the changes that were sweeping through society.

Turkle decided to return to the United States to resume
her studies. In 1970 she received an A.B. degree in social
studies, summa cum laude, from Radcliffe. After working
for a year with the University of Chicago’s Committee on
Social Thought, she enrolled in Harvard, receiving an M.A.
in sociology in 1973. She went on to receive her doctorate
in sociology and personality psychology in 1976, writing

about the relationship between Freudian thought and the
modern French revolutionary movements.

Psychology of Cyberspace
After getting her Harvard Ph.D. Turkle accepted a position
as an assistant professor of sociology at nearby MIT. Here
she found a culture as exotic as that of the French intel-
lectuals, but seemingly very different. In encountering the
MIT hackers that would later be described in Steven Levy’s
book Hackers, Turkle became intrigued by the way the stu-
dents were viewing all of reality (including their own emo-
tions) through the language of computers.

For many of the MIT computer students, the mind
was just another computer, albeit a complicated one. An
emotional overload required “clearing the buffer,” and
troubling relationships should be “debugged.” Fascinated,
Turkle began to function as an anthropologist, taking
notes on the language and behavior of the computer stu-
dents. In her second book, The Second Self: Computers and
the Human Spirit (1984), Turkle says that the computer for
its users is not an inanimate lump of metal and plastic, but
an “evocative object” that offers images and experiences
and draws out emotions. She also explained that the com-
puter could satisfy deep psychological needs, particularly
by offering a detailed but structured “world” (as in a video
game) that could be mastered, leading to a sense of power
and security.

Although the computer culture of the time was largely
masculine, Turkle also observed that this evocative nature
of technology could also allow for a “soft approach” based
on relationship rather than rigorous logic. This “feminine”
approach usually met with rejection. Turkle believed that
this message had to be changed if girls were not to be left
behind in the emerging computer culture.

Turkle had already observed how computer activities
(especially games) often led users to assume new identities,
but she had mainly studied stand-alone computer use. In
the 1990s, however, online services and the Internet in par-
ticular increasingly meant that computer users were inter-
acting with other users over networks. In her 1995 book
Life on the Screen, Turkle takes readers inside the fascinat-
ing world of the MUD, or multi-user dungeon (see online
games). In this fantasy world created by descriptive text,
users could assume any identity they wished. An insecure
teenage boy could become a mighty warrior—or perhaps a
seductive woman. A woman, by assuming a male identity,
might find it easier to be assertive and would avoid the sex-
ism and harassment often directed at females.

The immersive world of cyberspace offers promises, per-
ils, and potential, according to Turkle. As with other media,
the computer world can become a source of unhealthy
escapism, but it can also give people practice in using social
skills in a relatively safe environment, although there can
be difficulty in transferring skills learned online to a face-
to-face environment.

Although the computer has provided a new medium
for the play of human identity, Turkle has pointed out that
the question of identity (and the reality of multiple identi-
ties) is inherent in the postmodern world. Looking to the

482        Turkle, Sherry

future, Turkle suggests that the boundary between cyber-
space and so-called real life is vanishing, forcing people to
confront the question of what “reality” means. Meanwhile,
she remains concerned about the paradox in which people
may be becoming at once more connected and more alien-
ated than ever before.

Turkle married artificial intelligence pioneer and edu-
cator Seymour Papert; the marriage ended in divorce. She
continues today at MIT as a professor of the sociology of
science and as director of the MIT Initiative on Technology
and Self. She has received a number of fellowships, includ-
ing a Rockefeller Foundation fellowship (1980), a Guggen-
heim fellowship (1981), Fellow of the American Association
for the Advancement of Science (1992), and World Eco-
nomic Forum Fellow (2002).

In 1984 Turkle was selected Woman of the Year by Ms.
magazine, and she has made a number of other lists of
influential persons such as the “Top 50 Cyber Elite” of Time
Digital (1997) and Time Magazine’s Innovators of the Inter-
net (2000).

Further Reading
“Sherry Turkle” [Home page]. Available online. URL: http://web.

mit.edu/sturkle/www/. Accessed November 29, 2007.
Turkle, Sherry. “Can You Hear Me Now?” Forbes, May 7, 2007, p.

176.
———. Evocative Objects: Things We Think With. Cambridge,

Mass.: MIT Press, 2007.
———. Life on the Screen: Identity in the Age of the Internet. New

York: Simon and Schuster, 1995.
———. The Second Self: Computers and the Human Spirit. New

York: Simon and Schuster, 1984.

typography, computerized
The more than five-century-old art of typography (the
design, arrangement, and setting of printing type) was
transformed in the latter part of the 20th century by digital
technology. With the exception of some traditional presses
devoted to the fine book market, nearly all type used today
is designed and set by computer.

Most users are familiar with the typefaces distributed
with their operating system and software, such as the popu-
lar Adobe and TrueType (see Adobe systems and font).
Many such font designs are based on (and sometimes named
after) traditional typefaces, modified for readability using
typical displays and printers.

For control of composition, there are three overlapping
levels of software, ranging from easiest to use (but most
limited) to most complex, versatile, and precise. Modern
word processors such as Microsoft Word and Open Office
provide enough control for many types of shorter docu-
ments (see word processing). Desktop publishing soft-
ware adds facilities suitable for layout of fliers, brochures,
newsletters, and similar publications that often mix text
and graphics (see desktop publishing).

More elaborate documents such as books, magazines,
and newspapers require more sophisticated facilities
to control the layout and flow of text. Some traditional
choices include LaTex (for the Tex typesetting program),
used particularly by scientists and other academics, and
the older troff and its offshoots on UNIX systems. More
recent programs include Quark, FrameMaker, PageMaker,
and InDesign. Related utilities often used in digital typog-
raphy include font editors (for design and modification) and
utilities to convert fonts from one format to another.

Further Reading
Bringhurst, Robert. The Elements of Typographic Style. Version 3.0.

Point Roberts, Wash.: Hartley & Marks, 2004.
Ellison, Andy. The Complete Guide to Digital Type: Creative Use of

Typography in the Digital Arts. New York: Collins Design, 2004.
FontLab. Available online. URL: http://www.fontlab.com/i.

Accessed November 30, 2007.
FontSite: Digital Typography & Design. Available online. URL:

http://www.fontsite.com/. Accessed November 30, 2007.
Knuth, Donald E. Computers and Typesetting. 5 vols. Upper Saddle

River, N.J.: Addison-Wesley Professional, 2001.
Page Layout Programs. Aeonix Publishing Group. Available

online. URL: http://www.aeonix.com/pagelay.htm. Accessed
November 30, 2007.

Troff: The Text Processor for Typesetters. Available online. URL:
http://troff.org/. Accessed November 30, 2007.

typography, computerized        483

484

ubiquitous computing
Traditionally people have thought of computers as discrete
devices (such as a desktop or handheld device), used for
specific purposes such as to send e-mail or browse the Web.
However, many researchers and futurists are looking toward
a new paradigm that many believe is rapidly emerging. Ubiq-
uitous (or pervasive) computing focuses not on individual
computers and tasks but on a world where most objects
(including furniture and appliances) have the ability to com-
municate information. (This has also been called “the Inter-
net of things.”) This can be viewed as the third phase in a
process where the emphasis has gradually shifted from indi-
vidual desktops (1980s) to the network and Internet (1990s)
to mobile presence and the ambient environment.

Some examples of ubiquitous computing might include:

• � picture frames that display pictures attuned to the
user’s activities

• � “dashboard” devices that can be set to display chang-
ing information such as weather and stock quotes

• � parking meters that can provide verbal directions to
nearby attractions

• � kiosks or other facilities to provide verbal cues to
guide travelers, such as through airports

• � home monitoring systems that can sense and deal
with accidents or health emergencies

Ubiquitous computing greatly increases the ability of
people to seamlessly access information for their daily
activities, but the fact that the user is in effect “embed-

ded” in the network can also raise issues of privacy and the
receiving of unwanted advertising or other information (see
privacy in the digital age).

An early center of research in ubiquitous computing was
Xerox PARC, famous for its development of graphical user
interfaces (particularly the work of Mark Weiser). Today a
major force is MIT (see MIT Media Lab), especially its Proj-
ect Oxygen, which explores networks of embedded comput-
ers. This challenging research area brings together aspects
of many other fields (see artificial intelligence, distributed
computing, psychology of computing, smart buildings and
homes, touchscreen, user interface, and wearable com-
puters). Note that while the user’s experience of ubiquitous
computing might be similar in some ways to that of virtual
reality, the latter puts the user into a computer-generated
world, while the former uses computing power to enhance
the user’s connections to the outside world (see virtual
reality).

Further Reading
Greenfield, Adam. Everywhere: The Dawning Age of Ubiquitous

Computing. Berkeley, Calif.: New Riders, 2006.
Igoe, Tom. Making Things Talk: Practical Methods Connecting Physi-

cal Objects. Sebastapol, Calif.: O’ Reilly, 2007.
MIT Project Oxygen. Available online. URL: http://www.oxygen.

lcs.mit.edu/. Accessed November 30, 2007.
Morville, Peter. Ambient Findability: What We Find Changes Who

We Become. Sebastapol, Calif.: O’Reilly, 2005.
Terdiman, Daniel. “Meet the Metaverse, Your New Digital Home.”

CNET News. Available online. URL: http://news.com.com/
Meet+the+metaverse%2C+your+new+digital+home/2100-1025_
3-6175973.html. Accessed November 30, 2007.

U

Vasilakos, Athanasios, and Witold Pedrycz, eds. Ambient Intel-
ligence, Wireless Networking, and Ubiquitous Computing. Bos-
ton: Artech House, 2006.

UNIX
By the 1970s, time-sharing computer systems were in use at
many universities and engineering and research organiza-
tions. Such systems, often running on computers such as
the PDP series (see minicomputer), required a new kind
of operating system that could manage the resources for
each user as well as the running of multiple programs (see
multitasking).

An elaborate project called Multics had been begun in
the 1960s in an attempt to create such an operating system.
However, as the project began to bog down, two of its par-
ticipants, Ken Thompson and Dennis Ritchie (see Ritchie,
Dennis) decided to create a simple, more practical operat-
ing system for their PDP-7. The result would become UNIX,
an operating system that today is a widely used alternative
to proprietary operating systems such as those from IBM
and Microsoft.

Architecture
The essential core of the UNIX system is the kernel, which
provides facilities to organize and access files (see ker-
nel and file), move data to and from devices, and control
the running of programs (processes). In designing UNIX,
Thompson deliberately kept the kernel small, noting that he
wanted maximum flexibility for users. Since the kernel was
the only part of the system that could not be reconfigured or
replaced by the user, he limited it to those functions that reli-
ability and efficiency dictated be handled at the system level.

Another way in which the UNIX kernel was kept simple
was through device independence. This meant that instead
of including specific instructions for operating particular
models of terminal, printers, or plotters within the kernel,
generic facilities were provided. These could then be inter-
faced with device drivers and configuration files to control
the particular devices.

A UNIX system typically has many users, each of whom
may be running a number of programs. The interface that
processes user commands is called the shell. It is impor-
tant to note that in UNIX a shell is just another program,
so there can be (and are) many different shells reflecting
varying tastes and purposes (see shell). Traditional UNIX
shells include the Bourne shell (sh), C shell (csh), and Korn
shell (ksh). Modern UNIX systems can also have graphi-
cal user interfaces similar to those found on Windows and
Macintosh personal computers (see user interface).

Working with Commands
UNIX systems come with hundreds of utility programs that
have been developed over the years by researchers working
at Bell Labs and campuses such as the University of Califor-
nia at Berkeley (UCB). These range from simple commands
for working with files and directories (such as cd to set a
current directory and ls to list the files in a directory) to
language compilers, editors, and text-processing utilities.

Whatever shell is used, UNIX provides several key fea-
tures for constructing commands. A powerful system of
patterns (see regular expression) can be used to find files
that match various criteria. For a very simple example, the
command

% ls *.doc

will list all files in the current directory that end in .doc.
(The % represents the command prompt given by the shell.)

Most earlier operating systems used special syntax to
refer to devices such as the user’s terminal and the printer.
UNIX, however, treats devices just like other files. This
means that a program can receive its input by opening a ter-
minal file and send its output to another file. For example:

% cat > note
This is a note.
^D

The cat (short for concatenate) command adds the user’s
input to a file called note. The ^D stands for Control-D, the
special character that marks end-of-file. Once the command
finishes, there is a file called note on the disk, which can be
listed by the ls command:

% ls –l note
-rw———- 1 hrh well 16 Mar 25 20:16 note

The contents of the file can be checked by issuing
another cat command:

% cat note
This is a note.

Many commands default to taking keyboard input if no
input file is specified. For example, one can type sort fol-
lowed by a list of words to sort:

% sort
apple
pear
orange
tangerine
lemon
^D

Once the input is finished, the sort command outputs
the sorted list:

apple
lemon
orange
pear
tangerine

One of the things that makes UNIX attractive to its users
is the ability to combine a set of commands in order to per-
form a task. For example, suppose a user on a timesharing
system wants to know which other users are logged on. The
who command provides this information, but it includes a
lot of details that may not be of interest. Suppose one just
wants the names of the current users. One way to do this is
to connect the output of the who command to awk, a script-
ing language (see awk and scripting languages).

UNIX        485

% who | awk ' { print $1 }'

Here the vertical bar (called a pipe) connects the output
of the first command to the input of the second. Thus, the
awk command receives the output of the who command.
The statement print $1 tells awk to output the first column
from who’s output, which is just the names of the users.
The first part of the list looks like this:

mnemonic
bernie
kryan
nanlev
goddessj
brady
demaris
techgirl

This is fine, but the output might be better if it were sorted.
All that’s needed is to add one more pipe to connect the out-
put of the awk command to the sort command:

% who | awk ' {print $1}' | sort
aarong
aimee
almanac
amicus
autumn
biscuit
bradburn
brian

The ability to redirect input and output and to use pipes to
connect commands makes it easy for UNIX users to create
mini-programs called scripts to perform tasks that would
require full-fledged compiled programs on other systems.
For example, the preceding command could be put into a
file called users, and the file could be set to be executable.
Once this is done, all the user has to do to get the user list
is to type users at a shell prompt. Today UNIX users have a
wide choice of powerful scripting languages (see perl and
python).

Unix Then and Now
The versatility of UNIX quickly made it the operating sys-
tem of choice for most campuses and laboratories, as well as
for many software developers. When PCs came along in the
late 1970s and 1980s, they generally lacked the resources to
run UNIX, but developers of PC operating systems such as
CP/M and MS-DOS were influenced by UNIX ideas includ-
ing the hierarchical file system with its levels of directories,
the use of a command-processing shell, and wildcards for
matching filenames.

Besides hardware requirements, another barrier to the
use of UNIX by home and business users was that the
operating system was copyrighted by Bell Labs and a UNIX
license often cost more than the PC to run it on. However,
a combination of the efforts of the Free Software Founda-
tion (see Stallman, Richard) and a single inspired pro-
grammer (see Torvalds, Linus) resulted in the release of
Linux, an operating system that is fully functionally com-

patible with UNIX but uses no AT&T code and is thus free
of licensing fees (see Linux).

Although UNIX has been somewhat overshadowed by
its Linux progeny, a variety of open-source versions of tra-
ditional UNIX systems have become available. In 2005 Sun
Microsystems released OpenSolaris (based on UNIX System
V). There is also OpenBSD, derived from the UC Berkeley
Software Distribution (but with stronger security features),
and available for most major platforms. Finally, the con-
tinuing influence of UNIX can also be seen in the current
generation of operating systems for the Apple Macintosh
(see os x).

Further Reading
Bach, Maurice J. The Design of the UNIX Operating System. Upper

Saddle River, N.J.: Prentice Hall, 1986.
Lucas, Michael W. Absolute OPENBSD: UNIX for the Practical Para-

noid. San Francisco: No Starch Press, 2003.
OpenBSD. Available online. URL: http://www.openbsd.org/.

Accessed August 23, 2007.
OpenSolaris Project. Available online. URL: http://www.

opensolaris.org/os/. Accessed August 23, 2007.
Peek, Jerry, Grace Todino-Gonquet, and John Strang. Learning the

UNIX Operating System. 5th ed. Sebastapol, Calif.: O’Reilly
Media, 2002.

Robbins, Arnold. UNIX in a Nutshell. 4th ed. Sebastapol, Calif.:
O’Reilly Media, 2005.

Salus, Peter H. A Quarter Century of UNIX. Reading, Mass.: Addi-
son-Wesley, 1994.

“Unix Introduction and Quick Reference.” Available online. URL:
http://www.decf.berkeley.edu/help/handouts/unix-intro.pdf.
Accessed August 23, 2007.

USB
The traditional ways to connect a computer to peripheral
devices such as printers are via parallel and serial connec-
tions (see parallel port and serial port). Both methods
are standardized and reliable, but by the mid-1990s peo-
ple wanted to connect many more data-hungry devices to
their PCs, including scanners, digital cameras, and exter-
nal storage drives. Besides wanting faster data transfers,
system designers looked for a way to connect more devices
without having to add more ports to the motherboard.
It would also be convenient to be able to plug or unplug
devices without having to reboot the PC. The Universal
Serial Bus (USB) has all these features: It is relatively fast
and quite flexible.

Introduced in 1996, USB uses a four-wire cable with
small rectangular connectors. Devices can be connected
directly to the host USB hub built into the computer. Alter-
natively, a second hub can be connected to the host hub,
allowing for several devices to share the same connection.
(Often for convenience, monitors and other devices now
include built-in USB hubs for ease in connecting other
devices on the desktop.)

Two of the four wires carry power from the PCs power
supply (or from a secondary powered hub) to the connected
devices. The other two wires carry data. The 1s and 0s in
the data are signaled by the difference in voltage between
the two wires. (This tends to reduce the effects of outside

486        USB

electromagnetic interference, since if both wires are affected
similarly, the difference between them won’t change.)

When a USB device is connected, it creates a voltage
change that causes the USB system in the PC to query
it for identifying information. If the information indicates
that the device has not been installed, the operating system
begins an installation procedure that can be carried out
either automatically or with a little help from the user (see
plug and play).

Once a device is installed, its identifying information
tells the USB system what data rate it can handle. (Some
devices, such as keyboards, don’t need to be very fast, while
others, such as CD drives, place a premium on speed.) The
USB system assigns each device an address. The system
functions like a miniature token-ring network, sending que-
ries or commands with tokens identifying the appropriate
device. The devices respond to requests that have their token
and in turn send requests when they have data to transmit.

The USB system can assign priorities to devices accord-
ing to their need for an uninterrupted flow of data. A
recordable CD (CD-RW) drive, for example, is sensitive to
interruptions in the flow of data, so it is given a high prior-
ity. A keyboard sends only a tiny bit of data at a time, and it
can get by with a low priority, requesting service as needed.
Other devices such as scanners and printers may handle a
large flow of data, but are not very sensitive to interruptions
and can have a medium priority.

The original USB specification allowed for up to 12 MB/
sec data transfers. However, the current USB 2.0 specification
allows speeds up to 480 MB/sec, enough to easily handle a
digital camera, scanner, and CD-RW drive simultaneously.

Today USB connections are also often used to add exter-
nal hard drive storage as well as for handy “thumb drives”
or “memory sticks” that make it easy to carry one’s docu-
ments and even software from one machine to the next (see
flash drive). Finally, a USB-connected wireless adapter
(see Bluetooth and wireless computing) can be the
most convenient way to put an older desktop or laptop PC
into communication with the rest of the world.

Further Reading
Axelson, Jan. “USB Central” [Web site]. Available online. URL:

http://www.lvr.com/usb.htm. Accessed August 23, 2007.
———. USB Complete: Everything You Need to Develop Custom USB

Peripherals. 3rd ed. Madison, Wisc.: Lakeview Research,
2005.

———. USB Mass Storage: Designing and Programming Devices and
Embedded Hosts. Madison, Wisc.: Lakeview Research, 2006.

ZDNET USB Resources. Available online. URL: http://updates.
zdnet.com/tags/USB.html?t=17&s=0&o=0. Accessed August
23, 2007.

user-created content
Traditional print and broadcast media divide the world
into two groups: content producers and content consum-
ers. However, as noted by its creator Tim Berners-Lee at
its very beginning, the World Wide Web had at least the
potential for users to take an active role in linking existing
content and contributing their own (see Berners-Lee, Tim

and World Wide Web). Indeed, Berners-Lee wanted Web
client software to include not only browsing functions but
easy ways for users to create their own Web pages.

In reality, early users faced something of a learning
curve, usually having to cope with HTML to some extent,
for example. But by the mid-2000s a variety of new media
of communication had become readily accessible using an
ordinary Web browser at sites that host the required soft-
ware. The most prominent applications are blogs (see blogs
and blogging) and wikis, particularly Wikipedia (see
wikis and Wikipedia).

Meanwhile, inexpensive digital still and video cameras
and easy-to-use editing software encouraged people to make
their own media creations. Sites to enable users to upload,
share, and comment on their creations have flourished (see
YouTube).

The growth of sites such as Facebook and MySpace
(see social networking) has also provided new ways for
users from junior high school age on up to create and share
content.

Applications and Issues
The effects of this ability to create as well as consume media
are proving to be far-reaching. YouTube, for example, has
featured elaborate documentaries and controversial polit-
ical pieces. Candidates in the 2008 presidential primary
campaign had to deal with a new debate format where vot-
er’s questions, rather than being read by a moderator, are
presented in videos created by the voters themselves.

User-created content is also becoming significant in
media and journalism. Some newspapers are even begin-
ning to experiment with assigning stories to volunteer col-
laborators—possibly as a way of coping with diminishing
revenues and budgets for professional journalists.

Forms of user-created content are also increasingly
prevalent in the traditional broadcast media. While previ-
ously existing only in such forms as talk radio and game
shows, more or less unscripted participation is now found
in reality TV and the endless variants on American Idol.

Economists and social scientists are beginning to
explore how a combination of open-source, user-created
content, and mass collaboration are changing how infor-
mation is assembled and used and even how products are
designed (see open-source movement).

However, user-created content also raises challenges:
What kind of journalistic standards might be applied to non-
professional reporting and documentaries? (See journalism
and computers.) What should be the responsibility of the
owner of a venue such as YouTube for content that might vio-
late someone’s copyright or be defamatory? The creation of
content that contains information about personal identity can
also be problematic from a privacy and security standpoint.
Finally, in venues such as online games where users may
have spent hundreds of hours creating content, the question
of who owns it and what they can do with it is significant.

Further Reading
Espejo, Roman. User-Generated Content. (At Issue Series). Farm-

ington, Mich.: Greenhaven Press, 2007.

user-created content        487

Garofoli, Joe. “User News Sites Offer Diverse Stories, Some
Questionable Sources.” San Francisco Chronicle. Available
online. URL: http://www.sfgate.com/cgi-bin/article.cgi?f=/c/
a/2007/09/12/MNPDS3RE6.DTL&hw=user+content&sn=001
&sc=100. Accessed November 30, 2007.

Gillmor, Dan. We the Media: Grassroots Journalism by the People, for
the People. Cambridge, Mass.: O’Reilly, 2004.

Hietannen, Herkko, Ville Oksanen, and Vikko Valimaki. Com-
munity Created Content: Law, Business, and Policy. Helsinki,
Finland: Turre Publishing, 2007.

King, Brad. “User-Created Content Comes to TV.” Technology
Review blogs, December 5, 2006. Available online. URL:
http://www.technologyreview.com/blog /editors/17485/.
Accessed November 30, 2007.

Tapscott, Don, and Anthony D. Williams. Wikinomics: How Mass
Collaboration Changes Everything. New York: Portfolio, 2006.

Vickery, Graham, and Sacha Wunsch-Vincent. Participative Web
and User-Created Content: Web 2.0 Wikis and Social Network-
ing. Paris: Organization for Economic Cooperation and Devel-
opment, 2007.

user groups
Computer users have always had an interest in finding and
sharing information about the systems they are trying to
use. As early as 1955, users of the IBM 701 mainframe
banded together, in this case to try to influence IBM’s deci-
sions about new software. Later, users of minicomputers
made by Digital Equipment Corporation formed DECUS.

By the mid-1970s, microcomputer experimenters had
organized several groups, of which the most influential was
probably the Homebrew Computer Club, meeting first in a
garage in Menlo Park, California, 1975. The group soon was
filling an auditorium at Stanford University. Members dem-
onstrated and explained their hand-built computer systems,
argued the merits of kits such as the Altair, and later, wit-
nessed Steve Wozniak’s prototype Apple I computer.

At the other end of the scale, users of UNIX on univer-
sity computer systems had formed USENIX, the UNIX user’s
group. A growing system of newsgroups called USENET
(see netnews and newsgroups) would soon extend
beyond UNIX concerns to hundreds of other topics.

Early PC users had great need for user groups. Tech-
nical support was primitive and the variety of computer
books limited, so the best way to get quirky hardware or
balky software to work was often to ask fellow users, read
user group newsletters, or skim through the great variety
of small publications that catered to users of particular sys-
tems. Users could also meet to swap public domain software
disks. User groups could be formed around software as well
as hardware. Thus, users could swap spreadsheet templates
or discuss Photoshop techniques.

User groups have gradually become less important, or
perhaps it is better to say that they have changed their
mode of existence. Starting in the mid-1980s, the modem
and bulletin board, on-line services such as CompuServe
and later, Web sites offered more convenient access to infor-
mation and software without the need to attend meetings.
At the same time, the quality and reliability of hardware
and software has steadily improved, even though there is
always a new crop of problems.

User groups played a key role in the adoption of new
technology, much as they had in earlier movements such
as amateur radio. Today it might be said that every user
has the opportunity to join numerous virtual user groups,
although the sense of fellowship and mutual exploration
may be somewhat lacking.

Further Reading
Association of Personal Computer User Groups. Available online.

URL: http://www.apcug.org/. Accessed August 23, 2007.
Moen, Rick. “Linux User Group HOWTO.” Available online. URL:

http://www.linux.org/docs/ldp/howto/User-Group-HOWTO.
html. Accessed August 23, 2007.

MUG Center: The Mac User Group Resource Site. Available online.
URL: http://www.mugcenter.com/. Accessed August 23, 2007.

USENIX. Available online. URL: http://www.usenix.org/. Accessed
August 23, 2007.

User Group Network. Available online. URL: http://www.user-
groups.net/. Accessed August 23, 2007.

WUGNET (Windows Users Group Network). Available online.
URL: http://www.wugnet.com/. Accessed August 23, 2007.

user interface
All computer designers are faced with the question of how
users are going to communicate with the machine in order
to get it to do what they want it to do. User interfaces have
evolved considerably in 60 years of computing.

The user interface for ENIAC and other early computers
consisted of switches or plugs for configuring the machine
for a particular problem, followed by loading instructions
from punch cards. The mainframes of the 1950s and 1960s
had control consoles from which text commands could be
entered (see job control language).

The time-sharing computers that became popular start-
ing in the 1960s still used only text commands, but they
were more interactive. Users could type commands to
examine directories and files, and run utilities and other
programs. Starting in the 1970s, UNIX provided a powerful
and flexible way to combine commands to carry out a vari-
ety of tasks interactively or through batch processing (see
unix and shell).

The first graphical user interfaces (GUIs) resulted from
experimental work at the Xerox Palo Alto Research Center
(PARC) during the 1970s. Instead of typing commands at
a prompt, GUI users can use a mouse to open menus and
select commands, and click on icons to open programs and
files. For operations that require detailed specifications, a
standard dialog box can be presented, using controls such
as check boxes, buttons, text boxes, and sliders.

GUIs entered the mainstream thanks to Apple’s Macin-
tosh and Microsoft Windows for IBM-compatible PCs. By
the mid-1990s, the GUI had supplanted text-based oper-
ating systems such as MS-DOS for most PC users. The
strength of the GUI is that it can visually model the way
users work with objects in the real world. For example, a
file can be deleted by dragging it to a trash can icon and
dropping it in. Dragging a slider control to adjust the vol-
ume for a sound card is directly analogous to moving a
slider on a home stereo system.

488        user groups

Because a system like Windows or the Macintosh pro-
vides developers with standardized interface objects and
conventions, users are able to learn the basics of operating
a new application more quickly. Whereas in the old days
different programs might use slightly different keystrokes
or commands for saving a file, Windows users know that in
virtually any application they can open the File menu and
select Save, or press Ctrl-S.

With the growth of the World Wide Web, interface
design has extended to Web pages. Generally, Web pages
use similar elements to desktop GUIs, but there are some
special considerations such as browser compatibility,
response at differing connection speeds, and the integration
of text and interactive elements.

GUIs do have some general drawbacks. An experienced
user of a text-based operating system might be able to type
a precise command that could find all files of a given type
on the system and copy them to a backup directory. The
GUI counterpart might involve opening the Search menu,
typing a file specification, and making further selections
and menu choices to perform the copy. Command-driven
systems also provide for powerful scripting capabilities.
GUI systems often allow for the recording of keystrokes or
menu selections, but this is less powerful and versatile.

Another important consideration is the difficulty that
people with certain disabilities may have in using GUI sys-
tems. There are a variety of possible solutions, many of
which are incorporated in Microsoft Windows, Web brows-
ers, and other software. These include screen magnifier or
reader utilities for the visually impaired and alternatives to
the mouse such as head tracker/pointers (see disabled per-
sons and computing).

Designers of user interfaces have to consider whether the
elements of the system are intuitively understandable and
consistent and whether they can be manipulated in efficient
yet natural ways (see also ergonomics of computing).

Alternative and Future Interfaces
The marketplace has spoken, and the desktop GUI is now
the mainstream interface for most ordinary PC users. How-
ever, there are a variety of other interfaces that are used for
particular circumstances or applications, such as:

• � touchscreens (as with ATMs) (see touchscreen)

• � handwriting or written “gesture” recognition, such as
on handheld computers (see handwriting recogni-
tion) or for drawing tablets

• � voice-controlled systems (see speech recognition
and synthesis)

• � trackballs, joysticks, and touchpads (used as mouse
alternatives)

• � virtual reality interfaces using head-mounted systems,
sensor gloves, and so on (see virtual reality)

Because much interaction with computers is now away from
the desktop and taking place on laptops, handheld, or palm
computers, and even in cars, there is likely to be continuing
experimentation with user interface design.

Further Reading
Arlov, Laura. GUI Design for Dummies. New York: Wiley, 1997.
Galitz, Wilbert O. The Essential Guide to User Interface Design: An

Introduction to GUI Design Principles and Techniques. 3rd ed.
Indianapolis: Wiley, 2007.

Hobart, John. “Principles of Good GUI Design.” Available online.
URL: http://www.iie.org.mx/Monitor/v01n03/ar_ihc2.htm.
Accessed August 23, 2007.

Johnson, Jeff. GUI Bloopers 2.0: Common User Interface Design
Don’ts and Dos. San Francisco: Morgan Kaufmann, 2007.

Krug, Steve. Don’t Make Me Think: A Common Sense Approach to
Web Usability. 2nd ed. Berkeley, Calif.: New Riders, 2005.

Stephenson, Neil. In the Beginning Was the Command Line. New
York: Avon Books, 1999.

user interface        489

490

variable
Virtually all computer programs must keep track of a vari-
ety of items of information that can change as a result of
processing. Such values might include totals or subtotals,
screen coordinates, the current record in a database, or any
number of other things. A variable is a name given to such
a changeable quantity, and it actually represents the area of
computer memory that holds the relevant data.

Consider the following statement in the C language:

int Total = 0;

Variables have several attributes. First, every variable
has a name—Total in this case. Although this name actu-
ally refers to an address in memory, in most cases the pro-
grammer can use the much more readable name instead of
the actual address.

It is possible to have more than one name for the same
variable by having another variable point to the first vari-
able’s contents, or by declaring a “reference” variable (see
pointers and indirection).

Each variable has a data type, which might be number,
character, string, a collection (such as an array), a data
record, or some special type defined by the programmer
(see data types). With some exceptions (see scripting
languages) most modern programming languages require
that the programmer declare each variable before it is used.
The declaration specifies the variable’s type—in the current
example, the type is int (integer, or whole number).

A variable is usually given an initial value by using an
assignment statement; in the example above the variable
Total is given an initial value of 0, and the assignment is

combined with the declaration. (Some languages automati-
cally assign a default value such as 0 for a number or a null
character for a string, but with other languages failure to
assign a value results in the variable having as its value
whatever happens to be currently stored in the memory
address associated with the variable. An explicit assign-
ment is thus always safer and more readable.)

When exactly do variables get set up, and when do they
get their values? This varies with the programming lan-
guage (see binding). With C and similar languages, a vari-
able receives its data type when the program is compiled
(compile time). The type in turn determines the range of
values that the variable can hold (physically based on the
number of bytes of memory allocated to it). The variable’s
value is actually stored in that location when the program is
executed (run time).

A few languages such as APL and LISP use dynamic
binding, meaning that a data type is not associated with a
variable until run time. This makes for flexibility in pro-
gramming, but at some cost in efficiency of storage and
execution speed.

During processing, a variable’s value can change
through the use of operators in expressions (see operators
and expressions). Thus, the example value Total might be
changed by a statement such as:

Total = Total + Subtotal;

When this statement is executed, the following happens:

The value of the memory location labeled “Subtotal” is
obtained.

V

The value of the memory location labeled “Total” is
obtained.

The two values are added together.

The result is stored in the location labeled “Total,” replacing
its former value.

Scope of Variables
In early programming languages variables were generally
global, meaning that they could be accessed and changed
from any part of the program. While this practice is conve-
nient, it became riskier as programs became larger and more
complex. One part of a program might be using a variable
called Total or Subtotal to keep track of some quantity. Later,
another part is written to deal with some other calculation,
and uses the same names. The programmer may think of the
second Total and Subtotal as being quite separate from the
first, but in reality they refer to the same memory locations
and any change affects both of them. Thus, it’s easy to create
unwanted “side effects” when using global variables.

Starting in the 1960s and more systematically during
the 1970s, there was great interest in designing computer
languages that could better manage the structure and com-
plexity of large programs (see structured programming).
One way to do this is to break programs up into more man-
ageable modules that each deal with some specific task (see
procedures and functions). Unless explicitly declared to
be global, variables within a procedure or function are local
to that unit of code. This means that if two procedures both
have a variable called Total, changes to one Total do not
affect the other.

Generally, in block-structured languages such as Pascal
a variable is by default local to the block of code in which
it is defined. This means it can be accessed only within that
block. (Its visibility is said to be limited to that block.) The
variable will also be accessible to any block that is nested
within the defining block, unless another variable with the
same name is declared in the inner block. In that case the
inner variable supersedes the outer one, which will not be
visible in the inner block.

Some languages such as APL and early versions of LISP
define scope differently. Since these languages are not block
structured, scope is determined not by the relationship of
blocks of code but by the sequence in which functions are
called. At run time each variable’s definition is searched
for first in the code where it is first invoked, then in what-
ever function called that code, then in the function that
called that function, and so on. As with dynamic binding,
dynamic scooping offers flexibility but at a considerable
price. In this case, the price is that the program’s effects on
variables will be hard to understand, and the search mecha-
nism slows down program execution. Dynamic scoping is
thus not often used today, even in LISP.

Global variables were convenient because they allowed
information generated by one part of a program to be
accessed by any other. However, such accessibility can be
provided in a safer, more controlled form by explicitly pass-
ing variables or their values to a procedure or function
when it is called (see procedures and functions).

Object-oriented languages provide another way to con-
trol or encapsulate information. Variables describing data
used within a class are generally declared to be private
(accessible only within the functions used by the class).
Public (i.e., global) variables are used sparingly. The idea
is that if another part of the program wants data belonging
to a class, it will call a member function of the class, which
will provide the data without giving unnecessary access to
the class’s internal variables.

A final concept that is important for understanding vari-
ables is that of lifetime, that is, how long the definition of a
variable remains valid. For efficiency, the runtime environ-
ment must deallocate memory for variables when they can
no longer be used by the program (that is go “out of scope”).
Generally, a variable exists (and can be accessed) only while
the block of code in which it was defined is being executed
(including any procedures or functions called from that
block). In the case of a variable declared in the main pro-
gram, this will be until the program as a whole reaches its
end statement. For variables within procedures or functions,
however, the lifetime lasts only until the procedure or func-
tion ends and control is returned to the calling statement.
However, languages such as C allow the special keyword
static to be used for a variable that is to remain in existence
as long as the program is running. This can be useful when
a procedure needs to “remember” some information between
one call and the next, such as an accumulating total.

Further Reading
Kernighan, Brian W., and Dennis Ritchie. The C Programming Lan-

guage. 2nd ed. Englewood Cliffs, N.J.: Prentice Hall, 1988.
Sebesta, Robert W. Concepts of Programming Languages. 8th ed.

Boston: Addison-Wesley, 2007.
Stroustrup, Bjarne. The C++ Programming Language. special ed.

Reading, Mass.: Addison-Wesley, 2000.

VBScript
Dating back to the mid-1990s, VBScript is a scripting lan-
guage developed by Microsoft and based on its popular
Visual Basic programming language (see basic and script-
ing language). It is also part of the evolution of what
Microsoft called “active scripting,” based on components
that allow outside access to the capabilities of applications.
The host environment in which scripts run is provided
through Windows (as with Windows Script Host) or within
Microsoft’s Internet Explorer browser.

For client-side processing, VBScript can be used to write
scripts embedded in HTML pages, which interact with the
standard Document Object Model (see dom) in a way sim-
ilar to other Web scripting languages (in particular, see
JavaScript). However, VBScript is not supported by popu-
lar non-Microsoft browsers such as Firefox and Opera, so
developers generally must use the widely compatible Java
Script instead. VBScript can also be used for processing on
the Web server, particularly in connection with Microsoft’s
Web servers (see active server pages).

Because versions of Windows starting with Windows
98 include Windows Script Host, VBScripts can also be
written to run directly under Windows. One unfortunate

VBScript        491

consequence was scripts containing worms (such as the I
LOVE YOU worm) or other malware and mailed as attach-
ments to unwary users.

Examples
VBScript code will be very familiar to users of Visual Basic
and generally follows syntax similar to that of other object-
oriented languages. The canonical “Hello World” program
can be simply written as:

WScript.Echo “Hello World!”

Where WScript is the object representing the script host.
To get user input through a text box, the programmer

can write code like this:

option explicit
dim userInput
userInput = InputBox(“What is your name?:”,
“Greetings”)
if userInput = “ ” then

Msgbox “You did not write anything or you
pressed cancel!”

else
MsgBox “Hello, “ & userInput & “.”,
vbInformation

end if

Of course VBScript has libraries and interfaces to enable
it to perform much more complicated tasks, such as query-
ing databases and configuring other aspects of Windows
systems through Windows Management Instrumentation
(WMI) and Active Directory Services Interface (ADSI).

Although the language (and code using it) will be in use
for years to come, Microsoft is no longer actively developing
VBScript, having moved on to a new programming frame-
work (see Microsoft .NET) and focusing on languages
such as Visual Basic .NET.

Further Reading
Jones, Don. VBScript, WMI, and ADSI Unleashed. Indianapolis:

Sams, 2007.
VBScript Sample Scripts. Available online. URL: http://cwashing-

ton.netreach.net/depo/default.asp?topic=repository&scriptty
pe =vbscript. Accessed December 2, 2007.

VBScript Tutorial. W3Schools. Available online. URL: http://www.
w3schools.com/vbscript/default.asp. Accessed December 2,
2007.

VBScript User’s Guide. Microsoft Developer Network. Available
online. URL: http://msdn2.microsoft.com/en-us/library/
sx7b3k7y.aspx. Accessed December 2, 2007.

Wilson, Ed. Microsoft VBScript Step by Step. Redmond, Wash.:
Microsoft Press, 2007.

videoconferencing
The growth of the global economy has meant that many
companies have operations in many locations around
the world. The time and expense involved in travel have
encouraged the search for alternatives to face-to-face meet-
ings (see telepresence). The added discomfort and uncer-

tainty related to current airline travel is likely to further
spur this movement.

Basic videoconferencing is carried out by using video
cameras and microphones to carry the image and voice of
each person so that it can be seen by all participants. The
video and sound data is digitized and transmitted between
the participants’ locations, using some existing communi-
cations link. Although direct satellite technology can be
used, it is very expensive. A more practicable alternative
is the use of a proprietary system over special phone lines
(such as ISDN or DSL). Increasingly, however, broadband
connections to the general Internet are used (see also VoIP).
This is relatively inexpensive and flexible, but sometimes
less reliable because of the effects of network congestion.

The quality of imagery depends on the system. High-
end systems, which can cost tens of thousands of dollars,
use large, high-definition screens or even special projec-
tion equipment that can give a 3D look to peoples’ faces.
Although high-end videoconferencing software and hard-
ware can be expensive, there are now a variety of alterna-
tives for small businesses and individual users. (As of 2002
the printing store chain Kinko’s is offering videoconferenc-
ing through some of its stores for $450/hr.)

For smaller, less formal meetings there are more afford-
able alternatives. Products such as Microsoft NetMeeting,
CuSeeMe, and Yahoo Messenger set up user accounts and
a directory that makes it easy for users to connect. Other
than the Internet connection, the only hardware needed is a
microphone and an inexpensive camera (see web cam).

Business videoconferencing systems often include the abil-
ity for participants to view and interact with software applica-
tions. This makes it possible not only to view slide shows or
other presentations (see presentation software) but to col-
laborate on creating documents. An “electronic whiteboard”
can be used to display not only computer text and graphics
but also handwritten notes created by participants using elec-
tronic drawing pads. The system can also create a hardcopy
record of documents developed during the meeting.

Besides business meetings and conferences and product
roll-outs, videoconferencing can also be used for a variety
of other applications including sales presentations and for
conducting focus groups for market research.

Videoconferencing is also being used increasingly in
education. For K-12 classes, a videoconferencing field trip
can take children to a museum or science laboratory that
would otherwise be too far to visit. Both docent and stu-
dents can see and hear one another, as well as being able to
see exhibits or experiments close up. For college students
and adults, it is possible to attend classes given by emi-
nent lecturers and participate fully just as though they were
enrolled on campus (see also distance education and
computers).

Further Reading
Barlow, Janelle, Peta Peter, and Lewis Barlow. Smart Videoconfer-

encing: New Habits for Virtual Meetings. San Francisco: Ber-
rett-Koehler Publishers, 2002.

Pachnowski, Lynn M. “Virtual Field Trips Through Teleconferenc-
ing.” Learning & Leading with Technology 29, no. 6 (March
2002): 10.

492        videoconferencing

Prencipe, Loretta W. “Management Briefing: Do You Know the
Rules and Manners of an Effective Virtual Meeting?” Info-
World 23, no. 18 (April 30, 2001): 46.

Spielman, Sue, and Liz Winfield. The Web Conferencing Book. New
York: AMACOM, 2003.

Videoconferencing Product Reviews from PC Magazine. Available
online. URL: http://www.pcmag.com/category2/0,1874,4836,00.
asp. Accessed August 23, 2007.

Winters, Floyd Jay, and Julie Manchester. Web Collaboration Using
Office XP and NetMeeting. Upper Saddle River, N.J.: Prentice
Hall, 2002.

video editing, digital
When videotape first became available in the 1950s, record-
ers cost thousands of dollars and could only be afforded
by TV studios. Today the VCR is inexpensive and ubiqui-
tous. However, it is hard to edit videotape. Tape is a lin-
ear medium, meaning that to find a given piece of video
the tape has to be moved to that spot. Removing or add-
ing something involves either physically splicing the tape
(as is done with film) or more commonly, feeding in tape
from two or more recorders onto a destination tape. Besides
being tedious and limited in capabilities, “linear editing” by
copying loses a bit of quality with each copying operation.

Today, however, it is easy to shoot video in digital form
(see photography, digital) or to convert analog video into
digital form. Digital video is a stream of data that represents
sampling of the source signal, such as from the charge-
coupled device (CCD) that turns light photons into electron
flow in a digital camera or digital camcorder. This pro-
cess involves either software or hardware compression for
storage and decompression for viewing and editing (such
a scheme is called a CODEC for “compression/decompres-
sion”). The most widely used formats include DV (Digital
Video) and MPEG (Motion Picture Expert Group), which
has versions that vary in the amount of compression and
thus fidelity.

In a turnkey system, the input source is automatically
digitized and stored. In desktop video using a PC, a video
capture card must be installed. The card turns the ana-
log video signal into a digital stream. The most commonly
used interface to bring video into a PC is IEE1394, better
known as FireWire, which has the high bandwidth needed
to transfer video data.

Once the video is captured, it can be stored in frame
buffers in memory and edited in various ways using a vari-
ety of software. Expensive turnkey systems come with
advanced software, while desktop video users can choose
from products such as Media Studio Pro or Adobe Premiere.
The editing interface usually has a timeline and thumbnails
showing the location of key frames in the sequence. Indi-
vidual clips can be extracted and tweaked with motion and
transition effects; a variety of filters (see plug-in) can be
applied to the video. The accompanying sound track(s) can
also be edited. Once things look right, the software is told
to render (create) the finished video and save it to disk.

The ever-increasing processing power and disk capacity
of today’s PC is likely to make real-time video editing more
feasible. This means that video can be played back directly

from the edited timeline without transitions or effects
having to be rendered first. Digital video cameras are also
likely to increase in picture quality. Already desktop video
is proving to be an affordable, viable alternative to expen-
sive turnkey systems for many applications.

Meanwhile, like digital photography, digital video is rap-
idly becoming a creative medium for the masses, aided by
easy-to-use basic software for Macintosh (such as iMovie)
and numerous products for Windows. Another driver for
the proliferation of this medium is the ease with which vid-
eos can be uploaded and shared (see user-created con-
tent and YouTube).

Further Reading
Brandon, Bob. The Complete Digital Video Guide: A Step-by-Step

Handbook for Making Great Home Movies Using Your Digital
Camcorder. Pleasantville, N.Y.: Readers Digest, 2005.

Digital Video Editing. Available online. URL: http://videoediting.
digitalmedianet.com/. Accessed August 23, 2007.

Digital Video Resources. Available online. URL: http://www.
manifest-tech.com/links/mmtech.htm. Accessed August 23,
2007.

Goodman, Robert M., and Patrick McCrath. Editing Digital
Video: The Complete Creative and Technical Guide. New York:
McGraw-Hill, 2003.

Pogue, David. iMovie 6 & iDVD: The Missing Manual. Sebastapol,
Calif.: O’Reilly Media, 2006.

Underahl, Keith. Digital Video for Dummies. Hoboken, N.J.: Wiley,
2006.

virtual community
Back in the mid-19th century, a number of technical pro-
fessionals began to “chat” online without meeting physi-
cally—they were telegraph operators who relayed messages
across the growing web that one author has called “The
Victorian Internet.” When computer networking began to
grow in the 1970s, its own pioneers used facilities such as
newsgroups (see netnews and newsgroups) to discuss a
variety of topics. By the early 1980s, users were interacting
on-line in complex fantasy games called MUDs (Multi-User
Dungeons, or Dimensions) or MOOs (Muds, Object-Ori-
ented). A little later, bulletin boards and especially systems
such as the WELL (Whole Earth ’Lectronic Link) based in
the San Francisco Bay Area (see bulletin board and con-
ferencing systems) provided long-term outlets for people
to share information and interact on-line.

Looking at the WELL, a writer named Howard Rheingold
introduced the term virtual community in a 1993 book. He
explored the ways in which a sufficiently compelling and ver-
satile technology encouraged people to form long-term con-
tacts, form personal relationships, and carry out feuds. When
on-line, participants experience such a venue as the WELL as
a place that becomes almost as tangible (and often as “real”)
as a physical place such as a small town or corner bar.

Virtual community members who live in the same geo-
graphical area sometimes do get together physically (the
WELL has had picniclike “WELL Office Parties” for many
years). Members can band together to support a colleague
who faces a crisis such as the life-threatening illness of a
son (on the WELL, blank postings called beams are often

virtual community        493

used as an expression of sympathy). The virtual commu-
nity can also serve as a rallying point following a physical
disaster such as the 1989 earthquake in the San Francisco
Bay Area. On a daily basis, virtual communities can often
provide help or advice from a remarkable variety of highly
qualified experts.

Virtual communities have their share of human foibles
and worse. A virtual world that is compelling enough to
immerse participants for hours on end is also powerful
enough to engage emotions and expose vulnerabilities.
For example, in a MUD called LambdaMOO one partici-
pant used descriptive language to have his game character
“rape” a female character created by another participant,
inflicting genuine distress. Like physical communities,
virtual communities must evolve rules of governance, and
actions in a virtual community can have real-world legal
consequences.

Critics such as Clifford Stoll have argued that virtual
communities are not only not a substitute for “true” physi-
cal community, but also may be further fragmenting neigh-
borhoods and isolating people. (On the other hand, people
who are already physically isolated, such as rural folk and
the elderly or disabled, may find an outlet for their social
needs in a virtual community.) Certainly the “bandwidth”
in terms of human experience is less in a virtual com-
munity than in a physical community. Ideally, individuals
should cultivate a mixture of virtual and physical commu-
nity relationships.

Like a number of “virtual” concepts, virtual community
is gradually blending into everyday life and thus becoming
less distinct as an idea. Millions of people now participate
in a form of virtual community through games such as Sec-
ond Life (see online games). Young people keep constantly
in touch through a web of text messages (see flash mobs
and texting and instant messaging). Finally, the popu-
larity of sites such as MySpace and Facebook may be partly
due to the seamless way they bring together conventional
social ties and their virtual extensions (see social net-
working).

Further Reading
Barnes, S. B. On-line Connections: Internet Personal Relationships.

Cresskill, N.J.: Hampton Press, 2000.
Dibbel, J. “Rape in Cyberspace: How an Evil Clown, a Haitian

Trickster Spirit, Two Wizards and a Cast of Dozens Turned a
Database into a Society.” The Village Voice, Dec. 21, 1993, 39.

———. My Tiny Life: Crime and Passion in a Virtual World. New
York: Henry Holt, 1998.

Powazek, Derek. Design for Community: The Art of Connecting Real
People in Virtual Places. Berkeley, Calif.: New Riders, 2001.

Renninger, K. Ann, and Wesley Shumar, eds. Building Virtual Com-
munities: Learning and Change in Cyberspace. New York: Cam-
bridge University Press, 2002.

The Well. Available online. URL: http://www.well.com. Accessed
August 23, 2007.

Rheingold, Howard. The Virtual Community: Homesteading on the
Electronic Frontier. 2nd ed. Reading, Mass.: Addison-Wesley,
1993.

———. “Howard Rheingold Home Page.” http://www.rheingold.
com/

Turkle, Sherry. Life on the Screen: Identity in the Age of the Internet.
New York: Simon & Schuster, 1995.

virtualization
One of the most powerful tools for understanding and
manipulating a complex system is creating models or rep-
resentations that simplify (while retaining the essentials)
or that provide other useful ways of looking at the system.
This ability to translate systems into representations is used
in many fields, and probably dates back to the first cave
paintings of our prehistoric ancestors.

In the computing field, virtualization involves the cre-
ation of a working model or representation of one system
within a different system. This idea has been widely used
in the field since the 1960s. Some applications of virtualiza-
tion include:

• � An appropriate model of a system (such as a pro-
gramming framework—see application program-
ming interface) that hides unneeded details can
make it easier for programmers to understand and
access its functions (see design patterns and mod-
eling languages).

• � A compiler for a language that compiles all programs
to an intermediate representation (such as “byte-
code”). A virtual machine running on each kind of
platform can then run the code, taking care of the
details required by the host hardware (see compiler
and Java).

• � A virtual machine created in software can be designed
to perform all the functions available on a particular
hardware platform or operating system, allowing soft-
ware to be run on a system different from the one
for which it was originally written (see emulation).
For example, there are a number of virtualization
programs (such as VMWare for PCs) that can create
separate areas in memory, each running a different
operating system, such as a version of Windows or
Linux.

• �M ultiple processors or entire computers can be
treated as a single entity for processing a program,
with software designed to assign threads of execution
to physical processors and to coordinate the use of
shared data (see grid computing).

• � A physical device such as a disk drive can be made
to appear as several separate devices to the operat-
ing system (for better organization of data). Similarly,
many servers can run on the same physical machine.
Conversely, multiple drives can appear to be a single
logical device while providing redundancy and error
recovery (see raid).

• � A secure “virtual private network” can be created
within the larger public Internet. The virtual sys-
tem takes care of encrypting and transmitting data
through the physical network.

Social Virtualization
The concept of virtualization can also be applied to how
work involving computers is being conceptualized and

494        virtualization

organized in the modern world (see globalization and
the computer industry and ubiquitous computing). A
“virtual office” or even “virtual corporation” is a business
entity that is not tied to a physical location, but uses net-
works, communications technology, and facilities such as
video conferencing to keep workers in touch. Alternatively,
several organizations can share the same physical space
(such as for mail or shipping) while maintaining their sepa-
rate identities.

Similarly, people can form long-lasting social networks
while meeting physically seldom (if at all)—see social
networking and virtual community.

Further Reading
Brown, M. Katherine. Managing Virtual Teams: Getting the Most

from Wikis, Blogs, and Other Collaborative Tools. Plano, Tex.:
Wordware, 2007.

Golden, Bernard. Virtualization for Dummies. Indianapolis: Wiley,
2007.

Goldworm, Barb, and Anne Skamarock. Blade Servers and Vir-
tualization: Transforming Enterprise Computing while Cutting
Costs. Indianapolis: Wiley, 2007.

Smith, James E., and Ravi Nair. Virtual Machines: Versatile Plat-
forms for Systems and Processes. San Francisco: Morgann
Kaufmann, 2005.

Virtualization [news]. NetworkWorld. Available online. URL:
http://www.networkworld.com/topics/virtualization.html.
Accessed December 2, 2007.

Virtualization News Digest. Available online. URL: http://www.
virtualization.info/. Accessed December 2, 2007.

Wolf, Chris, and Erick M. Halter. Virtualization: From the Desktop
to the Enterprise. Berkeley, Calif.: Apress, 2005.

virtual reality
As the graphics and processing capabilities of computers grew
increasingly powerful starting in the 1980s, it became possi-
ble to think in terms of creating a 3D environment that would
not only appear to be highly realistic to the user, but also
would respond to the user’s natural motions in realistic ways.

This idea is not that new in itself. Starting as early as the
1930s, the military built mechanical flight trainers or simu-
lators that could create a somewhat realistic experience of
what a pilot would see and feel during flight. More sophis-
ticated versions of these mechanical simulators helped the
United States train the tens of thousands of pilots it needed
during World War II while reducing the resources needed
for actual flight hours. Today the military continues to pio-
neer the use of realistic computerized simulators to train

A NASA researcher wearing an early virtual reality (VR) outfit, including head-mounted display and gloves whose position can be
tracked.  (NASA photo)

virtual reality        495

tank crews and even individual soldiers in the field (see
military applications of computers).

Early simulators used “canned” graphics and could not
respond very smoothly to control inputs (such as a pilot
moving stick or rudder). Modern virtual reality, however,
depends on the ability to smoothly and quickly generate
realistic 3D graphics. At first such graphics could only be
generated on powerful workstations such as those made
by Sun or Silicon Graphics. However, as anyone who has
recently played a computer game or simulation knows,
there has been great improvement in the graphics available
on ordinary desktop PCs since the mid-1990s.

A variety of software and programming tools can be
used to generate 3D worlds on a PC (see computer graph-
ics). First released in 1995, a facility called VRML (Vir-
tual Reality Modeling Language) is now supported by many
Web browsers. There are also programming extensions for
Java (Java 3D).

Modern computer games thus embody aspects of virtual
reality in terms of graphics and responsiveness. But true
VR is generally considered to involve a near total immer-
sion. Instead of a screen, a head-mounted display (HMD) is
generally used to display the virtual world to the user while
shutting out environmental distractions. Typically, slightly
different images are presented to the left and right eyes to
create a 3D stereo effect.

The other half of the VR equation is the way in which
the user interacts with the virtual objects. Head-tracking
sensors are used to tell the system where the user is looking
so the graphics can be adjusted accordingly. Other sensors
can be placed in gloves worn by the user. The system can
thus tell where the user’s hand is within the virtual world,
and if the user “grasps” with the glove, the user’s hand in
the virtual world will grasp or otherwise interact with the
virtual object. More elaborate systems involve a full-body
suit studded with sensors.

To make interaction realistic, VR researchers have had
to study both the operation of human senses and that of the
skeleton and muscles. For a truly realistic experience, the
user must be able to feel the resistance of objects (which
can be implemented by a force-feedback system). Sound
can be handled easily, but as of yet not much has been done
with the senses of smell and taste.

In designing a VR system, there are a number of impor-
tant considerations. Will the user be physically immersed
(such as with an HMD), or, as in some military applica-
tions, will the user be seeing both a virtual and the actual
physical world? How important is graphic realism vs. real-
time responsiveness? (Opting too much for computationally
intensive realism might cause unacceptable latency, or delay
between a user action and the environment’s response.)

Applications
Besides military training, currently the most viable appli-
cation for VR seems to be entertainment. VR techniques
have been used to create immersive experiences in elabo-
rate facilities at venues such as Disneyland and Universal
Studios, and to some extent even in local arcades. VR that is
accompanied by convincing physical sensations has allowed

for the creation of a new generation of roller coasters that if
built physically would be too expensive, too dangerous, or
even physically impossible.

However, there are other significant emerging applica-
tions for VR. When combined with telerobotic technology
(see telepresence), VR techniques are already being used
to allow surgeons to perform operations in new ways. VR
technology can also be used to make remote conferencing
more realistic and satisfactory for participants. Clearly the
potential uses for VR for education and training in many
different fields are endless. VR technology combined with
robotics could also be used to give disabled persons much
greater ability to carry out the tasks of daily life.

In the ultimate VR system, users will be networked and
able to simultaneously experience the environment, inter-
acting both with it and one another. The technical resources
and programming challenges are also much greater for such
applications. The result, however, might well be the sort
of environment depicted by science fiction writers such as
William Gibson (see cyberspace and cyber culture).

Further Reading
Kim, Gehard Jounghyun. Designing Virtual Reality Systems: The

Structured Approach. New York: Springer, 2005.
McMenemy, Karen, and Stuart Ferguson. A Hitchhiker’s Guide to

Virtual Reality. Wellesley, Mass.: A. K. Peters, 2007.
Sherman, William R., and Alan B. Craig. Understanding Virtual

Reality: Interface, Application, and Design. San Francisco: Mor-
gan Kaufman, 2003.

Sturrock, Carrie. “Virtual Becomes Reality at Stanford.” San
Francisco Chronicle, April 29, 2007, p. A1. Available online.
URL: http://sfgate.com/cgi-bin/article.cgi?f=/c/a/2007/04/29/
MNGFPPGVPF1.DTL. Accessed August 23, 2007.

Virtual Reality Resources. Available online. URL: http://
vresources.org/. Accessed August 23, 2007.

VoIP  (voiceover Internet protocol)
The basic idea of VoIP is simple: the Internet can carry
packets of any sort of data (see tcp/ip), which means it can
carry the digitized human voice as well, carrying ordinary
phone calls. There are several ways to do this:

• � a regular phone plus an adapter that connects to the
computer and compresses and converts between regu-
lar analog phone signals and the digital equivalent

• � a complete “IP phone” unit that includes all needed
hardware and software—no computer needed, just a
network connection, such as to a router

• � use of the computer’s own sound card and speakers
with a microphone, plus software (often free)

Using that last option, VoIP service can be essentially
free, regardless of distance. However, one can only call
someone who is currently connected to the Internet and
also has VoIP software.

Alternatively, one can subscribe to a VoIP provider such
as Skype who also provides connectivity to the “plain old
telephone service” (POTS). This allows calling anyone who
has an ordinary phone: The VoIP provider sends the call

496       VoIP

over the Internet to the nearest connection point, where
it is placed as a regular phone call. The charges are much
lower than typical long-distance plans. (For example, as of
2007 Skype charged a flat rate of $3.00 a month for unlim-
ited calls to the United States and Canada and only a few
cents per minute to most developed countries.)

Since video can also be sent over the Internet, video
over IP for calling and conferencing is also becoming more
common. Video does require a higher bandwidth connec-
tion than does voice.

Advantages and Drawbacks
VoIP has several advantages over regular phone service.
Because it uses the Internet’s flexible packet-switching sys-
tem, it uses bandwidth more efficiently (indeed, much con-
ventional phone service is now carried as digital packets
as well). If done through a direct computer-to-computer
connection with free software, VoIP can be essentially free
to the user, since the Internet connection is presumably
already paid for. (It also follows that VoIP is most advanta-
geous for long-distance calling.) Finally, VoIP can be used
with wireless mobile devices, sometimes with lower cost
than cell service.

At least as currently implemented, VoIP does have some
disadvantages:

• � Like cordless phones (but unlike traditional phones),
VoIP requires that the user be connected to power. This
may make the system unavailable in an emergency.

• � Also, in an emergency, a 911 operator has no way to
know where the caller is located geographically. This
could be a problem if the caller is unable to provide
this information.

• � While a regular phone is a pretty simple device, VoIP
requires special hardware or a PC, which might fail.

• � VoIP requires a working Internet connection—in
practice, a high-speed connection (see broadband).
Load or instability in the network could cause inter-
ruptions in calls or a lowering of voice quality.

• � As with other data sent over the Internet, there are
potential security concerns. Encryption can be used
to secure VoIP calls, but this in turn leads to concerns

by law enforcement agencies seeking to implement
eavesdropping warrants.

Despite these disadvantages, VoIP is likely to continue
to become more prevalent and reliable due to the advan-
tages of integrating with the global Internet and a wide
variety of devices.

Further Reading
“History of VoIP.” Available online. URL: http://www.utdallas.edu/

~bjackson/history.html. Accessed December 3, 2007.
Kelly, Timothy V. VoIP for Dummies. Hoboken, N.J.: Wiley, 2005.
Skype. Available online. URL: http://www.skype.com/. Accessed

December 3, 2007.
Valdes, Robert. “How VoIP works.” Available online. URL: http://

communication.howstuffworks.com/ip-telephony.htm.
Accessed December 3, 2007.

Van Meggelen, Jim, Jared Smith, and Leif Madsen. Asterisk: The
Future of Telephony. Sebastapol, Calif.: O’Reilly, 2005.

Venezia, Paul. “Open Source VoIP Makes the Business Connec-
tion.” Infoworld, March 19, 2007. Available online. URL:
http://www.infoworld.com/article/07/03/19/12FEopenvoip_
1.html. Accessed December 3, 2007.

Wallingford, Ted. Switching to VoIP. Sebastapol, Calif.: O’Reilly,
2005.

von Neumann, John
(1903–1957)
Hungarian–American
Mathematician, Computer Scientist

John von Neumann made wide-ranging contributions in
fields as diverse as pure logic, simulation, game theory, and
quantum physics. He also developed many of the key con-
cepts for the architecture of the modern digital computer
and helped design some of the first successful machines.

Von Neumann was born on December 28, 1903, in Buda-
pest, Hungary, to a family with banking interests. As a youth
he showed a prodigious talent for calculation and interest in
mathematics, but his father opposed his pursuing a career in
pure mathematics. Therefore, when von Neumann entered
the University of Berlin in 1921 and the Technische Hoch-
schule in 1923, he earned his Ph.D. in chemical engineering.
However, in 1926 he went back to Budapest and earned a
Ph.D. in mathematics with a dissertation on set theory. He

A regular telephone carries the voice as an analog signal over the phone line. For Internet (IP) telephony, however, the user’s voice from the
microphone is converted to a digital signal that is carried by standard Internet packets. At the destination, the packets are reassembled into a
stream of digital data that is then sent to the sound card to be turned back into voice sounds to be played through the system speaker.

von Neumann, John        497

would then serve as privatdozcent, or lecturer, at Berlin and
the University of Hamburg.

During the mid-1920s, two competing mathematical
descriptions of the behavior of atomic particles were being
offered by Erwin Schrödinger’s wave equations and Werner
Heisneberg’s matrix approach. Von Neumann showed that
the two theories were mathematically equivalent. His 1932
book, The Mathematical Foundations of Quantum Mechanics,
remains a standard textbook to this day. Von Neumann also
developed a new form of algebra where “rings of operators”
could be used to describe the kind of dimensional space
encountered in quantum mechanics.

Meanwhile, von Neumann had become interested in the
mathematics of games, and developed the discipline that
would later be called game theory. His “minimax theorem”
described a class of two-person games in which both play-
ers could minimize their maximum risk by following a
specific strategy.

Computation and Computer Architecture
In 1930, von Neumann immigrated to the United States,
where he would become a naturalized citizen and spend the
rest of his career. He was made a Fellow at the new Institute

for Advanced Study at Princeton at its founding in 1933,
and would serve in various capacities there and as a consul-
tant for the U.S. government.

In the late 1930s, interest had begun to turn to the con-
struction of programmable calculators or computers (see
Church, Alonzo and Turing, Alan). Just before and dur-
ing World War II, von Neumann worked on a variety of
problems in ballistics, aerodynamics, and later, the design
of nuclear weapons. All of these problems cried out for
machine assistance, and von Neumann became acquainted
both with British research in calculators and the mas-
sive Harvard Mark I programmable calculator (see Aiken,
Howard).

A little later, von Neumann learned that two engineers
were working on a new kind of machine: an electronic digi-
tal computer called ENIAC that used vacuum tubes for its
switching and memory, making it about a thousand times
faster than the Mark I. Although the first version of ENIAC
had already been built by the time von Neumann came on
board, he served as a consultant to the project at the Uni-
versity of Pennsylvania’s Moore School.

The earliest computers (such as the Mark I) read instruc-
tions from cards or tape, discarding each instruction as it
was performed. This meant, for example, that to program a
loop, an actual loop of tape would have to be mounted and
controlled so that instructions could be repeated. The elec-
tronic ENIAC was too fast for tape readers to keep up, so it
had to be programmed by setting thousands of switches to
store instructions and constant values. This tedious proce-
dure meant that it wasn’t practicable to use the machine for
anything other than massive problems that would run for
many days.

In his 1945 “First Draft of a Report on the EDVAC” and
his more comprehensive 1946 “Preliminary Discussion of
the Logical Design of an Electronic Computing Instrument,”
von Neumann established the basic architecture and design
principles of the modern electronic digital computer.

Von Neumann declared that in future computers the
machine’s internal memory would be used to store constant
data and all instructions. With programs in memory, loop-
ing or other decision making can be accomplished simply
by “jumping” from one memory location to another. Com-
puters would have two forms of memory: relatively fast
memory for holding instructions, and a slower form of stor-
age that could hold large amounts of data and the results of
processing. (In today’s PCs these functions are provided by
the random access memory [RAM] and hard drive respec-
tively.) The storage of programs in memory also meant that
a program could treat its own instructions like data and
change them in response to changing conditions.

In general, von Neumann took the hybrid design of
ENIAC and conceived of a design that would be all-elec-
tronic in its internal operations and store data in the most
natural form possible for an electronic machine—binary,
with 1 and 0 representing the on and off switching states
and, in memory, two possible “marks” indicated by magne-
tism, voltage levels, or some other phenomenon. The logical
design would be consistent and largely independent of the
vagaries of hardware.

John von Neumann developed automata theory as well as funda-
mental concepts of computer architecture such as storing programs
in memory along with the data. He also did seminal work in logic,
quantum physics, simulation, and game theory.  (SPL / Photo
Researchers, Inc.)

498        von Neumann, John

Eckert and Mauchly (see Eckert, J. Presper and
Mauchly, John William) and some of their supporters
would later claim that they had already conceived of the
idea of storing programs in memory, and in fact they had
already designed a form of internal memory called a mer-
cury delay line. Whatever the truth in this assertion, it
remains that von Neumann provided the comprehensive
theoretical architecture for the modern computer, which
would become known as the von Neumann architecture.
Von Neumann’s reports would be distributed widely and
would guide the beginnings of computer science research
in many parts of the world.

Looking beyond EDVAC, von Neumann, together with
Herman Goldstine and Arthur Burks, designed a new
computer for the Institute for Advanced Study that would
embody the von Neumann principles. The IAS machine’s
design would in turn lead to the development of research
computers for RAND Corporation, the Los Alamos National
Laboratory, and in several countries including Australia,
Israel, and even the Soviet Union. The design would eventu-
ally be commercialized by IBM in the form of the IBM 701.

In his later years, von Neumann continued to explore
the theory of computing. He studied ways to make comput-
ers that could automatically maintain reliability despite the

loss of certain components, and he conceived of an abstract
self-reproducing automaton (see cellular automata).

Von Neumann’s career was crowned with many awards
reflecting his diverse contributions to American science
technology. These include the Distinguished Civilian Ser-
vice Award (1947), Presidential Medal of Freedom (1956),
and the Enrico Fermi Award (1956). Von Neumann died on
February 8, 1957, in Washington, D.C.

Further Reading
Aspray, William. John von Neumann and the Origins of Modern

Computing. Cambridge, Mass.: MIT Press, 1990.
Heims, S. J. John von Neumann and Norbert Wiener: From Mathe-

matics to the Technologies of Life and Death. Cambridge, Mass.:
MIT Press, 1980.

“John Louis von Neumann” [biography]. Available online. URL: http://
ei.cs.vt.edu/~history/VonNeumann.html. Accessed August 23,
2007.

MacRae, Norman. John Von Neumann: The Scientific Genius Who
Pioneered the Modern Computer, Game Theory, Nuclear Deter-
rence, and Much More. 2nd ed. Providence, R.I.: American
Mathematical Society, 2000.

von Neumann, John. The Computer and the Brain. New Haven,
Conn.: Yale University Press, 1958.

———. Theory of Self-Reproducing Automata. Edited and compiled
by Arthur W. Burks. Urbana: University of Illinois Press, 1966.

von Neumann, John        499

500

Wales, Jimmy
(1966– )
American
Internet Entrepreneur

Jimmy Wales is a key force behind Wikipedia, the commu-
nity-edited online encyclopedia that has become a popular
stop for Web users seeking information about any of mil-
lions of topics.

Wales was born on August 7, 1966, in Huntsville, Ala-
bama, and received his early education in a tiny private
school run by his mother and grandmother. However, Wales
then went to an advanced college preparatory school in
Huntsville, where he was extensively exposed to computer
technology. Wales went on to earn a bachelor’s degree in
finance from Auburn University and a master’s in finance at
the University of Alabama. He entered but did not complete
the doctoral program, later attributing his dropping out to
boredom. During the 1990s Wales became research director
at Chicago Options Associates, trading so successfully in
currency and interest rate options that he achieved lifetime
financial security.

By that time Wales had become involved with the grow-
ing e-commerce boom. However, his first project, an “erotic
search engine” called Bomis, would be controversial. Using
the Bomis site, Wales and Larry Sanger then launched
their first online encyclopedia, Nupedia. In 2001, how-
ever, Sanger suggested the use of wiki software (see wikis
and Wikipedia). Wales and Sanger set up the parameters
for how users would contribute, collaborate, and review
articles. Wikipedia soon far outstripped Nupedia. Sanger

and Wales found themselves in frequent disagreement, and
Sanger left Wikipedia in 2002.

Wikipedia and Beyond
In 2003 Wales established the Wikimedia Foundation, a
nonprofit organization to support Wikipedia and a vari-
ety of new projects based on online communities. In 2004
Wales and Angela Beesley founded a for-profit company,
Wikia, Inc. Besides making it easy for individuals and
communities to organize and manage their own wikis and
blogs, Wikia also intends to apply the wiki collaborative
principle to creating a search engine that would draw upon
users’ own expertise and interests and operate “transpar-
ently.” Wales believes this model will prove to be superior
to proprietary operations such as Google.

Wales was criticized in 2005 for editing his own biog-
raphy in Wikipedia, downplaying the pornographic nature
of Bomis and minimizing Sanger’s role as a cofounder of
Wikipedia. Wales later expressed regrets about his edit-
ing, while continuing to insist that Sanger’s role was that of
an employee rather than a cofounder. (Sanger later created
Citizendium, an online encyclopedia that requires stricter
credentials for editors.)

Politically, Wales describes himself as a passionate
objectivist (follower of Ayn Rand’s philosophy) and a lib-
ertarian who admires philosopher-economist F. A. Hayek
(though distancing himself from the Libertarian Party).
Wales’s interest in decentralized, emergent organizations
(such as Wikipedia and Wikia) can be seen as flowing out
of his political philosophy. At the same time, the scope and

W

powers Wales continues to exercise over Wikipedia can be
unclear and subject to controversy.

In 2005 Wales became a member of the board of direc-
tors of Socialtext, a developer of wiki technology. In 2006
he also joined the board of Creative Commons, developer
of new ways to share intellectual property. That same year
Time listed Wales among 100 of the year’s most influential
people, and Wales received a Pioneer Award from the Elec-
tronic Frontier Foundation. Wales lives near St. Petersburg,
Florida.

Further Reading
“Jimmy Wales: Free Knowledge for Free Minds” [blog]. http://blog.

jimmywales.com/. Accessed May 10, 2007.
Lee, Ellen. “As Wikipedia Moves to S.F., Founder Discusses

Planned Changes.” San Francisco Chronicle, November 30,
2007. Available online. URL: http://www.sfgate.com/cgi-bin/
article.cgi?f=/c/a/2007/11/30/BUOMTKNJA.DTL. Accessed
December 3, 2007.

Mangu-Ward, Katherine. “Wikipedia and Beyond: Jimmy Wales’
Sprawling Vision.” Reason, June 2007, pp. 18–29.

Tapscott, Don, and Anthony D. Williams. Wikinomics: How Mass
Collaboration Changes Everything. New York: Penguin, 2006.

Wikipedia. Available online. URL: http://en.wikipedia.org/wiki/
Main_Page. Accessed May 10, 2007.

wearable computers
For some time, technology pundits have talked about com-
puters being literally woven into daily life, embedded in
clothing and personal accessories. However, implementa-
tions have thus far seen only limited use. For example,
watches with limited computer functions (see pda) have
not proven popular—a watch large enough for input and
display of information would likely be too bulky for com-
fort. (People have also walked about with attached web-
cams, although the novelty seems to have quickly worn
off.)

Emerging Possibilities
There are, however, a number of more limited wearable
computers that are likely to be practical. Small cards (see
rfid and smart card) could provide tracking for children
or others needing monitoring. Embedded sensors could be
designed to detect whether an elderly person has fallen or
perhaps has suffered a heart attack.

Head-mounted displays that fit into eyeglasses or gog-
gles are already in use and can offer applications ranging
from gaming (see virtual reality) to providing informa-
tional overlays to aid in military reconnaissance, police
patrol, or firefighting. (This could also be combined with
tracking and communications.) Other embedded comput-
ers might provide hands-free voice recognition or language
translation.

More whimsical wearable computers could control the
colors and patterns displayed by garments, perhaps varying
them with the mood of the wearer.

Whimsy aside, some serious effort is now going into
developing a wide range of wearable computer applications.
The most prominent effort is wearIT@work, funded by the

European Union. It is developing an Open Wearable Com-
puting Framework and standard hardware.

Further Reading
Cristol, Hope. “The Future of Wearable Computers.” The Futurist

36 (September 1, 2002): 68.
MIT Media Lab Wearable Computing. Available online. URL:

http://www.media.mit.edu/wearables/index.html. Accessed
December 3, 2007.

“Wearing Technology on Your Sleeve.” PhysOrg, November 26,
2007. Available online. URL: http://www.physorg.com/news
115310793.html. Accessed December 3, 2007.

WearIt@Work. Available online. URL: http://www.wearitatwork.
com/. Accessed December 3, 2007.

Xu, Yangsheng, Wen Jung Li, and Ka Keung Lee. Intelligent Wear-
able Interfaces. Hoboken, N.J.: Wiley Interscience, 2007.

Web 2.0 and beyond
Somewhere between a buzzword and a genuine new para-
digm, Web 2.0 refers to a number of developments that are

A fashion model wears a “Skooltool” outfit that allows information
to be played through earphones or projected onto the lenses. The
outfit was a collaboration between MIT researchers and fashion
designers.  (Sam Ogden / Photo Researchers, Inc.)

Web 2.0 and beyond        501

changing the way content is created and presented on the
Web, as well as ways in which Web users are using technol-
ogy to create new communities and institutions. (The term
is somewhat misleading because it seems to imply a new
version of the fundamental Web software itself. It is more a
change in the way the Web is perceived and used.)

The term emerged into prominence following a 2004
conference that emphasized the Web as being not just
a place to offer services, but a platform upon which to
build them, offering applications that are not dependent
on any particular operating system. As services were built
and users participated in new ways, the emerging com-
munities would then extend the power of the Web platform
even further (see social networking and user-created
content). For some often-cited examples, see Craigslist,
eBay, Wikipedia, and YouTube.

Web 2.0 Tools
Although the most important part of Web 2.0 is its busi-
ness and social models, a number of Web technologies are
needed to provide the flexibility and rich interaction needed
to offer a new Web experience. These include:

• � dynamic, efficient generation of content (see Ajax)

• � programming interfaces (see api) using structured
text files (see xml)

• � platforms for running applications in the browser,
such as Google apps

• � merging and customizing content from different
sources (see mashups)

• � user subscription to content (see podcasting and rss)

“Web 2.0” is a somewhat nebulous term, but its core technologies are changing both how information is presented on the Web and how users
can create and share their own content.

502        Web 2.0 and beyond

• � platforms for user-created content and collaboration
(see blogs and blogging, social networking, and
wikis and Wikipedia)

In some quarters the term Web 2.0 is already obsolete
or relegated to a marketing buzzword, while the search is
on for new ways to describe the latest developments such
as, inevitably, “Web 3.0.” One possible emphasis moving
beyond Web 2.0 is the leveraging of the actual knowledge
contained in Web pages, properly encoded and interpreted
by applications (see semantic web and software agent).

Whatever terminology might be used, the important
thing is that people are using the Web in the late 2000
decade in substantially new ways, and that the conse-
quences are likely to spread beyond the online world to
society as a whole.

Further Reading
Fost, Dan. “Digital Utopia: A New Breed of Technologists Envi-

sions a Democratic World Improved by the Internet.” San
Francisco Chronicle, November 5, 2006, p. F1. Available
online. URL: http://sfgate.com/cgi-bin/article.cgi?file=/c/
a/2006/11/05/BUGIGM5A2D1.DTL. Accessed December 4,
2007.

———. “The People Who Populate Web 2.0” San Francisco
Chronicle, November 5, 2006, p. F5. Available online. URL:
http://sfgate.com/cgi-bin/article.cgi?file=/c/a/2006/11/05/
BUG78M5OUA1.DTL. Accessed December 4, 2007.

Madden, Mary, and Susannah Fox. “Riding the Waves of ‘Web
2.0.’ ” Pew Internet & American Life Project, October 5, 2006.
Available online. URL: http://www.pewinternet.org/pdfs/PIP_
Web_2.0.pdf. Accessed December 4, 2007.

Metz, Cade. “Web 3.0.” PC Magazine, March 14, 2007. Available online.
URL: http://www.pcmag.com/article2/0,1759,2102852,00.asp.
Accessed December 4, 2007.

Solomon, Gwen, and Lynne Schrum. Web 2.0: New Tools, New
Schools. Eugene, Ore.: ISTE, 2007.

Vossen, Gottfried, and Stephan Hagemann. Unleashing Web 2.0:
From Concepts to Creativity. Burlington, Mass.: Morgan
Kaufmann, 2007.

Web browser
The World Wide Web consists of millions of sites (see
World Wide Web and Web server) that provide hyper-
text documents (see html and Web page design) that can
include not only text but still images, video, and sound. To
access these pages, the user runs a Web-browsing program.

The basic function of a Web browser is to request a
page by specifying its address (URL, uniform [or universal]
resource locator). This request resolves to a request (HTTP,
HyperText Transport Protocol) that is processed by the rel-
evant Web server. The server sends the HTML document to
the browser, which then displays it for the user. Typically,
the browser stores recently requested documents and files
in a local cache on the user’s PCs. Use of the cache reduces
the amount of data that must be resent over the Inter-
net. However, sufficiently skilled snoopers can examine the
cache to find details of a user’s recent Web surfing. (Cach-
ing is also used by Internet Service Providers so they can
provide frequently requested pages from their own server
rather than having to fetch them from the hosting sites.)

When the Web was first created in the early 1990s (see
Berners-Lee, Tim) it consisted only of text pages, although
there were a few experimental graphical Web extensions
developed by various researchers. The first graphical Web
browser to achieve widespread use was Mosaic created by
Marc Andreessen, developed at the National Center for
Supercomputing Applications (NCSA). (See Andreessen,
Marc.) By 1993, Mosaic was available for free download
and had become the browser of choice for PC users.

Andreessen left NCSA in 1994 to found Netscape Cor-
poration. The Netscape Navigator browser improved Mosaic
in several ways, making the graphics faster and more attrac-
tive. Netscape included a facility called Secure Sockets
Layer (SSL) for carrying out encrypted commercial transac-
tions on-line (see e-commerce).

Microsoft, which had been a latecomer to the Internet
boom, entered the fray with its Microsoft Internet Explorer.
At first the program was inferior to Netscape, but it was
steadily improved. Aided by Microsoft’s controversial tactic of
bundling the free browser starting with Windows 95, Internet
Explorer has taken over the leading browser position with

A Web browser such as Microsoft Internet Explorer or Firefox
makes it easy to find and move between linked Web pages. Browser
users can record or “bookmark” favorite pages. Browser plug-ins
provide support for services such as streaming video and audio.
Here, part of the photo library of the National Oceanic and Atmo-
spheric Administration is shown.  (NOAA image)

Web browser        503

about a 75 percent market share by 2001. However, a rather
strong competitor later emerged in Firefox, and other brows-
ers such as Opera and Safari also have their supporters, who
feel those products are more agile, versatile, and perhaps more
secure than Internet Explorer.

Some typical features of a modern Web browser include

• � navigation buttons to move forward and back through
recently visited pages

• � tabs to switch between Web pages

• � a “history” panel allowing return to pages visited in
recent days

• � a search button that brings up the default search
engine (which can be chosen by the user)

• � the ability to save page as “favorites” or “bookmarks”
for easy retrieval

The Browser as Platform
Today a Web user can view a live news broadcast, listen to
music from a radio station, or view a document formatted to
near-print quality. All these activities are made possible by
“helper” software (see plug-in) that gives the Web browser
the capability to load and display or play files in special for-
mats. Examples include the Adobe PDF (Portable Document
Format) reader, the Windows Media Player, and RealPlayer
for playing video and audio content (see streaming).

What makes the browser even more versatile is the abil-
ity to load and run programs from Web sites (see Java).
Java was highly touted starting in the mid-1990s, and some
observers believed that by making Web browsers into plat-
forms capable of running any sort of software, there would
be less need for proprietary operating systems such as
Microsoft Windows. Microsoft has responded by trying to
shift developers’ emphasis from Java to its proprietary tech-
nology called .NET. Meanwhile, the tools for making Web
pages more versatile and interactive continue to proliferate,
including later versions of HTML and XML (see Web page
design). This proliferation, as well as use of proprietary
extensions can cause problems in accessing Web sites from
older or less-known browsers.

The growing numbers of handheld or palm computers
(see portable computers) are accompanied by scaled-
down Web browsers. These are generally controlled by
touch and have a limited display size, but can provide
information useful to travelers such as driving directions,
weather forecasts, and capsule news or stock summaries.

Further Reading
Barker, Donald I., and Katherine T. Pinard. Microsoft Internet

Explorer 7, Illustrated Essentials. Boston: Course Technology,
2007.

Browser Review. Available online. URL: http://www.yourhtml-
source.com/starthere/browserreview.html. Accessed August
23, 2007.

Firefox 2. Available online. URL: http://www.mozilla.com/en-US/
firefox/. Accessed August 23, 2007.

Opera Browser Home Page. Available online. URL: http://www.
opera.com/. Accessed August 23, 2007.

Ross, Blake. Firefox for Dummies. Hoboken, N.J.: Wiley, 2006.

Windows Internet Explorer 7. Available online. URL: http://www.
microsoft.com/windows/products/winfamily/ie/default.
mspx. Accessed August 23, 2007.

webcam
Thousands of real-time views of the world are available on
the Web. These include everything from the prosaic (a cof-
fee machine at MIT) to the international (a view of down-
town Paris or Tokyo) to the sublime (a Rocky Mountain
sunset). All of these views are made possible thanks to the
availability of inexpensive digital cameras (see photogra-
phy, digital).

To create a basic webcam, the user connects a digital
camera to a PC, usually via a USB cable. A program controls
the camera, taking a picture at frequent intervals (perhaps
every 30 seconds or minute). The picture is received from
the camera as a JPG (JPEG) file. The program then uploads
the picture to the user’s Web page (usually using file trans-
fer protocol, or ftp), replacing the previous picture. Users
connected to the Web site can click to see the latest picture.
Alternatively, a script running on the server can update the
picture automatically.

History and Applications
One of the earliest and most famous webcams was created
by Quentin Stafford-Fraser in 1991. He later recalled that he
and his fellow “coffee club” members were tired of making
the long trek to the coffee room at the Cambridge Univer-
sity computer laboratory. It seemed that more often than
not the life-giving brew so necessary to computer science
had already been consumed. So they rigged a video cam-
era, connected it to a video capture card, and fed the image
into the building’s local network. Now researchers working
anywhere in the building could get an updated image of the
coffee machine three times a minute. This wasn’t techni-
cally a webcam. At the time the Web was just being devel-
oped by Tim Berners-Lee (see Berners-Lee, Tim). However,
the camera was put on the Web in 1993, where it resided
until 2001 when the laboratory housing the now-famous
coffee machine was moved.

The webcam became a social phenomenon in 1996 when
a college student named Jennifer Ringley started Jennicam,
a webcam set up to make a continuing record of her daily
life available on the Web. There were soon many imitators.
Apparently this use of Webcams taps into humans’ intense
curiosity about the details of each other’s lives—a curiosity
that to some critics tips over into voyeurism and obsession.
The popularity of such social webcams may have contrib-
uted to the “reality TV” phenomenon at the turn of the new
century.

Webcams have many practical applications, however.
People on the road can log into the Web and check to make
sure everything is okay at home. A webcam also makes an
inexpensive monitor for checking on infants or toddlers in
another room, or checking on the behavior of a babysitter
(“Nannycam”).

Webcams can also serve an educational purpose. They
can take viewers to remote volcanoes or the interior of an

504        webcam

Amazon rain forest. In a sense, viewers who saw the pic-
tures of the Martian surface and the explorations of the
Sojourner rover were using the farthest-reaching webcam
of all.

Further Reading
Breeden, John, and Jason Byrne. Guide to Webcams. Indianapolis:

Prompt Publications, 2001.
Layton, Julia. “How Webcams Work.” Available online. URL:

http://www.howstuffworks.com/webcam.htm. Accessed
August 23, 2007.

Mobberly, Martin. Lunar and Planetary Webcam User’s Guide. New
York: Springer, 2006.

Webcam Resources. Available online. URL: http://www.resourcehelp.
com/qserwebcam.htm. Accessed August 23, 2007.

Web filter
Listings of the most frequent requests typed into Web search
engines usually begin with the word sex. Although sensa-
tional journalism of the mid-1990s sometimes unfairly
portrayed the World Wide Web as nothing more than an
electronic red light district, it is indisputable that there are
many Web sites that feature material that most people would
agree is not suitable for young people. Many parents as well
as some schools, libraries, and workplaces have installed Web
filter programs, marketed under names such as SurfWatch or
NetNanny. Popular Internet security programs (such as those
from Norton/Symantec) also include Web filter modules.

The Web filter examines requests made by a Web user
(see World Wide Web and Web browser) and blocks
those associated with sites deemed by the filter user to be
objectionable. There are two basic mechanisms for deter-
mining whether a site is unsuitable. The first is to check the
site’s address (URL) against a list and reject a request for
any site on the list. (Most filter programs come with default
lists; the filter user can add other sites as desired. Generally,
the filter is installed with a password so only the authorized
user [such as a parent] can change the filter’s behavior.)

The other filtering method relies on a list of keywords
associated with objectionable activities (such as pornogra-
phy). When the user requests a site, the filter checks the page
for words on the keyword list. If a matching word or phrase
is found, the site is blocked and not shown to the user.

Each method has its drawbacks: Using a site list will
miss new sites that appear between list updates, while using
keywords can result in appropriate sites also being blocked.
For example, a keyword filter that blocks sites with the
word breast will probably also block a site devoted to breast
cancer research, a fact often pointed out by opponents of
laws requiring the use of Web filters. The list and keyword
methods can be combined.

Filtering and parental control often involves more than
simply blocking Web sites. Many filtering products attempt
to scan and block problematic chat and e-mail messages.
Another type of filtering tries to stop users (particularly
children) from providing sensitive information such as
their name and address online. Another common parental
control feature is the ability to limit the times of day and
total amount of time a child can go online.

Besides protecting children from inappropriate material
at home or in a school or library, Web filters are also used in
workplaces. Besides wanting to keep workers from becom-
ing distracted, employers are concerned that allowing Inter-
net pornography in the workplace may make them liable for
creating a “hostile work environment” under sexual harass-
ment laws.

However, civil liberties groups such as the ACLU object
to the use of Web filters in public libraries on First Amend-
ment grounds and have vigorously fought such legislation
in the courts. The 1996 Communications Decency Act was
declared unconstitutional by the U.S. Supreme Court, and
a later law, the 1998 Child On-line Protection Act (which
requires that users of adult Web sites provide proof of age)
was overturned by the U.S. Supreme Court in 2004.

The next attempt at protecting children online was the
2002 Children’s Internet Protection Act. This law was even-
tually upheld by the courts subject to the requirement that
adult library users be given prompt unfiltered access to the
Internet upon request.

Critics of Web filters suggest that rather using technical
tools to block access to the Internet, parents and teachers
should talk to children about their use of the Internet and
supervise it if necessary. Another approach is to focus on
Web sites that are designed especially for kids.

Further Reading
Gilbert, Alorie, and Stefanie Olsen. “Do Web Filters Protect Your

Child?” CNET News. Available online. URL: http://news.
com.com/Do+Web+filters+protect+your+child/2100-1032_
3-6030200.html. Accessed August 23, 2007.

Internet Filter Reviews. Available online. URL: http://internet-
filter-review.toptenreviews.com/. Accessed August 23, 2007.

Olsen, Stefanie. “Kids Outsmart Web Filters.” CNET News. Available
online. URL: http://news.com.com/Kids+outsmart+Web+filters/
2009-1041_3-60 62548.html. Accessed August 23, 2007.

Parental Control Software. Available online. URL: http://www.
softforyou.com/. Accessed August 23, 2007.

webmaster
There are many online services (including some free ones)
that will provide users with personal Web pages. There
are also programs such as Microsoft FrontPage that allow
users to design Web pages by arranging objects visually on
the screen and setting their properties. However, creating
and maintaining a complete Web site with its many linked
pages, interactive forms and interfaces to databases and
other services is a complicated affair. For most moderate
to large-size organizations, it requires the services of a new
category of IT professional: the webmaster.

Although the mixture of tasks and responsibilities will
vary with the extent and purpose of the Web site, the skill
set for a webmaster can include the following:

Developing and Extending the Web site
• � understanding how the Web site responds to and

manages requests (see Web server)

webmaster        505

• � fluency in the basic formatting of text and other page
content and the use of frames and other tools for
organizing and presenting text (see html)

• � extended formatting and content organization facili-
ties such as Cascading Style Sheets (CSS), Dynamic
HTML (DHTML), and Extensible Markup Language
(see xml)

• � use of graphics formats and graphics and animation
programs (such as Photoshop, Flash, and Dream-
Weaver)

• � extending the interactivity of Web pages through
writing scripts using tools such as JavaScript and PHP
(see cgi, JavaScript, and Python)

• � dealing with platform and compatibility issues,
including browser compatibility

It is hard to draw a bright line between advanced tasks
for webmasters and full-blown applications designed to
run on servers or Web browsers. Some additional tools for
extending Web capabilities include:

• � languages for Web application development (see c#,
Java, Ruby, and Visual Basic)

• � Web server and browser plug-ins

• � Active X controls and the Microsoft .NET framework
(for Windows-based systems)

• � techniques for the efficient updating of dynamic Web
pages (see Ajax)

Administrative Tasks
• � Obtaining, organizing, and updating the content for

Web pages (this may be delegated to writers, editors,
or graphics specialists)

• � monitoring the performance of the Web server

• � ensuring site availability and response time

• � recommending acquisition of new hardware or soft-
ware as necessary

• � using tools to gather information about how the site is
being used, what parts are being visited, the effective-
ness of advertising, and so on (This is particularly rele-
vant to commercial sites, and can raise privacy issues.)

• � setting up and managing facilities for online shopping
(see e-commerce)

• � installing and using security tools (particularly impor-
tant for commercial and sensitive government sites)

• � developing policies and deploying tools to help pro-
tect users’ privacy and to control the use of informa-
tion they submit online

• � working with major search engine providers to ensure
that the site is presented to relevant searches

• � fielding queries from users about the operation of the
site

• � relating the Web site operation to other concerns such
as marketing, technical support, or the legal depart-
ment

• � developing policies for Web site use

• � integrating the Web site operations into the overall
corporate planning and budgeting process

The mixture of technical professional and administrator
that is the webmaster makes for an always interesting and
challenging career. In larger organizations there may be
further differentiation of roles, with the webmaster mainly
charged with operation and maintenance of the site, with
the development and extension of the site handled by con-
tent providers and programmers. However, even in such
cases the webmaster will need to have a general understand-
ing of how the various features of the Web site interact and
of the tools used to create and maintain them. People with
webmaster skills can also work as independent consultants
to set up and run Web sites for smaller businesses, schools,
and nonprofit organizations.

Webmaster skills are now taught in high school, com-
munity college, vocational school, and as part of university
information technology programs. However the situation
with regard to certification remains somewhat chaotic, with
a variety of proprietary and multivendor certifications com-
peting for attention.

The long-term outlook for qualified webmasters remains
good. Many organizations have made a fundamental com-
mitment to use of the Web for business functions, and web-
masters are needed to manage this effort.

Further Reading
American Association of Webmasters. Available online. URL:

http://www.aawebmasters.com/. Accessed August 23, 2007.
Big Webmaster—Webmaster Resources. Available online. URL:

http://www.bigwebmaster.com/. Accessed August 23, 2007.
Spainhour, Sebastian. Webmaster in a Nutshell. 3rd ed. Sebastapol,

Calif.: O’Reilly, 2002.
Still, Julie. The Accidental Webmaster. Medford, N.J.: Information

Today, 2003.

Web page design
The World Wide Web has existed for fewer than two
decades, so it is not surprising that the principles and prac-
tices for the design of attractive and effective Web pages are
still emerging. As seen in the preceding entry (see webmas-
ter), creating Web pages involves many skills. In addition
to the basic art of writing, many skills that had belonged to
separate professions in the print world now often must be
exercised by the same individual. These include typography
(the selection and use of type and type styles), composition
(the arrangement of text on the page), and graphics. To this
mix must be added nontraditional skills such as designing
interactive features and forms, interfacing with other facili-
ties (such as databases), and perhaps the incorporation of
features such as animation or streaming audio or video.

However new the technology, the design process still
begins with the traditional questions any writer must ask:

506        Web page design

What is the purpose of this work? Who am I writing for?
What are the needs of this audience? A Web site that is
designed to provide background information and contact
for a university department is likely to have a printlike
format and a restrained style. Nevertheless, the designer of
such a site may be able to imaginatively extend it beyond
the traditional bounds—for example, by including stream-
ing video interviews that introduce faculty members.

A site for an online store is likely to have more graph-
ics and other attention-getting features than an academic
or government site. However, despite the pressure to “grab
eyeballs,” the designer must resist making the site so clut-
tered with animations, pop-up windows, and other features
that it becomes hard for readers to search for and read about
the products they want.

A site intended for an organization’s own use should not
be visually unattractive, but the emphasis is not on grab-
bing users’ attention, since the users are already committed
to using the system. Rather, the emphasis will be on provid-
ing speedy access to the information people need to do their
job, and in keeping information accurate and up to date.

Once the general approach is settled on, the design must
be implemented. The most basic tool is HTML, which has
undergone periodic revisions and expansions (see html).
Even on today’s large, high-resolution monitors a screen
of text is not the same as a page in a printed book or
magazine. There are many ways text can be organized (see
hypertext and hypermedia). A page that is presenting
a manual or other lengthy document can mimic a printed
book by having a table of contents. Clicking on a chapter
takes the reader there. Shorter presentations (such as prod-
uct descriptions) might be shown in a frame with buttons
for the reader to select different aspects such as features
and pricing. Frames (independently scrollable regions on
a page) can turn a page into a “window” into many kinds
of information without the user having to navigate from
page to page, but there can be browser compatibility issues.
Tables are another important tool for page designers. Set-
ting up a table and inserting text into it allows pages to be
formatted automatically.

Many sites include several different navigation systems
including buttons, links, and perhaps menus. This can be
good if it provides different types of access to serve differ-
ent needs, but the most common failing in Web design is
probably the tendency to clutter pages with features to the
point that they are confusing and actually harder to use.

Although the Web is a new medium, much of the tradi-
tional typographic wisdom still applies. Just as many people
who first encountered the variety of Windows or Macintosh
fonts in the 1980s filled their documents with a variety
of often bizarre typefaces, beginning Web page designers
sometimes choose fonts that they think are “edgy” or cool,
but may be hard to read—especially when shown against a
purple background!

Today it is quite possible to create attractive Web pages
without extensive knowledge of HTML. Programs such
as FrontPage and DreamWeaver mimic the operation of a
word processor and take a WYSIWYG (what you see is
what you get) approach. Users can build pages by selecting

and arranging structural elements, while choosing styles
for headers and other text as in a word processor. These
programs also provide “themes” that help keep the visual
and textual elements of the page consistent. Of course,
designing pages in this way can be criticized as leading to a
“canned” product. People who want more distinctive pages
may choose instead to learn the necessary skills or hire a
professional Web page designer. A feature called Cascading
Style Sheets (CSS) allows designers to precisely control the
appearance of Web pages while defining consistent styles
for elements such as headings and different types of text
(see cascading style sheets).

Most Web pages include graphics, and this raises an
additional set of issues. Most users now have fast Internet
connections (see broadband), but others are still limited to
slower dial-up speeds. One way to deal with this situation is
to display relatively small, lower-resolution graphics (usu-
ally 72 pixels per inch), but to allow the user to click on or
near the picture to view a higher-resolution version. Another
consideration in today’s wireless world is ensuring that Web
pages likely to be useful to users on the go, such as a res-
taurant guide, display well in the small browsers found in
mobile devices (see pda and smartphone). Page designers
must also make sure that the graphics they are using are cre-
ated in-house, are public domain, or are used by permission.

Animated graphics (animated GIFs or more elaborate
presentations created with software) can raise performance
and compatibility issues. Generally, if a site offers, for exam-
ple, Flash animations, it also offers users an alternative pre-
sentation to accommodate those with slower connections or
without the necessary browser plug-ins.

The line between Web page design and other Web ser-
vices continues to blur as more forms of media are car-
ried online (see digital convergence). Web designers need to
learn about such media technologies (see for example pod-
casting, rss, and streaming) and find appropriate ways to
integrate them into their pages. Web pages may also need
to provide or link to new types of forums (see blogs and
blogging and wikis and Wikipedia).

Further Reading
Beaird, Jason. The Principles of Beautiful Web Design. Lancaster,

Calif.: Sitepoint, 2007.
Lopuck, Lisa. Web Design for Dummies. 2nd ed. Hoboken, N.J.:

Wiley, 2006.
Robbins, Jennifer Niederst. Learning Web Design: A Beginner’s

Guide to HTML, Graphics, and Beyond. Sebastapol, Calif.:
O’Reilly Media, 2003.

Sitepoint. Available online. URL: http://www.sitepoint.com.
Accessed August 23, 2007.

Web server
Most Web users are not aware of exactly how the informa-
tion they click for is delivered, but the providers of infor-
mation on the Web must be able to understand and use
the Web server. In simple terms, a Web server is a program
running on a networked computer (see Internet). The
server’s job is to deliver the information and services that
are requested by Web users.

Web server        507

When a user types in (or clicks on) a link in the browser
window, the browser sends a HTTP request (see http and
web browser). To construct the request, the browser first
looks at the address (URL) in the user request. An address
such as http://www.well.com/conferencing.html consists of
three parts:

• � The protocol, specifying the type of request. For Web
pages this is normally http. In many cases this part
can be omitted and the browser will assume that it is
meant.

• � The name of the server—in this case, www.well.
com. The www indicates that it is a World Wide Web
server. The rest of the server name gives the organiza-
tion and the domain (.com, or commercial).

• � The specific page being requested. A Web page is sim-
ply a file stored on the server, and has the extension
htm or html to indicate that it is an HTML-formatted
page. If no page is specified, the server will normally
provide a default page such as index.html.

In order to direct the browser’s request to the appropri-
ate host and server, the browser sends the URL to a name
server (see domain name system). The name server pro-
vides the appropriate numeric IP address (see tcp/ip). The
browser then sends an HTTP “get” request to the server’s IP
address.

Assuming the page requested is valid, the server sends
the HTML file to the browser. The browser in turn inter-
prets the formatting and display instructions in the HTML
file and “renders” the text and graphics appropriately. It is
remarkable that this whole process from user click to dis-
played page usually takes only a few seconds, even if the
Web site is thousands of miles away and requests must be
relayed through many intervening computers.

Web Server Features
Web servers would be simple if Web pages consisted only
of static text and graphics. However, Web pages today are
dynamic: They can display animations, sound, and video.
They also interact with the user, responding to menus
and other controls, presenting and processing forms, and
retrieving data from linked databases. To do these things,
the server cannot simply serve up a preformatted page, it
must dynamically generate a unique page that responds to
the user’s actions.

This interactivity requires that the server be able to
run programs (scripts) embedded in Web pages. The Com-
mon Gateway Interface (CGI) is the basic mechanism for
this, though many Web page developers can now work at a
higher level to create their page’s interaction through scripts
in languages such JavaScript. (See cgi and scripting lan-
guages.) The task of interfacing Web pages with database
facilities is often accomplished using powerful data-man-
agement languages (see Perl and Python).

Windows-based servers use ASP (Active Server Pages), a
facility that links the Web server to Windows ActiveX con-
trols to access databases. The interaction is usually scripted
in VB Script or JScript.

Modern Web server software also contains modules for
monitoring and security—an increasingly important con-
sideration as Web sites become essential to business and
the delivery of goods and services.

One of the most popular and reliable Web servers in
use today is Apache, developed in 1995 and freely distrib-
uted with Linux and other UNIX systems (there is also a
Windows version). The name is a pun on “a patchy server,”
meaning that it was developed by adding a series of “soft-
ware patches” to existing NCSA server code. Microsoft also
provides its own line of Web server software that is specific
to Windows.

The future should see an increasingly seamless inte-
gration between Web servers, browsers, and other applica-
tions. Microsoft has been promoting .NET, an initiative that
is designed to build Internet access and interoperability
into all applications, providing operating system extensions
and programming frameworks (see Ajax and Microsoft
.NET).

Beyond Microsoft’s mainly proprietary efforts, another
source of integration is the growing use of the Extensible
Markup Language (see xml) and its offshoot SOAP (Simple
Object Access Protocol) (see soap). The goal is to give Web
documents and other objects the ability to “communicate”
their content and structure to other programs, and to allow
programs to freely request and provide services to one
another regardless of vendor, platform, or location. As this
trend progresses, the Web server starts to “disappear” as a
separate entity and the provision of Web services becomes a
distributed, cooperative effort (see also Web services).

Further Reading
Apache Software Foundation. Available online. URL: http://www.

apache.org/. Accessed August 23, 2007.
Aulds, Charles. Linux Apache Web Server Administration. 2nd ed.

Alameda, Calif.: Sybex, 2002.
Braginski, Leonid. Running Microsoft Internet Information Server.

New York: McGraw-Hill, 2000.
Jones, Brian W. How to Host Your Own Web Server. Morrisville,

N.C.: Lulu.com, 2006.
Rosenbrock, Eric, and Eric Filson. Setting Up LAMP: Getting Linux,

Apache, MySQL, and PHP Working Together. Alameda, Calif.:
Sybex, 2004.

Silva, Steve. Web Server Administration. Boston: Course Technol-
ogy, 2003.

Web services
A characteristic of the modern Web and its development is
that much of the software is designed to offer services or
capabilities that can be called upon by applications. This
creation of powerful, versatile building blocks has greatly
sped the evolution of Web applications (see Web 2.0 and
beyond).

In order to be useful, a service must be able to under-
stand “messages” (requests) and provide appropriate
responses. The medium of exchange is a structured text
file (see xml) and a standard format. Three commonly used
specifications (defined by the World Wide Web Consor-
tium, or W3C) are what was originally called Simple Object

508        Web services

Access Protocol (see soap), the Web Services Description
Language (WSDL), and the Universal Description Discov-
ery and Integration (UDDI), which can coordinate and
“broker” the services. To keep requester and responder on
the same page (so to speak), the W3C also provides a set of
“profiles” that specify which versions of which specifica-
tions are being used. Additionally, a number of specialized
specifications are under development, such as for handling
considerations for security and transactions.

There are several ways in which Web services can be
accessed:

• � Remote Procedure Call (RPC), which generally uses
WSDL and follows a format similar to the traditional
way programs call upon library functions

• � An organization based on the available messages
rather than calls or operations (see service-oriented
architecture)

• � Representational State Transfer (REST), which views
applications or services as collections of “resources”
with specific addresses (URLs) and specific requests
using HTTP

A variety of other specifications and approaches can be
used; this area is a very fluid one. Fortunately, program-
mers and even users (see mashups) can build new Web
applications without having to know the details of how the
underlying services work.

Further Reading
Cerami, Ethan. Web Services Essentials: Distributed Applications

with XML-RPC, SOAP, UDDI & WSDL. Sebastapol, Calif.:
O’Reilly, 2002.

Papazoglu, Michael. Web Services: Principles and Technology. Upper
Saddle River, N.J.: Prentice-Hall, 2007.

Richardson, Leonard, and Sam Ruby. RESTful Web Services. Seba-
stapol, Calif.: O’Reilly, 2007.

World Wide Web Consortium. Web Services Activity. Available
online. URL: http://www.w3.org/2002/ws/. Accessed Decem-
ber 4, 2007.

Weizenbaum, Joseph
(1923– )
German-American
Computer Scientist

Joseph Weizenbaum, after writing one of the most famous
programs in the history of artificial intelligence research,
eventually became one of the most persistent and cogent
critics of the AI project itself.

Weizenbaum was born on January 8, 1923, in Berlin
to Jewish parents. Having fled Nazi Germany with his
parents, in 1941 Weizenbaum enrolled in Wayne Univer-
sity in Detroit, Michigan. However, the following year he
enlisted in the United States Army Air Corps. After the
war he resumed his study of mathematics. While working
as a research assistant, Weizenbaum had the opportunity
to help design and build an early digital computer, and
although he received his master’s degree in mathematics in
1950, he would spend his career in the computer field.

From 1955 to 1963 Weizenbaum worked for General
Electric’s Computer Development Laboratory as a systems
engineer. During this time he would oversee the design and
implementation of the first integrated computerized bank-
ing system, for Bank of America.

In 1963 Weizenbaum returned to academia, joining the
faculty at MIT, which had one of the nation’s foremost pro-
grams in artificial intelligence research. He contributed to
the development of the time-sharing computer system at
MIT and early computer networks, but the work for which
he would be most remembered started with his interest
in getting machines to “understand” human language (see
natural language processing).

In 1966 Weizenbaum and a collaborator, psychiatrist
Kenneth Colby, created a remarkable program called Eliza
(named for the character in Bernard Shaw’s play who is
taught “proper English” by Professor Henry Higgins). Eliza
was remarkable not for its complexity or for innovative use
of AI techniques, but for the way it used a few simple pro-
cedures to convey the impression that it was a true artificial
intelligence—or indeed, a real person.

Eliza worked basically by identifying key words and
basic sentence structure and then “mirroring” the user’s
statements back. A sample snippet of human-Eliza dialog
might look like this (Eliza’s words are in caps).

Men are all alike.

IN WHAT WAY?

They’re always bugging us about something or other.

CAN YOU THINK OF A SPECIFIC EXAMPLE?

Well, my boyfriend made me come here.

YOUR BOYFRIEND MADE YOU COME HERE?

He says I’m depressed much of the time.

I AM SORRY TO HEAR YOU ARE DEPRESSED.

It’s true. I am unhappy.

DO YOU THINK COMING HERE WILL HELP YOU NOT TO
BE UNHAPPY?

I need some help, that much seems certain.

WHAT WOULD IT MEAN TO YOU IF YOU GOT SOME HELP?

Perhaps I could learn to get along with my mother.

TELL ME MORE ABOUT YOUR FAMILY.

Although the program seemed to have at best a superfi-
cial understanding of human language, Weizenbaum soon
became dismayed at how readily people treated it as though
it were a human being. (Indeed, Colby wanted to use a pro-
gram like Eliza to automate psychotherapy.)

The result of these concerns was Weizenbaum’s book
Computer Power and Human Reason, a collection of essays
that both explain the achievements of AI pioneers and
points out their limitations. If, as Weizenbaum observes,
“the computer programmer is creator of universes for which
he alone is responsible . . . universes of almost unlimited

Weizenbaum, Joseph        509

complexity . . .,” then indeed the computer scientist must
take responsibility for his or her creations. This is the chal-
lenge that Weizenbaum believes has not been taken seri-
ously enough.

As the 1960s progressed, the United States plunged into
the Vietnam War, and racial tension crackled in the streets
of major cities. Weizenbaum became increasingly concerned
that technology was being used for warlike and oppressive
purposes. As an activist, Weizenbaum campaigned against
what he saw as the misuse of technology for military pur-
poses such as missiles and missile defense systems. He was
founder of a group called Computer Professionals against
the ABM (anti-ballistic missile).

Weizenbaum does not consider himself to be a Lud-
dite, however, and he is not without recognition of the
potential good that can come from computer technology,
though he believes that this potential can only be realized
if humans change their attitudes toward nature and their
fellow humanity.

During the 1970s and 1980s Weizenbaum not only
taught at MIT, but also lectured or served as a visiting pro-
fessor at a number of institutions, including the Center for
Advanced Studies in the Behavioral Sciences at Stanford
University (1972–73), Harvard University (1973–74), and
coming full circle, the Technical University of Berlin and
the University of Hamburg.

In 1988 Weizenbaum retired from MIT. That same year
he received the Norbert Wiener Award for Professional
and Social Responsibility from Computer Professionals
for Social Responsibility (CPSR). In 1991 he was given the
Namur Award of the International Federation for Informa-
tion Processing. He also received European honors such
as the Humboldt Prize from the Alexander von Humboldt
Foundation in Germany.

Further Reading
Ben-Aaron, Diana. “Weizenbaum Examines Computers [and]

Society.” The Tech (Massachusetts Institute of Technology)
vol. 105, April 9, 1985. Available online. URL: http://www-
tech.mit.edu/V105/N16/weisen.16n.html. Accessed Decem-
ber 4, 2007.

ELIZA [running as a Java Applet]. Available online. URL: http://
www.manifestation.com/neurotoys/eliza.php3. Accessed
December 4, 2007.

Henderson, Harry. Artificial Intelligence: Mirrors for the Mind. New
York: Chelsea House, 2007.

Weizenbaum, Joseph. Computer Power and Human Reason. San
Francisco: W. H. Freeman, 1976.

“Weizenbaum: Rebel at Work” [information about and excerpts
from a film by Peter Haas]. Available online. URL: http://
www.ilmarefilm.org/W_E_1.htm. Accessed December 4,
2007.

Wiener, Norbert
(1894–1964)
American
Mathematician, Philosopher

Norbert Wiener developed the theory of cybernetics, or the
process of communication and control in both machines

and living things. His work has had an important impact
both on philosophy and on design principles.

Wiener was born on November 26, 1894, in Columbia,
Missouri. His father was a linguist at Harvard University,
and spurred an interest in communication which the boy
combined with an avid pursuit of mathematics and sci-
ence (particularly biology). A child prodigy, Wiener started
reading at age three, entered Tufts University at age 11,
and earned his B.A. in 1909 at the age of 14, after conclud-
ing that his lack of manual dexterity made biological work
too frustrating. He earned his M.A. in mathematics from
Harvard only three years later, and his Harvard Ph.D. in
mathematical logic just a year later in 1913. He then trav-
eled to Europe, where he met leading mathematicians such
as Bertrand Russell, G. H. Hardy, Alfred North Whitehead,
and David Hilbert. When the United States entered World
War I, Wiener served at Aberdeen Proving Ground, where
he designed artillery firing tables.

After the war, Wiener was appointed as an instructor
at MIT, where he would serve until his retirement in 1960.
However, he continued to travel widely, serving as a Gug-
genheim Fellow at Copenhagen and Göttingen in 1926, and
a visiting lecturer at Cambridge (1931–32) and Tsing-Hua
University in Beijing (1935–36). Wiener’s scientific interests
proved to be as wide as his travels, including research into
stochastic and random processes (such as the Brownian
motion of microscopic particles) where he sought more gen-
eral mathematical tools for the analysis of irregularity.

During the 1930s, Wiener began to work more closely
with MIT electrical engineers who were building mechanical
computers (see Bush, Vannevar and analog computer). He
learned about feedback controls and servomechanisms that
enabled machines to respond to forces in the environment.

During World War II, he did secret military research
with an engineer, Julian Bigelow, on antiaircraft gun con-
trol mechanisms, including methods for predicting the
future position of an aircraft based upon limited and pos-
sibly erroneous information.

Wiener became particularly interested in the feedback
loop—the process by which an adjustment is made on the
basis of information (such as from radar) to a predicted
new position, a new reading is taken and a new adjustment
made, and so on. (He had first encountered these concepts
at MIT with his friend and colleague Harold Hazen.) The
use of “negative feedback” made it possible to design sys-
tems that would progressively adjust themselves such as by
intercepting a target. More generally, it suggested mecha-
nisms by which a machine (perhaps a robot) could progres-
sively work toward a goal.

Wiener’s continuing interest in biology led him always
to relate what he was learning about control and feedback
mechanisms to the behavior of living organisms. He had fol-
lowed the work of Arturo Rosenbleuth, a Mexican physiolo-
gist who was studying neurological conditions that appeared
to result from excessive or inaccurate feedback. (Unlike the
helpful negative feedback, positive feedback in effect ampli-
fies errors and sends a system swinging out of control.)

By the end of World War II, Wiener, Rosenbleuth, the
neuropsychiatrist Warren McCulloch, and the logician

510        Wiener, Norbert

Walter Pitts were working together toward a mathemati-
cal description of neurological processes such as the fir-
ing of neurons in the brain. This research, which started
out with the relatively simple analogy of electromechanical
relays (as in the telephone system) would eventually result
in the development of neural network theory (see neural
network and Minsky, Marvin). More generally, these sci-
entists and others (see von Neumann, John) had begun to
develop a new discipline for which Wiener in 1947 gave the
name cybernetics. This word is from a Greek word referring
to the steersman of a ship, suggesting the control of a sys-
tem in response to its environment.

The field of cybernetics attempted to draw from many
sources, including biology, neurology, logic, and what
would later become robotics and computer science. Wie-
ner’s 1948 book, Cybernetics or Control and Communication
in the Animal and the Machine, was as much philosophical
as scientific, suggesting that cybernetic principles could be
applied not only to scientific research and engineering but
also to the better governance of society. (On a more prac-
tical level Wiener also worked with Jerome Wiesner on
designing prosthetics to replace missing limbs.)

Although Wiener did not work much directly with com-
puters, the ideas of cybernetics would indirectly influence
the new disciplines of artificial intelligence (AI) and robot-
ics. However, in his 1950 book, The Human Use of Human
Beings, Wiener warned against the possible misuse of com-
puters to rigidly control or regiment people, as was the
experience in Stalin’s Soviet Union. Wiener became increas-
ingly involved in writing these and other popular works to
bring his ideas to a general audience.

Wiener received the National Medal of Technology from
President Johnson in 1964. The accompanying citation
praised his “marvelously versatile contributions, profoundly
original, ranging within pure and applied mathematics, and
penetrating boldly into the engineering and biological sci-
ences.” He died on March 18, 1964, in Stockholm, Sweden.

Further Reading
Conway, Flo, and Jim Siegelm. Dark Hero of the Information Age: In

Search of Norbert Wiener, The Father of Cybernetics. New York:
Basic Books, 2005.

Heims, Steve J. John von Neumann and Norbert Wiener: From Mathe-
matics to the Technologies of Life and Death. Cambridge, Mass.:
MIT Press, 1980.

Wiener, Norbert. Cybernetics, or Control and Communication in the
Animal and Machine. Cambridge, Mass.: MIT Press, 1950 (2nd
ed. 1961).

———. The Human Use of Human Beings: Cybernetics and Soci-
ety. Boston: Houghton Mifflin, 1950. (2nd ed., Avon Books,
1970).

———. Invention: The Care and Feeding of Ideas. Cambridge, Mass.:
MIT Press, 1993.

wikis and Wikipedia
A wiki (from the Hawaiian word for “quick”) is a generally
Web-based software application that allows users to col-
laboratively contribute and edit articles on various topics.
Developed by Howard G. “Ward” Cunningham in the mid-
1990s, the best-known example today is Wikipedia.

Structure and Software
Wiki software varies in details such as use of markup lan-
guages, programming interface, and platform. However,
most wikis include the following features:

• � Users can create new pages (articles) or edit existing
ones.

• � Pages contain links to related pages, sometimes using
“wiki words” where WordsAreScrunchedTogether-
WithIntialCaps.

• � Simple markup can be used to create such effects as
boldface, headings, or lists. The wiki software usually
translates this to HTML for rendering.

• � A record is kept of each contribution or edit, often
displayed on a “Recent Changes” page.

• �M any wikis use a database (such as MySQL) to store
and retrieve pages. Some wikis simply store each page
as a file, and a few (such as TiddlyWiki) store all
pages together as a single document.

• � Wikis can be public (open to anyone) or restricted,
such as to members of an organization.

• � The administrator of the wiki establishes guidelines
or standards (such as for citing sources for facts) and
procedures for dealing with disputes and controver-
sial topics.

There is now a great variety of wiki software for just
about every computing platform. At one end there is Medi-
aWiki, the software used to implement Wikipedia, and
“enterprise wikis” such as BrainKeeper and Twiki, provid-
ing complex features for large-scale knowledge bases. So-
called personal Wikis such as DidiWiki and TiddlyWiki
can be used by individuals for note-taking, research, or
managing personal information.

Wikipedia and Its Critics
Founded in 2001 (see Wales, Jimmy), Wikipedia is the
world’s largest and best-known wiki. As of mid-2008 Wiki-
pedia had more than 2,500,000 articles in English and
7,500,000 in more than 250 other languages. At any given
time there are about 75,000 people from all backgrounds
and walks of life contributing or editing articles.

Wikipedia has a number of strengths. Its ubiquity and
diversity enable it to cover tens of thousands of topics
(including the obscure or the simply local) that would be
deemed unsuitable or impracticable for traditional encyclo-
pedias. Emerging topics, including recent news events, can
be covered quickly and comprehensively (though perhaps
blurring the lines between reference and journalism).

The principal problem raised by critics stems from issues
of “quality control.” Unlike the case with traditional ency-
clopedias, there are no requirements that contributors have
academic training or otherwise demonstrate their expertise
in their chosen area. Further, the ability of anyone to edit
an article has led to “edit wars” as people on different sides

wikis and Wikipedia        511

of a controversial topic (or even politicians) would change
articles back and forth to reflect their views.

Defenders of Wikipedia believe that the same “bottom
up” writing and editing process cited by critics can also
be one of the project’s strengths. Each article has a record
of changes, and many articles have attached discussion
pages where writers can critique the page or discuss their
rationales for edits. Finally, they cite a study by the jour-
nal Nature that found that in the science articles analyzed,
Wikipedia averaged four errors while the Encyclopaedia Bri-
tannica was only slightly more accurate, averaging three.

Defenders of Britannica, however, point out that their
publication has the kind of consistency that can only come
through rigorous application of editorial standards. Wiki-
pedia does have standards that writers and editors are
urged to apply, such as providing a citation for every signifi-
cant statement, maintaining a “neutral point of view,” and
refraining from including original research. Nevertheless,
the quality of organization and writing does vary consider-
ably from one article to the next.

Meanwhile innovators in Wikipedia and its community
are developing new tools that may improve the reliability of

Wiki software such as the extensive and ever-growing Wikipedia, allows users to collaborate to create and update knowledge bases. Entries
can include images such as the astronomical photo shown here. There is also a place for ongoing discussion of changes to the page.

512        wikis and Wikipedia

the encyclopedia. One tool, WikiScanner, searches for and
compiles information (such as affiliations) about wiki con-
tributors, allowing readers to better judge their competence
and motivations. Wikipedia’s parent Wikimedia Foun-
dation is also introducing a system by which previously
unknown contributors will undergo a sort of probationary
period while their material is scrutinized. (Eventually they
would become “trusted” and their material would appear
instantly, as it does now for most articles.)

Wikis have, like blogs, become a pervasive form of
online communication and information sharing, and have
gained considerable attention as an application for the
“new” Web (see user-created content, Web 2.0 and
beyond, and social networking). Wikis are currently
being used to create rapidly expanding knowledge bases
(such as for technical support), to share emerging scholar-
ship, and to promulgate documentation within an organiza-
tion. Hosting services (called “wiki farms”) such as Wikia
offer communities wiki software and Web space, sometimes
free of charge. Wiki principles are also finding their way
into software such as personal information managers (see
content management).

Further Reading
Comparison of Wiki Software. Available online. URL: http://

en.wikipedia.org /wiki /Comparison_of_wiki_software.
Accessed May 11, 2007.

Ebersbach, Anja, Markus Glaser, and Richard Heigl. Wiki: Web
Collaboration. New York: Springer, 2005.

Giles, Jim. “Wikipedia 2.0: Now with Added Trust.” NewScientist.
com News Service. Available online. URL: http://technology.
newscientist.com/channel/tech/mg19526226.200-wikipedia-
20%20-now-with -added-trust.html. Accessed December 4,
2007.

Klobas, Jane. Wikis: Tools for Information Work and Collaboration.
Oxford: Chandos Publishing, 2006.

Lee, Ellen. “As Wikipedia Moves to S.F., Founder Discusses
Planned Changes.” San Francisco Chronicle, November 30,
2007. Available online. URL: http://www.sfgate.com/cgi-bin/
article.cgi?f=/c/a/2007/11/30/BUOMTKNJA.DTL. Accessed
December 3, 2007.

Leuf, Bo, and Ward Cunningham. The Wiki Way: Quick Collabora-
tion on the Web. Reading, Mass.: Addison-Wesley, 2001.

MediaWiki. Available online. URL: http://www.mediawiki.org.
Accessed December 4, 2007.

Wikipedia. Available online. URL: http://www.wikipedia.org.
Accessed December 4, 2007.	

Woods, Dan. Wikis for Dummies. Hoboken, N.J.: Wiley, 2007.

wireless computing
Using suitable radio frequencies to carry data among com-
puters on a local network has several advantages. The trou-
ble and expense of running cables (such as for Ethernet) in
older buildings and homes can be avoided. With a wireless
LAN (WLAN) a user could work with a laptop on the deck
or patio while still having access to a high-speed Internet
connection.

Typically, a wireless LAN uses a frequency band with
each unit on a slightly different frequency, thus allowing
all units to communicate without interference. (Although
radio frequency is now most popular, wireless LANs can

also use microwave links, which are sometimes used as an
alternative to Ethernet cable in large facilities.)

Usually there is a network access point, a PC that con-
tains a transceiver and serves as the network hub (it may
also serve as a bridge between the wireless network and a
wired LAN). The hub computer can also be connected to
a high-speed Internet service via DSL or cable. It has an
antenna allowing it to communicate with wireless PCs up
to several hundred feet away, depending on building con-
figuration.

Each computer on the wireless network has an adapter
with a transceiver so it can communicate with the access
point. The adapter can be built-in (as is the case with some
handheld computers), or mounted on a PC card (for lap-
tops) or an ISA card (for desktop PCs) or connected to a
USB port.

Simple home wireless LANs can be set up as a “peer net-
work” where any two units can communicate directly with
each other without going through an access point or hub.
Applications needing Internet access (such as e-mail and
Web browsers) can connect to the PC that has the Internet
cable or DSL connection.

A wireless LAN can make it easier for workers who have
to move around within the building to do their jobs. Exam-
ples might include physicians or nurses entering patient
data in a hospital or store workers checking shelf inventory.

Protocols
Several protocols or standards have been developed for
wireless LANs. The most common today is IEEE 802.11b,
also called WiFi with speeds up to 11 mbps (megabits
per second) transmitting on 2.4 GHz (gigahertz) band.
Although that would seem to be fast enough for most
applications, a new alternative, 802.11n, can offer speeds
up to 54 mbps. Because it uses the unlicensed 5 GHz
frequency range it is not susceptible to interference from
other devices.

The question of security for 802.11 wireless networks
has been somewhat controversial. Obviously, wireless
data can be intercepted in the same way that cell phone or
other radio transmissions can. The networks come with a
security feature, WEP or the newer WPA, but many users
neglect to enable it, and it is vulnerable to certain types of
attack. Users can obtain greater security by reducing emis-
sions outside the building, changing default passwords
and device IDs, and disabling DHCP to make it harder
for snoopers to obtain a valid IP address for the network.
Users can also add another layer of encryption and pos-
sibly isolate the wireless network from the wired network
by using a more secure Virtual Private Network (VPN).
Many of these measures do involve a tradeoff between the
cost of software and administration on the one hand and
greater security on the other. However, the growing popu-
larity of wireless access should spur the development of
improved built-in security.

Another wireless protocol called Bluetooth has been
embedded in a variety of handheld computers, appliances,
and other devices. It provides a wireless connection at
speeds up to 1 MB/second (see Bluetooth).

wireless computing        513

Mobile Wireless Networking
Wireless connections can also keep computer users in
touch with the Internet and their home office while they
travel. Increasingly, more devices are becoming wireless
capable while at the same time the functions of handheld
computers, cell phones, and other devices are being merged
(see also portable computers). A new initiative called 3G
(third generation) involves the establishment of ubiquitous
wireless services that can connect users to the Internet (and
thus to one another) from a growing number of locations.

Currently, the 3G agenda is further advanced in Europe
than in the United States. One problem is that a standard
protocol has not yet emerged. The leading candidates
appear to be GSM (Global System for Mobile Communica-
tions), which is used by European cell phone networks, and
CDMA (Code Division Multiplexing Access).

3G has different speeds ranging from 144 bps for vehic-
ular connections to 384 kbps for personal handheld devices
to 2 bps for indoor installations. All providers, ranging
from cell phones to packet (IP) telephony would using a
standard billing format and database so that users could
operate across many sorts of services seamlessly. Another
alternative is WIMAX, which can be thought of as a wider-
area version of Wifi in which each base station can trans-
mit over up to 50 kilometers. As of 2008 deployment has
been slower than anticipated, with widespread coverage in
U.S. cities not likely to be available for at least several years.

Ultimately, these technologies may bring a Star Trek–
like world, with handheld devices that include not only
e-mail and Web browsing capability but a “smart phone,”
MP3 music player, and even a digital camera.

Further Reading
Briere, Dany, Pat Hurley, and Edward Ferris. Wireless Home Net-

working for Dummies. 2nd ed. Hoboken, N.J.: Wiley, 2006.
Geier, Eric. Wi-Fi Hotspots: Setting Up Public Wireless Internet

Access. Indianapolis: Cisco Press, 2006.
Haley, E. Phil. Over-the-Road Wireless for Dummies. Hoboken, N.J.:

Wiley, 2006.
Kwok, Yu-Kwong Ricky, and Vincent K. N. Lau. Wireless Internet

and Mobile Computing: Interoperability and Performance. New
York: Wiley, 2007.

Wireless Networks and Mobile Computing. Available online.
URL: http://www.networkworld.com/topics/wireless.html.
Accessed August 23, 2007.

Wirth, Niklaus
(1934– )
Swiss
Computer Scientist

Niklaus Wirth created new programming languages such
as Pascal that helped change the way computer scientists
and programmers thought about their work. His work
influenced later languages and ways of organizing program
resources.

Wirth was born on February 15, 1934, in Winterhur,
Switzerland. He received a degree in electrical engineering
at the Swiss Federal Institute of Technology (ETH) in 1959,

then earned his M.S. at Canada’s Laval University. He went
to the University of California, Berkeley, where he received
his Ph.D. in 1963 and taught in the newly founded Com-
puter Science Department at nearby Stanford University. By
then he had become involved with computer science and
the design of programming languages.

Wirth returned to the ETH in Zurich in 1968, where
he was appointed a full professor of computer science. He
had been part of an effort to improve Algol. Although Algol
offered better program structures than earlier languages
such as FORTRAN, the committee revising the language
had become bogged down in adding many new features to
the language that would become Algol-68 (see Algol).

Wirth believed that adding several ways to do the same
thing did not improve a language but simply made it harder
to understand and less reliable. Between 1968 and 1970,
Wirth therefore crafted a new language, Pascal, named after
the 17th-century mathematician who had built an early cal-
culating machine.

Pascal required that data be properly defined (see data
types) and allowed users to define new types of data such
as records (similar to those used in databases). It provided
all the necessary control structures (see loop and branch-
ing statements). Following the new thinking about struc-
tured programming (see Dijkstra, Edsger) Pascal retained
the “unsafe” GOTO statement but discouraged its use.

Pascal became the most popular language for teach-
ing programming. By the 1980s, versions such as UCSD
Pascal and later, Borland’s Turbo Pascal were bringing
the benefits of structured programming to desktop com-
puter users. Meanwhile, Wirth was working on a new
language, Modula-2. As the name suggested, the language
featured the use of modules, packages of program code
that could be linked to programs to extend their data
types and functions. Wirth also designed a computer
workstation called Lilith. This powerful machine not only
ran Modula-2; its operating system, device drivers and all
other facilities were also implemented in Modula-2 and
could be seamlessly integrated, essentially removing the
distinction between operating system and application pro-
grams. Wirth also helped design Modula-3, an object-ori-
ented extension of Modula-2, as well as another language,
Oberon, which was originally intended to run in built-in
computers (see embedded systems).

Looking back at the development of object-oriented
programming (OOP), the next paradigm that captured the
attention of computer scientists and developers after struc-
tured programming, Wirth has noted that OOP isn’t all that
new. Its ideas (such as encapsulation of data) are largely
implicit in structured procedural programming, even if it
shifted the emphasis to binding functions into objects and
allowing new objects to extend (inherit from) earlier ones.
But he believes the fundamentals of good programming
haven’t really changed in 30 years. In a 1997 interview
Wirth noted that “the woes of Software Engineering are not
due to lack of tools, or proper management, but largely due
to lack of sufficient technical competence. A good designer
must rely on experience, on precise, logical thinking; and
on pedantic exactness. No magic will do.”

514        Wirth, Niklaus

Wirth has received numerous honors, including the
ACM Turing Award (1984) and the IEEE Computer Pioneer
Award (1987).

Further Reading
Pescio, Carlo. “A Few Words with Niklaus Wirth.” Software

Development, vol. 5, no. 6, June 1997. Available online. URL:
http://www.eptacom.net/pubblicazioni/pub_eng/wirth.html.
Accessed August 23, 2007.

Wirth, Niklaus. Algorithms + Data Structures = Programs. Engle-
wood Cliffs, N.J.: Prentice Hall, 1976.

———, and Kathy Jensen. PASCAL User Manual and Report. 4th
ed. New York: Springer-Verlag, 1991.

———. Project Oberon: The Design of an Operating System and Com-
piler. Reading, Mass.: Addison-Wesley, 1992.

———. “Recollections about the Development of Pascal.” In
Bergin, Thomas J., and Richard G. Gibson, eds., History of
Programming Languages-II, 97–111. New York: ACM Press;
Reading, Mass.: Addison-Wesley, 1996.

———. Systematic Programming: An Introduction. Reading, Mass.:
Addison-Wesley, 1973.

women and minorities in computing
Although the development of computer science and technol-
ogy has been an international effort, there is no doubt that
the majority of contributors (particularly in the early years)
were men—specifically white men. The interesting excep-
tions include Charles Babbage’s collaborator Ada Lovelace,
ENIAC’s first trained programmers—all women—and of
course Grace Hopper, whose COBOL revolutionized busi-
ness computing. Finally, the 2007 winner of one of the
field’s most prestigious honors, the ACM Turing Award, is a
woman, compiler developer Frances E. Allen.

Today women have gained prominent roles in all aspects
of computer science as well as some high-profile posts in
business (such as Carly Fiorina, former CEO of Hewlett-
Packard, and Meg Whitman of eBay). However, the overall
involvement of women in the higher echelons of computing
remains relatively small.

Educational surveys suggest that boys and girls start out
with roughly equal interest and involvement with comput-
ers, including basic courses in computer literacy and appli-
cations. However, a 2006 report from the College Board
found that 59 percent of boys reported taking courses in
programming, compared with 41 percent of girls. Further,
the great majority of students taking advanced placement
computer science exams are male.

At the college level, women made gains in the percent-
age of bachelor’s degrees in the computer field, reaching 37
percent by the mid-1980s. However, by 2005 that percent-
age had declined to 22 percent. (However, women were
earning 34 percent of master’s degrees by 2001.) Further,
the number of women working in information technology
declined from 984,000 (28.9 percent) in 2000 to 908,000
(26.2 percent) in 2006.

The reasons for this decline are unclear, though some
possible causes that have been suggested include the effects
of the “dot-bust” and the perception that IT jobs were no
longer secure, the “geek” stereotype not appealing to young
women, and the availability of more attractive career paths.

In terms of race or ethnicity, whites and Asians earn a
disproportionate number of degrees in computing, although
interestingly, minority women tend to earn a higher per-
centage than white women. Although minorities have been
gradually increasing their participation in the computing
field, economic disadvantage (see digital divide) and poor
educational preparation continue to be obstacles for some.

Efforts at Change
A variety of programs have sought to interest women and
minority students in computer programming and other
digital careers. These can include the creation of nontra-
ditional programming environments such as Alice, which
allows students to create animated stories using scripting
and 3D graphics tools. (The theory behind this is that girls
are more interested in storytelling and character interac-
tion, while traditional programming classes focused more
on “shoot ’em up” games and other things of more interest
to boys.) There has also been a move away from emphasis
on “hard core” programming skills to a more broad-based
ability to think about technology and its possible uses. (As
a result of this and a certain amount of affirmative action,
Carnegie Mellon raised its percentage of women computer
science students from 8 percent to 40 percent.)

African Americans and other minorities have also devel-
oped a number of organizations and programs designed

Jean Bartik (standing) and Betty Holberton answered a call
for “computers” during World War II. At the time, that was the
name for a clerical person who performed calculations. But these
two computer pioneers, shown here at a reunion, would go on to
develop important programming techniques for the ENIAC and
later machines.  (Courtesy of the Association for Women
in Computing)

women and minorities in computing        515

to promote networking among minority professionals, link
applicants to job openings, and encourage professional
development.

Further Reading
ACM Committee on Women in Computing. Available online. URL:

http://women.acm.org/. Accessed December 4, 2007.
ADA Project. Available online. URL: http://women.cs.cmu.edu/

ada/. Accessed December 4, 2007.
Association for Women in Computing. Available online. URL:

http://www.awc-hq.org/. Accessed December 4, 2007.
Black Data Processing Associates. Available online. URL: http://

www.bdpa.org. Accessed December 4, 2007.
Dean, Cornelia. “Computer Science Takes Steps to Bring Women

to the Fold.” New York Times, April 17, 2007. Available online.
URL: http://www.nytimes.com/2007/04/17/science/17comp.
html?_r=1&oref=slogin. Accessed December 4, 2007.

Margolis, Jane, and Allan Fisher. Unlocking the Clubhouse. Cam-
bridge, Mass.: MIT Press, 2001.

National Center for Women and Information Technology. Avail-
able online. URL: http://www.ncwit.org/. Accessed December
4, 2007.

National Institute for Women in Trades, Technology & Science.
Available online. URL: http://www.iwitts.com/. Accessed
December 4, 2007.

Pinkett, Randal D. “Strategies for Motivating Minorities to Engage
Computers.” Carnegie Mellon University. Available online.
URL: ttp://llk.media.mit.edu/papers/cmu1999.pdf. Accessed
December 4, 2007.

Yount, Lisa. A-Z of Women in Science and Math. Rev. ed. New York:
Facts On File, 2007.

word processing
Although computers are most often associated with num-
bers and calculation, creating text documents is probably
the most ubiquitous application for desktop PCs.

The term word processor was actually coined by IBM
in the 1960s to refer to a system consisting of a Selectric
typewriter with magnetic tape storage. This allowed the
typist to record keystrokes (and some data such as margin
settings) on tape. Material could be corrected by being re-
recorded. The tape could then be used to print as many
perfect copies of the document as required. A version using
magnetic cards instead of tape appeared in 1969.

The first modern-style word processor was marketed by
Lexitron and Linolex. It also used magnetic tape, but it
added a video display screen. Now the writer could see
and correct text without having to print it first. A few years
later, a new invention, the floppy disk, became the standard
storage medium for dedicated word processing systems.

The word-processing systems developed by Wang,
Digital Equipment Corporation, Data General, and others
became a feature in large offices in the late 1970s. These
systems were essentially minicomputers with screens, key-
boards, and printers and running a specialized software
program. Because these systems were expensive (rang-
ing from about $8,000 to $20,000 or more), they were not
affordable by smaller businesses. Typically, they were oper-
ated by specially trained personnel (who became known
also as “word processors”) to whom documents were fun-
neled for processing, as with the old “typing pool.”

PC Word Processing
The first microcomputer systems had very limited memory
and storage capacity. However, by the late 1970s various
systems using the S-100 bus and running CP/M had word-
processing programs, as did the Apple II and other first-
generation PCs. However, it took the entry of the IBM PC
into the market in 1981 to make the PC a word-processing
alternative for mainstream businesses. The machine had
more memory and storage than earlier machines, and the
IBM name provided reassurance to business.

A number of word-processing programs were written for
the IBM PC running MS-DOS, but the market leaders were
WordStar and WordPerfect. Both programs offered basic
text editing and formatting, including the ability to embed
commands to mark text for boldface, italic, and so on. The
programs came with drivers for the more popular printers.

In 1984, the Macintosh offered a new face for word pro-
cessing and other applications. Using bitmapped fonts, the
Mac could show a good representation of the fonts and typ-
estyles that would be in the printed document. This “what
you see is what you get” (WYSIWYG) approach, together
with the graphical user interface with mouse-driven menus
meant that users did not have to learn the often obscure
command key sequences used in WordStar or WordPerfect.

Microsoft then developed Windows as a graphical user
interface alternative to MS-DOS for IBM-compatible PCs.
By 1990, Windows was rapidly replacing DOS as the operat-
ing system of choice, and Microsoft Word was winning the
battle against WordPerfect, whose Windows version was
rather flawed at first.

In addition to being able to visually show fonts and
formatting, Word and other modern word processors are
packed with features. Some typical features today include:

• � different views of the document, including an outline
showing headings down to a user-specified level

• � automatic table of contents and index generation

• � tables and multicolumn text

• � automatic formatting of bulleted and numbered lists

• � built-in and user-defined styles for headings, para-
graphs, and so on.

• � the ability to use built-in or user-defined templates
to provide starting settings for new documents (see
template)

• � the ability to record or otherwise specify a series
of commands to be performed automatically (see
macro)

• � spelling and grammar checkers

• � the ability to incorporate a variety of graphics image
formats in the document

• � automatic formatting and linking of Web hyperlinks
within documents

• � the ability to import and export documents in a vari-
ety of formats, including Web documents (see html)

516        word processing

• � an extensive online help system including “wizards”
to guide the user step-by-step through various tasks

As word processors become more extensive in their
capabilities, it has become harder to distinguish them from
programs designed to create precise copy for publication
(see desktop publishing). However, copy prepared by
writers with a word processor must generally be further
processed through a desktop publishing or in-house com-
puterized typography system.

At the other end of the spectrum many users find that
word processors are “overkill” for making simple notes. A
variety of programs for entering simple text are available,
including the Notepad program that comes with Windows.
There are also applications for which plain text must be
produced, without the formatting codes added by word pro-
cessors. In particular, programmers often use specialized
editing programs to create source code (see text editor).

Trends
Today word processing programs are generally part of an
office software suite such as Microsoft Office, Corel Office,
or Open Office. Documents created by other components of
the suite can be embedded in word processing documents.
(In Windows, object linking and embedding [OLE] is a sys-
tem that allows for embedded documents to be automati-
cally updated and to be edited using the functions of the
host program. Thus, an Excel spreadsheet embedded in a
Word document can be worked in place using the standard
Excel interface.)

There are also features that can facilitate collaboration
between workers in a networked office, such as by keeping
track of revisions made by various people working on the
same document.

A new alternative is the free (or low-cost) online word
processor such as Google Docs & Spreadsheets and Zoho
Writer. These products can be used from any Web browser
and facilitate the central storage of documents for mobile
users (see application service provider).

As with other applications, word processors are increas-
ingly being integrated with the Web, and include the ability
to create HTML documents. In turn, the programs spe-
cifically designed for creating HTML documents now have
many word-processor features including templates, styles,
and the visual representation of the page.

Further Reading
Cox, Joyce, and Joan Preppernau. Microsoft Office Word 2007 Step

by Step. Redmond, Wash.: Microsoft Press, 2007.
Google Docs & Spreadsheets. Available online. URL: http://www.

docs.google.com. Accessed August 23, 2007.
Kunde, Brian. “A Brief History of Word Processing (Through

1986).” Available online. URL: http://www.stanford.edu/
~bkunde/fb-press/articles/wdprhist.html. Accessed August
23, 2007.

Open Office.org. Available online. URL: http://www.openoffice.
org/. Accessed August 23, 2007.

Petrie, Michael. “A Potted History of WordStar.” Available online.
URL: http://www.wordstar.org/wordstar/history/history.htm.
Accessed August 23, 2007.

Zoho Writer (online word processor). Available online. URL:
http://writer.zoho.com/jsp/home.jsp?serviceurl=%2Findex.
do. Accessed August 23, 2007.

workstation
Like minicomputer, workstation is a rather slippery term
whose meaning and significance has changed somewhat
with the growing power of desktop PCs.

In the late 1960s and 1970s, most “personal” computing
was done by individuals connected to time-sharing main-
frames or minicomputers by terminals. Generally, the ter-
minals could only display text, not graphics.

However, researchers at the Xerox Palo Alto Research
Center (PARC) began to develop a more powerful computer
for individual use (see Englebart, Douglas and Kay,
Alan). The Xerox Alto had a high-resolution bitmapped
graphics display and a mouse-controlled graphical user
interface. While it was expensive and not very successful
commercially, the Alto set the stage for the Macintosh in
1984 and for Microsoft Windows.

Although the desktop PCs of the 1980s such as the IBM
PC had some graphics capabilities, the machines lacked the
capacity for graphics-intensive applications such as engi-
neering design and the generation of movie effects. Led
by Sun and Silicon Graphics (SGI), the high-performance
graphics workstation emerged as a distinctive product cate-
gory. These machines used relatively powerful microproces-
sors (such as the Sun SPARC and the MIPS) with instruction
sets optimized for speed (see risc). These systems generally
ran UNIX as their operating system.

However, by the late 1990s, ordinary desktop PCs were
catching up to dedicated workstations in terms of process-
ing power and graphics features. By 2002, a desktop PC
costing about $2,000 offered a 2-GB processor, 256 MB of
RAM, 120 GB hard drive, and an optimized 3D graphics
card that can drive displays up to 1600 by 1200 pixels or
more. These systems can run Windows NT or XP, or, for
users preferring UNIX, Linux offers a robust and inexpen-
sive operating system. This sort of system rivals the capa-
bilities of a dedicated workstation while offering all of the
versatility of a general-purpose PC. As a result, the term
workstation today refers more to a way of using a computer
than to a specific class of hardware. Machines are thought
of as workstations if they emphasize graphics performance
and are dedicated to particular activities such as science,
imaging, engineering, design (see also computer-aided
design and manufacturing), or video editing.

Further Reading
Goldberg, Adele. A History of Personal Workstations. Reading,

Mass.: Addison-Wesley/ACM, 1988.
Sun Microsystems. The New User’s Guide to Sun Workstation. New

York: Springer-Verlag, 1991.

World Wide Web
In little more than a decade the World Wide Web has
become nearly as ubiquitous as the telephone and has
become for many a preferred medium for shopping, news,
entertainment, and education. Some cultural observers
believe that this vast system of linked information may be
having an impact on society as great as that of the invention
of the printing press more than five centuries earlier.

World Wide Web        517

By the beginning of the 1990s, the Internet had become
well established as a means of communication between
relatively advanced computer users, particularly scientists,
engineers, and computer science students—primarily using
UNIX-based systems (see unix). A number of services used
the Internet protocol (see tcp/ip) to carry messages or data.
These included e-mail, file transfer protocol (see ftp) and
newsgroups (see netnews and newsgroups). A Wide Area
Information Service (WAIS) even provided a protocol for
users to retrieve information from databases on remote
hosts. Another interesting service, Gopher, was developed
at the University of Minnesota in 1991. It used a system of
nested menus to organize documents at host sites so they
could be browsed and retrieved by remote users.

Gopher was quite popular for a few years, but it would
soon be overshadowed by a rather different kind of net-
worked information service. A physicist/programmer (see
Berners-Lee, Tim) working at CERN, the European par-
ticle physics laboratory in Switzerland had devised in 1989
a system that he eventually called the World Wide Web
(sometimes called WWW or W3). By 1990, he was run-
ning a prototype system and demonstrating it for CERN
researchers and a few outside participants.

Using the Web
The Web consists essentially of three parts. Berners-Lee
devised a markup language: that is, a system for indicat-
ing document elements (such as headers), text characteris-
tics, and so on (see html). Any document could be linked
to another (see hypertext and hypermedia) by speci-
fying that document’s unique address (called a Uniform
Resource Locator or URL) in a request. Berners-Lee defined
the HyperText Transport Protocol, or HTTP, to handle the
details needed to retrieve documents. (Although HTTP is
most often used to retrieve HTML-formatted Web docu-
ments, it can also be used to specify documents using other
protocols, such as ftp, news, or Gopher.)

A program (see Web server) responds to requests for
documents sent over the network (usually the Internet, that
is, TCP/IP). The requests are issued by a client program as
a result of the user clicking on highlighted links or buttons
or specifying addresses (see Web browser). The browser
in turn interprets the HTML codes on the page to display it
correctly on the user’s screen.

At first the Web had only text documents. However,
thanks to Berners-Lee’s flexible design (see client-server
computing) new, improved Web browsers could be cre-
ated and used with the Web as long as they followed the
rules for HTTP. The most successful of these new browsers
was Mosaic, created by Marc Andreesen at the National
Center for Supercomputing Applications. NCSA Mosaic was
available for free download and could run on Windows,
Macintosh, and UNIX-based systems. Mosaic not only dis-
pensed with the text commands used by most of the first
browsers, it also had the ability to display graphics and
play sound files. With Mosaic the text-only hypertext of the
early Web rapidly became a richer hypermedia experience.
And thanks to the ability of browsers to accept modules to
handle new kinds of files (see plug-in), the Web could also

accommodate real-time sound and video transmissions (see
streaming).

In 1994, Andreessen left NCSA and co-founded a com-
pany called Netscape Communications, which improved
and commercialized Mosaic. Microsoft soon entered with
a competitor, Internet Explorer; today these two brows-
ers dominate the market with Microsoft having taken the
lead. Together with relatively low-cost Internet access
(see modem and internet service provider) these user-
friendly Web browsers brought the Web (and thus the
underlying Internet) to the masses. Schools and libraries
began to offer Web access while workplaces began to use
internal webs to organize information and organize opera-
tions. Meanwhile, companies such as the on-line bookseller
Amazon.com demonstrated new ways to deliver traditional
products, while the on-line auction site eBay took advan-
tage of the unique characteristics of the on-line medium to
redefine the auction.

The burgeoning Web was soon offering millions of
pages, especially as entrepreneurs began to find additional
business opportunities in the new medium (see e-com-
merce). Two services emerged to help Web users make
sense of the flood of information. Today users can search
for words or phrases (see search engine) or browse
through structured topical listings (see portal). Estimates
from various sources suggest that as of 2007 approximately
1.2 billion people worldwide access the Web, with usage
increasing most rapidly in the emerging industrial super-
powers of India and China.

Impact and Trends
The Web is rapidly emerging as an important news medium
(see journalism and the computer industry). The
medium combines the ability of broadcasting to reach many
people from one point with the ability to customize con-
tent to each person’s preferences. Traditional broadcasting
and publishing are constrained by limited resources and
the need for profitability, and thus the range and diversity
of views made available tend to be limited. With the Web,
anyone with a PC and a connection to a service provider
can put up a Web site and say just about anything. Millions
of people now display aspects of their lives and interests on
their personal Web pages (see blogs and blogging). The
Web has also provided a fertile medium for the creation of
online communities (see social networking and virtual
community) while contributing to significant issues (see
privacy in the digital age).

As the new century continues, the Web is proving itself
to be truly worldwide, resilient, and adaptable to many new
communications and media technologies (see digital con-
vergence). Nevertheless, the Web faces legal and political
challenges (see censorship and the Internet, and intel-
lectual property and computing) as well as technical
challenges (see semantic Web and Web 2.0).

Further Reading
Berners-Lee, Tim. Weaving the Web: The Original Design and Ulti-

mate Destiny of the World Wide Web. New York: Harperbusi-
ness, 2000.

518        World Wide Web

Gillies, James, and Robert Cailliau. How the Web Was Born: The
Story of the World Wide Web. New York: Oxford University
Press, 2000.

Internet Society. Available online. URL: http://www.isoc.org.
Accessed August 23, 2007.

Internet World Stats. Available online. URL: http://www.
internetworldstats.com/stats.htm. Accessed August 23, 2007.

Wozniak, Steven
(1950– )
American
Computer Inventor and Engineer

Steve Wozniak, often known as “Woz,” cofounded Apple
computer and designed the Apple II, one of the first popular
personal computers.

Born on August 11, 1950, in San Jose, California, Woz-
niak grew up to be a classic “electronics whiz.” He built a
working electronic calculator when he was 13, winning the
local science fair. After graduating from Homestead High
School, Wozniak tried community college but quit to work
with a local computer company. Although he then enrolled
in the University of California, Berkeley, to study electronic
engineering and computer science, he dropped out in 1971
to go to work again, this time as an engineer at Hewlett-
Packard, at that time one of the most successful companies
in the young Silicon Valley.

By the mid-1970s, Wozniak was in the midst of a techni-
cal revolution in which hobbyists explored the possibili-
ties of the newly available microprocessor or “computer
on a chip.” A regular attendee at meetings of the Home-
brew Computer Club, Wozniak and other enthusiasts were
excited when the MITS Altair, the first complete microcom-
puter kit, came on the market in 1975. The Altair, however,
had a tiny amount of memory, had to be programmed by
toggling switches to input hexadecimal codes (rather like
the ENIAC), and had very primitive input/output capabili-
ties. Wozniak decided to build a computer that would be
much easier to use—and more useful.

Wozniak’s prototype machine, the Apple I, had a key-
board and could be connected to a TV screen to provide a
video display. He demonstrated it at the Homebrew Com-
puter Club and among the interested spectators was his
friend Steve Jobs. Jobs had a more entrepreneurial interest
than Wozniak, and spurred him to set up a business to

manufacture and sell the machines. Together they founded
Apple Computer in June 1976. Their “factory” was Jobs’s
parents’ garage, and the first machines were assembled by
hand.

Wozniak designed most of the key parts of the Apple,
including its video display and later, its floppy disk inter-
face, which is considered a model of elegant engineering to
this day. He also created the built-in operating system and
BASIC interpreter, which were stored in read-only memory
(ROM) chips so the computer could function as soon as it
was turned on.

In 1981, just as the Apple II was reaching the peak of
its success, Wozniak was almost killed in a plane crash. He
took a sabbatical from Apple to recover, get married, and
return to UC Berkeley (under an assumed name!) to finish
his B.S. in electrical engineering and computer science.

Wozniak’s life changes affected him in other ways. As
Apple grew and became embroiled in the problems of large
companies, “Woz” sold large amounts of his Apple stock and
gave the money to Apple employees that he thought had not
been properly rewarded for their work. Later in the 1980s,
he produced two rock festivals that lost $25 million, which
he paid out of his own money. He was quoted as saying, “I’d
rather be liked than rich.” He left Apple for good in 1985
and founded Cloud Nine, an unsuccessful company that
designed remote control and “smart appliance” hardware.

During the 1990s, Wozniak organized a number of
charitable and educational programs, including cooperative
activities with people in the former Soviet Union. He partic-
ularly enjoyed classroom teaching, bringing the excitement
of technology to young people. In 1985, Wozniak received
the National Medal of Technology.

Further Reading
Cringely, Robert X. Accidental Empires: How the Boys of Silicon Val-

ley Make Their Millions, Battle Foreign Competition, and Still
Can’t Get a Date. Reading, Mass.: Addison-Wesley, 1992.

Freiberger, Paul, and Michael Swaine. Fire in the Valley: the Making
of the Personal Computer. 2nd ed. New York: McGraw-Hill,
1999.

Kendall, Martha E. Steve Wozniak, Inventor of the Apple Computer.
2nd rev. ed. Los Gatos, Calif.: Highland Publishing, 2001.

Woz.org [Steve Wozniak’s Home Page]. Available online. URL:
www.woz.org. Accessed August 27, 2007.

Wozniak, Steve, and Gina Smith. iWoz: From Computer Geek to
Cult Icon: How I Invented the Personal Computer, Co-Founded
Apple, and Had Fun Doing It. New York: W. W. Norton, 2006.

Wozniak, Steven        519

520

XML
Several markup languages have been devised for specifying
the organization or format of documents. Today the most
commonly known markup language is the Hypertext Markup
Language (see html, dhtml, and xhtml), which is the orga-
nizational “glue” of the Web (see World Wide Web).

HTML is primarily concerned with rendering (display-
ing) documents. It describes structural features of docu-
ments (such as headers, sections, tables, and frames), but
it does not really convey the structure of the information
within the document. Further, HTML is not extensible—
that is, one can’t define one’s own tags and use them as part
of the language. XML, or Extensible Markup Language, is
designed to meet both of these needs. In effect, while HTML
is a descriptive coding scheme, XML is a scheme for creating
data definitions and manipulating data within documents.
(XML can be viewed as a subset of the powerful and general-
ized SGML, or Standard Generalized Markup Language.)

The basic building block of XML is the element, which
can be used to define an entity (rather like a database
record). For example, the following statement:

<team name=“New York Yankees”>
<players>

<player name=“1”>Babe Ruth</player>
<player name=“2”>Lou Gehrig</player>

</players>
</team>

XML text is bracketed by tags as with HTML. The
“team” element has an attribute called “name” that is

assigned the value “New York Yankees.” (Attribute values
must be enclosed in quote marks.) It also contains a nested
element called players, which in turn defines player names,
Babe Ruth and Lou Gehrig. The elements are defined at
the beginning of the XML document by a DTD (Document
Type Definition), or such a definition can be “included”
from another file.

XML is currently supported by the leading Web brows-
ers. In effect, it includes HTML as a subset, or more accu-
rately XHTML (HTML conformed to XML 1.0 standards)
(see html, dhtml, and xhtml). Thus, XML documents
can be properly rendered by browsers, while applications
that are XML-enabled (or that use XML-aware ActiveX con-
trols or similar Java facilities, for example) can parse the
XML and identify the data structures and elements in the
document. Together with programming languages such as
Java and facilities such as SOAP (Simple Object Access Pro-
tocol), XML can be used to create applications that connect
servers and documents across the Internet—it is rapidly
becoming the data “glue” that holds Web sites together.

XML can be viewed as part of a trend to make data “self-
describing.” The ability to encode not just the structure but
the logical content of documents promises a growing abil-
ity for automated agents or “bots” to take over much of the
work of sifting through the Web for desired information,
bringing the Web closer to the intentions of its inventor,
Tim Berners-Lee (see Berners-Lee, Tim; semantic web).

Further Reading
Carey, Patrick. New Perspectives on XML. 2nd ed. Boston: Course

Technology, 2006.

X

Eisenberg, J. David. “Introduction to XML.” Available online. URL:
http://www.digital-web.com/articles/introduction_to_xml.
Accessed August 23, 2007.

Harold, Elliotte Rusty, and W. Scott Means. XML in a Nutshell. 3rd
ed. Sebastapol, Calif.: O’Reilly Media, 2004.

Jacobs, Sas. Beginning XML with DOM and Ajax: From Novice to
Professional. Berkeley, Calif.: Apress, 2006.

XML Resources. Available online. URL: http://www.softwareag.
com/xml/Techn_Links/default.htm. Accessed August 23,
2007.

XML        521

522

Y2K problem
Sherlock Holmes once referred to a dog barking in the
night. Watson, puzzled as usual, replied that no dog had
barked. Holmes replied that it was the nonbarking that was
significant. The same can be said about the growing con-
cern toward the end of the 1990s that the year 2000 might
bring massive, disastrous failures to many of the computer
systems on which society now depended for its well-being.

Most programs written in the 1960s and 1970s (see
mainframe and cobol) saved expensive memory space by
storing only the second two digits of year dates. After all,
dates could be understood to begin with “19” for many
years to come (although some farsighted computer scien-
tists did warn of future trouble). Eventually the century
began to draw to an end.

Although much computing activity had moved onto
newer systems by the 1990s, many large government and
corporate computer systems were still running the original
applications or their descendents. If such a program were
run in the year 2000, it would have no way to distinguish
a date in that year from a date in 1900. While the prospect
of a centenarian being suddenly treated as a newborn was
likely to be more amusing than significant, what would
happen to a 30-year mortgage that was written in 1975
and intended to come due in 2005? Would people be billed
based on a 70-year term? Many observers feared that some
systems would actually crash because they would begin to
generate nonsensical data. What, for example, might hap-
pen to an air traffic control system or automated power grid
system that used dates and times to track events?

No one really knew. One problem was that there were
millions of lines of code, often written by programmers
who had long since retired. Nor was it simply a matter of
looking for references to date fields (such as in decision
statements), because of the many ways programmers could
express such statements. In addition to mainframe applica-
tions, there were also the computers hardwired into devices
of all kinds including cars and airplanes (see embedded
system). As with the early mainframes, these systems were
often designed with limited available memory, and thus
their programmers, too, may have been tempted to save
bytes by lopping off the century years.

As the fateful date approached, government agencies
and businesses began to invest billions of dollars and hire
expensive consultants to check code for “Y2K compat-
ibility.” In the end, Y2K problems were found and fixed
in the most critical systems, and the year 2000 dawned
without significant mishaps. (It turned out that virtually all
the embedded systems did not in fact have Y2K problems,
mostly because they didn’t even track year dates.)

But although the “dog didn’t bark” and in retrospect
some of the hype about Y2K seems excessive, it did lead
to improvement in a great deal of software. Further, it
increased awareness of dependence on computers for so
many aspects of life—a dependence that has been cast in
a harsh new light by the terrorist events of September 11,
2001 (see risks of computing).

Further Reading
Crawford, Walt. “Y2K: Lessons from a Non-Event.” Online, vol. 25,

issue 2, March 2001, 73.

Y

Finkelstein, Anthony. “Y2K: a Retrospective View.” Computing
and Control Engineering Journal, vol. 11, no. 4, August 2000,
156–159. Available online. URL: http://www.cs.ucl.ac.uk/
staff/A.Finkelstein/papers/y2kpiece.pdf. Accessed August 23,
2007.

Manion, M., and W. M. Evan. “The Y2K Problem and Professional
Responsibility: A Retrospective Analysis.” Technology in Soci-
ety 22 (August 2000): 351–387.

Yahoo! Inc.
Yahoo! (NASDAQ symbol: YHOO) has played an important
role in the development of Web services. In 1994 Stan-
ford students Jerry Yang and David Filo developed the first
popular directory of Web sites (see portal). Realizing that
the millions of Web users flocking to their site provided an
opportunity for advertising and services, the two partners
incorporated Yahoo! in 1995. (In 1996 the company went
public and raised $33.8 million, a significant amount at
a time when the business potential of the Web was only
beginning to be appreciated.)

Yahoo! continued to grow, and the company acquired
a number of other online services, which they used to pro-
vide Web-based e-mail, Web hosting, and news. But having
flown so high, Yahoo! had far to fall when the dot-com mar-
ket bubble burst in 2001: A stock that had traded at around
$130.00 per share fell as low as $4.06.

However, Yahoo! proved its resilience as one of the few
early dot-coms to survive and has continued to thrive in
the post-bubble era since 2002. The company made strate-
gic partnerships with telecommunications companies such
as BT and Verizon. Yahoo! entered a continuing struggle
with another Web services powerhouse (see Google) while
acquiring new media sites (such as the photo-sharing ser-
vice Flickr and the social “bookmarking” service del.icio.
us), and creating new services (see blogs and blogging
and social networking). Yahoo! also provides online
storefronts, competing in that venue mainly with eBay.

Yahoo! has a strong international presence, which, how-
ever, led to a controversial case where the company pro-
vided user information to Chinese authorities that led to
imprisonment of two dissidents on charges of passing state
secrets. (A lawsuit by the families of the dissidents was
settled by Yahoo.)

Yahoo!’s main source of revenue remains search-related
advertising. The company may have received a competitive
boost in 2007 with a new online advertising system called
“Panama,” catching up to similar technology previously
deployed by Google. In fiscal 2007 Yahoo! had revenue of
$6.7 billion and earned about $730 million. At the time
Yahoo! had about 13,600 employees.

In 2008 Yahoo! became the target of a takeover bid by
Microsoft. Although this has met with at least initial rejec-
tion, rumors continued, including the possibility that Time
Warner might acquire the company and merge it with its
AOL division.

Further Reading
Angel, Karen. Inside Yahoo!: Reinvention and the Road Ahead. New

York: Wiley, 2002.

Fost, Dan. “Web Portal Works to Integrate the Companies It Has
Acquired.” San Francisco Chronicle, December 24, 2006, p.
F1. Available online. URL: http://sfgate.com/cgi-bin/article.
cgi?file=/c/a/2006/12/24/BUGUIN3TKS1.DTL. Accessed
December 4, 2007.

Kopytoff, Verne. “ ‘Panama System Helping Yahoo Compete.” San
Francisco Chronicle, April 8, 2007, p. D1. Available online.
URL: http://sfgate.com/cgi-bin/article.cgi?f=/c/a/2007/04/08/
BUGKNP3UD91.DTL. Accessed December 4, 2007.

Snell, Rob. Starting a Yahoo! Business for Dummies. Hoboken, N.J.:
Wiley, 2006.

Wagner, Richard. Yahoo! SiteBuilder for Dummies. Hoboken, N.J.:
Wiley, 2005.

Yahoo! Available online. URL: http://www.yahoo.com/. Accessed
December 4, 2007.

young people and computing
Computers and technology play a role in the lives of most
young people that many adults have difficulty compre-
hending. Children in industrialized countries are liable to
encounter video games even before they arrive at school.
Once there, they will be exposed to a considerable amount
of educational software, depending on their school’s afflu-
ence (see education and computers). Upon returning
from school, there are more sophisticated games, MySpace
pages to keep updated (see social networking), sophisti-
cated tools for creating music and video, and, of course, the
Internet in all its vast diversity. Meanwhile, a web of inces-
sant messages (see texting and instant messaging) is
likely to keep the youngster in touch with friends.

Challenges
A major positive aspect of young peoples’ involvement with
computer technology is that, as with learning a second lan-
guage, learning the “language” of the digital world is easiest
for the young. The capabilities and opportunities for creativ-
ity offered to today’s teens are astonishing—as are many
of the impressive results that can be seen in young peo-
ples’ blogs, Web sites, and YouTube videos. It is also widely
believed that children will need to master current and
emerging technology in order to be competitive as adults.

At the same time, adults and parents in particular
remain concerned about the dangers and drawbacks of
teens’ pervasively digital life. A 2007 survey by the Pew
Internet & American Life Project found that a majority of
parents whose children were online had rules about what
their kids could see or play—and for how long each day. In
general parents seem to be becoming somewhat less enthu-
siastic about their children’s online activities even as the
latter’s positive attitude toward the technology continues
to increase. Use of protective software (see Web filter) is
common, although tech-savvy teens have a way of staying
ahead of the curve of parental restrictions.

Common parental concerns include:

• � potential exposure to online sexual predators or bully-
ing (see cyberstalking and harassment)

• � viewing of inappropriate material such as pornogra-
phy and highly violent games

young people and computing        523

• � excessive time spent online to the detriment of study,
physical activity, or sleep

While some of this concern echoes an earlier genera-
tion’s misgivings about television, the online world is far
more deeply embedded in daily life, and both opportunities
and concerns are thus more complex (see identity in the
online world). While parents can learn more about the
relevant issues, and schools can help students develop a
savvy, critical attitude toward technology, communication
between generations will need to be an important strategy
for coping with such rapid technological change.

Further Reading
Buckingham, David, and Rebekah Willett, editors. Digital Gen-

erations: Children, Young People, and the New Media. Mahwah,
N.J.: Lawrence Erlbaum, 2006.

Lenhart, Amanda, and Mary Madden. “Social Networking Web-
sites and Teens: An Overview.” Pew Internet & American Life
Project, January 7, 2007. Available online. URL: http://www.
pewinternet.org/pdfs/PIP_SNS_Data_Memo_Jan_2007.pdf.
Accessed December 4, 2007.

———. “Teens and Technology: Youth Are Leading the Transi-
tion to a Fully Wired and Mobile Nation.” Pew Internet &
American Life Project, July 27, 2005. Available online. URL:
www.pewinternet.org/pdfs/PIP_Teens_Tech_July2005web.
pdf. Accessed December 4, 2007.

Macgill, Alexandra Rankin. “Parent and Teenager Internet Use.”
Pew Internet & American Life Project, October 24, 2007.
Available online. URL: http://www.pewinternet.org/pdfs/PIP_
Teen_Parents_data_memo_Oct2007.pdf. Accessed December
4, 2007.

Mazzarella, Sharon R., ed. Girl Wide Web: Girls, the Internet, and
the Negotiation of Identity. New York: Peter Lang, 2005.

Reimer, Jeremy. “Study Shows Youth Embracing Technology
Even More than Before.” Ars Technica, August 1, 2006. Avail-
able online. URL: http://arstechnica.com/news.ars/post/
20060801-7401.html. Accessed December 4, 2007.

Willard, Nancy E. Cyber-Safe Kids, Cyber-Savvy Teens: Helping
Young People Learn to Use the Internet Safely and Responsibly.
San Francisco, Calif.: Jossey-Bass, 2007.

YouTube
Since the late 1990s, Web users (particularly younger ones)
have been adept at sharing media content online (see file-
sharing and p2p networks). In the 2000 decade, however,
the emphasis has shifted to users not merely sharing other
peoples’ content, but creating their own (see user-created
content). The first part of the recipe was the availability of
ubiquitous digital cameras and camcorders; the second part
was easy-to-use video-editing software; and the third part
was a Web site that could host the results.

Created in 2005 by three former PayPal employees, the
video-sharing site YouTube has been the leading venue for
amateur video. Although available content includes clips
from movies and TV shows (some unauthorized), much of
the most interesting content is original videos created and

uploaded by users. Beyond just sharing or accessing con-
tent, users are encouraged to rate and comment on the vid-
eos they see, and users can also subscribe to “feeds” of new
material that is likely to be of interest to them.

By 2008 more than 83 million videos were available on
YouTube—and hundreds of thousands added each day.

Political Influence
Just as political pundits were beginning to notice that
bloggers were creating parallel structures that rivaled the
influence of the mainstream media (see journalism and
computers), YouTube broke into the highly visual field of
political advertising. Most candidates in the 2008 presiden-
tial primaries have put their statements and other videos on
YouTube. However, other supporters soon got into the act,
including the creator of a pro–Barack Obama ad that cast
rival Hillary Rodham Clinton in the role of Big Brother in
the classic “1984” Apple Macintosh commercial (see mash-
ups). Political commentators and journalists have also been
active in putting their opinions on YouTube (or comment-
ing on those of others). Perhaps the political establishment’s
biggest nod to YouTube is the series of debates cosponsored
by CNN and YouTube, bringing together the Republican
and Democratic primary fields.

YouTube has had its share of criticism: Critics have
charged the service with not sufficiently policing copyright
violations and violent content (including videos of fights
or bullying in schools), as well as neo-Nazi propaganda,
scenes of animal abuse, and videos by anti-American insur-
gent groups, as well as generally tasteless exhibitionism. A
few countries and some schools have responded by block-
ing access to the service.

If YouTube’s main resource is the creativity and enthusi-
asm of its users, its main revenue is advertising—about $15
million per month by 2006. Don Tapscott and Anthony D.
Williams, authors of the book Wikinomics, cite YouTube as
a classic example of the new economics of mass collabora-
tion on the Web. Google signaled its appreciation for the
economic potential of YouTube by buying it for $1.65 billion
in late 2006.

Further Reading
Fah, Chad. How to Do Everything with YouTube. Emeryville, Calif.:

McGraw-Hill Osborne, 2007.
Miller, Michael. YouTube 4 You. Indianapolis: Que, 2007.
Sahlin, Doug. YouTube for Dummies. Indianapolis: Wiley, 2007.
YouTube. Available online. URL: http://www.youtube.com. Accessed

December 4, 2007.
Weber, Steve. Plug Your Business! Marketing on MySpace, YouTube,

Blogs and Podcasts, and Other Web 2.0 Social Networks. Falls
Church, Va.: Weber Books, 2007.

Winograd, Morley, and Michael D. Hais. Millennial Makeover:
MySpace, YouTube, and the Future of American Politics. Pisca-
taway, N.J.: Rutgers University Press, 2008.

524       YouTube

525

Zuse, Konrad
(1910–1995)
German
Engineer, Inventor

Great inventions seldom have a single parent. Although
popular history credits Alexander Graham Bell with the
telephone, the almost forgotten Elisha Gray invented the
device at almost the same time. And although the ENIAC
is widely considered to be the first practical electronic digi-
tal computer (see Eckert, J. Presper and Mauchly, John)
another American inventor built a smaller machine on
somewhat different principles that also has a claim to being
“first” (see Atanasoff, John). Least known of all is Konrad
Zuse, perhaps because he did most of his work in a nation
that was plunging the world into war.

Zuse was born on June 22, 1910, in Berlin. He stud-
ied civil engineering at the Technische Hochschule Berlin-
Charlottenburg, receiving his degree in 1935. One of his
tasks in engineering was performing calculations of the
stress on structures such as bridges. At the time these cal-
culations were carried out by going through a series of steps
on a form over and over again, plugging in the data and
calculating by hand or using an electromechanical calcula-
tor. Like other inventors before him, Zuse began to wonder
whether he could build a machine that could carry out
these repetitive steps automatically.

Zuse was unaware of the nearly forgotten work of
Charles Babbage and that of other inventors in America
and Britain who were beginning to think along the same
lines (see Babbage, Charles). With financial help from his

parents (and the loan of their living room), Zuse began to
assemble his first machine from scrounged parts. His first
machine, the Z1, was completed in 1938. The machine used
slotted metal plates with holes and pins that could slide to
carry out binary addition and other operations (in using
the simpler binary system rather than decimal, Zuse was
departing from other calculator designers).

The Z1 had trouble storing and retrieving numbers and
never worked well. Undeterred, Zuse began to develop a
new machine that used electromechanical telephone relays
(a ubiquitous component that was also favored by Howard
Aiken [see Aiken, Howard]). The new machine worked
much better, and Zuse successfully demonstrated it at the
German Aerodynamics Research Institute in 1939.

With World War II under way, Zuse was able to obtain
funding for his Z3, which was able to carry out automatic
sequences from instructions (Zuse used discarded movie
film instead of punched tape). The machine used 22-bit
words and had 600 relays in the calculating unit and
1,800 for the memory. However, the machine could not do
branching or looping the way modern computers can. It
was destroyed in a bombing raid in 1944. Meanwhile, Zuse
used spare time from his military duties at the Henschel
aircraft company to work on the Z4, which was completed
in 1949. This machine was more fully programmable and
was comparable to Howard Aiken’s Mark I.

By that time, however, Zuse’s electromechanical technol-
ogy had been surpassed by the fully electronic vacuum tube
computers such as the ENIAC and its successors. (Zuse had
considered vacuum tubes but had rejected them, believ-
ing that their inherent unreliability and the large numbers

Z

needed would make them impracticable for a large-scale
machine.) During the 1950s and 1960s, Zuse ran a com-
puter company, ZUSE KG, which eventually produced elec-
tronic vacuum tube computers.

Zuse’s most interesting contribution to computer science
would not be his hardware but a programming language
called Plankalkül or “programming calculus.” Although the
language was never implemented, it was far in advance of
its time in many ways. It started with the radically simple
concept of grouping individual bits to form whatever data
structures were desired. It also included program modules
that could operate on input variables and store their results
in output variables (see procedures and functions). Pro-
grams were written using a notation similar to mathemati-
cal matrices.

Zuse labored in obscurity even within the computer sci-
ence fraternity. However, toward the end of his life his work
began to be publicized. He received numerous honorary
degrees from European universities as well as awards and
memberships in scientific and engineering academies. Zuse
also took up abstract painting in his later years. He died on
December 18, 1995.

Further Reading
Bauer, F. L., and H. Wössner. “The Plankalkül of Konrad Zuse: A

Forerunner of Today’s Programming Languages.” Communi-
cations of the ACM, vol. 15, 1972, 678–685.

Lee, J. A. N. Computer Pioneers. Los Alamitos, Calif.: IEEE Com-
puter Society Press, 1995.

Zuse, Konrad. The Computer—My Life. New York: Springer-Verlag,
1993.

526        Zuse, Konrad

527

The following selections provide reference material and
resources to supplement the Further Reading selections at
the conclusion of the majority of entries in this book.

Print Resources

2008 Software Industry Directory. Greenwood Village, Colo.:
Webcom Communications, 2007.

Bidgoli, Hassan, ed. The Internet Encyclopedia. New York: Wiley,
2003.

Cortada, James W. Historical Dictionary of Data Processing. 3
vols. New York: Greenwood Press, 1987.

Daintith, John, and Edmund Wright. The Facts On File Diction-
ary of Computer Science. Rev. ed. New York: Facts On File,
2006.

De Palma, Paul, ed. Annual Editions: Computers in Society 08/09.
Guilford, Conn.: McGraw-Hill/Dushkin, 2007.

Downing, Douglas, Michael Covington, and Melody Mauldin
Covington. Dictionary of Computer and Internet Terms. 9th
ed. Hauppauge, N.Y.: Barron’s, 2006.

Hackett, Edward J. et al., eds. The Handbook of Science and Tech-
nology Studies. 3rd ed. Cambridge, Mass.: MIT Press, 2007.

Henderson, Harry. A to Z of Computer Scientists. New York: Facts
On File, 2003.

Knee, Michael. Computer Science and Computing: A Guide to the
Literature. Greenwich, Colo.: Libraries Unlimited, 2005.

Lee, John A. N. International Biographical Dictionary of Com-
puter Pioneers. New York: Routledge, 1995.

Lubar, Stephen. InfoCulture: The Smithsonian Book of Information
Age Inventions. Boston: Houghton Mifflin, 1993.

McGraw-Hill Encyclopedia of Science & Technology. 10th ed. New
York: McGraw-Hill, 2007.

Sun Technical Publications. Read Me First!: A Style Guide for the
Computer Industry. 2nd ed. Upper Saddle River, N.J.: Pren-
tice Hall, 2003.

Web Resources

About.com. “Computing and Technology.” Available online.
URL: http://about.com/compute/. Accessed December 6,
2007.

Academic Info: Computer Science & Computer Engineer-
ing. Available online. URL: http://www.academicinfo.net/
compsci.html. Accessed December 6, 2007.

ACM Computing Reviews. Available online. URL: http://www.
reviews.com/home.cfm. Accessed December 6, 2007.

ACM Digital Library. Available online. URL: http://portal.acm.
org/dl.cfm. Accessed December 6, 2007.

ACM Tech. News. Available online. URL: http://technews.acm.
org/current.cfm. Accessed December 7, 2007.

Ars Technica. Available online. URL: http://arstechnica.com/.
Accessed December 6, 2007.

ClickZ Stats. Available online. URL: http://www.clickz.com/
stats/. Accessed December 6, 2007.

Cnet. Available online. URL: http://www.cnet.com. Accessed
December 6, 2007.

Collection of Computer Science Bibliographies. Available online.
URL: http://liinwww.ira.uka.de/bibliography/. Accessed
December 7, 2007.

Computer Dictionaries, Acronyms, and Glossaries. Available
online. URL: http://www.compinfo-center.com/tpdict-t.htm.
Accessed December 6, 2007.

Computer History Museum. Available online. URL: http://www.
computerhistory.org/. Accessed December 6, 2007.

Connected: An Internet Encyclopedia. Available online. URL:
http://freesoft.org/CIE/. Accessed December 7, 2007.

FOLDOC (Free On-Line Dictionary of Computing). Available
online. URL: http://foldoc.org/. Accessed December 7,
2007.

How Stuff Works. Available online. URL: http://www.howstuff-
works.com/. Accessed December 6, 2007.

IDG (International Data Group). Available online. URL: http://
www.idg.net/. Accessed December 7, 2007.

IEEE Annals of the History of Computing. Available online.
URL: http://www.computer.org/annals/. Accessed Decem-
ber 6, 2007.

InfoWorld. Available online. URL: http://www.infoworld.com.
Accessed December 6, 2007.

Internet News. Available online. URL: http://www.internetnews.
com/. Accessed December 6, 2007.

Pew/Internet. Available online. URL: http://www.pewinternet.
org. Accessed December 6, 2007.

Appendix I
Bibliographies and Web Resources

Red Herring: The Business of Technology. Available online. URL:
http://www.redherring.com/pages/pagenotfound/. Accessed
December 7, 2007.

Slashdot. Available online. URL: http://slashdot.org. Accessed
December 6, 2007.

Smithsonian Institution. Science and Technology Division,
Information Technology. Available online. URL: http://
www.si.edu/Encyclopedia_SI/science_and_technology/
Information_Technology.htm. Accessed December 6, 2007.

Webopedia. Available online. URL: http://www.webopedia.com/.
Accessed December 6, 2007.

Wikipedia. Available online. URL: http://en.wikipedia.org.

Accessed December 6, 2007.

Yahoo! Finance. Available online. URL: http://biz.yahoo.com.

Accessed December 7, 2007.

Yahoo! Science: Computer Science. Available online. URL:

http://dir.yahoo.com/Science/Computer_Science/. Accessed

December 6, 2007.

ZDNet. Available online. URL: http://www.zdnet.com. Accessed

December 7, 2007.

528        Appendix I

529

The following chronology lists some significant events in the
history of computing. Although the first calculators (i.e.,
the abacus) were known in ancient times, the chronology
begins with the development of modern mathematics and the
first calculators in the 17th century.

1617

John Napier published an explanation of “Napier’s bones,”
a manual aid to calculation based on logarithms, and the
ancestor to the slide rule.

1624

William Schickard invented a mechanical calculator that
can perform automatic carrying during addition and sub-
traction. It can also multiply and divide by repeated addi-
tions or subtractions.

1642

Blaise Pascal invented a calculator that he calls the Pas-
caline. Its improved carry mechanism used a weight to allow
it to carry several places. A small batch of the machines was
made, but it did not see widespread use.

1673

Gottfried Wilhelm Leibniz (co-inventor with Isaac Newton
of the calculus) invented a calculator called the Leibniz
Wheel. He also wrote about the binary number system that
eventually became the basis for modern computation.

1786

J. H. Muller invented a “difference engine,” a machine that
can solve polynomials by repeated addition or subtraction.

1822

Charles Babbage designed and partially built a much more
elaborate difference engine.

1832

Babbage sketched out a detailed design for the Analytical
Machine. This machine was to have been programmed by
punched cards, storing data in a mechanical memory, and

•

•

•

•

•

•

•

even including a printer. Although it was not built during
his lifetime, Babbage’s machine embodied most of the con-
cepts used in modern computers.

1843

Ada Lovelace provided extensive commentary on a book by
Babbage’s Italian supporter Menabrea. Besides being the
first technical writer, Lovelace also wrote what might be
considered the world’s first computer program.

1844

Samuel Morse demonstrated the electromagnetic telegraph
by sending a message from Washington to Baltimore. The
telegraph inaugurated both electric data transmission and
the use of a binary character code (dots and dashes).

1850

Amedee Mannheim created the first modern slide rule. It
will become an essential accessory for engineers and scien-
tists until the inexpensive electronic calculator arrived in
the 1970s.

1854

George Boole’s book The Laws of Thought described what is
now called Boolean algebra. Boolean operators are essen-
tial for the branching statements and loops that control
the operation of computer programs.

1884

W. S. Burroughs marketed his first adding machine, begin-
ning what will become an important calculator (and later,
computer) business.

1890

Herman Hollerith’s punched card tabulator enabled
the U.S. government to complete the 1890 census in record
time.

1896

Hollerith founded the Tabulating Machine Company,
which will become the Computing, Tabulating, and Record-

•

•

•

•

•

•

•

Appendix II
A Chronology of Computing

530        Appendix II

ing company (CTR) in 1911. In 1924, it will become Interna-
tional Business Machines (IBM).

1904

J. A. Fleming invented the diode vacuum tube. Together with
Lee de Forest’s invention of the triode two years later, this
development defined the beginnings of electronics, offering a
switching mechanism much faster than mechanical relays.

1919

The “flip-flop” circuit was invented by two American physi-
cists, W. H. Eccles and R. W. Jordan. The ability of the cir-
cuit to switch smoothly between two (binary) states would
form the basis for computer arithmetic logic units.

1921

Karl Capek’s play R.U.R. introduced the term robot. Robots
will become a staple of science fiction “pulps” starting in the
1930s.

1930

Vannevar Bush’s elaborate analog computer, the Differen-
tial Analyzer, went into service.

1936

Alonzo Church developed the lambda calculus, which can
be used to demonstrate the computability of mathematical
problems.

Konrad Zuse built his first computer, a mechanical machine
based on the binary system.

1937

Alan Turing provided an alternative (an equivalent) demon-
stration of computability through his Turing Machine, an
imaginary computer that can reduce any computable prob-
lem to a series of simple operations performed on an endless
tape.

Bell Laboratories mathematician George Stibitz created
the first circuit that could perform addition by combining
Boolean operators.

1938

In a key development in robotics, Doug T. Ross, an Ameri-
can engineer, created a robot that can store its experience in
memory and “learn” to navigate a maze.

G. A. Philbrick developed an electronic version of the ana-
log computer.

Working in a garage near Stanford University, William
Hewlett and David Packard began to build audio oscillators.
They called their business the Hewlett-Packard Company.
Fifty years later, the garage would be preserved as a histori-
cal landmark.

1939

John Atanasoff and Clifford Berry built a small electronic
binary computer called the Atanasoff-Berry Computer
(ABC). A 1973, court decision would give this machine pre-
cedence over ENIAC as the first electronic digital computer.

•

•

•

•

•

•

•

•

•

•

•

•

George Stibitz built the Complex Number Calculator, which
is controlled by a keyboard and uses relays.

1940

Claude Shannon introduced the fundamental concepts of
data communications theory.

George Stibitz demonstrated remote computing by control-
ling his Complex Number Calculator in New York from a
Teletype terminal at Dartmouth College in New Hamp-
shire.

1941

Working in isolation in wartime Germany, Konrad Zuse
completed the Z3. Although still mechanical rather than
electronic, the machine used sophisticated floating-point
numeric data.

1943

The British-built Colossus, an electronic (vacuum tube) spe-
cial-purpose computer that can rapidly analyze permuta-
tions to crack the German Enigma cipher.

1944

Howard Aiken completed the Harvard Mark I, a large pro-
grammable calculator (or computer) using electromechani-
cal relays.

John von Neumann and Stanislaw Ulam developed the
Monte Carlo method of probabilistic simulation, a tool
that would find widespread use as computer power becomes
available.

1945

Zuse continued computer development and created a
sophisticated matrix-based programming language called
Plankalkül.

Vannevar Bush envisioned hypertext and knowledge link-
ing and retrieval in his article “As We May Think.”

Alan Turing developed the concept of using procedures
and functions (subroutines) called with parameters. His
team also developed the Pilot ACE (Automatic Comput-
ing Engine), which would help the development of a British
computer industry.

1946

ENIAC went into service. Developed by J. Presper Eckert
and John Mauchly, the machine is widely considered to
be the first large-scale electronic digital computer. It used
18,000 vacuum tubes.

In the “Princeton Reports” based upon the ENIAC work, John
von Neumann, together with Arthur W. Burks and Herman
Goldstine described the fundamental operations of modern
computers including the stored program concept—the hold-
ing of all program instructions in memory, where they can be
referred to repeatedly and even manipulated like other data.

1947

The Association for Computing Machinery (ACM) was
founded.

•

•

•

•

•

•

•

•

•

•

•

•

•

Appendix II        531

Eckert and Mauchly formed the Eckert-Mauchly Corpo-
ration for commercial marketing of computers based on the
ENIAC design.

John von Neumann began development of the EDVAC
(Electronic Discrete Variable Automatic Calculator) for
the U.S. government’s Ballistic Research Laboratory. This
machine, completed in 1952, would be the first to use pro-
grams completely stored in memory and able to be changed
without physically changing the hardware.

Richard Hamming developed error correction algorithms.

Alan Turing’s paper on “Intelligent Machinery” began lay-
ing the groundwork for artificial intelligence research.

In Britain, Manchester University built the first electronic
computer that can store a full program in memory. It was
called “baby” because it was a small test version of a planned
larger machine. For its main memory it used a CRT-like tube
invented by F. C. Williams.

IBM under Thomas J. Watson, Sr. decided to enter the new
computer field in a big way by beginning to develop the
Selective Sequence Electronic Calculator (SSEC) as a com-
petitor to ENIAC and the Harvard Mark I. The huge machine
used thousands of both vacuum tubes and relays.

Tom Kilburn and M. H. A. Newman invented the index reg-
ister, which would be used to keep track of the current loca-
tion in memory of instructions or data.

The transistor was invented at Bell Labs by John Bard-
een, Walter Brattain, and William Shockley. The solid-state
device could potentially replicate all the functionality of the
vacuum tube with much less size and power consumption.
It would be some time before it was inexpensive enough to
be used in computers, however.

Norbert Wiener coined the term cybernetics to refer to con-
trol and feedback systems.

Claude Shannon formally introduced statistical informa-
tion theory.

1949

The Cambridge EDSAC demonstrated versatile stored-pro-
gram computing. Meanwhile, Eckert and Mauchly work
on BINAC, a successor/spinoff of ENIAC for Northrop Air-
craft Corporation.

Frank Rosenblatt developed the perceptron, the first form of
neural network, for solving pattern-matching problems.

An Wang patented “core memory,” using an array of magne-
tized rings and wires, which would become the main mem-
ory (RAM) for many mainframes in the 1950s.

1950

Alan Turing proposed the Turing Test as a way to demon-
strate artificial intelligence.

Development began of the high-speed computers Whirlwind
and SAGE for the U.S. military. The military also began to
use computers to run war games or simulations.

Claude Shannon outlined the algorithms for a chess-play-
ing program that could evaluate positions and perform heu-
ristic calculations. He would build a chess-playing computer
called Caissac.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Japan began development of electronic computers under the
leadership of Hideo Yamashita, who would build the Tokyo
Automatic Calculator.

Approximately 60 electronic or electromechanical comput-
ers were in operation worldwide. Each was built “by hand”
as there were no production models yet.

1951

Eckert and Mauchly marketed Univac I, generally consid-
ered the first commercial computer (although the Ferranti
Mark I is sometimes given co-honors).

An Wang founded Wang Laboratories, which would become
a major computer manufacturer through the 1970s.

Grace Hopper at Remington Rand coined the word com-
piler and began developing automatic systems for creating
machine codes from higher-level instructions.

1952

Alick Glennie developed autocode, generally considered to
be the first true high-level programming language.

Magnetic core memory began to come into use.

election night a Univac I predicted that Dwight D. Eisen-
hower would win the 1952 U.S. presidential election. It
made its prediction an hour after the polls closed, but its
findings were not released at first because news analysts
insisted the race was closer.

MANIAC was On developed to do secret nuclear research in
Los Alamos.

The IBM 701 went into production. It was one of the first
computers to use magnetic tape drives as primary means
of data storage.

IBM was accused of violating the Sherman Antitrust Act
in its computer business. Litigation in one form or another
would drag on until 1982.

John von Neumann described self-reproducing automata.

The symbolic assembler was introduced by Nathaniel
Rochester.

IBM and Remington Rand (Univac) dominated the young
computer industry.

1954

The ibm 650 was marketed. It was the first truly mass-pro-
duced computer, and relatively affordable by businesses and
industries. It used a magnetic drum memory.

In Britain, the Lyons Electronic Office (LEO) became the
first integrated computer system for use for business appli-
cations, primarily accounting and payroll.

1955

Grace Hopper created Flow-matic, the first high-level lan-
guage designed for business applications of computers.

The Computer Usage Company (CUC) was founded by John
W. Sheldon and Elmer C. Kubie. It is considered to be the
first company devoted entirely to developing computer soft-
ware rather than hardware.

Bendix marketed the G-15, its competitor to the IBM 650 in
the “small” business computer market.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

532        Appendix II

Users of the new IBM 704 mainframe, frustrated at the
lack of technical supported, formed the first computer user
group, called SHARE.
The large ibm 705 mainframe is marketed by IBM. It uses
magnetic core memory.

1956

The IBM 704 and Univac 1103 introduced a new generation
of commercial mainframes with magnetic core storage.
John McCarthy coined the term artificial intelligence,
or AI.
The Dartmouth AI conference brought together leading
researchers such as McCarthy, Marvin Minsky, Herbert
Simon, and Allen Newell. It would set the agenda for the field.
Newell, Shaw, and Simon developed Logic Theorist, the first
program that can prove theorems.
A. I. Dumey described hashing, a procedure for quickly
sorting or retrieving data by assigning calculated values.
The infant transistor industry began to grow as companies
such as IBM began to build transistorized calculators.
IBM signed a consent decree ending the 1952 antitrust com-
plaint by restricting some of its business practices in selling
mainframe computers.

1957

John Backus and his team released fortran, which would
become the most widely used language for scientific com-
puting applications.
Digital Equipment Corporation (DEC) was founded by Ken
Olsen and Harlan Anderson. The company’s agenda involved
the development of a new class of smaller computer, the
minicomputer.
Minicomputer development would be inspired by the MIT
TX-0 computer. While not yet a “mini,” the machine was the
first fully transistorized computer.
The hard drive came into service in ibm’s 305 RAMAC.
IBM developed the first dot matrix printer.

1958

The I/O interrupt used by devices to signal their needs to
the CPU was developed by ibm. It would be used later in
personal computers.
China began to build computers based on Soviet designs,
which in turn had been based upon American and British
machines.
Sperry Rand introduced the Univac II, a huge, powerful,
and surprisingly reliable computer that used 5,200 vacuum
tubes, 18,000 crystal diodes, and 184,000 magnetic cores.
Jack Kilby of Texas Instruments built the first integrated
circuit, fitting five components onto a half-inch piece of ger-
manium.
As the cold war continued, the U.S. Air Force brought SAGE
on-line. This integrated air defense system featured real-
time processing and graphics displays.

1959

John McCarthy developed Lisp, a language based on
Alonzo Church’s lambda calculus and including extensive

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

facilities for list processing. It would become the favorite
language for artificial intelligence research.

cobol was introduced, with much of the key work and
inspiration coming from Grace Hopper.

ibm marketed the 7090 mainframe, a large transistorized
machine that could perform 229,000 additions a second. The
smaller IBM 1401 would prove to be even more popular. IBM
also introduced a high-speed printer using type chains.

Robert Noyce of Fairchild Semiconductor built a different
type of integrated circuit, using aluminum traces and layers
deposited on a silicon substrate.

1960

Digital Equipment Corporation (DEC) marketed the PDP-1,
generally considered the first commercial minicomputer.

Control Data Corporation (CDC) impressed the industry
with its CDC 1604, designed by Seymour Cray. It offered
high speed at considerably lower prices than ibm and the
other major companies.

The Algol language demonstrated block structure for better
organization of programs. The report on the language intro-
duced BNF (Backus-Naur form) as a systematic descrip-
tion of computer language grammar.

Donald Blitzer introduced PLATO, the first large-scale
interactive computer-aided instruction system. It would
later be marketed extensively by Control Data Corporation
(CDC).

Paul Baran of RAND developed the idea of packet-switching to
allow for decentralized information networks; the idea would
soon attract the attention of the U.S. Defense Department.

In an advance in practical robotics, the remote-operated
“Handyman” robot arm and hand was put to work in a
nuclear power plant.

The U.S. Navy began to develop the Naval Tactical Data
System (NTDS) to track targets and the status of ships in a
combat zone.

1961

Time-sharing computer systems came into use at MIT and
other facilities. Among other things, they encouraged the
efforts of the first hackers to find clever things to do with
the computers.

Leonard Kleinrock’s paper “Information Flow in Large Com-
munication Nets” was the first description of the packet-
switching message transfer system that would underlie the
Internet.

Arthur Samuel’s ongoing research into computer games
design culminated in his checkers program reaching mas-
ter level. The program includes learning algorithms that can
improve its play.

The ibm STRETCH (IBM 7030) is installed at Los Alamos
National Laboratory. Its advanced “pipeline” architecture
allowed new instructions to begin to be processed while
preceding ones were being finished. It and Univac’s LARC
are sometimes considered to be the first supercomputers.

IBM made a major move into scientific computing with
its modular 7040 and 7044 computers, which can be used

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Appendix II        533

together with the 1401 to build a “scalable” installation for
tackling complex problems.

Unimation introduced the industrial robot (the Unimate).

Fairchild Semiconductor marketed the first commercial
integrated circuit.

1962

The discipline of computer science began to emerge
with the first departments established at Purdue and Stan-
ford.

MIT students created Spacewar, the first video computer
game, on the PDP-1.

On a more practical level, MIT programmers Richard Green-
blatt and D. Murphy develop TECO, one of the first text
editors.

J. C. R. Licklider described the “Intergalactic Network,”
a universal information exchange system that would help
inspire the development of the Internet.

Douglas Engelbart invented the computer mouse at SRI.

IBM developed the SABRE online ticket reservation system
for American Airlines. The system will soon be adopted
by other carriers and demonstrate the use of networked
computer systems to facilitate commerce. Meanwhile, ibm
earned $1 billion from its computer business, which by then
had overtaken its traditional office machines as the compa-
ny’s leading source of revenue.

1963

Joseph Weizenbaum’s Eliza program carried on natural-
sounding conversations in the manner of a psychotherapist.

Ivan Sutherland developed Sketchpad, the first computer
drawing system.

Reliable Metal Oxide Semiconductor (MOS) integrated cir-
cuits were perfected, and would become the basis for many
electronic devices in years to come, including computers for
space exploration.

1964

The ibm System/360 was announced. It would become the
most successful mainframe in history, with its successors
dominating business computing for the next two decades.

IBM introduced the MT/ST (Magnetic Tape/Selectric Type-
writer), considered to be the first dedicated word pro-
cessing system. While rudimentary, it allowed text to be
corrected before printing.

Seymour Cray’s Control Data CDC 6600 is announced.
When completed, it ran about three times faster than IBM’s
STRETCH, irritating Thomas Watson, head of the far larger
IBM.

J. Kemeny and T. Kurtz developed basic to allow students to
program on the Dartmouth time-sharing system.

At the other end of the scale, IBM introduced the complex,
feature-filled PL/1 (Programming Language 1) for use with
its System/360.

The American National Standards Institute (ANSI) officially
adopted the ASCII (American Standard Code for Informa-
tion Interchange) character code.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Paul Baran of SRI wrote a paper, “On Distributed Commu-
nication Networks,” further describing the implementation
of packet-switched network that could route around disrup-
tions. The work began to attract the attention of military
planners concerned with air defense and missile control sys-
tems surviving nuclear attack.

Jean Sammet and her colleagues developed the first com-
puter program that can do algebra.

Gordon Moore (a founder of Fairchild Semiconductor and
later, of Intel Corporation) stated that the power of CPUs
would continue to double every 18 to 24 months. “Moore’s
law” proved to be remarkably accurate.

1965

ibm introduced the floppy disk (or diskette) for use with its
mainframes.

Edsgar Dijkstra devised the semaphore, a variable that two
processes can use to synchronize their operations and aid-
ing the development of concurrent programming.

The APL language developed by Kenneth Iverson provided
a powerful, compact, but perhaps cryptic way to formulate
calculations.

The Simula language introduced what will become known
as object-oriented programming.

The DEC PDP-8 became the first mass-produced minicom-
puter, with over 50,000 systems being sold. The machine
brings computing power to thousands of universities,
research labs, and businesses that could not afford main-
frames. Designed by Edson deCastro and engineered by Gor-
don Bell, the PDP-8 design marked an important milestone
on the road to the desktop PC.

NASA uses an IBM onboard computer to guide Gemini
astronauts in their first rendezvous in space.

The potential of the expert system was demonstrated by
Dendral, a specialized medical diagnostic program that
began development by Edward Feigenbaum, Joshua Leder-
berg, and Bruce Buchanan.

The U.S. Defense Department’s ARPA (Advanced Research
Projects Agency) sponsored a study of a “co-operative net-
work of time-sharing computers.” A testbed network was
begun by connecting a TX-2 minicomputer at MIT via phone
line to a computer at System Development Corporation in
Santa Monica, California.

Ted Nelson’s influential vision of universal knowledge shar-
ing through computers introduced the term hypertext.

1966

In the first federal case involving computer crime (U.S. v.
Bennett), a bank programmer is convicted of altering a bank
program to allow him to overdraw his account.

The first ACM Turing Award is given to Alan Perlis.

The New York Stock Exchange automated much of its trad-
ing operations.

1967

The memory cache (a small amount of fast memory used
for instructions or data that are likely to be needed) was
introduced in the IBM 360/85 series.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

534        Appendix II

ibm developed the first floppy disk drive.

Seymour Papert introduced Logo, a Lisp-like language that
would be used to teach children programming concepts
intuitively.

A chess program written by Richard Greenblatt of MIT,
Mac Hack IV, achieved the playing skill of a strong amateur
human player.

Fred Brooks did early experiments in computer-mediated
sense perception, laying groundwork for virtual reality.

1968

Edsger Dijkstra’s little letter entitled “GO TO Considered
Harmful” argued that the GOTO or “jump” statement made
programs hard to read and more prone to error. The result-
ing discussion gave impetus to the structured program-
ming movement. Another aspect of this movement was the
introduction of the term software engineering.
Robert Noyce, Andrew Grove, and Gordon Moore founded
Intel, the company that would come to dominate the
microprocessor industry by the early 1980s.

ibm introduced the System/3, a lower-cost computer system
designed for small businesses.

Bolt, Beranek and Newman (BBN) was awarded a govern-
ment contract to build “interface message processors” or
IMPs to translate data between computers linked over
packet-switched networks.

Alan Kay prototyped the Dynabook, a concept that led
toward both the portable computer and the graphical
user interface.

Stanley Kubrick’s movie 2001 introduced Hal 9000, the
self-aware (but paranoid) computer that kills members of a
deep-space exploration crew.

1969

Ken Thompson and Dennis Ritchie began work on the
unix operating system. It will feature a small kernel that
can be used with many different command shells, and will
eventually incorporate hundreds of utility programs that
can be linked to perform tasks.

Edgar F. Codd introduced the concept of the relational sys-
tem that would form the foundation for most modern data-
base management system.

ibm was sued by the U.S. Department of Justice for antitrust
violations. The voluminous case would finally be dropped in
1982. However, government pressure may have led the com-
puter giant to finally allow its users to buy software from
third parties, giving a major boost to the software industry.

ARPANET is officially launched. The first four nodes of the
ARPANET came online, prototyping what would eventually
become the Internet.

SRI researchers developed Shakey, the first mobile robot
that could “see” and respond to its environment. The actual
control computer was separate, however, and controlled the
robot through a radio link.

Neil Armstrong and Edwin Aldrin successfully made the
first human landing on the Moon, despite problems with the
onboard Apollo Guidance Computer.

The first automatic teller machine (ATM) was put in service.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1970

Gene Amdahl left ibm to found Amdahl Corporation, which
would compete with IBM in the mainframe “clone” market.

An Intel Corporation team led by Marcian E. Hoff began to
develop the Intel 4004 microprocessor.

Digital Equipment Corporation announced the PDP-11, the
beginning of a series of 16-bit minicomputers that will sup-
port time-sharing computing in many universities.

John Conway’s “Game of Life” popularized cellular
automata.

The ACM held its first all-computer chess tournament in
New York City. Northeastern University’s Chess 3.0 topped
the field of six programs competing.

Charles Moore began writing programs to demonstrate the
versatility of his programming language Forth.

Xerox Corporation established the Palo Alto Research Cen-
ter (PARC). This laboratory will create many innovations in
interactive computing and the graphical user interface.

1971

Niklaus Wirth formally announced Pascal, a small, well-
structured language that will become the most popular
language for teaching computer science for the next two
decades.

The IEEE Computer Society was founded.

The ibm System/370 series ushered in a new generation of
mainframes using densely packed integrated circuits for
both cpu and memory.

1972

Dennis Ritchie and Brian Kernighan developed c, a com-
pact language that would become a favorite for systems pro-
gramming, particularly in unix.

The creation of an e-mail program for the ARPANET
included the decision to use the at (@) key as part of e-mail
addresses.

Alan Kay developed Smalltalk, building upon SIMULA
to create a powerful, seamless object-oriented program-
ming language and operating system. The language would
eventually be influential although not widely used. Kay also
prototyped the Dynabook, a notebook computer, but Xerox
officials showed little interest.

Seymour Cray left CDC and founded Cray Research to
develop new supercomputer.

Intel introduced the 8008, the first commercially available
8-bit microprocessor.

The 5.25-inch diskette first appeared. It would become a
mainstay of personal computing until it was replaced by the
more compact 3.5-inch diskette in the 1990s.

Nolan Bushnell’s Atari Corp. had the first commercial com-
puter game hit, Pong. It and its beeping cousins would soon
become an inescapable part of every parent’s experience.

1973

Alain Colmerauer and Philippe Roussel at the University of
Marseilles developed Prolog (Programming in Logic), a
language that could be used to reason based upon a stored

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Appendix II        535

base of knowledge. The language would become popular for
expert systems development.

Bell Laboratories established a group to support and pro-
mulgate the unix operating system.

The Ethernet protocol for LANs (local area networks)
was developed by Robert Metcalfe.

In a San Francisco hotel lobby Vinton Cerf sketched the
architecture for an Internet gateway on a napkin.

Don Lancaster published his “TV Typewriter” design in
Radio Electronics. It would enable hobbyists to build displays
for the soon-to-be available microcomputer.

The Boston Computer Society (BCS) was founded. It became
one of the premier computer user groups.

Gary Kildall founded Digital Research, whose CP/M oper-
ating system would be an early leader in the microcom-
puter field.

A federal court declared that the Eckert-Mauchly ENIAC
patents were invalid because John Atanasoff had the same
ideas earlier in his ABC computer.

1974

The Alto graphical workstation was developed by Alan
Kay and others at Xerox PARC. It did not achieve commer-
cial success, but a decade later something very much like it
would appear in the form of the Apple Macintosh.

An international computer chess tournament is won by the
Russian KAISSA program, which crushed the American
favorite Chess 4.0.

Computerized product scanners were introduced in an Ohio
supermarket.

Intel released the 8080, a microprocessor that had 6,000
transistors, could execute 640,000 instructions per second,
was able to access 64 kB of memory, and ran at a clock rate
of 2 MHz.

David Ahl’s Creative Computing magazine began to offer an
emphasis on using small computers for education and other
human-centered tasks.

Vinton Cerf and Robert Kahn began to publicize their tcp/
ip internet protocol.

A group at the University of California, Berkeley, began to
develop their own version of the unix operating system.

The 1974 Privacy Act began the process of trying to protect
individual privacy in the digital age.

1975

Fred Brooks published the influential book The Mythical
Man-Month. It explained the factors that bog down soft-
ware development and focused more attention on software
engineering and its management.

Electronics hobbyists were intrigued by the announcement
of the MITS Altair, the first complete microcomputer sys-
tem available in the form of a kit. While the basic kit cost
only $395, the keyboard, display, and other peripherals were
extra.

MITS founder Ed Roberts also coined the term personal
computer. Hundreds of hobbyists built the kits and yearned
for more capable machines. Many hobbyists flocked to

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

meetings of the Homebrew Computer Club in Menlo Park,
California.

ibm introduced the first commercially available laser
printer. The very fast, heavy-duty machine was suitable
only for very large businesses.

The first ARPANET discussion mail list was created. The
most popular topic for early mail lists was science fiction.

In Los Angeles, Dick Heiser opened what is believed to be
the first retail store to sell computers to “ordinary people.”

1976

Seymour Cray’s sleek, monolithlike Cray 1 set a new stan-
dard for supercomputers.

Whitfield Diffie and Martin Hellman announced a public-
key encryption system that allowed users to securely send
information without previously exchanging keys.

ibm developed the first (relatively crude) inkjet printer for
printing address labels.

Shugart Associates offered a floppy disk drive to microcom-
puter builders. It cost $390.

Steve Wozniak proposed that Hewlett-Packard fund the cre-
ation of a personal computer, while his friend Steve Jobs
made a similar proposal to Atari Corp. Both proposals were
rejected, so the two friends started Apple Computer Com-
pany.

Chuck Peddle of MOS Technology developed the 6502
microprocessor, which would be used in the Apple, Atari,
and some other early personal computers.

Bill Gates complained about software piracy in his “Open
Letter to Hobbyists.” People were illicitly copying his BASIC
language tapes. copy protection would soon be used in an
attempt to prevent copying of commercial programs for per-
sonal computers.

Computer enthusiasts found an erudite forum in the
magazine Dr. Dobb’s Journal of Computer Calisthenics and
Orthodontia: Running Light without Overbyte. The more main-
stream Byte magazine also became a widely known forum
for describing new projects and selling components.

William Crowther and Don Woods at Stanford University
developed the first interactive computer game involving
an adventure with monsters and other obstacles. Univer-
sity administrators would soon complain that the game was
wasting too much computer time.

1977

Benoit Mandelbrot’s book on fractals in computing pop-
ularized a mathematical phenomenon that would find uses
in computer graphics, data compression, and other areas.

The Data encryption Standard (DES) was announced. Crit-
ics charged that it was too weak and probably already com-
promised by spy agencies.

Vinton Cerf demonstrated the versatility and extent of
the Internet Protocol (IP) by sending a message around the
world via radio, land line, and satellite links.

The Charles Babbage Institute was founded. It would
become an important resource for the study of computing
history.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

536        Appendix II

Bill Gates and Paul Allen found a tiny company called
Microsoft. Its first product was a basic interpreter for
the newly emerging personal computer systems.

Radio Shack began selling its TRS-80 Model 1 personal
computer.

The Apple II was released. It will become the most success-
ful of the early (pre-IBM) personal computers.

1978

Diablo Systems marketed the first daisy-wheel printer.

Atari announced its Atari 400 and Atari 800 personal com-
puters. They offered superior graphics (for the time).

Daniel Bricklin’s VisiCalc spreadsheet is announced. It will
become the first software “hit” for the Apple II, leading busi-
nesses to consider using personal computers.

Ward Christiansen and Randy Suess developed the first soft-
ware for bulletin board systems (BBS).

The first West Coast Computer Faire was organized in San
Francisco. The annual event became a showcase for inno-
vation and a meeting forum for the first decade of personal
computing.

The BSD (Berkeley Software Distribution) version of UNIX
was released by the group at the University of California,
Berkeley, under the leadership of Bill Joy.

The awk (named for Aho, Weinberger, and Kernighan)
scripting language appeared.

1979

medical applications of computing were highlighted
when Allan M. Cormack and Godfrey N. Hounsfield
received the Nobel Prize in medicine for the development of
computerized tomography (CAT), creating a revolutionary
way to examine the structure of the human body.

The Ashton-Tate company began to market dBase II, a data-
base management system that became the leader in per-
sonal computer databases during the coming decade.

Intel’s new 16-bit processors, the 8086 and 8088, began to
dominate the market.

Hayes marketed the first modem, and the CompuServe on-
line service and early bulletin boards gave a growing num-
ber of users something to connect to.

unix users Tom Truscott, Jim Ellis, and Steve Bellovin devel-
oped a program to exchange news in the form of files copied
between the Duke University and University of North Caro-
lina computer systems. This gradually grew into USENET
(or netnews), providing thousands of topical newsgroups.

The first networked computer fantasy game, MUD (Multi-
User Dungeon), was developed.

The first COMDEX was held in Las Vegas. It would become
the PC industry’s premier trade show.

Boston’s Computer Museum was founded. This perhaps sig-
naled the computing field’s consciousness of coming of age.

1980

Ada, a modular descendent of Pascal, was announced. The
language was part of efforts by the U.S. Defense Department
to modernize its software development process.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

RISC (reduced instruction set computer) microproces-
sor architecture was introduced.

Apple’s initial public offering of 4.6 million shares at $22
per share sold out immediately. It was the largest IPO since
that of Ford Motor Company in 1956. Apple founders, Steve
Jobs and Steve Wozniak, became the first multimillionaires
of the microcomputer generation.

XENIX, a version of unix for personal computers, was
offered. It met with limited success.

Shugart Associates announced a hard disk drive for per-
sonal computers. The disk stored a whopping 5 megabytes.

1981

The ibm PC was announced. Apple “welcomed” its competi-
tor in ads, but the IBM machine would soon surpass its com-
petitors as the personal computer of choice for business. Its
success is aided by a version of the VisiCalc spreadsheet
that sells more than 200,000 copies.

Osborne introduced the portable (sort of) computer, a
machine with the size and weight of a heavy suitcase.

Apple tried to market the Apple III as a more powerful desk-
top computer for business, but the machine was plagued
with technical problems and did not sell well.

Digital Equipment Corporation introduced its DECmate
dedicated word-processing system.

Xerox PARC displayed the Star, a successor to the Alto with
512 kB of RAM. It was intended for use in an Ethernet net-
work.

A network called BITNET (“Because It’s Time Network”)
began to link academic institutions worldwide.

Tracy Kidder’s best-selling The Soul of a New Machine
recounted the intense Silicon Valley working culture as seen
in the development of Data General’s latest workstation,
the Eclipse.

Japan announced a 10-year effort to create “Fifth Generation”
computing based on application of artificial intelligence.

1982

Sun Microsystems was founded. It would specialize in
high-performance workstations.

AT&T began marketing unix (System III) as a commercial
product.

Compaq became one of the most successful makers of
“clones” or ibm PC-compatible computers, introducing a
portable (luggable) machine.

The AutoCad program brought CAD (computer-aided
design and manufacturing) to the desktop.

The Time magazine “man of the year” was not a person at
all—it was the personal computer!

1983

Business use of personal computers continued to grow.
word processing leaders WordStar and WordPerfect were
joined by the first version of Microsoft Word. Lotus 1-2-3
became the new spreadsheet leader.

Borland International introduced Turbo Pascal, a speedy, easy
to use programming environment for personal computers.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Appendix II        537

An industry pundit introduced the term vaporware to refer
to much-hyped but never-released software, such as a prod-
uct called Ovation for ibm PCs.

IBM tried to market the PC Jr., a less-expensive PC for home
and school users. It failed to gain a foothold in the market.

More successfully, IBM offered the PC XT, the first per-
sonal computer that had a built-in hard drive.

Radio Shack introduced the Model 100, the first practical
notebook computer.

Apple introduced the Lisa, a $10,000 computer with a
graphical user interface. Its high price and slow perfor-
mance made it a flop, but its ideas would be more success-
fully implemented the following year in the Macintosh.

John Sculley became president of Apple Computer, begin-
ning a bitter struggle with Apple cofounder Steve Jobs.

Richard Stallman began the GNU (GNU’s not UNIX) proj-
ect to create a version of UNIX that would not be subject to
AT&T licensing.

The movie War Games portrayed teenage hackers taking
control of nuclear missile facilities.

1984

A classic Super Bowl commercial introduced the Apple
Macintosh, the computer “for the rest of us.” Based largely
on Alan Kay’s earlier work at Xerox PARC, the “Mac” used
menus, icons, and a mouse instead of the cryptic text com-
mands required by MS-DOS.

Meanwhile, IBM introduced a more powerful personal com-
puter, the PC/AT with the Intel 80286 chip.

Steve Jobs leaves Apple Computer to found a company called
NeXT.

Microsoft CEO Bill Gates was featured on a Time maga-
zine cover.

The domain name system began. It allows Internet users
to connect to remote machines by name without having to
specify an exact network path.

British institutions develop JANET, the Joint Academic
Network.

Science fiction writer William Gibson coined the word
cyberspace in his novel Neuromancer. It began a new SF
genre called cyberpunk, featuring a harsh, violent, immer-
sive high-tech world.

1985

Desktop publishing was fueled by several developments
including John Warnock’s PostScript page description lan-
guage and the Aldus PageMaker page layout program. The
Macintosh’s graphical interface gave it the early lead in this
application.

Microsoft Windows 1.0 was released, using many of the
same features as the Macintosh, although not nearly as
well.

There was increasing effort to unify the two versions of
unix (AT&T and BSD), with guidelines including the Sys-
tem V Interface Standard and POSIX.

Commodore introduces the Amiga, a machine with a sophis-
ticated operating system and powerful color graphics. The

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

machine had many die-hard fans but ultimately could not
survive in the marketplace.

ibm marketed the IBM 3090, a large, powerful mainframe
that cost $9.3 million.

The Cray 2 supercomputer broke the 1-billion-instruc-
tions-a-second barrier.

A conferencing system called the Whole Earth ‘Lectronic
Link (WELL) was founded. Its earliest users are largely
drawn from Grateful Dead fans and assorted techies.

1986

The National Science Foundation funded NSFNET, which
provides high-speed Internet connections to link universi-
ties and research institutions.

Borland released a PROLOG compiler, making the artifi-
cial intelligence language accessible to PC users. A PC
version of Smalltalk also appeared from another company.

Apple beefed up the relatively anemic Macintosh with the
Macintosh Plus, which has more memory.

1987

Bjarne Stroustrup’s C++ language offered object-oriented
programming in a form that was palatable to the legions of
C programmers. The language would surpass its predecessor
in the coming decade.

Sun marked its first workstation based on RISC (reduced
instruction set computing) technology.

Apple sold its one millionth Macintosh. Apple also brought
out a new line of Macs (the Macintosh SE and Macintosh II)
that, unlike the original Macs, were expandable by plugging
in cards.

Apple also introduced Hypercard, a simple hypertext
authoring system that became popular with educators.

ibm introduced a new line of personal computers called the
PS/2. It featured a more efficient BUS called the Microchan-
nel and some other innovations, but it sold only modestly.
Most of the industry continued to further develop standards
based upon the IBM PC AT.

The Thinking Machines Corporation’s Connection Machine
introduced massive parallel processing. It contained 64,000
microprocessors that could collectively perform 2 billion
instructions per second.

1988

Robert Morris Jr.’s “worm” accidentally ran out of control on
the Internet, bringing concerns about computer crime
and security to public attention. The Computer Emergency
Response Team (CERT) was formed in response.

Wolfram’s Mathematica program was a milestone in math-
ematical computing, allowing users to not merely calculate
but also to solve symbolic equations automatically.

Cray introduced the Cray Y-MP supercomputer. It could
process 2 billion operations per second.

ibm announced a new midrange mainframe, the AS/400.

Sandia National Laboratory began to build a massively par-
allel “hypercomputer” that would have 1,024 processors
working in tandem.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

538        Appendix II

A consortium called the Open Software Foundation was
established to promote open source shared software devel-
opment.

1989

The Internet now had more than 100,000 host computers.

Deep Thought defeated Danish chess grandmaster Bent
Larsen, marking the first time a grandmaster had been
defeated by a computer.

Intel announced the 80486 CPU, a chip with over a million
transistors.

Astronomer Clifford Stoll’s book The Cuckoo’s Egg
recounted his pursuit of German hackers who were seeking
military secrets. Stoll soon became a well-known critic of
computer technology and the Internet.

The ARPANET officially ends, having been succeeded by the
NSFNET.

1990

Microsoft Windows became truly successful with version
3.0, diminishing the user interface advantages of the Macin-
tosh.

At Sun Microsystems, James Gosling developed the Oak lan-
guage to control embedded systems. After the original proj-
ect was canceled, Gosling redesigned the language as Java.

ibm announced the System/390 mainframe.

ibm and Microsoft developed OS/2, an operating system
intended to replace MS-DOS. Microsoft withdrew in favor of
Windows, and despite considerable technical merits, OS/2
never really takes hold.

Secret Service agents raided computer systems and bulletin
boards, seeking evidence of illegal copying of a BellSouth
manual, disrupting an innocent game company. In response,
Mitch Kapor founded the Electronic Frontier Foundation
to advocate for civil liberties of computer users. Another
group, the Computer Professionals for Social Responsibility,
filed a Freedom of Information Act (FOIA) request for FBI
records involving alleged government surveillance of bulle-
tin board systems.

1991

The Science Museum in London exhibited a reconstruction
of Charles Babbage’s never-built difference engine.

A Finnish student named Linus Torvalds found that he
couldn’t afford a unix license, so he wrote his own unix
kernel and combined it with GNU utilities. The result
would eventually become the popular Linux operating
system.

Developers at the University of Minnesota created Gopher,
a system for providing documents over the Internet using
linked menus. However, it was soon to be surpassed by the
World Wide Web, created by Tim Berners-Lee at the
CERN physics laboratory in Geneva, Switzerland.

Advanced Micro Devices began to compete with Intel by
making IBM PC-compatible CPU chips.

Apple and ibm signed a joint agreement to develop technol-
ogy in areas that include object-oriented operating sys-

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

tems, multimedia, and interoperability between Macintosh
and IBM networks.

1992

Reports of the Michelangelo computer virus frightened
computer users. Although the virus did little damage, it
spurred more users to practice “safe computing” and install
antivirus software.

Motorola announced the Power PC, a 32-bit RISC micro-
processor that contains 28 million transistors.

An estimated 1 million host computers were on the Inter-
net. The Internet Society is founded to serve as a coordina-
tor of future development of the network.

1993

Apple’s Newton handheld computer created a new cat-
egory of machine called the pda, or personal digital assis-
tant.

Microsoft Windows NT was announced. It is a version of
the operating system designed especially for network serv-
ers.

Steve Jobs announced that his NeXT company would
abandon its hardware efforts and concentrate on market-
ing its innovative operating system and development
software.

Leonard Adleman demonstrated molecular computing by
using DNA molecules to solve the Traveling Salesman prob-
lem.

The Cray 3 supercomputer continued the evolution of that
line. It could be scaled up to a 16-processor system.

The Mosaic graphical Web browser popularized the World
Wide Web.

The Clinton administration announced plans to develop a
national “Information Superhighway” based on the Inter-
net. Volunteer “Net Day” programs would begin to connect
schools to the network.

The White House established its Web site, www.whitehouse.
gov.

1994

Mosaic’s developer, Marc Andreessen, left NCSA and joined
Jim Clark to found Netscape. Netscape soon released an
improved browser called Netscape Navigator.

Apple announced that it would license the Mac operating
system to other companies to make Macintosh “clones.”
Few companies would take them up on it, and Apple would
soon withdraw the licensing offer.

Intel Corporation was forced to recall millions of dollars
worth of its new Pentium chips when a mathematical flaw
was discovered in the floating-point routines.

Marc Andreessen and Jim Clark founded Netscape and
developed a new Web browser, Netscape Navigator. It
would become the leading Web browser for several years.

Red Hat released a commercial distribution of Linux 1.0.

Search engines such as Lycos and Alta Vista started help-
ing users find Web pages. Meanwhile, a graduate student
named Jerry Yang started compiling an online list of his

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Appendix II        539

favorite Web sites. That list would eventually become
Yahoo!

Advertising in the form of banner ads began to appear on
Web sites.

1995

Microsoft Windows 95 gave a new look to the operating
system and provided better support for devices, including
plug and play device configuration.

Microsoft began its own on-line service, the Microsoft
Network (MSN). Despite its startup icon being placed on
the Windows 95 desktop, the network would trail industry
leader America Online, which had overtaken CompuServe
and Prodigy.

Jeff Bezos’s online bookstore, Amazon.com, opened for busi-
ness. It would become the largest e-commerce retailer.

The major online services began major promotion of access
to the World Wide Web.

NSFNET retired from direct operation of the Internet,
which had now been fully privatized. The agency then
focused on providing new broadband connections between
supercomputer sites.

Sun announced the Java language. It would become one of
the most popular languages for developing applications for
the World Wide Web.

Motorola announced the Power PC-602, a 64-bit cpu chip.

Compaq ranked first in personal computer sales in the
United States, followed by Apple.

Physicists Peter Fromherz and Alfred Stett of the Max
Planck Institute of Biochemistry in Munich, Germany, dem-
onstrated the direct stimulation of a specific nerve cell in
a leech by a computer probe. This conjured visions of the
“jacked-in” neural implants foreseen by science fiction writ-
ers such as William Gibson.

The next generation of Cray supercomputers, the T90
series, could be scaled up to a rate of 60 billion instructions
per second.

streaming (real-time video and audio) began to become
popular on the Web.

Computer-generated imagery (CGI) was featured by Holly-
wood in the movie Toy Story.

1996

A product called Web TV attempted to bring the World
Wide Web to home consumers without the complexity of
full-fledged computers. The product achieved only modest
success as the price of personal computers continued to
decline.

The U.S. Postal Service issued a stamp honoring the 50th
anniversary of ENIAC.

The Boston Computer Society, one of the oldest computer
user groups, disbanded.

World chess champion Garry Kasparov won his first match
against IBM’s Deep Blue chess computer, but said the match
had been unexpectedly tough.

Yahoo! offered its stock to the public, running up the sec-
ond-highest first-day gain in NASDAQ history.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Seymour Cray’s Cray Research (a developer of supercom-
puters) was acquired by Silicon Graphics.

Pierre Omidyar turned a small hobby auction site into eBay
and was soon attracting thousands of eager sellers and buy-
ers to the site.

In one of its infrequent ventures into hardware, Microsoft
announced the NetPC, a stripped-down diskless PC that
would run software from a network. Such “network com-
puters” never really caught on, being overtaken by the ever-
declining price for complete PCs.

1997

The chess world was shocked when world champion Garry
Kasparov was defeated in a rematch with Deep Blue.

A single Internet domain name, business.com, was sold for
$150,000.

Amazon.com had a successful initial public offering (IPO).

A technology called “push” began to be hyped. It involved
Web sites continually feeding “channels” of news or enter-
tainment to user’s desktops. However, the idea would fail to
make much headway.

Internet users banded together to demonstrate distrib-
uted computing by cracking a 56-bit DES cipher in 140
days.

The Association for Computing Machinery (ACM) cele-
brated its 50th anniversary.

1998

Microsoft Windows 98 provided an incremental improve-
ment in the operating system.

Apple announced the iMac, a stylish machine that rejuve-
nated the Macintosh line.

eBay’s IPO was wildly successful, making Pierre Omidyar,
Meg Whitman, and other eBay executives instant million-
aires.

Merger-mania hit the online service industry, with America
Online buying CompuServe’s online service (spinning off
the network facilities to WorldCom). AOL then acquired
Netscape and its Web hosting technology.

In another significant merger, Compaq acquired Digital
Equipment Corporation (DEC).

1999

Federal Judge Thomas Penfield Jackson found that Micro-
soft violated antitrust laws. The case dragged on with
appeals, with the process of crafting a remedy (such as
possibly the split-up of the company) still unresolved in
2002.

Another virus, Melissa, panicked computer users.

Some companies began to offer “free” computers to people
who agreed to sign up for long-term, relatively expensive
Internet service.

Computer scientists and industry pundits debated the possi-
bility of widespread computer disasters due to the y2k prob-
lem. Companies spent millions of dollars trying to find and
fix old computer code that used only two digits to store year
dates.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

540        Appendix II

Apple released os x, a new unix-based operating system
for the Macintosh.

2000

New Year’s Day found the world to be continuing much as
before, with only a few scattered y2k problems.

Unknown hackers, however, brought down some commer-
cial Web sites with denial-of-service (DOS) attacks.

AOL merged with Time-Warner, creating the world’s larg-
est media company. Critics worried about the affects of
growing corporate concentration on the diversity of the
Internet.

Microsoft Windows 2000 began the process of merging
the consumer Windows and Windows NT lines into a single
family of operating systems that would no longer use any of
the underlying ms-dos code.

The World Wide Web was estimated to have about 1 bil-
lion pages online.

Tech stocks (and particularly e-commerce companies)
began to sharply decline as investors became increasingly
skeptical about profitability.

A growing number of Web users were beginning to switch
to much faster broadband connections using dsl or cable
modems.

2001

The decline in e-commerce stocks continued, with tens of
thousands of jobs lost. One of the many failures was Web-
van, the Internet grocery service. Amazon.com suffered
losses but continued trying to expand into profitable niches.
Only eBay among the major e-commerce companies contin-
ued to be profitable.

Microsoft Windows XP offered consumer and “profes-
sional” versions of Windows on the same code base.

ibm researchers created a seven “qubit” quantum computer
to execute Shor’s algorithm, a radical approach to factoring
that could potentially revolutionize cryptography.

Among the specters raised in the wake of the September 11
terrorist attacks was cyberterrorism having the potential
to disrupt vital infrastructure, services, and the economy.
biometrics and more sophisticated database techniques
were enlisted in the war on terrorism while civil liberties
groups voiced concerns.

2002

Wireless networking using the faster 802.11 standard
became increasingly popular as an alternative to cabled or
phone line networks for homes and small offices.

Consumer digital cameras began to approach “professional”
quality.

The U.S. Supreme Court ruled that “virtual” child pornogra-
phy (in which no actual children were used) was protected
by the First Amendment.

Continuing stock market declines threaten growth in the
computer and Internet sectors.

The music-sharing service Napster goes out of business,
when it is forced to stop distributing copyrighted music.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2003

The U.S. economy begins to recover, including the tech-
nology sector. However, there is a growing concern about
jobs being “outsourced” to countries such as India and
China.

Weblogs, or blogs, are an increasingly popular form of
online expression. Some journalists even use them to
“break” major stories.

The Recording Industry Association of America (RIAA) files
hundreds of lawsuits against individual users of music file-
sharing systems.

Apple and AMD introduce the first 64-bit microprocessors
in the personal computer market.

2004

Security remains an urgent concern as viruses and worms
flood the Internet in vast numbers.

spam also floods users’ e-mail boxes. phishing messages
trick users into revealing credit card numbers and other
sensitive information.

Apple’s iPod dominates the portable media player market,
while its iTunes store sells over 100 million songs.

Bloggers become a political force, winning access to major
party conventions.

Enthusiastic response to Google’s initial public stock offer-
ing signals that investors may have regained confidence in
the strength of the Internet sector.

2005

“Web 2.0” becomes a buzzword with Web services being
designed to be leveraged into new applications to be deliv-
ered to users’ browsers.

Sony’s flawed CD copy protection leaves users vulnerable to
hackers; consumers increasingly demand an end to restric-
tions on use of media they buy.

Concerns about the security of new electronic voting
systems grow.

2006

Apple begins selling Intel-based Macs; meanwhile most
PCs now have dual processors.

Google buys the phenomenally successful video site You-
Tube for $1.65 billion.

Microsoft releases its delayed Windows Vista operating
system, but response is lukewarm.

New versions of Linux such as Ubuntu attract enthusiasts,
but are slow in making inroads on the desktop.

2007

social networking sites such as MySpace and FaceBook
are used by millions of students, but raise concerns about
privacy and bullying.

Wikipedia now has more than 9 million articles in 252 lan-
guages.

CNN and YouTube join to sponsor presidential political
debates, and candidates respond to questions posed in vid-
eos submitted by the public.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Appendix II        541

Google and other free Web-based applications offer new
alternatives for office software.

Apple introduces the iPhone and new iPods with innovative
user interfaces.

Albert Fert and Peter Grunberg receive the Nobel Prize in
physics for their development of “giant magnetoresistance,”
a phenomenon that enables disk drives to read fainter, more
densely packed magnetic signals. The result is shrinking
disks and/or greater storage capacity.

•

•

•

2008

A record amount of money is raised online during the presi-
dential election campaign.

Microsoft engages in a protracted campaign to acquire
online rival Yahoo!

Providers and advocacy groups struggle over net neutrality
(equal treatment of online applications and content).

•

•

•

542

This appendix describes some of the major awards in com-
puter science and technology and lists recipients as of 2001.
The last names of persons with entries in this book are
given in small capital letters.

Association for Computing
Machinery (ACM)

ACM Turing Award

The ACM Turing Award “is given to an individual selected
for contributions of a technical nature made to the comput-
ing community. The contributions should be of lasting and
major technical importance to the computer field.”

Annual Recipients
(A few years have joint recipients.)

1966  A. J. Perlis: “For his influence in the area of advanced
programming techniques and compiler construction.”

1967  Maurice V. Wilkes: “Professor Wilkes is best known as
the builder and designer of the EDSAC, the first computer with
an internally stored program. Built in 1949, the EDSAC used
a mercury delay line memory. He is also known as the author,
with Wheeler and Gill, of a volume on ‘Preparation of Programs
for Electronic Digital Computers’ in 1951, in which program
libraries were effectively introduced.”

1968  Richard Hamming: “For his work on numerical meth-
ods, automatic coding systems, and error-detecting and error-
correcting codes.”

1969  Marvin Minsky [Citation not listed by ACM. However,
Minsky was a key pioneer in artificial intelligence research,
including neural networks, robotics, and cognitive psychology.]

1970  J. H. Wilkinson: “For his research in numerical analysis
to facilitate the use of the high-speed digital computer, having
received special recognition for his work in computations in lin-
ear algebra and ‘backward’ error analysis.”

1971  John McCarthy: “Dr. McCarthy’s lecture ‘The Present
State of Research on Artificial Intelligence’ is a topic that covers
the area in which he has achieved considerable recognition for
his work.”

1972  E. W. Dijkstra.: “Edsger Dijkstra was a principal con-
tributor in the late 1950s to the development of the ALGOL, a
high-level programming language which has become a model of
clarity and mathematical rigor. He is one of the principal expo-
nents of the science and art of programming languages in gen-
eral, and has greatly contributed to our understanding of their
structure, representation, and implementation. His fifteen years
of publications extend from theoretical articles on graph theory
to basic manuals, expository texts, and philosophical contem-
plations in the field of programming languages.”

1973  Charles W. Bachman: “For his outstanding contributions
to database technology.”

1974  Donald E. Knuth: “For his major contributions to the
analysis of algorithms and the design of programming lan-
guages, and in particular for his contributions to the ‘art of
computer programming’ through his well-known books in a
continuous series by this title.”

1975  Alan Newell and Herbert A. Simon: “In joint scientific
efforts extending over twenty years, initially in collaboration
with J. C. Shaw at the RAND Corporation, and subsequentially
with numerous faculty and student colleagues at Carnegie-Mel-
lon University, they have made basic contributions to artificial
intelligence, the psychology of human cognition, and list pro-
cessing.”

1976  Michael O. Rabin and Dana S. Scott: “For their joint
paper ‘Finite Automata and Their Decision Problem,’ which
introduced the idea of nondeterministic machines, which has
proved to be an enormously valuable concept. Their [Scott &
Rabin] classic paper has been a continuous source of inspiration
for subsequent work in this field.”

Appendix III
Some Significant Awards

Appendix III        543

1977  John Backus: “For profound, influential, and lasting
contributions to the design of practical high-level programming
systems, notably through his work on FORTRAN, and for semi-
nal publication of formal procedures for the specification of pro-
gramming languages.”

1978  Robert W. Floyd: “For having a clear influence on meth-
odologies for the creation of efficient and reliable software,
and for helping to found the following important subfields of
computer science: the theory of parsing, the semantics of pro-
gramming languages, automatic program verification, automatic
program synthesis, and analysis of algorithms.”

1979  Kenneth E. Iverson: “For his pioneering effort in pro-
gramming languages and mathematical notation resulting in what
the computing field now knows as APL, for his contributions to
the implementation of interactive systems, to educational uses of
APL, and to programming language theory and practice.”

1980  C. Anthony R. Hoare: “For his fundamental contribu-
tions to the definition and design of programming languages.”

1981  Edgar F. Codd: “For his fundamental and continuing
contributions to the theory and practice of database manage-
ment systems. He originated the relational approach to database
management in a series of research papers published com-
mencing in 1970. His paper ‘A Relational Model of Data for
Large Shared Data Banks’ was a seminal paper, in a continuing
and carefully developed series of papers. Dr. Codd built upon
this space and in doing so has provided the impetus for wide-
spread research into numerous related areas, including database
languages, query subsystems, database semantics, locking and
recovery, and inferential subsystems.”

1982  Stephen A. Cook: “For his advancement of our under-
standing of the complexity of computation in a significant and
profound way. His seminal paper, ‘The Complexity of Theorem
Proving Procedures,’ presented at the 1971 ACM SIGACT Sym-
posium on the Theory of Computing, laid the foundations for
the theory of NP-Completeness. The ensuing exploration of the
boundaries and nature of NP-complete class of problems has
been one of the most active and important research activities in
computer science for the last decade.”

1983  Ken Thompson and Dennis Ritchie: “For their devel-
opment of generic operating systems theory and specifically for
the implementation of the UNIX operating system.”

1984  Niklaus Wirth: “For developing a sequence of innova-
tive computer languages, EULER, ALGOL-W, MODULA and
PASCAL. PASCAL has become pedagogically significant and has
provided a foundation for future computer language, systems,
and architectural research.”

1985  Richard M. Karp: “For his continuing contributions to
the theory of algorithms including the development of efficient
algorithms for network flow and other combinatorial optimiza-
tion problems, the identification of polynomial-time comput-
ability with the intuitive notion of algorithmic efficiency, and,

most notably, contributions to the theory of NP-completeness.
Karp introduced the now standard methodology for proving
problems to be NP-complete which has led to the identification
of many theoretical and practical problems as being computa-
tionally difficult.”

1986  John Hopcroft and Robert Tarjan: “For fundamental
achievements in the design and analysis of algorithms and data
structures.”

1987  John Cocke: “For significant contributions in the design
and theory of compilers, the architecture of large systems and
the development of reduced instruction set computers (RISC);
for discovering and systematizing many fundamental transfor-
mations now used in optimizing compilers including reduction
of operator strength, elimination of common subexpressions,
register allocation, constant propagation, and dead code elimi-
nation.”

1988  Ivan Sutherland: “For his pioneering and visionary con-
tributions to computer graphics, starting with Sketchpad, and
continuing after. Sketchpad, though written twenty-five years
ago, introduced many techniques still important today. These
include a display file for screen refresh, a recursively traversed
hierarchical structure for modeling graphical objects, recursive
methods for geometric transformations, and an object oriented
programming style. Later innovations include a ‘Lorgnette’ for
viewing stereo or colored images, and elegant algorithms for
registering digitized views, clipping polygons, and representing
surfaces with hidden lines.”

1989  William (Velvel) Kahan: “For his fundamental contri-
butions to numerical analysis. One of the foremost experts on
floating-point computations. Kahan has dedicated himself to
‘making the world safe for numerical computations.’ ”

1990  Fernando J. Corbato: “For his pioneering work orga-
nizing the concepts and leading the development of the gen-
eral-purpose, large-scale, time-sharing and resource-sharing
computer systems, CTSS and Multics.”

1991  Robin Milner: “For three distinct and complete achieve-
ments: 1) LCF, the mechanization of Scott’s Logic of Computable
Functions, probably the first theoretically based yet practical
tool for machine assisted proof construction; 2) ML, the first
language to include polymorphic type inference together with
a type-safe exception-handling mechanism; 3) CCS, a general
theory of concurrency. In addition, he formulated and strongly
advanced full abstraction, the study of the relationship between
operational and denotational semantics.”

1992  Butler W. Lampson: “For contributions to the develop-
ment of distributed, personal computing environments and the
technology for their implementation: workstations, networks,
operating systems, programming systems, displays, security and
document publishing.”

544        Appendix III

1993  Juris Harmanis and Richard E. Stearns: “In recognition
of their seminal paper which established the foundations for the
field of computational complexity theory.”

1994  Edward Feigenbaum and Raj Reddy: “For pioneering
the design and construction of large-scale artificial intelligence
systems, demonstrating the practical importance and potential
commercial impact of artificial intelligence technology.”

1995  Manuel Blum: “In recognition of his contributions to the
foundations of computational complexity theory and its appli-
cation to cryptography and program checking.”

1996  Amir Pneueli: “For seminal work introducing temporal
logic into computing science and for outstanding contributions
to program and systems verification.”

1997  Douglas Engelbart: “For an inspiring vision of the
future of interactive computing and the invention of key tech-
nologies to help realize this vision.”

1998  James Gray: “For seminal contributions to database and
transaction processing research and technical leadership in sys-
tem implementation.”

1999  Frederick P. Brooks, Jr.: “For landmark contributions
to computer architecture, operating systems, and software
engineering.”

2000  Andrew Chi-Chih Yao: “In recognition of his fundamen-
tal contributions to the theory of computation, including the
complexity-based theory of pseudorandom number generation,
cryptography, and communication complexity.”

2001  Ole-Johan Dahl and Kristen Nygaard: “For ideas fun-
damental to the emergence of object oriented programming,
through their design of the programming languages Simula I
and Simula 67.”

2002  Ronald L. Rivest, Adi Shamir, and Leonard M. Adelman:
“For their ingenious contribution for making public-key cryp-
tography useful in practice.”

2003  Alan Kay: “pioneering many of the ideas at the root of
contemporary object-oriented programming languages, leading
the team that developed Smalltalk, and for fundamental contri-
butions to personal computing.”

2004  Vinton G. Cerf and Robert E. Kahn: “For pioneering
work on internetworking, including the design and implemen-
tation of the Internet’s basic communications protocols, TCP/IP,
and for inspired leadership in networking.”

2005  Peter Naur: “For fundamental contributions to program-
ming language design and the definition of Algol 60, to compiler
design, and to the art and practice of computer programming.”

2006  Frances E. Allen: “For contributions that fundamentally
improved the performance of computer programs in solving prob-
lems, and accelerated the use of high-performance computing.”

2007 Edmund M. Clarke, E. Allen Emerson, and Joseph Sifa-
kis: “For . . . developing ModelChecking into a highly effective
verification technology, widely adopted in the hardware and
software industries.”

Eckert-Mauchly Award

Administered jointly by ACM and IEEE Computer Society
and “given for contributions to computer and digital sys-
tems architecture where the field of computer architecture
is considered at present to encompass the combined hard-
ware-software design and analysis of computing and digital
systems.”

Annual Recipients
1979  Robert S. Barton: “For his outstanding contributions
in basing the design of computing systems on the hierarchical
nature of programs and their data.”

1980  Maurice V. Wilkes: “For major contributions to com-
puter architecture over three decades including notable achieve-
ments in developing a working stored-program computer,
formulation of the basic principles of microprogramming, early
research on cache memories, and recent studies in distributed
computation.”

1981  Wesley A. Clark: “For contributions to the early devel-
opment of the minicomputer and the multiprocessor, and for
continued contributions over 25 years that have found their
way into computer networks, modular computers, and personal
computers.”

1982  C. Gordon Bell: “For his contributions to designing and
understanding computer systems: for his contributions in the
formation of the minicomputer; for the creation of the first com-
mercial, interactive timesharing computer; for pioneering work
in the field of hardware description languages; for co-authoring
classic computer books and co-founding a computer museum.”

1983  Tom Kilburn: “For major seminal contributions to
computer architecture spanning a period of three decades. For
establishing a tradition of collaboration between university and
industry which demands the mutual understanding of electron-
ics technology and abstract programming concepts.”

1984  Jack B. Dennis: “For contributions to the advancement
of combined hardware and software design through innovations
in data flow architectures.”

1985  John Cocke: “For contributions to high performance
computer architecture through lookahead, parallelism and pipe-
line utilization, and to reduced instruction set computer archi-
tecture through the exploitation of hardware-software tradeoffs
and compiler optimization.”

1986  Harvey G. Cragon: “For major contributions to computer
architecture and for pioneering the application of integrated cir-
cuits for computer purposes. For serving as architect of the Texas

Appendix III        545

Instruments scientific computer and for playing a leading role in
many other computing developments in that company.”

1987  Gene M. Amdahl: “For outstanding innovations in com-
puter architecture, including pipelining, instruction look-ahead,
and cache memory.”

1988  Daniel P. Siewiorek: “For outstanding contributions in
parallel computer architecture, reliability, and computer archi-
tecture education.”

1989  Seymour Cray: “For a career of achievements that have
advanced supercomputing design.”

1990  Kenneth E. Batcher: “For contributions to parallel com-
puter architecture, both for pioneering theories in intercon-
nection networks and for the pioneering implementations of
parallel computers.”

1991  Burton J. Smith: “For pioneering work in the design and
implementation of scalable shared memory multiprocessors.”

1992  Michael J. Flynn: “For his important and seminal contri-
butions to processor organization and classification, computer
arithmetic and performance evaluation.”

1993  David Kuck: “For his impact on the field of supercom-
puting, including his work in shared memory multiprocessing,
clustered memory hierarchies, compiler technology, and appli-
cation/library tuning.”

1994  James E. Thornton: “For his pioneering work on high-
performance processors; for inventing the ‘scoreboard’ for
instruction issue; and for fundamental contributions to vector
supercomputing.”

1995  John Crawford: “In recognition of your impact on the
computer industry through your development of microproces-
sor technology.”

1996  Yale N. Patt: “For important contributions to instruction
level parallelism and superscalar processor design.”

1997  Robert Tomasulo: “For the ingenious Tomasulo’s algo-
rithm, which enabled out-of-order execution processors to be
implemented.”

1998  T. Watanabe: [Citation not available, but NEC notes that
Watanabe “was a chief architect for NEC’s first supercomputer,
the SX-2, and is recognized for his significant contributions to
the architectural design of supercomputers having multiple, par-
allel vector pipelines and programmable vector caches.”]

1999  James E. Smith: “For fundamental contributions to high-
performance microarchitecture, including saturating counters
for branch prediction, reorder buffers for precise exceptions,
decoupled access/execute architectures, and vector supercom-
puter organization, memory, and interconnects.”

2000  Edward Davidson: “For his seminal contributions to the
design, implementation, and performance evaluation of high-
performance pipelines and multiprocessor systems.”

2001  John Hennessy: “For being the founder and chief archi-
tect of the MIPS Computer Systems and contributing to the
development of the landmark MIPS R2000 microprocessor.”

2002  B. Ramakrishna (Bob) Rau: “For pioneering contribu-
tions to statistically scheduled instruction-level parallel proces-
sors and their compilers.”

2003  Joseph A. (Josh) Fisher: “In recognition of 25 years of
seminal contributions to instruction-level parallelism, pioneer-
ing work on VLIW architectures, and the formulation of the
Trace Scheduling compilation technique.”

2004  Frederick P. Brooks: “For the definition of computer
architecture and contributions to the concept of computer fami-
lies and to the principles of instruction set design; for seminal
contributions in instruction sequencing, including interrupt
systems and execute instructions; and for contributions to the
IBM 360 instruction set architecture.”

2005  Robert P. Colwell: “For outstanding achievements in the
design and implementation of industry-changing microarchitec-
tures, and for significant contributions to the RISC/CISC archi-
tecture debate.”

2006  James H. Pomerene: “For pioneering innovations in com-
puter architecture, including early concepts in cache, reliable
memories, pipelining and branch prediction, for the design of the
IAS computer and for the design of the Harvest supercomputer.”

2007  Mateo Valero: “For extraordinary leadership in building
a world class computer architecture research center, for seminal
contributions in the areas of vector computing and multithread-
ing, and for pioneering basic new approaches to instruction-
level parallelism.”

2008  David Patterson: “For seminal contributions to RISC
microprocessor architectures, RAID storage systems design, and
reliable computing, and for leadership in education and in dis-
seminating academic research results into successful industrial
products.”

Grace Murray Hopper Award

The ACM gives this award for “the outstanding young com-
puter professional of the year . . . selected on the basis of a
single recent major technical or service contribution.”

Annual Recipients

Note: this award has not been given every year.

1971  Donald E. Knuth: “For the publication in 1968 (at age
30) of Volume I of his monumental treatise ‘The Art of Com-
puter Programming.’ ”

546        Appendix III

1972  Paul E. Dirksen and Paul H. Kress: “For the creation of
WATFOR Compiler, the first member of a powerful new family
of diagnostic and educational programming tools.”

1973  Lawrence M. Breed, Richard Lathwell, and Roger Moore:
“For their work in the design and implementation of APL/360,
setting new standards in simplicity, efficiency, reliability and
response time for interactive systems.”

1974  George N. Baird: “For his successful development and
implementation of the Navy’s COBOL Compiler Validation
System.”

1975  Allen L. Scherr: “For his pioneering study in quantita-
tive computer performance analysis.”

1976  Edward H. Shortliffe: “For his pioneering research which
is embodied in the MYCIN program. MYCIN is a program which
consults with physicians about the diagnosis and treatment of
infections. In creating MYCIN, Shortliffe employed his back-
ground of medicine, together with his research in knowledge-
based systems design, to produce an integrated package which
is easy for expert physicians to use and extend. Shortliffe’s work
formed the basis for a research program supported by NIH, and
has been widely studied and drawn upon by others in the field
of knowledge-based systems.”

1978  Raymond C. Kurzweil: “For his development of a
unique reading machine for the blind, a computer-based device
that reads printed pages aloud. The Kurzweil machine is an 80-
pound device that shoots a beam of light across each printed
page, converts the reflected light across each printed page, con-
verts the reflected light into digital data that is analyzed by its
built-in computer, and then transformed into synthetic speech.
It is expected to make reading of all printed material possible
for blind people, whose reading was previously limited to mate-
rial translated into Braille. The machine would not have been
possible without another achievement by Kurzweil, that is, a
set of rules embodied in the mini-computer program by which
printed characters of a wide variety of sizes and shapes are reli-
ably and automatically recognized.”

1979  Steven Wozniak: “For his many contributions to the
rapidly growing field of personal computing and, in particular,
to the hardware and software for the Apple Computer.”

1980  Robert M. Metcalfe: “For his work in the development
of local networks, specifically the Ethernet.”

1981  Daniel S. Bricklin: “For his contributions to personal
computing and, in particular, to the design of VisCalc. Bricklin’s
efforts in the development of the ‘Visual Calculator’ provide the
excellence and elegance that ACM seeks to sustain through such
activities as the Awards program.”

1982  Brian K. Reid: “For his contributions in the area of com-
puterized text-production and typesetting systems, specifically
Scribe which represents a major advance in this area. It embod-
ies several innovations based on computer science research in

programming language design, knowledge-based systems, com-
puter document processing, and typography. The impact of
Scribe has been substantial due to the excellent documentation
and Reid’s efforts to spread the system.”

1984  Daniel H. H. Ingalls, Jr.: “For his work at the Xerox Palo
Alto Research Center, where he was a major force, both tech-
nical and inspirational, in the development of the SMALLTALK
language and its graphics facilities. He is the designer of the
BITBLT primitive that is now widely used for generating images
on raster-scan displays. The combination of a good idea, a good
design, and very effective and careful implementation has led
to BITBLT’s wide acceptance in the computing community. Mr.
Ingalls’ research has also directly and dramatically affected the
computing industry’s view of what people should have in the
way of accessible computing.”

1985  Cordell Green: “For establishing several key aspects of
the theoretical basis for logic programming and providing a res-
olution theorem prover to carry out a programming task by con-
structing the result which the computer program is to compute.
For proving the constructive technique correct and for present-
ing an effective method for constructing the answer; these con-
tributions providing an early theoretical basis for Prolog and
logic programming.”

1986  William N. Joy: “For his work on the Berkeley UNIX
Operating System as a designer, integrator, and implementor of
many of its advanced features including Virtual Memory, the C-
shell, the vi Screen editor, and Networking.”

1987  John K. Ousterhout: “For his contribution to very large
scale integrated circuit computer aided design. His systems,
Caesar and Magic, have demonstrated that effective CAD sys-
tems need not be expensive, hard to learn, or slow.”

1988  Guy L. Steele: “For his general contributions to the
development of Higher Order Symbolic Programming, princi-
pally for his advancement of lexical scoping in LISP.”

1989  W. Daniel Hillis: “For his basic research on data parallel
algorithms and for the conception, design, implementation and
commercialization of the Connection Machine.”

1990  Richard Stallman: “For pioneering work in the devel-
opment of the extensible editor EMACS (Editing Macros).”

1991  Feng-hsuing Hsu: “For contributions in architecture and
algorithms for chess machines. His work led to the creation of
the Deep Thought Chess Machine, which led to the first chess
playing computer to defeat Grandmasters in tournament play
and the first to achieve a certified Grandmaster level rating.”

1993  Bjarne Stroustrup: “For his early work laying the foun-
dations for the C++ programming language. Based on the foun-
dations and Dr. Stroustrup’s continuing efforts, C++ has become
one of the most influential programming languages in the his-
tory of computing.”

Appendix III        547

1996  Shafrira Goldwasser: “For her early work relating com-
putation, randomness, knowledge committee and proofs, which
has shaped the foundations of probabilistic computation theory,
computational number theory, and cryptography. This work is a
continuing influence in design and certification of secure com-
munications protocols, with practical applications to develop-
ment of secure networks and computer systems.”

1999  Wen-mei Hwu: “For the design and implementation
of the IMPACT compiler infrastructure which has been used
extensively both by the microprocessor industry as a base-
line for product development and by academia as a basis for
advanced research and development in computer architecture
and compiler design.”

2000  Lydia Kavraki: “For her seminal work on the proba-
bilistic roadmap approach which has caused a paradigm shift
in the area of path planning, and has many applications in
robotics, manufacturing, nanotechnology and computational
biology.”

2001  George Necula: “For his seminal work on the concept
and implementation of Proof Carrying Code, which has had a
great impact on the field of programming languages and com-
pilers and has given a new direction to applications of theorem
proving to program correctness, such as safety of mobile code
and component-based software.”

2002  Ramakrishnan Srikant: “For his seminal work on mining
association rules, which has led to association rules becoming a
key data mining tool as well as part of the core syllabus in data-
base and data mining courses.”

2003  Stephen W. Keckler: “For ground-breaking analysis of
technology scaling for high-performance processors that sheds
new light on the methods required to maintain performance
improvement trends in computer architecture, and on the design
implications for future high-performance processors and systems.”

2004  Jennifer Rexford: “For models, algorithms, and deployed
systems that assure stable and efficient Internet routing without
global coordination.”

2005  Omer Reingolf: “For his work in finding a deterministic
logarithmic-space algorithm for ST-connectivity in undirected
graphs.”

2006  Daniel Klein: “For the design of a system capable of
learning a high-quality grammar for English directly from text.”

2007  Vern Paxson: “For his work in measuring and character-
izing the Internet.”

Electronic Frontier
Foundation (EFF)

Pioneer Awards

The EFF gives annual “Pioneer Awards” to leaders in
“expanding knowledge, freedom, efficiency, and utility.”

1992  Douglas C. Engelbart, Robert Kahn, Jim Warren, Tom
Jennings, and Andrzej Smereczynski.

1993  Paul Baran, Vinton Cerf, Ward Christensen, Dave
Hughes, and the USENET software developers, represented by
the software’s originators Tom Truscott and Jim Ellis.

1994  Ivan Sutherland, Whitfield Diffie and Martin Hellman,
Murray Turoff and Starr Roxanne Hiltz, Lee Felsenstein, Bill
Atkinson, and the Well.

1995  Philip Zimmermann, Anita Borg, and Willis Ware.

1996  Robert Metcalfe, Peter Neumann, Shabbir Safdar, and
Matthew Blaze.

1997  Marc Rotenberg, Johan “Julf” Helsingius, and (special
honorees) Hedy Lamarr and George Antheil.

1998  Richard Stallman, Linus Torvalds, and Barbara
Simons.

1999  Jon Postel, Drazen Panic, and Simon Davies.

2000  Tim Berners-Lee, Phil Agre, and “Librarians Every-
where.”

2001  Seth Finkelstein, Stephanie Perrin, and Bruce Ennis.

2002  Dan Gillmour, Beth Givens, Jon Johansen, and “writers
of DeCSS.”

2003  Amy Goodman, Eben Moglen, and David Sobel.

2004  Kim Alexander, David Dill, and Arviel Rubin.

2005  Patrick Ball, Edward Felten, and Mitch Kapor.

2006  Craigslist, Gigi Sohn, and Jimmy Wales.

2007  Yochai Benkler, Cory Doctorow, and Bruce Scheier.

2008  Mozilla Foundation, Mitchell Baker, Michael Geist, and
Mark Klein.

IEEE Computer Society

Computer Pioneer Award

The IEEE Computer Society presents the Computer Pioneer
Award “for significant contributions to concepts and devel-
opments in the electronic computer field which have clearly
advanced the state of the art in computing.” The award is
given a minimum of 15 years after the achievement being
awarded.

Charter Recipients
Howard H. Aiken

Samuel N. Alexander
Gene M. Amdahl

548        Appendix III

John W. Backus
Robert S. Barton
C. Gordon Bell
Frederick P. Brooks, Jr.
Wesley A. Clark
Fernando J. Corbato
Seymour R. Cray

Edsgar W. Dijkstra

J. Presper Eckert

Jay W. Forrester
Herman H. Goldstine
Richard W. Hamming
Grace M. Hopper

Alston S. Householder
David A. Huffman
Kenneth E. Iverson
Tom Kilburn
Donald E. Knuth

Herman Lukoff
John W. Mauchly

Gordon E. Moore
Allen Newell
Robert N. Noyce
Lawrence G. Roberts
George R. Stibitz
Shmuel Winograd
Maurice V. Wilkes
Konrad Zuse

Annual Recipients
(With year and achievement as cited by the Computer
Society.)

1981  Jeffrey Chuan Chu: “For his early work in electronic
computer logic design”

1982  Harry D. Huskey: “For the first parallel computer
SWAC”

1982  Arthur Burks: “For his early work in electronic com-
puter logic design”

1984  John Vincent Atanasoff: “For the first electronic com-
puter with serial memory”

1984  Jerrier A. Haddad: “For his part in the lead IBM 701
design team”

1984  Nicholas C. Metropolis: “For the first solved atomic
energy problems on ENIAC”

1984  Nathaniel Rochester: “For the architecture of IBM 702
electronic data processing machines”

1984  Willem L. van der Poel: “For the serial computer
ZEBRA”

1985  John G. Kemeny: “For BASIC”

1985  John McCarthy: “For LISP and artificial intelligence”

1985  Alan Perlis: “For computer language translation”

1985  Ivan Sutherland: “For the graphics SKETCHPAD”

1985  David J. Wheeler: “For assembly language programming”

1985  Heniz Zemanek: “For computer and computer lan-
guages—MAILUEFTERL”

1986  Cuthbert C. Hurd: “For contributions to early comput-
ing”

1986  Peter Naur: “For computer language development”

1986  James H. Pomerene: “For IAS and Harvest computers”

1986  Adriann van Wijngaarden: “For ALGOL 68”

1987  Robert E. Everett: “For Whirlwind”

1987  Reynold B. Johnson: “For RAMAC”

1987  Arthur L. Samuel: “For Adaptive non-numeric processing”

1987  Nicklaus E. Wirth: “For PASCAL”

1988  Freidrich L. Bauer: “For computer stacks”

1988  Marcian E. Hoff, Jr.: “For microprocessor on a chip”

1989  John Cocke: “For instruction pipelining and RISC con-
cepts”

1989  James A. Weidenhammer: “For high speed I/O mecha-
nisms”

1989  Ralph L. Palmer: “For the IBM 604 electronic calculator”

1989  Mina S. Rees: “For the ONR Computer R&D develop-
ment beginning in 1946”

1989  Marshall C. Yovits: “For the ONR Computer R&D devel-
opment beginning in 1946”

1989  F. Joachim Weyl: “For the ONR Computer R&D devel-
opment beginning in 1946”

1989  Gordon D. Goldstein: “For his work with the Office of
Naval Research and computer R&R beginning in 1946”

1990  Werner Buchholz: “For computer architecture”

1990  C. A. R. Hoare: “For programming languages defini-
tions”

1991  Bob O. Evans: “For compatable computers”

Appendix III        549

1991  Robert W. Floyd: “For early compilers”

1991  Thomas E. Kurtz: “For BASIC”

1992  Stephen W. Dunwell: “For project stretch”

1992  Douglas C. Engelbart: “For human computer interac-
tion”

1993  Erich Bloch: “For high speed computing”

1993  Jack S. Kilby: “For co-inventing the integrated circuit”

1993  Willis H. Ware: “For the design of IAS and Johnniac
computers”

1994  Gerrit A. Blaauw: “In recognition of your contributions
to the IBM System/360 Series of computers”

1994  Harlan B. Mills: “In recognition of contributions to
Structured Programming”

1994  Dennis M. Ritchie: “In recognition of contributions to
the development of UNIX”

1994  Ken L. Thompson: “For his work with UNIX”

1995  Gerald Estrin: “For significant developments on early
computers”

1995  David Evans: “For seminal work on computer graphics”

1995  Butler Lampson: “For early concepts and developments
of the PC”

1995  Marvin Minsky: “For conceptual development of artifi-
cial intelligence”

1995  Kenneth Olsen: “For concepts and development of mini-
computers”

1996  Angel Angelov: “For computer science technologies in
Bulgaria”

1996  Richard F. Clippinger: “For computing laboratory staff
member, Aberdeen Proving Ground, who converted the ENIAC
to a stored program”

1996  Edgar Frank Codd: “For the invention of the first
abstract model for database management”

1996  Norber Fristacky: “For pioneering digital devices”

1996  Victor M. Glushkov: “For digital automation of com-
puter architecture”

1996  Jozef Gruska: “For the development of computer science
in former Czechoslovakia with fundamental contributions to the
theory of computing and extraordinary organizational activities”

1996  Jiri Horejs: “For informatics and computer science”

1996  Lubomir Georgiev Iliev: “A founder and influential
leader of computing in Bulgaria; leader of the team that devel-
oped the first Bulgarian computer; made fundamental and con-
tinuing contributions to abstract mathematics and software”

1996  Robert E. Kahn: “For the co-invention of the TCP/IP
protocols and for originating the Internet program”

1996  Laszlo Kalmar: “For recognition as the developer of a
1956 logical machine and the design of the MIR computer in
Hungary”

1996  Antoni Kilinski: “For pioneering work in the construc-
tion of the first commercial computers in Poland, and for the
development of university curriculum in computer science”

1996  Laszlo Kozma: “For development of the 1930 relay
machines, and going on to build early computers in post-war
Hungary”

1996  Sergey A. Lebedev: “For the first computer in the Soviet
Union”

1996  Alexej A. Lyuponov: “For Soviet cybernetics and pro-
gramming”

1996  Romuald W. Marczynski: “For pioneering work in the
construction of the first Polish digital computers and contribu-
tions to fundamental research in computer architecture”

1996  Grigore C. Moisil: “For polyvalent logic switching circuits”

1996  Ivan Plander: “For the introduction of computer hard-
ware technology into Slovakia and the development of the first
control computer”

1996  Arnols Reitsakas: “For contributions to Estonia’s com-
puter age”

1996  Antonin Svoboda: “For the pioneering work leading to
the development of computer research in Czechoslovakia and
the design and construction of the SAPO and EPOS computers”

1997  Homer (Barney) Oldfield: “For pioneering work in the
development of banking applications through the implementa-
tion of ERMA, and the introduction of computer manufacturing
to GE”

1997  Francis Elizabeth (Betty) Snyder-Holberton: “For the
development of the first sort-merge generator for the Univac
which inspired the first ideas about compilation”

1998  Irving John (Jack) Good: “For significant contribu-
tions to the field of computing as a cryptologist and statistician
during World War II at Bletchley Park, as an early worker and
developer of the Colossus at Bletchley Park and on the Univer-

550        Appendix III

sity of Manchester Mark I, the world’s first stored program com-
puter”

1999  Herbert Freeman: “For pioneering work on the first
computer built by the Sperry Corporation, the SPEEDAC, and
for subsequent contributions to the areas of computer graphics
and image processing”

2000  Harold W. Lawson: “For inventing the pointer variable
and introducing this concept into PL/I, thus providing for the
first time, the capability to flexibly treat linked lists in a general-
purpose high level language”

2000  Gennady Stolyarov: “For pioneering development in
‘Minsk’ series computers’ software, of the information systems’
software and applications and for data processing and data base
management systems concepts dissemination and promotion”

2000  Georgy Lopato: “For pioneering development in Belarus
of the ‘Minsk’ series computers’ hardware, of the multicomputer
complexes and of the ‘RV’ family of mobile computers for heavy
field conditions”

2001  Vernon Schatz: “For the development of Electronics
Funds Transfer which made possible computer to computer
commercial transactions via the banking system”

2001  William H. Bridge: “For the marrying of computer and
communications technology in the GE DATANET 30, putting
terminals on peoples’ desks to communicate with and timeshare
a computer, leading directly to the development of the personal
computer, computer networking and the internet”

2002  Per Brinch Hansen: “For pioneering development in
operating systems and concurrent programming, exemplified by
work on the RC4000 multiprogramming system, monitors, and
Concurrent Pascal”

2002  Robert W. Bemer: “For meeting the world’s needs for
variant character sets and other symbols via ASCII, ASCII-alter-
nate sets, and escape sequences”

2003  Martin Richards: “For pioneering system software
portability through the programming language BCPL widely
influential and used in academia and industry for a variety of
prominent system software”

2004  Frances (Fran) E. Allen: “For pioneering work establish-
ing the theory and practice of compiler optimization”

2005  [No award given]

2006  Arnold M. Spielberg: ”For recognition of contribution
to real-time data acquisition and recording that significantly
contributed to the definition of modern feedback and control
processes”

2006  Mamoru Hosaka: “For recognition of pioneering activi-
ties within computing in Japan”

National Medal of Technology
and innovation

Given by the President of the United States, the National
Medal of Technology and Innovation is “the highest honor
bestowed by the President of the United States to America’s
leading innovators.”

Computer-Related Recipients

1985
AT&T Bell Laboratories: “For contribution over decades to
modern communication systems.”

Frederick P. Brooks, Jr., Erich Bloch, and Bob O. Evans, Interna-
tional Business Machines Corp.: “For their contributions to the
development of the hardware, architecture and systems engi-
neering associated with the IBM System/360, a computer sys-
tem and technologies which revolutionized the data processing
industry and which helped to make the United States dominant
in computer technology for many years.”

Steven P. Jobs and Steven Wozniak, Apple Computer, Inc.: “For
their development and introduction of the personal computer
which has sparked the birth of a new industry extending the
power of the computer to individual users.”

John T. Parsons and Frank L. Stulen, John T. Parsons Com-
pany: “For their development and successful demonstration of
the numerically-controlled machine tool for the production of
three-dimensional shapes, which has been essential for the pro-
duction of commercial airliners and which is seminal for the
growth of the robotics, CAD-CAM, and automated manufactur-
ing industries.”

1986
Bernard Gordon, Analogic Corp.: “Father of high-speed analog-
to-digital conversion which has been applied to medical, ana-
lytical, computer and communications products; founder of two
companies with over 2,000 employees and over $100 million in
annual sales and creator of a new master’s level institute located
in Massachusetts to teach engineering leadership and project
engineering to engineers.”

Reynold B. Johnson, International Business Machines Corp.:
“Introduction and development of magnetic disk storage for
computers that provided access to virtually unlimited amounts
of information in fractions of a second and is the basis for time
sharing systems and storage of millions of records. Over $10 bil-
lion in annual sales and over 100,000 jobs arose from this devel-
opment.”

William C. Norris, Control Data Corp.: “Advancement of micro
electronics and computer technology and creation of one of the
Fortune 500—Control Data Corporation—which has over $5
billion in annual sales and over 50,000 employees.”

1987
Robert N. Noyce, Intel Corp.: “For his inventions in the field
of semiconductor integrated circuits, for his leading role in the
establishment of the microprocessor which has led to much

Appendix III        551

wider use of more powerful computers, and for his leadership of
research and development in these areas, all of which have had
profound consequences both in the United States and through-
out the world.”

1988
Robert H. Dennard, IBM T.J. Watson Research Center: “For
invention of the basic one-transistor dynamic memory cell used
worldwide in virtually all modern computers.”

David Packard, Hewlett-Packard Company: “For extraordinary
and unselfish leadership in both industry and government,
particularly in widely diversified technological fields which
strengthened the competitiveness and defense capabilities of the
United States.”

1989
Jay W. Forrester, Massachusetts Institute of Technology and
Robert R. Everett, The MITRE Corp.: “For their creative work
in developing the technologies and applying computers to real-
time applications. Their important contributions proved vital to
national and free world defense and opened a new era of world
business.”

1990
John V. Atanasoff, Iowa State University (Ret.): “For his
invention of the electronic digital computer and for contribu-
tions toward the development of a technically trained U.S. work
force.”

Jack St. Clair Kilby, Jack Kilby Co.: “For his invention and con-
tributions to the commercialization of the integrated circuit
and the silicon thermal print-head; for his contributions to the
development of the first computer using integrated circuits; and
for the invention of the hand-held calculator, and gate array.”

John S. Mayo, AT&T Bell Laboratories: “For providing the tech-
nological foundation for information-age communications, and
for overseeing the conversion of the national switched tele-
phone network from analog to a digital-based technology for
virtually all long-distance calls both nationwide and between
continents.”

Gordon E. Moore, Intel Corp.: “For his seminal leadership in
bringing American industry the two major postwar innovations
in microelectronics—large-scale integrated memory and the
microprocessor—that have fueled the information revolution.”

1991
C. Gordon Bell, Stardent Computers: “For his continuing intel-
lectual and industrial achievements in the field of computer
design; and for his leading role in establishing cost-effective,
powerful computers which serve as a significant tool for engi-
neering, science and industry.”

John Cocke, International Business Machines Corp.: “For his
development and implementation of Reduced Instruction Set
Computer (RISC) architecture that significantly increased the

speed and efficiency of computers, thereby enhancing U.S. tech-
nological competitiveness.”

Grace Murray Hopper, U.S. Navy (Ret.)/Digital Equipment
Corp.: “For her pioneering accomplishments in the develop-
ment of computer programming languages that simplified com-
puter technology and opened the door to a significantly larger
universe of users.”

1992
William H. Gates III, Microsoft Corp.: “For his early vision of
universal computing at home and in the office; for his technical
and business management skills in creating a world-wide tech-
nology company; and for his contribution to the development
of the personal computer industry.”

1993
Kenneth H. Olsen, Digital Equipment Corp.: “For his contribu-
tions to the development and use of computer technology; and
for his entrepreneurial contribution to American business.”

1994
[No computer-related recipients]

1995
Edward R. McCracken, Silicon Graphics, Inc.: “For his ground-
breaking work in the areas of affordable 3D visual computing
and super computing technologies; and for his technical and
leadership skills in building Silicon Graphics, Inc., into a global
advanced technology company.”

IBM Team: Praveen Chaudhari, IBM TJ Watson Research Cen-
ter; Jerome J. Cuomo, North Carolina State University (formerly
with IBM); and Richard J. Gambino, State University of New
York at Stony Brook (formerly with IBM): “For the discovery
and development of a new class of materials—the amorphous
magnetic materials—that are the basis of erasable, read-write,
optical storage technology, now the foundation of the world-
wide magnetic-optic disk industry.”

1996
James C. Morgan, Applied Materials, Inc.: “For his leadership
of 20 years developing the U.S. semiconductor manufacturing
equipment industry, and for his vision in building Applied Mate-
rials, Inc. into the leading equipment company in the world,
a major exporter and a global technology pioneer which helps
enable Information Age technologies for the benefit of society.”

1997
Vinton Gray Cerf, MCI, and Robert E. Kahn, Corporation
for National Research Initiatives: “For creating and sustaining
development of Internet Protocols and continuing to provide
leadership in the emerging industry of internetworking.”

1998
Kenneth L. Thompson, Bell Laboratories, and Dennis M.
Ritchie, Lucent Technologies: “For their invention of UNIX®
operating system and the C programming language, which
together have led to enormous growth of an entire industry,

552        Appendix III

thereby enhancing American leadership in the Information
Age.”

1999
Raymond Kurzweil, founder, chairman, and chief executive
officer, Kurzweil Technologies, Inc.: “For pioneering and inno-
vative achievements in computer science such as voice recogni-
tion, which have overcome many barriers and enriched the lives
of disabled persons and all Americans.”

Robert Taylor (Ret.): “For visionary leadership in the development
of modern computing technology, including computer networks,
the personal computer and the graphical user interface.”

2000
Douglas C. Engelbart, director, Bootstrap Institute: “For creat-
ing the foundations of personal computing including continu-
ous, real-time interaction based on cathode-ray tube displays
and the mouse, hypertext linking, text editing, on-line journals,
shared-screen teleconferencing, and remote collaborative work.
More than any other person, he created the personal computing
component of the computer revolution.”

The IBM Corporation: “For 40 years of innovations in the
technology of hard disk drives and information storage prod-
ucts. IBM is widely recognized as the world’s leader in basic data
storage technologies, and holds over 2,000 U.S. patents. IBM
is a top innovator of component technologies—such as flying
magnetic heads (thin film heads, and magneto resistive heads),
film disks, head accessing systems, digital signal processing and
coding, as well as innovative hard disk drive systems. Some spe-
cific IBM inventions are used in every modern hard drive today:
thin film inductive heads, MR and GMR heads, rotary actuators,
sector servos and advanced disk designs. These advances outran
foreign hard disk technology and enabled the U.S. industry to
maintain the lead it holds today.”

2001
Arun N. Netravali, Chief Scientist, Lucent Technologies and
Past President of Bell Labs: “For his leadership in the field of
communication systems; for pioneering contributions that
transformed TV from analog to digital, enabling numerous inte-
grated circuits, systems and services in broadcast TV, CATV,
DBS, HDTV, and multimedia over the Internet; and for technical
expertise and leadership, which have kept Bell Labs at the fore-
front in communications technology.”

Jerry M. Woodall, Yale University: “For his pioneering role in
the research and development of compound semiconductor
materials and devices; for the invention and development of
technologically and commercially important compound semi-
conductor heterojunction materials, processes, and related
devices, such as light-emitting diodes, lasers, ultra-fast transis-
tors, and solar cells.”

2002
Calvin H. Carter, Cree, Inc.: “For his exceptional contribu-
tions to the development of silicon carbide wafers, leading to

new industries in wide bandgap semiconductors and enabling
other new industries in efficient blue, green, and white light,
full-color displays, high-power solid-state microwave amplifiers,
more efficient/compact power supplies, higher efficiency power
distribution/transmission systems, and gemstones.”

Carver A. Mead, California Institute of Technology: “For his
pioneering contributions to microelectronics that include spear-
heading the development of tools and techniques for modern
integrated-circuit design, laying the foundation for fabless semi-
conductor companies, catalyzing the electronic-design automa-
tion field, training generations of engineers that have made the
United States the world leader in microelectronics technology,
and founding more than twenty companies.”

Team of Nick Holonyak, Jr. (University of Illinois at Urbana-
Champaign), M. George Craford (Lumileds Lighting Corp.)
and Russell Dean Dupuis (Georgia Institute of Technology):
“For contributions to the development and commercialization
of light-emitting diode (LED) technology, with applications to
digital displays, consumer electronics, automotive lighting, traf-
fic signals, and general illumination.”

2003
Robert M. Metcalfe: “For leadership in the invention, standard-
ization, and commercialization of the Ethernet.”

Watts S. Humphrey: “For his vision of a discipline for software
engineering, for his work toward meeting that vision, and for
the resultant impact on the U.S. Government, industry, and aca-
demic communities.”

2004
Ralph H. Baer: “For his groundbreaking and pioneering cre-
ation, development and commercialization of interactive video
games, which spawned related uses, applications, and mega-
industries in both the entertainment and education realms.”

2005
Semiconductor Research Corporation: “For building the world’s
largest and most successful university research force to support
the rapid growth and advance of the semiconductor industry;
for proving the concept of collaborative research as the first
high-tech research consortium; and for creating the concept and
methodology that evolved into the International Technology
Roadmap for Semiconductors.”

Xerox Corporation: “For over 50 years of innovation in mark-
ing, materials, electronics communications, and software that
created the modern reprographics, digital printing, and print-
on-demand industries.”

2006–2007
[No computer-related recipients]

553

The following is a list of some important computer-related
organizations, including contact information.

General Computer Science
Organizations

American Society for Information Science (http:www.asis.org/)
1320 Fenwick Lane, Suite 510, Silver Spring, MD 20910.
Telephone: (301) 495-0900 e-mail: asis@asis.org

Association for Computing Machinery (http://www.acm.org/)
2 Penn Plaza, Suite 701, New York, NY 10121-0701. Tele-
phone: (800) 342-6626 e-mail: acmhelp@acm.org

Computing Research Association (http://www.cra.org) 1100
Seventeenth Street, NW, Suite 507, Washington, DC 20036-
4632. Telephone: (202) 234-2111 e-mail: webmaster@cra.
org

IEEE Computer Society (http:www.computer.org) 1730 Mas-
sachusetts Ave. NW, Washington, DC 20036-1992. Tele-
phone: (202) 371-0101 e-mail: membership@computer.org

Software Engineering Institute (http://sei.cmu.edu) 4500 Fifth
Ave., Pittsburgh, PA 15213-2612. Telephone: (888) 201-
4479 e-mail: customer-relations@sei.cmu.edu

Application and Industry-Specific
Groups

AeA (formerly American Electronics Association) (http://www.
aeanet.org/) 601 Pennsylvania Avenue NW, Suite 600,
North Building, Washington, DC 20004. Telephone: (202)
682-9110 e-mail: Web forms

American Association for Artificial Intelligence (http://www.
aaai.org/) 445 Burgess Drive, Suite 100, Menlo Park, CA
94025-3442. Telephone: 650-328-3123 e-mail: info7con-
tact@aaai.org

American Design Drafting Association (http://www.adda.org)
105 East Main St., Newham, TN 38059. Telephone: (731)
627-0802 e-mail: Web form

American Society for Photogrammetry and Remote Sensing
(http://www.asprs.org) 5410 Grosvenor Lane, Suite 210,
Bethesda, MD 20814-2160. Telephone: (301) 493-0290 e-
mail: asprs@.org

American Statistical Association (http://www.amstat.org) 732
North Washington St., Alexandria, VA 22314-1943. Tele-
phone: (703) 684-1221 e-mail: asainfo@amstat.org

Association for Library and Information Science Education
(http:www.alise.org) 68 E. Wacker Place, Suite 1900, Chi-
cago, IL 60601-7246. Telephone: (312) 795-0996 e-mail:
contact@alise.org

Association for Multimedia Communication (http://www.
amcomm.org) P.O. Box 10645, Chicago, IL 60610. Tele-
phone: (773) 276-9320 e-mail: Web form

Association of American Geographers (http://www.aag.org)
1710 16th St. NW, Washington, DC 20009-3198. Tele-
phone: (202) 234-1450 e-mail: gaia@aag.org

Association of Information Technology Professionals (http://www.
aitp.org) 401 North Michigan Avenue, Suite 2400, Chicago,
IL 60611-4267. Telephone: (312) 673-4793 e-mail: Web form

CAM-I (Computer-Aided Manufacturing International) (http://
cami.affiniscape.com) 6836 Bee Cave, Suite 256, Austin,
TX 78746. Telephone: (512) 617-6428 e-mail: Web form

Computing Technology Industry Association (CompTIA)
(http://www.comptia.org) 1815 S. Meyers Road, Suite 300
Oakbrook Terrace, IL 60181-5228. Telephone: (630) 678-
8300 e-mail: Web form

Digital Library Federation (http://www.digilib.org) 1755 Massa-
chusetts Ave. NW, Suite 500, Washington, DC 20036-2124.
Telephone: (202) 939-4761 e-mail: dlfinfo@clir.org

Electronics Industries Alliance (http://www.eia.org/) 2500 Wil-
son Blvd., Arlington, VA 22201. Telephone: (703) 907-
7500 e-mail: Web form

Information Technology Association of America (http://www.
itaa.org) 1401 Wilson Blvd., Suite 1100, Arlington, VA
22209. Telephone: (703) 522-5005 e-mail: Web directory

International Game Developer’s Association (http://www.igda.
org) 19 Mantua Road, Mt. Royal, NJ 08061. Telephone:
(856) 423-2990 e-mail: contact@igda.org

International Society for Technology in Education (http://www.
iste.org) 1710 Rhode Island Ave. NW, Suite 900, Washing-
ton, DC 20036. Telephone: (800) 336-5191 e-mail: iste@org

International Technology Law Association (http://www.itechlaw.
org) 401 Edgewater Place, Suite 600, Wakefield, MA 01800.
Telephone: (781) 876-8877 e-mail: office@itechlaw.org

Appendix IV
Computer-Related Organizations

554        Appendix IV

International Webmasters Association (http://www.irwa.org/)
119 E. Union St., Suite F, Pasadena, CA 91103. Telephone:
(626) 449-3709 e-mail: via Web links

Libraries for the Future (http://www.lff.org) 27 Union Square
West, Suite 204, New York, NY 10003. Telephone: (646)
336-6236 e-mail: info@lff.org

Library and Information Technology Association (http://www.
lita.org) American Library Association, 50 East Huron St.,
Chicago, IL 60611-2795. Telephone: (800) 545-2433 e-
mail: library@ala.org

Office Automation Society International (http://www.pstcc.cc.tn.
us/ost/oasi.html) 5170 Meadow Wood Blvd., Lyndhurst,
OH 44124. Telephone: (216) 461-4803 e-mail: jbdyke@aol.
com

Robotics Industries Association (http://www.robotics.org) 900
Victors Way, Suite 140, P.O. Box 3724, Ann Arbor, MI
48106. Telephone: (734) 994-6088 e-mail: webmaster@
robotics.org

SIGGRAPH [Graphics special interest group of the Association
for Computing Machinery] (http://www.siggraph.org). e-
mail: Web links

Society for Information Management (http://www.simnet.org/)
401 N. Michigan Ave., Chicago, IL 60611-4267. Telephone:
312 644-6610 e-mail: info@simnet.org

Society for Modeling and Simulation International (http://www.
scs.org) P.O. Box 17900 San Diego, CA 92177-7900. Tele-
phone: (858) 277-3888 e-mail: info@scs.org

Society for Technical Communication (http://www.stc.org/) 901
N. Stuart St., Suite 904, Arlington, VA 22203-1854. Tele-
phone: (703) 522-4114 e-mail: stc@stc.org

Software & Information Industry Association (http://www.siia.
org/) 1090 Vermont Ave. NW, Sixth Floor, Washington, DC
20005-4095. Telephone: (202) 289-7442 e-mail: Web form

Telecommunications Industry Association (http://www.tiaonline.
org) 2500 Wilson Blvd., Suite 300, Arlington, VA 22201-
3834. Telephone: (703) 907-7700 e-mail: tia@tiaonline.org

Government, Standards and
Security Organizations

American National Standards Institute (ANSI) (http://ansi.org)
1819 L Street NW, 6th Floor, Washington, DC 20036. Tele-
phone: (202) 293-8020 e-mail: info@ansi.org

Computer Emergency Response Team (CERT) (http://www.
cert.org) CERT Coordination Center, Software Engineer-
ing Institute, Carnegie Mellon University, Pittsburgh, PA
15213-3890. Telephone: (412) 268-7090 e-mail: cert@cert.
org

Computer Security Institute (http://www.gocsi.com/) 600 Har-
rison St., San Francisco, CA 94107. Telephone: (415) 947-
6320 e-mail: csi@cmp.com

Defense Advanced Research Projects Agency (DARPA) (http://
www.darpa.gov). 3701 North Fairfax Drive, Arlington,
VA 22203-1714. Telephone: (571) 218-4219 e-mail: Web
forms

Information Systems Security Association (http://www.issa.org)
9200 SW Barbour Blvd. #119-333 Portland, OR 97219.
Telephone: (866) 349-5818 e-mail: Web forms

Institute for the Certification of Computing Professionals
(http://www.iccp.org) 2350 East Devon Ave., Suite 115, Des
Plaines, IL 60018-4610. Telephone: (847) 299-4227 e-mail:
office@iccp.org

International Organization for Standardization (ISO) (http://
www.iso.org) 1, ch de la Voie-Creuse, Case postale 56, CH-
1211 Geneva 20, Switzerland. Telephone: +41 22 749 01 11
e-mail: Web forms

Internet Society (http://www.isoc.org/) 1775 Wiehle Ave., Suite
102, Reston, VA 20190-5108. Telephone: (703) 326-9880
e-mail: info@isoc.org

National Center for Supercomputing Applications (NCSA)
(http://www.ncsa.uiuc.edu) University of Illinois at Urbana-
Champaign, 1205 W. Clark St., Room 1008, Urbana, IL
61801. Telephone: (217) 244-0710 e-mail: tlbarker@ncsa.
uiue.edu

National Telecommunications and Information Administration
(http://www.ntia.doc.gov/) U.S. Dept. of Commerce, 1401
Constitution Ave. NW, Washington, DC 20230. Telephone:
(202) 482-1840 e-mail: Web directory

Quality Assurance Institute Worldwide (http://www.qaiworld-
wide.com.qai.html) 2101 Park Center Drive, Suite 200,
Orlando, FL 32835-7614. Telephone: (407) 363-1111 e-
mail: Web directory

Urban and Regional Information Systems Association (http://
www.urisa.org) 1460 Renaissance Drive, Suite 305, Park
Ridge, IL 60068. Telephone: (847) 824-6300 e-mail: Web
directory

World Wide Web Consortium (www.w3c.org) Massachusetts
Institute of Technology, 32 Vassar St., Room 32-G515,
Cambridge, MA 02139. Telephone: (617) 253-2613 e-mail:
Web links

Advocacy Groups

Association for Women in Computing (http://www.awc-hq.org)
41 Sutter St., Suite 1006, San Francisco, CA 94104. Tele-
phone: (415) 905-4663 e-mail: info@awc-hq.org

Black Data Processing Associates (http://www.bdpa.org) 6301
Ivy Lane, Suite 700, Greenbelt, MD 20770. Telephone:
(800) 727-BDPA e-mail: Web forms

Center for Democracy and Technology (http://www.cdt.org)
1634 Eye St., NW, #100, Washington, DC 20006. Tele-
phone: (202) 637-9800 e-mail: Web form

Computer Professionals for Social Responsibility (http://www.
cpsr.org) 1370 Mission St., 4th Floor, San Francisco, CA
94103-2654. Telephone: (415) 839-9355 e-mail: cpsr@cpsr.
org

Electronic Frontier Foundation (http://www.eff.org) 454 Shot-
well St., San Francisco, CA 94110-1914. Telephone: (415)
436-9333 e-mail: information@eff.org

Electronic Privacy Information Center (http://www.epic.org)
1718 Connecticut Ave. NW, Suite 200, Washington, DC
20009. Telephone: (202) 483-1140 e-mail: Web form

Women in Technology (http://www.womenintechnology.com)
717 Princess St., Alexandria, VA 22314. Telephone: (703)
683-4033 e-mail: staff@womenintechnology.org

555

Inde x

Boldface page numbers denote
main entries; italic page numbers
indicate illustrations.

A
A-0 231
AACS (Advanced Access Content

System) 149
Aaron (program) 25
abacus 70, 226
ABC (Atanasoff-Berry computer)

30, 297
Abelson, Harold 284
About.com 350, 379
AboutUs 122
abstract data type. See data

abstraction
abstract object 68
Abstract Windowing Toolkit

(AWT) 254
accelerated graphics port (AGP)

63, 214, 243
Access (Microsoft) 131, 132
Access Certificates for Electronic

Services (ACES) 79
accessibility (data) 130–131
accessibility (universal design). See

disabled persons and computing
accountability, and privacy 384
accounting applications 64
accumulator 304
ACE (Automatic Computing

Engine) 481
A+ Certificate 80
ACES (Access Certificates for

Electronic Services) 79
ACH (automated clearing house) 39
ACLU v. Reno 125
ACM (Association for Computing

Machinery) 7, 79, 267, 296,
297, 404

ACP (Associate Computing
Professional) certificate 80

Acrobat 257, 374, 504. See also PDF
active matrix display 199
active RFID 405
Active Server Pages (ASP) 1, 249,

422, 491, 508. See also ASP.NET
ActiveX 89, 422, 508
Ada 2

in computer history 229
enumerations in 184
government funding for 404
Pascal and 363
sets in 185
Simula and 431

ADA (American with Disabilities
Act) 152

Ad-Aware 453
address bus 51
addressing 3, 3. See also

indirection; pointers
Analytical Engine and

35–36
in ARPANET 247
binding and 45
bits and 51
hexadecimals for 225
indirect 375–377
on Internet 155–158
in list processing 282
in machine code 28
in memory 301
in minicomputers 227
in MS-DOS 321–322
in multiprocessing 323
with pointers 375–376
variables in 490–491
in virtual memory 302

address register 304
Adelman, Leonard 146, 181
ad hoc computer grid 217
administrative applications 64
administrator status 136
Adobe Systems 3–4. See also

Acrobat; Illustrator; PageMaker;
PDF; Photoshop; PostScript;
Premiere

ADO.NET 306
adoption scams 345
AdSense 211, 344
ADSL (asymmetric DSL) 162
adult education 171
Advanced Access Content System

(AACS) 149
Advanced Computing Systems

Laboratory (IBM) 10
Advanced Graphics Port (AGP) 86
Advanced Micro Devices (AMD)

4–5, 86, 140, 218, 245
Advanced Network and Services

272
Advanced Technology Attachment

(ATA) 223
advertising 164, 251. See also

online advertising
ADVISE 119, 136
adware 111, 344–345, 384,

453–454
AdWord 211
Aegis 311
Aero 307

affective computing 313
affiliate marketing 344
agent-oriented programming 442
agent software. See software agents
Age of Intelligent Machines, The

(Kurzweil) 269
Age of Spiritual Machines, The

(Kurzweil) 269
AGP (accelerated graphics port)

63, 214, 243
AGP (Advanced Graphics Port) 86
agriculture 143
Aho, Alfred V. 33
AI. See artificial intelligence
AIBO robot dog 411
AIFF (Audio Interchange File

Format) 448
Aiken, Howard 5, 231
air traffic control system 399–400
Ajax (asynchronous JavaScript and

XML) 5–6, 6, 110
AL. See artificial life
alarm system, in smart buildings

434
Alcatel 42
“Alchemy and Artificial

Intelligence” (Dreyfus) 162
Aldus 4
Aldus Pagemaker. See Pagemaker
Alexander, Christopher 142
Algol 6–7

Backus-Naur Form and 38
McCarthy’s work on 297
Pascal and 362
PL/I and 373
recursion in 401
Simula and 431
Wirth’s work with 514

algorithms 7–8
in banking security 39
in computer animation 16
in computer science 109
in computing 295
for data compression 134
error handling and 186
genetic 8, 28, 75, 207–208
Google PageRank 57, 210,

211, 423, 480
in graphics 106
in graphics cards 214
in implementation 394
for memory management

302
in music 325–326
in Pascal 362
patentability of 245

in pattern recognition 363
for random number

generation 399
for scheduling and

prioritization 417–418
for searching 446
for search relevancy 423. See

also PageRank algorithm
in software engineering 444
for sorting 446–448
for speech recognition 452

Alice (chatterbot) 84, 515
Alienware 140
Allen (robot) 59
Allen, Frances E. 515
Allen, George 377
Allen, Paul 206
alpha version 394
Altair 206, 228, 304, 366, 519
AltaVista 422
Alto 320, 517
ALU (arithmetic logic unit) 23,

119, 120, 305
Amazin’ Software 174
Amazon.com 8–9, 44–45

CRM used by 123
data mining by 136
entrepreneurship and 184
in mashups 294
online research with 349
“Search inside the Book”

on 167
software sales of 294
World Wide Web and 518

Amazon Unbox 327
ambient intelligence 314
AMD (Advanced Micro Devices)

4–5, 86, 140, 218, 245
AMD64 4
Amdahl, Gene Myron 10–11
American with Disabilities Act

(ADA) 152
America Online (AOL) 11, 11–12

chat on 83
instant messaging on 477
as ISP 252
MapQuest under 292
Netscape acquired by 16
as online information service

350–351
Amicus Attorney 274
Amnesty International 76
analog 12, 12–13, 13, 147, 213, 371
analog computer 13–14, 14,

226, 510. See also differential
analyzer

556        Index

Analytical Engine 35–36, 36, 226,
301, 392

anchor 234
Anderson, Harlan 41
AND operator 51, 54
Andreessen, Marc 14–15, 15, 184,

503, 518
Android 437
Angle, Colin 59, 60, 253
animal behavior, cellular automata

and 75
animated GIF 214, 507
animation, computer 16–17, 104,

194. See also computer graphics
anonymity and the Internet 17

censorship and 76
in chat 83
cyberbullying and 126
cyberterrorism and 118
with digital cash 147
on file-sharing networks 193
fraud and 345
identity and 237
reputation and 480

ANSI BASIC 40
ANSI characters 81
ANSI COBOL 90
anthropometry 47
Antikythera Mechanism 13, 405
Anti-Phishing Phil 370
Anti-Phishing Working Group 370
antitrust 107, 206–207, 274, 306
antivirus software 100, 111, 417.

See also security
ANTLR 361
AOL. See America Online
Apache 81, 306, 352, 508
API. See application program

interface
APL (a programming language) 18,

204, 490, 491
Apollo spacecraft 449
Apple I 18, 258, 519
Apple II

in education 99, 169
emulator for 179
hard disk of 222
IBM PC and 366
market entry of 106
Pascal on 362
success of 18, 258
VisiCalc on 452
word processing on 516
Wozniak’s work on 519

Apple Corporation 18–19. See also
iPhone; iPod; Macintosh

in computing history 228
DRM and 150
in FireWire development 197
IBM PC and 236
Jobs at 257–258
Kay at 264
Omidyar at 343
Wozniak at 519

Apple DOS 353
Apple LaserWriter 379
Apple Lisa 18
Apple Logo (Abelson) 284
Apple Newton 220–221, 364
AppleScript 19
applet 19–20. See also Java
Apple TV 19
appliance computing 107, 177, 434
application layer 334
application program interface (API)

20, 20–21
C in 66
for content management

systems 116
graphics in 105
in mashups 294

for operating systems 354
virtual 494

Application Service Provider (ASP)
broadband and 107
in computer industry trends

108
in computing history 229
groupware and 217
Microsoft Windows and 309
office suites through 107
Oracle on Demand 356
PC market and 367
for remote backup services

37
SAP as 415
software installation and 244
in software market 294
for SOHO market 230
word processor from 517

application service provider (ASP)
6, 21–22

application software 22
auditing of 31
backup of 37
benchmarks for 43
bugs in. See bugs and

debugging
commenting in 158
compatibility of 94
copyright for 245
CORBA for 118
custom 293
device drivers and 144
document model and 160
for early computers 427
for education 170
ergonomics of 185
error handling in 186
file formats in 135
files in 192
firewalls and 197
fonts in 200
free access to 21
freeware 427–428
help systems in 225
in identity theft prevention

238
installation of 244
internationalization of

246–247
Internet-related 249
in law enforcement 273
legal 273–274
licensing violations 445
for Linux 279, 280
literacy in 109
localization of 246–247
for Macintosh 287
macros in 289
for management information

systems 292
marketing of 107–108,

293–294
mathematics 145, 295–296,

338, 453, 458. See also
spreadsheet

message passing in 303
multiprocessing and 324
for music 326
with OS X 357
for PDAs 364
plug-in versions of 374–375
portability of 95
presentation 32, 64, 380,

380–381, 492. See also
Microsoft PowerPoint

project management 342,
389–390, 418, 444

quality assurance in. See
quality assurance,
software

registration of 244
renting 21
reverse engineering 404–405
for RSS 412–413
by SAP 415
scheduling and prioritization

of 417–418
in service-oriented

architecture 426
shareware 427–428
for supply chain management

462
threading in 324
as trade secret 245–246
types of 22
updates for 244
user documentation for 159,

471
validation of 445
Web services for 508–509

application suite 23. See also
Microsoft Office

in computer industry 107
document model and 160
from Google 211
market for 206
marketing of 293
in office automation 342
spreadsheet in 453
word processor in 517

APT (Automatically Programmed
Tool) 98

Aqua 357
arcade games 103–104
archive attribute 191
archive systems. See backup and

archive systems
Archon (game) 174
arithmetic coding 134
arithmetic expressions 354
arithmetic logic unit (ALU) 23,

119, 120, 305
Arnie Street 326
ARPANET

bulletin board systems
and 61

Cerf and 78
in computer history 228
cyberspace and 125
distance education on 153
e-mail and 177
funding for 212
hypertext in 182
Internet and 247
network for 266
Roberts’s work on 145
Sutherland’s work on 463

array 23–25, 24. See also hashing
in C 65
in computer science 109
data in 128
as data type 138
data types in 137
in data warehouse 139
in FORTRAN 202
in hash sort 448
in heapsort 447
list compared to 137–138,

282
logical errors in 61

art and the computer 25, 25–26
artificial intelligence (AI) 26–28

academic credentials for 79
in automatic programming

33
Brooks’s work in 59
in chatterbots 83–84
cognitive science and 92–93
computer science in 110
computer vision in 112
creativity in 25

cybernetics in 511
dangers of 261–262
data models in 351
Dreyfus’s work in 161–162
in education 99
epistemology and 369
in expert systems 187, 188
Feigenbaum’s work in 190
in games 103
government funding of 212
for image interpretation 239
for information retrieval 241
Joy on 261–262
knowledge representation in

266–267
Kurzweil’s work in 268
Licklider and 277
LISP used in 204, 280–281,

297
McCarthy’s work in 297
Minsky’s work in 313
in natural language

processing 330
ontologies in 351
Papert’s work in 359
pattern recognition in 363
philosophy and 369
programming profession and

386–387
Prolog used in 390
research institutions in 403
risk and 409
in robotics 411
in science fiction 418, 419
in search engines 423
in semantic Web 424
Shannon’s work in 427
simulation and 432
singularity from 269
Smalltalk for 434
software agents in 289, 442
for software testing 395
in technological singularity

432–433
Turing in 481
Weizenbaum in 509–510

artificial life (AL) 28
artificial intelligence in 27
cellular automata in 75
finite state machines and 196
genetic algorithms in 208
robotic 411
simulation and 432
technological singularity

and 433
artificial limbs 335
Art of Computer Programming, The

(Knuth) 267
ASCII characters 81, 81–82, 236,

265
Asheron’s Call 104
Asia 108
Asimov, Isaac 418, 433
Ask Jeeves 241
ASP. See application service

provider
ASP (active server pages) 1, 249,

422, 491, 508. See also ASP.NET
A-Space 119
ASP .NET 1, 306
assembler 5, 28–29, 29, 95, 288,

388
assertion 188, 266
assistive devices 268, 425
Associate Computing Professional

(ACP) certificate 80
Association for Computing

Machinery (ACM) 7, 79, 267,
296, 297, 404

associative arrays 24
“As We May Think” (Bush) 182

Index        557

Asymetrix Toolbook 32
asymmetric multiprocessing 323
asynchronous JavaScript and XML

(Ajax) 5–6, 6, 110
asynchronous processes 154
ATA (Advanced Technology

Attachment) 223
Atanasoff, John Vincent 30, 226,

297
Atanasoff-Berry computer (ABC)

30, 297
Atari 104, 179, 205, 258, 264
Atkinson, Bill 322
ATM. See automatic teller machines
Atom 413
AT&T 473, 477–478, 486. See also

Bell Laboratories
attachments 111, 134, 177, 193
attenuation 191
Attila (robot) 56
AT (Advanced Technology)

machine 62
attributes 191, 201, 232
auctions, online 31, 100, 120, 343.

See also eBay
AuctionWeb 165, 343
Audio Interchange File Format

(AIFF) 448
auditing in data processing 31, 130
AU format 448
Augmentation Research Center

182
augmented finite state machines 59
“Augmenting Human Intellect:

A Conceptual Framework”
(Engelbart) 182

authentication 31–32, 39, 146, 181
authoring systems 32
automata 196, 410. See also cellular

automata
“Automata Studies” (Shannon and

McCarthy) 427
automated cars 71–72
automated clearing house (ACH)

39
Automatically Programmed Tool

(APT) 98
Automatic Computing Engine

(ACE) 481
automatic programming 33
automatic tabulating machine 229,

230, 294, 341, 392
automatic teller machines (ATM)

authentication at 32
in banking 39
biometrics used with 48–49
real-time processing in 400
as terminal 476
touchscreens in 478
transaction processing in

478–479
automotive computers 71, 71–72,

177, 293
avatars 237–238, 348
awk 33–34, 83, 365, 485–486
AWT (Abstract Windowing

Toolkit) 254
axioms, in Prolog 390

B
Babbage, Charles 35–36, 36

analog computer of 226
mechanical computer of 294
memory and 301
printer design by 381
punched cards and 392
on statistics 458

Babel Fish 271
back door, in Clipper Chip 146,

181
background process. See demon

backup and archive systems 36–37
in auditing 31
in content management

systems 116
copy protection and 117, 150
in database administration

130–131
in disaster planning and

recovery 152
as fair use 246
fault tolerance with 189
floppy disks and 200
in libraries 276
outsourcing of 108
tape for 467

Backus, John W. 38, 202, 404
Backus-Naur form (BNF) 38, 38,

110, 278
backward chaining 188
Baker, Nicholas 276
Ballistic Research Laboratory 167
ballots 175
bandwidth 38, 298, 335. See also

broadband
Bankers Trust 44
banking and computers 39

biometrics used in 48–49
identity theft and 238
investing 348
personal software for 195
phishing and 370
smart card in 435
terrorism against 127

Bank of America 370, 509
banner ads 344
Bardeen, John 42, 85, 404
Bard’s Tale, The (game) 174
Barlow, John Perry 123, 124
BarnesandNoble.com 349
Bartik, Jean 515
BASH (Bourne Again Shell) 429
BASIC 39–40

classes and 88
games in 103
Gates and 305
graphics in 105, 105
as interpreter 252
loop in 285–286
Microsoft and 305
parsing 360
in personal computers 228
procedures in 384–385
strings in 82

basic input/output system (BIOS)
49–50, 54, 236, 319, 405

Bateson, Gregory 124
battle management 311
baud 298
Baudot character set 265
Bayes, Thomas 40
Bayesian analysis 40–41, 270
BBN (Bolt Beranek and Newman)

247, 277, 284, 404
BBS. See bulletin board systems
beams 493–494
Beesley, Angela 500
behavioral biometrics 48
Being Digital (Negroponte) 331
Bell, C. Gordon (Bennet) 41–42
Bell Laboratories 42

art research at 25
C++ at 67
charged-couple device at 371
government funding of 212
research of 404
Ritchie at 409
Shannon at 427
Stroustrup at 459
telecommunications and 473
UNIX and 486

Bell’s Law of Computer Classes 41

benchmark 43
Bendix 227
Benford, Gregory 28
Bense, Max 25
Beowulf clusters 217, 462
Berkeley, Edmund 463
Berkeley Open Infrastructure for

Network Computing (BOINC)
117

Berkeley Software Distribution
(BSD) 261, 486

Berners-Lee, Tim 43–44
in computer history 229
Dertouzos and 141
as entrepreneur 184
HTML invented by 232
in Internet growth 247
semantic Web and 424
on user-created content 487
in World Wide Web

development 518
Bernstein, Daniel 125, 181, 246
Berry, Clifford E. 30
Bertillon, Alphonse 47
best fit algorithm 302
beta testing 395
Better Business Bureau 345
Bezos, Jeffrey P. 8, 44, 44–45, 184
Bigelow, Julian 510
Bill and Melinda Gates Foundation

207
Billings, John Shaw 229
bill payment, online 39
Billpoint 146–147
Bina, Eric 15
BINAC 167, 296, 381
binary data 128, 225
binary search 448
binary tree 479
binding 45–46
bins 223
biodiversity, measuring 46
bioinformatics 46–47, 110, 136, 179
biology and computing 75
biometrics 27, 47–49, 48

for authentication 32
employment in 179
in flash drives 198
in law enforcement 273
military use of 310
pattern recognition in 363
with smart cards 436

BIOS (Basic Input-Output System)
49–50, 54, 236, 319, 405

biotechnology 262
bird flight 75
BISON 361
bitmapped fonts 201
bitmapped image 50, 50, 81, 214
bits 50–51, 51, 52, 204, 298
BitTorrent 193, 413
bitwise operations 51–52, 54
black, in CYMK 93
BlackBerry 220, 364, 437
black box testing 395
blacklists 370
blindness 151
block-structured languages 491
Blogger.com 52, 211
Bloglines 52
blogs and blogging 52–53

advertising in 344
censorship of 76
in cyberbullying 126
on eBay 166
freedom of speech for 125
Google in 211
hypertext in 234
in Internet growth 248
as journalism 259
netiquette in 332

in office automation 342
political activism and 377
RSS for 412
user-created content of 487
World Wide Web and 518

blue, in RGB 93
Blue Gene 462
Blue Origin 45
Bluetooth 53, 273, 299, 487, 513
Blu-ray 75, 205, 446
BMP (Windows bitmap) 214
BNF (Backus-Naur form) 38, 38,

110, 278
board games 103
body language, in robots 56–57
boids 28
BOINC (Berkeley Open

Infrastructure for Network
Computing) 117

Bolt Beranek and Newman (BBN)
247, 277, 284, 404

Bomis 500
Boneh, Dan 317
bookmarks 234, 374
books, technical 471
bookstore, online. See Amazon.com
Boole, George 40, 53–54
Boolean bitwise operators 51
Boolean data type 138
Boolean operators 53–54

in branching statements 55
Differential Analyzer and

426
with flags 197
for information retrieval 240
in searching 422–423
in switched computers 295

Boot Camp 19, 288
booting 353
boot sequence 54–55
Bootstrap Institute 182
Borland 20
Borland Sidekick 368
Bosack, Leo 87
botnet 100, 111, 451
bots. See software agents
bound port 303
bounds, of arrays 24
Bourne, Steven R. 429
Bourne Again Shell (BASH) 429
Bourne Shell 429, 485
Boyer, Amy 126
bragging rights 100
Braille 151
brain implants 336
BrainKeeper 511
Brainstorms Community 407
branching statements 55

Boolean operators in 54
in C 65
in COBOL 91
in error handling 187
in flowcharts 200
functional languages and 204
in PL/I 373
in procedural languages 388
in structured programming

460
Brand, Stewart 407
Brattain, Walter 42, 85, 404
breakpoint 61
Breazeal, Cynthia 27, 56, 56–57, 60
Bricklin, Daniel 366, 452
Brief Code 297
Brin, David 384
Brin, Sergey 57, 210, 358
broadband 57–59. See also cable

modem; DSL; satellite Internet
service

with AOL 12
cable modems for 69

558        Index

data communications over
133

in digital divide 149
for distance education

153–154
fiber optic cable for 191
firewalls and 196, 197
in Internet growth 248
ISPs for 252
modems and 316
net neutrality and 332
office applications over 107
packet-sniffing and 100
streaming and 459
telecommunications and 473
for videoconferencing 492
video distribution and 327
for VoIP 497
Web page design and 507

broadcast journalism 259–260
Brooks, Frederick 386
Brooks, Rodney 27, 56, 59–60,

253, 289, 475
browser. See Web browser
browser history, Ajax pages and 6
“brute force” strategy 84–85
BSD (Berkeley Software

Distribution) UNIX 261, 486
bubble sort 447, 447
Buckimaster, Jim 120
buddy system 302
budgeting software 195
buffering 60. See also queue

in data acquisition 130
for graphics display 105
in I/O processing 243
overflows in 60
pointers for 376
queue in 396
in streaming 459
in tape drives 467
in video capture 493

bugs and debugging 61
in C 66
CASE tools for 74
in compiling 96
data and, threat to 36
dynamic binding and 46
error handling and 186
in programming environment

388
quality assurance and 394
risk of 408
technical support and 470

bulletin board systems (BBS)
61–62

on ARPANET 247
in computer history 228
conferencing systems and

114
cultures of 125
cyberspace and 125
early use of 11
in Internet development 247
Rheingold and 407
as social networking 440
for technical support 470

bullet train 408
bullying 126
bump mapping 106
Burks, Arthur 499
“Burning Chrome” (Gibson) 419
Burroughs 459
Burroughs, William 70
bus 62, 62–63

bits and 51
in boot sequence 54
in chipset 86
clock speed and 90
CPU and 304
in Ethernet network 283

for graphics cards 214
in IBM PC 236
for I/O processing 242–243
for modem 316
on motherboard 319
in multiprocessing 323
in personal computers 228

Bush, Vannevar 13, 63, 182, 212,
233

Bushnell, Nolan 258
business applications of computers

63–64. See also application suite
blogging in 53
in disaster planning and

recovery 152
enterprise computing

183–184
ergonomics and 185
financial software and 195
groupware in 217
Macintosh and 287
management information

systems for 291–292
mashups 294
online advertising 344–345
PCs 366
personal information

managers 368
portals 379
project management software

389–390
SAP software in 415
software installation and 244
supply chain management

462
surveillance 383
text in 81
Web filters 505

Business Objects 415
Business Software Alliance 445
bus mastering 62
bus snooping 323
“Buy It Now” 165
byte 50–51, 51, 52, 204, 298
byte code 19, 95, 253
Byte magazine 260, 366

C
C (language) 65–66

BASIC and 40
bitwise operator symbols

in 52
branching statements in 55
commenting in 158
in computer history 228
C shell and 429
current use of 389
development of 42, 404, 410
enumerations in 184–185
functions in 385
logic errors in 61
macros in 288
numeric data in 338
Pascal and 363
Perl and 365
PL/I and 374
pointers in 375–376
porting to C++ 68
procedures in 385
professional programming

with 386
program libraries in 276
recursion in 401
strings in 82
syntax errors in 61
variables in 490, 491
viability of 389

C# (language) 66, 307
C++ (language) 67–69

classes in 88
commenting in 158

compiling 96
in computer history 228
development of 459–460
Eiffel and 173–174
enumerations in 184–185
error handling in 187
inheritance in 340
for Internet applications

programming 249
Java and 255
in Microsoft Windows 309
operators in 341
Pascal and 363
pointers in 376–377
procedures in 385
program libraries in 276
Simula and 431

cable modem 38, 58, 69, 162–163,
299

cache 69–70
buffering and 60
in chipset 86
in client-server computing

89
in computer engineering 101
CPU and 304, 305
development of 10
for file server 192
for hard disks 223
in information retrieval 240
memory for 301
in multiprocessing 323
in Web browsers 503

CAD/CAM (computer-aided design
and manufacturing) 64, 98–99

CAI (computer-aided instruction)
32, 99, 169, 311

calculation speed 298
calculator 5, 70–71, 341, 392. See

also mechanical calculator
calendaring, in groupware 217
call. See procedures
camcorders, digital 372, 446
camera-ready copy 142
cameras 108, 223, 371–372. See

also photography, digital
camouflage 203
Campbell, John W. 418
cancelbots 451
Canion, Rod 184
CAN-SPAM Act 370, 451
capacitive touchscreens 478
capacitors 30
Čapek, Carl 410, 418
carbon dioxide emissions 216
card readers. See punched cards

and paper tape
CareerJournal 348
Carnegie Mellon Human

Computation 117
Carnegie Mellon University 403
Carpal Tunnel Syndrome (CTS)

185
cars and computing 71, 71–72,

177, 293
cartography 208–209
cartridge drives 37, 258, 467,

467–468
cascading style sheets (CSS) 5–6,

72, 72–73, 152, 233, 507
case. See branching statements
CASE (computer-aided software

engineering) 73, 73–74, 200,
443

Case, Steve 11, 12, 350
case statement 55
cash, digital 146–147
Casino City 346
cassette tape 37, 258, 467, 467–468
CAT (computerized tomography)

scanning 300

cataloging, library 275
Cate, Fred H. 383
cathode ray tube (CRT)

in defense computing
projects 212

for graphics 104, 105
as memory 301
in monitors 199, 317
for terminals 476

CB Simulator 350
CBT (computer-aided instruction)

32, 99, 169, 311
CCM (CORBA Component Model)

118
CCP (Certified Computing

Professional) certificate 80
CCTV (closed-circuit television)

164, 273
CDC (Control Data Corporation)

99, 121, 227, 323, 461
CD copy protection 149–150
CDMA (Code Division

Multiplexing Access) 514
CD-ROM and DVD-ROM 74, 74–75

in boot sequence 55
for data backup 37, 200
in game consoles 205
in laptops 272
lasers for 356
multimedia and 322
for music files 449
reusable media for 216
Sony and 446

CDT (Center for Democracy and
Technology) 125, 440

cell chip 205, 305
cell phones. See also smartphone

broadband access through 58
by Motorola 320
MySpace and 440
smartphones and 108
texting on 477
touchscreens on 478
with VoIP 497

cell processors 462
cells, of memory 224
cellular automata 28, 75, 75–76,

432, 499. See also Game of Life
censorship and the Internet 76

of blogs 53
centralization and 440
in China 211, 250
encryption and 246
policy and 472
political extremism and 377

Center for Democracy and
Technology (CDT) 125, 440

CenterStage 299
central computer 154
centralization 439–440
central processing unit. See CPU
Centronics 360
Cerf, Vinton D. 78
CERN 43, 247, 403
certificate, digital 78–79, 79,

223–224
certification authority 78–79, 79
certification of computer

professionals 79–80, 131, 171,
356, 386, 506

Certified Computing Professional
(CCP) certificate 80

Certified Netware Administrator
(CNA) certificate 80

Certified Netware Engineer (CNE)
certificate 80

CFCs (chlorofluorocarbons) 216
CGA (Color Graphics Adapter) 213
CGI. See computer graphics
CGI (common gateway interface)

80, 80–81, 249, 365, 508

Index        559

chads 175, 392
chairs, ergonomic 185
channels 83, 243, 290, 323
chaos 203
Chapel 324
characters and strings 81–83

in C 65
classes of 88
compression of 134
as data types 138
file transfer protocols and

193
pointers and 376
processing 33–34, 402, 485

character sets 457
charge-coupled device (CCD) 42,

371, 416, 493
charitable solicitations, fraudulent

345
Charles Schwab 348
chat, online 83

on AOL 350
community and 440
on CompuServe 350
conferencing and 113
cyber culture and 125
filtering 505
in groupware 217
identity used in 237
instant messaging compared

to 477
pseudonymity in 17
Rheingold on 407
texting compared to 477

chatterbots 83–84, 442, 481
Chautauqua 153
check clearing 39
checksum 133, 186, 194
chess and computers 26, 84, 84–

85, 427, 480
Child On-line Protection Act 505
Children’s Internet Protection Act

76, 505
Children’s Machine 331
China

blogging in 53
censorship in 76, 211, 251
in computer industry 108
computing in 143
digital divide in 149
Internet anonymity in 17
Internet cafés in 250, 250
phishing operators in 370
policy and 472
pollution controls in 216
software counterfeiting in

445
Yahoo! and 523

Chinese Room 93
chip 85–86. See also CPU

(central processing unit);
microprocessor

benchmarks for 43
clock speed and 90
in game consoles 205, 235
by Intel 244
in Macintosh 245
optical computing and 356

chipset 86, 101
chlorofluorocarbons (CFCs) 216
Chomsky, Noam 278
Christenson, Ward 194
chron 140
Chuang, Isaac L. 395
Church, Alonzo 86–87, 295
Church theorem 87
Church thesis 87
cipher machines 180
circuit design 295
circular buffer 60
circular queue 396, 397

CISC (complex instruction set
computing) 402

Cisco Systems 80, 87
Citizendium 500
citizen journalism 259
Civilization strategy game 99,

103, 103
Clark, Jim 15, 184
Clarke, Arthur C. 418
classes 88, 88

Ada and 2
for APIs 20
binding and 45–46
in C# 67
in C++ 68, 459–460
in computer science 109
data abstraction in 129
data structures and 138
data types and 138
in Eiffel 173
encapsulation with 180
in Java 254–255
in Lua 286
in Microsoft .NET 306
in object-oriented

programming 67–68,
340–341, 388

in ontologies 351
in Ruby 413
in Simula 431
in Smalltalk 433
structs compared to 67
templates for 475
in UML 315
variables and 88
virtual 88

class frameworks 89
clean room 4, 404–405
clearinghouses 39
“click fraud” 344
clicking (mouse) 321
click through 344
client-server computing 89–90,

183, 192, 255, 303, 476
Climate Savers Computing

Initiative 216
Clinton, Hillary 377, 524
Clipper Chip 146, 181
clock 90
clock speed 90, 101, 119–120, 130
closed-circuit television (CCTV)

164, 273
closed feedback loop 13
cloud computing 21
Cloud Nine 519
cluster analysis 458
cluster computing 216–217
clustering 136
clusters 216, 323
CLUT (color lookup table) 93, 94
CMC (Computer-Mediated

Communications) 113
CMOS (complementary metal oxide

semiconductor) 49, 54, 301
CMS (color matching system) 93
CMS (content management

systems) 115
CMYK 93
CNA (Certified NetWare

Administrator) certificate 80
CNE (Certified NetWare Engineer)

certificate 80
CNET 260, 293–294, 428
coalescence 302
COBOL (Common Business-

Oriented Language) 90–92
commenting in 158
current use of 389
for databases 131
Hopper and 231
PL/I and 373

professional programming
and 386

RPG and 412
Y2K and 522

cochlear implant 335
Cocke, John 402
Codd, Edgar F. 131
codec 92, 493
Code Division Multiplexing Access

(CDMA) 514
code generation 96
Code and Other Laws of Cyberspace

(Lessig) 274–275
code profiling 8
Code Version 2.0 (Lessig) 274–275
code word, in Hamming Code 186
coffee shops 250
Cog (robot) 27, 56, 59–60, 411
cognitive prosthetics 336
cognitive science 92–93

in computer science 110, 391
neural network and 313,

336–337
Papert’s work in 359
senior citizens and 425
technological singularity

and 433
Cognitive Tutor 99
Cohen, Harold 25
coherence 323
coherency, cache 70
Colby, Kenneth 509
collaborative filtering 289
collating sequence 82
collision 223, 283, 448
Colmerauer, Alain 390
Color Graphics Adapter (CGA) 213
color in computing 50, 93–94, 94
color laser printers 382
Colossus 226
Colossus (film) 378, 418
COM (Common Object Model) 160
comma-delimited files 135
command interpreter 55
command processor 321
comments, in program code 158
commercial applications 22
Commodore 228
common gateway interface (CGI)

80, 80–81, 249, 365, 508
Common Language Runtime 306
Common LISP 281–282
common object request broker

architecture (CORBA) 89, 118,
154, 310

communications 124, 241, 242, 248
communications buffer 60
Communications Decency Act 76,

274
Communications Nets (Kleinrock)

266
communications theory 295
Compaq 107, 184, 228, 237, 273,

366
compatibility and portability 94–

95, 135, 465
compiler(s) 402, 490, 494
compilers 95, 95–97, 96

binding in 45
in COBOL 91
in computer history 227
in computer science 110
data and 128
for Eiffel 173
for embedded systems 178
enumerations in 184–185
for FORTRAN 202
Hopper’s work on 231
interpreters and 252
for Java 255
for Lua 286

parsers and 361
in Pascal 362
program libraries in 277
Smalltalk and 433
stack and 456

compile-time binding 45
complementary metal oxide

semiconductor (CMOS) 49,
54, 301

COMPLEMENT bitwise operators
51

completeness 267
complex instruction set computing

(CISC) 402
complexity. See computability and

complexity
component object model. See

Microsoft .NET
composite, in hypertext 234
composite data types 138
Comprehensive Perl Archive

Network (CPAN) 365
compression. See data compression
Comptometer 70
CompuServe 214, 252, 350, 351
computability and complexity

97–98
Church and 87
in computer science 109
Physical Symbol System

Hypothesis and 93
quantum computing and 395
in scientific applications 419
Turing on 481

computational biology 46
Computek 141
computer-aided design and

manufacturing (CAD/CAM) 64,
98–99

computer-aided instruction (CAI)
32, 99, 169, 311

computer-aided software
engineering (CASE) 73, 73–74,
200, 443

computer animation 16–17, 104,
194. See also computer graphics

Computer-based Education
Research Laboratory 169

computer-based-training 32, 99,
169, 311

computer crime 100–101, 408.
See also hackers and hacking;
identity theft; law enforcement
and computers; online fraud and
scams; security

avatars and 237–238
banking and 39
on Craigslist 121
cyberlaw and 123–124
digital certificates and 78–79
on eBay 166
firewalls and 196
forensics in 102–103
by hackers 220
Internet growth and 248
Internet regulation and 251
law enforcement and 273
policy on 472
RFID and 406

Computer Decency Act 125
computer engineering 101–102
computer forensics 101, 102–103,

118, 179, 273
computer games 103–104. See also

online games
animation in 16
beta testing of 395
in education 99, 169
by Electronic Arts 174
finite-state machines in 196
fractals used in 203

560        Index

graphics in 106, 194
haptic interfaces for 221
Lua for 286
natural language processing

in 330
in popular culture 378
random number generation

for 399
simulation in 432
virtual reality as 496

computer graphics 104–106, 105.
See also animation, computer;
image processing

animated 507
on Apple II 258
benchmarks for 43
color in 93–94
compression of 134, 203
computer science in 110
in education 99
in games 103, 104
geometry in 295
graphics cards for 213–214
Macintosh for 287
measurement units for 298
monitor for 317
scheduling algorithms and

418
in scientific applications

420–421
Sutherland’s work on 463
3D 213–214
in virtual reality 496
in Web page design 507
on workstations 517

Computer History Museum 42
computer industry 106–109

certification in 80
entrepreneurs of 184
establishment of 227
globalization and 108,

209–210
hackers in 219
journalism and. See

journalism
nanotechnology in 329–330

computerized tomography (CAT)
scanning 300

computerized typography 267,
483. See also fonts

computer languages. See
programming languages

computer literacy 109, 148–149,
170, 171, 225

Computer-Mediated
Communications (CMC) 113

computer music 325–326,
448–449

computer platforms 41
Computer Power and Human Reason

(Weizenbaum) 509–510
computer professionals,

certification of 79–80
Computer Professionals against the

ABM 510
Computer Professionals for Social

Responsibility (CPSR) 438
computer programming. See

programming
computer research, government

funding of 212–213, 404, 462,
472

computers
Boolean logic in 54
dependency on 439
development of 226
Eckert’s work on 167–168
energy consumption of

215–216
e-waste from 216
government-funded 212

greenhouse emissions and
216

invention of 30
for modeling cognition 92
pollution from 216
recycling of 140
resource consumption of 216
in science fiction 418–419
self-replicating 329
switches in 295
Turing machines equivalent

to 97
Computers and Thought

(Feigenbaum and Feldman,
eds.) 190

computer science 7–8, 109–110,
124, 138, 171, 277, 294–295. See
also education in computer field

Computer Science Corporation
(CSC) 293

Computer Society of the Institute
of Electrical and Electronics
Engieers 404

computer technicians 108
computer theory 109
Computer Usage Corporation

(CUC) 293
computer virus 110–112

data and 36
in denial-of-service attacks

100
e-mail and 177
identity theft from 238
Internet growth and 248
Microsoft Windows and 309
Spafford’s work on 450
from spam 451
user status and 137

computer vision 27, 112, 363, 411
Computerworld 260
computing 313, 314
Computing Research Association

(CRA) 404
Computing Technology Industry

Association (CompTIA) 80
concurrent programming 112–114,

154, 263
conditionals 204
conferencing, video 83, 322, 342,

474, 492–493, 497. See also
telepresence

conferencing systems 114–115,
125, 407, 440, 474

confidence factors 188
confrontation, constructive 218
congruential algorithm 399
connectionists 93
Connection Machines 461
consciousness 369
Consolidated Controls 182
constants 115
constructive confrontation 218
constructivist learning 144, 284,

359
constructor function 88, 340
consumer electronics 19, 140, 445.

See also specific types
consumer privacy 383–384
container 92, 160
content management 115–116, 179
content management systems

(CMS) 115, 132
Content Scrambling System (CSS)

149
contextual advertising 211
Control Data Corporation (CDC)

99, 121, 227, 323, 461
controls, in Microsoft Windows 308
control structures. See also

branching statements; loop
in Ada 2

in Algol 7
in awk 33–34
in BASIC 40
in C 65
in Pascal 514
in PL/I 373
in pseudocode 390–391
in scripting languages 421
in shell scripting 429
in structured programming

443
in Tcl 468
in Z3 525

control unit 119–120, 120
Conway, John 28, 75
cookies 116, 211, 384, 453
cooperative processing 116–117,

155, 462
cooperative programs 117
co-ops 143
Copernic 423, 423
coprocessor 243, 304
copyleft 352
copy protection 117–118. See also

digital rights management
cyberlaw and 123
in data security 130
digital convergence and 148
of digital libraries 167
digital rights management for

149–150
in e-books 166
file-sharing networks and

193
First Amendment and 246
hacking 219–220
reverse engineering and 405

copyright 245, 275, 445
CORBA (Common Object Request

Broker Architecture) 89, 118,
154, 310

CORBA Component Model (CCM)
118

Corel Draw 143
Core Service Technician exam 80
Corley, Eric 246
Corning 191
correspondence classes 153
counterculture 378
counterfeiting 166, 436. See

also software piracy and
counterfeiting

counterterrorism and computers
118–119, 127, 220

country codes, for DNS 155–157
Count Zero (Gibson) 220
CourseBuilder (Discovery Systems)

32
CPAN (Comprehensive Perl

Archive Network) 365
CP/M

development of 353
in microcomputers 236, 366
Microsoft and 206
MS-DOS and 321
UNIX and 486
word processing on 516
Xmodem for 194

CPSR (Computer Professionals for
Social Responsibility) 438

CPU (central processing unit)
35, 119–120, 120. See also
microprocessor

arithmetic logic unit in 23
benchmarks for 43
bits and 51
cache for 60, 69–70
chips for 86
in concurrent programming

113
in Dell computers 140

evolution of 107
in information retrieval

240
by Intel 218, 318–319
in I/O processing 242–243,

243
in laptops 272
in Macintosh 287
measurement units for 298
on motherboard 319
in multiprocessing 323
in multitasking 324–325
scheduling and

prioritization of 417
speed of 90

CRA (Computing Research
Association) 404

Craigslist 120–121, 294, 348
Crawford, Chris 104
Cray, Seymour 121, 121–122, 227,

461
Cray Research 121–122, 227, 324,

461
CRC (cyclical redundancy check)

186, 194
Creative Commons 275
Creative Labs Zen 327
Creative Suite 3 (Adobe) 4
credit card transactions 39, 146
credit ratings, “repairing” 345
crime. See computer crime
CRM. See customer relationship

management
CRT. See cathode ray tube
Crusoe 478
cryptography. See also encryption

in ARPANET 145
ciphers in 180
in DRM 150
hashing in 223–224
number theory in 295
public key 32, 145–146,

180–181, 181
quantum computing and 396
in RFID 406
Shannon’s work in 427
Turing’s work in 481

CSC (Computer Science
Corporation) 293

C shell (csh) 261, 365, 429, 485
CSS (cascading style sheets) 5–6,

72, 72–73, 152, 233, 507
CSS (Content Scrambling System)

149
CTS (Carpal Tunnel Syndrome)

185
CUC (Computer Usage

Corporation) 293
Cuckoo’s Egg (Stoll) 458
culture, and computing 314
Cunningham, Howard (Ward)

122–123, 511
Cu-SeeMe 83, 492
customer relationship management

(CRM) 123
at Amazon.com 9
ASPs for 21
business use of 64
in computing history 229
data mining in 136
employment in 179
natural language processing

in 330
SAP software for 415
technical support in 470

cyan, in CYMK 93
CyberCash 146
cybercommons 438
cyberlaw 123–124, 237–238,

274–275, 347–348
cybernetics 110, 124, 277, 510–511

Index        561

Cybernetics of Control and
Communication in the Animal and
the Machine (Wiener) 511

cyberpunk 220, 335, 419
cyberspace advocacy groups

124–125
cyberspace and cyber culture 125–

126, 391, 419, 482–483
cyberstalking and harassment 100,

126, 248, 252, 523
cyberterrorism 126–127

computer crimes in 100
countering 118–119
data backup and 37
disaster planning and 152
hackers in 220
information warfare and 242
Internet growth and 248
online gambling and 346
threat of 439

Cyc 27, 267, 351
cyclical redundancy check (CRC)

186, 194
cylinders, in hard disks 222

D
DAC (digital to analog converter)

317
daemon. See demon
Dahl, Ole-Johan 431
DailyStrength.com 367
daisy-wheel printer 381
DAQ (data acquisition device) 129,

130
Dark Web 127
DARPA (Defense Advanced

Research Projects Agency) 113
funding of 212
Kay and 263
Licklider at 277
multiprocessing language

and 324
networks and 334
research of 311, 404
Sutherland at 463

DARPA automated vehicle
challenge 71

Dartmouth Summer Research
Project on Artificial Intelligence
281, 297

Darwin 357
DAT (digital audio tape) 446
data 128. See also backup and

archive systems
in classes 88
constants 115
in distributed computing

154
in LISP 281
in pattern recognition 363
redundancy in 427
repurposing 139
in service-oriented

architecture 426
unanticipated use of 408
in XML 520

data abstraction 128–129
data accessibility 130–131
data acquisition 110, 129, 129–130,

419
data acquisition device (DAQ)

129, 130
database

Boolean operators in 54
for business data processing

64
caching for 70
for CAD 98
client-server computing

and 89
CORBA for 118

in CRM 123
data dictionary for 135
data mining of 135–136
data security in 137
in decision support systems

139
distributed computing for

154
hard disk space for 223
hashing in 223, 224
information retrieval from

240–241
for library catalogs 275
in management information

system 292
middleware for 310
for online research 349
PHP and 372
for real-time processing 400
record-level security in 137
relational model for 131–132,

139, 292, 455. See also
database management
systems

searching in 446
for software agents 289
in software engineering 73
sorting in 446
storage of 192
templates in 475
WAIS for 248
for wikis 511

database administration 130–131,
178

database management systems
(DBMS) 131, 131–133

automatic programming
in 33

benchmarks for 43
for cartography 208
computer science in 110
development of 131
early market for 206
management information

systems and 292
network traffic and 334
object-oriented programming

and 341
in office automation 342
by Oracle 356
SQL for 455

data breaches 137
data bus. See bus
data communications 133–134

with Bluetooth 53
broadband. See broadband
clock speed and 90
in computer science 110
error correction in 186
measurement units for 298
in UNIX 410

data compression 134, 134–135
codecs for 92
of digital photographs 372
on hard disks 223
of images 50, 203, 214, 239
of MP3 files 448–449
in networks 334
of PDFs 364
redundancy and 241
in streaming 459

data conversion 135
data dictionary 73–74, 135
Data division 91
Data Encryption Standard (DES)

39, 145, 180, 317
Data General 106, 516
data glove 221–222
data integrity 130, 131, 132, 194
data link layer 334
data list 282

data mining 27, 135–136
cookies in 116
in counterterrorism 118, 119
in CRM 123
data warehouses for 139
in e-commerce 168
employment in 179
expert systems for 188
Google’s use of 211
in information retrieval 241
knowledge representation

in 267
management information

systems and 292
Microsoft research on 404
natural language processing

in 330
neural networks in 337
pattern recognition in 363
privacy and 384
statistics in 458

data models. See ontologies and
data models

Data Over Cable Service Interface
Specification (DOCSIS) 69

data processing
for bank transactions 39
batch processing 257
buffering in 60
in business 63–64, 291
in client-server computing

89
in COBOL 91
in flowcharts 200
job control language for 257
mainframes for 290
in scientific applications

419–420, 420
data security 136–137. See also

security
in database administration

130
at “hot spots” 250
Internet growth and 248
online backup services

and 37
in operating systems 354
risk and 408
satellite service and 416
user accounts in 354

data storage 36, 37, 74–75, 89, 222,
299, 445–446

data structures 137–138. See also
array; branching statements;
enumerations and sets; hashing;
loop; queue; tree

in Algol 7
in algorithm design 8
in APIs 20
in BASIC 88
bit manipulation in 52
in computer science 109
data types compared to 138
lists for 282
object-oriented programming

and 339
in Pascal 88
queue 396–397
in Ruby 413
in Simula 431
systems programming and

465
data types 138. See also classes;

enumerations and sets
abstract 128–129
in Ada 2
in Algol 7
in BASIC 40
binding and 45
in C 65
in C++ 68

checking 66, 68
in COBOL 91
in compiling 96
in computer science 110
conversion of 61, 67
in data structures 137
data structures compared

to 138
for FORTRAN 202
in interpretation of data 128
for knowledge representation

266
in LISP 281–282
in Lua 286
numeric 338
in object-oriented

programming 340
in Pascal 362, 514
in Perl 365
in PHP 373
in PL/I 373
in procedural languages 388
procedures and 385
Python and 392
in Ruby 413
in scripting languages 421
in Smalltalk 433
in structured programming

443
for variables 490

data validation 186–187, 197
data warehouse 135, 139, 139, 292
dates, storage of 522
dBase 131
DBMS. See database management

systems
DCE (Distributed Computing

Environment) 310
DCOM (Distributed Component

Object Model) 89, 154
DDR (double data rate) SDRAM

301
deafness 151
Dean, Howard 377
debit card transactions 39
debugging. See bugs and debugging
DEC Alpha 402
decimal numbers 338
decision making, Feigenbaum’s

work in 190
decision statements. See branching

statements; loop
decision support system (DSS)

139–140
decompilation 405
decrement operation 65
DeCSS 149, 246
DECUS 488
DEC VAX 227
deductive synthesis 33
Deep Blue 26, 85
Deep Thought 85
defragmentation 222–223
DejaNews 333
delegates 67
deletion, from list 282
del.icious.us 294, 523
Dell, Inc. 108, 140, 184, 237, 366
Dell, Michael 140, 184
Delphi 114
demo 428
democracy 439
demon 140–141, 144
DENDRAL 27, 187, 190
denial-of-service (DOS) attacks

100, 111, 242
Department of Defense. See

ARPANET; DARPA
Department of Homeland Security

119, 136
dependencies 389

562        Index

Dertouzos, Michael L. 141
DES (Data Encryption Standard)

39, 145, 180, 317
Descartes, Rene 295
D. E. Shaw Company 44
design documents 159
design patterns 122, 142
Design Patterns (book) 142
Desk Set (film) 378
desktop publishing (DTP) 4, 18,

64, 142–143, 287, 483, 517
desktop replacement. See laptop

computers
destructor function 88
deterministic games 103
developing nations and computing

108, 143–144, 149, 209
device driver 144–145, 145

assembly languages and 29
BIOS and 49
in boot sequence 55
in computer science 110
CPU and 304
for hard disks 223
in operating systems 353, 354
Plug and Play and 374
in software installation 244
systems programmer and

465
UNIX and 485

device-independent bitmap (DIB)
214

Devol, Joseph 182
DHCP (Dynamic Hosting

Configuration Protocol) 469
Dhrystone 43
DHTML (dynamic HTML) 161,

232–233. See also HTML;
XHTML

Diablo II 104
dialog boxes 308
dial-return satellite system 416
dial-up modem access 38, 58
DIB (device-independent bitmap)

214
dictionary 134, 201, 270, 271. See

also data dictionary
DidiWiki 511
difference engine 35–36
Differential Analyzer 13, 14, 63, 426
Diffie, Bailey Whitfield 145–146,

180
diffraction 191
DigiCash 146
digital 12, 12–13, 13, 147
digital audio tape (DAT) 446
digital camcorders 372
digital cameras 108, 223, 371–372.

See also photography, digital
digital cash 146–147
digital certificate 78–79, 79, 223–

224
Digital Chocolate 174
digital convergence 59, 147, 147–

148, 331, 378, 473, 507. See also
ubiquitous computing

digital dashboard 148, 294
digital divide 58, 109, 148–149,

170, 172, 439
Digital Editions (Adobe) 4
Digital Equipment Corporation

(DEC) 41, 187, 261, 467, 516.
See also PDP minicomputer

digital libraries 166–167, 211, 260
Digital Millennium Copyright Act

(DMCA) 150, 246, 405
digital music and video players.

See music and video players,
digital

digital photography. See
photography, digital

Digital Research 236, 321
digital rights management (DRM)

149–150, 166, 246, 326. See also
copy protection

digital signature 32, 39, 146
digital subscriber line. See DSL
digital to analog converter (DAC)

317
digital video recording (DVR)

163–164
digitizing tablet 215, 215
Dijkstra, Edsger W. 150, 150–151,

374, 460
diodes 86
Dipmeter Advisor 187
Direct2D 105
Direct3D 214
direct deposit 39
direct memory access (DMA) 243
directories 191
direct-recording electronic (DRE)

175
DirectX 105, 214
Dirt Dog (robot) 253
disabled persons and computing

151–152
Ajax pages and 6
JavaScript and 256
neural interface for 269
senior citizens and 425
smart homes for 434
speech synthesizer for 268
user interface and 489
virtual reality and 496
voting systems and 176

disassembly 405
disaster planning and recovery

37, 152
Discovery Systems CourseBuilder

32
discrete data analysis 458
discrete mathematics 296
discrimination net 190
disk array. See RAID
disk cache 60, 70, 223
disk compression 223
disk controllers 223
disk drives 55, 70. See also CD-

ROM and DVD-ROM; flash
drive; floppy disk; hard disk

diskette. See floppy disk
display. See flat-panel display;

monitor
distance education 153, 153–154,

170, 322
distracted driving 72, 327–328
Distributed Component Object

Model (DCOM) 89, 154
distributed computing 113, 154–

155, 324, 354, 426, 459, 462
Distributed Computing

Environment (DCE) 310
distributed database system 188,

292, 303, 334
distributed denial-of-service

(DDOS) attacks. See denial-of-
service attacks

distributed object computing 89,
118

distributed processing 310
diversity 179
divisions, in COBOL 91
DLLs (dynamic link libraries) 20,

277, 277, 309
DMA (direct memory access) 243
DMCA (Digital Millennium

Copyright Act) 150, 246, 405
DNA 316, 316–317
DNS (domain name system) 154,

155–158, 247, 251, 469, 508

DOCSIS (Data Over Cable Service
Interface Specification) 69

Dr. Dobbs’ Journal 260
doctors, ratings of 367–368
documentation 158, 159–160,

225, 471
documentation of program

code 74, 158–159. See also
documentation; technical
writing

document model 160–161, 192
Document Object Model (DOM)

160, 161, 233, 256
documents, XML 520
DOM (Document Object Model)

160, 161, 233, 256
domain name system (DNS) 154,

155–158, 247, 251, 469, 508
domain squatting 158
Donahoe, John 166
dongle 117
doping 86
DOS. See denial-of-service attacks;

MS-DOS
DOS-SHELL 322
DOS/Windows Service Technician

exam 80
dot-com bust

Amazon.com and 9, 45
AOL and 12
ASPs in 21
in computing history 229
in e-commerce 168
employment after 179
recovery from 108
women in computing and

515
Yahoo! and 523

dot-matrix printers 379, 381,
381–382

dot pitch 318
Dot project 67
DoubleClick 212
double data rate (DDR) SDRAM

301
double precision float 338
doubly linked lists 282
downward compatibility 94, 135
“Drafting Dan” 98
dragging 321
Dragon Systems 452
DRAM (dynamic random access

memory) 218, 301
DRE (direct-recording electronic)

175
Dreamweaver (Macromedia) 4, 507
Drexler, K. Eric 329
Dreyfus, Hubert 93, 161–162, 297
drill and practice programs 99
drive connection 86
driver. See device driver
DRM (digital rights management)

149–150, 166, 246, 326. See also
copy protection

drone aircraft 311
Drudge, Matt 259
drum, in laser printer 382
drum scanners 417
Drupal 52
DSL (digital subscriber line) 38,

58, 69, 162–163, 163, 299, 335
DSL access Multiplexer (DSLAM)

162
DSS (decision support system)

139–140
DTP. See desktop publishing
dual-core processors 4, 19, 245,

305, 324
“Dummies” series 159, 471
Dungeons and Dragons 104, 237,

347

DUP 201
DV (Digital Video) 493
DVD copy protection 149, 246
DVD-ROM. See CD-ROM and DVD-

ROM
Dvorak keyboard 185, 265
DVR (digital video recording)

163–164
Dynabook 263, 273, 433
dynamic arrays 24
dynamic binding 46, 490
Dynamic Hosting Configuration

Protocol (DHCP) 469
dynamic HTML (DHTML) 161,

232–233. See also HTML;
XHTML

dynamic link libraries (DLLs) 20,
277, 277, 309

dynamic random access memory
(DRAM) 218, 301

dynamic scoping 491

E
early binding 46
ease of use 37, 137
eBay 31, 165–166

Craigslist and 120–121
entrepreneurship and 184
founder of 342–344
in mashups 294
reputation system of 480
World Wide Web and 518

EBCDIC (Extended Binary-Coded
Decimal Interchange Code) 81

EBNF (extended Backus-Naur
form) 38

e-books 9, 166–167, 260, 382, 466
e-cash 146–147
eCharge 146
Echelon 181, 383
Eckert, J. Presper 167–168, 184,

226, 226, 296, 499. See also
UNIVAC

Eckert-Mauchly Computer
Corporation 167, 231, 296. See
also Eckert, J. Presper; Mauchly,
John William

Eclipse 122, 235, 352, 388
ECMAScript 256
ecology and computers 75
e-commerce 168–169, 169

Amazon.com in 8–9, 45
Andreessen in 15
anonymity in 17
auctions in 31
authentication in 32
certification for 80
in computer history 229
computer science in 110
CRM in 123
data mining in 136
digital cash for 146–147
encryption in 181, 503
expert systems for 188
fraud in 100
in Internet growth 248
mainframes used in 290
management information

systems in 292
natural language processing

in 330
Omidyar in 343
policy on 472
security in 101
in software market 294
Web page design for 507
World Wide Web and 518

ECP (Extended Capabilities Port)
360

ECPA (Electronic Communications
Privacy Act) 383

Index        563

Edelman, Leonard 316
Edison, Thomas 403
EDO (Extended Data Out) 301
EDP (electronic data processing)

341
EDS (Electronic Data Systems)

16, 293
educational fraud 345
Educational Research Laboratory

99
education and computers 169–171.

See also computer-aided
instruction (CAI)

computer-aided instruction
99

in computer history 229
computer literacy in 109
in developing countries 143
in digital divide 149
employment and 179
Logo for 284–285, 359
long-distance 153, 153–154
multimedia and 322
Papert and 359
PCs in 366
robotics in 411
Smalltalk for 434
social impact of computing

in 439
Stoll on 458
videoconferencing in 492
webcams in 504–505
webmaster skills in 506

education in computer field 79–80,
171–172, 179, 363, 514, 515

EDVAC 167, 227, 498–499
EEPROM (electrically erasable

programmable read-only
memory) 49, 436

EFF (Electronic Frontier
Foundation) 124–125, 150, 275,
440, 445

effectuators 178, 178
EFT (electronic funds transfer) 39
EGA (Enhanced Graphics Adapter)

213
e-government 172–173
EIDE (Enhanced IDE) 86, 223
EIES (Electronic Information

Exchange System) 114
Eiffel 173–174
eigenfaces 48
80-core processor 305
EISA (Extended ISA) bus 62
eldercare robots 183
electrical current, in hard drives

222
electrically erasable programmable

read-only memory (EEPROM)
49, 436

electricity, access to 143
Electric Minds 407
electromagnetic radiation, from

monitors 185
Electronic Arts 174–175
electronic calculators 70–71
Electronic Communications

Privacy Act (ECPA) 383
electronic data processing (EDP)

341
Electronic Data Systems (EDS)

16, 293
Electronic Frontier Foundation

(EFF) 124–125, 150, 275, 440,
445

electronic funds transfer (EFT) 39
Electronic Information Exchange

System (EIES) 114
electronic ink 382–383
electronic library 166–167, 211, 260
electronic mail. See e-mail

electronic music 325
Electronic Music Studio 325
Electronic Privacy Information

Center (EPIC) 125, 440
electronic voting systems 175,

175–176
element 23, 138, 520
Elementary Perceiver and

Memorizer (EPAM) 190
eListening Post 326
Eliza (chatterbot) 26, 83, 442,

481, 509
Ella (chatterbot) 83
Ellis, Jim 333
Ellison, Larry 356
else statements 55
EMACS 387
Emacs 456
e-mail 176–177, 177

advertising in 344
on ARPANET 247
business use of 64
in computing history 228
data compression in 134
encryption of 181
filtering 451, 505
fraud in 345
in groupware 217
in identity theft 238
Internet and 518
in Internet growth 247–248
in journalism 259
netiquette in 332
netnews and 333
in office automation 342
persistence of 332
personal information

managers and 368
phishing with 369–370
senior citizens’ use of

424–425
on smartphones 437
spam in 451
for technical support 470
viruses spread by 100, 111
wiretapping 273
from Yahoo! 523

e-mail filters 41
embedded systems 177–178, 178

Ada for 2
in cars 71
engineering of 102
Forth for 202
marketing of 107
microprocessors in 305
operating systems for 354
PC market and 367
real-time processing in 400
in smart cards 435
in ubiquitous computing 484
in wearable computers 501
Y2K and 522

embedding, in documents 160
emerging technologies. See trends

and emerging technologies
Emerson Electric 320
emotion 56, 313
Emotion Machine, The (Minsky)

313
employment in the computer field

108, 171–172, 178–179, 439
employment schemes 345
emulation 179–180, 405, 476, 494
Encapsulated PostScript (EPS) 214
encapsulation 88, 88, 109, 129,

180, 341
Encore Computer 41
encryption 180–181. See also

cryptography
for authentication 32
in banking systems 39

censorship and 76
in computer security 100
for copy protection 117
in data security 137
Diffie and 145
digital certificates and

78–79
under First Amendment 246
of flash drives 198
in networks 334
of PDFs 364
privacy and 383
public key 32, 78–79, 79,

145–146, 180–181, 181
quantum computing and

395
supercomputers and 462
of VoIP 497
for voting systems 176
in Web browsers 503
on wireless networks 513

encyclopedias, multimedia 322
endless loop 286
energy consumption, of computers

215–216
Energy Star 215–216
Engaged 114
Engelbart, Douglas 182, 233, 320
Engelberger, Joseph 182–183
engineering 110, 208
engineering applications 75, 130
Engineering Research Associates

(ERA) 121
Enhanced Graphics Adapter (EGA)

213
Enhanced IDE (EIDE) 86, 223
Enhanced Parallel Port (EPP) 360
ENIAC (Electronic Numerical

Integrator and Computer)
in computing history

226–227
development of 525
Eckert’s work on 167
government funding of 212
Mauchly’s work on 296
patent dispute over 297
in popular culture 378
programming in 386
user interface for 488
von Neumann and 498

Enigma cipher 180, 226, 481
enterprise computing 183–184
Enterprise Resource Planning

(ERP) 415
entrepreneurs in computing 184,

252
entropy, in information theory 241
enumerations and sets 67, 184–185
environment, computers’ impact on

215–216, 229
Environment division 91
EPAM (Elementary Perceiver and

Memorizer) 190
EPIC (Electronic Privacy

Information Center) 125, 440
Epinions.com 480
epistemology 267, 369
EPP (Enhanced Parallel Port) 360
EPS (Encapsulated PostScript) 214
ERA (Engineering Research

Associates) 121
ergonomics of computing 185–186,

265, 318
Ericsson Corporation 53
eroticism, virtual 125
ERP (Enterprise Resource

Planning) 415
error codes 187
error correction 186, 186

in data communication 133,
427

file transfer protocols and
193, 194

hashing in 224
in information theory

241–242
mathematics in 295
in modems 316
in networks 334
in programming environment

388
quantum computing and 395
in RAID 398
serial ports and 425
in tape drives 467

error handling 186–187, 373,
408, 427

eShop 343
Estonia 242
Estrada, Joseph 198
Estridge, Phillip “Don” 236
ETH (Swiss Federal Institute of

Technology) 362, 514
Ethernet network 38, 283, 299
ethnic diversity 179
eToys 264
E*Trade 348
Eudora 428
eUniverse 440
Evans, David 463
Evans and Sutherland 463
even parity 186
events, in Microsoft Windows 308
Everquest (game) 104, 347
evidence 102–103, 147
evolution, in genetic algorithms

207
evolutionary biology 46
evolutionary programming. See

genetic algorithms
evolutionary software engineering

444
e-waste 216
ex 261
Excel (Microsoft) 160, 452–453,

454
expansion slots 62, 62
expert systems 187–188, 188. See

also DENDRAL; SHRDLU
artificial intelligence in 27
in automated programming

33
computer science in 110
in decision support systems

139
for fault diagnosis 189
Feigenbaum’s work with 190
fuzzy logic in 204
genetic algorithms in 208
knowledge engineering in

190
knowledge representation in

266, 267
for medical field 300
Prolog for 390
risk and 409

exponent 338
exponential time 98
expressions 354–355, 490. See also

regular expression
ext3 192
extended ASCII characters 81
extended Backus-Naur form

(EBNF) 38
Extended Binary-Coded Decimal

Interchange Code (EBCDIC) 81
Extended Capabilities Port (ECP)

360
Extended Data Out (EDO) 301
extremism 377
eye, biometric scanning of 48
eyestrain 318

564        Index

F
Facebook 16, 440–441, 487, 494
facial scanning 48
factories, CAD/CAM in 98–99
fail-safe 189, 408
Fairchild Semiconductor 4, 85,

218, 318
fair use 246
false color 239, 421
false positives, from Bayesian

algorithms 41
FAQ (Frequently Asked Questions)

470
farming 143
FAT (file allocation table) 191, 321
fat client 89
fault coverage testing 395
fault tolerance 39, 155, 178,

189–190
Federal Privacy Act 383–384
Federal Wire Act 346
Fedora 279
feedback 56, 124
feedback loop 510
feedback system, on eBay 165–166,

343, 480
Fefferman, Nina 441
Feigenbaum, Edward 187, 190
Feldman, Julian 190
Felt, Dorr E. 70
Fermi, Enrico 432
ferrite core memory 301
Feynman, Richard 329, 395
fiber optics 58, 162, 190–191, 356
fiber-to-the-home (FTTH) 191
fiction, hypertext used for 234
Fido BBS 61
FidoNet 247
FIFO (first in, first out) 60, 138,

396
Fifth Generation, The (Feigenbaum

and McCorduck) 190
Fifth Generation Computer

Program 390
file 191–192, 217, 264, 321, 353,

410
file allocation table (FAT) 191, 321
file conversion 135
file extensions 192
file formats 37, 94–95, 135,

163–164
file permissions 136–137, 248
File & Serve (Lexis) 274
file server 107, 192–193, 235,

335, 396. See also client-server
computing; RAID

file-sharing and P2P networks 193
anonymity in 17
counterfeit software on 445
Electronic Frontier

Foundation and 125
liability of 246
for music and video

distribution 326
of protected content 150
service providers and 332

file transfer protocols (FTP) 193–
194, 248, 518

film industry and computing 16,
104, 194–195

Filo, David 379, 422, 523
filters, image processing 239
financial calculators 195
financial software 195
fingerprints 48, 49
finger scanning 48
finite-state machine 195–196, 196,

278, 481
Fiorina, Carly 515
Fios (Verizon) 58, 69, 191
Firefly Networks 289

Firefox 374–375, 504
firewall 100, 111, 196–197, 334
FireWire 197, 493
First Amendment 124–125, 246
“First Draft of a Report on the

EDVAC” (von Neumann) 498
first fit algorithm 302
first in, first out (FIFO) 60, 138,

396
FISA (Foreign Intelligence

Surveillance Act) 119, 383
Fitel 44
flag 197–198
flaming 17, 83, 114, 331
Flash (Macromedia) 4, 20, 32,

374, 507
flash and smart mobs 198, 407, 477
flash drive 37, 198–199, 200, 446,

487
flash memory 4, 272, 301, 372
flatbed scanner 416
flat file database model 131
flat-panel display 199, 199, 318
FLEX 263
Flickr 294, 523
floating ads 344
floating point numbers 338
floating-point units (FPUs) 61,

138, 305, 323
floppy disk 199–200

in Apple 519
capacity of 74
CD-ROM replacement of 74
copy protection of 117
in IBM PC 236
Sony and 445
viruses on 111
in word processors 516

flops 298
flowchart 73, 73, 200, 200
flow control, in data

communication 133
flowers, robotic 57
FLOW-MATIC 90, 231
FOIA (Freedom of Information

Act) 173
Folding@Home 46–47, 217, 462
fonts 3, 110, 143, 200–201, 201,

364, 507. See also typography,
computerized

force-feedback systems 221, 496
Foreign Intelligence Surveillance

Act (FISA) 119, 383
fork statement 113
formalism 162
formal language 278
formatting, of hard disks 222
forms 80–81, 256, 470
Forster, E.M. 418
Forth 201–202, 456
FORTRAN 202–203

current use of 389
development of 404
mathematics and 295
for mathematics libraries

296
PL/I and 373
procedures in 384
professional programming

and 386
Fortress 113, 324
forums 350
forward chaining 188
FPS 43
fractals in computing 134, 203,

203, 295, 401
fragmentation 222–223, 302
frames

in artificial intelligence 27,
313

of data packets 283

in data transmission 133
in expert systems 188
for knowledge representation

266–267
for language processing

278–279
in natural language

processing 330
frameworks 6, 20, 89, 95, 173. See

also Microsoft .NET
Frank, Barney 346
fraud, online 100, 344, 345–346,

349, 472. See also identity theft
Free Culture (Lessig) 274–275
Freedom of Information Act (FOIA)

173
freedom of speech 124, 125
Freescale Semiconductors 320
Free Software Foundation 429,

456, 477–478, 486
Free Speech Movement 378
free trade 209–210
freeware 104, 293–294, 352,

427–428
Frequently Asked Questions (FAQ)

470
Fritz 9 84
Front Row 357
FTP (file transfer protocol) 193–

194, 248, 518
FTTH (fiber-to-the-home) 191
FUD (fear, uncertainty, and doubt)

10
Fuegelman, Andrew 427
Fujitsu 108
Full Spectrum Warrior (game) 311
functional languages 67, 203–204,

286, 338. See also LISP
functions 384–385

in APIs 20, 20
binding and 45–46
in C 66
in C# 67
in C++ 68
in computer science 109, 110
in data abstraction 129
in functional languages

203–204
in Korn shell 429
in LISP 281, 389
in Lua 286
macros and 288–289
object-oriented programming

and 339, 443
in Plankalkül 526
programming languages

and 388
recursive 401
in Ruby 413
in spreadsheets 453
for strings 82
in structured programming

443
virtual 88

fund-raising 377
future event, probability of 40–41
Future Shock (Toffler) 432
fuzzy logic 204, 337, 356
fuzzy set 204

G
gain, in DAQ performance 130
Galvin Manufacturing Corporation

320
gambling, online 346–347
game consoles 108, 174, 205–206,

235, 305. See also Nintendo Wii;
PlayStation; Xbox

Game of Life 28, 75, 75
games. See computer games; online

games

game theory 103, 432, 498
GAMM (Gesellschaft für

angewandte Mathematik und
Mechanik) 7

Gantt charts 389
GarageBand 326
garbage collection 224, 281
Gardner, Martin 75
Garmin 293
Garriott, Richard 104
Gates, William, III (Bill) 79, 184,

206–207, 207, 305–306, 321, 430
Gateway 366
gateway programs 80
gateways 177, 247, 248
gauges 129
GDI (Graphics Device Interface) 308
geeks 378, 515
gender diversity 179
General Dynamics 320
General Electric 509
General Motors 183
General Public License (GPL3)

150, 352, 457, 478
General Services Administration

79
generative grammar 278
gene sequencing 46
genetic algorithms 8, 28, 75,

207–208
genetics 27, 46, 188, 262
Genghis (robot) 59
Geographical Information Systems

(GIS) 208–209, 404
geometry 295
German Aerodynamics Research

Institute 525
germanium 85
Gershenfeld, Neil R. 395
Geschke, Charles 3, 379
Gesellschaft für angewandte

Mathematik und Mechanik
(GAMM) 7

Gibson, William 125, 419. See also
Neuromancer (Gibson)

GIF (graphics interchange format)
94, 134, 214

gigabyte 51, 298
Gilmore, John 124
GIS (Geographical Information

Systems) 208–209, 404
Gise, Preston 44
glare 185
global flags 197–198
globalization and the computer

industry 179, 209–210, 229, 472
Global Positioning System (GPS)

209, 292
Global System of Mobile

Communications (GSM) 436,
514

global variables 491
Gmail 211
GNU Linux. See Linux
GNU Project 279, 352, 429, 456,

477–478
Gnutella 193
Go (game) 85
Godel, Kurt 295
Goldstine, Herman 296, 499
Google 210–212

advertising business of 344,
346, 358

blogging and 52
censorship in China and 76
Cerf at 78
in Chinese market 108
digital library of 166, 167
founding of 57, 358
mashups and 294
for online research 350

Index        565

PageRank algorithm of 57,
210, 211, 423, 480

phone platform from 437
searching with 423
in social networking 441
Yahoo! and 523
YouTube and 524

Google Apps 21, 107, 211, 217,
294, 306

Google Book Search 167, 211
Google Docs & Spreadsheets 21,

107, 211, 294, 517
Google Earth 211, 292–293
Google Groups 333–334
Google Language Tools 271
Google Maps 211, 292–293, 294,

423
Google News 211
Google Pack 21
Google Product Search 211
Gopher 248, 518
Gosling, James 255
“GO TO Considered Harmful”

(Dijkstra) 151
Gouraud shading 106
government 49, 76, 172–173, 181,

250, 436
government funding of computer

research 212–213, 404, 462, 472
GPL3 (General Public License)

150, 352, 457, 478
GPS (Global Positioning System)

209, 364, 384
Grand Theft Auto series 104
graphical user interface. See user

interface
graphics. See computer graphics
graphics card 213, 213–214

BIOS and 49–50
chipset for 86
games and 104
in IBM PC 236
in I/O processing 243
in laptops 272
microprocessor for 305
on motherboard 319
in PCs 322
performance of 106

Graphics Device Interface (GDI)
308

graphics engine 105–106
graphics formats 94, 214–215
graphics interchange format (GIF)

94, 134, 214
graphics modeling 105–106
graphics tablet 215, 215
graphing calculators 71
Gray, Elisha 525
greedy algorithm 8
green, in RGB 93
greenhouse emissions 216
green PC 101, 215–216
Greiner, Helen 60, 253
grid computing 87, 155, 216–217,

494
Grokster 246
groupware 217–218
Grove, Andrew S. 218, 318
GSM (Global System of Mobile

Communications) 436, 514
GUI. See user interface
Gulf War 242
Gulliver’s Travels (Swift) 418
Gutmans, Andi 372

H
Hackers (Levy) 482
hackers and hacking 219–220. See

also computer crime; security
of application service

providers 21

banking and 39
copy protection and 246
in cyber culture 125
IBM and 235
Mitnick and 314
in open-source movement

352
in popular culture 378
Stallman and 456
Stoll and 458
of voting systems 176

hacktivism 127
hafnium 86
HAL 9000 (character) 59
Halo (game) 306
Halting problem 97
Hamming Code 186
Handbook of Artificial Intelligence

(Feigenbaum, ed.) 190
hand geometry 48
handheld scanner 416
handwriting recognition 220–221,

221, 466, 489
hanging chads 175, 392
Hannibal (robot) 56
haptic interfaces 221–222
harassment 100, 126, 248, 252,

523
hard disk 222, 222–223

BIOS and 49
bits in 50
in boot sequence 55
for data backup 37
development of 404
for file servers 192
in game consoles 205
in IBM PC 236
in information retrieval 240
in laptops 272
tape drives and 467
for virtual memory 302

hardware 95, 137, 240, 245
Harvard Mark I 5, 61, 231, 498
Harvey, Brian 285
hashing 24, 223–224, 240, 365,

448
hash sort 448
Haskell language 204
Hawking, Stephen 151
Hawkins, Trip 174
Hayek, F. A. 500
Hazen, Harold 510
HD-DVD 75
HDTV 75
head-mounted display (HMD)

496, 501
health, personal 300–301, 367–

368, 436
heap 24, 224
heapsort 447
hearing damage, from music

players 327
heat 101, 305
Heinlein, Robert 98
Hellman, Martin 145, 180
“Hello World” 67
Help America Vote Act 176
help desks 108
HelpMate (robot) 183, 410
HelpMate Robotics, Inc. 183
help systems 224–225, 233, 308,

471. See also technical support
heuristic 8
Heuristic Compiler 33
Hewlett-Packard (HP) 16, 237, 258
hexadecimal system 225–226
high-level language 29, 227,

252–253, 278, 288, 337. See also
C (language); C++ (language);
FORTRAN

high-speed Internet. See broadband

High Tech Heretic (Stoll) 458
highway system, automated 71–72
Hilbert, David 87
Hillis, Daniel 461
history (Web browser) 234
history of computing 226–229
HMD (head-mounted display)

496, 501
Hoare, Anthony 33
Hoare, C. A. R. 447
Hoff, Marcian E. “Ted” 304,

318–319
Holberton, Betty 515
Holland, John 28
Hollerith, Herman 229–230, 458
Homebrew Computer Club 18,

366, 488, 519
home business schemes 345
Homeland Security 119, 136
home media center 299
home office 230–231
Honeywell 297
Hopper, Grace Murray 90, 231,

231–232, 515
hospital information systems (HIS)

299
HotBits 399
Hot Plug 63
“hot spots” 58, 250, 250
Howard, John H. 63
HP (Hewlett-Packard) 16, 237, 258
HTML (Hypertext Markup

Language) 232, 232–233. See
also DHTML; XHTML

CGI and 80–81
in document formatting 342
for help systems 225
for hypertext 233
for Internet applications

programming 249
with Java 255
with JavaScript 256
for presentations 381
Web browsers and 503
in Web page design 507
for World Wide Web 518
XML and 520

HTTP (HyperText Transfer
Protocol) 157–158, 233, 438,
503, 508, 518

Huffman coding 134
human-computer symbiosis 139,

277, 391
human genome 46
human mind, modeling 92–93
Human Use of Human Beings, The

(Wiener) 511
HVAC, in smart buildings 434
hybrid cars 71
Hypercard 32, 99, 122, 233, 322
hypermedia 233–234. See also

multimedia
Hyperterminal 476
hypertext 233–234

Bush and 63
in computer history 229
Engelbart’s work on 182
in help systems 225
multimedia and 322
for World Wide Web 43
in World Wide Web 518

I
I18n 246–247
IAD (Internet addiction disorder)

391
IBM (International Business

Machines) 235–236
Amdahl at 10
Apple and 258
in computing history 227

Deep Blue and 85
FORTRAN developed at 202
government funding of 212
hafnium chips by 86
Hollerith and 230
IAS computer and 499
Java and 255
mainframes by 290, 290
marketing of 106
Mark I underwritten by 5
McCarthy at 297
in office automation 341
optical hybrid chip by 356
parallel interface by 360
patents owned by 245
popular culture and 378
research of 404
RPG at 412
supercomputers of 462
tape format of 467
word processor and 516
X10 at 324

IBM/360 227, 235, 290, 290, 323
IBM/370 235, 290
IBM/390 290
IBM MVS JCL 257
IBM PC 236–237. See also PC

clones
Apple II and 18, 258
boot sequence for 54–55
bus in 62
in computing history 228
in education 99
in IBM business 235
introduction of 366
keyboard of 265
Macintosh and 287
market entry of 106–107
microprocessors in 304, 319
monitor for 318
operating system for 107,

206, 305, 307, 321
processors for 4, 218
reverse engineering of 405
standards and 457
word processing on 516

Ibuka, Masaru 445
IC. See integrated circuit
ICANN (Internet Corporation for

Assigned Names and Numbers)
17, 158, 251

ICCP (Institute for Certification of
Computing Professionals) 80

Icon 83
icons 247
ICT (Information and

Communication Technologies)
Task Force 251

ICYou.com 368
IDE (Integrated Drive Electronics)

223
Identification division 91
identity fraud 238
identity in the online world 17,

124, 125, 237–238, 391, 482, 524
identity theft 100, 238–239. See

also computer crime; online
fraud and scams

biometrics and 49
credit card use and 146
data security and 137
by hackers 220
information collection in

384
Internet growth and 248
phishing in 369, 370
policy on 472
risk and 408
spyware in 453
with viruses 111

ideographs 82

566        Index

IDNA (Internationalizing Domain
Names in Applications) 158

IEC (International Electrotechnical
Commission) 298

IEEE Transactions on Information
Theory (Diffie and Hellman)
146

IETF (Internet Engineering Task
Force) 251

if statements 55
IGF (Internet Governance Forum)

251
IIOP (Internet Inter-ORB Protocol)

118
iLife 357
I.Link 197
Illustrator (Adobe) 4
iMac 19, 258, 288
image, bitmapped 50, 50, 81, 214
image manipulation, as art 25
image processing 110, 112, 204,

239, 300. See also computer
graphics

iMovie 493
IMP 78
impaired driving, monitoring 71
imperative languages 203
implementation 138, 154, 394, 444
IMPs (Interface Message

Processors) 266
income, in digital divide 149
incremental computing 463
increment operation 65
index file, in information retrieval

240
index register 119–120, 304
index table 223
India 143, 149, 209
indirection 375–377
Inducing Infringement of

Copyrights Act 445
induction 190
industrial robots 182–183,

410–411
industry 99. See also CAD/CAM
inference engine 188, 188
Information and Communication

Technologies (ICT) Task Force
251

information design 239–240
“Information Flow in Large

Communication Nets”
(Kleinrock) 266

information hiding 129, 460
Information Processing Technology

Office (IPTO) 463
information retrieval 240–241,

273. See also search engine
information science 46, 110
information services, online. See

online services
information systems auditing 31,

130
information systems degrees 171
information theory 42, 241–242,

427
information transfer rate 38
information warfare 100, 127, 220,

242, 248, 311
Information Week 260
InfoTrac 349
InfoWorld 260
infrastructure

in developing nations 143
embedded systems in 178
for enterprise computing 183
in information warfare 242
for Internet 87
pyramid model of 291, 291
for smart home 435
society as 438

inheritance
in C# 67
in cellular automata 75
in classes 20, 88
in data abstraction 129
in object-oriented

programming 67, 340
in Simula 431
Smalltalk and 434

in-house applications 22
in-house documentation 471
Ink Development 343
inkjet printer 380, 382
inner identity 237
In pointer 60
input device. See graphics tablet;

keyboard; mouse
Input/Output (I/O) 242–243, 243

in C 66
in C++ 68
in COBOL 91
in computer engineering 101
CPU and 304
in flowcharts 200
in mainframes 290
microprocessor and 304
in minicomputers 312
in MS-DOS 321
in operating systems 353
in PL/I 373

insertion, in list 282
insertion sort 447–448
installation of software 244
instant messaging 11, 126, 198,

217, 440, 477, 523
Institute for Advanced Study 499
Institute for Certification of

Computing Professionals (ICCP)
80

Institute for Electrical and
Electronic Engineers (IEEE)
79, 457

Institute of Electrical and
Electronics Engineers Computer
Society 404

instructions
addressing 3
in Analytical Engine 35
in BINAC 167
in cache 10, 69–70
CPU processing of 304
in machine code 28
storage of 167

instrumentation, scientific
419–420

integer 138, 338
integrated circuit (IC). See also

CPU; microprocessor
in calculators 71
in chipsets 86
in computing history 227
invention of 85
in microcomputer 228
Moore’s work with 318
in supercomputers 461
Sutherland’s work on 463

Integrated Drive Electronics (IDE)
223

Intel Corporation 244–245
AMD processors and 4
Apple and 258
chipset architecture of 86
Grove at 218
hafnium chips by 86
in industry standardization

237
Macintosh and 288, 357
microprocessors of 228, 304
Moore at 318–319
nanotechnology at 330
in USB development 197

intellectual property and
computing 245–246

censorship and 76
centralization and 440
digital rights management

and 149–150
DVRs and 164
file-sharing networks and

193
Google Book Search and

167, 211
hackers and 219
ISPs and 252
at MIT Media Lab 313
policy on 472
YouTube and 524

intelligence, defining 26
intelligence agencies 118–119, 136
IntelliGenetics 190
intelligent agents. See software

agents
Intellipedia 119
intentional programming 430
Intentional Software 430
InterCasino 346
Interface Message Processors

(IMPs) 266
interfaces. See specific types
interference 408
interlaced display 318
interlock mechanism 113
intermediate language (IL) 67
intermediate representation 96, 96
International Electrotechnical

Commission (IEC) 298
internationalization and

localization 158, 246–247
Internationalizing Domain Names

in Applications (IDNA) 158
International Space Station 430
International Standards

Organization (ISO) 457
International Telecommunication

Union (ITU) 251, 316
Internet 247–249. See also World

Wide Web
bandwidth on 38
broadband for 57–59
business use of 64
centralization and 439–440
computer-aided instruction

over 99
computer engineering and

102
in computer science 110
in computer security 100
in computing history 228,

229
data communications over

133
definition of 468
digital divide of 148–149
distance education over

153–154
DNS in 155
employment in 178–179
in groupware 217
infrastructure for 87
for journalism research 259
legal theory on 274–275
in libraries 276
local area networks and 284
multimedia on 322
in office automation 342
organization and governance

of 124, 250–251, 274–275,
439, 494

packet switching on 78, 133
in popular culture 378
portability and 95
publications on 260

risk and 408–409
in science fiction 418–419
in software marketing

293–294
TCP/IP and 468–469
telecommunications and 473
viruses spread by 100
wiretapping and 119

Internet addiction disorder (IAD)
391

Internet addresses 157–158
Internet applications programming

249–250
Internet cafés 250, 250
Internet Corporation for Assigned

Names and Numbers (ICANN)
17, 158, 251

Internet Crime Complaint Center
345

Internet Engineering Task Force
(IETF) 251

Internet Explorer. See Microsoft
Internet Explorer

Internet Governance Forum (IGF)
251

Internet Inter-ORB Protocol (IIOP)
118

Internet Law Treatise 274
Internet-only banks 39
Internet radio 251
Internet Relay Chat (IRC) 83, 442
Internet security packages 197,

505
Internet service provider (ISP) 70,

251–252, 332, 350–351, 451,
503. See also America Online

Internet tablet 466
Internet telephony. See VoIP
Internet Worm 111
interpolation 371
InterPress 379
interpreter 252, 252–253

in APL 18
for BASIC 40
Brief Code 297
in LISP 281
parsing by 360–361
for Pascal 362
for PostScript 379
for Python 392
for Ruby 413–414
in scripting languages 421
for Tcl 468

interprocess communication 264
interrupt-driven I/O 243, 243
interrupt request (IRQ) 243, 243
interstitial ads 344
Intranet 229, 284, 292
intrusion detection 102
inventory 291
investments 345, 348
IP addresses 155, 158, 468, 469
iPhone 19, 147, 258, 364, 437,

466, 478
iPod 19, 108, 154, 258, 326, 327,

327–328, 375
IP phone 496
iptables 197
IPTO (Information Processing

Technology Office) 463
IPTV 69
IP Version 6 158
Iraq War 53, 198
IRC (Internet Relay Chat) 83, 442
iris scanning 48, 48
iRobot Corporation 60, 253
iRobot Create 253
IRQ (interrupt request) 243, 243
ISA (industry standard

architecture) 62, 62, 237, 319,
457

Index        567

ISAM (Indexed Sequential Access
Method) 192

ISDN (integrated services digital
network) 58, 299

ISO (International Standards
Organization) 457

ISP (Internet service provider) 70,
251–252, 332, 350–351, 451,
503. See also America Online;
satellite Internet service

iterative software engineering 444
ITU (International

Telecommunication Union) 251
iTunes 19, 150, 258, 326, 327
Iverson, Kenneth E. 18
iWork 357

J
Jabberwocky (chatterbot) 83
Jackson, Steve 124–125
Jacquard, Joseph-Marie 392
Jansky, Karl 42
Japan 108
“Jaron’s World” 272
Java 254, 254–256, 255

applets in 19
C++ and 68–69
development of 461
for financial calculators 195
inheritance in 340
for Internet applications

programming 249
interpreters for 253
Joy and 261
Microsoft and 206
Microsoft .NET compared

to 307
Microsoft Windows

challenged by 107
multiprogramming in 324
plug-ins 374
pointers and 377
portability of 95
procedures in 385
program libraries in 276
pseudocode and 391
for smart cards 436
SQL and 455
for virtual reality

programming 496
in Web browser 504
XML and 520

Java API for XML (JAX) 255
JavaBeans 255
JavaCard 436
Java/RMI (Java/Remote Method

Invocation) 154–155
JavaScript 256–257, 508

in Ajax 6
in DOM 161

Java Server Pages (JSPs) 255
Java Virtual Machine (JVM) 179,

253, 255, 461
JAX (Java API for XML) 255
JCL (job control language) 97,

257, 276
J dialect 18
Jennicam 504
Jennings, Tom 61
Jet Propulsion Laboratory (JPL) 78
Jini 261
JobCentral 348
job control language (JCL) 97,

257, 276
job market 108, 171–172, 178–179,

439
Jobs, Steven Paul 18, 19, 150,

257–259, 357, 519
job searching and recruiting,

online 348–349
John Madden Football (game) 174

join, in database 131
Joint Photographic Experts Group

(JPEG) 214–215, 372
Jones, D.F. 418
JotSpot 211
journaling, in file systems 192
journalism

blogs in 52, 53, 125
censorship of 76
and computer industry

260–261
and computers 259–260
multimedia and 322
online research in 349
podcasts in 375
political activism and 377
user-created content in 487
World Wide Web in 518

Joy, Bill 255, 261, 261–262
joystick 489
JPEG (Joint Photographic Experts

Group) 214–215, 372
JScript 257, 508
JScript.NET 257
JSPs (Java Server Pages) 255
Julia (chatterbot) 83, 442
jurisdiction 123
JVM (Java Virtual Machine) 179,

253, 255, 461

K
Kaczynski, Theodore 261
Kahn, Robert 78
Kana Unicode 82
Kaphan, Shel 45
Kapor, Mitch 124
Kasparov, Garry 26, 85
Katz, Phil 428
Katz v. U.S. 383
Kay, Alan 263–264, 433
Kazaa 193
Kelvin, Lord. See Thomson,

William
Kemeny, John G. 39
Kepler, Johannes 70
Kermit 194
kernel 264

in boot sequence 55
for GNU 279, 456–457
in Linux 279, 478
in operating system

architecture 354
in OS X 357
in UNIX 353, 429, 485

Kernighan, Brian W. 33
kerning 201
key 24, 131, 223, 224, 446–448. See

also public key cryptography
keyboard 129, 185, 265, 265, 272,

364
key escrow 146, 181
key exchange 146
keyframes 16
keyloggers 453
Keynote (Apple) 381
keystroke commands 489
keywords

cooperative assignment
of 117

for information retrieval 241
in online advertising 211,

344
in parsing 361
in Pascal 362
in search engines 422
in Web filters 505

Kiczales, Gregor 430
Kilby, Jack 85
Kildall, Gary 321
kilobyte 51, 298
Kimball, Lisa 407

Kimsey, Jim 11
Kindle 9, 166
Kismet (robot) 27, 56, 411
Kleinrock, Leonard 265–266
Knopf, Jim 427
knowledge, encoding 187
knowledge base 188, 188, 470
“knowledge engine” 418
knowledge engineering 190
knowledge principle 190
knowledge representation 110,

266–267, 369, 390, 442
Knuth, Donald 267–268
Korn, David 429
Korn shell (Ksh) 429, 485
Kowalski, Robert 390
KR 110, 266–267, 369, 390, 442
KRM (Kurzweil Reading Machine)

268
Kurtz, Thomas 39
Kurzweil, Ray 268, 268–269, 325,

355, 432–433, 452
Kurzweil Reading Machine (KRM)

268

L
L1 cache 70
L2 cache 70
L10n 246–247
Laboratory for Computer Science

141
lagged-Fibonacci algorithm 399
lambda calculus 87, 97
LambdaMOO 494
LAN. See local area network
Landau, Susan 146
landers 449
languages. See programming

languages
language translation software

270–271, 278–279, 330, 363
Lanier, Jaron 271–272
LAPACK 43
laptop computers 272, 272–273

batteries for 446
data security on 137
by Dell 140
fingerprint readers on 49
global market for 108
“hot spots” and 250
by IBM 237
identity theft from 238
keyboard for 265
market entry of 107
military use of 310
operating system and 354
PDAs and 364

Larson, Earl Richard 30, 297
laser 42, 74–75, 300, 356
laser printer 379, 380, 382, 382
LaserWriter (Apple) 379
last in, first out (LIFO) 138, 456
last mile 87
latency 416
LaTex 483
law enforcement and computers 17,

31, 49, 273, 345–346, 370
law offices 273–274
laws of robotics 418, 433
layered architecture 59
LCD (liquid crystal display) 199,

199, 272, 318
LCS (MIT Laboratory for Computer

Science) 141
learning theory 284, 359
LEFT SHIFT bitwise operator 52
Legal Information Institute 274
legal research 349
legal software 273–274
legal theory 274–275
LEGO Logo 285, 411

Leibniz, Gottfried Wilhelm 70, 294
Leinster, Murray 418–419
LEM (Lunar Excursion Module)

449
Lempel-Ziv compression 134
Lenat, Douglas 27, 267, 351
Lenovo 235
Leonardo (robot) 56, 56–57
Lerdorf, Rasmus 372
Lerner, Sandy 87
Lessig, Lawrence 123, 251,

274–275
Levy, David 85
Levy, Steven 482
lexical analysis 95, 96
lexical binding 45
LexisNexis 274, 349
LexisOne 274
Lexitron 516
libraries, digital 166–167
libraries and computing 275–276,

349, 505
library, program 276, 276–277. See

also DLLs
in Algol 7
algorithms in 7
for APIs 20
in C++ 68
in compiling 96–97
for mathematics 296
in Microsoft .NET 306
in Microsoft Windows 20,

309
in object-oriented

programming 341, 443
in operating system 353
for PHP 373
procedures and functions

in 385
for sequential calculators 5
for VBScript 492

Licklider, Joseph Carl Robnett
277–278

Life on the Screen (Turkle) 482
lifetime, of variables 491
LIFO (last in, first out) 138, 456
lighting, in smart buildings 434
light level, in graphics 106
Lilith (workstation) 514
Linden Lab 347–348
linear search 448
line noise 316
line printers 381
linguistics and computing 278–

279, 330, 442
LinkedIn 349, 440–441
linking, in document model 160
links. See hypertext
Linksys 87
Link trainer 311
Linolex 516
Linpack 43
Linux 279, 279–280, 280. See also

UNIX
ASP .NET on 1
in computer industry trends

108
in computer market 107
on Dell computers 140
development of 456–457,

477–478, 486
device drivers in 145
DRM on 149, 150
DVR capability of 163–164
emulators on 179
files in 192
firewall in 197
on flash drive 198
kernel in 264
as media center 299
Microsoft and 306, 309

568        Index

in open-source movement
352

personal information
managers for 368

server version of 192
shell in 429
for smartphones 437
software installation on 244
updates under 244
for workstations 517

Lisa (computer) 258
LISP 280–282

applications of 204, 389
development of 403
in EMACS 387
as functional language 204
lambda calculus in 87
Logo and 284
McCarthy’s work on 297
recursion in 401
variables in 490, 491

list 137–138
list processing 282, 282–283

in C# 67
in computer science 109
in insertion sort 447
lambda calculus in 87
LISP for 281
in Logo 284
in memory allocation 224
queue for 396
stack and 456
trees for 479

literacy 143, 149
literals 115
literature, hypertext used for 234
lithography 85, 86
Littman, Jonathan 314
LiveScript 256
load balancing 310
loader program 54
local area network (LAN) 283,

283–284
business use of 64
in cluster computing 216
in computer history 228
data communications over

133
groupware and 217
in office automation 342
for SOHO market 230

local buses 62–63
localization 158, 246–247
local search 423
locational privacy 384
Loebner Contest 84
Lofgren, Eric 441
logical comparisons 65
logical operators 51
logic bombs 111
logic error 61
Logic Named Joe, A (Leinster)

418–419
logic programming languages 338,

389
Logic Theorist 33, 190, 295
logistics 310
Logo 170, 282, 284–285, 359, 433
Loislaw 274
London, cholera outbreaks in 239
long-distance education 153,

153–154, 170, 322
long integer 138, 338
loop 285, 285–286

in arrays 24
in BASIC 40
in C 65
in COBOL 91
in error handling 187
in flowcharts 200
in FORTRAN 202

infinite 97
in interpreters 252
logical errors in 61
in Perl 365
in procedural languages 388
recursion and 400
in structured programming

460
lossless compression 92, 214
lossy compression 92, 134, 214,

372
Lotus 1-2-3 366, 452
Lotus Notes 217, 342
LoudCloud 16
Lovelace, Ada 2, 35, 36, 515
LR parsing 267
Lua 286
Lucent Technologies 42
Lunar Excursion Module (LEM)

449
Lunar X Prize 358
Lycos 422
LZW (lossless compression) 214

M
machine code 28–29, 45, 95, 388
Machine Readable Cataloging

(MARC) 275
“Machine Stops, The” (Forster) 418
machine translation (MT) 270
Macintosh 18–19, 287–288, 288.

See also Apple; iMac
in computing history 228
C on 66
desktop publishing on 143
device drivers in 144–145
digital video on 493
DVR capability of 163–164
in education 99, 169
embedding and 160
emulators on 179
floppy disks and 199
graphics on 105, 322
help systems in 225
hypertext on 233
Intel chips in 245
introduction of 258, 524
Jobs and 257–258
laptops by 273
market entry of 107
market share of 306
as media center 299
microprocessors in 320, 357
mouse and 320–321
operating systems for 353,

357. See also OS X
in personal computing 366
personal information

managers for 368
scripting in 422
user documentation in 159
user interface of 18, 228,

258, 307, 488–489
word processing on 516

Mac-LISP 281
macro 29, 111, 288–289, 453
Macromedia 4
Macromedia Director 381
Macromedia DreamWeaver 4, 507
Macromedia Flash 4, 20, 32, 374,

507
Macsyma 145
Macy, Michael 441
Made In America (Dertouzos) 141
Maes, Pattie 289–290
Magellan 293
magenta, in CYMK 93
magnetic ink character recognition

(MICR) 39
magnetic resonance imaging (MRI)

300

mailer demon 140
mainframe 290, 290–291

Amdahl and 10
backup systems for 37
batch processing in 257
buses in 62
in CAD 98
compiling in 97
in computing history 227
employment and 179
FORTRAN for 202
IBM and 235
I/O processing in 243
marketing of 106
memory in 467
multiprocessing in 323
in popular culture 378
printers for 381
professional programmers

for 386
program libraries in 276
RPG for 412
SQL and 454
Stallman’s work with 456
statistical analysis with 458
tape drives in 467
user group for 488
Y2K and 522

maintenance 444
makefile 388
malware 451. See also spyware and

adware
managed backup services 37
“Management Game, The” 103
management information system

(MIS) 110, 171, 291, 291–292
Mandelbrot, Benoit 203
mantissa 338
manuals 159, 471
map information and navigation

systems 71, 209, 211, 229,
292–293, 441

MapQuest 292
MARC (Machine Readable

Cataloging) 275
marker, in hypertext 234
marketing 9, 11
marketing applications 64
marketing of software 107–108,

293–294
Markhoff, John 314
Mark I 5, 61, 231, 498
Mark II 5
Mark III 5
Mark IV 5
markup languages 5–6, 161, 232–

233, 256, 520. See also DHTML;
HTML; XHTML

marriage scams 345
Mars Pathfinder 449
Mars rovers 59, 410, 449, 450
Martinian, Emin 49
mashups 110, 211, 275, 292, 294,

423
masking 52
Massachusetts Institute of

Technology. See MIT
massively multiplayer online role-

playing games (MMORPGs) 347
master boot record 55
matchmaking, software agents

for 289
Mathematical Foundations of

Quantum Mechanics, The (von
Neumann) 498

“Mathematical Theory of
Communication, A” (Shannon)
241, 427

“Mathematical Theory of
Cryptography, A” (Shannon)
427

mathematics 7, 110, 326, 443
mathematics of computing

294–295
mathematics software 145,

295–296, 338, 453, 458. See also
spreadsheet

Matrix films 378, 419
Matsumoto, Yakihiro 413
Mauchly, John William 167, 184,

226, 226, 296–297, 499
Mauldin, Michael 83
Mavica floppy disk 446
Maxwell theory 420
Mayo Clinic 367
MBTF (mean time between

failures) 189
MCA (Microchannel Architecture)

62, 236, 457
McCarthy, John 297–298

in artificial intelligence 26
Brooks and 59
on chess 85
on encoding knowledge 187
LISP and 281
Minsky and 313
Shannon and 427

McCorduck, Pamela 190
McCulloch, Warren S. 336,

510–511
McGill Random Number Generator

Super-Duper 399
MCSE (Microsoft Certified System

Engineer) 80
Mead, Carver 463
Mead, Margaret 124
mean time between failures

(MBTF) 189
measurement units used in

computing 298–299
mechanical calculator 35–36, 70,

226, 294
mechanical computer 13–14, 14,

226, 510. See also differential
analyzer

mechanical integrator 13
media center, home 299
Media Studio Pro 493
MediaWiki 116
medical applications of computers

299–301, 300
of artificial intelligence 27
bioinformatics 47
haptic interfaces 222
image processing 239
inkjet technology and 382
personal health information

management 367–368
robotics 183, 411
for senior citizens 425
smart ships 436
virtual reality 496

medical informatics 299–301
medical research 349
MEDLINE 350
meeting management, in

groupware 217
megabyte 51, 298
megapixels 371
Memex 63, 233
memory 301–302. See also cache;

heap; stack
in Analytical Engine 35–36,

226
for arrays 24
assembly languages and 29
BASIC and 40
bits in 50–51
buffer in 60
for cache 69–70
capacitors in 30
cells of 224

Index        569

in chipset 86
chips for 86, 218
clock speed and 90
in computer engineering 101
CPU and 120, 304–305
demons and 141
for digital cameras 372
in embedded systems 178,

178
for fonts 201
fragmentation of 302
for graphics cards 214
for hard disks 223
in heap 224
in IBM PC 236
by Intel 244
interpreters and 252
in I/O processing 242–243
in laptops 272
in mainframes 467
microprocessor and 304
in minicomputers 312
on motherboard 319
in MS-DOS 321–322
in multiprocessing 323,

323–324
nanotechnology and 329
in PDAs 364
in personal computers 228
program access to 137
prosthetic 336
punched cards and 392
in recursion 401
in smart cards 436
sorting and 446
for stored programs 227
virtual 3, 224, 261, 302,

308, 353
von Neumann’s work on

498
Y2K and 522

memory (human), in cognitive
science 92

memory bus. See bus
memory management 302–303

addresses in 3
allocation 302, 376
deallocation 224
early binding and 46
kernel and 264
in LISP 281
in list processing 282
in Microsoft Windows 308
in operating systems 353
pointers and 375–376
stack for 456

Menlo Park 403
Mephisto 52
mercury delay line 499
mergesort 447–448
message passing 113, 303, 308, 324
Message Passing Interface (MPI)

303, 324
metacharacters 402, 403
Meta-Dendral 190
METAFONT 267
Metal Oxide Semiconductor Field

Effect Transistor (MOSFET) 301
metasearch engine 423, 423
metatag 422
metavariables 38
method. See functions
metric prefixes 298
Metro chip 305
Meyer, Bertrand 173
MFC (Microsoft Foundation

Classes) 20, 89, 309, 341
MFLOPS 43
Michelangelo virus 111
MICR (magnetic ink character

recognition) 39

Microchannel Architecture (MCA)
62, 236, 366, 457

microchip. See chip
microcode 227
microcomputer. See also Altair;

personal computer
BASIC on 39–40
buses in 62–63
in computing history 228
CPU for 304
Forth on 201–202
graphics on 213
hacking 219
IBM PC and 236
I/O processing in 243
marketing of 106
publications on 260
tape drives in 467
user groups for 488
word processing on 516
Wozniak’s design for 258

Microelectronics and Computer
Technology Corporation 41

microfilm, archiving with 276
microkernel 264
microlasers 356
micropayment systems 146–147
microprocessor 303, 303–305.

See also CPU; multiprocessing;
reduced instruction set
computer (RISC)

from Advanced Micro
Devices 4

in calculators 71
in chipset 86
clock speed and 90
emulators and 179
engineering of 101
for graphics cards 214
for IBM PC 236
increasing complexity of

401–402
by Intel 218, 244, 318–319
in Macintosh 19, 288, 357
measurement units for 298
in minicomputers 312
Moore’s work with 318–319
on motherboard 319
by Motorola 320
nanotechnology and 329
in office automation 341–342
in PC development 366
in personal computers 228
scripts and 421–422
in smart cards 435–436
speed of 90
in supercomputers 461
in synthesizers 325–326

Microsoft Access 131, 132
Microsoft Certified System

Engineer (MCSE) 80
Microsoft Corporation 305–306.

See also Gates, William, III;
MS-DOS

antitrust case against 15,
107, 206–207, 274, 306

Bell at 42
browser development by 15
censorship in China and 76
certification through 80
in computer history 228
founding of 206
in industry standardization

237
Java and 255
open source projects at 122
RTF at 413
Simonyi at 430
smart card standard of 436
software piracy and 445
Yahoo! and 523

Microsoft Excel 160, 452–453, 454
Microsoft Exchange 217
Microsoft Foundation Classes

(MFC) 20, 89, 309, 341
Microsoft FrontPage 505, 507
Microsoft Internet Explorer

503–504
development of 305–306
JavaScript in 256
Netscape and 15–16
plug-ins for 374
Windows packaged with

229, 306
World Wide Web and 518

Microsoft .NET 306–307
ASP and 1
C# and 67
CORBA and 118
for distributed computing

154
for distributed object

computing 89
for Internet applications

programming 249
Java and 504
network object model in

160–161
VBScript and 492
Web servers and 508
in Windows 309

Microsoft NetMeeting 492
Microsoft Network (MSN) 306, 351
Microsoft Office 23

competition for 306
copy protection of 117–118
development of 305
document model used in 160
dominance of 107
for Macintosh 287
macros in 289
market for 293
in office automation 342
in personal computing 366
Simonyi’s work on 430
speech recognition in 452

Microsoft Office Live 21
Microsoft OneNote 221
Microsoft Outlook 177, 342, 368
Microsoft PowerPoint 380, 381
Microsoft Project 390
Microsoft Research 404
Microsoft Surface 466, 478
Microsoft Visual Basic 20, 40, 309,

387, 388, 422, 491
Microsoft Visual Basic .NET 492
Microsoft Visual Studio .NET 388
Microsoft Windows 307–310. See

also Microsoft Windows Vista
API of 20, 354
Apple and 18–19
backup software in 37
competition against 107
in computer history 228–229
in computer market 107
C on 66
copy protection of 117–118
demons in 141
desktop publishing on 143
development of 206, 305, 353
device drivers in 144–145
disabled users and 151
DVR capability of 163–164
dynamic link libraries in 20
in education 99, 169
emulator for 179
files in 191–192
graphics on 105, 214
help systems in 225
hypertext on 233
Java dialect for 255
keyboard for 265

on laptops 273
Macintosh and 107, 287–288
mathematics software in 295
Media Center in 299
mouse and 321
MS-DOS in 322
multitasking in 324, 325
objects in 340
OS/2 and 236
in personal computing 366
personal information

managers for 368
PL/I and 374
Plug and Play in 374
scheduling and prioritization

in 417
scripting in 422
server version of 192, 508
shell in 428
software installation under

244
for tablet PCs 466
updates under 244
user documentation in 159
VBScript in 491–492
wizards in 225
word processing in 516
for workstations 517

Microsoft Windows 7 307–308
Microsoft Windows CardSpace 307
Microsoft Windows

Communication Foundation
307

Microsoft Windows Explorer 308
Microsoft Windows Live 351
Microsoft Windows Management

Instrumentation (WMI) 492
Microsoft Windows Media Player

327, 504
Microsoft Windows Mobile 437
Microsoft Windows NT 305–306,

307
Microsoft Windows Presentation

Foundation 307
Microsoft Windows Vista 307–309,

308
caching in 70
firewall in 197
help system in 225
Media Center in 299
memory in 198, 223, 301
sales of 306
security of 100, 111
for tablet PCs 466

Microsoft Windows Workflow
Foundation 307

Microsoft Word 135, 143, 160, 192,
403, 483, 516–517

Microsoft Xbox 205, 206
Microsoft Xbox 360 108, 205
Microsoft Zune 327
MicroWorlds Logo 285
middleware 139, 310
MIDI (musical instrument digital

interface) 326, 448
military applications of computers

310–312
ENIAC 167
fractals in 203
government funding and 212
in history of computing 226
IBM in 235
image processing 239
information warfare 242
laptops 273
Mauchly’s work with 296
robotics 253, 410
simulation 432
virtual reality 271, 495–496

MIME (Multipurpose Internet Mail
Extensions) 333

570        Index

Minard, Joseph 239
mind 92–93, 313
mind-mapping 441
minicomputer 312, 312–313

Bell’s work on 41
buses in 62
business use of 64
complexity and 401–402
in computing history 227
graphics on 104
mainframes and 290
marketing of 106
monitors for 317
operating systems for 353,

410, 485
professional programmers

of 386
user group for 488

minimax theorem 498
minorities in computing 515–516
Minority Report (film) 384
Minsky, Marvin Lee 313

in artificial intelligence 26,
27, 162

at Dartmouth Conference
297

Kurzweil and 268
LISP and 281
neural networks and

336–337
software agents and 442

MIPS 43, 90, 517
mirrored hard disk 37, 398
MIS (management information

system) 110, 171, 291, 291–292
MIT (Massachusetts Institute of

Technology)
Breazeal at 56
Brooks at 59
Bush at 63
Dertouzos at 141
Kleinrock at 266
Kurzweil at 268
Licklider at 277
Maes at 289

MIT Architecture Machine Group
331

MIT Artificial Intelligence
Laboratory 59, 289, 313, 336–
337, 359, 403, 456

MIT Laboratory for Computer
Science 141

MIT Media Lab 289, 313–314, 314,
331, 403, 484

Mitnick, Kevin D. 220, 314–315
MITS 206, 228, 304, 366, 519
Mitsubishi Electric Research

Laboratories 49
ML language 204
MLM (multi-level marketing) 345
MMORPGs (massively multiplayer

online role-playing games) 347
mobile computing

business use of 64
in computing history 229
data communications over

134
e-commerce and 169
employment in 179
handwriting recognition

for 220
at “hot spots” 250
JavaScript and 256
keyboards for 265
paperless office and 383
wireless 514

mode 196
modeling languages 74, 315
modem 315–316

bandwidth of 38, 298, 335
in computer history 228

for data communication 133
in journalism 259
for satellite Internet service

416
telecommunications and 473
transfer speed of 299

moderators 83, 114
Modula-2 363, 514
Modula-3 514
modularization 460
Mohr, Manfred 25
molecular computing 42, 305,

316–317
molecular machines 314
Mondrian, Piet 25
money, digital 146–147
Moneymaker, Chris 346
money management software 195
monitor 104–105, 142, 185, 236,

272, 317, 317–318. See also flat-
panel display

Mono project 1, 67, 405
monospace fonts 201
Monster.com 348
Monte Carlo simulations 399, 432
Moog synthesizer 325
Moondust (game) 271
Moore, Charles H. 201
Moore, Gordon E. 86, 218, 244,

318–319
Moore’s Law 86, 229, 304, 318
MOOs (Muds, Object-Oriented)

493
Moravec, Hans 28, 59, 411
More, Grinell 59
Morita, Akio 445
morphing 16
morphology 270
Morris, Robert, Jr. 111
Mosaic 322, 503, 518
Mosaic Web browser 15
MOSFET (Metal Oxide

Semiconductor Field Effect
Transistor) 301

Moss, Frank 313
motherboard 101, 319
Motorola Corporation 320
mouse 320, 320–321

data acquisition with 129
Dynabook and 263
ergonomics of 185
graphics tablet and 215
invention of 182
in Microsoft Windows 308
user interface and 489

movies 16, 104, 194–195
MP3 format 448–449
MP3 players 327, 327–328. See

also iPod
MPEG (Motion Picture Expert

Group) 493
MPI (Message Passing Interface)

303, 324
MPI-2 303
MRI (magnetic resonance imaging)

300
MS-DOS 321–322

API of 354
compiling in 97
C on 66
demons in 141
development of 353
disabled users and 151
files in 191
help systems in 225
hypertext on 233
in IBM PC 107, 236, 307
on laptops 273
market entry of 107
in Microsoft success 305
in Microsoft Windows 307

PL/I and 374
regular expressions in 402
shell for 428
UNIX and 486

MSDs (musculo-skeletal disorders)
185

MSN (Microsoft Network) 306, 351
MT (machine translation) 270
MUDs (Multi-User Dungeons) 104,

125, 347, 407, 482, 493
M.U.L.E. (game) 174
multicore processor 305
Multics 353, 409–410, 485
multidimensional arrays 24
multifunction peripherals 230, 417
multi-level marketing (MLM) 345
multimedia 322–323

Adobe in 4
broadband for 58–59
codecs for 92
in cyberbullying 126
digital convergence in 147
digital photography in 371
in education 99
floppy capacity and 74
graphics in 106
hard disk space for 223
at home 299
library access to 276
in Microsoft Windows Vista

307
network and 335
in presentations 381
streaming of 458–459

multiplayer games 174
multiple inheritance 88
multiple intelligence agents 92
multiplexed transmission 133
multiplexing 243
multiprocessing 323, 323–324.

See also dual-core processors;
parallel processing

in Ada 2
Amdahl’s law of 10
cache coherency in 70
clock speed and 90
in computer engineering 101
in computer science 109
in computing history 229
in concurrent programming

113
Intel and 245
microprocessors for 305
in molecular computing 317
multitasking compared to

325
object-oriented programming

and 341
operating system and 354
quantum processor and 395
in real-time systems 400
scheduling and prioritization

and 418
Simula and 431
in simulations 432
in supercomputers 461

multiprogramming 324, 353, 354
Multipurpose Internet Mail

Extensions (MIME) 333
multitasking 324–325, 325

in computer science 109
CPU and 113
DLLs and 277
document model and 160
kernel and 264
in Microsoft Windows 308
operating system and 353
preemptive 113
scheduling and prioritization

of 417
multithreading 305, 325

multitouch 19, 364, 466, 478
Multi-User Dungeons (MUDs) 104,

125, 347, 407, 482, 493
musculo-skeletal disorders (MSDs)

185
Muses 125
music, computer 325–326,

448–449
musical instrument digital

interface (MIDI) 326
musical synthesizer 268–269, 325
music and video distribution,

online 326–327
bandwidth and 38
broadband for 58
centralization and 440
copy protection and 148,

149–150
in Internet growth 248
by iTunes 150, 258
media center and 299
multimedia access and 322
on MySpace 440
real-time processing and 400
streaming for 459

music and video players, digital
19, 108, 258, 327–328, 375, 437,
445–446, 449

Muslims, extremist 127
mutual exclusion 151
MYCIN 27
MyLifeBits 42
My Real Baby (robot) 253
MySpace 237, 370, 377, 440–441,

487, 494
MySQL 132, 352, 455, 468, 511
Mythical Man-Month, The (Brooks)

386
MythTV 299

N
names, in computing 154, 490
name server 158
namespaces 67
Nannycam 504
nanotechnology 42, 86, 305,

329–330
nanotubes 329–330
nanowires 330
Napier’s bones 70, 226
Napoléon I, Russia invaded by

239–240
Napster 148, 150, 193, 326
NAS 152, 192, 335
NAT (Network Address

Translation) 469, 469
National Center for

Supercomputing Applications
(NCSA) 15, 212

national ID card 436
National Science Foundation (NSF)

212
National Security Agency (NSA)

181, 383, 462
National Tele-Immersion Initiative

272
natural language processing (NLP)

27, 278, 330–331, 390, 404, 509
natural selection, in genetic

algorithms 207
nature, fractals in 203
Naur, Peter 38
navigation systems 71, 209, 211,

229, 292–293, 441
NCSA (National Center for

Supercomputing Applications)
15, 212

negative feedback 510
Negroponte, Nicholas 313–314,

331
Nelson, Theodore 233

Index        571

nerds 378
nested loops 286
.NET. See Microsoft .NET
Net, The (film) 378
netiquette 331–332
NetNanny 505
net neutrality 44, 275, 332–333,

472
netnews and newsgroups 61,

333–334. See also bulletin board
systems

on ARPANET 247
in computing history 228
conferencing systems and

114
cyberspace and 125
Internet and 248, 518
netiquette and 331–332
Rheingold on 407
as social networking 440
Spafford’s work on 450
spam on 451

Netscape Corporation 14, 350,
503, 518

Netscape Navigator (Netscape
Communicator) 15–16, 256,
322, 352, 368, 374, 503

Network Address Translation
(NAT) 469, 469

network administration 108, 178
network cache 70
networked storage 152, 192, 335
network file system (NFS) 192,

261, 335
network layer 334
Network News Transfer Protocol

(NNTP) 333
networks 334–335. See also

intranet; local area network
bandwidth of 38
Cisco’s work in 87
in computer engineering

101, 102
in computer history 228
in computer science 110
data communications over

133
decentralized 209
in enterprise computing 183
in fault tolerance 189
file servers in 192
file transfer protocols on

193–194
firewalls and 196–197
floppy disk usage and 200
in hacking 220
hypertext on 233
in Internet 468–469
Kleinrock’s work on 266
Licklider’s work in 278
mainframes and 290
mathematics in 295
measurement units for 298
Microsoft and 305–306
with Microsoft Windows 307
Mitnick and 314
object-oriented programming

and 341
in office automation 342
operating system and 354
packet-switched 78, 133,

189, 265–266
in popular culture 378
in science fiction 418–419
security of 450
for simulations 432
system administrators and

464
TCP/IP for 468–469
telecommunications and 473
in telecommuting 473–474

viruses spread by 111
for voting systems 175–176
Weizenbaum’s work on 509

network technicians 108
Neumann, John von. See von

Neumann, John
Neural Computing Center 403
neural interfaces 335–336, 336
neural network 27, 28, 336–337,

337. See also perceptron
cognitive science and 92
computer science in 110
connectionists on 93
EPAM and 190
for handwriting recognition

220
Minsky and 313
Papert’s work in 359
in pattern recognition 363
risk and 409
simulation and 432
for speech recognition 452
Wiener’s work on 510–511

Neuromancer (Gibson) 125, 220,
419

neurons 336, 432
neuroprosthetics 335–336, 336
Neverwinter Nights (games) 347
Newell, Allen 26, 93, 162, 190, 295
New Kind of Science, A (Wolfram)

76
Newmark, Craig 120
news cycle 259
newsfeed 333
news servers 333
New Technology File System

(NTFS) 191–192
Newton (Apple) 220–221, 364
Nextlink 58
NextStep 258
NFS (network file system) 192,

261, 335
Nigerion money scheme 345
Ning 16
Nintendo 205
Nintendo 64 205
Nintendo Wii 205, 221
NLP (natural language processing)

27, 278, 330–331, 390, 404, 509
NLS/Augment 212, 233
NNTP (Network News Transfer

Protocol) 333
nodes

of ARPANET 266
in distributed computing

154
in hypertext 234
in LISP 281
in lists 282, 282
in multiprocessing 323
in networks 133
in trees 479, 479

Nokia N810 466
Noll, A. Michael 25
nondeterministic polynomial 98
nonprocedural languages 337–338,

389
nonvolatile memory 178
noosphere 369
normalization 131, 338
Norman (robot) 59
notebook computers. See laptop

computers
Notepad 476, 517
note-taking 441
NOT operator 54
Novell Linux 279
Novell Netware 80, 228, 284
Noyce, Robert 85, 218, 244, 318
NSA (National Security Agency)

181, 383, 462

NSF (National Science Foundation)
212

NSFnet 247
NTFS (New Technology File

System) 191–192
nuclear magnetic resonance (NMR)

technology 395–396
nuclear reactions, simulating 432
number theory 295
numerical analysis 296
numeric data 110, 138, 338, 341
Nupedia 500
Nvidia GeForce 8800 305
Nygaard, Kristen 431

O
Obama, Barack 377, 524
Oberon 363, 514
object(s) 88

in C++ 459–460
data abstraction and 129
database components as 132
design patterns and 142
in distributed computing 154
interoperability of 118
in Java 254–255
in Microsoft Windows

308–309
in object-oriented

programming 340
in PHP 373
in Ruby 413
in simulation 431

object-based media 314
Object Linking and Embedding

(OLE) 160, 309, 517
Object Management Group (OMG)

118
object-oriented database model

132, 183
object-oriented programming

(OOP) 339–341, 340, 388
binding and 45–46
in C# 67
in C++ 67–69, 460
classes in 88
COBOL and 91
in computer history 228
in computer science 109
data abstraction in 129
data structures in 138
for expert systems 188
flowcharting and 200
Forth and 201
in FORTRAN 202
in JavaScript 256
Kay’s work on 263
message passing in 303
at Microsoft 430
with Microsoft .NET 306–607
in Microsoft Windows 309
operators defined in 355
with Perl 365
with PHP 372
procedures in 385
in Ruby 413
Simonyi’s work in 430
in Simula 431
for simulation 432
in Smalltalk 433
software agents and 442
in software engineering

73–74, 443
SQL and 455
strings in 82
UML for 315
variables in 491
Wirth on 514

object query language (OQL) 455
Object Request Broker (ORB) 118,

310

OCLC (On-line College Library
Center) 275

OCR (optical character
recognition) 268, 342, 355–356,
417

OCX (OLE controls) 309
odd parity 186
office automation 341–342
office suites. See application suite
offshoring 209
Ogg 449
Oikarinen, Jarkko 83
OLAP (Online Analytical

Processing) 139
OLE (Object Linking and

Embedding) 160, 309, 517
Olmstead v. U.S. 383
Olsen, Kenneth 41
OMG (Object Management Group)

118
Omidyar, Pierre 165, 184, 342–

344, 343
Omidyar Network 343–344
Omnifont 268
“On Computable Numbers”

(Turing) 481
One Laptop Per Child 108, 109,

144, 149, 314, 331
OneNote 221
online advertising 116, 123, 210–

211, 212, 344–345, 358, 441
Online Analytical Processing

(OLAP) 139
online auctions 31, 100, 120, 343.

See also eBay
online backup services 37
online banking 39
online chat. See chat, online
On-line College Library Center

(OCLC) 275
online fraud and scams 100, 344,

345–346, 349, 472. See also
identity theft

online gambling 346–347
online games 347–348. See also

online gambling
on AOL 11
broadband for 59
chatterbots in 442
cyberlaw and 124
for distance education 154
identity used in 237
Internet cafés for 250
multimedia in 322
in popular culture 378
popularity of 104
pseudonymity in 17
simulation in 432
social sciences and 441–442
user-created content in 487

online investing 348
online job searching and recruiting

348–349
online music and video

distribution. See music and
video distribution, online

online relationships 237
online research 259, 274, 349–350,

377, 422–423, 441, 518
online services 350–351

bulletin boards and 61–62
chat on 83
cyberspace and 125
e-mail on 177
in hacking 220
instant messaging on 477
Internet development and

247
maps used in 292
for research 349
Web pages provided by 505

572        Index

OnStar 71
ontologies and data models 267,

351, 369, 424
OOP. See object-oriented

programming
OpenBSD 486
Open Card 436
OpenDoc 160
Open Document standard 160
OpenGL 105, 214
Open Handset Alliance 437
OpenMP 324
Open Office 21, 309, 381, 405, 483
OpenRide 12
OpenSocial 441
OpenSolaris 486
open-source movement 352

in computer industry trends
108

Cunningham in 122
database alternatives from

132
in digital rights management

150
employment in 179
in globalization 209
hacking in 220
IBM in 235
Licklider in 278
Linux in 279–280
at Microsoft 122
Microsoft and 306, 309
Netscape Navigator in 16
phone software and 437
plug-ins in 375
reverse engineering in 405
Ruby in 414
shareware and 428
Stallman in 457
Torvalds in 478
UNIX in 261, 410, 486
user-created content in 487
voting systems and 176

open system interconnection (OSI)
334

OpenType fonts 3
Opera 504
operands 354
operating system 352–354, 353.

See also Linux; Macintosh;
Microsoft Windows; UNIX

for Altair 206
APIs of 20, 20
for Apple 519
backup of 37
BIOS and 49
in boot sequence 55
compromising 137
in computer engineering 102
in computer science 110
CPU and 119–120
data security in 137
demons in 141
device drivers and 144–145
DLLs in 277
for embedded systems 178
entrepreneurship in 184
ergonomics of 185
error handling in 186
files in 191–192
as finite-state machine 196
on flash drive 198
fonts in 200
hard disk and 222–223
Java and 255
kernel of. See kernel
for laptops 272
marketing of 107
mathematics software in 295
memory management by 302
message passing in 303

multiprocessing under 324
multitasking in 324–325
networks and 334
new 145
for PDAs 364
in personal computers 228
portability and 95
program-level security under

137
queues in 396
in real-time processing 400
scheduling and prioritization

by 417
scripts and 421
Smalltalk and 434
system administrators and

464
systems programmer and

464–465
for time-sharing 219
Trojan horses in 100
virtual machine for 494
virtual memory in 224

operation(s) 28, 51–52, 54, 137
operational amplifier 14
operational analysis 139, 291–292
operators 65, 68, 341, 354–355,

355, 490. See also Boolean
operators

Opportunity rover 449
Opsware 16
optical character recognition

(OCR) 268, 342, 355–356, 417
optical computing 42, 356
optical lithography 86
optical mouse 321
optical scanning, for voting

systems 175–176
optimization 95, 96, 115
OQL (object query language) 455
Oracle 80, 132, 415
Oracle Corporation 356–357
Oracle Information Architecture

356
Oracle on Demand 356
ORB (Object Request Broker) 310
Ordnance Engineering Corporation

30
organizations, theory of 139
OrganizedWisdom 367
OR operator 51, 54
OS/2 236, 305, 307, 374
Osborne 1 273
OSI (open system interconnection)

334
OSI MHS (Message Handling

System) 177
OS X 19, 258, 288, 357, 437, 486
Ousterhout, John K. 468
outer identity 237
outline fonts 201
Out pointer 60
outsourcing 209, 470. See also

globalization and the computer
industry

overclocking 90
overloading 67, 68, 340–341
OWL (Web Ontology Language)

20, 267
Oxygen 141

P
P2P networks. See file-sharing and

P2P networks
P-159/A (Mohr) 25
packages 2, 244
PackBot (robot) 253
packet, in Ethernet network 283
packet-sniffing 100, 250
packet-switched network 78, 133,

189, 265–266

Pac-Man 104
Page, Larry 57, 210, 358–359
Pagemaker 4, 18, 143, 287, 307
PageRank algorithm 57, 210, 211,

423, 480
Painter’s Algorithm 106
palettes, color 93–94, 94
Palm, handwriting recognition

on 220
Palm Pilot 364
Palm Treo 364
Panama 523
paperless office 216, 342, 382
paperless statements 39
Papert, Seymour 109, 170, 282,

284, 313, 359, 359–360, 483
paradox, in Halting problem 97
parallel ATA (PATA) 223
parallel port 360, 425, 457, 486
parallel processing 5, 10, 121–122,

204, 263, 285, 389, 461. See also
multiprocessing

Parallel Virtual Machine (PVM)
217

parameters 385
PARC. See Xerox PARC laboratory
Paris in the Twentieth Century

(Verne) 418
parity 186, 186
Parry (chatterbot) 83
parsing 360–362, 361

in compiling 95, 96, 96
in computer vision 112
Knuth’s work in 267
recursion in 401
of scripts 421

PAS (Publicly Available
Specifications) 457

Pascal 362–363
BASIC and 40
branching statements in 55
classes and 88
in computer history 228
enumerations in 184–185
interpreters for 252–253
PL/I and 373
procedures in 385
recursion in 401
sets in 185
variables in 491
Wirth’s work on 514

Pascal, Blaise 70, 226, 294
passing by reference 385
passing by value 385
passive matrix display 199
passive RFID 405
PATA (parallel ATA) 223
patches 111
patent, for ENIAC 297
Patent Reform Act 245
patent system 245, 472
patent trollers 245
Paterson, Tim 321
Patient Safety Institute 300
PATRIOT Act 383
pattern language 142
Pattern Language, A (Alexander)

142
pattern matching 33–34, 402, 485
pattern recognition 112, 363–364

in counterterrorism 119
in data mining 136
fuzzy logic in 204
in handwriting recognition

220, 221
for information retrieval

241
Kurzweil’s work in 268
in law enforcement 273

Paul, Ron 377
PayPal 146–147

payroll software 64
PC. See personal computer
PC AT 236, 265
PCB (printed circuit board) 85
PC clones 107, 228, 236, 304, 366,

405
PC-DOS 321
PC-File 427
PCI (peripheral component

interconnect) 63, 86, 237, 319
PC Magazine 260
p-code 362, 391
PCR (polymerase chain reaction)

316
PC/SC standard 436
PC’s Limited 140
PC-Talk 427
PC-Write 428
PCX 215
PC-XT 236
PDA (personal digital assistant)

364, 437. See also mobile
computing

in computing history 229
GPS in 293
“hot spots” and 250
keyboards and 265
music playback on 327
in office automation 342
operating system and 354
PC market and 367
personal information

managers on 368
smartphones and 108, 437
texting on 477
touchscreens on 478

PDF (portable document format)
364–365

in desktop publishing 143
for e-books 166
in office automation 342
PostScript and 380
success of 3
for technical manuals 471
for user documentation 159

PDP Assembly 65
PDP minicomputer 41, 106, 227,

312, 485
PEAR (PHP Extension and

Application Repository) 373
pedophiles, chat rooms and 83
PEEK 40
peephole optimization 96
peering arrangements 332
peer network 513
pen, with graphics tablet 215
pen computing 343
Pentium microprocessor 4, 218,

244, 304, 305
perception 92, 112, 162
perceptron 313, 336–337, 359
Perceptrons (Papert and Minsky)

359
peripheral hardware 49–50, 54,

101, 140, 230, 374
Perl (Practical Extraction and

Repot Language) 24, 83, 365–
366, 393, 508

permission status 136–137
Perot, H. Ross 293
perpendicular hard disk 223
persistent cookies 116
personal ads 120
personal computer (PC) 366–367.

See also laptop computers;
microcomputer

backup for 37
BASIC used on 40
BIOS in 49
bus in 62
in CAD 98

Index        573

in client-server computing
89

computer-aided instruction
on 99

in computing history 228
in data acquisition 130
by Dell 140
in desktop publishing 142
as DVR 163–164
entrepreneurship in 184
file servers and 192
fingerprint readers on 49
graphics on 105, 213–214,

322
help systems for 225
in home office 230
Kay and 263
Linux offered for 306
mainframes and 290
marketing of 106–107
McCarthy and 297
as media center 299
microprocessors in 304
minicomputer and 312
motherboard in 319, 319
in office automation 342
operating systems for 353
podcasts on 375
in popular culture 378
professional programmers

of 386
publications on 260
RISC processors in 402
sales of 108
software marketed for 293
standards for 457
statistical analysis with 458
tablet 221, 466
as terminal 476
UNIX and 486
user groups for 488
user interfaces for 488–489
virtual memory in 302
in wireless network 513

personal data management 42
personal digital assistant. See PDA
personal finance software 39
personal health information

management 300–301, 367–
368, 436

personal information manager
(PIM) 368–369, 389, 437, 466

personal robots 314
PERT (Program Evaluation and

Review Technique) 389
Pet 228
PET (positron emission

tomography) 300
PGP (Pretty Good Privacy) 181,

383
pharming 370
phenomenology 162
philosophical and spiritual aspects

of computing 28, 148, 237, 369
phishing and spoofing 369–371

anonymity of 17
banks and 39
in e-commerce 168
fraud from 345
by hackers 220
identity theft from 238
information collection from

384
in information warfare 242
Internet growth and 248
spam and 451
viruses spread by 111

phoneme 452
phone phreaks 314
Phong shading 106
phosphors 105

photography, digital 239, 275, 371,
371–372, 382. See also digital
cameras; video editing, digital;
Web cam

photonic crystal 191
Photoshop

art and 25, 25
in desktop publishing 143
for image processing 4, 239
on Macintosh 287
memory for 301
for photo editing 372
plug-ins for 374

photosites 371
photovoltaic cells 42
PHP 372–373
PHP Extension and Application

Repository (PEAR) 373
physical layer 334
Physical Symbol System Hypothesis

93
Piaget, Jean 284, 359
Picospan 114
picture frames, electronic 484
PIM (personal information

manager) 368–369, 389, 437,
466

Pinball Construction Set (game)
174

pipelining 101, 305, 402
pipes, in software engineering 73
piracy. See software piracy and

counterfeiting
Pitts, Walter 336, 510–511
pivot 447
Pixar 258
pixels

in bitmaps 50, 214
in CRTs 317, 318
in digital photography 371
in GIFs 214
in graphics 105, 214
in LCD displays 199

PKZip 428
plain old telephone service (POTS)

162, 473
Plan 9 410
Plankalkül 526
PLATO (Programmed Logic for

Automatic Teaching Operations)
99, 114, 153, 169, 322, 347

Plato Notes 114
platters, in hard disks 222, 222
PlayStation 446
PlayStation 2 205
PlayStation 3 108, 205, 305, 462
PL/I 373–374
Plug and Play (PnP) 50, 63, 144–

145, 244, 374, 487
plug-in 19–20, 79, 374–375, 459,

493, 504, 518
P-machine 252–253
podcasting 19, 251, 375
pointers 375–377, 376

addressing and 3
in Algol 7
in arrays 24
in binary trees 479
in buffering 60
in C 65
in C# 67
Java and 255
in list processing 282
logical errors in 61
in memory allocation 224
in procedures 385
in queues 396, 396–397
variables and 490

pointing devices 185
POKE 40
poker, online 346

political activism and the Internet
377–378

democracy and 439
flash and smart mobs 198
journalism and 259–260
Lessig and 275
podcasts 375
user-created content in 487
YouTube and 524

political policy 472
polling 243
poll-taking 441
pollution 216
polymerase chain reaction (PCR)

316
polymorphism 45–46, 340–341
polynomial period of time 98
Pong (game) 205
pooled buffer 60
popular culture and computing

378–379, 418–419, 496
pop-under ads 344
pop-up ads 344
pornography 76, 193, 505, 523
port 303
portability 94–95, 135, 465
portable computers. See also laptop

computers; mobile computing;
PDA; smartphone

global market for 108
handwriting recognition

for 220
“hot spots” and 250
identity theft from 238
market entry of 107
medical use of 300
military use of 310
Web browsers on 504
wireless access for 514

portable document format. See PDF
portal 350, 379, 422, 523
Portland Pattern Repository 122
port numbers 469
port scanning 196
positive feedback 510
positron emission tomography

(PET) 300
POSIX 429
POST (power-on self test) 49, 54
postal mail 177
POS terminal 89
postfix notation 201
PostScript 3, 180, 201, 202, 214,

364, 379–380
poststructuralism 482
posttraumatic stress disorder

(PTSD) 311
POTS (plain old telephone service)

162, 473, 496
PowerBook 18, 273
PowerPC chip 245, 288, 320
precedence, of operators 355
Predator 311
predicate calculus 266
predictability, fractals and 203
preemptive multitasking 113,

324–325
Premiere 493
Premiere (Adobe) 493
preprocessor directives 66
presentation layer 334
presentation software 32, 64, 380,

380–381, 492. See also Microsoft
PowerPoint

presidential election 175, 227, 296,
392, 438

pressure, haptic interfaces and 221
pressure gauges 129
Pretty Good Privacy (PGP) 181,

383
Primavera Project Planner 390

primitives 18
printed circuit board (PCB) 85
printers 381, 381–383. See also dot-

matrix printers; inkjet printer;
laser printer

Braille from 151
in desktop publishing 142
device driver for 144
for digital photos 372
parallel port for 360
PostScript for 379–380
for SOHO market 230
standard for 457
toner cartridges for 216

print journalism 259–260
print spooler demon 140, 396
prior art 245
prioritization 389, 417–418
privacy in the digital age 383–384

advocacy groups for 125
anonymity and 17
avatars and 237–238
banking and 39
biometrics and 49
centralization and 440
Clipper Chip and 146
computer crime and 101
cookies and 116
counterterrorism and 119
in CRM 123
data mining and 136
e-commerce and 168
e-government and 173
encryption and 181
Google Earth and 211,

292–293
Google Maps and 423
Internet growth and 248
ISPs and 252
law enforcement and 273
medical information and 300
network PCs and 367
online advertising and 345
online backup services

and 37
policy on 472
RFID and 406
risk and 408
smart cards and 436
social networking and 441
ubiquitous computing and

484
user-created content and

487
Privacy in the Information Age

(Cate) 383
Privacy on the Line (Diffie and

Landau) 146
private class variables 88
private key cryptography 146,

180–181, 181
probability 40–41, 241, 270, 296,

389
probes, in space exploration 449
problem solving, design patterns

in 142
Probst, Larry 174
procedural languages 138, 282,

337, 388. See also C (language)
Procedure division 91
procedures 384–385

in Algol 7
in BASIC 40, 88
in classes 88
in COBOL 91
in computer science 109,

110
encapsulation and 180
in Logo 284–285
macros and 288–289
in mathematics software 296

574        Index

in object-oriented
programming 340–341,
388

in Pascal 88, 362
in Plankalkül 526
programming languages

and 388
in scripting languages 421
in Simula 431
in SQL 455
stack and 456
in structured programming

443, 460
process control 264
processes 151, 154, 186, 264
process management 353
processor. See CPU; microprocessor
Prodigy 350
production applications 64. See

also CAD/CAM
production systems, in artificial

intelligence 26–27
professional organizations 79
profiles, Bluetooth 53
profiling, cookies in 116
program(s)

addressing in 3
applications. See application

software
for batch processing 257
code clarity in 158
commenting in 158
concurrent 112–113
CPU and 120
data security in 137
demons 140–141
as finite-state machine 196
firewalls and 197
global flags in 197–198
internationalization of 247
libraries for. See library,

program
localization of 247
scripts and 421
in Smalltalk 434
in software engineering 444
stored 227
for supercomputers 461
testing 394
as trade secrets 245–246
undecidable 97

program code, documentation
of 74, 158–159. See also
documentation; technical
writing

program code modules 73–74, 135
Program Evaluation and Review

Technique (PERT) 389
program library. See library,

program
programmable calculator 71
programmable read-only memory

(PROM) 49, 301
programming. See also automatic

programming; concurrent
programming; object-oriented
programming; structured
programming; systems
programming

benchmarks in 43
bugs in 61
in data integrity 130
of Differential Analyzer 426
employment in 385–387
of Internet applications 249
libraries for. See library,

program
in Microsoft Windows

308–309
as profession 385–387
pseudocode for 390–391

for supercomputers 461
systems analyst and 464
in text editor 476
of UNIVAC 296–297

programming environment 387,
387–388

CASE tools in 73
compilers in 253
current use of 389
documentation tools in 159
for games 104
interpreters in 253
for Microsoft Windows 309
for OS X 357
professional programmers

and 386
punched cards and 392
for Ruby 414
Smalltalk as 434
in software engineering 443

programming languages 388, 388–
389. See also specific languages

in ASP .NET 1
assembly language and 29
Backus-Naur Form for 38
binding and 45
compatibility and 94
compilers for 95
in computing history 227,

228
for concurrent programming

113
data in 128
data structures in 138
for embedded systems 178
graphics and 105
lambda calculus in 87
linguistics in 278
for multiprocessing 324
open-source 352
operator precedence in 355
parsing 360–361
scripting and 421
string-oriented 82–83
variables in 490–491

Project Gutenberg 167
project management software 342,

389–390, 418, 444
Project Oxygen 484
Prolog 389, 390
PROM (programmable read-only

memory) 49, 301
PROMIS 140
propaganda 126–127, 242
propagation 131
proportional fonts 201
propositional calculus 53–54
prostheses 335–336, 336, 411
protected class variables 88
protein folding 46–47, 117
Proteins@home 117
protein simulation 47, 47
protocols 154, 157–158, 177, 360,

469, 513. See also file transfer
protocols; TCP/IP; VoIP

proxy address 197
pruning strategy 84–85
PS/2 236, 366
pseudocode 73, 362, 390–391, 460
pseudonymity 17
psychoacoustics 449
psychology of computing 237, 391,

482–483
psychotherapy, ELIZA and 83, 509
PTSD (posttraumatic stress

disorder) 311
public key cryptography 32, 78–79,

79, 145–146, 180–181, 181
Publicly Available Specifications

(PAS) 457
public variables 88, 491

puck, with graphics tablet 215
punched cards and paper tape 392

in Analytical Engine 35, 226
automatic tabulation of

229–230
commenting in 158
in ENIAC 488
in mainframes 290
in voting systems 175

PVM (Parallel Virtual Machine)
217

Python 392–393, 508

Q
QDOS 321
Qpass 146
quad-core processors 4, 245
quadriplegia 151
quality assurance, software 61,

109, 186, 394–395, 408, 444,
464

Quality of Life Technologies Center
424–425

Quantum Computer Services 11
quantum computing 181, 329,

395–396
Quantum Random Bit Generator

Service 399
QuarkXPress 4
qubit 395
queries 131, 139, 337, 455
queue 396, 396–397

in circular buffer 60
in computer science 109
as data structure 138
in multitasking 325
for scheduling and

prioritization 417
stack and 456

Quick BASIC 40
QuickBooks 195
Quicken 39, 195
quicksort 447, 447
QuickTime 374
quote marks, in search engines 423
QWERTY keyboard 185

R
race 149, 515–516
race condition 113
Racter (chatterbot) 83
radiation, from monitors 185
radio astronomy 42
radio frequency identification

(RFID) 384, 405–407, 406, 436
radio interference 408
Radio Shack 228
radix 338
RAID (redundant array of

inexpensive disks) 398,
398–399

for data backup 37
in disaster planning and

recovery 152
fault tolerance with 189
as file server 192
hard disks for 223
for networked storage 335
virtualization and 494

Rainbow Six (game) 311
RAM (random access memory) 3,

3, 301, 304. See also memory
RAND Corporation 162. See also

Sperry-Rand Corporation
random access 192
random access memory (RAM) 3,

3, 301, 304. See also memory
randomization, in quality

assurance 395
random number generation 295,

399

range, in DAQ performance 130
rape, virtual 125, 494
Rapid Selector 63
raster data 208
Raster Image Processor (RIP) 379
RateMDs.com 367–368
rationalism 162
RCA MKI 325
RCA MKII 325
RDF (Resource Description

Format) 424
RDF Site Summary 413
read attribute 191
readme 244
Read-Only Memory (ROM) 301,

304
ReadyBoost 70, 198
reality, nature of 369, 378,

482–483
Really Simple Syndication (RSS)

375, 412–413
RealPlayer 327, 374, 428, 504
real-time games 104
real-time processing 2, 399–400
real-time simulations (RTS) 104,

311
reasoning, in cognitive science 92
record data type 138
Recording Industry Association of

America (RIAA) 125, 150, 246
record-level security 137
recruitment, of terrorists 126–127
recursion 400, 400–401

in Algol 7
in FORTRAN 202
lambda calculus in 87
in LISP 281
in Logo 359
in mergesort 447
in quicksort 447
Ritchie and 409
in shellsort 447
trees and 479

recycling of computers 140
red, in RGB 93
Red Hat 279, 352
reduced instruction set computer

(RISC) 261, 288, 305, 320,
401–402

redundancy 39, 247, 427
redundant array of inexpensive

disks. See RAID
refactoring 74
reference counter 224
referential integrity 130, 131
referral network, of Amazon.com 9
refraction 190–191
registers 28, 304
regression analysis 136, 458
regular expression 402–403, 485
relational database model 131–132,

139, 292, 455. See also database
management systems

relations 455
relationships, online 237
relevance, in information retrieval

241
reliability 36, 39, 130–131
religion, extremist 127
Remington-Rand UNIVAC 90, 296
remote backup services 37
remote procedure call (RPC) 154,

309, 438, 509
Reno, ACLU v. 125
repetitive stress injuries (RSIs)

185, 265
Replay TV 163
Report Program Generator (RPG)

412
repository 116. See also data

warehouse

Index        575

Representational State Transfer
(REST) 509

reputation systems 480–481
research, online. See online

research
research laboratories in computing

403–404. See also specific
laboratories

Research Library Information
Network (RLIN) 275

resistive touchscreen 478
resource consumption, of

computers 216
resource data type 373
Resource Description Format

(RDF) 424
resource lock 113
resource management 151, 389
REST (Representational State

Transfer) 509
retina scanning 48
retirement planning 195
reverse engineering 4, 404–405
Reynolds, Craig 28
RFID (radio frequency

identification) 384, 405–407,
406, 436

RGB 93, 371
Rhapsody 326
Rheingold, Howard 198, 407–408,

493
Rheingold Associates 407
RIAA (Recording Industry

Association of America) 125,
150, 246

Rich Text Format (RTF) 135, 413
RIGHT SHIFT bitwise operator 52
Riley, Bridget 25
RIM BlackBerry 220, 364, 437
Ringley, Jennifer 504
RIP (Raster Image Processor) 379
RISC (reduced instruction set

computer) 261, 288, 305, 320,
401–402

Rise of the Expert Company, The
(Feigenbaum) 190

risks of computing 408–409, 438
Ritchie, Dennis 65, 409, 409–410,

429, 485
River, The 114
Rivest, Ron 146, 181
RLE (run-length encoding) 214
RLIN (Research Library

Information Network) 275
Roadrunner 462
Roberts, Lawrence G. 145, 266
RoboHelp 225
robotics 410–412

academic credentials for 79
artificial intelligence in 27
in artificial life 28
artificial limbs and 335–336
in assistive technologies 425
Breazeal’s work in 56–57
Brooks’s work in 59–60
in CAM 98
computer science in 110
computer vision in 112
cybernetics in 124
finite state machines in 196
frames used in 313
genetic algorithms in 208
haptic interfaces in 222
industrial use of 182–183
in law enforcement 273
“laws” of 418, 433
layered architecture for 59
military use of 311
Minsky’s work in 313
natural language processing

in 330

neural networks in 337
personal robots 314
research institutions in 403
risk and 408
in science fiction 418
social impact of 439
in space exploration 449
for telepresence 474–475

Robotics in Practice (Engelberger)
183

Robotics in Service (Engelberger)
183

Robot Wars 410
Rock, Andrew 318
Rockefeller Differential Analyzer

(RDA2) 63
RoCo (robot) 57
role-playing games 104, 237, 347
Rollins, Kevin B. 140
ROM (Read-Only Memory) 301
Roomba (robot) 60, 253
root, of tree 138
rootkit 150, 446
root status 136
Rosenblatt, Frank 313, 336
Rosenbleuth, Arturo 510–511
routers 87, 197
routines 45, 49, 197–198, 200,

207, 296
royalties, for Internet radio 251
RPC (remote procedure call) 154,

309, 438, 509
RPG (Report Program Generator)

412
R. R. Donnelly 292
RSA algorithm 146, 181
RSIs (repetitive stress injuries)

185, 265
RSS (Really Simple Syndication)

375, 412–413
RTF (Rich Text Format) 135, 413
RTS (real-time simulations) 104,

311
Ruby 413–414
Ruby on Rails 414
ruggedized laptops 273
rules 188, 204, 270, 271
run-length encoding (RLE) 214
run-time errors 186
R.U.R. (Čapek) 410, 418
Rural Free Delivery 153

S
SABRE 404
SAC (Strategic Air Command) 311
Safari 504
SAGE (Strategic Air Ground

Environment) 104, 139, 212,
235, 311

SageTV 299
SAIL (Stanford Artificial

Intelligence Laboratory) 59,
145, 403

sales applications 64
Salesforce.com 21
salon.com 259
SAM (software asset management)

244
Samba 405
sampling, in computer vision 112
sampling rate 130, 399–400
SAN (storage area network) 192,

335
sandbox 255
Sanger, Larry 500
sans serif fonts 201
SAP 293, 415–416, 462
SAP Business ByDesign 415
SATA (serial IDE) 223
satellite communications network

320

satellite Internet service 58, 416
SAX (Simple API for SML) 161
Scalia, Antonin 274
scams, online 100, 344, 345–346,

349, 472. See also identity theft
scanner 12–13, 48, 268, 342, 355,

416–417
scheduling and prioritization 389,

417–418
schema. See frames
Scheme 281
Schickard, Wilhelm 70
Schmidt, Eric 358
Schmitt, William 297
Schockley Semiconductor Labs 318
Scholastic Aptitude Test (SAT) 71
school shootings 126
science fiction and computing 220,

335, 410, 411, 418–419
Scientific Atlanta 87
scientific computing applications

27, 110, 130, 136, 419–421, 420,
431–432. See also FORTRAN

scientific instrumentation 419–420
scientific modeling 106. See also

simulation
Scooba (robot) 253
scope, of variables 491
Scottrade 348
screen savers 203
scripting languages 421–422.

See also awk; JavaScript; Lua;
Perl; PHP; Python; Ruby; Tcl;
VBScript

for administrative tasks 464
in Ajax 5–6
applets and 19
in ASP 1
in authoring systems 32
for CGI 80–81
computer science in 110
for database development

132
with DHTML 233
in DOM 161
for Internet applications

programming 249
Java and 256
regular expressions in 402
in shell 428, 429–430
in software installation 244
in text editor 476
in UNIX 485–486
Web servers and 508

scriptwriting 194
SCSI (Small Computer Systems

Interface) 63, 197, 223, 335
Sculley, John 258
SDRAM (synchronous DRAM) 301
search engine 422–424, 423.

See also Google; information
retrieval

Ajax pages and 6
Boolean operators in 54
in computing history 229
in cyberstalking 126
for information retrieval

241, 241
in Internet growth 248
knowledge representation

in 267
Microsoft research in 306
natural language processing

in 330
in online advertising 344
for online research 350
portals and 379
Semantic web and 424

searching 109, 240–241, 401, 402,
446–448

“Search Inside the Book” 9

Searle, John 93
Seattle Computer Products 321
Second Life 347, 347–348

as computer game 104
cyberlaw and 124
distance education in 154
study of 391, 441–442
virtual community of 494

Second Self, The (Turkle) 482
sector interleaving 222
sectors 222
Secure Digital (SD) memory card

198
secure shell (ssh) 248
Secure Sockets Layer (SSL) 79, 503
security 100–101. See also

computer crime; data security
auditing and 31
banking and 39
buffer overflows and 60
cable modems and 69
cookies and 116
of credit card transactions

146
digital certificates and 78–79
in e-commerce 168
e-mail and 177
employment in 178, 179
forensics in 102–103
in information warfare 242
Internet growth and 248
JavaScript and 256
of mainframes 290–291
in Microsoft Windows 309
in military systems 311
Mitnick and 314
NAT and 469
networks and 334, 450
in operating systems 354
outsourcing of 108
risk and 408
system administrators and

464
telnet and 248
of voting systems 176
of Web servers 508
on wireless networks 513

security patches 111
sed 365
seed 399
Sega 205
SEI (Software Engineering

Institute) 444
selection sort 446–447
selection statements. See branching

statements
Selectric typewriter 516
self 369
self-replicating computers 329
semantic analysis 96, 96
semantics 270
semantic Web 424

Berners-Lee and 44
in counterterrorism 118
for information retrieval 241
knowledge representation

in 267
ontologies in 351, 369
technological singularity

and 433
Web 2.0 and 503

semaphore 113, 151
semiconductors 85, 318
semipassive RFID 405
sendmail 60, 111, 177
senior citizens and computing

424–425, 434
sensors 178, 178, 208, 496
September 11, 2001, attacks 53,

383, 439
sequential access 192

576        Index

sequential calculator 5
serial IDE (SATA) 223
serial numbers 117–118
serial port 360, 425, 486
serial transmission 133
serif fonts 201
server 89, 133. See also file server;

Web server
server message block (SMB) 335
service broker 426
service bureaus 64
service-oriented architecture (SOA)

110, 415, 425–426, 509
service robot 183, 410
servlets 255
session layer 334
SETI@home 116–117, 155, 217, 462
sets 67, 184–185
set theory 87, 351
Seven Cities of Gold (game) 174
sexual content, in chat rooms 83
SGI (Silicon Graphics) 122
SGML (Standard Generalized

Markup Language) 232, 520
Shakey 411
Shamir, Adi 146, 181
Shannon, Claude E. 84, 103, 241,

404, 426, 426–427, 463
SHARE 373
shareware and freeware 104, 293–

294, 352, 427–428
Shaw, Cliff 162
sheet-fed scanner 416
shell 110, 354, 421, 428–430, 485,

488
Shell, Donald L. 447
shellsort 447
shift operators 51
shift-register algorithm 399
Shimomura, Tsutomu 314
Shockley, William 42, 85, 404
Shockwave 20
Sholes, Christopher Latham 265
Shor, Peter 395
Short Message Service (SMS) 477
SHRDLU 27, 187
Shuttlesworth, Mark 279
Sidekick (Borland) 368
sign 338
signal conditioning circuit

129–130
signal processors 178
signatures. See authentication;

certificate, digital
significand 338
silicon 85
Silicon Graphics (SGI) 122
Silicon Snake Oil (Stoll) 458
Sim City 103
Simon 463
Simon, Herbert 26, 33, 85, 93, 162,

190, 295
Simonyi, Charles 430–431
Simple API for SML (SAX) 161
Simple Mail Transport Protocol

(SMTP) 177, 177, 247
Simple Object Access Protocol 1,

118, 438, 508–509, 520
Sims, The (game) 174, 441
Simula 88, 263, 339–340, 431, 459
simulation 431–432. See also

emulation; virtualization
analog computers in 14
biological 47, 47
in CAD system 98
of cognition 92–93
in decision support systems

139
fractals used in 203
GIS in 208
haptic interfaces for 222

military use of 311
in Nintendo Wii 205
random number generation

for 399
in scientific applications 420
Simula for 431
Smalltalk for 434
in social sciences 441
in virtual reality 271
virtual reality and 495–496

simulation games 103
simultaneous processing 431
singularity, technological 269,

432–433
Singularity Is Near, The (Kurzweil)

269, 433
site licenses 244
SixDegrees.com 440
Sketchpad 263, 463
Skoll, Jeff 165, 343
Skype 87, 496–497
Slashdot 260, 480
slide rule 13
slides 380
Slot-1 chipset architecture 86
small businesses 195
Small Computer System Interface

(SCSI) 63, 197, 223, 335
Small Office/Home Office (SOHO)

230–231
Smalltalk 88, 228, 263–264, 340,

389, 431, 433–434
smart buildings and homes 107,

434–435, 435
smart card 405, 435, 435–436
smart cars 71–72
smart mobs 198, 407, 477
Smart Mobs (Rheingold) 198, 407
smartphone 436–438, 437. See also

mobile computing
in computer industry 108
in computing history 229
distance education on 154
GPS in 293
“hot spots” and 250
iPhone 19, 147, 258
keyboards and 265
multimedia on 147
music playback on 327
PDAs and 364
podcasts on 375
touchscreens on 478

SMB (server message block) 335
SMP (symmetric multiprocessing)

323
SMS (Short Message Service) 477
SMTP (Simple Mail Transfer

Protocol) 177, 177, 247
sneaker-net 200
Sneakers (film) 378
sniping 31
Snobol 82–83
Snow, John 239
SOA (service-oriented architecture)

110, 415, 425–426, 509
SOAP 1, 118, 438, 508–509, 520
social bookmarking 294. See also

del.icious.us
social bots 83–84, 442, 481
social engineering 100, 220, 314,

370
social impact of computing

438–440
in computer literacy 109
Dertouzos on 141
of digital photography 372
of e-government 172–173
Lanier on 272
of online identity 237–238
Shannon’s work on 427
smart mobs 407

virtual worlds and 348
webcams in 504
of World Wide Web 517

social networking 440–441
cyberbullying and 126
cyberstalking and 126
in globalization 209
in intelligence agencies 119
in Internet growth 248
for job-hunting 349
persistence of postings 332
political activism and 377
software agents and 289
in software engineering 74
support groups and 367
technological singularity

and 433
user-created content in 487
as virtual community 494
in Web 2.0 502
World Wide Web and 518
by young people 523

social sciences and computing
441–442

social security numbers 408
Socialtext 501
social virtualization 494–495
social worlds 104
society of mind 237, 313, 314, 442
Society of Mind, The (Minsky) 237,

313, 336
Socket 7 chipset architecture 86
sockets 469
Softbank 407
software. See application software
software agents 442–443

artificial intelligence in 27
demons and 141
globalization and 209
Maes’s work in 289
at MIT Media Lab 314
natural language processing

in 330
ontologies in 351
in personal information

managers 368
psychology and 391
in semantic Web 424
for spam 451
technological singularity

and 433
Web 2.0 and 503

Software Agents Group 289
software applications. See

application software
software asset management (SAM)

244
software crisis 443
software engineering 22, 443,

443–444
with Ada 2
benchmarks in 43
blogging in 53
CASE for 73, 73–74
compatibility and 94–95
computer engineering and

101
in computer science 109
Cunningham’s work in 122
under Defense Department

2
documenting in 159
employment in 178
emulators in 179
flowcharting in 200
of games 104
with intentional

programming 430
patterns used in 142
professional programming

in 386

quality assurance and
394–395

reverse engineering 404–405
risk and 408
Wirth on 514

Software Engineering Institute
(SEI) 444

software installation 244
software piracy and counterfeiting

444–445. See also copy
protection; intellectual property
and computing

application service providers
and 21

copy protection and 117–118,
246

digital rights management
and 149–150

in global market 108, 210
by hackers 219–220
policy on 472

Software Publishers Association
(SPA) 117

software suite. See application suite
software testing 61, 109, 186,

394–395, 408, 444, 464
SOHO (Small Office/Home Office)

230–231
Sojourner 449
Solaris 461
solar power 42
solid state computer 227
Sony 108, 150, 445–446
Sony ACID Pro 326
Sony PlayStation 2 205
Sony PlayStation 3 108, 205
sorting and searching 109, 240–

241, 401, 402, 446–448
sound cards 326
sound file formats 448–449
source bits 51
source code 95, 158
SPA (Software Publishers

Association) 117
space exploration and computers

45, 358, 410, 410, 449–450
Space Invaders (game) 205
Space Shuttle 449
Spacewar 103
Spafford, Eugene H. 450
spam 17, 111, 332, 384, 450–451
spambots 83
spam filters 41, 117, 370, 451
SPARC (Scalable Processor

ARChitecture) 402, 460–461,
517

speakers 326
specialized applications 22
specification 444
spectral equivalence classes 452
speech recognition and synthesis

451–452
artificial intelligence for 27
for assistive devices 268
Bell Labs and 42
keyboards and 265
Kurzweil’s work in 268, 269
language translation with

271
military use of 311
neural networks in 337
in user interfaces 489

Sperry-Rand (Sperry-Univac)
Corporation 30, 106, 168, 227,
297

spiders 422
spiral model 444, 444
Spirit rover 449
spiritual aspects of computing.

See philosophical and spiritual
aspects of computing

Index        577

Spitzer, Eliot 453
spoofing. See phishing and spoofing
spool. See buffering
sports betting 346
spreadsheet 452–453, 454. See also

Lotus 1-2-3; Microsoft Excel;
VisiCalc

for business data processing
64

early market for 206
mathematics with 295
in office automation 342
PC and 366
as personal information

manager 368
statistical analysis with 458
templates for 475

sprites 16
Sproull, Bob 463
SPSS 458
Spybot Search & Destroy 453
spyware and adware 111, 344–345,

384, 453–454
SQL (Structured Query Language)

454–455, 455
computer science in 110
for database management

132
for data warehouse 139
for information retrieval 241
Oracle and 356
procedures and 337

Squeak 264, 434
SRI (Stanford Research Institute)

320
SSL (Secure Sockets Layer) 503
stack 456

abstract 129
in C 67
in C++ 68
as data structure 138
in Forth 201
queue and 396
in recursion 401

Stafford-Fraser, Quentin 504
Stalkerati 441
stalking 100, 126, 248, 252, 523
Stallman, Richard 150, 279, 352,

456–457
Standard Generalized Markup

Language (SGML) 232, 520
standards in computing 457
Stanford Artificial Intelligence

Laboratory (SAIL) 59, 145, 403
Stanford Cart 59, 411
Stanford Knowledge Systems

Laboratory 403
Stanford Research Institute (SRI)

320, 411
Stanford Robotics Laboratory 403
Stanley (car) 71–72
Starflight (game) 174
StarLogo 285
star network 283, 283
Star Office 352
state-based devices 195
static array 24
static RAM 301
static variables 491
statistics and computing 270, 271,

296, 330, 420, 441, 457–458
stepper motor 222
stepwise refinement 460
Sterling, Bruce 125
Steve Jackson Games 124–125
Stockhausen, Karlheinz 325
stock trading 348
Stoll, Clifford 170, 440, 458, 494
storage, networked 152, 192, 335
storage area network (SAN) 192,

335

storage media 191
stored program 227
storyboarding 194
Strategic Air Command (SAC) 311
Strategic Air Ground Environment

(SAGE) 104, 139, 212, 235, 311
strategic planning 291
stratification 439
streaming 458–459

buffering in 60
codecs for 92
digital convergence and 147
in Internet growth 248
of Internet radio 251
of multimedia 322
network and 335
real-time processing and 400
of television episodes

326–327
stress gauges 129
STRETCH 10
string-oriented languages 82–83
strings. See characters and strings
striping 398
Stroustrup, Bjarne 67, 341, 459,

459–460
struct 65, 138
structured data types 138
structured programming 460. See

also Algol; C (language); Pascal
with Ada 2
BASIC and 40
C++ and 459
COBOL and 91
in computer science 109
in computing history 228
Dijkstra and 151
documentation in 159
encapsulation in 180
FORTRAN and 202
Pascal. See Pascal
in software engineering 443
subroutines and 180
variables in 491

Structured Query Language. See
SQL

styles 72
subatomic particles 395–396
subprograms. See procedures
subrange 185
subroutine. See procedures
subscripts, in arrays 23, 24
substitution ciphers 180
substrate 85
Sun Labs 463
Sun Microsystems 113, 146, 255–

256, 261, 324, 460–461
SunOS 461
Sun SPARC (Scalable Processor

ARChitecture) 402, 460–461,
517

supercomputer 461, 461–462
benchmarks for 43
cell chip for 205
cluster computing as 217
in computing history 227
Cray’s work with 121–122
government funding of 212
grid computing as 216
Prolog used in 390

Superfund Program 216
Super Mario Brothers (game) 205
Super Socket 7 chipset architecture

86
Super VGA (SVGA) 213
supply chain management 64, 415,

462–463
support groups, online 367
Suraski, Zeev 372
surface acoustic wave (SAW) 478
surfing 422

SurfWatch 505
surgery 300
surveillance

biometrics with 49
in computer attacks 100
in counterterrorism 118–119
Electronic Frontier

Foundation and 125
with Google Earth 292
image processing in 239
in law enforcement 273
privacy and 383

surveys 441
Sutherland, Ivan Edward 463
SVGA (Super VGA) 213
swapfile 302
Swift, Jonathan 418
Swiss Federal Institute of

Technology (ETH) 362
switch. See branching statements
switched Ethernet systems 283
switch statement 55
Swoogle 424
Symbian 437
symbolic assembler 29
symbolic programming 29
symbolists 93
symmetric multiprocessing (SMP)

323
synchronous DRAM (SDRAM) 301
synchronous processes 154
syntax error 61
synthesizer, musical 268–269, 325
system administrator 178, 421, 464
system chart 200
system clock 90
systems analyst 464
systems programming 29, 65, 67,

464–465
System X 217
SYSTRAN 271

T
tables, in relational databases 131
tablet PC 221, 466
tabulating machine 229, 230, 294,

341, 392
“Tactical Iraqi” (game) 311
Tagged Image File Format (TIFF)

215
tags, markup 232, 520
TAI (Technology Achievement

Index) 143
Tandy 228
tape drives 37, 258, 467, 467–468
Tapscott, Don 524
tasks, in groupware 217
tax-avoidance schemes 345
tax returns 79, 172, 195
Tcl 468
TCP (Transmission Control

Protocol) 469
TCP/IP 468–470, 469

Cisco’s work on 87
in computer science 110
development of 78
DNS in 155
e-mail and 177
in Internet 247
Internet and 518
for local area networks 284
for networks 334
UNIX support for 261
Web server and 508

TD Ameritrade 348
technical publishing 159
technical support 140, 178, 210,

230, 470–471
technical writing 471–472. See also

documentation; documentation
of program code

technological singularity 269,
432–433

Technology Achievement Index
(TAI) 143

technology policy 472
Technology-Related Assistance

Act 152
Teilhard de Chardin, Pierre 369
telecommunications 110, 472–473,

496–497
Telecommunications Act 473
telecommuting 473–474
telegraph 383, 493
telephone 38, 58, 69, 266, 314, 383,

496. See also modem
telepresence 300, 411, 474, 474–

475. See also videoconferencing
telerobotics 474–475, 496
teletex 168
Teletype 151, 265, 381, 476
television 163–164, 194
television networks, online

distribution by 326–327
telnet 248, 476
template 68, 88, 96, 98, 112, 355,

475
terabyte 51, 298
TeraGrid 217
Termin, Lev 325
terminal 475–476
terminate and stay resident (TSR)

function 321
terrorism. See cyberterrorism
Texas Instruments 85
TeX system 267
text editor 110, 387, 476, 517. See

also word processing
texting 113, 126, 198, 477, 494,

523
text-to-speech software 151
texture mapping 106
TFT (thin film transistor) 199
Therac 25 408
thermistors 129
thermocouples 129
thermostats 124
thin client 89
thin film transistor (TFT) 199
Thinking Machines Inc. (TMI) 461
Thompson, Ken 261, 409–410,

429, 485
Thomson, James 13
Thomson, William (Lord Kelvin)

13
THOR 297
threads 61, 113, 154, 201, 324, 353
3D graphics 213–214
3DMark 43
3DO 174
3G (third generation) 58, 514
three laws of robotics 418, 433
thumb drive 37, 198–199, 200,

446, 487
thumb tribes 198
TiddlyWiki 511
TIFF (Tagged Image File Format)

215
Time Machine 357
Time magazine 207
time series analysis 458
time-sharing

BASIC and 40
in computer-aided

instruction 99
e-mail for 176–177
government funding for 212
hackers and 219
Licklider’s work in 278
mainframes and 290
McCarthy’s work on 297
shell and 428

578        Index

terminals in 475–476
user interface for 488
Weizenbaum’s work on 509

Time-Warner 11–12, 350
TiVo 163
Tk 468
TMI (Thinking Machines Inc.) 461
Toffler, Alan 432
token 95–96, 201, 360–361
token ring network 283, 283
TomTom 293
toner 382
Tools for Thought (Rheingold) 407
topology 295
torrents 193
Torvalds, Linus 184, 279, 352,

456–457, 477–478
Toshiba 108
touchpad 321, 489
touchscreen 19, 175–176, 364, 466,

478, 489
TP (transaction processing) 130,

291, 310, 478–479
trace 61
trackball 185, 321, 489
tracker (torrent) 193
trade secrets 245–246
transaction processing (TP) 130,

291, 310, 478–479
transducer 129
transfer speeds 299
transformation 33
transistors

in calculator 71
on chips 86
in computing history 227
development of 42
invention of 85
in minicomputers 312
Moore’s work with 318
Sony and 445
in supercomputers 461

transition 196
Transmeta 478
Transmission Control Protocol

(TCP) 469
transparency, privacy and 384
transport layer 334
trap-door function 145–146
travel, software agents for 289
Traveling Salesman Problem

97–98
tree 138, 479, 479–480
trends and emerging technologies

102, 480
in computer industry 108
in database management

132
in data compression 134
in data mining 136
in digital photography 372
in e-commerce 168–169
in education 170
in e-mail 177
in expert systems 188
in financial software 195
in game consoles 205
for haptic interfaces 221–

222
in Internet applications

programming 249
in laptop computers 273
in medicine 300–301
in networks 334–335
in object-oriented

programming 341
in office automation 342
in operating systems 354
in PCs 366–367
in search engines 423
in telecommuting 474

in user interfaces 489
in work processors 517
in World Wide Web 518

Treo (Palm) 364
Trilogy 10–11
Trojan horse 100, 111
TRS-80 228
True BASIC 40
TrueType fonts 3, 201
Truscott, Tom 333
trust and reputation systems

480–481
TRUSTe 345, 384
TRW 206
TSR (terminate and stay resident)

function 321
Tucows.com 428
tuples 158
Turbo Pascal 363, 387, 514
Turbo Prolog 390
Turing, Alan Mathison 87, 103,

196, 481–482. See also Turing
machine; Turing test

Turing Machine 481
computability and 97, 295

Turing Test 26, 83, 481
Turk, the 84, 410
Turkle, Sherry 237, 482–483
turnkey system 493
Turoff, Murray 114
turtle, in Logo 284, 359
turtle robot 124
tweening 16
Twiki 511
2001: A Space Odyssey (film) 378,

418, 419, 451
two-way satellite system 416
TX-2 463
Type 1 fonts 3
typeface. See fonts
types. See data types
typewriters 381
typing, ergonomics of 185
typography, computerized 267,

483. See also fonts

U
UART (Universal Asynchronous

Receiver-Transmitter) 425
ubiquitous computing 331, 384,

484–485. See also digital
convergence

Ubuntu 279, 280, 306, 309
UCSD P-System 362, 387–388, 391
UDDI (Universal Description

Discovery and Integration)
508–509

UDP (User Datagram Protocol)
469

Ulam, Stanislaw 432
Ultima (game) 104, 174
Ultima Online (game) 347
ultra broadband 58
Ultra Card 436
ultra-wide band (UWB) 53
UML (Unified Modeling Language)

315
Unabomber 261
Unbox 327
Unfinished Revolution, The

(Dertouzos) 141
Unicode characters 82, 247
Unified Modeling Language (UML)

315
uniform resource locator (URL)

43, 157–158, 503, 508, 518. See
also DNS

Unimate (robot) 182–183, 410
Unimation 182, 410
uninterruptible power supply

(UPS) 37, 152

union 65
Unisys Corporation. See Sperry-

Rand Corporation
United Nations 251
UNIVAC

in computing history 227
Cray’s work on 121
Hopper’s work on 231
mainframes and 290
marketing of 106
Mauchly’s work on 296–297
memory in 301
in popular culture 378
Presper’s work on 167–168
social impact of 438

Univac (company) 212
Universal Asynchronous Receiver-

Transmitter (UART) 425
universal computer concept 179,

196, 336
Universal Description Discovery

and Integration (UDDI)
508–509

Universal Plug and Play (UPnP)
374

universities 212, 219. See also
specific universities

University of Phoenix 170
UNIX 485–486. See also Linux

API of 354
ASP .NET on 1
awk scripting language

for 33
compiling in 97
in computer history 228–229
C on 65
data security in 136–137
development of 42, 312, 404,

409–410
file attributes in 191
file transfer for 194
GNU project and 456
help system in 225
Internet and 518
Joy’s work on 261
kernel in 264
Linux and 279
mathematics software in 295
multitasking in 325
netnews and 333
in OS X 19, 258, 288, 357
parsing in 360
programming environment

of 387
real-time processing in 400
regular expressions in 402
scripting in 422
shell and 428–429
software installation on 244
Sun and 461
terminals and 476
text editing in 476
time-sharing with 353
Torvalds work with 477. See

also Linux
user groups for 488
user interface of 488
in workstations 517

Unlawful Internet Gambling
Enforcement Act 346

upload speeds 58
UPnP (Universal Plug and Play)

374
UPS (uninterruptible power

supply) 37, 152
upward compatibility 94
urban playground movement 198
URL (uniform resource locator)

43, 157–158, 503, 508, 518. See
also DNS

usability 141, 394, 489

USA.gov 172
USB (universal serial bus) 486–487

in boot sequence 55
for data backup 37
for digital cameras 372
for external hard disks 223
FireWire and 197
for flash drives 198
introduction of 63
on laptops 272
parallel ports and 360
serial ports and 425

U.S. Department of Defense. See
ARPANET; DARPA

Usenet. See netnews and
newsgroups

User Account Control 100, 307
user accounts 354
user-created content 487–488

on Amazon.com 9
blogs as 52, 53
on bulletin boards 61–62
in computing history 229
in development of World

Wide Web 44
on eBay 165–166, 343
in e-commerce 169
in globalization 209
mashups 294
multimedia 323
open-source movement and

352
in personal health

management 367–368
in trust and reputation

systems 480
video 493, 524
in Web 2.0 502
in Wikipedia 511–513
in wikis 511
on YouTube 493, 524

User Datagram Protocol (UDP) 469
user-defined data types 138, 286,

362
user documentation. See

documentation, user
user groups 260, 427, 488
user interface 488–489. See

also application program
interface; graphics tablet; haptic
interfaces; keyboard; mouse

computer science in 110
copyright and 245
for decision support systems

140
for digital dashboard 148
disabled users and 152
Engelbart’s work in 182
graphics on 105
for Macintosh 18, 228, 258,

287, 307
for Microsoft .NET 307
in Microsoft Visual Basic 388
in Microsoft Windows 206,

308
in Microsoft Windows Vista

307
in Nintendo Wii 205
for operating systems 354
psychology and 391
Sketchpad and 463
for terminals 476
in UNIX 485
in virtual reality 271
voice-controlled 330
by Xerox PARC 105, 404

Userland Software 52
users 37, 100, 130, 394
user status 136, 137, 191
Utah Street Networks 87
UUCP 333

Index        579

V
vacuum, robotic 253
vacuum tube 85, 226, 525–526
vandalism, electronic 100
van Rossum, Guido 392
variables 490–491. See also flag

as address 3
in Algol 7
in Analytical Engine 35
in BASIC 40
binding and 45
in classes 88
COBOL and 91
in compiling 96
constants and 115
in data mining 136
functional languages and

203–204
in Pascal 362
in PL/I 373
in procedural languages 388
in procedures 385
in scripting languages 421
in Smalltalk 433
in Tcl 468

variance, analysis of 458
VAXcluster 216
VAX minicomputers 41, 261
VBA (Visual Basic for Applications)

289, 422
VBScript 422, 491–492, 508
VDT (Video Display Terminal) 317
Veblen, Oswald 86
vector data 208, 337
vectored interrupts 243
vector fonts 201
vector graphics 50, 214
vector processing 461
VeriSign 78–79
Verizon Fios 58, 69, 191
Verne, Jules 418
Verro (robot) 253
versioning 74, 115, 159
VESA bus 63
VGA (Video Graphics Array) 62,

213, 236
vi 261
video, on PCs 322
video accelerator 214
video blogging 52
video buffer 60
video cameras, digital 372, 446,

492
video card. See graphics card
video cassette recorders (VCRs)

163
videoconferencing 83, 322, 342,

474, 492–493, 497. See also
telepresence

Video Display Terminal (VDT) 317
video distribution, online. See

music and video distribution,
online

video editing, digital 493. See also
photography, digital

video games. See computer games
Video Graphics Array (VGA) 62,

213, 236
video players, digital. See music

and video players, digital
Video RAM (VRAM) 214
Viewpoints Research Institute 264
Viking landers 449
Vinge, Verner 28, 419, 432
violence, in games 104
Violence Against Women Act 126
virtual classes 88
virtual community 83, 114, 125,

407, 440, 493–494, 518
Virtual Community, The (Rheingold)

407

virtual functions 68, 88
virtual identities 237–238, 348
virtualization 209, 494–495. See

also simulation
virtual library 166–167, 211, 260
virtual machine 95, 179, 286,

434, 494. See also Java Virtual
Machine

virtual memory 3, 224, 261, 302,
308, 353

Virtual Private Network (VPN)
494, 513

virtual property law 124
virtual reality 495, 495–496

art in 26
in cyber culture 126
digital convergence and 148
Lanier’s work in 271–272
military use of 311
multimedia and 322
neural interfaces and 335
programming environment

in 388
in science fiction 419
for telepresence 474
ubiquitous computing and

484
as user interface 489
wearable displays for 501

Virtual Reality (Rheingold) 407
Virtual Reality Modeling Language

(VRML) 496
virtual school 170
virtual worlds 104, 124, 237, 347–

348, 391, 441–442, 482
virus. See computer virus
VisiCalc 18, 106, 258, 295, 366,

452, 458
vision, computer 27, 112, 363, 411
VisualAge RPG 412
Visual Basic 20, 40, 309, 387, 388,

422, 491
Visual Basic for Applications (VBA)

289, 422
visualization 47, 47, 420–421
VL bus 63
VMware 179, 494
vocoder 42
voice-coil actuator 222
voiceprint 48
voice recognition. See speech

recognition and synthesis
voice scanning 48
voice synthesis 151
VoIP (voice over Internet protocol)

496–497, 497
broadband for 59
cable service and 69, 163
for chat 83
Cisco’s work in 87
satellite service and 416
telecommunications and 473

Volkswagen Touareg 71–72
von Neumann, John 28, 167, 190,

329, 432, 497–499, 498
von Rospach, Chuq 331
voting systems, electronic 175,

175–176
Voyager 2 449
voyeurism 504
VPL Research 271
VPN (Virtual Private Network)

494, 513
VRAM (Video RAM) 214
VRML (Virtual Reality Modeling

Language) 496

W
WAIS (Wide Area Information

Service) 248, 518
Wales, Jimmy 500–501, 511

Wall, Larry 365
Wallace, Bob 427–428
Wallace, Richard 84
Walt Disney Imagineering 264
Walter, Grey 59, 124
WAN (wide area network) 133, 334
Wang, An 341
Wang Corporation 106, 516
Warcraft 104
warez 220
war games 103
War Games (film) 378
Warnock, John 3, 379
Warwick, Kevin 406
Wasik, Bill 198
watch 61
waterfall model 443, 444
Watson, Thomas, Sr. 5, 235
Wave Table Synthesis 326
WAV format 448
Wayne, Ronald 18
wearable computers 141, 496,

501, 501
wearIT@work 501
Weaving the Web (Berners-Lee) 424
Web. See World Wide Web
Web 2.0 110, 501–503, 502
Web browser 503, 503–504. See

also Microsoft Internet Explorer;
Mosaic; Netscape Navigator

anti-phishing in 370
Berners-Lee and 43
in blogging 52
bulletin boards and 62
cache for 70
in computer history 229
cookie control in 116
digital dashboard and 148
disabled users of 152
for file transfer 194
history in, Ajax pages and 6
in Internet growth 247, 248
JavaScript in 256
Microsoft Windows

challenged by 107
multimedia and 322
navigation in 234
newsreaders in 333
plug-ins for 374
on smartphones 437
threading in 324
XML in 520

Web cam 83, 492
webcam 504–505
Web crawler 141, 422
webcrawler 241
WebEx 87
Web feed 375, 412–413
Web filter 76, 77, 505, 523
Web logs. See blogs and blogging
webmaster 80, 505–506
WebMD 367
Web Ontology Language (OWL)

20, 267, 351, 424
Web page design 506–507

Ajax for 5–6
applets in 19–20
cascading style sheets in 72
DOM for 161
for information display 240
with JavaScript 256
PHP for 372
scripting in 422
user interface in 489
Web browser and 504
webmaster and 506

Web portal 350, 379, 422, 523
Web server 507–508

access from ISPs 252
Berners-Lee and 43
caching by 70

for client-server computing
89

cookies from 116
development of 107
digital dashboard on 148
queue in 396
by Sun 461
VBScript and 491
webmaster and 505–506
World Wide Web and 518

Web services 508–509
active server pages for 1
broadband connections

and 58
CGI for 80–81
employment in 179
JavaScript and 256–257
in service-oriented

architecture 426
SOAP for 438

Web Services Description Language
(WSDL) 426

Web sites
attacks on 127
banner ads on 344
for businesses 64
content management of

115–116
for database hosting 342
databases and 132
disabled users of 152
document model in 161
for government agencies 172
for help systems 225
in information warfare 242
for newspapers 259
in office automation 342
political activism and 377
spoofing 369–370
for technical support 470
for user documentation 159
viruses from 111
Web server and 507–508
from Yahoo! 523

WebTV 107
WebVan 168
Weinberger, Peter J. 33
Weizenbaum, Joseph 26, 83, 442,

509–510
Weizmann Institute of Science 317
WELL, The 17, 62, 113, 314, 407,

493–494
Westin, Alan F. 383
Westlaw 274
What Computers Can’t Do (Dreyfus)

162
What Computers Still Can’t Do

(Dreyfus) 162
What Will Be (Dertouzos) 141
Whetstone 43
Whirlwind 104, 212
whiteboard programs 217, 342, 492
white box testing 394–395
Whitman, Margaret (Meg) 165,

166, 343, 515
Whois 17
Whole Earth Catalog (Brand) 407
Wide Area Information Service

(WAIS) 248, 518
wide area network (WAN) 133, 334
widgets 73
Wiener, Norbert 124, 277, 510–511
Wiesner, Jerome 313, 331, 511
WiFi 53, 513. See also wireless

computing
Wii 205, 221
wiki(s) 511–513

accuracy of 259
on Amazon.com 9
as content management

systems 116

580        Index

databases in 132
development of 122
on eBay 166
Google and 211
as groupware 217
hypertext in 234
in Internet growth 248
journalism and 259
for legal information 274
netiquette and 332
in office automation 342
user-created content of 487

Wikia, Inc. 500, 513
Wikimedia Foundation 500, 513
Wikinomics (Tapscott and

Williams) 524
Wikipedia 119, 122, 292, 350, 487,

500–501, 511–513, 512
WikiScanner 513
wildcards 402, 403
Williams, Anthony D. 524
Williams, John 447
Williamson, Jack 418
WiMAX 58, 514
Windows. See Microsoft Windows
Wine 405
Winer, David 52
WinHelp 225
Wintel. See IBM PC; Intel;

Microsoft Windows
WinZip 428
Wired 260, 331
wireless computing 513–514

with Bluetooth 53
broadband 58
data communications over

134
in developing nations 143
employment in 179
at “hot spots” 250
with laptops 272, 273
for local area networks 284
mouse 321
with PDAs 364
for portable devices 107
with tablet PC 466
transfer speed of 299
USB adapters for 487

wiretapping 119, 242, 273, 383,
497

Wirth, Niklaus 362, 363, 460,
514–515

WISC (Wisconsin Integrally
Synchronized Computer) 10

Wizardry 104
wizards 225, 308
WLAN. See wireless computing
WMI (Windows Management

Instrumentation) 492

Wolfram, Stephen 76
women and minorities in

computing 515–516
Wonder, Stevie 268
WordPerfect 516
WordPress 52
word processing 516–517

in business 64
computer science in 110
desktop publishing and 143
document model and 160
early market for 206
in office automation 341–342
revision marking in 342
templates in 475
text editors and 476
typography in 483

word processors (machines) 106
words, in Forth 201
WordStar 516
workstation 517
World Community Grid 117
World of Warcraft (game) 286, 347
World Wide Web 517–519. See also

Web browser
AOL and 11
bulletin boards and 62
business use of 64
centralization and 439–440
in computer history 229
conferencing systems on 114
development of 43
disabled users and 152
as distributed computing

154
in education 169
empowerment by 439
entrepreneurship and 184
hypertext on 233
information design on 240
in Internet development

247, 248
libraries and 276
medical information on

300–301
Microsoft and 305–306
multimedia on 322–323
for online research 350
PDFs on 364
in personal health

information management
367

philosophy and 369
portals for 350, 379, 422, 523
professional programmers

and 386
senior citizens’ use of

424–425
standards for 457

telecommunications and 473
terrorists on 126–127
user interface and 489

World Wide Web Consortium
(W3C) 43, 141, 161, 251, 457

worm 111, 450, 492
Wozniak, Steven 18, 258, 519
wrist rest 185
write attribute 191
WSDL (Web Services Description

Language) 426
W3C 43, 141, 161, 251, 457
WYSIWYG 142, 287, 507, 516

X
X10 324
Xanadu 233
Xbox 205, 206, 306
Xbox 360 108, 205
Xcode 357
XCON 187
Xerox PARC (Palo Alto Research

Center) laboratory 18
Ethernet at 283
Kay at 263–264
laptop and 273
PostScript and 379
research of 404
Simonyi at 430
Simula developed at 339–340
Smalltalk at 433
ubiquitous computing at 484
user interface developed at

258, 307, 463, 488
workstation at 517

XHTML (Extensible HyperText
Markup Language) 5–6,
232–233, 233, 256, 520. See also
DHTML; HTML

XML (extensible markup language)
520–521

in ASP .NET 1
computer science in 110
with DOM 161
for information retrieval 241
for Internet applications

programming 249
Java with 255
knowledge representation

in 267
for RSS 412
in service-oriented

architecture 426
in SOAP 438
Web servers and 508
in Web services 508

Xmodem 194
XNU 357
XOR operator 51, 54

XSLT (XML style sheet processor)
161

XWindows 354

Y
Y2K problem 91, 159, 178, 439,

522–523
YACC 361
Yahoo!

advertising on 346
censorship in China and 76
in Chinese market 108
entrepreneurship and 184
Microsoft acquisition of 306
for online research 350, 422
online services and 350
as portal 379, 422

Yahoo! Inc. 523
Yahoo! Internet Life 260
Yahoo! Messenger 492
Yang, Jerry 184, 379, 422, 523
yellow, in CYMK 93
“Yenta” agent 289
Ymodem 194
young people and computing 237,

248, 477, 523–524
YouTube 524

access to 194
advertising on 345
distribution by 326
DVRs and 164
Google and 211
journalism and 260
in mashups 294
political activism and 377
streaming by 459
user-created content of 487

Yudkowsky, Eliezer 433

Z
Z1 525
Z3 525
Z4 525
Zadeh, L.A. 204
Z-buffer algorithm 106
ZDNet 260, 293–294, 428
Zen 327
Ziff Davis 260
Zimmermann, Philip 181
Zimmermann, Tom 271
Zip disks 200
Zip program 134
Zmodem 194
ZOG/KMS 140
ZoneAlarm 197
Zuckerberg, Mark 440
Zune 327
Zuse, Konrad 226, 525–526
ZUSE KG 526

	Encyclopedia of Computer science and technology
	Contents
	Acknowledgments
	Introduction to the Revised Edition
	A–Z Entries
	Appendix I. Bibliographies and Web Resources
	Appendix II. A Chronology of Computing
	Appendix III. Some Significant Awards
	Appendix IV. Computer-Related Organizations
	Index

