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Chances are that you use at least one computer or com-
puter-related device on a daily basis. Some are obvi-

ous: for example, the personal computer on your desk or at 
your school, the laptop, the PDA that may be in your brief-
case. Other devices may be a bit less obvious: the “smart” 
cell phone, the iPod, a digital camera, and other essentially 
specialized computers, communications systems, and data 
storage systems. Finally, there are the “hidden” computers 
found in so many of today’s consumer products—such as 
the ones that provide stability control, braking assistance, 
and navigation in newer cars.

Computers not only seem to be everywhere, but also 
are part of so many activities of daily life. They bring 
together willing sellers and buyers on eBay, allow you 
to buy a book with a click on the Amazon.com Web site, 
and of course put a vast library of information (of vary-
ing quality) at your fingertips via the World Wide Web. 
Behind the scenes, inventory and payroll systems keep 
businesses running, track shipments, and more problem-
atically, keep track of where people go and what they 
buy. Indeed, the infrastructure of modern society, from 
water treatment plants to power grids to air-traffic con-
trol, depends on complex software and systems.

Modern science would be inconceivable without com-
puters to gather data and run models and simulations. 
Whether bringing back pictures of the surface of Mars or 
detailed images to guide brain surgeons, computers have 
greatly extended our knowledge of the world around us and 
our ability to turn ideas into engineering reality.

The revised edition of the Facts On File Encyclopedia of 
Computer Science and Technology provides overviews and 
important facts about these and dozens of other applica-
tions of computer technology. There are also many entries 
dealing with the fundamental concepts underlying com-
puter design and programming, the Internet, and other 
topics such as the economic and social impacts of the infor-
mation society.

The book’s philosophy is that because computer tech-
nology is now inextricably woven into our everyday lives, 
anyone seeking to understand its impact must not only 
know how the bits flow, but also how the industry works 
and where it may be going in the years to come.

New and Enhanced Coverage

The need for a revised edition of this encyclopedia becomes 
clear when one considers the new products, technologies, 
and issues that have appeared in just a few years. (Consider 
that at the start of the 2000 decade, Ajax was still only a 
cleaning product and blog was not even a word.)

The revised edition includes almost 180 new entries, 
including new programming languages (such as C# and 
Ruby), software development and Web design technologies 
(such as the aforementioned Ajax, and Web services), and 
expanded coverage of Linux and other open-source soft-
ware. There are also entries for key companies in software, 
hardware, and Web commerce and services.

Many other new entries reflect new ways of using infor-
mation technology and important social issues that arise 
from such use, including the following:

• � blogging and newer forms of online communication 
that are influencing journalism and political cam-
paigns

• � other ways for users to create and share content, such 
as file-sharing networks and YouTube

• � new ways to share and access information, such as 
the popular Wikipedia

• � the ongoing debate over who should pay for Internet 
access, and whether service providers or governments 
should be able to control the Web’s content

• � the impact of surveillance and data mining on privacy 
and civil liberties

Intr oduction to the 
Re vised Edition
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• � threats to data security, ranging from identity thieves 
and “phishers” to stalkers and potential “cyberterror-
ists”

• � the benefits and risks of social networking sites (such 
as MySpace)

• � the impact of new technology on women and minori-
ties, young people, the disabled, and other groups

Other entries feature new or emerging technology, such 
as

• � portable media devices (the iPod and its coming suc-
cessors)

• � home media centers and the gradual coming of the 
long-promised “smart house”

• � navigation and mapping systems (and their integra-
tion with e-commerce)

• � how computers are changing the way cars, appliances, 
and even telephones work

• � “Web 2.0”—and beyond

Finally, we look at the farther reaches of the imagina-
tion, considering such topics as

• � nanotechnology

• � quantum computing

• � science fiction and computing

• � philosophical and spiritual aspects of computing

• � the ultimate “technological singularity”

In addition to the many new entries, all existing entries 
have been carefully reviewed and updated to include the 
latest facts and trends.

Getting the Most Out of This Book

This encyclopedia can be used in several ways: for example, 
you can look up specific entries by referring from topics in 
the index, or simply by browsing. The nearly 600 entries 
in this book are intended to read like “mini-essays,” giving 
not just the bare definition of a topic, but also developing its 
significance for the use of computers and its relationship to 
other topics. Related topics are indicated by small capital 
letters. At the end of each entry is a list of books, articles, 
and/or Web sites for further exploration of the topic.

Every effort has been made to make the writing acces-
sible to a wide range of readers: high school and college 
students, computer science students, working computer 
professionals, and adults who wish to be better informed 
about computer-related topics and issues.

The appendices provide further information for refer-
ence and exploration. They include a chronology of sig-
nificant events in computing; a listing of achievements in 
computing as recognized in major awards; an additional 
bibliography to supplement that given with the entries; 
and finally, brief descriptions and contact information for 
some important organizations in the computer field.

This book can also be useful to obtain an overview of 
particular areas in computing by reading groups of related 
entries. The following listing groups the entries by cat-
egory.

AI and Robotics
artificial intelligence
artificial life
Bayesian analysis
Breazeal, Cynthia
Brooks, Rodney
cellular automata
chess and computers
cognitive science
computer vision
Dreyfus, Hubert L.
Engelberger, Joseph
expert systems
Feigenbaum, Edward
fuzzy logic
genetic algorithms
handwriting recognition
iRobot Corporation
knowledge representation
Kurzweil, Raymond C.
Lanier, Jaron
Maes, Pattie
McCarthy, John
Minsky, Marvin Lee
MIT Media Lab
natural language processing
neural interfaces
neural network
Papert, Seymour
pattern recognition
robotics
singularity, technological
software agent
speech recognition and synthesis
telepresence
Weizenbaum, Joseph

Business and E-Commerce Applications
Amazon.com
America Online (AOL)
application service provider (ASP)
application software
application suite
auctions, online
auditing in data processing
banking and computers
Bezos, Jeffrey P.
Brin, Sergey
business applications of computers
Craigslist
customer relationship management (CRM)
decision support system
desktop publishing (DTP)
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enterprise computing
Google
groupware
home office
management information system (MIS)
middleware
office automation
Omidyar, Pierre
online advertising
online investing
online job searching and recruiting
optical character recognition (OCR)
Page, Larry
PDF (Portable Document Format)
personal health information management
personal information manager (PIM)
presentation software
project management software
smart card
spreadsheet
supply chain management
systems analyst
telecommuting
text editor
transaction processing
trust and reputation systems
word processing
Yahoo!

Computer Architecture
addressing
arithmetic logic unit (ALU)
bits and bytes
buffering
bus
cache
computer engineering
concurrent programming
cooperative processing
Cray, Seymour
device driver
distributed computing
embedded system
grid computing
parallel port
reduced instruction set computer (RISC)
serial port
supercomputer
USB (Universal Serial Bus)

Computer Industry
Adobe Systems
Advanced Micro Devices (AMD)
Amdahl, Gene Myron
Apple Corporation
Bell, C. Gordon
Bell Laboratories
benchmark

certification of computer professionals
Cisco Systems
compatibility and portability
computer industry
Dell, Inc.
education in the computer field
employment in the computer field
entrepreneurs in computing
Gates, William III (Bill)
Grove, Andrew
IBM
Intel Corporation
journalism and the computer industry
marketing of software
Microsoft Corporation
Moore, Gordon E.
Motorola Corporation
research laboratories in computing
standards in computing
Sun Microsystems
Wozniak, Steven

Computer Science Fundamentals
Church, Alonzo
computer science
computability and complexity
cybernetics
hexadecimal system
information theory
mathematics of computing
measurement units used in computing
Turing, Alan Mathison
von Neumann, John
Wiener, Norbert

Computer Security and Risks
authentication
backup and archive systems
biometrics
computer crime and security
computer forensics
computer virus
copy protection
counterterrorism and computers
cyberstalking and harassment
cyberterrorism
Diffie, Bailey Whitfield
disaster planning and recovery
encryption
fault tolerance
firewall
hackers and hacking
identity theft
information warfare
Mitnick, Kevin D.
online frauds and scams
phishing and spoofing
RFID (radio frequency identification)
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risks of computing
Spafford, Eugene H.
spam
spyware and adware
Y2K Problem

Databases
CORBA (Common Object Request Broker Architecture)
data conversion
data dictionary
data mining
data security
data warehouse
database administration
database management system (DBMS)
database
hashing
information retrieval
Oracle Corporation
SAP
SOAP (Simple Object Access Protocol)
SQL

Data Communications and Networking 
(General)
bandwidth
Bluetooth
broadband
cable modem
client-server computing
data acquisition
data communications
data compression
DSL (digital subscriber line)
error correction
fiber optics
file server
file transfer protocols
FireWire
local area network (LAN)
modem
network
satellite Internet service
Shannon, Claude E
synchronous/asynchronous operation
telecommunications
terminal
Wifi
wireless computing

Data Types and Algorithms
algorithm
array
binding
bitwise operations
Boolean operators
branching statements
characters and strings

class
constants and literals
data
data abstraction
data structures
data types
enumerations and sets
heap (data structure)
Knuth, Donald
list processing
numeric data
operators and expressions
sorting and searching
stack
tree
variable

Development of Computers
Aiken, Howard
analog and digital
analog computer
Atanasoff, John Vincent
Babbage, Charles
calculator
Eckert, J. Presper
history of computing
Hollerith, Hermann
Mauchly, John William
mainframe
minicomputer
Zuse, Konrad

Future Computing
bioinformation
Dertouzos, Michael
Joy, Bill
molecular computing
nanotechnology
quantum computing
trends and emerging technologies
ubiquitous computing

Games, Graphics, and Media
animation, computer
art and the computer
bitmapped image
codec
color in computing
computer games
computer graphics
digital rights management (DRM)
DVR (digital video recording)
Electronic Arts
film industry and computing
font
fractals in computing
game consoles
graphics card
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graphics formats
graphics tablet
image processing
media center, home
multimedia
music and video distribution, online
music and video players, digital
music, computer
online gambling
online games
photography, digital
podcasting
PostScript
RSS (real simple syndication)
RTF (Rich Text Format)
sound file formats
streaming (video or audio)
Sutherland, Ivan Edward
video editing, digital
YouTube

Hardware Components
CD-ROM and DVD-ROM
flash drive
flat-panel display
floppy disk
hard disk
keyboard
monitor
motherboard
networked storage
optical computing
printers
punched cards and paper tape
RAID (redundant array of inexpensive disks)
scanner
tape drives

Internet and World Wide Web
active server pages (ASP)
Ajax (Asynchronous JavaScript and XML)
Andreessen, Marc
Berners-Lee, Tim
blogs and blogging
bulletin board systems (BBS)
Bush, Vannevar
cascading style sheets (CSS)
Cerf, Vinton G.
certificate, digital
CGI (common gateway interface)
chat, online
chatterbots
conferencing systems
content management
cookies
Cunningham, Howard (Ward)
cyberspace and cyber culture
digital cash (e-commerce)
digital convergence

domain name system (DNS)
eBay
e-books and digital libraries
e-commerce
e-mail
file-sharing and P2P networks
flash and smart mob
HTML, DHTML, and XHTML
hypertext and hypermedia
Internet
Internet applications programming
Internet cafes and “hot spots”
Internet organization and governance
Internet radio
Internet service provider (ISP)
Kleinrock, Leonard
Licklider, J. C. R.
mashups
Netiquette
netnews and newsgroups
online research
online services
portal
Rheingold, Howard
search engine
semantic Web
social networking
TCP/IP
texting and instant messaging
user-created content
videoconferencing
virtual community
Wales, Jimmy
Web 2.0 and beyond
Web browser
Web cam
Web filter
Webmaster
Web page design
Web server
Web services
wikis and Wikipedia
World Wide Web
XML

Operating Systems
demon
emulation
file
input/output (I/O)
job control language
kernel
Linux
memory
memory management
message passing
microsoft windows
MS-DOS
multiprocessing
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multitasking
operating system
OS X
system administrator
regular expression
Ritchie, Dennis
shell
Stallman, Richard
Torvalds, Linus
UNIX

Other Applications
bioinformatics
cars and computing
computer-aided design and manufacturing (CAD/CAM)
computer-aided instruction (CAI)
distance education
education and computers
financial software
geographical information systems (GIS)
journalism and computers
language translation software
law enforcement and computers
legal software
libraries and computing
linguistics and computing
map information and navigation systems
mathematics software
medical applications of computers
military applications of computers
scientific computing applications
smart buildings and homes
social sciences and computing
space exploration and computers
statistics and computing
typography, computerized
workstation

Personal Computer Components
BIOS (Basic Input-Output System)
boot sequence
chip
chipset
clock speed
CPU (central processing unit)
green PC
IBM PC
laptop computer
microprocessor
personal computer (PC)
PDA (personal digital assistant)
plug and play
smartphone
tablet PC

Program Language Concepts
authoring systems
automatic programming
assembler

Backus-Naur Form (BNF)
compiler
encapsulation
finite state machine
flag
functional languages
interpreter
loop
modeling languages
nonprocedural languages
ontologies and data models
operators and expressions
parsing
pointers and indirection
procedures and functions
programming languages
queue
random number generation
real-time processing
recursion
scheduling and prioritization
scripting languages
Stroustrup, Bjarne
template
Wirth, Niklaus

Programming Languages
Ada
Algol
APL
awk
BASIC
C
C#
C++
Cobol
Eiffel
Forth
FORTRAN
Java
JavaScript
LISP
LOGO
Lua
Pascal
Perl
PHP
PL/1
Prolog
Python
RPG
Ruby
Simula
Tcl
Smalltalk
VBScript

Social, Political, and Legal Issues
anonymity and the Internet
censorship and the Internet
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computer literacy
cyberlaw
developing nations and computing
digital divide
disabled persons and computing
e-government
electronic voting systems
globalization and the computer industry
government funding of computer research
identity in the online world
intellectual property and computing
Lessig, Lawerence
net neutrality
philosophical and spiritual aspects of computing
political activism and the Internet
popular culture and computing
privacy in the digital age
science fiction and computing
senior citizens and computing
service-oriented architecture (SOA)
social impact of computing
Stoll, Clifford
technology policy
women and minorities in computing
young people and computing

Software Development and Engineering
applet
application program interface (API)
bugs and debugging
CASE (computer-aided software engineering)
design patterns
Dijkstra, Edsger
documentation of program code
documentation, user
document model
DOM (document Object Model)
error handling
flowchart
Hopper, Grace Murray
information design

internationalization and localization
library, program
macro
Microsoft .NET
object-oriented programming (OOP)
open source movement
plug-in
programming as a profession
programming environment
pseudocode
quality assurance, software
reverse engineering
shareware
Simonyi, Charles
simulation
software engineering
structured programming
systems programming
virtualization

User Interface and Support
digital dashboard
Engelbart, Doug
ergonomics of computing
haptic interface
help systems
installation of software
Jobs, Steven Paul
Kay, Alan
Macintosh
mouse
Negroponte, Nicholas
psychology of computing
technical support
technical writing
touchscreen
Turkle, Sherry
ser groups
user interface
virtual reality
wearable computers
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abstract data type  See data abstraction.

active server pages  (ASP)
Many users think of Web pages as being like pages in 
a book, stored intact on the server, ready to be flipped 
through with the mouse. Increasingly, however, Web pages 
are dynamic—they do not actually exist until the user 
requests them, and their content is determined largely by 
what the user requests. This demand for greater interactiv-
ity and customization of Web content tends to fall first on 
the server (see client-server computing and Web server) 
and on “server side” programs to provide such functions as 
database access. One major platform for developing Web 
services is Microsoft’s Active Server Pages (ASP).

In ASP programmers work with built-in objects that rep-
resent basic Web page functions. The RecordSet object can 
provide access to a variety of databases; the Response object 
can be invoked to display text in response to a user action; 
and the Session object provides variables that can be used 
to store information about previous user actions such as 
adding items to a shopping cart (see also cookies).

Control of the behavior of the objects within the Web 
page and session was originally handled by code written 
in a scripting language such as VBScript and embedded 
within the HTML text (see html and VBScript). How-
ever, ASP .NET, based on Microsoft’s latest Windows 
class libraries (see Microsoft .net) and introduced in 
2002, allows Web services to be written in full-fledged 
programming languages such as Visual Basic .NET and 

C#, although in-page scripting can still be used. This can 
provide several advantages: access to software develop-
ment tools and methodologies available for established 
programming languages, better separation of program 
code from the “presentational” (formatting) elements of 
HTML, and the speed and security associated with com-
piled code. ASP .NET also emphasizes the increasingly 
prevalent Extensible Markup Language (see xml) for orga-
nizing data and sending those data between objects using 
Simple Object Access Protocol (see soap).

Although ASP .NET was designed to be used with 
Microsoft’s Internet Information Server (IIS) under Win-
dows, the open-source Mono project (sponsored by Novell) 
implements a growing subset of the .NET classes for use on 
UNIX and Linux platforms using a C# compiler with appro-
priate user interface, graphics, and database libraries.

An alternative (or complementary) approach that has 
become popular in recent years reduces the load on the 
Web server by avoiding having to resend an entire Web 
page when only a small part actually needs to be changed. 
See Ajax (asynchronous JavaScript and XML).

Further Reading
Bellinaso, Marco. ASP .NET 2.0 Website Programming: Problem—

Design—Solution. Indianapolis: Wiley Publishing, 2006.
Liberty, Jesse, and Dan Hurwitz. Programming ASP .NET. 3rd ed. 

Sebastapol, Calif.: O’Reilly, 2005.
McClure, Wallace B., et al. Beginning Ajax with ASP .NET. India-

napolis: Wiley Publishing, 2006.
Mono Project. Available online. URL: http://www.mono-project.

com/Main_Page. Accessed April 10, 2007.



Ada
Starting in the 1960s, the U.S. Department of Defense 
(DOD) began to confront the growing unmanageability of 
its software development efforts. Whenever a new applica-
tion such as a communications controller (see embedded 
system) was developed, it typically had its own special-
ized programming language. With more than 2,000 such 
languages in use, it had become increasingly costly and 
difficult to maintain and upgrade such a wide variety of 
incompatible systems. In 1977, a DOD working group began 
to formally solicit proposals for a new general-purpose pro-
gramming language that could be used for all applications 
ranging from weapons control and guidance systems to bar-
code scanners for inventory management. The winning lan-
guage proposal eventually became known as Ada, named 
for 19th-century computer pioneer Ada Lovelace see also 
Babbage, Charles). After a series of reviews and revisions 
of specifications, the American National Standards Institute 
officially standardized Ada in 1983, and this first version of 
the language is sometimes called Ada-83.

Language Features
In designing Ada, the developers adopted basic language 
elements based on emerging principles (see structured 
programming) that had been implemented in languages 
developed during the 1960s and 1970s (see Algol and 
Pascal). These elements include well-defined control 
structures (see branching statements and loop) and 
the avoidance of the haphazard jump or “goto” directive.

Ada combines standard structured language features 
(including control structures and the use of subprograms) 
with user-definable data type “packages” similar to the 
classes used later in C++ and other languages (see class 
and object-oriented programming). As shown in this 
simple example, an Ada program has a general form similar 
to that used in Pascal. (Note that words in boldface type are 
language keywords.)

with Ada.Text_IO; use Ada.Text_IO;
procedure Get_Name is
Name : String (1..80);
Length : Integer;

begin
Put (“What is your first name?”);
Get_Line (Name, Length);
New_Line;
Put (“Nice to meet you,”);
Put (Name (1..Length));
end Get_Name;

The first line of the program specifies what “packages” 
will be used. Packages are structures that combine data 
types and associated functions, such as those needed for 
getting and displaying text. The Ada.Text.IO package, for 
example, has a specification that includes the following:

package Text_IO is
type File_Type is limited private;
type File_Mode is (In_File, Out_File, Append_File);

procedure Create (File : in out File_Type;
Mode : in File_Mode := Out_File;
Name : in String := “”);
procedure Close (File : in out File_Type);
procedure Put_Line (File : in File_Type; 
Item : in String);
procedure Put_Line (Item : in String);
end Text_IO;

The package specification begins by setting up a data 
type for files, and then defines functions for creating and 
closing a file and for putting text in files. As with C++ 
classes, more specialized packages can be derived from 
more general ones.

In the main program Begin starts the actual data pro-
cessing, which in this case involves displaying a message 
using the Put function from the Ada.Text.IO function and 
getting the user response with Get_Line, then using Put 
again to display the text just entered.

Ada is particularly well suited to large, complex software 
projects because the use of packages hides and protects the 
details of implementing and working with a data type. A 
programmer whose program uses a package is restricted to 
using the visible interface, which specifies what parameters 
are to be used with each function. Ada compilers are care-
fully validated to ensure that they meet the exact specifica-
tions for the processing of various types of data (see data 
types), and the language is “strongly typed,” meaning that 
types must be explicitly declared, unlike the case with C, 
where subtle bugs can be introduced when types are auto-
matically converted to make them compatible.

Because of its application to embedded systems and real-
time operations, Ada includes a number of features designed 
to create efficient object (machine) code, and the language 
also makes provision for easy incorporation of routines writ-
ten in assembly or other high-level languages. The latest offi-
cial version, Ada 95, also emphasizes support for parallel 
programming (see multiprocessing). The future of Ada is 
unclear, however, because the Department of Defense no lon-
ger requires use of the language in government contracts.

Ada development has continued, particularly in areas 
including expanded object-oriented features (including 
support for interfaces with multiple inheritance); improved 
handling of strings, other data types, and files; and refine-
ments in real-time processing and numeric processing.

Further Reading
“Ada 95 Lovelace Tutorial.” Available online. URL: http://www.

adahome.com/Tutorials/Lovelace/lovelace.htm. Accessed April 
18, 2008.

Ada 95 On-line Reference Manual (hypertext) Available online. 
URL: http://www.adahome.com/Resources/refs/rm95.html. 
Accessed April 18, 2008.

Barnes, John. Programming in Ada 2005 with CD. New York: Pear-
son Education, 2006.

Dale, Nell, and John W. McCormick. Ada Plus Data Structures: An 
Object-Oriented Approach. 2nd ed. Sudbury, Mass.: Jones and 
Bartlett, 2006.
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addressing
In order for computers to manipulate data, they must be 
able to store and retrieve it on demand. This requires a way 
to specify the location and extent of a data item in memory. 
These locations are represented by sequential numbers, or 
addresses.

Physically, a modern RAM (random access memory) 
can be visualized as a grid of address lines that crisscross 
with data lines. Each line carries one bit of the address, 
and together, they specify a particular location in memory 
(see memory). Thus a machine with 32 address lines can 
handle up to 32 bits, or 4 gigabytes (billions of bytes) worth 
of addresses. However the amount of memory that can be 
addressed can be extended through indirect addressing, 
where the data stored at an address is itself the address of 
another location where the actual data can be found. This 
allows a limited amount of fast memory to be used to point 
to data stored in auxiliary memory or mass storage thus 
extending addressing to the space on a hard disk drive.

Some of the data stored in memory contains the actual 
program instructions to be executed. As the processor 
executes program instructions, an instruction pointer 
accesses the location of the next instruction. An instruc-
tion can also specify that if a certain condition is met the 
processor will jump over intervening locations to fetch 
the next instruction. This implements such control struc-
tures as branching statements and loops.

Addressing in Programs
A variable name in a program language actually references 
an address (or often, a range of successive addresses, since 
most data items require more than one byte of storage). For 
example, if a program includes the declaration

Int Old_Total, New_Total;

when the program is compiled, storage for the variables 
Old_Total and New_Total is set aside at the next available 
addresses. A statement such as

New_Total = 0;

is compiled as an instruction to store the value 0 in the 
address represented by New_Total. When the program later 
performs a calculation such as:

New_Total = Old_Total + 1;

the data is retrieved from the memory location designated 
by Old_Total and stored in a register in the CPU, where 1 is 
added to it, and the result is stored in the memory location 
designated by New_Total.

Although programmers don’t have to work directly with 
address locations, programs can also use a special type of 
variable to hold and manipulate memory addresses for more 
efficient access to data (see pointers and indirection).

Further Reading
“Computer Architecture Tutorial.” Available online. URL: http://

www.cs.iastate.edu/~prabhu/Tutorial/title.html. Accessed April 
10, 2007.

Murdocca, Miles J., and Vincent P. Heuring. Principles of Computer 
Architecture. Upper Saddle River, N.J.: Prentice Hall, 2000.

Adobe Systems
Adobe Systems (NASDAQ symbol ADBE) is best known for 
products relating to the formatting, printing, and display of 
documents. Founded in 1982 by John Warnock and Charles 
Geschke, the company is named for a creek near one of their 
homes.

Adobe’s first major product was a language that describes 
the font sizes, styles, and other formatting needed to print 
pages in near-typeset quality (see PostScript). This was a 
significant contribution to the development of software for 
document creation (see desktop publishing), particularly on 
the Apple Macintosh, starting in the later 1980s. Building on 
this foundation, Adobe developed high-quality digital fonts 
(called Type 1). However, Apple’s TrueType fonts proved to 
be superior in scaling to different sizes and in the precise 
control over the pixels used to display them. With the licens-
ing of TrueType to Microsoft for use in Windows, TrueType 
fonts took over the desktop, although Adobe Type 1 remained 
popular in commercial typesetting applications. Finally, in 
the late 1990s Adobe, together with Microsoft, established a 
new font format called OpenType, and by 2003 Adobe had 
converted all of its Type 1 fonts to the new format.

Adobe’s Portable Document Format (see pdf) has become 
a ubiquitous standard for displaying print documents. Adobe 
greatly contributed to this development by making a free 
Adobe Acrobat PDF reader available for download.

Virtual memory uses indirect addressing. When a program requests 
data from memory, the address is looked up in a table that keeps 
track of each block’s actual location. If the block is not in RAM, one 
or more blocks in RAM are copied to the swap file on disk, and the 
needed blocks are copied from disk into the vacated area in RAM.
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Image Processing Software
In the mid-1980s Adobe’s founders realized that they could 
further exploit the knowledge of graphics rendition that they 
had gained in developing their fonts. They began to create 
software that would make these capabilities available to illus-
trators and artists as well as desktop publishers. Their first 
such product was Adobe Illustrator for the Macintosh, a vec-
tor-based drawing program that built upon the graphics capa-
bilities of their PostScript language.

In 1989 Adobe introduced Adobe Photoshop for the 
Macintosh. With its tremendous variety of features, the 
program soon became a standard tool for graphic artists. 
However, Adobe seemed to have difficulty at first in antici-
pating the growth of desktop publishing and graphic arts 
on the Microsoft Windows platform. Much of that market 
was seized by competitors such as Aldus PageMaker and 
QuarkXPress. By the mid-1990s, however, Adobe, fueled by 
the continuing revenue from its PostScript technology, had 
acquired both Aldus and Frame Technologies, maker of the 
popular FrameMaker document design program. Meanwhile 
PhotoShop continued to develop on both the Macintosh and 
Windows platforms, aided by its ability to accept add-ons 
from hundreds of third-party developers (see plug-ins).

Multimedia and the Web
Adobe made a significant expansion beyond document pro-
cessing into multimedia with its acquisition of Macromedia 
(with its popular Flash animation software) in 2005 at a cost 
of about $3.4 billion. The company has integrated Macrome-
dia’s Flash and Dreamweaver Web-design software into its 
Creative Suite 3 (CS3). Another recent Adobe product that 
targets Web-based publishing is Digital Editions, which inte-
grated the existing Dreamweaver and Flash software into a 
powerful but easy-to-use tool for delivering text content and 
multimedia to Web browsers. Buoyed by these developments, 
Adobe earned nearly $2 billion in revenue in 2005, about 
$2.5 billion in 2006, and $3.16 billion in 2007.

Today Adobe has over 6,600 employees, with its head-
quarters in San Jose and offices in Seattle and San Francisco 
as well as Bangalore, India; Ottawa, Canada; and other loca-
tions. In recent years the company has been regarded as a 
superior place to work, being ranked by Fortune magazine 
as the fifth best in America in 2003 and sixth best in 2004.

Further Reading
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Advanced Micro Devices  (AMD)
Sunnyvale, California-based Advanced Micro Devices, Inc., 
(NYSE symbol AMD) is a major competitor in the market 
for integrated circuits, particularly the processors that are 

at the heart of today’s desktop and laptop computers (see 
microprocessor). The company was founded in 1969 by a 
group of executives who had left Fairchild Semiconductor. 
In 1975 the company began to produce both RAM (mem-
ory) chips and a clone of the Intel 8080 microprocessor.

When IBM adopted the Intel 8080 for its first personal 
computer in 1982 (see Intel Corporation and IBM PC), 
it required that there be a second source for the chip. Intel 
therefore signed an agreement with AMD to allow the latter 
to manufacture the Intel 9806 and 8088 processors. AMD 
also produced the 80286, the second generation of PC-com-
patible processors, but when Intel developed the 80386 it 
canceled the agreement with AMD.

A lengthy legal dispute ensued, with the California 
Supreme Court finally siding with AMD in 1991. However, 
as disputes continued over the use by AMD of “microcode” 
(internal programming) from Intel chips, AMD eventually 
used a “clean room” process to independently create func-
tionally equivalent code (see reverse engineering). How-
ever, the speed with which new generations of chips was 
being produced rendered this approach impracticable by 
the mid-1980s, and Intel and AMD concluded a (largely 
secret) agreement allowing AMD to use Intel code and pro-
viding for cross-licensing of patents.

In the early and mid-1990s AMD had trouble keeping up 
with Intel’s new Pentium line, but the AMD K6 (introduced 
in 1997) was widely viewed as a superior implementation of 
the microcode in the Intel Pentium—and it was “pin com-
patible,” making it easy for manufacturers to include it on 
their motherboards.

Today AMD remains second in market share to Intel. 
AMD’s Athlon, Opteron, Turion, and Sempron processors 
are comparable to corresponding Intel Pentium processors, 
and the two companies compete fiercely as each introduces 
new architectural features to provide greater speed or pro-
cessing capacity.

In the early 2000s AMD seized the opportunity to beat 
Intel to market with chips that could double the data band-
width from 32 bits to 64 bits. The new specification stan-
dard, called AMD64, was adopted for upcoming operating 
systems by Microsoft, Sun Microsystems, and the develop-
ers of Linux and UNIX kernels. AMD has also matched 
Intel in the latest generation of dual-core chips that essen-
tially provide two processors on one chip. Meanwhile, 
AMD strengthened its position in the high-end server mar-
ket when, in May 2006, Dell Computer announced that it 
would market servers containing AMD Opteron processors. 
In 2006 AMD also moved into the graphics-processing field 
by merging with ATI, a leading maker of video cards, at 
a cost of $5.4 billion. Meanwhile AMD also continues to 
be a leading maker of flash memory, closely collaborat-
ing with Japan’s Fujitsu Corporation (see flash drive). In 
2008 AMD continued its aggressive pursuit of market share, 
announcing a variety of products, including a quad-core 
Opteron chip that it expects to catch up to if not surpass 
similar chips from Intel.
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advertising, online  See online advertising.

agent software  See software agent.

AI  See artificial intelligence.

Aiken, Howard
(1900–1973)
American
Electrical Engineer

Howard Hathaway Aiken was a pioneer in the development 
of automatic calculating machines. Born on March 8, 1900, 
in Hoboken, New Jersey, he grew up in Indianapolis, Indi-
ana, where he pursued his interest in electrical engineering 
by working at a utility company while in high school. He 
earned a B.A. in electrical engineering in 1923 at the Uni-
versity of Wisconsin.

By 1935, Aiken was involved in theoretical work on 
electrical conduction that required laborious calculation. 
Inspired by work a hundred years earlier (see Babbage, 
Charles), Aiken began to investigate the possibility of build-
ing a large-scale, programmable, automatic computing device 
(see calculator). As a doctoral student at Harvard, Aiken 
aroused interest in his project, particularly from Thomas 
Watson, Sr., head of International Business Machines (IBM). 
In 1939, IBM agreed to underwrite the building of Aiken’s 
first calculator, the Automatic Sequence Controlled Calcula-
tor, which became known as the Harvard Mark I.

Mark I and Its Progeny
Like Babbage, Aiken aimed for a general-purpose program-
mable machine rather than an assembly of special-pur-
pose arithmetic units. Unlike Babbage, Aiken had access 
to a variety of tested, reliable components, including card 
punches, readers, and electric typewriters from IBM and 
the mechanical electromagnetic relays used for automatic 
switching in the telephone industry. His machine used dec-
imal numbers (23 digits and a sign) rather than the binary 
numbers of the majority of later computers. Sixty registers 
held whatever constant data numbers were needed to solve 
a particular problem. The operator turned a rotary dial to 
enter each digit of each number. Variable data and program 
instructions were entered via punched paper tape. Calcula-
tions had to be broken down into specific instructions simi-

lar to those in later low-level programming languages such 
as “store this number in this register” or “add this number 
to the number in that register” (see assembler). The results 
(usually tables of mathematical function values) could be 
printed by an electric typewriter or output on punched 
cards. Huge (about 8 feet [2.4 m] high by 51 feet [15.5 m] 
long), slow, but reliable, the Mark I worked on a variety 
of problems during World War II, ranging from equations 
used in lens design and radar to the designing of the implo-
sive core of an atomic bomb.

Aiken completed an improved model, the Mark II, in 
1947. The Mark III of 1950 and Mark IV of 1952, however, 
were electronic rather than electromechanical, replacing 
relays with vacuum tubes.

Compared to later computers such as the ENIAC and 
UNIVAC, the sequential calculator, as its name suggests, 
could only perform operations in the order specified. Any 
looping had to be done by physically creating a repetitive 
tape of instructions. (After all, the program as a whole was 
not stored in any sort of memory, and so previous instruc-
tions could not be reaccessed.) Although Aiken’s machines 
soon slipped out of the mainstream of computer develop-
ment, they did include the modern feature of parallel pro-
cessing, because different calculation units could work on 
different instructions at the same time. Further, Aiken rec-
ognized the value of maintaining a library of frequently 
needed routines that could be reused in new programs—
another fundamental of modern software engineering.

Aiken’s work demonstrated the value of large-scale auto-
matic computation and the use of reliable, available tech-
nology. Computer pioneers from around the world came to 
Aiken’s Harvard computation lab to debate many issues that 
would become staples of the new discipline of computer 
science. The recipient of many awards including the Edison 
Medal of the IEEE and the Franklin Institute’s John Price 
Award, Howard Aiken died on March 14, 1973, in St. Louis, 
Missouri.
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Ajax  (Asynchronous JavaScript and XML)
With the tremendous growth in Web usage comes a chal-
lenge to deliver Web-page content more efficiently and with 
greater flexibility. This is desirable to serve adequately the 
many users who still rely on relatively low-speed dial-up 
Internet connections and to reduce the demand on Web 
servers. Ajax (asynchronous JavaScript and XML) takes 
advantage of several emerging Web-development technolo-
gies to allow Web pages to interact with users while keep-
ing the amount of data to be transmitted to a minimum.

In keeping with modern Web-design principles, the 
organization of the Web page is managed by coding in 
XHTML, a dialect of HTML that uses the stricter rules and 
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grammar of the data-description markup language XML 
(see html, dhtml, and xhtml and xml). Alternatively, 
data can be stored directly in XML. A structure called 
the DOM (Document Object Model; see dom) is used to 
request data from the server, which is accessed through an 
object called httpRequest. The “presentational” information 
(regarding such matters as fonts, font sizes and styles, justi-
fication of paragraphs, and so on) is generally incorporated 
in an associated cascading style sheet (see cascading style 
sheets). Behavior such as the presentation and processing 
of forms or user controls is usually handled by a scripting 
language (for example, see JavaScript). Ajax techniques tie 
these forms of processing together so that only the part of 
the Web page affected by current user activity needs to be 
updated. Only a small amount of data needs to be received 
from the server, while most of the HTML code needed to 
update the page is generated on the client side—that is, in 
the Web browser. Besides making Web pages more flexible 
and interactive, Ajax also makes it much easier to develop 
more elaborate applications, even delivering fully functional 
applications such as word processing and spreadsheets over 
the Web (see application service provider).

Some critics of Ajax have decried its reliance on Java
Script, arguing that the language has a hard-to-use syntax 
similar to the C language and poorly implements objects 
(see object-oriented programming). There is also a need 
to standardize behavior across the popular Web browsers. 
Nevertheless, Ajax has rapidly caught on in the Web devel-
opment community, filling bookstore shelves with books 
on applying Ajax techniques to a variety of other languages 
(see, for example, php).

Ajax can be simplified by providing a framework of 
objects and methods that the programmer can use to set up 
and manage the connections between server and browser. 
Some frameworks simply provide a set of data structures 
and functions (see application program interface), while 
others include Ajax-enabled user interface components such 
as buttons or window tabs. Ajax frameworks also vary in 

how much of the processing is done on the server and how 
much is done on the client (browser) side. Ajax frameworks 
are most commonly used with JavaScript, but also exist for 
Java (Google Web Toolkit), PHP, C++, and Python as well as 
other scripting languages. An interesting example is Flap-
jax, a project developed by researchers at Brown University. 
Flapjax is a complete high-level programming language that 
uses the same syntax as the popular JavaScript but hides 
the messy details of sharing and updating data between cli-
ent and server.

Drawbacks and Challenges
By their very nature, Ajax-delivered pages behave differ-
ently from conventional Web pages. Because the updated 
page is not downloaded as such from the server, the 
browser cannot record it in its “history” and allow the 
user to click the “back” button to return to a previous 
page. Mechanisms for counting the number of page views 
can also fail. As a workaround, programmers have some-
times created “invisible” pages that are used to make the 
desired history entries. Another problem is that since con-
tent manipulated using Ajax is not stored in discrete pages 
with identifiable URLs, conventional search engines can-
not read and index it, so a copy of the data must be pro-
vided on a conventional page for indexing. The extent 
to which XML should be used in place of more compact 
data representations is also a concern for many devel-
opers. Finally, accessibility tools (see disabled persons 
and computers) often do not work with Ajax-delivered 
content, so an alternative form must often be provided to 
comply with accessibility guidelines or regulations.

Despite these concerns, Ajax is in widespread use and 
can be seen in action in many popular Web sites, including 
Google Maps and the photo-sharing site Flickr.com.
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Algol
The 1950s and early 1960s saw the emergence of two high-
level computer languages into widespread use. The first was 
designed to be an efficient language for performing scien-
tific calculations (see fortran). The second was designed 
for business applications, with an emphasis on data pro-
cessing (see cobol). However many programs continued to 
be coded in low-level languages (see assembler) designed 
to take advantages of the hardware features of particular 
machines.

In order to be able to easily express and share meth-
ods of calculation (see algorithm), leading programmers 

Ajax is a way to quickly and efficiently update dynamic Web 
pages—formatting is separate from content, making it easy to 
revise the latter.
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began to seek a “universal” programming language that 
was not designed for a particular application or hardware 
platform. By 1957, the German GAMM (Gesellschaft für 
angewandte Mathematik und Mechanik) and the American 
ACM (Association for Computing Machinery) had joined 
forces to develop the specifications for such a language. The 
result became known as the Zurich Report or Algol-58, and 
it was refined into the first widespread implementation of 
the language, Algol-60.

Language Features
Algol is a block-structured, procedural language. Each vari-
able is declared to belong to one of a small number of kinds 
of data including integer, real number (see data types), 
or a series of values of either type (see array). While the 
number of types is limited and there is no facility for defin-
ing new types, the compiler’s type checking (making sure a 
data item matches the variable’s declared type) introduced a 
level of security not found in most earlier languages.

An Algol program can contain a number of separate 
procedures or incorporate externally defined procedures 
(see library, program), and the variables with the same 
name in different procedure blocks do not interfere with 
one another. A procedure can call itself (see recursion). 
Standard control structures (see branching statements 
and loop) were provided.

The following simple Algol program stores the numbers 
from 1 to 10 in an array while adding them up, then prints 
the total:

begin
integer array ints[1:10];
integer counter, total;
total := 0;
for counter :=1 step 1 until counter > 10
do

begin
ints [counter] := counter;
total := total + ints[counter];

end;
printstring “The total is:”;
printint (total);
end

Algol’s Legacy
The revision that became known as Algol-68 expanded 
the variety of data types (including the addition of bool-
ean, or true/false values) and added user-defined types 
and “structs” (records containing fields of different types 
of data). Pointers (references to values) were also imple-
mented, and flexibility was added to the parameters that 
could be passed to and from procedures.

Although Algol was used as a production language in 
some computer centers (particularly in Europe), its rela-
tive complexity and unfamiliarity impeded its acceptance, 
as did the widespread corporate backing for the rival lan-
guages FORTRAN and especially COBOL. Algol achieved 
its greatest success in two respects: for a time it became 
the language of choice for describing new algorithms for 

computer scientists, and its structural features would be 
adopted in the new procedural languages that emerged in 
the 1970s (see Pascal and c).

Further Reading
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algorithm
When people think of computers, they usually think of 
silicon chips and circuit boards. Moving from relays to 
vacuum tubes to transistors to integrated circuits has 
vastly increased the power and speed of computers, but 
the essential idea behind the work computers do remains 
the algorithm. An algorithm is a reliable, definable proce-
dure for solving a problem. The idea of the algorithm goes 
back to the beginnings of mathematics and elementary 
school students are usually taught a variety of algorithms. 
For example, the procedure for long division by succes-
sive division, subtraction, and attaching the next digit is 
an algorithm. Since a bona fide algorithm is guaranteed to 
work given the specified type of data and the rote following 
of a series of steps, the algorithmic approach is naturally 
suited to mechanical computation.

Algorithms in Computer Science
Just as a cook learns both general techniques such as how 
to sauté or how to reduce a sauce and a repertoire of specific 
recipes, a student of computer science learns both general 
problem-solving principles and the details of common algo-
rithms. These include a variety of algorithms for organizing 
data (see sorting and searching), for numeric problems 
(such as generating random numbers or finding primes), 
and for the manipulation of data structures (see list pro-
cessing and queue).

A working programmer faced with a new task first tries 
to think of familiar algorithms that might be applicable to 
the current problem, perhaps with some adaptation. For 
example, since a variety of well-tested and well-understood 
sorting algorithms have been developed, a programmer is 
likely to apply an existing algorithm to a sorting problem 
rather than attempt to come up with something entirely 
new. Indeed, for most widely used programming languages 
there are packages of modules or procedures that imple-
ment commonly needed data structures and algorithms (see 
library, program).

If a problem requires the development of a new algo-
rithm, the designer will first attempt to determine whether 
the problem can, at least in theory, be solved (see comput-
ability and complexity). Some kinds of problems have 
been shown to have no guaranteed answer. If a new algo-
rithm seems feasible, principles found to be effective in the 
past will be employed, such as breaking complex problems 
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down into component parts or building up from the sim-
plest case to generate a solution (see recursion). For exam-
ple, the merge-sort algorithm divides the data to be sorted 
into successively smaller portions until they are sorted, and 
then merges the sorted portions back together.

Another important aspect of algorithm design is choosing 
an appropriate way to organize the data (see data struc-
tures). For example, a sorting algorithm that uses a branch-
ing (tree) structure would probably use a data structure that 
implements the nodes of a tree and the operations for adding, 
deleting, or moving them (see class).

Once the new algorithm has been outlined (see pseudo-
code), it is often desirable to demonstrate that it will work 
for any suitable data. Mathematical techniques such as the 
finding and proving of loop invariants (where a true asser-
tion remains true after the loop terminates) can be used to 
demonstrate the correctness of the implementation of the 
algorithm.

Practical Considerations
It is not enough that an algorithm be reliable and cor-
rect, it must also be accurate and efficient enough for its 
intended use. A numerical algorithm that accumulates too 
much error through rounding or truncation of intermediate 
results may not be accurate enough for a scientific applica-
tion. An algorithm that works by successive approximation 
or convergence on an answer may require too many itera-
tions even for today’s fast computers, or may consume too 
much of other computing resources such as memory. On 
the other hand, as computers become more and more pow-
erful and processors are combined to create more power-
ful supercomputers (see supercomputer and concurrent 
programming), algorithms that were previously consid-
ered impracticable might be reconsidered. Code profiling 
(analysis of which program statements are being executed 
the most frequently) and techniques for creating more effi-
cient code can help in some cases. It is also necessary to 
keep in mind special cases where an otherwise efficient 
algorithm becomes much less efficient (for example, a tree 
sort may work well for random data but will become badly 
unbalanced and slow when dealing with data that is already 
sorted or mostly sorted).

Sometimes an exact solution cannot be mathematically 
guaranteed or would take too much time and resources to 
calculate, but an approximate solution is acceptable. A so-
called “greedy algorithm” can proceed in stages, testing at 
each stage whether the solution is “good enough.” Another 
approach is to use an algorithm that can produce a rea-
sonable if not optimal solution. For example, if a group of 
tasks must be apportioned among several people (or com-
puters) so that all tasks are completed in the shortest pos-
sible time, the time needed to find an exact solution rises 
exponentially with the number of workers and tasks. But 
an algorithm that first sorts the tasks by decreasing length 
and then distributes them among the workers by “dealing” 
them one at a time like cards at a bridge table will, as dem-
onstrated by Ron Graham, give an allocation guaranteed to 
be within 4/3 of the optimal result—quite suitable for most 
applications. (A procedure that can produce a practical, 

though not perfect solution is actually not an algorithm but 
a heuristic.)

An interesting approach to optimizing the solution to 
a problem is allowing a number of separate programs to 
“compete,” with those showing the best performance sur-
viving and exchanging pieces of code (“genetic material”) 
with other successful programs (see genetic algorithms). 
This of course mimics evolution by natural selection in the 
biological world.
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ALU  See arithmetic logic unit.

Amazon.com
Beginning modestly in 1995 as an online bookstore, Ama-
zon.com became one of the first success stories of the early 
Internet economy (see also e-commerce).

Named for the world’s largest river, Amazon.com was 
the brainchild of entrepreneur Jeffrey Bezos (see Bezos, 
Jeffrey P.). Like a number of other entrepreneurs of the 
early 1990s, Bezos had been searching for a way to market 
to the growing number of people who were going online. 
He soon decided that books were a good first product, since 
they were popular, nonperishable, relatively compact, and 
easy to ship.

Several million books are in print at any one time, 
with about 275,000 titles or editions added in 2007 in 
the United States alone. Traditional “brick and mortar” 
(physical) bookstores might carry a few thousand titles 
up to perhaps 200,000 for the largest chains. Bookstores 
in turn stock their shelves mainly through major book 
distributors that serve as intermediaries between publish-
ers and the public.

For an online bookstore such as Amazon.com, however, 
the number of titles that can be made available is limited 
only by the amount of warehouse space the store is willing 
to maintain—and no intermediary between publisher and 
bookseller is needed. From the start, Amazon.com’s busi-
ness model has capitalized on this potential for variety and 
the ability to serve almost any niche interest. Over the years 
the company’s offerings have expanded beyond books to 
34 different categories of merchandise, including software, 
music, video, electronics, apparel, home furnishings, and 
even nonperishable gourmet food and groceries. (Amazon.
com also entered the online auction market, but remains a 
distant runner-up to market leader eBay).
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Expansion and Profitability
Because of its desire to build a very diverse product line, 
Amazon.com, unusually for a business startup, did not 
expect to become profitable for about five years. The grow-
ing revenues were largely poured back into expansion. 
In the heated atmosphere of the Internet boom of the 
late 1990s, many other Internet-based businesses echoed 
that philosophy, and many went out of business follow-
ing the bursting of the so-called dot-com bubble of the 
early 2000s. Some analysts questioned whether even the 
hugely popular Amazon.com would ever be able to con-
vert its business volume into an operating profit. How-
ever, the company achieved its first profitable year in 2003 
(with a modest $35 million surplus). Since then growth 
has remained steady and generally impressive: In 2005, 
Amazon.com earned $8.49 billion revenues with a net 
income of $359 million. By then the company had about 
12,000 employees and had been added to the S&P 500 
stock index.

In 2006 the company maintained its strategy of invest-
ing in innovation rather than focusing on short-term prof-
its. Its latest initiatives include selling digital versions of 
books (e-books) and magazine articles, new arrangements 
to sell video content, and even a venture into moviemaking. 
By year end, annual revenue had increased to $10.7 billion.

In November 2007 Amazon announced the Kindle, a 
book reader (see e-books and digital libraries) with a 
sharp “paper-like” display. In addition to books, the Kindle 
can also subscribe to and download magazines, content 
from newspaper Web sites, and even blogs.

As part of its expansion strategy, Amazon.com has 
acquired other online bookstore sites including Borders.com 
and Waldenbooks.com. The company has also expanded 
geographically with retail operations in Canada, the United 
Kingdom, France, Germany, Japan, and China.

Amazon.com has kept a tight rein on its operations even 
while continually expanding. The company’s leading mar-
ket position enables it to get favorable terms from publishers 
and manufacturers. A high degree of warehouse automation 
and an efficient procurement system keep stock moving 
quickly rather than taking up space on the shelves.

Information-Based Strategies
Amazon.com has skillfully taken advantage of information 
technology to expand its capabilities and offerings. Exam-
ples of such efforts include new search mechanisms, cul-
tivation of customer relationships, and the development of 
new ways for users to sell their own goods.

Amazon’s “Search Inside the Book” feature is a good 
example of leveraging search technology to take advantage 
of having a growing amount of text online. If the publisher 
of a book cooperates, its actual text is made available for 
online searching. (The amount of text that can be displayed 
is limited to prevent users from being able to read entire 
books for free.) Further, one can see a list of books citing 
(or being cited by) the current book, providing yet another 
way to explore connections between ideas as used by dif-
ferent authors. Obviously for Amazon.com, the ultimate 
reason for offering all these useful features is that more 

potential customers may be able to find and purchase books 
on even the most obscure topics.

Amazon.com’s use of information about customers’ 
buying histories is based on the idea that the more one 
knows about what customers have wanted in the past, the 
more effectively they can be marketed to in the future 
through customizing their view of the site. Users receive 
automatically generated recommendations for books or 
other items based on their previous purchases (see also 
customer relationship management). There is even a 
“plog” or customized Web log that offers postings related 
to the user’s interests and allows the user to respond.

There are other ways in which Amazon.com tries to 
involve users actively in the marketing process. For exam-
ple, users are encouraged to review books and other prod-
ucts and to create lists that can be shared with other users. 
The inclusion of both user and professional reviews in turn 
makes it easier for prospective purchasers to determine 
whether a given book or other item is suitable. Authors are 
given the opportunity through “Amazon Connect” to pro-
vide additional information about their books. Finally, in 
late 2005 Amazon replaced an earlier “discussion board” 
facility with a wiki system that allows purchasers to cre-
ate or edit an information page for any product (see wikis 
and Wikipedia).

The company’s third major means of expansion is to 
facilitate small businesses and even individual users in 
the marketing of their own goods. Amazon Marketplace, 
a service launched in 2001, allows users to sell a variety of 
items, with no fees charged unless the item is sold. There 
are also many provisions for merchants to set up online 
“storefronts” and take advantage of online payment and 
other services.

Another aspect of Amazon’s marketing is its referral net-
work. Amazon’s “associates” are independent businesses 
that provide links from their own sites to products on Ama-
zon. For example, a seller of crafts supplies might include 
on its site links to books on crafting on the Amazon site. In 
return, the referring business receives a commission from 
Amazon.com.

Although often admired for its successful business plan, 
Amazon.com has received criticism from several quar-
ters. Some users have found the company’s customer ser-
vice (which is handled almost entirely by e-mail) to be 
unresponsive. Meanwhile local and specialized bookstores, 
already suffering in recent years from the competition of 
large chains such as Borders and Barnes and Noble, have 
seen in Amazon.com another potent threat to the survival 
of their business. (The company’s size and economic power 
have elicited occasional comparisons with Wal-Mart.) 
Finally, Amazon.com has been criticized by some labor 
advocates for paying low wages and threatening to termi-
nate workers who sought to unionize.
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Amdahl, Gene Myron
(1922–  )
American
Inventor, Entrepreneur

Gene Amdahl played a major role in designing and develop-
ing the mainframe computer that dominated data process-
ing through the 1970s (see mainframe). Amdahl was born 
on November 16, 1922, in Flandreau, South Dakota. After 
having his education interrupted by World War II, Amdahl 
received a B.S. from South Dakota State University in 1948 
and a Ph.D. in physics at the University of Wisconsin in 
1952.

As a graduate student Amdahl had realized that fur-
ther progress in physics and other sciences required better, 
faster tools for computing. At the time there were only a few 
computers, and the best approach to getting access to sig-
nificant computing power seemed to be to design one’s own 
machine. Amdahl designed a computer called the WISC 
(Wisconsin Integrally Synchronized Computer). This com-
puter used a sophisticated procedure to break calculations 
into parts that could be carried out on separate processors, 
making it one of the earliest examples of the parallel com-
puting techniques found in today’s computer architectures.

Designer for IBM
In 1952 Amdahl went to work for IBM, which had commit-
ted itself to dominating the new data processing industry. 
Amdahl worked with the team that eventually designed the 
IBM 704. The 704 improved upon the 701, the company’s 
first successful mainframe, by adding many new internal 
programming instructions, including the ability to per-
form floating point calculations (involving numbers that 
have decimal points). The machine also included a fast, 
high-capacity magnetic core memory that let the machine 
retrieve data more quickly during calculations. In Novem-
ber 1953 Amdahl became the chief project engineer for 
the 704 and then helped design the IBM 709, which was 
designed especially for scientific applications.

When IBM proposed extending the technology by build-
ing a powerful new scientific computer called STRETCH, 
Amdahl eagerly applied to head the new project. However, 
he ended up on the losing side of a corporate power strug-
gle, and did not receive the post. He left IBM at the end of 
1955.

In 1960 Amdahl rejoined IBM, where he was soon 
involved in several design projects. The one with the most 
lasting importance was the IBM System/360, which would 
become the most ubiquitous and successful mainframe com-
puter of all time. In this project Amdahl further refined his 
ideas about making a computer’s central processing unit 
more efficient. He designed logic circuits that enabled the 

processor to analyze the instructions waiting to be executed 
(the “pipeline”) and determine which instructions could be 
executed immediately and which would have to wait for the 
results of other instructions. He also used a cache, or special 
memory area, in which the instructions that would be needed 
next could be stored ahead of time so they could be retrieved 
immediately when needed. Today’s desktop PCs use these 
same ideas to get the most out of their chips’ capabilities.

Amdahl also made important contributions to the 
further development of parallel processing. Amdahl cre-
ated a formula called Amdahl’s law that basically says that 
the advantage gained from using more processors gradu-
ally declines as more processor are added. The amount of 
improvement is also proportional to how much of the cal-
culation can be broken down into parts that can be run in 
parallel. As a result, some kinds of programs can run much 
faster with several processors being used simultaneously, 
while other programs may show little improvement.

In the mid-1960s Amdahl helped establish IBM’s 
Advanced Computing Systems Laboratory in Menlo Park, 
California, which he directed. However, he became increas-
ingly frustrated with what he thought was IBM’s too rigid 
approach to designing and marketing computers. He 
decided to leave IBM again and, this time, challenge it in 
the marketplace.

Creator of “clones”
Amdahl resolved to make computers that were more power-
ful than IBM’s machines, but that would be “plug compati-
ble” with them, allowing them to use existing hardware and 
software. To gain an edge over the computer giant, Amdahl 
was able to take advantage of the early developments in 
integrated electronics to put more circuits on a chip with-
out making the chips too small, and thus too crowded for 
placing the transistors.

Thanks to the use of larger scale circuit integration, 
Amdahl could sell machines with superior technology to 
that of the IBM 360 or even the new IBM 370, and at a 
lower price. IBM responded belatedly to the competition, 
making more compact and faster processors, but Amdahl 
met each new IBM product with a faster, cheaper alterna-
tive. However, IBM also countered by using a sales tech-
nique that opponents called FUD (fear, uncertainty, and 
doubt). IBM salespersons promised customers that IBM 
would soon be coming out with much more powerful and 
economical alternatives to Amdahl’s machines. As a result, 
many would-be customers were persuaded to postpone pur-
chasing decisions and stay with IBM. Amdahl Corporation 
began to falter, and Gene Amdahl gradually sold his stock 
and left the company in 1980.

Amdahl then tried to repeat his success by starting a 
new company called Trilogy. The company promised 
to build much faster and cheaper computers than those 
offered by IBM or Amdahl. He believed he could accomplish 
this by using the new, very-large-scale integrated silicon 
wafer technology in which circuits were deposited in layers 
on a single chip rather than being distributed on separate 
chips on a printed circuit board. But the problem of dealing 
with the electrical characteristics of such dense circuitry, 
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as well as some design errors, somewhat crippled the new 
computer design. Amdahl was forced to repeatedly delay 
the introduction of the new machine, and Trilogy failed in 
the marketplace.

Amdahl’s achievements could not be overshadowed by 
the failures of his later career. He has received many indus-
try awards, including Data Processing Man of the Year by 
the Data Processing Management Association (1976), the 
Harry Goode Memorial Award from the American Federa-
tion of Information Processing Societies, and the SIGDA Pio-
neering Achievement Award (2007).
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America Online  (AOL)
For millions of PC users in the 1990s, “going online” meant 
connecting to America Online. However, this once domi-
nant service provider has had difficulty adapting to the 
changing world of the Internet.

By the mid-1980s a growing number of PC users were 
starting to go online, mainly dialing up small bulletin board 
services. Generally these were run by individuals from their 
homes, offering a forum for discussion and a way for users 
to upload and download games and other free software and 
shareware (see bulletin board systems). However, some 
entrepreneurs saw the possibility of creating a commercial 
information service that would be interesting and useful 
enough that users would pay a monthly subscription fee 
for access. Perhaps the first such enterprise to be successful 
was Quantum Computer Services, founded by Jim Kimsey 
in 1985 and soon joined by another young entrepreneur, 
Steve Case. Their strategy was to team up with personal 
computer makers such as Commodore, Apple, and IBM to 
provide special online services for their users.

In 1989 Quantum Link changed its name to America 
Online (AOL). In 1991 Steve Case became CEO, taking over 
from the retiring Kimsey. Case’s approach to marketing AOL 
was to aim the service at novice PC users who had trouble 
mastering arcane DOS (disk operating system) commands 
and interacting with text-based bulletin boards and primi-
tive terminal programs. As an alternative, AOL provided a 
complete software package that managed the user’s connec-
tion, presented “friendly” graphics, and offered point-and-
click access to features.

Chat rooms and discussion boards were also expanded 
and offered in a variety of formats for casual and more for-
mal use. Gaming, too, was a major emphasis of the early 
AOL, with some of the first online multiplayer fantasy role-
playing games such as a version of Dungeons and Dragons 
called Neverwinter Nights (see online games). A third pop-
ular application has been instant messaging (IM), including 
a feature that allowed users to set up “buddy lists” of their 
friends and keep track of when they were online (see also 
texting and instant messaging).

Internet Challenge
By 1996 the World Wide Web was becoming popular (see 
World Wide Web). Rather than signing up with a proprie-
tary service such as AOL, users could simply get an account 
with a lower-cost direct-connection service (see Internet 
service provider) and then use a Web browser such as 
Netscape to access information and services. AOL was slow 
in adapting to the growing use of the Internet. At first, the 
service provided only limited access to the Web (and only 
through its proprietary software). Gradually, however, AOL 
offered a more seamless Web experience, allowing users to 
run their own browsers and other software together with 
the proprietary interface. Also, responding to competition, 
AOL replaced its hourly rates with a flat monthly fee ($19.95 
at first).

Overall, AOL increasingly struggled with trying to ful-
fill two distinct roles: Internet access provider and content 
provider. By the late 1990s AOL’s monthly rates were higher 
than those of “no frills” access providers such as NetZero. 
AOL tried to compensate for this by offering integration of 
services (such as e-mail, chat, and instant messaging) and 
news and other content not available on the open Internet.

AOL also tried to shore up its user base with aggressive 
marketing to users who wanted to go online but were not 
sure how to do so. Especially during the late 1990s, AOL 
was able to swell its user rolls to nearly 30 million, largely 
by providing millions of free CDs (such as in magazine 
inserts) that included a setup program and up to a month of 
free service. But while it was easy to get started with AOL, 
some users began to complain that the service would keep 
billing them even after they had repeatedly attempted to 
cancel it. Meanwhile, AOL users got little respect from the 
more sophisticated inhabitants of cyberspace, who often 
complained that the clueless “newbies” were cluttering 
newsgroups and chat rooms.

In 2000 AOL and Time Warner merged. At the time, the 
deal was hailed as one of the greatest mergers in corporate 

America Online (AOL) was a major online portal in the 1990s, 
but has faced challenges adapting to the modern world of the 
Web.  (Screen image credit: AOL)
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history, bringing together one of the foremost Internet com-
panies with one of the biggest traditional media companies. 
The hope was that the new $350 billion company would 
be able to leverage its huge subscriber base and rich media 
resources to dominate the online world.

From Service to Content Provider
By the 2000s, however, an increasing number of people 
were switching from dial-up to high-speed broadband Inter-
net access (see broadband) rather than subscribing to ser-
vices such as AOL simply to get online. This trend and the 
overall decline in the Internet economy early in the decade 
(the “dot-bust”) contributed to a record loss of $99 billion 
for the combined company in 2002. In a shakeup, Time-
Warner dropped “AOL” from its name, and Steve Case was 
replaced as executive chairman. The company increasingly 
began to shift its focus to providing content and services 
that would attract people who were already online, with 
revenue coming from advertising instead of subscriptions.

In October 2006 the AOL division of Time-Warner 
(which by then had dropped the full name America Online) 
announced that it would provide a new interface and soft-
ware optimized for broadband users. AOL’s OpenRide 
desktop presents users with multiple windows for e-mail, 
instant messaging, Web browsing, and media (video and 
music), with other free services available as well. These 
offerings are designed to compete in a marketplace where 
the company faces stiff competition from other major Inter-
net presences who have been using the advertising-based 
model for years (see Yahoo! and Google).
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analog and digital
The word analog (derived from Greek words meaning “by 
ratio”) denotes a phenomenon that is continuously vari-
able, such as a sound wave. The word digital, on the other 
hand, implies a discrete, exactly countable value that can be 
represented as a series of digits (numbers). Sound recording 
provides familiar examples of both approaches. Recording 
a phonograph record involves electromechanically transfer-
ring a physical signal (the sound wave) into an “analogous” 
physical representation (the continuously varying peaks 
and dips in the record’s surface). Recording a CD, on the 
other hand, involves sampling (measuring) the sound level 
at thousands of discrete instances and storing the results in 
a physical representation of a numeric format that can in 
turn be used to drive the playback device.

Virtually all modern computers depend on the manipu-
lation of discrete signals in one of two states denoted by the 
numbers 1 and 0. Whether the 1 indicates the presence of 
an electrical charge, a voltage level, a magnetic state, a pulse 
of light, or some other phenomenon, at a given point there 
is either “something” (1) or “nothing” (0). This is the most 
natural way to represent a series of such states.

Digital representation has several advantages over ana-
log. Since computer circuits based on binary logic can be 
driven to perform calculations electronically at ever-increas-
ing speeds, even problems where an analog computer better 
modeled nature can now be done more efficiently with digi-
tal machines (see analog computer). Data stored in digi-
tized form is not subject to the gradual wear or distortion of 
the medium that plagues analog representations such as the 
phonograph record. Perhaps most important, because digi-
tal representations are at base simply numbers, an infinite 
variety of digital representations can be stored in files and 
manipulated, regardless of whether they started as pictures, 
music, or text (see digital convergence).

Converting between Analog and  
Digital Representations
Because digital devices (particularly computers) are the 
mechanism of choice for working with representations of 
text, graphics, and sound, a variety of devices are used to 
digitize analog inputs so the data can be stored and manip-
ulated. Conceptually, each digitizing device can be thought 
of as having three parts: a component that scans the input 
and generates an analog signal, a circuit that converts the 
analog signal from the input to a digital format, and a com-
ponent that stores the resulting digital data for later use. For 
example, in the ubiquitous flatbed scanner a moving head 
reads varying light levels on the paper and converts them to 

Most natural phenomena such as light or sound intensity are ana-
log values that vary continuously. To convert such measurements 
to a digital representation, “snapshots” or sample readings must be 
taken at regular intervals. Sampling more frequently gives a more 
accurate representation of the original analog data, but at a cost in 
memory and processor resources.
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a varying level of current (see scanner). This analog signal 
is in turn converted into a digital reading by an analog-to-
digital converter, which creates numeric information that 
represents discrete spots (pixels) representing either levels 
of gray or of particular colors. This information is then 
written to disk using the formats supported by the operat-
ing system and the software that will manipulate them.
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analog computer
Most natural phenomena are analog rather than digital in 
nature (see analog and digital). But just as mathematical 
laws can describe relationships in nature, these relation-
ships in turn can be used to construct a model in which 
natural forces generate mathematical solutions. This is the 
key insight that leads to the analog computer.

The simplest analog computers use physical components 
that model geometric ratios. The earliest known analog 
computing device is the Antikythera Mechanism. Con-
structed by an unknown scientist on the island of Rhodes 
around 87 b.c., this device used a precisely crafted differen-
tial gear mechanism to mechanically calculate the interval 
between new moons (the synodic month). (Interestingly, 
the differential gear would not be rediscovered until 1877.)

Another analog computer, the slide rule, became the 
constant companion of scientists, engineers, and students 

until it was replaced by electronic calculators in the 1970s. 
Invented in simple form in the 17th century, the slide rule’s 
movable parts are marked in logarithmic proportions, 
allowing for quick multiplication, division, the extraction 
of square roots, and sometimes the calculation of trigono-
metric functions.

The next insight involved building analog devices that 
set up dynamic relationships between mechanical move-
ments. In the late 19th century two British scientists, James 
Thomson and his brother Sir William Thomson (later Lord 
Kelvin) developed the mechanical integrator, a device 
that could solve differential equations. An important new 
principle used in this device is the closed feedback loop, 
where the output of the integrator is fed back as a new 
set of inputs. This allowed for the gradual summation or 
integration of an equation’s variables. In 1931, Vannevar 
Bush completed a more complex machine that he called a 
“differential analyzer.” Consisting of six mechanical inte-
grators using specially shaped wheels, disks, and servo-
mechanisms, the differential analyzer could solve equations 
in up to six independent variables. As the usefulness and 
applicability of the device became known, it was quickly 
replicated in various forms in scientific, engineering, and 
military institutions.

These early forms of analog computer are based on fixed 
geometrical ratios. However, most phenomena that scien-
tists and engineers are concerned with, such as aerodynam-
ics, fluid dynamics, or the flow of electrons in a circuit, 
involve a mathematical relationship between forces where 
the output changes smoothly as the inputs are changed. The 
“dynamic” analog computer of the mid-20th century took 
advantage of such force relationships to construct devices 
where input forces represent variables in the equation, and 

Converting analog data to digital involves several steps. A sensor (such as the CCD, or charge-coupled device in a digital camera) creates 
a varying electrical current. An amplifier can strengthen this signal to make it easier to process, and filters can eliminate spurious spikes or 
“noise.” The “conditioned” signal is then fed to the analog-to-digital (A/D) converter, which produces numeric data that is usually stored in a 
memory buffer from which it can be processed and stored by the controlling program.
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nature itself “solves” the equation by producing a resulting 
output force.

In the 1930s, the growing use of electronic circuits 
encouraged the use of the flow of electrons rather than 
mechanical force as a source for analog computation. The 
key circuit is called an operational amplifier. It generates 
a highly amplified output signal of opposite polarity to the 
input, over a wide range of frequencies. By using compo-
nents such as potentiometers and feedback capacitors, an 
analog computer can be programmed to set up a circuit in 
which the laws of electronics manipulate the input voltages 
in the same way the equation to be solved manipulates its 
variables. The results of the calculation are then read as a 
series of voltage values in the final output.

Starting in the 1950s, a number of companies mar-
keted large electronic analog computers that contained 
many separate computing units that could be harnessed 
together to provide “real time” calculations in which the 
results could be generated at the same rate as the actual 
phenomena being simulated. In the early 1960s, NASA set 
up training simulations for astronauts using analog real-
time simulations that were still beyond the capability of 
digital computers.

Gradually, however, the use of faster processors and 
larger amounts of memory enabled the digital computer to 

surpass its analog counterpart even in the scientific pro-
gramming and simulations arena. In the 1970s, some hybrid 
machines combined the easy programmability of a digital 
“front end” with analog computation, but by the end of that 
decade the digital computer had rendered analog computers 
obsolete.
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Andreessen, Marc
(1971–  )
American
Entrepreneur, Programmer

Marc Andreessen brought the World Wide Web and its 
wealth of information, graphics, and services to the desk-
top, setting the stage for the first “e-commerce” revolution 
of the later 1990s. As founder of Netscape, Andreessen also 

Completed in 1931, Vannevar Bush’s Differential Analyzer was a triumph of analog computing. The device could solve equations with up to 
six independent values.  (MIT Museum)
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created the first big “dot-com,” or company doing business 
on the Internet.

Born on July 9, 1971, in New Lisbon, Wisconsin, 
Andreessen grew up as part of a generation that would 
become familiar with personal computers, computer games, 
and graphics. By seventh grade Andreessen had his own PC 
and was programming furiously. He then studied computer 
science at the University of Illinois at Urbana-Champaign, 
where his focus on computing was complemented by a wide-
ranging interest in music, history, literature, and business.

By the early 1990s the World Wide Web (see World 
Wide Web and Berners-Lee, Tim) was poised to change 
the way information and services were delivered to users. 
However, early Web pages generally consisted only of 
linked pages of text, without point-and-click navigation or 
the graphics and interactive features that adorn Web pages 
today.

Andreessen learned about the World Wide Web shortly 
after Berners-Lee introduced it in 1991. Andreessen thought 
it had great potential, but also believed that there needed 
to be better ways for ordinary people to access the new 

medium. In 1993, Andreessen, together with colleague Eric 
Bina and other helpers at the National Center for Supercom-
puting Applications (NCSA), set to work on what became 
known as the Mosaic Web browser. Since their work was 
paid for by the government, Mosaic was offered free to 
users over the Internet. Mosaic could show pictures as well 
as text, and users could follow Web links simply by click-
ing on them with the mouse. The user-friendly program 
became immensely popular, with more than 10 million 
users by 1995.

After earning a B.S. in computer science, Andreessen left 
Mosaic, having battled with its managers over the future of 
Web-browsing software. He then met Jim Clark, an older 
entrepreneur who had been CEO of Silicon Graphics. They 
founded Netscape Corporation in 1994, using $4 million 
seed capital provided by Clark.

Andreessen recruited many of his former colleagues at 
NCSA to help him write a new Web browser, which became 
known as Netscape Navigator. Navigator was faster and 
more graphically attractive than Mosaic. Most important, 
Netscape added a secure encrypted facility that people could 
use to send their credit card numbers to online merchants. 
This was part of a two-pronged strategy: First, attract the 
lion’s share of Web users to the new browser, and then sell 
businesses the software they would need to create effective 
Web pages for selling products and services to users.

By the end of 1994 Navigator had gained 70 per-
cent of the Web browser market. Time magazine named 
the browser one of the 10 best products of the year, and 
Netscape was soon selling custom software to companies 
that wanted a presence on the Web. The e-commerce boom 
of the later 1990s had begun, and Marc Andreessen was one 
of its brightest stars. When Netscape offered its stock to the 
public in summer 1995, the company gained a total worth 
of $2.3 billion, more than that of many traditional blue-
chip industrial companies. Andreessen’s own shares were 
worth $55 million.

Battle with Microsoft
Microsoft (see Microsoft and Gates, Bill) had been slow 
to recognize the growing importance of the Web, but by the 
mid-1990s Gates had decided that the software giant had to 
have a comprehensive “Internet strategy.” In particular, the 
company had to win control of the browser market so users 
would not turn to “platform independent” software that 
could deliver not only information but applications, with-
out requiring the use of Windows at all.

Microsoft responded by creating its own Web browser, 
called Internet Explorer. Although technical reviewers gen-
erally considered the Microsoft product to be inferior to 
Netscape, it gradually improved. Most significantly, Micro-
soft included Explorer with its new Windows 95 operating 
system. This “bundling” meant that PC makers and con-
sumers had little interest in paying for Navigator when they 
already had a “free” browser from Microsoft. In response 
to this move, Netscape and other Microsoft competitors 
helped promote the antitrust case against Microsoft that 
would result in 2001 in some of the company’s practices 
being declared an unlawful use of monopoly power.

Marc Andreessen, Chairman of Loudcloud, Inc., speaks at Fortune 
magazine’s “Leadership in Turbulent Times” conference on Novem-
ber 8, 2001, in New York City.  (Photo by Mario Tama/Getty 
Images)
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Andreessen tried to respond to Microsoft by focusing 
on the added value of his software for Web servers while 
making Navigator “open source,” meaning that anyone was 
allowed to access and modify the program’s code (see open 
source). He hoped that a vigorous community of program-
mers might help keep Navigator technically superior to 
Internet Explorer. However, Netscape’s revenues began to 
decline steadily. In 1999 America Online (AOL) bought the 
company, seeking to add its technical assets and Webcenter 
online portal to its own offerings (see America Online).

After a brief stint with AOL as its “principal technical 
visionary,” Andreessen decided to start his own company, 
called LoudCloud. The company provided Web-site devel-
opment, management, and custom software (including e-
commerce “shopping basket” systems) for corporations that 
had large, complex Web sites. However, the company was 
not successful; Andreessen sold its Web-site-management 
component to Texas-based Electronic Data Systems (EDS) 
while retaining its software division under the new name 
Opsware. In 2007 Andreessen scored another coup, selling 
Opsware to Hewlett-Packard (HP) for $1.6 billion.

In 2007 Andreessen launched Ning, a company that 
offers users the ability to add blogs, discussion forums, and 
other features to their Web sites, but facing established com-
petitors such as MySpace (see also social networking). In 
July 2008 Andresseen joined the board of Facebook.

While the future of his recent ventures remains uncer-
tain, Marc Andreessen’s place as one of the key pioneers of 
the Web and e-commerce revolution is assured. His inven-
tiveness, technical insight, and business acumen made him 
a model for a new generation of Internet entrepreneurs. 
Andreessen was named one of the Top 50 People under the 
Age of 40 by Time magazine (1994) and has received the 
Computerworld/Smithsonian Award for Leadership (1995) 
and the W. Wallace McDowell Award of the IEEE Computer 
Society (1997).

Further Reading
Clark, Jim. Netscape Time: The Making of the Billion-Dollar Startup 

That Took on Microsoft. New York: St. Martin’s Press, 1999.
Guynn, Jessica. “Andreessen Betting Name on New Ning.” San 

Francisco Chronicle, February 27, 2006, p. D1, D4.
Payment, Simone. Marc Andreessen and Jim Clark: The Founders of 

Netscape. New York: Rosen Pub. Group, 2006.
Quittner, Joshua, and Michelle Slatala. Speeding the Net: The Inside 

Story of Netscape and How It Challenged Microsoft. New York: 
Atlantic Monthly Press, 1998.

animation, computer
Ever since the first hand-drawn cartoon features entertained 
moviegoers in the 1930s, animation has been an important 
part of the popular culture. Traditional animation uses a 
series of hand-drawn frames that, when shown in rapid 
succession, create the illusion of lifelike movement.

Computer Animation Techniques
The simplest form of computer animation (illustrated in 
games such as Pong) involves drawing an object, then eras-
ing it and redrawing it in a different location. A somewhat 

more sophisticated approach can create motion in a scene 
by displaying a series of pre-drawn images called sprites—
for example, there could be a series of sprites showing a 
sword-wielding troll in different positions.

Since there are only a few intermediate images, the use 
of sprites doesn’t convey truly lifelike motion. Modern 
animation uses a modern version of the traditional drawn 
animation technique. The drawings are “keyframes” that 
capture significant movements by the characters. The key-
frames are later filled in with transitional frames in a pro-
cess called tweening. Since it is possible to create algorithms 
that describe the optimal in-between frames, the advent of 
sufficiently powerful computers has made computer anima-
tion both possible and desirable. Today computer animation 
is used not only for cartoons but also for video games and 
movies. The most striking use of this technique is morph-
ing, where the creation of plausible intermediate images 
between two strikingly different faces creates the illusion of 
one face being transformed into the other.

Algorithms that can realistically animate people, ani-
mals, and other complex objects require the ability to create 
a model that includes the parts of the object that can move 
separately (such as a person’s arms and legs). Because the 
movement of one part of the model often affects the posi-
tions of other parts, a treelike structure is often used to 
describe these relationships. (For example, an elbow moves 
an arm, the arm in turn moves the hand, which in turn 
moves the fingers). Alternatively, live actors performing a 
repertoire of actions or poses can be digitized using wear-
able sensors and then combined to portray situations, such 
as in a video game.

Less complex objects (such as clouds or rainfall) can be 
treated in a simpler way, as a collection of “particles” that 
move together following basic laws of motion and gravity. 
Of course when different models come into contact (for 
example, a person walking in the rain), the interaction 
between the two must also be taken into consideration.

While realism is always desirable, there is inevitably 
a tradeoff between the resources available. Computation-
ally intensive physics models might portray a very realistic 
spray of water using a high-end graphics workstation, but 
simplified models have to be used for a program that runs 
on a game console or desktop PC. The key variables are the 
frame rate (higher is smoother) and the display resolution. 
The amount of available video memory is also a consider-
ation: many desktop PCs sold today have 256MB or more of 
video memory.

Applications
Computer animation is used extensively in many fea-
ture films, such as for creating realistic dinosaurs ( Juras-
sic Park) or buglike aliens (Starship Troopers). Computer 
games combine animation techniques with other tech-
niques (see computer graphics) to provide smooth 
action within a vivid 3D landscape. Simpler forms of ani-
mation are now a staple of Web site design, often written 
in Java or with the aid of animation scripting programs 
such as Adobe Flash.
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The intensive effort that goes into contemporary com-
puter animation suggests that the ability to fascinate the 
human eye that allowed Walt Disney to build an empire is 
just as compelling today.
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anonymity and the Internet
Anonymity, or the ability to communicate without disclos-
ing a verifiable identity, is a consequence of the way most 
Internet-based e-mail, chat, or news services were designed 
(see e-mail, chat, texting and instant messaging, and 
netnews and newgroups). This does not mean that mes-
sages do not have names attached. Rather, the names can 
be arbitrarily chosen or pseudonymous, whether reflecting 
development of an online persona or the desire to avoid 
having to take responsibility for unwanted communications 
(see spam).

Advantages
If a person uses a fixed Internet address (see tcp/ip), it may 
be possible to eventually discover the person’s location and 
even identity. However, messages can be sent through anon-
ymous remailing services where the originating address is 
removed. Web browsing can also be done “at arm’s length” 
through a proxy server. Such means of anonymity can argu-
ably serve important values, such as allowing persons living 
under repressive governments (or who belong to minority 
groups) to express themselves more freely precisely because 
they cannot be identified. However, such techniques require 
some sophistication on the part of the user. With ordinary 
users using their service provider accounts directly, gov-
ernments (notably China) have simply demanded that the 
user’s identity be turned over when a crime is alleged.

Pseudonymity (the ability to choose names separate 
from one’s primary identity) in such venues as chat rooms 
or online games can also allow people to experiment with 
different identities or roles, perhaps getting a taste of how 
members of a different gender or ethnic group are perceived 
(see identity in the online world).

Anonymity can also help protect privacy, especially in 
commercial transactions. For example, purchasing some-
thing with cash normally requires no disclosure of the pur-
chaser’s identity, address, or other personal information. 

Various systems can use secure encryption to create a cash 
equivalent in the online world that assures the merchant 
of valid payment without disclosing unnecessary informa-
tion about the purchaser (see digital cash). There are also 
facilities that allow for essentially anonymous Web brows-
ing, preventing the aggregation or tracking of information 
(see cookies).

Problems
The principal problem with anonymity is that it can allow 
the user to engage in socially undesirable or even criminal 
activity with less fear of being held accountable. The com-
bination of anonymity (or the use of a pseudonym) and the 
lack of physical presence seems to embolden some people 
to engage in insult or “flaming,” where they might be inhib-
ited in an ordinary social setting. A few services (notably 
The WELL) insist that the real identity of all participants 
be available even if postings use a pseudonym.

Spam or deceptive e-mail (see phishing and spoof-
ing) takes advantage both of anonymity (making it hard 
for authorities to trace) and pseudonymity (the ability 
to disguise the site by mimicking a legitimate business). 
Anonymity makes downloading or sharing files easier 
(see file-sharing and P2P networks), but also makes 
it harder for owners of videos, music, or other content to 
pursue copyright violations. Because of the prevalence of 
fraud and other criminal activity on the Internet, there 
have been calls to restrict the ability of online users to 
remain anonymous, and some nations such as South Korea 
have enacted legislation to that effect. However, civil lib-
ertarians and privacy advocates believe that the impact on 
freedom and privacy outweighs any benefits for security 
and law enforcement.

The database of Web-site registrants (called Whois) 
provides contact information intended to ensure that 
someone will be responsible for a given site and be will-
ing to cooperate to fix technical or administrative prob-
lems. At present, Whois information is publicly available. 
However, the Internet Corporation for Assigned Names 
and Numbers (ICANN) is considering making the contact 
information available only to persons who can show a 
legitimate need.
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AOL  See America Online.

API  See applications program interface.
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APL  (a programming language)
This programming language was developed by Harvard 
(later IBM) researcher Kenneth E. Iverson in the early 1960s 
as a way to express mathematical functions clearly and 
consistently for computer use. The power of the language 
to compactly express mathematical functions attracted a 
growing number of users, and APL soon became a full gen-
eral-purpose computing language.

Like many versions of BASIC, APL is an interpreted lan-
guage, meaning that the programmer’s input is evaluated 
“on the fly,” allowing for interactive response (see inter-
preter). Unlike BASIC or FORTRAN, however, APL has 
direct and powerful support for all the important mathe-
matical functions involving arrays or matrices (see array).

APL has over 100 built-in operators, called “primitives.” 
With just one or two operators the programmer can per-
form complex tasks such as extracting numeric or trigono-
metric functions, sorting numbers, or rearranging arrays 
and matrices. (Indeed, APL’s greatest power is in its ability 
to manipulate matrices directly without resorting to explicit 
loops or the calling of external library functions.)

To give a very simple example, the following line of APL 
code:

X [D X]

sorts the array X. In most programming languages this 
would have to be done by coding a sorting algorithm in a 
dozen or so lines of code using nested loops and temporary 
variables.

However, APL has also been found by many program-
mers to have significant drawbacks. Because the language 
uses Greek letters to stand for many operators, it requires 
the use of a special type font that was generally not available 
on non-IBM systems. A dialect called J has been devised to 
use only standard ASCII characters, as well as both simpli-
fying and expanding the language. Many programmers find 
mathematical expressions in APL to be cryptic, making 
programs hard to maintain or revise. Nevertheless, APL 
Special Interest Groups in the major computing societies 
testify to continuing interest in the language.
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Apple Corporation
Since the beginning of personal computing, Apple has had 
an impact out of proportion to its relatively modest market 
share. In a world generally dominated by IBM PC-compat-
ible machines and the Microsoft DOS and Windows operat-
ing systems, Apple’s distinctive Macintosh computers and 

more recent media products have carved out distinctive 
market spaces.

Headquartered in Cupertino, California, Apple was 
cofounded in 1976 by Steve Jobs, Steve Wozniak, and Ron-
ald Wayne (the latter sold his interest shortly after incor-
poration). (See Jobs, Steve, and Wozniak, Steven.) Their 
first product, the Apple I computer, was demonstrated to 
fellow microcomputer enthusiasts at the Homebrew Com-
puter Club. Although it aroused considerable interest, the 
hand-built Apple I was sold without a power supply, key-
board, case, or display. (Today it is an increasingly valuable 
“antique.”)

Apple’s true entry into the personal computing mar-
ket came in 1977 with the Apple II. Although it was more 
expensive than its main rivals from Radio Shack and Com-
modore, the Apple II was sleek, well constructed, and fea-
tured built-in color graphics. The motherboard included 
several slots into which add-on boards (such as for printer 
interfaces) could be inserted. Besides being attractive to 
hobbyists, however, the Apple II began to be taken seri-
ously as a business machine when the first popular spread-
sheet program, VisiCalc, was written for it.

By 1981 more than 2 million Apple IIs (in several varia-
tions) had been sold, but IBM then came out with the IBM 
PC. The IBM machine had more memory and a somewhat 
more powerful processor, but its real advantage was the 
access IBM had to the purchasing managers of corporate 
America. The IBM PC and “clone” machines from other 
companies such as Compaq quickly displaced Apple as 
market leader.

The Macintosh
By the early 1980s Steve Jobs had turned his attention to 
designing a radically new personal computer. Using tech-
nology that Jobs had observed at the Xerox Palo Alto 
Research Center (PARC), the new machine would have a 
fully graphical interface with icons and menus and the abil-
ity to select items with a mouse. The first such machine, 
the Apple Lisa, came out in 1983. The machine cost almost 
$10,000, however, and proved a commercial failure.

In 1984, however, Apple launched a much less expen-
sive version (see Macintosh). Viewers of the 1984 Super 
Bowl saw a remarkable Apple commercial in which a female 
figure runs through a group of corporate drones (represent-
ing IBM) and smashes a screen. The “Mac” sold reasonably 
well, particularly as it was given more processing power and 
memory and was accompanied by new software that could 
take advantage of its capabilities. In particular, the Mac 
came to dominate the desktop publishing market, thanks to 
Adobe’s PageMaker program.

In the 1990s Apple diversified the Macintosh line with 
a portable version (the PowerBook) that largely set the 
standard for the modern laptop computer. By then Apple 
had acquired a reputation for stylish design and superior 
ease of use. However, the development of the rather similar 
Windows operating system by Microsoft (see Microsoft 
Windows) as well as constantly dropping prices for IBM-
compatible hardware put increasing pressure on Apple and 
kept its market share limited. (Apple’s legal challenge to 
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Microsoft alleging misappropriation of intellectual property 
proved to be a protracted and costly failure.)

Apple’s many Macintosh variants of the later 1990s 
proved confusing to consumers, and sales appeared to bog 
down. The company was accused of trying to rely on an 
increasingly nonexistent advantage, keeping prices high, 
and failing to innovate.

However, in 1997 Steve Jobs, who had been forced out of 
the company in an earlier dispute, returned to the company 
and brought with him some new ideas. In hardware there 
was the iMac, a sleek all-in-one system with an unmistak-
able appearance that restored Apple to profitability in 1998. 
On the software side, Apple introduced new video-edit-
ing software for home users and a thoroughly redesigned 
UNIX-based operating system (see OS X). In general, the 
new incarnation of the Macintosh was promoted as the ideal 
companion for a media-hungry generation.

Consumer Electronics
Apple’s biggest splash in the new century, however, came 
not in personal computing, but in the consumer electronics 
sector. Introduced in 2001, the Apple iPod has been phe-
nomenally successful, with 100 million units sold by 2006. 
The portable music player can hold thousands of songs and 
easily fit into a pocket (see also music and video play-
ers, digital). Further, it was accompanied by an easy-to-
use interface and an online music store (iTunes). (By early 
2006, more than a billion songs had been purchased and 
downloaded from the service.) Although other types of por-
table MP3 players exist, it is the iPod that defined the genre 
(see also podcasting). Later versions of the iPod include 
the ability to play videos.

In 2005 Apple announced news that startled and perhaps 
dismayed many long-time users. The company announced 
that future Macintoshes would use the same Intel chips 
employed by Windows-based (“Wintel”) machines like the 
IBM PC and its descendants. The more powerful machines 
would use dual processors (Intel Core Duo). Further, in 
2006 Apple released Boot Camp, a software package that 
allows Intel-based Macs to run Windows XP. Jobs’s new 
strategy seems to be to combine what he believed to be a 
superior operating system and industrial design with indus-
try-standard processors, offering the best user experience 
and a very competitive cost. Apple’s earnings continued 
strong into the second half of 2006.

In early 2007 Jobs electrified the crowd at the Mac-
world Expo by announcing that Apple was going to “rein-
vent the phone.” The product, called iPhone, is essentially 
a combination of a video iPod and a full-featured Inter-
net-enabled cell phone (see smartphone). Marketed by 
Apple and AT&T (with the latter providing the phone ser-
vice), the iPhone costs about twice as much as an iPod but 
includes a higher-resolution 3.5-in. (diagonal) screen and a 
2 megapixel digital camera. The phone can connect to other 
devices (see Bluetooth) and access Internet services such 
as Google Maps. The user controls the device with a new 
interface called Multitouch.

Apple also introduced another new media product, the 
Apple TV (formerly the iTV), allowing music, photos, and 

video to be streamed wirelessly from a computer to an exist-
ing TV set. Apple reaffirmed its media-centered plans by 
announcing that the company’s name would be changed from 
Apple Computer Corporation to simply Apple Corporation.

In the last quarter of 2006 Apple earned a record-
breaking $1 billion in profit, bolstered mainly by very 
strong sales of iPods and continuing good sales of Macin-
tosh computers.

Apple had strong Macintosh sales performance in the 
latter part of 2007. The company has suggested that its 
popular iPods and iPhones may be leading consumers to 
consider buying a Mac for their next personal computer.

Meanwhile, however, Apple has had to deal with ques-
tions about its backdating of stock options, a practice by 
which about 200 companies have, in effect, enabled execu-
tives to purchase their stock at an artificially low price. 
Apple has cleared Jobs of culpability in an internal investi-
gation, and in April 2007 the Securities and Exchange Com-
mission announced that it would not take action against the 
company.
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applet
An applet is a small program that uses the resources of a 
larger program and usually provides customization or addi-
tional features. The term first appeared in the early 1990s 
in connection with Apple’s AppleScript scripting language 
for the Macintosh operating system. Today Java applets rep-
resent the most widespread use of this idea in Web develop-
ment (see Java).

Java applets are compiled to an intermediate repre-
sentation called bytecode, and generally are run in a Web 
browser (see Web browser). Applets thus represent one 
of several alternatives for interacting with users of Web 
pages beyond what can be accomplished using simple text 
markup (see html; for other approaches see Javascript, 
php, scripting languages, and ajax).

An applet can be invoked by inserting a reference to 
its program code in the text of the Web page, using the 
HTML applet element or the now-preferred object element. 
Although the distinction between applets and scripting 
code (such as in PHP) is somewhat vague, applets usually 
run in their own window or otherwise provide their own 
interface, while scripting code is generally used to tailor 
the behavior of separately created objects. Applets are also 
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rather like plug-ins, but the latter are generally used to 
provide a particular capability (such as the ability to read 
or play a particular kind of media file), and have a stan-
dardized facility for their installation and management (see 
plug-in).

Some common uses for applets include animations of 
scientific or programming concepts for Web pages support-
ing class curricula and for games designed to be played 
using Web browsers. Animation tools such as Flash and 
Shockwave are often used for creating graphic applets.

To prevent badly or maliciously written applets from 
affecting user files, applets such as Java applets are gen-
erally run within a restricted or “sandbox” environment 
where, for example, they are not allowed to write or change 
files on disk.

Further Reading
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application program interface  (API)
In order for an application program to function, it must 
interact with the computer system in a variety of ways, such 
as reading information from disk files, sending data to the 
printer, and displaying text and graphics on the monitor 
screen (see user interface). The program may need to find 
out whether a device is available or whether it can have 
access to an additional portion of memory. In order to pro-
vide these and many other services, an operating system 
such as Microsoft Windows includes an extensive applica-
tion program interface (API). The API basically consists of 
a variety of functions or procedures that an application pro-
gram can call upon, as well as data structures, constants, and 
various definitions needed to describe system resources.

Applications programs use the API by including calls to 
routines in a program library (see library, program and 
procedures and functions). In Windows, “dynamic link 
libraries” (DLLs) are used. For example, this simple func-
tion puts a message box on the screen:

MessageBox (0, “Program Initialization Failed!”, 
“Error!”, MB_ICONEXCLAMATION | MB_OK | MB_
SYSTEMMODAL);

In practice, the API for a major operating system such as 
Windows contains hundreds of functions, data structures, 
and definitions. In order to simplify learning to access the 
necessary functions and to promote the writing of readable 
code, compiler developers such as Microsoft and Borland 
have devised frameworks of C++ classes that package related 
functions together. For example, in the Microsoft Founda-
tion Classes (MFC), a program generally begins by deriving 
a class representing the application’s basic characteristics 
from the MFC class CWinApp. When the program wants to 
display a window, it derives it from the CWnd class, which 
has the functions common to all windows, dialog boxes, 
and controls. From CWnd is derived the specialized class 

for each type of window: for example, CFrameWnd imple-
ments a typical main application window, while CDialog 
would be used for a dialog box. Thus in a framework such 
as MFC or Borland’s OWL, the object-oriented concept of 
encapsulation is used to bundle together objects and their 
functions, while the concept of inheritance is used to relate 
the generic object (such as a window) to specialized ver-
sions that have added functionality (see object-oriented 
programming and encapsulation inheritance).

In recent years Microsoft has greatly extended the reach 
of its Windows API by providing many higher level functions 
(including user interface items, network communications, 
and data access) previously requiring separate software com-
ponents or program libraries (see Microsoft.net).

Programmers using languages such as Visual Basic can 
take advantage of a further level of abstraction. Here the 
various kinds of windows, dialogs, and other controls are 
provided as building blocks that the developer can insert 
into a form designed on the screen, and then settings can 
be made and code written as appropriate to control the 
behavior of the objects when the program runs. While the 
programmer will not have as much direct control or flex-
ibility, avoiding the need to master the API means that use-
ful programs can be written more quickly.

Further Reading
“DevCentral Tutorials: MFC and Win32.” Available online. URL: 

http://devcentral.iftech.com/learning/tutorials/submfc.asp. 
Accessed April 12, 2007.

Modern software uses API calls to obtain interface objects such as 
dialog boxes from the operating system. Here the application calls 
the CreateDialog API function. The operating system returns a 
pointer (called a handle) that the application can now use to access 
and manipulate the dialog.
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application service provider  (ASP)
Traditionally, software applications such as office suites are 
sold as packages that are installed and reside on the user’s 
computer. Starting in the mid-1990s, however, the idea of 
offering users access to software from a central repository 
attracted considerable interest. An application service pro-
vider (ASP) essentially rents access to software.

Renting software rather than purchasing it outright has 
several advantages. Since the software resides on the pro-
vider’s server, there is no need to update numerous desktop 
installations every time a new version of the software (or a 
“patch” to fix some problem) is released. The need to ship 
physical CDs or DVDs is also eliminated, as is the risk of 
software piracy (unauthorized copying). Users may be able 
to more efficiently budget their software expenses, since 
they will not have to come up with large periodic expenses 
for upgrades. The software provider, in turn, also receives a 
steady income stream rather than “surges” around the time 
of each new software release.

For traditional software manufacturers, the main con-
cern is determining whether the revenue obtained by pro-
viding its software as a service (directly or through a third 
party) is greater than what would have been obtained by 
selling the software to the same market. (It is also possible 
to take a hybrid approach, where software is still sold, but 
users are offered additional features online. Microsoft has 
experimented with this approach with its Microsoft Office 
Live and other products.)

Renting software also has potential disadvantages. The 
user is dependent on the reliability of the provider’s servers 
and networking facilities. If the provider’s service is down, 
then the user’s work flow and even access to critical data 
may be interrupted. Further, sensitive data that resides on a 
provider’s system may be at risk from hackers or industrial 
spies. Finally, the user may not have as much control over 
the deployment and integration of software as would be 
provided by outright purchase.

The ASP market was a hot topic in the late 1990s, and 
some pundits predicted that the ASP model would eventu-
ally supplant the traditional retail channel for mainstream 
software. This did not happen, and more than a thousand 
ASPs were among the casualties of the “dot-com crash” of 
the early 2000s. However, ASP activity has been steadier if 
less spectacular in niche markets, where it offers more eco-
nomical access to expensive specialized software for appli-
cations such as customer relationship management, supply 
chain management, and e-commerce related services—for 
example, Salesforce.com. The growing importance of such 
“software as a service” business models can be seen in 
recent offerings from traditional software companies such 
as SAS. By 2004, worldwide spending for “on demand” 
software had exceeded $4 billion, and Gartner Research 
has predicted that in the second half of the decade about 

a third of all software will be obtained as a service rather 
than purchased.

Web-Based Applications and Free Software
By that time a new type of application service provider 
had become increasingly important. Rather than seeking 
to gain revenue by selling online access to software, this 
new kind of ASP provides the software for free. A striking 
example is Google Pack, a free software suite offered by the 
search giant (see Google). Google Pack includes a variety 
of applications, including a photo organizer and search and 
mapping tools developed by Google, as well as third-party 
programs such as the Mozilla Firefox Web browser, Real-
Player media player, the Skype Internet phone service (see 
voip), and antivirus and antispyware programs. The soft-
ware is integrated into the user’s Windows desktop, pro-
viding fast index and retrieval of files from the hard drive. 
(Critics have raised concerns about the potential violation 
of privacy or misuse of data, especially with regard to a 
“share across computers” feature that stores data about user 
files on Google’s servers.) America Online has also begun to 
provide free access to software that was formerly available 
only to paid subscribers.

This use of free software as a way to attract users to 
advertising-based sites and services could pose a major 
threat to companies such as Microsoft that rely on software 
as their main source of revenue. In 2006 Google unveiled 
a Google Docs & Spreadsheets, a program that allows 
users to create and share word-processing documents and 
spreadsheets over the Web. Such offerings, together with 
free open-source software such as Open Office.org, may 
force traditional software companies to find a new model 
for their own offerings.

Microsoft in turn has launched Office Live, a service 
designed to provide small offices with a Web presence and 
productivity tools. The free “basic” level of the service is 
advertising supported, and expanded versions are available 
for a modest monthly fee. The program also has features 
that are integrated with Office 2007, thus suggesting an 
attempt to use free or low-cost online services to add value 
to the existing stand-alone product line.

By 2008 the term cloud computing had become a popular 
way to describe software provided from a central Internet 
site that could be accessed by the user through any form 
of computer and connection. An advantage touted for this 
approach is that the user need not be concerned with where 
data is stored or the need to make backups, which are 
handled seamlessly.
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application software
Application software consists of programs that enable com-
puters to perform useful tasks, as opposed to programs that 
are concerned with the operation of the computer itself (see 
operating system and systems programming). To most 
users, applications programs are the computer: They deter-
mine how the user will accomplish tasks.

The following table gives a selection of representative 
applications:

Developing and Distributing Applications
Applications can be divided into three categories based 
on how they are developed and distributed. Commercial 
applications such as word processors, spreadsheets, and 
general-purpose Database Management Systems (DBMS) 
are developed by companies specializing in such software 
and distributed to a variety of businesses and individual 
users (see word processing, spreadsheet, and database 
management system). Niche or specialized applications 
(such as hospital billing systems) are designed for and mar-

keted to a particular industry (see medical applications 
of computers). These programs tend to be much more 
expensive and usually include extensive technical support. 
Finally, in-house applications are developed by program-
mers within a business or other institution for their own 
use. Examples might include employee training aids or a 
Web-based product catalog (although such applications 
could also be developed using commercial software such as 
multimedia or database development tools).

While each application area has its own needs and pri-
orities, the discipline of software development (see soft-
ware engineering and programming environment) is 
generally applicable to all major products. Software devel-
opers try to improve speed of development as well as pro-
gram reliability by using software development tools that 
simplify the writing and testing of computer code, as well 
as the manipulation of graphics, sound, and other resources 
used by the program. An applications developer must also 
have a good understanding of the features and limitations of 
the relevant operating system. The developer of commercial 
software must work closely with the marketing department 
to work out issues of feature selection, timing of releases, 
and anticipation of trends in software use (see marketing 
of software).

Further Reading
“Business Software Buyer’s Guide.” Available online. URL: http://

businessweek.buyerzone.com/software/business_software/
buyers_guide1.html. Accessed April 12, 2007.

ZDnet Buyer’s Guide to Computer Applications. Available online. 
URL: http://www.zdnet.com/computershopper/edit/howto-
buy/. Accessed April 12, 2007

General Area	A pplications	E xamples

Business Operations	 payroll, accounts receivable, 	 specialized business software, general spreadsheets and 
	 inventory, marketing	 databases
Education	 school management, curriculum 	 attendance and grade book management, drill-and-practice 
	 reinforcement, reference aids, 	 software for reading or arithmetic, CD or online encyclo- 
	 curriculum expansion or 	 pedias, educational games or simulations, collaborative 
	 supplementation, training	 and Web-based learning, corporate training programs
Engineering	 design and manufacturing	� computer-aided design (CAD), computer-aided manufacturing 

(CAM)
Entertainment	 games, music, and video	� desktop and console games, online games, digitized music 

distribution (MP3 files), streaming video (including movies)
Government	 administration, law enforcement, 	 tax collection, criminal records and field support for police,  
	 military	 legal citation databases, combat information and weapons 
		  control systems
Health Care	 hospital administration, health care 	 hospital information and billing systems, medical records 
	 delivery	� management, medical imaging, computer-assisted treatment 

or surgery
Internet and World 	 web browser, search tools, 	 browser and plug-in software for video and audio, search 
Wide Web	 e-commerce	 engines, e-commerce support and secure transactions
Libraries	 circulation, cataloging, reference	� automated book check-in systems, cataloging databases, CD 

or online bibliographic and full-text databases
Office Operations 	 e-mail, document creation 	 e-mail clients, word processing, desktop publishing 
Science	 statistics, modeling, data analysis	� mathematical and statistical software, modeling of molecules, 

gene typing, weather forecasting
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application suite
An application suite is a set of programs designed to be 
used together and marketed as a single package. For exam-
ple, a typical office suite might include word processing, 
spreadsheet, database, personal information manager, and 
e-mail programs.

While an operating system such as Microsoft Windows 
provides basic capabilities to move text and graphics from 
one application to another (such as by cutting and pasting), 
an application suite such as Microsoft Office makes it easier 
to, for example, launch a Web browser from a link within a 
word processing document or embed a spreadsheet in the 
document. In addition to this “interoperability,” an applica-
tion suite generally offers a consistent set of commands and 
features across the different applications, speeding up the 
learning process. The use of the applications in one package 
from one vendor simplifies technical support and upgrad-
ing. (The development of comparable applications suites 
for Linux is likely to increase that operating system’s accep-
tance on the desktop.)

Applications suites have some potential disadvan-
tages as compared to buying a separate program for each 
application. The user is not necessarily getting the best 
program in each application area, and he or she is also 
forced to pay for functionality that may not be needed or 
desired. Due to their size and complexity, software suites 
may not run well on older computers. Despite these prob-
lems, software suites sell very well and are ubiquitous in 
today’s office.

(For a growing challenge to the traditional standalone 
software suite, see application service provider.)

Further Reading
Villarosa, Joseph. “How Suite It Is: One-Stop Shopping for Soft-

ware Can Save You Both Time and Money.” Available online. 
Forbes magazine online. URL: http://www.forbes.com/buyers/ 
070.htm. Accessed April 12, 2007.

arithmetic logic unit  (ALU)
The arithmetic logic unit is the part of a computer system 
that actually performs calculations and logical comparisons 
on data. It is part of the central processing unit (CPU), and 
in practice there may be separate and multiple arithmetic 
and logic units (see cpu).

The ALU works by first retrieving a code that represents 
the operation to be performed (such as ADD). The code also 
specifies the location from which the data is to be retrieved 
and to which the results of the operation are to be stored. 
(For example, addition of the data from memory to a num-
ber already stored in a special accumulator register within 
the CPU, with the result to be stored back into the accumu-
lator.) The operation code can also include a specification 
of the format of the data to be used (such as fixed or float-
ing-point numbers)—the operation and format are often 
combined into the same code.

In addition to arithmetic operations, the ALU can also 
carry out logical comparisons, such as bitwise operations 
that compare corresponding bits in two data words, corre-

sponding to Boolean operators such as AND, OR, and XOR 
(see bitwise operations and Boolean operators).

The data or operand specified in the operation code is 
retrieved as words of memory that represent numeric data, 
or indirectly, character data (see memory, numeric data, 
and characters and strings). Once the operation is per-
formed, the result is stored (typically in a register in the 
CPU). Special codes are also stored in registers to indicate 
characteristics of the result (such as whether it is positive, 
negative, or zero). Other special conditions called excep-
tions indicate a problem with the processing. Common 
exceptions include overflow, where the result fills more bits 
than are available in the register, loss of precision (because 
there isn’t room to store the necessary number of decimal 
places), or an attempt to divide by zero. Exceptions are 
typically indicated by setting a flag in the machine status 
register (see flag).

The Big Picture
Detailed knowledge of the structure and operation of the 
ALU is not needed by most programmers. Programmers 
who need to directly control the manipulation of data in 
the ALU and CPU write programs in assembly language 
(see assembler) that specify the sequence of operations to 
be performed. Generally only the lowest-level operations 
involving the physical interface to hardware devices require 
this level of detail (see device driver). Modern compilers 
can produce optimized machine code that is almost as effi-
cient as directly-coded assembler. However, understanding 
the architecture of the ALU and CPU for a particular chip 
can help predict its advantages or disadvantages for various 
kinds of operations.

Further Reading
Kleitz, William. Digital and Microprocessor Fundamentals: Theory 

and Applications. 4th ed. Upper Saddle River, N.J.: Prentice 
Hall, 2002.

Stokes, Jon. “Understanding the Microprocessor.” Ars Technica. 
Available online. URL: http://arstechnica.com/paedia/c/cpu/
part-1/cpu1-1.html. Accessed May 22, 2007.

array
An array stores a group of similar data items in consecutive 
order. Each item is an element of the array, and it can be 
retrieved using a subscript that specifies the item’s location 
relative to the first item. Thus in the C language, the state-
ment

int Scores (10);

sets up an array called Scores, consisting of 10 integer val-
ues. The statement

Scores [5] = 93;

stores the value 93 in array element number 5. One subtlety, 
however, is that in languages such as C, the first element of 
the array is [0], so [5] represents not the fifth but the sixth 
element in Scores. (Many version of BASIC allow for setting 
either 0 or 1 as the first element of arrays.)
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In languages such as C that have pointers, an equivalent 
way to access an array is to declare a pointer and store the 
address of the first element in it (see pointers and indi-
rection):

int * ptr;
ptr = &Scores [0];

(See pointers and indirection.)
Arrays are useful because they allow a program to work 

easily with a group of data items without having to use sep-
arately named variables. Typically, a program uses a loop to 
traverse an array, performing the same operation on each 
element in order (see loop). For example, to print the cur-
rent contents of the Scores array, a C program could do the 
following:

int index;
for (index = 0; i < 10; i++)

printf (“Scores [%d] = %d \n”, index, 
Scores [index]);

This program might print a table like this:

Scores [0] = 22
Scores [1] = 28
Scores [2] = 36

and so on. Using a pointer, a similar loop would increment 
the pointer to step to each element in turn.

An array with a single subscript is said to have one 
dimension. Such arrays are often used for simple data lists, 
strings of characters, or vectors. Most languages also sup-

port multidimensional arrays. For example, a two-dimen-
sional array can represent X and Y coordinates, as on a 
screen display. Thus the number 16 stored at Colors[10][40] 
might represent the color of the point at X=10, Y=40 on a 
640 by 480 display. A matrix is also a two-dimensional 
array, and languages such as APL provide built-in support 
for mathematical operations on such arrays. A four-dimen-
sional array might hold four test scores for each person.

Some languages such as FORTRAN 90 allow for defin-
ing “slices” of an array. For example, in a 3 × 3 matrix, the 
expression MAT(2:3, 1:3) references two 1 × 3 “slices” of the 
matrix array. Pascal allows defining a subrange, or portion 
of the subscripts of an array.

Associative Arrays
It can be useful to explicitly associate pairs of data items 
within an array. In an associative array each data element 
has an associated element called a key. Rather than using 
subscripts, data elements are retrieved by passing the key 
to a hashing routine (see hashing). In the Perl language, for 
example, an array of student names and scores might be set 
up like this:

%Scores = (“Henderson” => 86, “Johnson” => 87, “Jack-
son” => 92);

The score for Johnson could later be retrieved using the 
reference:

$Scores (“Johnson”)

Associative arrays are handy in that they facilitate look-up 
tables or can serve as small databases. However, expanding 
the array beyond its initial allocation requires rehashing all 
the existing elements.

Programming Issues
To avoid error, any reference to an array must be within 
its declared bounds. For example, in the earlier example, 
Scores[9] is the last element, and a reference to Scores[10] 
would be out of bounds. Attempting to reference an out-
of-bounds value gives an error message in some languages 
such as Pascal, but in others such as standard C and C++, it 
simply retrieves whatever happens to be in that location in 
memory.

Another issue involves the allocation of memory for the 
array. In a static array, such as that used in FORTRAN 77, 
the necessary storage is allocated before the program runs, 
and the amount of memory cannot be changed. Static arrays 
use memory efficiently and reduce overhead, but are inflex-
ible, since the programmer has to declare an array based 
on the largest number of data items the program might be 
called upon to handle. A dynamic array, however, can use a 
flexible structure to allocate memory (see heap). The pro-
gram can change the size of the array at any time while it 
is running. C and C++ programs can create dynamic arrays 
and allocate memory using special functions (malloc and 
free in C) or operators (new and delete in C++).

A two-dimensional array can be visualized as a grid, with the 
array subscripts indicating the row and column in which a par-
ticular value is stored. Here the value 4 is stored at the location 
(1,2), while the value at (2,0), which is 8, is assigned to N. As 
shown, the actual computer memory is a one dimensional line 
of successive locations. In most computer languages the array is 
stored row by row.
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In the early days of microcomputer programming, arrays 
tended to be used as an all-purpose data structure for stor-
ing information read from files. Today, since there are more 
structured and flexible ways to store and retrieve such data, 
arrays are now mainly used for small sets of data (such as 
look-up tables).

Further Reading
Jensen, Ted. “A Tutorial on Pointers and Arrays in C.” Available 

online. URL: http://pw2.netcom.com/~tjensen/ptr/pointers.
htm. Accessed April 12, 2007.

Sebesta, Robert W. Concepts of Programming Languages. 8th ed. 
Boston: Addison-Wesley, 2008.

art and the computer
While the artistic and technical temperaments are often 
viewed as opposites, the techniques of artists have always 
shown an intimate awareness of technology, including the 
physical characteristics of the artist’s tools and media. The 
development of computer technology capable of generating, 
manipulating, displaying, or printing images has offered a 
variety of new tools for existing artistic traditions, as well 
as entirely new media and approaches.

Computer art began as an offshoot of research into image 
processing or the simulation of visual phenomena, such as 
by researchers at Bell Labs in Murray Hill, New Jersey, dur-
ing the 1960s. One of these researchers, A. Michael Noll, 
applied computers to the study of art history by simulat-
ing techniques used by painters Piet Mondrian and Bridget 
Riley in order to gain a better understanding of them. In 
addition to exploring existing realms of art, experiment-
ers began to create a new genre of art, based on the ideas of 
Max Bense, who coined the terms “artificial art” and “gen-
erative esthetics.” Artists such as Manfred Mohr studied 
computer science because they felt the computer could pro-
vide the tools for an esthetic strongly influenced by math-
ematics and natural science. For example, Mohr’s P-159/A 
(1973) used mathematical algorithms and a plotting device 
to create a minimalistic yet rich composition of lines. Other 
artists working in the minimalist, neoconstructivist, and 
conceptual art traditions found the computer to be a com-
pelling tool for exploring the boundaries of form.

By the 1980s, the development of personal computers 
made digital image manipulation available to a much wider 
group of people interested in artistic expression, including 
the more conventional realms of representational art and 
photography. Programs such as Adobe Photoshop blend art 
and photography, making it possible to combine images 
from many sources and apply a variety of transformations 
to them. The use of computer graphics algorithms make 
realistic lighting, shadow, and fog effects possible to a much 
greater degree than their approximation in traditional 
media. Fractals can create landscapes of infinite texture 
and complexity. The computer has thus become a standard 
tool for both “serious” and commercial artists.

Artificial intelligence researchers have developed pro-
grams that mimic the creativity of human artists. For exam-
ple, a program called Aaron developed by Harold Cohen 

can adapt and extend existing styles of drawing and paint-
ing. Works by Aaron now hang in some of the world’s most 
distinguished art museums.

An impressive display of the “state of the computer art” 
could be seen at a digital art exhibition that debuted in 
Boston at the SIGGRAPH 2006 conference. More than 150 
artists and researchers from 16 countries exhibited work 
and discussed its implications. Particularly interesting 
were dynamic works that interacted with visitors and the 
environment, often blurring the distinction between digi-
tal arts and robotics. In the future, sculptures may change 
with the season, time of day, or the presence of people in 
the room, and portraits may show moods or even converse 
with viewers.

Implications and Prospects
While traditional artistic styles and genres can be repro-
duced with the aid of a computer, the computer has the 
potential to change the basic paradigms of the visual arts. 
The representation of all elements in a composition in digi-
tal form makes art fluid in a way that cannot be matched 

Air, created by Lisa Yount with the popular image-editing program 
Adobe Photoshop, is part of a group of photocollages honoring the 
ancient elements of earth, air, water, and fire. The “wings” in the 
center are actually the two halves of a mussel shell.  (Lisa Yount)
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by traditional media, where the artist is limited in the abil-
ity to rework a painting or sculpture. Further, there is no 
hard-and-fast boundary between still image and anima-
tion, and the creation of art works that change interactively 
in response to their viewer becomes feasible. Sound, too, 
can be integrated with visual representation, in a way far 
more sophisticated than that pioneered in the 1960s with 
“color organs” or laser shows. Indeed, the use of virtual 
reality technology makes it possible to create art that can be 
experienced “from the inside,” fully immersively (see vir-
tual reality). The use of the Internet opens the possibility 
of huge collaborative works being shaped by participants 
around the world.

The growth of computer art has not been without mis-
givings. Many artists continue to feel that the intimate 
physical relationship between artist, paint, and canvas can-
not be matched by what is after all only an arrangement of 
light on a flat screen. However, the profound influence of 
the computer on contemporary art is undeniable.

Further Reading
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artificial intelligence
The development of the modern digital computer follow-
ing World War II led naturally to the consideration of the 
ultimate capabilities of what were soon dubbed “thinking 
machines” or “giant brains.” The ability to perform cal-
culations flawlessly and at superhuman speeds led some 
observers to believe that it was only a matter of time before 
the intelligence of computers would surpass human levels. 
This belief would be reinforced over the years by the devel-
opment of computer programs that could play chess with 
increasing skill, culminating in the match victory of IBM’s 
Deep Blue over world champion Garry Kasparov in 1997. 
(See chess and computers.)

However, the quest for artificial intelligence would face 
a number of enduring challenges, the first of which is a 
lack of agreement on the meaning of the term intelligence, 
particularly in relation to such seemingly different entities 
as humans and machines. While chess skill is considered 
a sign of intelligence in humans, the game is deterministic 
in that optimum moves can be calculated systematically, 
limited only by the processing capacity of the computer. 
Human chess masters use a combination of pattern recogni-
tion, general principles, and selective calculation to come 

up with their moves. In what sense could a chess-playing 
computer that mechanically evaluates millions of positions 
be said to “think” in the way humans do? Similarly, com-
puters can be provided with sets of rules that can be used to 
manipulate virtual building blocks, carry on conversations, 
and even write poetry. While all these activities can be per-
ceived by a human observer as being intelligent and even 
creative, nothing can truly be said about what the computer 
might be said to be experiencing.

In 1950, computer pioneer Alan M. Turing suggested 
a more productive approach to evaluating claims of artifi-
cial intelligence in what became known as the Turing test 
(see Turing, Alan). Basically, the test involves having a 
human interact with an “entity” under conditions where he 
or she does not know whether the entity is a computer or 
another human being. If the human observer, after engag-
ing in teletyped “conversation” cannot reliably determine 
the identity of the other party, the computer can be said to 
have passed the Turing test. The idea behind this approach 
is that rather than attempting to precisely and exhaustively 
define intelligence, we will engage human experience and 
intuition about what intelligent behavior is like. If a com-
puter can successfully imitate such behavior, then it at least 
may become problematic to say that it is not intelligent.

Computer programs have been able to pass the Tur-
ing test to a limited extent. For example, a program called 
ELIZA written by Joseph Weizenbaum can carry out what 
appears to be a responsive conversation on themes chosen 
by the interlocutor. It does so by rephrasing statements 
or providing generalizations in the way that a nondirec-
tive psychotherapist might. But while ELIZA and similar 
programs have sometimes been able to fool human inter-
locutors, an in-depth probing by the humans has always 
managed to uncover the mechanical nature of the response.

Although passing the Turing test could be considered 
evidence for intelligence, the question of whether a com-
puter might have consciousness (or awareness of self) in 
the sense that humans experience it might be impossible to 
answer. In practice, researchers have had to confine them-
selves to producing (or simulating) intelligent behavior, and 
they have had considerable success in a variety of areas.

Top-Down Approaches
The broad question of a strategy for developing artificial 
intelligence crystallized at a conference held in 1956 at Dart-
mouth College. Four researchers can be said to be founders 
of the field: Marvin Minsky (founder of the AI Laboratory at 
MIT), John McCarthy (at MIT and later, Stanford), and Her-
bert Simon and Allen Newell (developers of a mathematical 
problem-solving program called Logic Theorist at the Rand 
Corporation, who later founded the AI Laboratory at Carn-
egie Mellon University). The 1950s and 1960s were a time 
of rapid gains and high optimism about the future of AI (see 
Minsky, Marvin and Mccarthy, John).

Most early attempts at AI involved trying to specify rules 
that, together with properly organized data, can enable the 
machine to draw logical conclusions. In a production system 
the machine has information about “states” (situations) plus 
rules for moving from one state to another—and ultimately, 
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to the “goal state.” A properly implemented production sys-
tem cannot only solve problems, it can give an explanation 
of its reasoning in the form of a chain of rules that were 
applied.

The program SHRDLU, developed by Marvin Minsky’s 
team at MIT, demonstrated that within a simplified “micro-
world” of geometric shapes a program can solve problems 
and learn new facts about the world. Minsky later developed 
a more generalized approach called “frames” to provide the 
computer with an organized database of knowledge about 
the world comparable to that which a human child assimi-
lates through daily life. Thus, a program with the appropri-
ate frames can act as though it understands a story about 
two people in a restaurant because it “knows” basic facts 
such as that people go to a restaurant to eat, the meal is 
cooked for them, someone pays for the meal, and so on.

While promising, the frames approach seemed to founder 
because of the sheer number of facts and relationships 
needed for a comprehensive understanding of the world. 
During the 1970s and 1980s, however, expert systems were 
developed that could carry out complex tasks such as deter-
mining the appropriate treatment for infections (MYCIN) 
and analysis of molecules (DENDRAL). Expert systems 
combined rules of inference with specialized databases of 
facts and relationships. Expert systems have thus been able 
to encapsulate the knowledge of human experts and make it 
available in the field (see expert systems and knowledge 
representation).

The most elaborate version of the frames approach has 
been a project called Cyc (short for “encyclopedia”), devel-
oped by Douglas Lenat. This project is now in its third 
decade and has codified millions of assertions about the 
world, grouping them into semantic networks that repre-
sent dozens of broad areas of human knowledge. If success-
ful, the Cyc database could be applied in many different 
domains, including such applications as automatic analysis 
and summary of news stories.

Bottom-Up Approaches
Several “bottom-up” approaches to AI were developed in 
an attempt to create machines that could learn in a more 
humanlike way. The one that has gained the most prac-
tical success is the neural network, which attempts to 
emulate the operation of the neurons in the human brain. 
Researchers believe that in the human brain perceptions or 
the acquisition of knowledge leads to the reinforcement of 
particular neurons and neural paths, improving the brain’s 
ability to perform tasks. In the artificial neural network a 
large number of independent processors attempt to perform 
a task. Those that succeed are reinforced or “weighted,” 
while those that fail may be negatively weighted. This leads 
to a gradual improvement in the overall ability of the sys-
tem to perform a task such as sorting numbers or recogniz-
ing patterns (see neural network).

Since the 1950s, some researchers have suggested that 
computer programs or robots be designed to interact with 
their environment and learn from it in the way that human 
infants do. Rodney Brooks and Cynthia Breazeal at MIT 
have created robots with a layered architecture that includes 

motor, sensory, representational, and decision-making ele-
ments. Each level reacts to its inputs and sends information 
to the next higher level. The robot Cog and its descendant 
Kismet often behaved in unexpected ways, generating com-
plex responses that are emergent rather than specifically 
programmed.

The approach characterized as “artificial life” adds a 
genetic component in which the successful components 
pass on program code “genes” to their offspring. Thus, the 
power of evolution through natural selection is simulated, 
leading to the emergence of more effective systems (see 
artificial life and genetic algorithms).

In general the top-down approaches have been more 
successful in performing specialized tasks, but the bottom-
up approaches may have greater general application, as well 
as leading to cross-fertilization between the fields of arti-
ficial intelligence, cognitive psychology, and research into 
human brain function.

Application Areas
While powerful artificial intelligence is not yet ubiquitous 
in everyday computing, AI principles are being successfully 
used in a number of application areas. These areas, which 
are all covered separately in this book, include

• � devising ways of capturing and representing knowl-
edge, making it accessible to systems for diagnosis and 
analysis in fields such as medicine and chemistry (see 
knowledge representation and expert systems)

• � creating systems that can converse in ordinary lan-
guage for querying databases, responding to customer 
service calls, or other routine interactions (see natu-
ral language processing)

• � enabling robots to not only see but also “understand” 
objects in a scene and their relationships (see com-
puter vision and robotics)

• � improving systems for voice and face recognition, as 
well as sophisticated data mining and analysis (see 
speech recognition and synthesis, biometrics, 
and data mining)

• � developing software that can operate autonomously, 
carrying out assignments such as searching for and 
evaluating competing offerings of merchandise (see 
software agent)

Prospects
The field of AI has been characterized by successive waves 
of interest in various approaches, and ambitious projects 
have often failed. However, expert systems and, to a lesser 
extent, neural networks have become the basis for viable 
products. Robotics and computer vision offer a significant 
potential payoff in industrial and military applications. The 
creation of software agents to help users navigate the com-
plexity of the Internet is now of great commercial interest. 
The growth of AI has turned out to be a steeper and more 
complex path than originally anticipated. One view sug-
gests steady progress. Another, shared by science fiction 
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writers such as Vernor Vinge, suggests a breakthrough, per-
haps arising from artificial life research, might someday 
create a true—but truly alien—intelligence (see singular-
ity, technological).
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artificial life  (AL)
This is an emerging field that attempts to simulate the 
behavior of living things in the realm of computers and 
robotics. The field overlaps artificial intelligence (AI) since 
intelligent behavior is an aspect of living things. The design 
of a self-reproducing mechanism by John von Neumann in 
the mid-1960s was the first model of artificial life (see von 
Neumann, John). The field was expanded by the devel-
opment of cellular automata as typified in John Conway’s 
Game of Life in the 1970s, which demonstrated how simple 
components interacting according to a few specific rules 
could generate complex emergent patterns. A program by 
Craig Reynolds uses this principle to model the flocking 
behavior of simulated birds, called “boids” (see cellular 
automata).

The development of genetic algorithms by John Holland 
added selection and evolution to the act of reproduction. 
This approach typically involves the setting up of numerous 
small programs with slightly varying code, and having them 
attempt a task such as sorting data or recognizing patterns. 
Those programs that prove most “fit” at accomplishing the 
task are allowed to survive and reproduce. In the act of 
reproduction, biological mechanisms such as genetic muta-
tion and crossover are allowed to intervene (see genetic 
algorithms). A rather similar approach is found in the 
neural network, where those nodes that succeed better at 
the task are given greater “weight” in creating a composite 
solution to the problem (see neural network).

A more challenging but interesting approach to AL is to 
create actual robotic “organisms” that navigate in the physi-
cal rather than the virtual world. Roboticist Hans Moravec 
of the Stanford AI Laboratory and other researchers have 
built robots that can deal with unexpected obstacles by 
improvisation, much as people do, thanks to layers of soft-
ware that process perceptions, fit them to a model of the 

world, and make plans based on goals. But such robots, 
built as full-blown designs, share few of the characteristics 
of artificial life. As with AI, the bottom-up approach offers 
a different strategy that has been called “fast, cheap, and 
out of control”—the production of numerous small, simple, 
insectlike robots that have only simple behaviors, but are 
potentially capable of interacting in surprising ways. If a 
meaningful genetic and reproductive mechanism can be 
included in such robots, the result would be much closer to 
true artificial life (see robotics).

The philosophical implications arising from the pos-
sible development of true artificial life are similar to those 
involved with “strong AI.” Human beings are used to view-
ing themselves as the pinnacle of a hierarchy of intelligence 
and creativity. However, artificial life with the capability 
of rapid evolution might quickly outstrip human capabili-
ties, perhaps leading to a world like that portrayed by sci-
ence fiction writer Gregory Benford, where flesh-and-blood 
humans become a marginalized remnant population.

Further Reading
“ALife Online 2.0.” Available online. URL: http://alife.org/. 

Accessed April 13, 2007.
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ASP  See application service provider.

assembler
All computers at bottom consist of circuits that can perform 
a repertoire of mathematical or logical operations. The ear-
liest computers were programmed by setting switches for 
operations and manually entering numbers in working stor-
age, or memory. A major advance in the flexibility of com-
puters came with the idea of stored programs, where a set of 
instructions could be read in and held in the machine in the 
same way as other data. These instructions were in machine 
language, consisting of numbers representing instructions 
(operations to be performed) and other numbers represent-
ing the address of data to be manipulated (or an address 
containing the address of the data, called indirect address-
ing—see addressing). Operations include basic arithmetic 
(such as addition), the movement of data between storage 
(memory) and special processor locations called registers, 
and the movement of data from an input device (such as a 
card reader) and an output device (such as a printer).

Writing programs in machine code is obviously a 
tedious and error-prone process, since each operation must 
be specified using a particular numeric instruction code 
together with the actual addresses of the data to be used. It 
soon became clear, however, that the computer could itself 
be used to keep track of binary codes and actual addresses, 
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allowing the programmer to use more human-friendly 
names for instructions and data variables. The program 
that translates between symbolic language and machine 
language is the assembler.

With a symbolic assembler, the programmer can give 
names to data locations. Thus, instead of saying (and hav-
ing to remember) that the quantity Total will be in location 
&H100, the program can simply define a two-byte chunk of 
memory and call it Total:

Total DB

The assembler will take care of assigning a physical mem-
ory location and, when instructed, retrieving or storing the 
data in it.

Most assemblers also have macro capability. This means 
that the programmer can write a set of instructions (a pro-
cedure) and give it a name. Whenever that name is used in 
the program, the assembler will replace it with the actual 
code for the procedure and plug in whatever variables are 
specified as operands (see macro).

Applications
In the mainframe world of the 1950s, the development of 
assembly languages represented an important first step 
toward symbolic programming; higher-level languages such 
as FORTRAN and COBOL were developed so that program-
mers could express instructions in language that was more 
like mathematics and English respectively. High-level lan-
guages offered greater ease of programming and source 
code that was easier to understand (and thus to maintain). 
Gradually, assembly language was reserved for systems pro-
gramming and other situations where efficiency or the need 

to access some particular hardware capability required the 
exact specification of processing (see systems program-
ming and device driver).

During the 1970s and early 1980s, the same evolution 
took place in microcomputing. The first microcomputers 
typically had only a small amount of memory (perhaps 
8–64K), not enough to compile significant programs in a 
high-level language (with the partial exception of some ver-
sions of BASIC). Applications such as graphics and games in 
particular were written in assembly language for speed. As 
available memory soared into the hundreds of kilobytes and 
then megabytes, however, high level languages such as C 
and C++ became practicable, and assembly language began 
to be relegated to systems programming, including device 
drivers and other programs that had to interact directly 
with the hardware.

While many people learning programming today receive 
little or no exposure to assembly language, some under-
standing of this detailed level of programming is still useful 
because it illustrates fundamentals of computer architec-
ture and operation.

Further Reading
Abel, Peter. IBM PC Assembly Language and Programming. 5th ed. 

Upper Saddle River, N.J.: Prentice Hall, 2001.
Duntemann, Jeff. Assembly Language Step by Step: Programming 

with DOS and Linux. 2nd ed. New York: Wiley, 2000.
Miller, Karen. An Assembly Language Introduction to Computer 

Architecture Using the Intel Pentium. New York: Oxford Uni-
versity Press, 1999.

asynchronous JavaScript and XML  See ajax.

In this assembly language example, the “define byte” (.db) directive is used to assign one memory byte to each of the symbolic names (vari-
ables) firstnum, secondnum, and total. The two mov commands then load 2 and 3 into firstnum and secondnum, respectively. Firstnum is 
then loaded into the processor’s accumulator (a), and secondnum is then added to it. Finally, the sum is moved into the memory location 
labeled total.
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Atanasoff, John Vincent
(1903–1995)
American
Computer Engineer

John V. Atanasoff is considered by many historians to be 
the inventor of the modern electronic computer. He was 
born October 4, 1903, in Hamilton, New York. As a young 
man, Atanasoff showed considerable interest in and a talent 
for electronics. His academic background (B.S. in electrical 
engineering, Florida State University, 1925; M.S. in mathe-
matics, Iowa State College, 1926; and Ph.D. in experimental 
physics, University of Wisconsin, 1930) well equipped him 
for the design of computing devices. He taught mathemat-
ics and physics at Iowa State until 1942, and during that 
time, he conceived the idea of a fully electronic calculating 
machine that would use vacuum tubes for its arithmetic cir-
cuits and would store binary numbers on a rotating drum 
memory that used high and low charges on capacitors. 
Atanasoff and his assistant Clifford E. Berry built a suc-

cessful computer called ABC (Atanasoff-Berry computer) 
using this design in 1942. (By that time he had taken a war-
time research position at the Naval Ordnance Laboratory in 
Washington, D.C.)

The ABC was a special-purpose machine designed for 
solving up to 29 simultaneous linear equations using an 
algorithm based on Gaussian elimination to eliminate 
a specified variable from a pair of equations. Because of 
inherent unreliability in the system that punched cards to 
hold the many intermediate results needed in such calcula-
tions, the system was limited in practice to solving sets of 
five or fewer equations.

Despite its limitations, the ABC’s design proved the fea-
sibility of fully electronic computing, and similar vacuum 
tube switching and regenerative memory circuits were 
soon adopted in designing the ENIAC and EDVAC, which 
unlike the ABC, were general-purpose electronic computers. 
Equally important was Atanasoff’s use of capacitors to store 
data in memory electronically: The descendent of his capaci-
tors can be found in the DRAM chips in today’s computers.

When Atanasoff returned to Iowa State in 1948, he dis-
covered that the ABC computer had been dismantled to 
make room for another project. Only a single memory drum 
and a logic unit survived. Iowa State granted him a full 
professorship and the chairmanship of the physics depart-
ment, but he never returned to that institution. Instead, he 
founded the Ordnance Engineering Corporation in 1952, 
which grew to a 100-person workforce before he sold the 
firm to Aerojet General in 1956. He then served as a vice 
president at Aerojet until 1961.

Atanasoff then semi-retired, devoting his time to a vari-
ety of technical interests (he had more than 30 patents to 
his name by the time of his death). However, when Sperry 
Univac (owner of Eckert and Mauchly’s computer patents) 
began demanding license fees from competitors in the mid-
1960s, the head lawyer for one of these competitors, Hon-
eywell, found out about Atanasoff’s work on the ABC and 
enlisted his aid as a witness in an attempt to overturn the 
patents. After prolonged litigation, Judge Earl Richard Lar-
son ruled in 1973 that the two commercial computing pio-
neers had learned key ideas from Atanasoff’s apparatus and 
writings and that their patent was invalid because of this 
“prior art.”

Atanasoff received numerous awards for his work for the 
Navy on acoustics and for his pioneering computer work. 
These awards included the IEEE Computer Pioneer Award 
(1984) and the National Medal of Technology (1990). In 
addition, he had both a hall at Iowa State University and 
an asteroid (3546-Atanasoff) named in his honor. John 
Atanasoff died on June 15, 1995, in Monrovia, Maryland.

Further Reading
Burks, A. R., and A. W. Burks. The First Electronic Computer: the 

Atanasoff Story. Ann Arbor, Mich: University of Michigan 
Press, 1988.

Lee, J. A. N. Computer Pioneers. Los Alamitos, Calif.: IEEE Com-
puter Society Press, 1995.

“Reconstruction of the Atanasoff-Berry Computer (ABC).” Avail-
able online. URL: http://www.scl.ameslab.gov/ABC/ABC.
html. Accessed April 13, 2007.

According to a federal court it was John Atanasoff, not John 
Mauchly and Presper Eckert, who built the first digital computer. 
At any rate the “ABC” or Atanasoff-Berry computer represented 
a pioneering achievement in the use of binary logic circuits for 
computation.  (Iowa State University)
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auctions, online
By the late 1990s, millions of computer users had discov-
ered a new way to buy and sell an immense variety of items 
ranging from traditional collectibles to the exotic (such as a 
working German Enigma encoding machine).

Since its founding in 1995, leading auction site eBay has 
grown to 78 million users in mid-2006, with revenue of 
about $7.6 billion in 2007 (see eBay). (Two other e-com-
merce giants, Amazon.com and Yahoo!, also entered the 
online auction market, but with much more modest results.)

Procedures
Online auctions differ from traditional auctions in several 
ways. Traditional auction firms generally charge the seller 
and buyer a commission of around 10 percent of the sale or 
“hammer” price. Online auctions charge the buyer nothing, 
and the seller typically pays a fee of about 3–5 percent of the 
amount realized. Online auctions can charge much lower 
fees because unlike traditional auctions, there is no live 
auctioneer, no catalogs to produce, and little administra-
tion, since all payments pass from buyer to seller directly.

An online auction is like a mail bid auction in that bids 
can be posted at any time during the several days a typi-
cal auction runs. A buyer specifies a maximum bid and if 
he or she becomes the current high bidder, the high bid is 
adjusted to a small increment over the next highest bid. As 
with a “live” auction, however, bidders can revise their bids 
as many times as they wish until the close of the auction. 
An important difference between online and traditional live 
auctions is that a traditional auction ends as soon as no 
one is willing to top the current high bid. With an online 
auction, the bidding ends at the posted ending time. This 
has led to a tactic known as “sniping,” where some bidders 
submit a bid just over the current high bid just before the 
auction ends, such that the previous high bidder has no 
time to respond.

Future and Implications
Online auctions have become very popular, and an increas-
ing number of people run small businesses by selling items 
through auctions. The markets for traditional collectibles 
such as coins and stamps have been considerably affected 
by online auctions. Knowledgeable buyers can often obtain 
items for considerably less than a dealer would charge, or 
sell items for more than a dealer would pay. However, many 
items are overpriced compared to the normal market, and 
faked or ill-described items can be a significant problem. 
Attempts to hold the auction service legally responsible 
for such items are met with the response that the auction 
service is simply a facilitator for the seller and buyer and 
does not play the role of traditional auctioneers who catalog 
items and provide some assurance of authenticity. If courts 
or regulators should decide that online auctions must bear 
this responsibility, the cost of using the service may rise or 
the variety of items that can be offered may be restricted.

Further Reading
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York: Three Rivers Press, 2001.

auditing in data processing
The tremendous increase in the importance and extent of 
information systems for all aspects of commerce and indus-
try has made it imperative that businesses be able to ensure 
the accuracy and integrity of their accounting systems and 
corporate databases. Errors can result in loss of revenue 
and even exposure to legal liability.

Auditing involves the analysis of the security and accu-
racy of software and the procedures for using it. For exam-
ple, sample data can be extracted using automated scripts 
or other software tools and examined to determine whether 
correct and complete information is being entered into the 
system, and whether the reports on which management 
relies for decision making are accurate. Auditing is also 
needed to confirm that data reported to regulatory agencies 
meets legal requirements.

In addition to confirming the reliability of software and 
procedures, auditors must necessarily also be concerned 
with issues of security, since attacks or fraud involving 
computer systems can threaten their integrity or reliability 
(see computer crime and security). The safeguarding of 
customer privacy has also become a sensitive concern (see 
privacy in the digital age). To address such issues, the 
auditor must have a working knowledge of basic psychol-
ogy and human relations, particularly as they affect large 
organizations.

Auditors recommend changes to procedures and prac-
tices to minimize the vulnerability of the system to both 
human and natural threats. The issues of backup and 
archiving and disaster recovery must also be addressed 
(see backup and archive systems). As part accountant 
and part systems analyst, the information systems auditor 
represents a bridging of traditional practices and rapidly 
changing technology.

Further Reading
Cannon, David L., Timothy S. Bergmann, and Brady Pamplin. 
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anapolis: Wiley Publishing, 2006.
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online. URL: http://www.isaca.org/. Accessed May 22, 2007.
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authentication
This process by which two parties in a communication 
or transaction can assure each other of their identity is a 
fundamental requirement for any transaction not involv-
ing cash, such as the use of checks or credit or debit cards. 
(In practice, for many transactions, authentication is “one 
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way”—the seller needs to know the identity of the buyer 
or at least have some way of verifying the payment, but the 
buyer need not confirm the identity of the seller—except, 
perhaps in order to assure proper recourse if something 
turns out to be wrong with the item purchased.)

Traditionally, authentication involves paper-based iden-
tification (such as driver’s licenses) and the making and 
matching of signatures. Since such identification is rela-
tively easy to fake, there has been growing interest in the 
use of characteristics such as voice, facial measurements, 
or the patterns of veins in the retina that can be matched 
uniquely to individuals (see biometrics). Biometrics, how-
ever, requires the physical presence of the person before a 
suitable device, so it is primarily used for guarding entry 
into high-security areas.

Authentication in Online Systems
Since many transactions today involve automated systems 
rather than face-to-face dealings, authentication systems 
generally involve the sharing of information unique to the 
parties. The PIN used with ATM cards is a common exam-
ple: It protects against the physical diversion of the card by 
requiring information likely known only to the legitimate 
owner. In e-commerce, there is the additional problem of 
safeguarding sensitive information such as credit card num-
bers from electronic eavesdroppers or intruders. Here a sys-
tem is used by which information is encrypted before it is 
transmitted over the Internet. Encryption can also be used 
to verify identity through a digital signature, where a mes-
sage is transformed using a “one-way function” such that it is 
highly unlikely that a message from any other sender would 
have the same encrypted form (see encryption). The most 
widespread system is public key cryptography, where each 
person has a public key (known to all interested parties) and 
a private key that is kept secret. Because of the mathematical 
relationship between these two keys, the reader of a message 
can verify the identity of the sender or creator.

The choice of technology or protocol for authentication 
depends on the importance of the transaction, the vulner-
ability of information that needs to be protected, and the 
consequences of failing to protect it. A Web site that is pro-
viding access to a free service in exchange for information 
about users will probably not require authentication beyond 
perhaps a simple user/password pair. An online store, on the 
other hand, needs to provide a secure transaction environ-
ment both to prevent losses and to reassure potential custom-
ers that shopping online does not pose an unacceptable risk.

Authentication ultimately depends on a combination 
of technological and social systems. For example, crypto-
graphic keys or “digital certificates” can be deposited with 
a trusted third party such that a user has reason to believe 
that a business is who it says it is.

Further Reading
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authoring systems
Multimedia presentations such as computer-based-training 
(CBT) modules are widely used in the corporate and educa-
tional arenas. Programming such a presentation in a high-
level language such as C++ (or even Visual Basic) involves 
writing code for the detailed arrangement and control of 
graphics, animation, sound, and user interaction. Authoring 
systems offer an alternative way to develop presentations or 
courses. The developer specifies the sequence of graphics, 
sound, and other events, and the authoring system gener-
ates a finished program based on those specifications.

Authoring systems can use a variety of models for orga-
nizing presentations. Some use a scripting language that 
specifies the objects to be used and the actions to be per-
formed (see scripting languages). A scripting language 
uses many of the same features as a high-level program-
ming language, including the definition of variables and the 
use of control structures (decision statements and loops). 
Programs such as the once ubiquitous Hypercard (for the 
Macintosh) and Asymetrix Toolbook for Windows organize 
presentations into segments called “cards,” with instruc-
tions fleshed out in a scripting language.

As an alternative, many modern authoring systems 
such as Discovery Systems’ CourseBuilder use a graphical 
approach to organizing a presentation. The various objects 
(such as graphics) to be used are represented by icons, and 
the icons are connected with “flow lines” that describe 
the sequence of actions, serving the same purpose as con-
trol structures in programming languages. This “iconic” 
type of authoring system is easiest for less experienced 
programmers to use and makes the creation of small pre-
sentations fast and easy. Such systems may become more 
difficult to use for lengthy presentations (due to the num-
ber of symbols and connectors involved), and speed of the 
finished program can be a problem. Other popular mod-
els for organizing presentations include the “timeline” of 
Macromedia Flash, which breaks the presentation into 
“movies” and specifies actions for each frame, as well as 
providing multiple layers to facilitate animation. With the 
migration of many presentations to the Internet, the abil-
ity of authoring systems to generate HTML (or DHTML) 
code is also important.

Further Reading
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automatic programming
From the beginning of the computer age, computer sci-
entists have grappled with the fact that writing programs 
in any computer language, even relatively high-level ones 
such as FORTRAN or C, requires painstaking attention to 
detail. While language developers have responded to this 
challenge by trying to create more “programmer friendly” 
languages such as COBOL with its English-like syntax, 
another approach is to use the capabilities of the com-
puter to automate the task of programming itself. It is true 
that any high-level language compiler does this to some 
extent (by translating program statements into the under-
lying machine instructions), but the more ambitious task 
is to create a system where the programmer would specify 
the problem and the system would generate the high-level 
language code. In other words, the task of programming, 
which had already been abstracted from the machine code 
level to the assembler level and from that level to the high-
level language, would be abstracted a step further.

During the 1950s, researchers began to apply artificial 
intelligence principles to automate the solving of mathemat-
ical problems (see artificial intelligence). For example, 
in the 1950s Anthony Hoare introduced the definition of 
preconditions and postconditions to specify the states of 
the machine as it proceeds toward an end state (the solution 
of the problem). The program Logic Theorist demonstrated 
that a computer could use a formal logical calculus to solve 
problems from a set of conditions or axioms. Techniques 
such as deductive synthesis (reasoning from a set of pro-
grammed principles to a solution) and transformation (step-
by-step rules for converting statements in a specification 
language into the target programming language) allowed for 
the creation of automated programming systems, primarily 
in mathematical and scientific fields (see also prolog).

The development of the expert system (combining a 
knowledge base and inference rules) offered yet another 
route toward automated programming (see expert sys-
tems). Herbert Simon’s 1963 Heuristic Compiler was an 
early demonstration of this approach.

Applications
Since many business applications are relatively simple in 
logical structure, practical automatic principles have been 
used in developing application generators that can cre-
ate, for example, a database management system given a 
description of the data structures and the required reports. 
While some systems output code in a language such as C, 
others generate scripts to be run by the database manage-
ment software itself (for example, Microsoft Access).

To simplify the understanding and specification of prob-
lems, a visual interface is often used for setting up the appli-
cation requirements. Onscreen objects can represent items 
such as data files and records, and arrows or other connect-
ing links can be dragged to indicate data relationships.

The line between automated program generators and 
modern software development environments is blurry. A 
programming environment such as Visual Basic encapsu-
lates a great deal of functionality in objects called controls, 

which can represent menus, lists, buttons, text input boxes, 
and other features of the Windows interface, as well as 
other functionalities (such as a Web browser). The Visual 
Basic programmer can design an application by assembling 
the appropriate interface objects and processing tools, set 
properties (characteristics), and write whatever additional 
code is necessary. While not completely automating pro-
gramming, much of the same effect can be achieved.

Further Reading
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awk
This is a scripting language developed under the UNIX 
operating system (see scripting languages) by Alfred V. 
Aho, Brian W. Kernighan, and Peter J. Weinberger in 1977. 
(The name is an acronym from their last initials.) The lan-
guage builds upon many of the pattern matching utilities 
of the operating system and is designed primarily for the 
extraction and reporting of data from files. A number of 
variants of awk have been developed for other operating 
systems such as DOS.

As with other scripting languages, an awk program con-
sists of a series of commands read from a file by the awk 
interpreter. For example the following UNIX command 
line:

awk -f MyProgram > Report

reads awk statements from the file MyProgram into the 
awk interpreter and sends the program’s output to the file 
Report.

Language Features
An awk statement consists of a pattern to match and an 
action to be taken with the result (although the pattern can 
be omitted if not needed). Here are some examples:

{print $1} # prints the first field of every
	 # line of input (since no pattern
	 # is specified)
/debit/ {print $2} # print the second field of
	 # every line that contains the
	 # word “debit”
if ( Code == 2 ) # if Code equals 2,
print $3 	# print third field
	 # of each line

Pattern matching uses a variety of regular expressions famil-
iar to UNIX users. Actions can be specified using a limited 
but adequate assortment of control structures similar to 
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those found in C. There are also built-in variables (including 
counters for the number of lines and fields), arithmetic func-
tions, useful string functions for extracting text from fields, 
and arithmetic and relational operators. Formatting of out-
put can be accomplished through the versatile (but some-
what cryptic) print function familiar to C programmers.

Awk became popular for extracting reports from data 
files and simple databases on UNIX systems. For more 
sophisticated applications it has been supplanted by Perl, 

which offers a larger repertoire of database-oriented fea-
tures (see Perl).

Further Reading
Aho, Alfred V., Brian Kernighan, and Peter J. Weinberger. The 

Awk Programming Language. Reading, Mass.: Addison-Wesley, 
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Goebel, Greg. “An Awk Primer.” Available online. URL: http://
www.vectorsite.net/tsawk.html. Accessed May 22, 2007.
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Babbage, Charles
(1791–1871)
British
Mathematician, Inventor

Charles Babbage made wide-ranging applications of math-
ematics to a variety of fields including economics, social 
statistics, and the operation of railroads and lighthouses. 
Babbage is best known, however, for having conceptualized 
the key elements of the general-purpose computer about a 
century before the dawn of electronic digital computing.

As a student at Trinity College, Cambridge, Babbage 
was already making contributions to the reform of calcu-
lus, championing new European methods over the New-
tonian approach still clung to by British mathematicians. 
But Babbage’s interests were shifting from the theoretical 
to the practical. Britain’s growing industrialization as well 
as its worldwide interests increasingly demanded accurate 
numeric tables for navigation, actuarial statistics, inter-
est rates, and engineering parameters. All tables had to be 
hand-calculated, a long process that inevitably introduced 
numerous errors. Babbage began to consider the possibil-
ity that the same mechanization that was revolutionizing 
industries such as weaving could be turned to the auto-
matic calculation of numeric tables.

Starting in 1820, Babbage began to build a mechani-
cal calculator called the difference engine. This machine 
used series of gears to accumulate additions and sub-
tractions (using the “method of differences”) to gener-
ate tables. His small demonstration model worked well, 
so Babbage undertook the full-scale “Difference Engine 

Number One,” a machine that would have about 25,000 
moving parts and would be able to calculate up to 20 dec-
imal places. Unfortunately, Babbage was unable, despite 
financial support from the British government, to over-
come the difficulties inherent in creating a mechanical 
device of such complexity with the available machining 
technology.

Undaunted, Babbage turned in the 1830s to a new design 
that he called the Analytical Engine. Unlike the Difference 
Engine, the new machine was to be programmable using 
instructions read in from a series of punch cards (as in the 
Jacquard loom). A second set of cards would contain the 
variables, which would be loaded into the “store”—a series 
of wheels corresponding to memory in a modern computer. 
Under control of the instruction cards, numbers could be 
moved between the store and the “mill” (corresponding to a 
modern CPU) and the results of calculations could be sent 
to a printing device.

Collaborating with Ada Lovelace (who translated his lec-
ture transcripts by L. F. Menebrea) Babbage wrote a series 
of papers and notes that explained the workings of the pro-
posed machine, including a series of “diagrams” (programs) 
for performing various sorts of calculations.

Building the Analytical Engine would have been a far 
more ambitious task than the special-purpose Difference 
Engine, and Babbage made little progress in the actual con-
struction of the device. Although Babbage’s ideas would 
remain obscure for nearly a century, he would then be rec-
ognized as having designed most of the key elements of the 
modern computer: the central processor, memory, instruc-
tions, and data organization. Only in the lack of a capability 
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to manipulate memory addresses did the design fall short of 
a modern computer.
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backup and archive systems
The need to create backup copies of data has become increas-
ingly important as dependence on computers has grown and 

the economic value of data has increased. Potential threats 
to data include bugs in the operating system or software 
applications, malicious acts such as the introduction of 
computer viruses, theft, hardware failure (such as in hard 
disk drives), power outages, fire, and natural disasters such 
as earthquakes and floods.

A variety of general principles must be considered in 
devising an overall strategy for creating and maintaining 
backups:

Reliability: Is there assurance that the data is stored accu-
rately on the backup medium, and will automatic back-
ups run reliably as scheduled? Can the data be accurately 
retrieved and restored if necessary?

Physical storage: Is the backed-up data stored securely and 
organized in a way to make it easy to retrieve particular 
disks or tapes? Is the data stored at the site where it is to 
be used, or off-site (guarding against fire or other disas-
ter striking the workplace).

If it had been built, Charles Babbage’s Analytical Engine, although 
mechanical rather than electrical, would have had most of the 
essential features of modern computers. These included input, 
(via punched cards), a processor, a memory (store), and a printer. 
A reproduction of part of the early Difference Engine is shown 
here.  (Photo Researchers, Inc.)

The daughter of poet Lord Byron, Lady Ada Lovelace (1815–52) 
acquired mathematical training usually denied to her gender. 
When she met Charles Babbage and learned about his com-
puter design, she translated his work and wrote the world’s first 
computer programs.  (Photo Researchers, Inc. / Science 
Photo Library)
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Ease of Use: To the extent backups must be set up or initi-
ated by human operators, is the system easy to under-
stand and use with minimal training? Ease of use both 
promotes reliability (because users will be more likely 
to perform the backups), and saves money in training 
costs.

Economy: How does a given system compare to others in 
terms of the cost of the devices, software, media (such 
as tapes or cartridges), training, and administration?

The market for storage and backup software and ser-
vices has grown rapidly in the mid-2000s, driven in part by 
a new awareness of the need of corporations to protect their 
vital data assets from natural disasters or possible terrorist 
attacks (see cyberterrorism and disaster planning and 
recovery). In many corporations the amount of data that 
needs to be backed up or archived grows at a rate of 50 per-
cent per year or more.

Choice of Methods
The actual choice of hardware, software, and media depends 
considerably on how much data must be backed up (and 
how often) as well as whether the data is being generated 
on individual PCs or being stored at a central location. (See 
file server, data warehouse.)

Backups for individual PCs can be accomplished using 
the backup software that comes with various versions of 
Microsoft Windows or through third-party software.

In addition to traditional tapes, the media used include 
CDs or DVDs (for very small backups), tiny USB “flash 
drives” (generally up to a few gigabytes of data), cartridge 
drives (up to 70 gigabytes or more), or even compact exter-
nal USB hard drives that can store hundreds of gigabytes. 
(see cd and dvd rom, flash drive, hard drive, tape 
drive, and usb.)

In addition to backing up documents or other data gener-
ated by users, the operating system and applications software 
is often backed up to preserve configuration information 
that would otherwise be lost if the program were reinstalled. 
There are utilities for Microsoft Windows and other operat-
ing systems that simplify the backing up of configuration 
information by identifying and backing up only those files 
(such as the Windows Registry) that contain information 
particular to the installation.

The widespread use of local area networks makes it eas-
ier to back up data automatically from individual PCs and 
to store data at a central location (see local area net-
work and file server). However, having all data eggs in 
one basket increases the importance of building reliability 
and redundancy into the storage system, including the use 
of RAID (multiple disk arrays), “mirrored” disk drives, and 
uninterruptible power supplies (UPS). Despite such mea-
sures, the potential risk in centralized storage has led to 
advocacy of a “replication” system, preferably at the operat-
ing system level, that would automatically create backup 
copies of any given object at multiple locations on the net-
work.

Another alternative of growing interest is the use of the 
Internet to provide remote (off-site) backup services.

By 2005 Gartner Research was reporting that about 
94 percent of corporate IT managers surveyed were using 
or considering the use of “managed backup” services. 
IDC has estimated that the worldwide market for online 
backup services would reach $715 million by 2011. Online 
backup offers ease of use (the backups can be run auto-
matically, and the service is particularly handy for laptop 
computer users on the road) and the security of off-site 
storage, but raise questions of privacy and security of sen-
sitive information, particularly if encryption is not built 
into the process. Online data storage is also provided to 
individual users by a variety of service providers such as 
Google. Application Service Providers (ASPs) have a natu-
ral entry into the online storage market since they already 
host the applications their users use to create data (see 
application service provider).

A practice that still persists in some mainframe installa-
tions is the tape library, which maintains an archive of data 
on tape that can be retrieved and mounted as needed.

Archiving
Although using much of the same technology as making 
backups, archiving of data is different in its objectives and 
needs. An archive is a store of data that is no longer needed 
for routine current use, but must be retrievable upon 
demand, such as the production of bank records or e-mail 
as part of a legal process. (Data may also be archived for 
historical or other research purposes.) Since archives may 
have to be maintained for many years (even indefinitely), 
the ability of the medium (such as tape) to maintain data 
in readable condition becomes an important consideration. 
Besides physical deterioration, the obsolescence of file for-
mats can also render archived data unusable.

Management Considerations
If backups must be initiated by individual users, the users 
must be trained in the use of the backup system and moti-
vated to make backups, a task that is easy to put off to 
another time. Even if the backup is fully automated, sample 
backup disks or tapes should be checked periodically to 
make sure that data could be restored from them. Backup 
practices should be coordinated with disaster recovery and 
security policies.

Further Reading
Backup Review. Available online. URL: http://www.backupreview.

info/index.php. Accessed April 22, 2007.
Jacobi, Jon L. “Online Backup Services Come of Age.” PC World 

Online, July 28, 2005. Available online. URL: http://www.
pcworld.com/article/id,121970-page,1-c,utilities/article.html. 
Accessed April 22, 2007.

Jackson, William. “Modern Relics: NIST and Others Work on How 
to Preserve Data for Later Use.” Available online. URL: http://
www.gcn.com/print/25_16/41069-1.html. Accessed April 22, 
2007.

Storage Search. Available online. URL: http://www.storagesearch.
com/. Accessed April 22, 2007.

Preston, W. Curtis. Backup & Recovery. Sebastapol, Calif.: O’Reilly 
Media, 2006.

backup and archive systems        37



Backus-Naur form
As the emerging discipline of computer science struggled 
with the need to precisely define the rules for new program-
ming languages, the Backus-Naur form (BNF) was devised 
as a notation for describing the precise grammar of a com-
puter language. BNF represents the unification of separate 
work by John W. Backus and Peter Naur in 1958, when they 
were trying to write a specification for the Algol language.

A series of BNF statements defines the syntax of a lan-
guage by specifying the combinations of symbols that con-
stitute valid statements in the language.

Thus in a hypothetical language a program can be 
defined as follows:

<program> ::= program
<declaration_sequence>

begin
<statements_sequence>

end;
Here the symbol ::= means “is defined as” and items in 
brackets <> are metavariables that represent placeholders 
for valid symbols. For example, <declaration_sequence> 
can consist of a number of different statements defined else-
where.

Statements in square brackets [] indicate optional ele-
ments. Thus the If statement found in most programming 
languages is often defined as:

<if_statement> ::= if >boolean_expression> then
<statement_sequence>

[ else
<statement_sequence> ]

end if ;

This can be read as “an If statement consists of a boolean_
expression (something that evaluates to “true” or “false”) 
followed by one or more statements, followed by an optional 
else that in turn is followed by one or more statements, fol-
lowed by the keywords end if.” Of course each item in angle 
brackets must be further defined—for example, a Boolean_
expression.

Curly brackets {} specify an item that can be repeated 
one or more times. For example, in the definition

<identifier> ::= <letter> { <letter> | <digit> }

An identifier is defined as a letter followed by one or more 
instances of either a letter or a digit.

An extended version of BNF (EBNF) offers operators 
that make definitions more concise yet easier to read. The 
preceding definition in EBNF would be:

Identifier = Letter

{Letter | Digit}

EBNF statements are sometimes depicted visually in 
railroad diagrams, so called because the lines and arrows 
indicating the relationship of symbols resemble railroad 
tracks. The definition of <identifier> expressed in a railroad 
diagram is depicted in the above figure.

BNF and EBNF are useful because they can provide 
unambiguous definitions of the syntax of any computer lan-
guage that is not context-dependent (which is to say, nearly 
all of them). It can thus serve as a reference for introduc-
tion of new languages (such as scripting languages) and for 
developers of parsers for compilers.

Further Reading
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bandwidth
In its original sense, bandwidth refers to the range of fre-
quencies that a communications medium can effectively 
transmit. (At either end of the bandwidth, the transmission 
becomes too attenuated to be received reliably.) For a stan-
dard voice telephone, the bandwidth is about 3kHz.

In digital networks, bandwidth is used in a rather differ-
ent sense to mean the amount of data that can be transmit-
ted in a given time—what is more accurately described as 
the information transfer rate. A common measurement is 
Mb/sec (megabits per second). For example, a fast Ethernet 
network may have a bandwidth of 100 Mb/sec while a home 
phone-line network might have a bandwidth of from 1 to 10 
Mb/sec and a DSL or cable modem runs at about 1 Mb/sec. 
(By comparison, a typical dial-up modem connection has a 
bandwidth of about 28–56 kb/sec, roughly 20 times slower 
than even a slow home network.)

The importance of bandwidth for the Internet is that it 
determines the feasibility of delivering new media such as 
sound (MP3), streaming video, and digital movies over the 
network, and thus the viability of business models based on 
such products. The growth of high-capacity access to the 
Internet (see broadband) is changing the way people use 
the network.

Further Reading
Benedetto, Sergio, and Ezio Biglieri. Principles of Digital Transmis-

sion: With Wireless Applications. New York: Springer, 1999.
Smith, David R. Digital Transmission Systems. 3rd ed. New York: 

Kluwer Academic Publishers, 2003.

This “railroad diagram” indicates that an identifier must begin 
with a letter, which can be followed by a digit or another letter. 
The tracks curving back indicate that an element can appear more 
than once.
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banking and computers
Beginning in the 1950s, banks undertook extensive auto-
mation of operations, starting with electronic funds trans-
fer (EFT) systems. Check clearing (the sending of checks 
for payment to the bank on which they are drawn) was 
facilitated by the development of magnetic ink character 
recognition (MICR) that allowed checks to be automati-
cally sorted and tabulated. Today an automated clearing 
house (ACH) network processes checks and other payments 
through regional clearinghouses.

Starting in the 1960s, the use of credit cards became an 
increasingly popular alternative to checks, and they were 
soon joined by automatic teller machine (ATM) networks 
and the use of debit cards (cards for transferring funds from 
a checking account at the point of sale).

Direct deposit of payroll and benefit checks has also 
been promoted for its safety and convenience. Credit card, 
ATM, and debit card systems rely upon large data process-
ing facilities operated by the issuing financial institution. 
Because of the serious consequences of system failure both 
in immediate financial loss and customer goodwill, these 
fund transfer systems must achieve a high level of reliabil-
ity and security. Reliability is promoted through the use 
of fault-tolerant hardware (such as redundant systems that 
can take over for one another in the event of a problem). 
The funds transfer messages must be provided a high level 
of security against eavesdropping or tampering through the 
use of algorithms such as the long-established DES (Data 
Encryption Standard)—see encryption. Designers of 
EFT systems also face the challenge of providing a legally 
acceptable paper trail. Electronic signatures are increas-
ingly accepted as an alternative to written signatures for 
authorizing fund transfers.

Online Banking
The new frontier of electronic banking is the online bank, 
where customers can access many banking functions via 
the Internet, including balance queries, transfers, automatic 
payments, and loan applications. For the consumer, online 
banking offers greater convenience and access to informa-
tion than even the ATM, albeit without the ability to obtain 
cash.

From the bank’s point of view, online banking offers a 
new way to reach and serve customers while relieving the 
strain on the ATM hardware and network. However, use of 
the Internet increases vulnerability to hackers and raises 
issues of privacy and the handling of personal information 
similar to those found in other e-commerce venues (see 
computer crime and security and privacy in the digi-
tal age). In 2006 a Pew Center survey found that 43 per-
cent of Internet users were banking online—a total of about 
63 million American adults. Other surveys have found 
about a third of Internet users now pay bills online. There 
are also a relatively small but growing number of Internet-
only banks, many of which are affiliated with traditional 
banks. A particularly attractive feature of online banking is 
the ability to integrate bank services with popular personal 
finance software such as Quicken.

As impressive as it has been, the growth in online bank-
ing may have been inhibited by a perceived lack of security. 
A 2006 Gartner Research survey reported that nearly half 
of adults surveyed said that concerns over the potential for 
information theft and computer attacks had affected their 
use of online services such as banking and e-commerce 
transactions. Gartner translates this to an estimated 33 mil-
lion U.S. adults who do not bank online because of such 
concerns. (Banks are frequently impersonated in deceptive 
emails and Web sites—see phishing and spoofing.)

In response, government regulations (FFIEC or Federal 
Financial Institutions Examination Council) guidelines 
issued in October 2005 required banks by the end of 2006 
to provide detailed risk assessments and mitigation plans 
for dealing with data breaches. Large banks spent about $15 
million each on this process in 2006. Much greater expenses 
are likely as banks find themselves compelled to purchase 
and install more-secure user authentication software. They 
face the multiple challenge of securing their systems while 
reassuring their users and not forcing them to go through 
complicated, hard-to-remember log-in procedures.

Credit card issuers are also starting to turn to the Inter-
net to provide additional services. According to the com-
Score service 524 million credit card bills were paid online 
in 2006. By 2007 about 70 percent of all credit card holders 
had logged on to their accounts at least once. Many custom-
ers have responded to incentives to discontinue receiving 
paper statements.
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BASIC
The BASIC (Beginner’s All-purpose Symbolic Instruction 
Code) language was developed by J. Kemeny and T. Kurtz 
at Dartmouth College in 1964. At the time, the college was 
equipped with a time-shared computer system linked to 
terminals throughout the campus, an innovation at a time 
when most computers were programmed from a single loca-
tion using batches of punch cards. John G. Kemeny and 
Thomas Kurtz wanted to take advantage of the interactivity 
of their system by providing an easy-to-learn computer lan-
guage that could compile and respond immediately to com-
mands typed at the keyboard. This was in sharp contrast to 
the major languages of the time, such as COBOL, Algol, and 
FORTRAN in which programs had to be completely written 
before they could be tested.

Unlike the older languages used with punch cards, 
BASIC programs did not have to have their keywords typed 
in specified columns. Rather, statements could be typed 
like English sentences, but without punctuation and with 
a casual attitude toward spacing. In general, the syntax for 
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decision and control structures is simpler than other lan-
guages. For example, a for loop counting from 1 to 10 in C 
looks like this:

for (i = 1; i <= 10; i++)
printf(“%d”, i);

The same loop in BASIC reads as follows:

for i = 1 to 10
print i

next i

Basic and Microcomputers
During the 1960s and 1970s BASIC was used on a growing 
number of time-sharing computers. The language’s simplic-
ity and ease of use made it useful for writing short utility 
programs and for teaching basic principles of computing, 
particularly to noncomputer science majors. When the first 
personal computers became widely available in the early 
1980s, they typically had memory capacities of 8KB–64KB, 
not enough to run the editor, compiler, and other utilities 
needed for a language such as C. However, a simple inter-
preter version of BASIC could be put on a read-only memory 
(ROM) chip, as was done with the Apple II, the early IBM 
PC, and dozens of other microcomputers. More advanced 
versions of BASIC (including compilers) could be loaded 
from tape (the first sales by a young entrepreneur named 
Bill Gates consisted of such products).

As a consequence of the adopting of BASIC for a variety 
of microcomputers, numerous dialects of the language came 
into existence. Commands for generating simple graphics 
and for manipulating memory and hardware directly (PEEK 
and POKE) made many BASIC programs platform specific.

Gradually, as microcomputers gained in memory capac-
ity and processing power, languages such as Pascal (espe-
cially with the integrated development environment created 
at the University of California at San Diego) and C (from 
the UNIX community) began to supplant BASIC for the 
development of more complex microcomputer software.

Critique and Prospects
Most versions of BASIC used line numbers (a legacy of the 
early text editors that worked on a line-by-line basis) and 
a Goto statement could be used to make program control 
jump to a given line. While the language had simple subrou-
tines (reached by a Gosub statement), it lacked the ability to 
explicitly pass variables to a procedure as in Pascal and C. 
Indeed, all variables were global, meaning that they could 
be accessed from anywhere in the program, leading to the 
danger of their values being unintentionally changed.

As interest in the principles of structured programming 
grew (see structured programming), BASIC’s structural 
shortcomings made it poorly regarded among computer sci-
entists, who preferred Pascal as a teaching language and C 
for systems programming. In 1984, BASIC’s original devel-
opers responded to what they saw as the problems of “street 
Basic” by introducing True BASIC, a modern, well-structured 
version of the language, and the 1988 ANSI BASIC stan-
dard incorporated similar features. These efforts had only 
limited impact. However, Microsoft introduced new BASIC 

development systems (Quick BASIC in the 1980s and Visual 
Basic in the 1990s) that also featured improved control 
structures and data types and that dispensed with the need 
for cumbersome line numbers. Visual Basic in particular 
has achieved considerable success, offering a combination 
of the interactivity of traditional BASIC and access to pow-
erful pre-packaged “controls” that provide menus, dialog 
boxes, and other features of the Windows user interface. 
Recent versions of Visual Basic have become increasingly 
object-oriented, using classes similar to those in C++.

While BASIC in its newer forms continues to have a 
significant following, it can be argued that what was most 
distinctive about the original BASIC (the quick, interactive 
approach to programming) is no longer much in evidence. 
The writing of short utility programs is now more likely to 
be undertaken in any of a variety of scripting languages.
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Bayesian analysis
Formerly obscure topics in mathematics have a way of sud-
denly becoming relevant in the information age. For exam-
ple, the true/false algebraic logic invented by George Boole 
in the 19th century turned out to perfectly map the opera-
tion of electronic on/off in computer circuits.

The Reverend Thomas Bayes (1701?–1761) was another 
formerly obscure British mathematician who discovered a 
completely different way of looking at probability. Classical 
probability assumes that one can make no prior assump-
tions about the events to be tested. That is, when throwing 
a die, one does not base the probability that it will come up 
with a six on the results of any prior throws. Of course that 
approach is correct in that probability of a six is always 1 in 
6 (as long as the dice are honest).

In some situations, however, what has already hap-
pened does influence the probability of a future event. 
Consider a blackjack player who wants to know the prob-
ability that the next card drawn will be a face card. If the 
deck has been properly shuffled, that probability starts out 
as 12/52 (or 3/13), since there are 12 face cards in the deck 
of 52 cards.

But suppose that, of the six cards dealt to three players in 
the first hand, two are face cards. When the dealer deals the 
next hand, the probability that any card will be a face card 
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has changed. There are now two fewer face cards (12 - 2 = 10) 
and four fewer non-face cards (40 - 4 = 36), so the probability 
that a given card is a face card becomes 10/36 or 5/18.

While this is pretty straightforward, in many situations 
one cannot easily calculate the shifting probabilities. What 
Bayes discovered was a more general formula:

P(T|E) = 
P(E|T) * P(T)

 
            P(E)

In this formula T is a theory or hypothesis about a 
future event. E represents a new piece of evidence that 
tends to support or oppose the hypothesis. P(T) is an esti-
mate of the probability that T is true, before considering the 
evidence represented by E. The question then becomes: If 
E is true, what happens to the estimate of the probability 
that T is true? This is called a conditional probability, rep-
resented by the left side of the equation, P(T|E), which is 
read “the probability of T, given E.” The right side of Bayes’s 
equation considers the reverse probability—that E will be 
true if T turns out to be true. This is represented by P(E|T), 
multiplied by the prior probability of T and divided by the 
independent probability of E.

Practical Applications
In the real world one generally has imperfect knowledge 
about the future, and probabilities are seldom as clear cut 
as those available to the card counter at the blackjack table. 
However, Bayes’s formula makes it possible to continually 
adjust or “tune” estimates based upon the accumulating 
evidence. One of the most common applications of Bayes-
ian analysis is in e-mail filters (see spam). Bayesian spam 
filters work by having the user identify a sample of mes-
sages as either spam or not spam. The filter then looks for 
patterns in the spam and non-spam messages and calcu-
lates probabilities that a future message containing those 
patterns will be spam. The filter then blocks future mes-
sages that are (above some specified threshold) probably 
spam. While it is not perfect and does require work on the 
part of the user, this technique has been quite effective in 
blocking spam.

A Bayesian algorithm’s effectiveness can be expressed in 
terms of its rate of false positives (in the spam example, this 
would be the percentage of messages that have been mistak-
enly classified as spam). If the rate of “true positives” is 
too low, the algorithm is not effective enough. However, if 
the rate of false positives is too high, the negative effects 
(blocking wanted e-mail) might outweigh the positive 
ones (blocking unwanted spam).
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BBS  See bulletin board system.

Bell, C. Gordon
(1934–  )
American
Engineer, Computer Designer

Chester Gordon Bell (also known as Gordon Bennet Bell) 
was born August 19, 1934, in Kirksville, Missouri. As a 
young boy Bell worked in his father’s electrical contracting 
business, learning to repair appliances and wire circuits. 
This work led naturally to an interest in electronics, and 
Bell studied electrical engineering at MIT, earning a B.S. in 
1956 and an M.S. in 1957. After graduation and a year spent 
as a Fulbright Scholar in Australia, Bell worked in the MIT 
Speech Computation Laboratory (see speech recognition 
and synthesis). In 1960 he was invited to join the Digital 
Equipment Corporation (DEC) by founders Ken Olsen and 
Harlan Anderson.

Bell was a key architect of DEC’s revolutionary PDP 
series (see minicomputer), particularly as designer of the 
input/output (I/O) hardware in the PDP-1 and the multi-
tasking PDP-6. Bell left DEC to teach computer science at 
Carnegie Mellon University (1966–72), but then returned to 
DEC until his retirement in 1983 following a heart attack. 
During this time Bell developed a deployment plan for the 
new VAX series minicomputers, which were data-process-
ing workhorses in many organizations during the 1970s 
and 1980s.

As a close observer of the computer industry, Bell formu-
lated “Bell’s Law of Computer Classes” in 1972. It basically 
states that as new technologies (such as the microproces-
sor) emerge, they result about once a decade in the emer-
gence of new “classes” or computing platforms, each being 
generally cheaper and being perceived as a distinct product 
with new applications. Within a given class, price tends to 
hold constant while performance increases. Examples thus 
far include mainframes, minicomputers, personal comput-
ers and workstations, networks, cluster or grid comput-
ing, and today’s ubiquitously connected wireless, portable 
devices. Bell has indeed suggested that the trend to ubiqui-
tous computing will continue (see ubiquitous computing 
and wearable computers).

After retirement Bell soon became active again. He 
founded Encore Computer, a company that specialized in 
multiprocessor computers, and later was a founding member 
of Ardent Computer as well as participating in the estab-
lishment of the Microelectronics and Computer Technology 
Corporation, a consortium that attempted to be America’s 
answer to a surging competitive threat from Japanese com-
panies. Bell was also active in debates over technology pol-
icy, playing an instrumental role as an assistant director 
in the National Science Foundation’s computing initiatives 
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and the early adoption of the Internet. In 1987 Bell estab-
lished the Gordon Bell Prize for achievements in parallel 
processing.

Bell began the 1990s in a new role, helping Microsoft 
develop a research group, where he was still working as of 
2008. Here Bell has developed what amounts to a new para-
digm for managing personal data, a project called MyLife-
Bits. Its main idea is that pictures, e-mails, documents, and 
other materials that are important to a person’s life and 
work should be organized according to their chronological 
and other relationships so they can be retrieved naturally 
and virtually automatically, eschewing the often arbitrary 
conventions of traditional file systems and interfaces. In 
1992 Bell presciently told a Computer World interviewer 
that “twenty-five years from now . . . computers will be 
exactly like telephones. They are probably going to be com-
municating all the time.”

Bell also retains a strong interest in the history of com-
puting. He cofounded the Computer History Museum in 
Boston in 1979 and was also a founder of its successor, the 
Computer History Museum in Mountain View, California.

Bell is a distinguished member of the American Acad-
emy of Arts and Sciences, American Association for the 
Advancement of Science, the Association for Computing 
Machinery (ACM), and the Institute of Electrical and Elec-
tronic Engineering (IEEE). His awards include the IEEE 
Von Neumann Medal, the AEA Inventor Award, and the 
National Medal of Technology (1991).

Further Reading
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gbell/. Accessed April 30, 2007.
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Bell Laboratories
Bell Telephone Laboratories was established in 1925 in 
Murray Hill, New Jersey: It was intended to take over the 
research arm of the Western Electric division of American 
Telephone and Telegraph (AT&T) and was jointly admin-
istered by the two companies. The organization’s principal 
task was to design and develop telephone switching equip-
ment, but there was also research in facsimile (fax) trans-
mission and television.

The research that would have the greatest impact, 
however, would come from a relative handful of Bell scien-
tists who were given resources to undertake fundamental 
research. In the 1930s Bell scientist Karl Jansky, investi-
gating interference with long-range radio transmissions, 
discovered that radio waves were arriving from space, 
leading to the development of radio astronomy. Other Bell 
Labs developments of the 1930s and 1940s included the 
vocoder, an early electronic speech synthesizer, and the 
photovoltaic cell, with its potential application to solar 
power systems.

Several Bell Labs technologies would have a direct 
impact on the computer field. The transistor, developed 
by Bell Labs researchers John Bardeen, Walter Brattain, 
and William Shockley, would make a new generation of 
more compact and reliable computers possible. Informa-
tion theory (see information theory and Shannon, 
Claude) would revolutionize telecommunications, signal 
processing, and data transfer. Work on the laser in the 
1960s would eventually lead to the compact disc (see cd-
rom and dvd-rom). Other hardware contributions include 
the charge-coupled device (CCD) that would revolutionize 
astronomical and digital photography and fiber-optic cables 
for high-volume data communications.

In software engineering the most important achieve-
ments of Bell researchers were the development of the C 
programming language and the UNIX operating system in 
the early 1970s (see c; Ritchie, Dennis; and unix). The 
elegant design of the modular UNIX system is still admired 
today, and versions of UNIX and Linux power many servers 
and networks.

New Corporate Direction
Perhaps ironically, AT&T’s near monopolistic position in 
the telecommunications industry both provided substan-
tial revenue for fundamental research and shielded the lab 
from competitive pressure and the need to tie research to 
the development of commercial products. As a result, Bell 
Labs arguably became the most important private research 
institution in the 20th century. By the end of the 1980s, 
however, court decisions had reshaped the landscape of the 
communications field, and Bell Labs became a victim of the 
company’s change from monopolist to competitor.

In 1996 AT&T divested Bell Labs along with its main 
equipment manufacturing facilities into a new company, 
Lucent Technologies. A smaller group of researchers were 
retained and reorganized as AT&T Laboratories. As the 2000s 
began these researchers made new achievements, including 
tiny transistors whose size is measured in atoms, optical 
data routing (see optical computing) and nanotechnology, 
DNA-based computing (see molecular computing), and 
other esoteric but potentially momentous fields.

In recent years, however, the organization has largely 
changed its focus from long-term research in fundamental 
topics to the search for projects that can be quickly turned 
into commercial products—in essence the requirement that 
the Labs become a profit center. The merger of Lucent and 
another communications giant, Alcatel, in 2006 has led to 
renewed concerns that consolidation and even tighter inte-
gration of the Labs with corporate goals might come at the 
expense of the kind of research culture that has inspired 
the Labs’ greatest breakthroughs.

Further Reading
Alcatel-Lucent Bell Laboratories. Available online. URL: http://
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benchmark
A benchmark is a tool used to evaluate or compare the 
performance of computer software or systems. Typically, 
this involves the design of a program (or suite of programs) 
that performs a series of operations that mimic “real world” 
activities. For example, computer processors (CPUs) can be 
given calculations in floating-point arithmetic, yielding a 
result in “flops” (floating point operations per second). Sim-
ilarly, several different C-language compilers can be given 
the same files of source code and rated according to how 
quickly they produce the executable code, as well as the 
code’s compactness, speed, or efficiency.

Some examples of computer industry benchmarks 
include:

• � Dhrystone and Whetstone for integer and floating 
point arithmetic, respectively

• �M IPS (millions of instructions per second) and 
MFLOPS (millions of floating point instructions per 
second) for microprocessors

• � FPS (frames per second) for various types of graphics

• � 3DMark for three-dimensional graphics

• � test suites using Linpack and LAPACK for super-
computers

The devising of appropriate benchmarks is impor-
tant because they can help prospective purchasers decide 
which competing CPU, program development tool, data-
base system, or Web server to buy. Often the aspects 
of systems that are highlighted in advertising are not 
those that are most relevant to determining their actual 
utility. For example, CPUs are often compared according 
to clock speed, but a chip with a superior architecture 
and algorithm for handling instructions might actually 
outperform chips with faster clock speeds. By putting 
chips through their paces using the same arithmetic, data 
transfer, or graphics instructions, the benchmark pro-
vides a more valid comparison.

The most relevant benchmarks tend to focus on re-cre-
ating real-world use. Thus database systems can be com-
pared in their speed of retrieval or update of data records. 
Real-world benchmarks also help guard against manufac-
turers “tweaking” their systems to create artificially high 
benchmark results. Nevertheless, benchmarks cannot be 
used mechanically. While a given industry may have an 
“industry standard” benchmark, and a given product may 
be the highest performer using that test, the user must con-
sider how well that benchmark reflects the actual work for 
which the system or program is being purchased. Perfor-
mance, however well benchmarked, is usually only one key 
consideration, with environment (such as network connec-
tions), reliability, security, ease of use, and of course cost 
being other considerations.

Further Reading
comp.benchmarks (USENET newsgroup).
Jones, Capers. Software Assessments, Benchmarks, and Best Prac-

tices. Boston: Addison-Wesley, 2000.

Netlib [repository for mathematical benchmarking software]. 
Available online. URL: http://www.netlib.org/. Accessed May 
10, 2007.

Berners-Lee, Tim
(1955–  )
British
Computer Scientist

A graduate of Oxford University, Tim Berners-Lee created 
what would become the World Wide Web in 1989 while 
working at CERN, the giant European physics research 
institute. At CERN, he struggled with organizing the doz-
ens of incompatible computer systems and software that 
had been brought to the labs by thousands of scientists 
from around the world. With existing systems each requir-
ing a specialized access procedure, researchers had little 
hope of finding out what their colleagues were doing or of 
learning about existing software tools that might solve their 
problems.

Berners-Lee’s solution was to bypass traditional data-
base systems and to consider text on all systems as “pages” 
that would each have a unique address, a universal docu-
ment identifier (later known as a uniform resource locator, 
or URL). He and his assistants used existing ideas of hyper-
text to link words and phrases on one page to another page 
(see hypertext and hypermedia), and adapted existing 
hypertext editing software for the NeXT computer to create 
the first World Wide Web pages, a server to provide access 
to the pages and a simple browser, a program that could be 
used to read pages and follow the links as the reader desired 
(see Web server and Web browser). But while existing 
hypertext systems were confined to browsing a single file 
or at most, the contents of a single computer system, Bern-
ers-Lee’s World Wide Web used the emerging Internet to 
provide nearly universal access.

Between 1990 and 1993, word of the Web spread 
throughout the academic community as Web software was 
written for more computer platforms (see World Wide 
Web). As demand grew for a body to standardize and shape 
the evolution of the Web, Berners-Lee founded the World 
Wide Web Consortium (W3C) in 1994 and continues as 
its director. Together with his colleagues, he has struggled 
to maintain a coherent vision of the Web in the face of tre-
mendous growth and commercialization, the involvement 
of huge corporations with conflicting agendas, and conten-
tious issues of censorship and privacy. His general approach 
has been to develop tools that would empower the user to 
make the ultimate decision about the information he or she 
would see or divulge.

Berners-Lee now works as a senior researcher at the 
Massachusetts Institute of Technology Computer Science 
and Artificial Intelligence Laboratory. In his original vision 
for the Web, users would create Web pages as easily as they 
could read them, using software no more complicated than 
a word processor. While there are programs today that hide 
the details of HTML coding and allow easier Web page cre-
ation, Berners-Lee feels the Web must become even easier to 
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use if it is to be a truly interactive, open-ended knowledge 
system. He is also interested in developing software that 
can take better advantage of the rich variety of information 
on the Web, creating a “semantic” Web of meaningful con-
nections that would allow for logical analysis and permit 
human beings and machines not merely to connect, but to 
actively collaborate (see semantic Web and xml).

In the debate over a possible tiered Internet service (see 
Internet access policy) Berners-Lee has spoken out for 
“net neutrality,” the idea that priority given to material 
passing over the Internet should not depend on its content 
or origin. He describes equal treatment to be a fundamental 
democratic principle, given the primacy of the Net today.

Berners-Lee has garnered numerous awards and honor-
ary degrees. In 1997 he was made an Officer of the British 
Empire, and in 2001 he became a Fellow of the British Royal 
Society. Berners-Lee also received the Japan Prize in 2002 
and in that same year shared the Asturias Award with fel-
low Internet pioneers Lawrence Roberts, Robert Kahn, and 
Vinton Cerf. In 2007 Berners-Lee received the Charles Stark 
Draper Prize of the U.S. National Academy of Engineering.
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Bezos, Jeffrey P.
(1964–  )
American
Entrepreneur

With its ability to display extensive information and interact 
with users, the World Wide Web of the mid-1990s clearly 
had commercial possibilities. But it was far from clear how 
traditional merchandising could be adapted to the online 
world, and how the strengths of the new medium could be 
translated into business advantages. In creating Amazon.
com, “the world’s largest bookstore,” Jeff Bezos would show 
how the Web could be used to deliver books and other mer-
chandise to millions of consumers.

Jeff Bezos was born on January 12, 1964, and grew up 
in Miami, Florida. He would be remembered as an intense, 
strong-willed boy who was fascinated by gadgets but also 
liked to play football and other sports. His uncle, Pres-
ton Gise, a manager for the Atomic Energy Commission, 
encouraged young Bezos’s interest in technology by giving 
him electronic equipment to dismantle and explore. Bezos 

also liked science fiction and became an enthusiastic advo-
cate for space colonization.

Bezos entered Princeton University in 1982. At first he 
majored in physics, but later switched to electrical engi-
neering, graduating in 1986 with highest honors. By then 
Bezos had become interested in business software applica-
tions, particularly financial networks. At the age of only 
23, he led a project at Fitel, a financial communications 
network, managing 12 programmers and commuting each 
week between the company’s New York and London offices.

As a vice president at Bankers Trust, a major Wall Street 
firm in the late 1980s, Bezos became very enthusiastic about 
the use of computer networking and interactive software for 
providing timely information for managers and investors. 
However, he found that the “old line” Wall Street firms 
resisted his efforts and declined to invest in these new uses 
of information technology.

In 1990, however, Bezos was working at the D.E. Shaw 
Company and his employer asked him to research the com-
mercial potential of the Internet, which was starting to grow 
(even though the World Wide Web would not reach most 
consumers for another five years). Bezos ranked the top 20 
possible products for Internet sales. They included computer 
software, office supplies, clothing, music—and books.

Analyzing the publishing industry, Bezos identified 
ways in which he believed it was inefficient. Even large 
bookstores could stock only a small portion of the avail-
able titles, while on the other hand many books that were 
in stock stayed on the shelves for months, tying up money 
and space. Bezos believed that by combining a single huge 
warehouse with an extensive tracking database, an online 
ordering system, and fast shipping, he could satisfy many 
more customers while keeping costs low.

Bezos pitched his idea to D.E. Shaw. When the company 
declined to invest in the venture, Bezos decided to put his 
promising corporate career on hold and start his own online 
business. By then it was the mid-1990s and the World Wide 
Web was just starting to become popular, thanks to the new 
graphical Web browsers such as Netscape.

Jeff Bezos, founder and CEO of Amazon.com, poses for a portrait 
in the Internet retailer’s distribution center.  (© Jack Kurtz/The 
Image Works)
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Looking for a place to set up shop, Bezos decided on Seat-
tle, partly because the state of Washington had a relatively 
small population (the only customers who would have to 
pay sales tax) yet had a growing pool of technically trained 
workers, thanks to the growth of Microsoft and other com-
panies in the area. After several false starts he decided to 
call his store Amazon, deciding that the name of the Earth’s 
biggest river would be suited to earth’s biggest bookstore. 
Amazon’s first headquarters was a converted garage.

Bezos soon decided that the existing software for mail-
order businesses was too limited and set a gifted program-
mer named Shel Kaphan to work creating a custom program 
that could keep track not only of each book in stock, but 
how long it would take to get more copies from the pub-
lisher or book distributor.

By mid-1995 Amazon.com was ready go online from a 
new Seattle office using $145,553 contributed by Bezos’s 
mother from the family trust. As word about the store 
spread through Internet chat rooms and a listing on Yahoo!, 
the orders began to pour in and Bezos had to struggle to 
keep up. Despite the flood of orders, the business was los-
ing money as expenses piled up even more quickly.

Bezos went to Silicon Valley in search of venture capital. 
Bezos’s previous experience as a Wall Street “star,” together 
with his self-confidence, enabled him to raise $1 million. 
Bezos believed that momentum was the key to long-term 
success. The company’s motto became “get big fast.” Rev-
enue was poured back into the business, expanding sales 
into other product lines such as music, video, electronics, 
and software. The other key element of Bezos’s growth strat-
egy was to take advantage of the vast database that Amazon 
was accumulating—not only information about books and 
other products, but about what products a given individ-
ual or type of customer was buying. Once a customer has 
bought something from Amazon, he or she is greeted by 
name and given recommendations for additional purchases 
based upon what items other customers who had bought 
that item had also purchased. Customers are encouraged 
to write reviews of books and other items so that each cus-
tomer gets the sense of being part of a virtual peer group.

By 1997, the year of its first public stock offering, Ama-
zon seemed to be growing at an impressive rate. A year 
later the stock was worth almost $100 a share, and by 1999 
Jeff Bezos’s personal wealth neared $7.5 billion. Bezos and 
Amazon proved to be one of the few Internet businesses 
to weather the “dot-bust” collapse of 2000 and 2001. In 
2003 Amazon.com chalked up its first annual profit, and 
the company’s stock prices tripled during that time.

Bezos gained a reputation as a very demanding CEO, 
insisting on recruiting top talent, then demanding that proj-
ects set bold goals and complete them ahead of schedule. 
The pressure resulted in high turnover of top executives, 
but Bezos has also been quick to encourage and reward 
initiative. (The company’s “Just Do It” program encourages 
managers to start projects without asking permission of 
their superiors.)

Aside from Amazon.com, Bezos has maintained his 
interest in space travel. In 2002 he founded a company 
called Blue Origin, whose spaceship project has remained 

shrouded in secrecy. However, in January 2007 the com-
pany released video of the first successful (albeit brief) test 
of a prototype suborbital passenger craft.

Bezos has written a new chapter in the history of retail-
ing, making him a 21st-century counterpart to such pio-
neers as Woolworth and Montgomery Ward. Time magazine 
acknowledged this by making him its 1999 Person of the 
Year, while Internet Magazine put Bezos on its list of the 10 
persons who have most influenced the development of the 
Internet.
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binding
Designers of program compilers are faced with the question 
of when to translate a statement written in the source lan-
guage into final instructions in machine language (see also 
assembler). This can happen at different times depending 
on the nature of the statement and the decision of the com-
piler designer.

Many programming languages use formal data types 
(such as integer, floating point, double, string, and so on) 
that result in allocation of an exact amount of storage space 
to hold the data (see data types). A statement that declares 
a variable with such a type can be effectively bound imme-
diately (that is, a final machine code statement can be gen-
erated). This is also called compile-time binding.

However, there are a variety of statements for which 
binding must be deferred until more information becomes 
available. For example, it is common for programmers to use 
libraries of precompiled routines. A statement that calls such 
a routine cannot be turned immediately into machine lan-
guage because the compiler doesn’t know the actual address 
where the routine will be embedded in the final compiled 
program. (That address will be determined by a program 
called a linker that links the object code from the source 
program to the library routines called upon by that code.)

Another aspect of binding arises when there is more 
than one object in a program with the same name. In lan-
guages such as C or Pascal that use a nested block struc-
ture, lexical binding can determine that a name refers to the 
closest declaration of that name—that is, the smallest scope 
that contains that name (see variable). In a few languages 
such as Lisp, however, the reference for a name depends on 
how (or for what) the function is being called, so binding 
can be done only at run time.

Binding and Object-Oriented Languages
The use of polymorphism in object-oriented languages such 
as C++ raises a similar issue. Here there can be a base class 
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and a hierarchy of derived classes. A function in the base 
class can be declared to be virtual, and versions of the same 
function can be declared in the derived classes. In this case 
a statement containing a pointer to the function in the base 
class cannot be bound until run time, because only then 
will it be known which version of the virtual function is 
being called. However, compilers for object-oriented lan-
guages can be written so they do early binding on state-
ments for which it is safe (such as those involving static 
data types), but do dynamic binding when necessary.

From the point of view of efficiency, early binding is bet-
ter because memory can be allocated efficiently. Dynamic 
binding provides greater flexibility, however, and facilitates 
debugging—for example, because the name of a variable 
is normally lost once it is bound and the machine code is 
generated.

Further Reading
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bioinformatics
Broadly speaking, bioinformatics (and the related field of 
computational biology) is the application of mathematical 
and information-science techniques to biology. This under-
taking is inherently difficult because a living organism rep-
resents such a complex interaction of chemical processes. 
Understanding any one process in isolation gives little 
understanding of the role it plays in physiology. Similarly, 
as more has been learned about the genome of humans 
and other organisms, it has become increasingly clear that 
the “programs” represented by gene sequences are “inter-
preted” through complex interactions of genes and the envi-
ronment. Given this complexity, the great strides that have 
been made in genetics and the detailed study of metabolic 
and other biological processes would have been impossible 
without advances in computing and computer science.

Application to Genetics
Since information in the form of DNA sequences is the heart 
of genetics, information science plays a key role in under-
standing its significance and expression. The sequences of 
genes that determine the makeup and behavior of organ-
isms can be represented and manipulated as strings of sym-
bols using, for example, indexing and search algorithms. 
It is thus natural that the advent of powerful computer 
workstations and automated lab equipment would lead to 
the automation of gene sequencing (determining the order 
of nucleotides), comparing or determining the relation-
ship between corresponding sequences, and identifying 
and annotating regions of interest. The completion of the 
sequencing of the human genome well ahead of schedule 
was thus a triumph of computer science as much as biology. 
Today the systematic search for genetic and metabolic inter-
actions has been greatly sped up by the use of microarrays, 
silicon chips with grids of tiny holes that each contain a 

specified material that can be automatically tested for reac-
tion to a given sample.

Evolutionary Biology
The ability to compare genes and to account for the effects 
of mutation has also established evolutionary biology on a 
firm foundation. Given a good estimate of the mutation rate 
(a “molecular clock”) in mitochondrial DNA, the chronol-
ogy of species and common ancestors can be determined 
with considerable accuracy using statistical methods and 
appropriate data structures (see tree). The results of such 
research have cast intriguing if sometimes controversial 
light on such issues in paleontology as the relationship 
between early modern humans and Neanderthals. Com-
putational genetics can also measure the biodiversity of a 
present-day ecosystem and predict the likely future of par-
ticular species in it.

From Genes to Proteins
Gene sequences are only half of many problems in biol-
ogy. Computational techniques are also being increasingly 
applied to the analysis and simulation of the many intricate 

A scientist observes an experiment performed by robotic 
equipment.  (Andrei Tchernov/iStockphoto)
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chemical steps that link genetic information to expression 
in the form of a particular protein and its three-dimensional 
structure in the process known as protein folding. Already 
molecular simulations and predictive techniques are being 
used to determine which of thousands of possible molec-
ular configurations might have promising pharmaceutical 
applications. The development of better algorithms and 
more powerful computing architectures for such analysis 
can further speed up research, avoid wasteful “dead ends,” 
and bring effective treatments for cancer and other serious 
diseases to market sooner. Recently, the unlikely platform 
of a Sony PlayStation 3 and its powerful new processor has 
been harnessed to turn gamers’ idle time to the processing 
of protein-folding data in the Folding@Home project.

Simulation
A variety of other types of biological computer simula-
tion have been employed. Examples include the chemical 
components (metabolites and enzymes) that are respon-
sible for metabolic activity in organisms, the structure of 
the nervous system and the brain (see neural network), 
and the interaction of multiple predators and food sources 
in an ecosystem. Simulations can also incorporate algo-
rithms first devised by artificial intelligence researchers 
(see genetic algorithms and artificial life). Simula-
tions are combined with sophisticated graphics to enable 
researchers to visualize structure. Such visualization can 

provide insight and encourage intuitive “leaps” that might 
be missed when working only with formulas. Visualiza-
tion algorithms developed for biomedical research can also 
be applied to the development of advanced MRI and other 
scans for use in diagnosis and therapy.

A Fruitful Relationship
Bioinformatics has been one of the “hottest” areas in com-
puting in recent years, often following trends in the broader 
“biotech” sector. This challenging field involves such diverse 
subjects as genetics, biochemistry, physiology, mathemat-
ics (structural and statistical), database analysis and search 
techniques (see data mining), simulation, modeling, graph-
ics, and image analysis. Major projects often involve close 
cooperation between bioinformatics specialists and other 
researchers. Many computer scientists may find it profitable 
to study biology just as biologists will need to learn about 
and master the latest software tools. Researchers must also 
consider how the availability of ever-increasing computing 
power might make previously impossible projects feasible 
(see supercomputer and grid computing). (The National 
Institutes of Health (NIH) currently funds seven biomedi-
cal computation centers, including the National Center for 
Physics-based Simulation of Biological Structures at Stan-
ford University. )

The relationship between biology and computer science 
seems destined to be even more fruitful in coming years. As 
software tools allow researchers to probe ever more deeply 
into biological processes and to bridge the gap between 
physics, biochemistry, and the emergent behavior of living 
organisms, understanding of those processes may in turn 
inspire the creation of new architectures and algorithms in 
areas such as artificial intelligence and robotics.
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biometrics
The earliest use of biometrics was probably the development 
by Alphonse Bertillon in 1882 of anthropometry, a system 
of classification by physical measurements and description. 
While this was soon supplanted by the discovery that fin-
gerprints could serve as an easier to use means of unique 
identification of persons, the need for a less invasive means 
of physical identification has led to the development of a 

Computers can create detailed representations that give scientists 
unprecedented ability to visualize nature’s most intricate structures. 
This is a computer model of trypanathione Reductase, a protein 
crystal.  (NASA photo; Marshall Space Flight Center 
Image Exchange)
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variety of biometric scanners that take Bertillon’s ideas to a 
much more detailed level.

Technologies
In general, biometric scanning involves four steps: the 
capture of an image using a camera or other device, the 
extraction of key features from the image, the creation of 
a template that uniquely characterizes the person being 
scanned, and the matching of the template to stored tem-
plates in order to identify the person.

There are several possible targets for biometric scan-
ning, including the following areas:

Facial Scanning
Facial scanning uses cameras and image analysis software 
that looks at areas of the human face that change little 
during the course of life and are not easily alterable, such 
as the upper outline of the eye sockets and the shape of 
the cheekbones. Researchers at MIT developed a series of 
about 125 grayscale images called eigenfaces from which 
features can be combined to characterize any given face. 
The template resulting from a scan can be compared with 
the one on file for the claimed identity, and coefficients 
expressing the degree of similarity are calculated. Variance 
above a specified level results in the person being rejected. 
Facial scanning is often viewed as less intrusive than the 
use of fingerprints, and it can also be applied to surveil-
lance images.

Finger Scanning
Finger scanning involves the imaging and automatic analy-
sis of the pattern of ridges on one or more fingertips. Unlike 
traditional fingerprinting, the actual fingerprint is not 
saved, but only enough key features are retained to provide 
a unique identification. This information can be stored in a 
database and also compared with full fingerprints stored in 
existing databases (such as that maintained by the Federal 
Bureau of Investigation). Finger scanning can meet with 
resistance because of its similarity to fingerprinting and the 
association of the latter with criminality.

Hand Geometry
This technique measures several characteristics of the 
hand, including the height of and distance between the 
fingers and the shape of the knuckles. The person being 
scanned places the hand on the scanner’s surface, aligning 
the fingers to five pegs. Hand-scanning is reasonably accu-
rate in verifying an individual compared to the template 
on file, but not accurate enough to identify a scan from an 
unknown person.

Iris and Retina Scanning
These techniques take advantage of many unique individ-
ual characteristics of these parts of the eye. The scanned 
characteristics are turned into a numeric code similar to a 
bar code. Retina scanning can be uncomfortable because it 
involves shining a bright light into the back of the eye, and 
has generally been used only in high-security installations. 

However, iris scanning involves the front of the eye and is 
much less intrusive, and the person being scanned needs 
only to look into a camera.

Voice Scanning
Voice scanning and verification systems create a “voice-
print” from a speech sample and compare it to the voice 
of the person being verified. It is a quick and nonintrusive 
technique that is particularly useful for remote transactions 
such as telephone access to banking information.

Behavioral Biometrics
Biometrics are essentially invariant patterns, and these can 
be found in behavior as well as in physical features. One of 
the most promising techniques (recently patented) analyzes 
the pace or rhythm of a person’s typing on a keyboard and 
generates a unique numeric code. A similar approach might 
be applicable to mouse usage.

Applications of Biometrics
Due to the expense of the equipment and the time involved 
in scanning, biometrics were originally used primarily in 
verifying identity for people entering high-security installa-
tions. However, the development of faster and less intrusive 
techniques, combined with the growing need to verify users 
of banking (ATM) and other networks has led to a growing 

A portable iris recognition scanner being demonstrated at the Bio-
metrics 2004 exhibition and conference in London.  (Ian Waldie/
Getty Images)
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interest in biometrics. For example, a pilot program in the 
United Kingdom has used iris scanning to replace the PIN 
(personal identification number) as a means of verifying 
ATM users.

The general advantage of biometrics is that it does not 
rely on cards or other artifacts that can be stolen or other-
wise transferred from one person to another, and in turn, 
a person needing to identify him or herself doesn’t have 
to worry about forgetting or losing a card. However, while 
workers at high-security installations can simply be required 
to submit to biometric scans, citizens and consumers have 
more choice about whether to accept techniques they may 
view as uncomfortable, intrusive, or threatening to privacy.

Recent heightened concern about the stealing of per-
sonal identification and financial information (see identity 
theft) may promote greater acceptance of biometric tech-
niques. For example, a built-in fingerprint reader (already 
provided on some laptop computers) could be used to 
secure access to the hard drive or transmitted to authenti-
cate an online banking customer.

Of course every security measure has the potential for 
circumvention or misuse. Concerns about the stealing and 
criminal use of biometric data (particularly online) might 
be addressed by a system created by Emin Martinian of the 
Mitsubishi Electric Research Laboratories in Cambridge, 
Massachusetts. The algorithm creates a unique code based 
on a person’s fingerprint data. The data itself is not stored, 
and the code cannot be used to re-create it, but only to 
match against the actual finger.

The growing use of biometrics by government agencies 
(such as in passports and border crossings) is of concern 
to privacy advocates and civil libertarians. When com-
bined with surveillance cameras and central databases, bio-
metrics (such as face analysis and recognition) could aid 
police in catching criminals or terrorists, but could also 
be used to strip the anonymity from political protesters. 
The technology is thus double-edged, with the potential 
both to enhance the security of personal information and to 
increase the effectiveness of surveillance.
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BIOS (Basic Input-Output System)
With any computer system a fundamental design problem 
is how to provide for the basic communication between the 
processor (see cpu) and the devices used to obtain or dis-
play data, such as the video screen, keyboard, and parallel 
and serial ports.

In personal computers, the BIOS (Basic Input-Output 
System) solves this problem by providing a set of routines 
for direct control of key system hardware such as disk 
drives, the keyboard, video interface, and serial and par-
allel ports. In PCs based on the IBM PC architecture, the 
BIOS is divided into two components. The fixed code is 
stored on a PROM (programmable read-only memory) chip 
commonly called the “ROM BIOS” or “BIOS chip.” This 
code handles interrupts (requests for attention) from the 
peripheral devices (which can include their own special-
ized BIOS chips). During the boot sequence the BIOS code 
runs the POST (power-on self test) and queries various 
devices to make sure they are functional. (At this time the 
PC’s screen will display a message giving the BIOS manu-
facturer, model, and other information.) Once DOS is run-
ning, routines in the operating system kernel can access 
the hardware by making calls to the BIOS routines. In turn, 
application programs can call the operating system, which 
passes requests on to the BIOS routines.

The BIOS scheme has some flexibility in that part of 
the BIOS is stored in system files (in IBM PCs, IO.SYS and 
IBMIO.COM). Since this code is stored in files, it can be 
upgraded with each new version of DOS. In addition, sepa-
rate device drivers can be loaded from files during system 
startup as directed by DEVICE commands in CONFIG.SYS, 
a text file containing various system settings.

For further flexibility in dealing with evolving device 
capabilities, PCs also began to include CMOS (complemen-
tary metal oxide semiconductor) chips that allow for the 
storage of additional parameters, such as for the configura-
tion of memory and disk drive layouts.

In modern PCs the BIOS setup screen also allows users 
to specify the order of devices to be used for loading system 
startup code. This, for example, might allow a potentially 
corrupted hard drive to be bypassed in favor of a bootable 
CD or DVD with disk repair tools. Another scenario would 
allow users to boot from a USB memory stick (see flash 
drive) and use a preferred operating system and working 
files without disturbing the PC’s main setup.

The data on these chips is maintained by a small on-
board battery so settings are not lost when the main system 
power is turned off.

Additionally, modern PC BIOS chips use “flash memory” 
(EEPROM or “electrically erasable programmable read-only 
memory”) to store the code. These chips can be “flashed” or 
reprogrammed with newer versions of the BIOS, enabling the 
support of newer devices without having to replace any chips.

Beyond the Bios
While the BIOS scheme was adequate for the earliest PCs, 
it suffered from a lack of flexibility and extensibility. The 
routines were generic and thus could not support all the 
functions of newer devices. Because BIOS routines for 
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such tasks as graphics tended to be slow, applications pro-
grammers often bypassed the BIOS and dealt with devices 
directly or created device drivers specific to a particular 
model of device. This made the life of the PC user more 
complicated because programs (particularly games) may 
not work with some video cards, for example, or at least 
required an updated device driver.

While both the main BIOS and the auxiliary BIOS chips 
on devices such as video cards are still essential to the 
operation of the PC, modern operating systems, such as 
Microsoft Windows and applications written for them, gen-
erally do not use BIOS routines and employ high perfor-
mance device drivers instead. (By the mid-1990s BIOSes 
included built-in support for “Plug and Play,” a system for 
automatically loading device drivers as needed. Thus, the 
BIOS is now usually of concern only if there is a hardware 
failure or incompatibility.)

Further Reading
“System BIOS Function and Operation.” Available online. URL: 
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bitmapped image
A bitmap is a series of bits (within a series of bytes in 
memory) in which the bits represent the pixels in an image. 
In a monochrome bitmap, each pixel can be represented by 
one bit, with a 1 indicating that the pixel is “on.” For gray-
scale or color images several bits must be used to store the 
information for each pixel. The pixel value bits are usually 
preceded by a data structure that describes various charac-
teristics of the image.

For example, in the Microsoft Windows BMP format, 
the file for an image begins with a BITMAPFILEHEADER 
that includes a file type, size, and layout. This is followed 
by a BITMAPINFOHEADER that gives information about 
the image itself (dimensions, type of compression, and 
color format). Next comes a color table that describes each 

color found in the image in terms of its RGB (red, green, 
blue) components. Finally comes the consecutive bytes rep-
resenting the bits in each line of the image, starting from 
lower left and proceeding to the upper right.

The actual number of bits representing each pixel 
depends on the dimensions of the bitmap and the num-
ber of colors being used. For example, if the bitmap has a 
maximum of 256 colors, each pixel value must use one byte 
to store the index that “points” to that color in the color 
table. However, an alternative format stores the actual RGB 
values of each pixel in three consecutive bytes (24 bits), 
thus allowing for a maximum of 24 (16,777,216) colors (see 
color in computing).

Shortcomings and Alternatives
The relationship between number of possible colors and 
amount of storage needed for the bitmap means that the 
more realistic the colors, the more space is needed to store 
an image of a given size, and generally, the more slowly the 
bitmap can be displayed. Various techniques have been used 
to shrink the required space by taking advantage of redun-
dant information resulting from the fact that most images 
have areas of the same color (see data compression).

Vector graphics offer an alternative to bitmaps, particu-
larly for images that can be constructed from a series of lines. 
Instead of storing the pixels of a complete image, vector graph-
ics provides a series of vectors (directions and lengths) plus 
the necessary color information. This can make for a much 
smaller image, as well as making it easy to scale the image to 
any size by multiplying the vectors by some constant.
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bits and bytes
Computer users soon become familiar with the use of bits 
(or more commonly bytes) as a measurement of the capac-
ity of computer memory (RAM) and storage devices such 
as disk drives. They also speak of such things as “16-bit 
color,” referring to the number of different colors that can 
be specified and generated by a video display.

In the digital world a bit is the smallest discernable 
piece of information, representing one of two possible states 
(indicated by the presence or absence of something such as 
an electrical charge or magnetism, or by one of two voltage 
levels). Bit is actually short for “binary digit,” and a bit cor-
responds to one digit or place in a binary (base 2) number. 
Thus an 8-bit value of

11010101

corresponds, from right to left, to (1 * 20) + (0 * 21) + (1 * 
22) + (0 * 23) + (1 * 24) + (0 * 25) + (1 * 26) + (1 * 27), or 213 
in terms of the familiar decimal system.

In a monochrome bitmapped image, a 1 is used to represent a pixel 
that is turned on, while the empty pixels are represented by zeroes. 
Color bitmaps must use many more bits per pixel to store color 
numbers.
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With regard to computer architectures the number 
of bits is particularly relevant to three areas: (1) The size 
of the basic “chunk” of data or instructions that can be 
fetched, processed, or stored by the central processing unit 
(CPU); (2) The “width” of the data bus over which data is 
sent between the CPU and other devices—given the same 
processor speed, a 32-bit bus can transfer twice as much 
data in a given time as a 16-bit bus; and (3) The width of the 
address bus (now generally 32 bits), which determines how 
many memory locations can be addressed, and thus the 
maximum amount of directly usable RAM.

The first PCs used 8-bit or 16-bit processors, while 
today’s PC processors and operating systems often use 32-
bits at a time, with 64-bit processors now entering the mar-
ket. Besides the “width” of data transfer, the number of bits 
can also be used to specify the range of available values. 
For example, the range of colors that can be displayed by 
a video card is often expressed as 16 bit (65,536 colors) or 
32 bit (16,777,777,216 colors, because only 24 of the bits are 
used for color information).

Since multiple bits are often needed to specify meaningful 
information, memory or storage capacity is often expressed 

in terms of bytes. A byte is 8 bits or binary digits, which 
amounts to a range of from 0 to 255 in terms of decimal (base 
10) numbers. A byte is thus enough to store a small inte-
ger or a character code in the standard ASCII character set 
(see character). Common multiples of a byte are a kilobyte 
(thousand bytes), megabyte (million bytes), gigabyte (billion 
bytes), and occasionally terabyte (trillion bytes). The actual 
numbers represented by these designations are actually some-
what larger, as indicated in the accompanying table.

Further Reading
“How Bits and Bytes work.” Available online. URL: http://www.

howstuffworks.com/bytes.htm. Accessed April 22, 2007.

bitwise operations
Since each bit of a number (see bits and bytes) can hold 
a truth value (1 = true, 0 = false), it is possible to use indi-
vidual bits to specify particular conditions in a system, and 
to compare individual pairs of bits using special operators 
that are available in many programming languages.

Bitwise operators consist of logical operators and shift 
operators. The logical operators, like Boolean operators in 
general (see Boolean operators), perform logical compar-
isons. However, as the name suggests, bitwise logical opera-
tors do a bit-for-bit comparison rather than comparing the 
overall value of the bytes. They compare the corresponding 
bits in two bytes (called source bits) and write result bits 
based on the type of comparison.

The AND operator compares corresponding bits and 
sets the bit in the result to one if both are one. Otherwise, it 
sets it to zero.

Example: 10110010 AND 10101011 = 10100010

The OR operator compares corresponding bits and sets 
the bit in the result to one if either or both of the bits are 
ones.

Example: 10110110 OR 10010011 = 10110111

The XOR (“exclusive OR”) operator works like OR 
except that it sets the result bit to one only if either (not 
both) of the source bits are ones.

Example: 10110110 XOR 10010011 = 00100101

The COMPLEMENT operator switches all the bits to 
their opposites (ones for zeroes and zeroes for ones).

Example: COMPLEMENT 11100101 = 00011010

One byte in memory can store an 8-bit binary number. Just as each 
place to the left in a decimal number represents the next higher 
power of 10, the places in the byte increase as powers of 2. Here the 
places with 1 in them add up to a total decimal value of 213.

Measurement	 Number of Bytes	E xamples of Use

byte	 1	 small integer, character
kilobyte	 210    1,024	 RAM (PCs in the 1980s)
megabyte	 220    1,048,576	 hard drive (PCs to mid-1990s)
		  RAM (modern PCs)
gigabyte	 230    1,073,741,824	 hard drive (modern PCs)
		  RAM (latest PCs)
terabyte	 240    1,099,511,627,776	 large drive arrays
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The shift operators simply shift all the bits left (LEFT 
SHIFT) or right (RIGHT SHIFT) by the number of places 
specified after the operator. Thus

00001011 LEFT SHIFT 2 = 00101100

and

00001011 RIGHT SHIFT 2 = 00000010 (bits that shift off 
the end of the byte simply “drop off” and are replaced with 
zeroes).

While we have used words in our general description of 
these operators, actual programming languages often use 
special symbols that vary somewhat with the language. The 
operators used in the C language are typical:

& AND

| OR

^ Exclusive OR

~ Complement

>> Right Shift

<< Left Shift

Masking
There are a number of programming tasks where the 
contents of individual bits must be read or manipulated. 
Operating systems and network protocols often have data 
structures where several separate pieces of information are 
stored in a single byte in order to save space. (For exam-
ple, in IBM architecture PC’s interrupts are often enabled 
or disabled by setting particular bits in a mask register.) 
Operations using bitmapped images can also involve bit 
manipulation.

Suppose the right three bits of a byte contain a desired 
piece of information. The byte is ANDed with a prepared 
byte called a mask in which the desired bits are set to one 
and the rest of the bits are zero: in this case it would be 
00000111. Thus if the byte contains 11010110:

11010110 AND 00000111 = 000000110

The result contains only the value of the right three bits. 
Similarly, if one wants to set a particular bit to zero, one 
simply ANDs the byte with a byte that has a zero in that 
position and ones in the rest of the byte. Thus to “zero out” 
the second bit from the left in 11010110:

11010110 AND 10111111 = 10010110
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blogs and blogging
As the 20th century drew to a close, a new form of per-
sonal self-expression began to appear on the Web. Called 
“Web logs” but soon universally shortened to blogs, this new 
type of online journal caught on rapidly, being adopted not 
only by Web-savvy designers and writers, but by millions of 
ordinary users wanting to express opinions on the news of 
the day, critique music or restaurants, analyze technological 
developments, or just keep relatives informed about family 
doings. (By 2006 the Pew Internet and American Life project 
was reporting that about 16 percent of the American popu-
lation—around half of all Internet users—was writing or 
at least reading blogs.) Additionally, today’s blogs can have 
institutional as well as personal roles. They have created 
a new form of journalism that challenges the mainstream 
media, have kept researchers in touch with new develop-
ments, and have provided a new way for corporations to 
communicate with customers or prospective investors.

Formats and Software
The “classic” blog resembles a diary or journal. The writer 
simply adds a new entry either on a regular basis such as 
daily or weekly, or when there is something new to be said 
or responded to. Indeed, what makes blogs different from 
traditional journals is two things: linkage and interactivity. 
When a “blogger” writes about something such as a news 
story, he or she almost always includes a Web link that can 
take the reader directly to the source in question. The inter-
activity comes in readers having the opportunity to click a 
button and write their own response—either to the original 
journal entry or to someone’s earlier response.

In order for blogging to become ubiquitous, there needed 
to be software that anyone could use without knowing any-
thing about Web design or HTML coding. Most commonly, 
the software is hosted on a Web site, and users only need a 
Web browser to create and manage their blogs. One of the 
first popular blogging applications was developed in the late 
1990s by David Winer of Userland Software. Google’s Blog-
ger.com is another popular choice. Many blogging applica-
tions are free and open source, such as Drupal, Mephisto, 
and WordPress (which can be used stand-alone or as a 
hosted service). Today anyone can start and maintain a blog 
with just a few clicks.

As blogs proliferated, the value of a search engine 
devoted specifically to finding blogs and blog entries became 
evident. While a general search engine can find blog entries 
that match keywords, the results generally do not show the 
context or the necessary links to follow the threads of dis-
cussion. In addition to such services as Bloglines, general 
search engines such as Google include options for search-
ing the burgeoning “blogosphere.”

As with many other Web developments, what began as 
primarily a textual medium soon embraced multimedia. 
The availability of inexpensive cameras makes it easy for 
bloggers to engage in “video blogging.” Anyone who wants 
to see these videos regularly can “subscribe” and have them 
downloaded automatically to their PC or portable player 
(see podcasting).
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Blogging can also be seen as part of a larger trend toward 
Web users taking an active role in expressing and sharing 
opinion and resources (see user-created content, file-
sharing and p2p networks, and YouTube).

Social and Economic Impact
Blogs first emerged in popular consciousness as a new way 
in which people caught in the midst of a tragedy such as the 
September 11, 2001, attacks could reassure friends about 
their safety while describing often harrowing accounts. The 
Iraq war that began in 2003 was the first war to be blogged 
on a large scale. Like their journalistic counterparts, blog-
gers, whether American or Iraqi, were “embedded” in the 
often-violent heart of the protracted conflict, but they were 
also effectively beyond the control of government or mil-
itary authorities. (See also political activism and the 
Internet.)

Blogs are also being used widely in business. Within a 
company, a blog can highlight ongoing activities and relevant 
resources that might otherwise be overlooked in a large cor-
porate network. Software developers can also report on the 
progress of bug fixes or enhancements and solicit comments 
from end users. There has been some concern, however, that 
corporate blogs are not sufficiently supervised to prevent 
the dissemination of sensitive information or the posting of 
libelous or inflammatory material. (For the collaborative cre-
ation of large bodies of structured knowledge, see wikis and 
Wikipedia.)

Blogs have provided an outlet where other means of 
expression are unavailable because of war (as in Iraq), 
disaster (Hurricane Katrina), or government censorship—
although China in particular has hired hundreds of censors 
to remove offending postings as well as requiring blog pro-
viders such as MSN to police their content (see censorship 
and the Internet).
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Bluetooth
Loosely named after a 10th-century Danish king, Bluetooth 
is a wireless data communications and networking system 
designed for relatively short-range operation (generally 
within the same room, although it can be used over longer 
distances up to several hundred feet [tens of meters]). The 
radio transmission is in the 2.4-GHz band and is typically 
low power, making it suitable for battery-powered devices 
such as laptops.

Applications
Bluetooth was originally developed by Ericsson Corpora-
tion to provide a wireless connection for mobile telephone 
headsets. Today it is often used to “sync” (update data) 
between a PDA such as a Blackberry or Palm (see PDA) 
with a Bluetooth-equipped laptop or desktop. Many cell 
phones are also equipped with Bluetooth, allowing them to 
be dialed from a PDA, although the growing use of phones 
that combine telephony and PDA functions is making this 
scenario less common (see smartphone). Bluetooth can 
also be used for wireless keyboards, mice, or printers.

It is possible to connect PDAs or PCs to the Internet and 
local area networks using a Bluetooth wireless access point 
(WAP) attached to a router, but faster and longer range Wifi 
(802.11) wireless connections are much more widely used 
for this application (see Wifi).

Bluetooth connections between devices are specified 
using profiles. Profiles have been developed for common 
kinds of devices, specifying how data is formatted and 
exchanged. For example, there are profiles for controlling 
telephones, printers and faxes, digital cameras, and audio 
devices. Most modern operating systems (including Win-
dows Mobile, Linux, Palm OS, and Mac OS X) include sup-
port for basic Bluetooth profiles. Functions fundamental to 
all Bluetooth operations are found in Bluetooth Core Speci-
fications (version 2.1 as of August 2007). Planned future 
enhancements include accommodation for ultra-wide band 
(UWB) radio technology, allowing for data transfer up to 
480 megabits per second. At the same time, Bluetooth is 
extending the ultra-low-power modes that are particularly 
important for wearable or implanted medical devices.

Further Reading
“Bluetooth.” Wikipedia. Available online. URL: http://en.wikipedia.

org/wiki/Bluetooth. Accessed July 20, 2007.
Bluetooth Special Interest Group. Available online. URL: http://

www.bluetooth.com/bluetooth/. Accessed July 20, 2007.
Layton, Julia, and Curt Franklin. “How Bluetooth Works.” Avail-

able online. URL: http://www.howstuffworks.com/bluetooth.
htm. Accessed September 3, 2007.

Boolean operators
In 1847, British mathematician George Boole proposed a 
system of algebra that could be used to manipulate proposi-
tions, that is, assertions that could be either true or false. In 
his system, called propositional calculus or Boolean Alge-
bra, propositions can be combined using the “and” and “or” 
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operators (called Boolean operators), yielding a new propo-
sition that is also either true or false. For example:

“A cat is an animal” AND “The sun is a star” is true 
because both of the component propositions are true.

“A square has four sides” AND “The Earth is flat” is false 
because only one of the component propositions is true.

However “A square has four sides” OR “The Earth is 
flat” is true, because at least one of the component proposi-
tions is true.

A chart called a truth table can be used to summarize 
the AND and OR operations. Here 1 means true and 0 
means false, and you read across from the side and down 
from the top to see the result of each combination.

AND table

		  0	 1
	 0	 0	 0
	 1	 0	 1

OR table

		  0	 1
	 0	 0	 1
	 1	 1	 1

A variant of the OR operator is the “exclusive OR,” 
sometimes called “XOR” operator. The XOR operator yields 
a result of true (1) if only one of the component propositions 
is true:

XOR table

		  0	 1
	 0	 0	 1
	 1	 1	 0

Additionally, there is a NOT operator that simply 
reverses the truth value of a proposition. That is, NOT 1 is 
0 and NOT 0 is 1.

Applications
Note the correspondence between the two values of Boolean 
logic and the binary number system in which each digit can 
have only the values of 1 or 0. Electronic digital computers 
are possible because circuits can be designed to follow the 
rules of Boolean logic, and logical operations can be har-
nessed to perform arithmetic calculations.

Besides being essential to computer design, Boolean 
operations are also used to manipulate individual bits in 
memory (see bitwise operations), storing and extracting 
information needed for device control and other purposes. 
Computer programs also use Boolean logic to make deci-
sions using branching statements such as If and loop state-
ments such as While. For example, the Basic loop

While (Not Eof()) OR (Line = 50)
Read (Line$)
Print (Line$)
Line = Line + 1

Endwhile

will read and print lines from the previously opened file 
until either the Eof (end of file) function returns a value of 
True or the value of Line reaches 50. (In some programming 
languages different symbols are used for the operators. In 
C, for example, AND is &&, OR is ||, and NOT is !.)

Users of databases and Web search engines are also 
familiar with the use of Boolean statements for defining 
search criteria. In many search engines, the search phrase 
“computer science” AND “graduate” will match sites that 
have both the phrase “computer science” and the word 
“graduate,” while sites that have only one or the other will 
either not be listed or will be listed after those that have 
both (see search engine).

Further Reading
University at Albany Libraries. “Boolean Searching on the Inter-

net.” Available online. URL: http://www.albany.edu/library/
internet/boolean.html.

Whitesitt, J. E. Boolean Algebra and Its Applications. New York: 
Dover, 1995.

boot sequence
All computers are faced with the problem that they need 
instructions in order to be able to read in the instructions 
they need to operate. The usual solution to this conundrum 
is to store a small program called a “loader” in a ROM 
(read-only memory) chip. When the computer is switched 
on, this chip is activated and runs the loader. The loader 
program has the instructions needed to be able to access 
the disk containing the full operating system. This process 
is called booting (short for “bootstrapping”).

Booting a PC
While the details of the boot sequence vary with the hard-
ware and operating system used, a look at the booting of a 
“Wintel” machine (IBM architecture PC running DOS and 
Microsoft Windows) can serve as a practical example.

When the power is turned on, a chip called the BIOS 
(basic input-output system) begins to execute a small pro-
gram (see bios). The first thing it does is to run a rou-
tine called the POST (power-on self test) that sends a 
query over the system bus (see bus) to each of the key 
devices (memory, keyboard, video display, and so on) for 
a response that indicates it is functioning properly. If an 
error is detected, the system generates a series of beeps, 
the number of which indicates the area where the problem 
was found, and then halts.

Assuming the test runs successfully (sometimes indi-
cated by a single beep), the BIOS program then queries the 
devices to see if they have their own BIOS chips, and if so, 
executes their programs to initialize the devices, such as 
the video card and disk controllers. At this point, since the 
video display is available, informational and error messages 
can be displayed as appropriate. The BIOS also sets various 
parameters such as the organization of the disk drive, using 
information stored in a CMOS chip. (There is generally 
a way the user can access and change these information 
screens, such as when installing additional memory chips.)
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The BIOS now looks for a disk drive that is bootable—
that is, that contains files with the code needed to load the 
operating system. This is generally a hard drive, but could 
be a floppy disk or even a CD-ROM or USB device. (The 
order in which devices are checked can be configured.) On 
a hard drive, the code needed to start the operating system 
is found in a “master boot record.”

The booting of the operating system (DOS) involves the 
determination of the disk structure and file system and the 
loading of the operating system kernel (found in files called 
IO.SYS and MSDOS.SYS), and a command interpreter (COM-
MAND.COM). The latter can then read the contents of the 
files AUTOEXEC.BAT and CONFIG.SYS, which specify sys-
tem parameters, device drivers, and other programs to be 
loaded into memory at startup. If the system is to run Micro-
soft Windows, that more elaborate operating system will then 
take over, building upon or replacing the foundation of DOS.

Further Reading
PC Guide. “System Boot Sequence.” Available online. URL: http://

www.pcguide.com/_ref/mbsys/bios/bootSequence-c.html. 
Accessed April 10, 2008.

branching statements
The simplest calculating machines (see calculator) 
could only execute a series of calculations in an unalter-
able sequence. Part of the transition from calculator to full 
computer is the ability to choose different paths of execu-
tion according to particular values—in some sense, to make 
decisions.

Branching statements (also called decision statements 
or selection statements) give programs the ability to choose 
one or more different paths of execution depending on the 
results of a logical test. The general form for a branching 
statement in most programming languages is

if (Boolean expression)

statement

else statement

For example, a blackjack game written in C might have a 
statement that reads:

if ((Card_Count + Value(This_Card)) > 21)
printf (“You’re busted!”);

Here the Boolean expression in parenthesis following the if 
keyword is evaluated. If it is true, then the following state-
ment (beginning with printf) is executed. (The Boolean 
expression can be any combination of expressions, function 
calls, or even assignment statements, as long as they evalu-
ate to true or false—see also boolean operators.)

The else clause allows the specification of an alternative 
statement to be executed if the Boolean expression is not 
true. The preceding example could be expanded to:

if (Card_Count + Value (This_Card) > 21)
printf (“You’re busted!”);

else
printf(“Do you want another card?”);

In most languages if statements can be nested so that a 
second if statement is executed only if the first one is true. 
For example:

if (Turn > Max_Turns)
{
if (Winner() )

PrintScore();
}

Here the first if test determines whether the maximum 
number of turns in the game has been exceeded. If it has, 
the second if statement is executed, and the Winner() func-
tion is called to determine whether there is a winner. If 
there is a winner, the PrintScore() function is called. This 
example also illustrates the general rule in most languages 
that wherever a single statement can be used a block of 
statements can also be used. (The block is delimited by 
braces in the C family of languages, while Pascal uses 
Begin . . . End.)

The switch or case statement found in many languages 
is a variant of the if statement that allows for easy testing of 
several possible values of a condition. One could write:

if (Category = = “A”)
AStuff();

else if (Category = = “B”)
BStuff();

else if (Category = = “C”)
CStuff();

else
printf “(None of the above\n”);

However, C, Pascal, and many other languages provide a 
more convenient multiway branching statement (called 
switch in C and case in Pascal). Using a switch statement, 
the preceding test can be rewritten in C as:

switch (Category) {
case “A”:

AStuff();
break;

case “B”:
BStuff();
break;

case “C”
CStuff();
break;

default:
printf (“None of the above\n”);

}

(Here the break statements are needed to prevent execution 
from continuing on through the other alternatives when 
only one branch should be followed.)

Further Reading
Sebesta, Robert W. Concepts of Programming Languages. 8th ed. 

Boston: Addison-Wesley, 2008.
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Breazeal, Cynthia
(1968–  )
American
Roboticist

Born in Albuquerque, New Mexico, in 1968, Cynthia 
Breazeal (pronounced like “Brazil”) grew up in Califor-
nia. Her father was a mathematician and her mother was a 
computer scientist at the Lawrence Livermore Laboratory. 
When she was only eight, Breazeal saw the 1970s film Star 
Wars and became intrigued with the “droids.”

Besides robots, as a student the young Breazeal was also 
fascinated by medicine and astronomy. When she attended 
the University of California at Santa Barbara, Breazeal con-
sidered a future career in NASA. UC also had a robotics 
center, and Breazeal encountered there the possibility of 
building planetary robot rovers.

After getting her undergraduate degree in electrical and 
computer engineering, Breazeal applied for graduate school 
to the Massachusetts Institute of Technology. The MIT 
robotics lab, headed by Rodney Brooks, was developing a 
new generation of small, agile robotic rovers based in part 
on observing how insects moved. Breazeal’s work on two 
such robots, named Attila and Hannibal, helped prove the 
feasibility of mobile robots for planetary exploration while 
furnishing her a topic for her master’s thesis.

Besides its implications for space research, Breazeal’s 
work with Attila and Hannibal demonstrated the feasibil-
ity of building robots that were controlled by hundreds of 
small, interacting programs that detected and responded to 

specified conditions or “states.” It gave concrete reality to 
Brooks’s and Breazeal’s belief that robots, like living organ-
isms, grew by building more complex behaviors on top of 
simpler ones, rather than depending on some single top-
down design.

Brooks then announced that he was starting a new proj-
ect: to make a robot that could interact with people in much 
the same way people encounter one another socially. The 
result of the efforts of Brooks, Breazeal, and their colleagues 
was the creation of a robot called Cog. Cog attempted to 
replicate the sense perceptions and reasoning skills of a 
human infant. Cog had eyes that focused like those of a 
person. Like an infant, Cog could pick up on what people 
nearby were doing, and what they were focused on.

Breazeal had done much of the work in designing Cog’s 
stereovision system. She and another graduate student also 
programmed many of the interacting feedback routines that 
allowed Cog to develop its often-intriguing behavior. Cog 
could focus on and track moving objects and sound sources. 
Eventually, the robot gained the kind of hand-eye coordina-
tion that enabled it to throw and catch a ball and even play 
rhythms on a snare drum.

For her doctoral research, Breazeal decided to design 
a robot unlike the 6-foot, 5-inch (1.96 m) Cog; one that 
instead would be more child-sized and childlike. She named 
the new robot Kismet, from the Turkish word for fate or for-
tune. Kismet looks a bit like the alien from the film ET: The 
Extra-Terrestrial. The robot is essentially a head without 
arms or legs. With big eyes (including exaggerated eye-
brows), pink ears that can twist, and bendable surgical tub-
ing for lips that can “smile,” Kismet has a “body language” 
that conveys a kind of brush-stroked essence of response 
and emotion. Kismet has a variety of hardware and software 
features that support its interaction with humans.

Like Cog, Kismet’s camera “eyes” function much like 
the human eye. However, the vision system is more sophis-
ticated than that in the earlier robot. Kismet looks for col-
orful objects, which are considered to be toys, for potential 
play activities. An even higher priority is given to potential 
playmates, which are recognized by certain facial features, 
such as eyes, as well as the presence of flesh tones. Kismet 
does not actually understand the words spoken to it; how-
ever, it perceives the intonation and rhythms of human 
speech and identifies them as corresponding to emotional 
states. If a visitor addresses Kismet with tones of friendly 
praise (as perhaps one might a baby, or a dog), the robot 
moves to a “happy” emotional state. On the other hand, a 
harsh, scolding tone moves Kismet toward an “unhappy” 
condition.

Kismet’s “emotions” are not just simple indicators of 
what state the software decides the robot should be in, 
based on cues it picks up from humans. Rather, the robot 
has been so carefully “tuned” in its feedback systems that 
it establishes a remarkably natural rhythm of vocalization 
and visual interaction. Kismet reacts to the human, which 
in turn elicits further human responses.

Kismet’s successor is called Leonardo. Unlike Kismet, 
Leonardo has a full torso with arms and legs and looks 
rather like a furry little Star Wars alien. With the aid of arti-

MIT researcher Cynthia Breazeal, shown here with her robot 
“Leonardo,” specializes in “sociable” robots that can interact 
and learn much like human children.  (Sam Ogden / Photo 
Researchers, Inc.)
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ficial skin and an array of 32 separate motors, Leonardo’s 
facial expressions are much more humanlike than Kismet’s. 
Body language now includes shrugs. The robot can learn 
new concepts and tasks both by interacting with a human 
teacher and by imitating what it sees people do, starting 
with facial expressions and simple games.

Breazeal’s group at MIT is currently investigating ways 
in which computers can use “body language” to communi-
cate with users and even encourage better posture. “RoCo” 
is a computer whose movable “head” is a monitor screen. 
Using a camera, RoCo can sense the user’s posture and 
emotional state.

Breazeal has also created “responsive” robots in new 
forms, and for venues beyond the laboratory. In 2003 the 
Cooper-Hewitt National Design Museum in New York 
hosted a “cyberfloral installation” designed by Breazeal. It 
featured “flowers” of metal and silicone that exhibit behav-
iors such as swaying and glowing in bright colors when a 
person’s hand comes near.

Besides earning her a master’s degree (1993) and doc-
toral degree (2000) from MIT, Breazeal’s work has brought 
her considerable acclaim and numerous appearances in the 
media. She has been widely recognized as being a signifi-
cant young inventor or innovator, such as by Time magazine 
and the Boston Business Forward. Breazeal is one of 100 
“young innovators” featured in MIT’s Technology Review.
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Brin, Sergey
(1973–  )
Russian-American
Entrepreneur

Cofounder and current president of technology at Google, 
Sergey Brin has turned the needs of millions of Web users 
to find information online into a gigantic and pervasive 
enterprise.

Brin was born in Moscow, Russia, on August 21, 1973 
to a Jewish family (his father, Michael, was a mathema-
tician and economist). However, the family immigrated 
to the United States in 1979, settling in Maryland. Brin’s 
father supplemented his education, particularly in math-

ematics. Brin graduated with honors from the University 
of Maryland in 1993, earning a bachelor’s degree in com-
puter science and mathematics. Brin then went to Stanford, 
receiving his master’s degree in computer science in 1995. 
Along the way to his Ph.D., however, Brin was “sidetracked” 
by his growing interest in the Internet and World Wide 
Web, particularly in techniques for searching for and iden-
tifying data (see also data mining).

Search Engines and Google
The year 1995 was pivotal for Brin because he met fel-
low graduate student Larry Page (see Page, Larry). Page 
shared Brin’s interests in the Web, and they collaborated 
on a seminal paper titled “The Anatomy of a Large-Scale 
Hypertextual Web Search Engine.” This work (including 
the key “PageRank” algorithm) would form the basis for the 
world’s most widely used search engine (see Google and 
search engine).

In 1998 Brin took a leave of absence from the Ph.D. pro-
gram. The fall of that year Brin and Page launched Google. 
The search engine was much more useful and accurate than 
existing competitors, and received a Technical Excellence 
Award from PC magazine in 1999. Google soon appeared 
near the top of many analysts’ lists of “companies to watch.” 
In 2004 the company went public, and Brin’s personal net 
worth is now estimated to be more than $16 billion. (Brin 
and Page remain closely involved with Google, promot-
ing innovation such as the aggregation and presentation of 
information including images and maps.)

Besides Google, Brin’s diverse interests include movie-
making (he was an executive producer of the film Broken 
Arrow) and innovative transportation (he is an investor in 
Tesla Motors, makers of long-range electric vehicles). In 
2005 Brin was named as one of Time magazine’s 100 most 
influential people. In 2007 Brin was named by PC World as 
number one on their list of the 50 most important people 
on the Web.

Further Reading
Brin, Sergey, and Lawrence Page. “The Anatomy of a Large-Scale 
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broadband
Technically, broadband refers to the carrying of multiple 
communications channels in a single wire or cable. In the 
broader sense used here, broadband refers to high-speed 
data transmission over the Internet using a variety of tech-
nologies (see data communications and telecommu-
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nications). This can be distinguished from the relatively 
slow (56 Kbps or slower) dial-up phone connections used by 
most home, school, and small business users until the late 
1990s. A quantitative change in speed results in a qualita-
tive change in the experience of the Web, making continu-
ous multimedia (video and sound) transmissions possible.

Broadband Technologies
The earliest broadband technology to be developed consists 
of dedicated point-to-point telephone lines designated T1, 
T2, and T3, with speeds of 1.5, 6.3, and 44.7 Mbps respec-
tively. These lines provide multiple data and voice chan-
nels, but cost thousands of dollars a month, making them 
practicable only for large companies or institutions.

Two other types of phone line access offer relatively 
high speed at relatively low cost. The earliest, ISDN (Inte-
grated Services Digital Network) in typical consumer form 
offers two 64 Kbps channels that can be combined for 128 
Kbps. (Special services can combine more channels, such as 
a 6 channel 384 Kbps configuration for videoconferencing.) 
The user’s PC is connected via a digital adapter rather than 
the usual analog-to-digital modem.

The most common telephone-based broadband system 
today is the digital subscriber line (see DSL). Unlike ISDN, 
DSL uses existing phone lines. A typical DSL speed today 
is 1–2 Mbps, though higher speed services up to about 5 
Mbps are now being offered. The main drawback of DSL is 
that the transmission rate falls off with the distance from 
the telephone company’s central office, with a maximum 
distance of about 18,000 feet (5,486.4 m).

The primary alternative for most consumers uses exist-
ing television cables (see cable modem). Cable is generally 
a bit faster (1.5–3 Mbps) than DSL, with premium service 
of up to 8 Mbps or so available in certain areas. However, 
cable speed slows down as more users are added to a given 
circuit. With both DSL and cable upload speeds (the rate 
at which data can be sent from the user to an Internet site) 
are generally fixed at a fraction of download speed (often 
about 128 kbps). While this “throttling” of upload speed 
does not matter much for routine Web surfing, the growing 
number of applications that involve users uploading videos 
or other media for sharing over the Internet (see user-cre-
ated content) has led to some pressure for higher upload 
speeds.

Ultra Broadband
Rather surprisingly, the country that brought the world the 
Internet has fallen well behind many other industrialized 
nations in broadband speed. In Japan, DSL speeds up to 
40 Mbps are available, and at less cost than in the United 
States. South Korea also offers “ultra broadband” speeds of 
20 Mbps or more. American providers, on the other hand, 
have tended to focus on expanding their networks and 
competing for market share rather than investing in higher 
speed technologies. However, this situation is beginning to 
improve as American providers ramp up their investment 
in fiber networks (see fiber optics). For example, in 2005 
Verizon introduced Fios, a fiber-based DSL service that can 

reach speeds up to 15 Mbps. However, installing fiber net-
works is expensive, and as of 2007 it was available in only 
about 10 percent of the U.S. market.

Cable and phone companies typically offer Internet and 
TV as a package—many are now including long-distance 
phone service (and even mobile phone service) in a “triple 
play” package. (For long-distance phone carried via Inter-
net, see voip).

Wireless Broadband
The first wireless Internet access was provided by a wireless 
access point (WAP), typically connected to a wired Internet 
router. This is still the most common scenario in homes 
and public “hot spots” (see also Internet cafés and 
“hot spots”). However, with many people spending much 
of their time with mobile devices (see laptop, PDA, and 
smartphone), the need for always-accessible wireless con-
nectivity at broadband speeds has been growing. The larg-
est U.S. service, Nextlink, offered wireless broadband in 37 
markets in 2007 (including many large and mid-sized cit-
ies) at speeds starting at 1.5 Mbps. An alternative is offered 
by cell phone companies such as Verizon and Sprint, which 
“piggy back” on the existing infrastructure of cell phone 
towers. However, the speed of this “3G” service is slower, 
from 384 kbps up to 2 Mbps.

Yet another alternative beginning to appear is WiMAX, 
a technology that is conceptually similar to Wifi but has 
much greater range because its “hot spots” can be many 
miles in diameter. WiMAX offers the possibility of covering 
entire urban areas with broadband service, although ques-
tions about its economic viability have slowed implementa-
tion as of 2008.

Satellite Internet services have the advantage of being 
available over a wide area. The disadvantage is that there is 
about a quarter-second delay for the signal to travel from a 
geostationary satellite at an altitude of 22,300 km. (Lower-
altitude satellites can be used to reduce this delay, but then 
more satellites are needed to provide continuous coverage.)

Adoption and Applications
By mid-2007, 53 percent of adult Americans had a broad-
band connection at home. This amounts to 72 percent of 
home Internet users. (About 61 percent of broadband con-
nections used cable and about 37 percent DSL.)

With dial-up connections declining to less than 25 
percent, Web services are increasingly designed with the 
expectation that users will have broadband connections. 
This, however, has the implication that users such as rural 
residents and the inner-city poor may be subjected to a 
“second class” Web experience (see also digital divide). 
Meanwhile, as with connection speed, many other coun-
tries now surpass the United States in the percentage of 
broadband users.

Broadband Internet access is virtually a necessity for 
many of the most innovative and compelling of today’s 
Internet applications. These include downloading media 
(see podcasting, streaming, and music and video dis-
tribution, online), uploading photos or videos to sites 
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such as Flickr and YouTube, using the Internet as a substi-
tute for a traditional phone line (see voip), and even gaming 
(see online games). Broadband is thus helping drive the 
integration of many forms of media (see digital conver-
gence) and the continuous connectivity that an increasing 
number of people seem to be relying on (see ubiquitous 
computing).
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Brooks, Rodney
(1954–  )
Australian, American
Roboticist

Rodney Brooks’s ideas about robots have found their way 
into everything from vacuum cleaners to Martian rovers. 
Today, as director of the Artificial Intelligence Labora-
tory at the Massachusetts Institute of Technology, Brooks 
has extended his exploration of robot behavior into new 
approaches to artificial intelligence.

Brooks was born in Adelaide, Australia, in 1954. As 
a boy he was fascinated with computers, but it was still 
the mainframe era, and he had no access to them. Brooks 
decided to build his own logic circuits from discarded 
electronics modules from the defense laboratory where his 
father worked. Brooks also came across a book by Grey 
Walter, inventor of the “cybernetic tortoise” in the late 
1940s. He tried to build his own and came up with “Nor-
man,” a robot that could track light sources while avoiding 
obstacles. In 1968, when young Brooks saw the movie 2001: 
A Space Odyssey, he was fascinated by the artificial intel-
ligence of its most tragic character, the computer HAL 9000 
(see artificial intelligence and robotics).

Brooks majored in mathematics at Flinders University 
in South Australia, where he designed a computer language 
and development system for artificial intelligence projects. 
He also explored various AI applications such as theorem 
solving, language processing, and games. He was then able 
to go to Stanford University in Palo Alto, California, in 1977 
as a research assistant.

While working for his Ph.D. in computer science, 
awarded in 1981, Brooks met John McCarthy, one of the 
“elder statesmen” of AI in the Stanford Artificial Intelli-
gence Lab (SAIL). He also joined in the innovative projects 
being conducted by researchers such as Hans Moravec, who 
were revamping the rolling robot called the Stanford Cart 
and teaching it to navigate around obstacles.

In 1984 Brooks moved to the Massachusetts Institute 
of Technology. For his Ph.D. research project, Brooks and 
his fellow graduate students equipped a robot with a ring 
of sonars (adopted from a camera rangefinder) plus two 
cameras. The cylindrical robot was about the size of R2D2 
and was connected by cable to a minicomputer. However, 
the calculations needed to enable a robot to identify objects 
as they appear at different angles were so intensive that the 
robot could take hours to find its way across a room.

Brooks decided to take a lesson from biological evolu-
tion. He realized that as organisms evolved into more com-
plex forms, they could not start from scratch each time they 
added new features. Rather, new connections (and ways of 
processing them) would be added to the existing structure. 
For his next robot, called Allen, Brooks built three “layers” 
of circuits that would control the machine’s behavior. The 
simplest layer was for avoiding obstacles: If a sonar signal 
said that something was too close, the robot would change 
direction to avoid a collision. The next layer generated a 
random path so the robot could “explore” its surroundings 
freely. Finally, the third layer was programmed to identify 
specified sorts of “interesting” objects. If it found one, the 
robot would head in that direction.

Each of these layers or behaviors was much simpler 
than the complex calculations and mapping done by a tradi-
tional AI robot. Nevertheless, the layers worked together in 
interesting ways. The result would be that the robot could 
explore a room, avoiding both fixed and moving obstacles, 
and appear to “purposefully” search for things.

In the late 1980s, working with Grinell More and a 
new researcher, Colin Angle, Brooks built an insectlike 
robot called Genghis. Unlike Allen’s three layers of behav-
ior, Genghis had 51 separate, simultaneously running com-
puter programs. These programs, called “augmented finite 
state machines,” each kept track of a particular state or 
condition, such as the position of one of the six legs. It is 
the interaction of these small programs that creates the 
robot’s ability to scramble around while keeping its balance. 
Finally, three special programs looked for signals from the 
infrared sensors, locked onto any source found, and walked 
in its direction.

Brooks’s new layered architecture for “embodied” robots 
offered new possibilities for autonomous robot explorers. 
Brooks’s 1989 paper, “Fast, Cheap, and Out of Control: A 
Robot Invasion of the Solar System,” envisaged flocks of 
tiny robot rovers spreading across the Martian surface, 
exploring areas too risky when one has only one or two 
very expensive robots. The design of the Sojourner Mars 
rover and its successors, Spirit and Opportunity, would par-
tially embody the design principles developed by Brooks 
and his colleagues.

In the early 1990s Brooks and his colleagues began 
designing Cog, a robot that would embody human eye 
movement and other behaviors. Cog’s eyes are mounted 
on gimbals so they can easily turn to track objects, aided 
by the movement of the robot’s head and neck (it has no 
legs). Cog also has “ears”—microphones that can help it 
find the source of a sound. The quest for more humanlike 
robots continued in the late 1990s with the development of 
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Kismet, a robot that includes dynamically changing “emo-
tions.” Brooks’s student Cynthia Breazeal would build her 
own research career on Kismet and what she calls “sociable 
robots” (see Breazeal, Cynthia).

By 1990, Brooks wanted to apply his ideas of behavior-
based robotics to building marketable robots that could 
perform basic but useful tasks, and he enlisted two of his 
most innovative and hard-working students, Colin Angle 
and Helen Greiner (see iRobot Corporation). The com-
pany is best known for the Roomba robotic vacuum cleaner. 
Brooks remains the company’s chief technical officer.

Meanwhile Brooks has an assured place as one of the 
key innovators in modern robotics research. He is a Found-
ing Fellow of the American Association for Artificial Intel-
ligence and a Fellow of the American Association for the 
Advancement of Science. Brooks received the 1991 Com-
puters and Thought Award of the International Joint Con-
ference on Artificial Intelligence. He has participated in 
numerous distinguished lecture series and has served as an 
editor for many important journals in the field, including 
the International Journal of Computer Vision.
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buffering
Computer designers must deal with the way different parts 
of a computer system process data at different speeds. For 
example, text or graphical data can be stored in main mem-
ory (RAM) much more quickly than it can be sent to a 
printer, and in turn data can be sent to the printer faster 
than the printer is able to print the data. The solution to 
this problem is the use of a buffer (sometimes called a 
spool), or memory area set aside for the temporary storage 
of data. Buffers are also typically used to store data to be 
displayed (video buffer), to collect data to be transmitted 
to (or received from) a modem, for transmitting audio or 
video content (see streaming) and for many other devices 
(see input/output). Buffers can also be used for data that 
must be reorganized in some way before it can be further 

processed. For example, character data is stored in a com-
munications buffer so it can be serialized for transmission.

Buffering Techniques
The two common arrangements for buffering data are the 
pooled buffer and the circular buffer. In the pool buffer, 
multiple buffers are allocated, with the buffer size being 
equal to the size of one data record. As each data record is 
received, it is copied to a free buffer from the pool. When it 
is time to remove data from the buffer for processing, data 
is read from the buffers in the order in which it had been 
stored (first in, first out, or FIFO). As a buffer is read, it is 
marked as free so it can be used for more incoming data.

In the circular buffer there is only a single buffer, large 
enough to hold a number of data records. The buffer is set 
up as a queue (see queue) to which incoming data records 
are written and from which they are read as needed for pro-
cessing. Because the queue is circular, there is no “first” or 
“last” record. Rather, two pointers (called In and Out) are 
maintained. As data is stored in the buffer, the In pointer is 
incremented. As data is read back from the buffer, the Out 
pointer is incremented. If either pointer reaches around 
back to the beginning, it begins to wrap around. The soft-
ware managing the buffer must make sure that if the In 
pointer goes past the Out pointer, then the Out pointer 
must not go past In. Similarly, if Out goes past In, then In 
must not go past Out.

The fact that programmers sometimes fail to check for 
buffer overflows has resulted in a seemingly endless series 
of security vulnerabilities, such as in earlier versions of the 
UNIX sendmail program. In one technique, attackers can 
use a too-long value to write data, or worse, commands 
into the areas that control the program’s execution, possibly 
taking over the program (see also computer crime and 
security).

Buffering is conceptually related to a variety of other 
techniques for managing data. A disk cache is essentially a 
special buffer that stores additional data read from a disk in 
anticipation that the consuming program may soon request 
it. A processor cache stores instructions and data in antici-
pation of the needs of the CPU. Streaming of multimedia 
(video or sound) buffers a portion of the content so it can be 
played smoothly while additional content is being received 
from the source.

Depending on the application, the buffer can be a part 
of the system’s main memory (RAM) or it can be a separate 
memory chip or chips onboard the printer or other device. 
Decreasing prices for RAM have led to increases in the 
typical size of buffers. Moving data from main memory 
to a peripheral buffer also facilitates the multitasking fea-
ture found in most modern operating systems, by allowing 
applications to buffer their output and continue processing.
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bugs and debugging
In general terms a bug is an error in a computer program 
that leads to unexpected and unwanted behavior. (Lore has 
it that the first “bug” was a burnt moth found in the relays 
of the early Mark I computer in the 1940s; however, as early 
as 1878 Thomas Edison had referred to “bugs” in the design 
of his new inventions.)

Computer bugs can be divided into two categories: syn-
tax errors and logic errors. A syntax error results from 
failing to follow a language’s rules for constructing state-
ments, or from using the wrong symbol. For example, each 
statement in the C language must end with a semicolon. 
This sort of syntax error is easily detected and reported by 
modern compilers, so fixing it is trivial.

A logic error, on the other hand, is a syntactically valid 
statement that does not do what was intended. For example, 
if a C programmer writes:

if Total = 100

instead of

if Total == 100

the programmer may have intended to test the value of Total 
to see if it is 100, but the first statement actually assigns the 
value of 100 to Total. That’s because a single equals sign in 
C is the assignment operator; testing for equality requires 
the double equals sign. Further, the error will result in the 
if statement always being true, because the truth value of an 
assignment is the value assigned (100 in this case) and any 
nonzero value is considered to be “true” (see branching 
statements).

Loops and pointers are frequent sources of logical errors 
(see loop and pointers and indirection). The boundary 
condition of a loop can be incorrectly specified (for exam-
ple, < 10 when < = 10 is wanted). If a loop and a pointer or 
index variable are being used to retrieve data from an array, 
pointing beyond the end of the array will retrieve whatever 
data happens to be stored out there.

Errors can also be caused in the conversion of data of 
different types (see data types). For example, in many lan-
guage implementations the compiler will automatically con-
vert an integer value to floating point if it is to be assigned 
to a floating point variable. However, while an integer can 
retain at least nine decimal digits of precision, a float may 
only be able to guarantee seven. The result could be a loss 
of precision sufficient to render the program’s results unre-
liable, particularly for scientific purposes.

Debugging Techniques
The process of debugging (identifying and fixing bugs) is 
aided by the debugging features integrated into most mod-
ern programming environments. Some typical features 
include the ability to set a breakpoint or place in the code 
where the running program should halt so the values of key 
variables can be examined. A watch can be set on specified 
certain variables so their changing values will be displayed 
as the program executes. A trace highlights the source code 
to show what statements are being executed as the program 

runs. (It can also be set to follow execution into and through 
any procedures or subroutines called by the main code.)

During the process of software development, debugging 
will usually proceed hand in hand with software testing. 
Indeed, the line between the two can be blurry. Essentially, 
debugging deals with fixing problems so that the program 
is doing what it intends to do, while testing determines 
whether the program’s performance adequately meets the 
needs and objectives of the end user.
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bulletin board systems  (BBS)
An electronic bulletin board is a computer application that 
lets users access a computer (usually with a modem and 
phone line) and read or post messages on a variety of top-
ics. The messages are often organized by topic, resulting 
in threads of postings, responses, and responses to the 
responses. In addition to the message service, many bul-
letin boards provide files that users can download, such 
as games and other programs, text documents, pictures, or 
sound files. Some bulletin boards expect users to upload 
files to contribute to the board in return for the privilege of 
downloading material.

The earliest form of bulletin board appeared in the late 
1960s in government installations and a few universities par-
ticipating in the Defense Department’s ARPANET (the ances-
tor to the Internet). As more universities came online in the 
early 1970s, the Netnews (or Usenet) system offered a way to 
use UNIX file-transfer programs to store messages in topi-
cal newsgroups (see netnews and newsgroups). The news 
system automatically propagated messages (in the form of a 
“news feed”) from the site where they were originally posted 
to regional nodes, and from there throughout the network.

By the early 1980s, a significant number of personal 
computer users were connecting modems to their PCs. Bul-
letin board software was developed to allow an operator 
(called a “sysop”) to maintain a bulletin board on his or 
her PC. Users (one or a few at a time) could dial a phone 
number to connect to the bulletin board. In 1984, program-
mer Tom Jennings developed the Fido BBS software, which 
allowed participating bulletin boards to propagate postings 
in a way roughly similar to the distribution of UNIX Net-
news messages.

Decline of the BBS
In the 1990s, two major developments led to a drastic decline 
in the number of bulletin boards. The growth of major ser-
vices such as America Online and CompuServe (see online 
services) offered users a friendlier user interface, a com-
prehensive selection of forums and file downloads, and 
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richer content than bulletin boards with their character-
based interface and primitive graphics. An even greater 
impact resulted from the development of the World Wide 
Web and Web browsing software, which offered access to 
a worldwide smorgasbord of services in which each Web 
home page had the potential of serving as a virtual bulletin 
board and resource center (see World Wide Web and Web 
browser). As the 1990s progressed, increasingly rich mul-
timedia content became available over the Internet in the 
form of streaming video, themed “channels,” and the shar-
ing of music and other media files.

Traditional bulletin boards are now found mostly in 
remote and underdeveloped areas (where they can provide 
users who have only basic phone service and perhaps obso-
lescent PCs with an e-mail gateway to the Internet). How-
ever the BBS contributed much to the grassroots online 
culture, providing a combination of expansive reach and 
a virtual small-town atmosphere (see also virtual com-
munity). Venues such as The Well (see conferencing sys-
tems) retain much of the “feel” of the traditional bulletin 
board system.
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bus
A computer bus is a pathway for data to flow between the 
central processing unit (CPU), main memory (RAM), and 
various devices such as the keyboard, video, disk drives, 
and communications ports. Connecting a device to the bus 
allows it to communicate with the CPU and other compo-
nents without there having to be a separate set of wires for 
each device. The bus thus provides for flexibility and sim-
plicity in computer architecture.

Mainframe computers and large minicomputers typi-
cally have proprietary buses that provide a wide multipath 
connection that allows for data transfer rates from about 3 
MB/s to 10 MB/s or more. This is in keeping with the use of 
mainframes to process large amounts of data at high speeds 
(see mainframe).

Microcomputer Buses
The bus played a key role in the development of the mod-
ern desktop computer in the later 1970s and 1980s. In the 
microcomputer, the bus is fitted with connectors called 
expansion slots, into which any expansion card that meets 
connection specifications can be inserted. Thus the S-100 
bus made it possible for microcomputer pioneers to build 

a variety of systems with cards to expand the memory and 
add serial and parallel ports, disk controllers, and other 
devices. (The Apple II had a similar expansion capability.) 
In 1981, when IBM announced its first PC, it also defined an 
8-bit expansion bus that became known as the ISA (Indus-
try Standard Architecture) as other companies rushed to 
“clone” IBM’s hardware.

In the mid-1980s, IBM advanced the industry with the 
AT (Advanced Technology) machine, which had the 16-bit 
Intel 80286 chip and an expanded bus that could trans-
mit data at up to 2 MB/s. The clone manufacturers soon 
matched and exceeded these specifications, however. IBM 
responded by trying both to improve the microcomputer 
bus and to define a proprietary standard that it could con-
trol via licensing. The result was called the Micro-Chan-
nel Architecture (MCA), which increased data throughput 
to 20 MB/s with full 32-bit capability. This bus had other 
advanced features such as a direct connection to the video 
system (Video Graphics Array) and the ability to config-
ure cards in software rather than having to set physical 
switches. In addition, cards could now incorporate their 
own processors and memory in a way similar to that of 
their powerful mainframe counterparts (this is called bus 
mastering). Despite these advantages, however, the propri-
etary nature of the MCA and the fact that computers using 
this bus could not use any of the hundreds of ISA cards led 
to a limited market share for the new systems.

Instead of paying IBM and adopting the new standard, 
nine major clone manufacturers joined to develop the EISA 
(Extended ISA) bus. EISA was also a 32-bit bus, but its maxi-
mum transfer rate of 33 MB/s made it considerably faster 
than the MCA. It was tailored to the new Intel 80386 and 
80486 processors, which supported the synchronous trans-
fer of data in rapid bursts. The EISA matched and exceeded 
the MCA’s abilities (including bus mastering and no-switch 
configuration), but it also retained the ability to use older ISA 
expansion cards. The EISA soon became the industry stan-
dard as the Pentium family of processors were introduced.

However, the endless hunger for more data-transfer 
capability caused by the new graphics-oriented operating 
systems such as Microsoft Windows led to the development 

A Standard ISA bus PC expansion card. This “open architecture” 
allowed dozens of companies to create hundreds of add-on devices 
for IBM-compatible personal computers.
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of local buses. A local bus is connected to the processor’s 
memory bus (which typically runs at half the processor’s 
external speed rather than the much slower system bus 
speed), a considerable advantage in moving data (such as 
graphics) from main memory to the video card.

Two of these buses, the VESA (or VL) bus and the PCI 
bus came into widespread use in higher-end machines, with 
the PCI becoming dominant. The PCI bus runs at 33 MHz 
and supports features such as Plug and Play (the ability to 
automatically configure a device, supported in Windows 98 
and later) and Hot Plug (the ability to connect or reconnect 
devices while the PC is running). The PCI retains compat-
ibility with older 8-bit and 16-bit ISA expansion cards. At 
the end of the 1990s, PC makers were starting to introduce 
even faster buses such as the AGP (accelerated graphics 
port), which runs at 66 MHz.

Two important auxiliary buses are designed for the con-
nection of peripheral devices to the main PC bus. The older 
SCSI (Small Computer Systems Interface) was announced in 
1986 (with the expanded SCSI-2 in 1994). SCSI is primarily 
used to connect disk drives and other mass storage devices 
(such as CD-ROMs), though it can be used for scanners and 
other devices as well. SCSI-2 can transfer data at 20 MB/s 
over a 16-bit path, and SCSI-3 (still in development) will 
offer a variety of high-speed capabilities. SCSI was adopted 
as the standard peripheral interface for many models of 
Apple Macintosh computers as well as UNIX workstations. 
On IBM architecture PCs SCSI is generally used for servers 
that require large amounts of mass storage. Multiple devices 
can be connected in series (or “chained”).

The newer USB (Universal Serial Bus) is relatively slow 
(12 MB/s) but convenient because a simple plug can be 
inserted directly into a USB socket on the system board 
or the socket can be connected to a USB hub to which sev-
eral devices can be connected. In 2002, USB 2.0 entered 
the marketplace. It offers 480 MB/s data transfer speed. 
(See usb.)

It is uncertain whether the next advance will be the adop-
tion of a 64-bit PCI bus or the development of an entirely dif-
ferent bus architecture. The latter is attractive as a way to get 
past certain inherent bottlenecks in the PCI design, but the 
desire for downward compatibility with the huge number of 
existing ISA, EISA, and PCI devices is also very strong.
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Bush, Vannevar
(1890–1974)
American
Engineer and Inventor

Vannevar Bush, grandson of two sea captains and son of a 
clergyman, was born in Everett, Massachusetts, just outside 
of Boston. Bush earned his B.S. and M.S. degrees in engineer-
ing at Tufts University, and received a joint doctorate from 

Harvard and MIT in 1916. He went on to full professorship at 
MIT and became dean of its Engineering School in 1932.

Bush combined an interest in mathematics with the 
design of mechanical devices to automate calculations. 
During his undergraduate years he invented an automatic 
surveying machine using two bicycle wheels and a record-
ing instrument. His most important invention was the dif-
ferential analyzer, a special type of computer that used 
combinations of rotating shafts and cams to incrementally 
add or subtract the differences needed to arrive at a solution 
to the equation (see also analog computer). His improved 
model (Rockefeller Differential Analyzer, or RDA2) replaced 
the shafts and gears with an electrically-driven system, but 
the actual integrators were still mechanical. Several of these 
machines were built in time for World War II, when they 
served for such purposes as calculating tables of ballistic 
trajectories for artillery.

Later, Bush turned his attention to problems of infor-
mation processing. Together with John H. Howard (also of 
MIT), he invented the Rapid Selector, a device that could 
retrieve specific information from a roll of microfilm by 
scanning for special binary codes on the edges of the film. 
His most far-reaching idea, however, was what he called the 
“Memex”—a device that would link or associate pieces of 
information with one another in a way similar to the asso-
ciations made in the human brain. Bush visualized this as 
a desktop workstation that would enable its user to explore 
the world’s information resources by following links, the 
basic principle of what would later become known as hyper-
text (see hypertext and hypermedia).

In his later years, Bush wrote books that became influen-
tial as scientists struggled to create large-scale research teams 
and to define their roles and responsibilities in the cold war 
era. He played the key role in establishing the National Sci-
ence Foundation in 1950, and served on its advisory board 
from 1953 to 1956. He then became CEO of the drug company 
Merck (1955–1962) as well as serving as chairman (and then 
honorary chairman) of the MIT Corporation (1957–1974).

Bush would receive numerous honorary degrees and 
awards that testified to the broad range of his interests and 
achievements not only in electrical and mechanical engi-
neering, but also in social science. In 1964, he received the 
National Medal of Science. Bush died on June 28, 1974, in 
Belmont, Massachusetts.
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business applications of computers
Efficient and timely data processing is essential for businesses 
of all sizes from corner shop to multinational corporation. 
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Business applications can be divided into the broad catego-
ries of Administration, Accounting, Office, Production, and 
Marketing and Sales.

Administrative applications deal with the organization 
and management of business operations. This includes per-
sonnel-related matters (recruiting, maintenance of person-
nel records, payroll, pension plans, and the provision of 
other benefits such as health care). It also includes manage-
ment information or decision support systems, communi-
cations (from simple e-mail to teleconferencing), and the 
administration of the data processing systems themselves.

The Accounting category includes databases of accounts 
receivable (money owed to the firm) and payable (such 
as bills from vendors). While this software is decidedly 
unglamorous, in a large corporation small inefficiencies can 
add up to significant costs or lost revenue. (For example, 
paying a bill before it is due deprives the firm of the “float” 
or interest that can be earned on the money, while paying a 
bill too late can lead to a loss of discounts or the addition of 
penalties.) A variety of reports must be regularly generated 
so management can spot such problems and so taxes and 
regulatory requirements can be met.

The Office category involves the production and track-
ing of documents (letters and reports) as required for the 
day-to-day operation of the business. Word processing, 
desktop publishing, presentation and other software can be 
used for this purpose (see application suite, word pro-
cessing, spreadsheet, and presentation software).

Production is a catchall term for the actual product or 
service that the business provides. For a manufacturing 
business this may require specialized design and manufac-
turing programs (see computer-aided design and manu-
facturing CAD/CAM) as well as software for tracking and 
scheduling the completion of tasks. For a business that 
markets already produced goods the primary applications 
will be in the areas of transportation (tracking the shipping 
of goods [see also supply chain management]), inventory 
and warehousing, and distribution. Service businesses will 
need to establish accounts for customers and keep track of 
the services performed (on an hourly basis or otherwise).

Marketing and Sales includes market research, adver-
tising, and other programs designed to make the public 
aware of and favorably disposed to the product or service 
(see customer relationship management). Once people 
come to the store to buy something, the actual retail trans-
action must be provided for, including the point-of-sale ter-
minal (formerly “cash register”) with its interface to the 
store inventory system and the verification of credit cards 
or other forms of payment.

Changing Role of Computers
Computer support for business functions can be provided 
in several forms. During the 1950s and 1960s (the era of 

mainframe dominance), only the largest firms had their 
own computer facilities. Many medium- to small-sized 
businesses contracted with agencies called service bureaus 
to provide computer processing for such functions as pay-
roll processing. Service bureaus and in-house data process-
ing facilities often developed their own software (typically 
using the COBOL language).

The development of the minicomputer (and in the 1980s, 
the desktop microcomputer) allowed more businesses to 
undertake their own data processing, in the expectation 
(not always fulfilled) that they would be able both to save 
money and to create systems better tailored to their needs. 
Areas such as payroll and accounts payable/receivable gen-
erally still relied upon specialized software packages. How-
ever, the growing availability of powerful database software 
(such as dBase and its descendants) as well as spreadsheet 
programs enabled businesses to maintain and report on a 
variety of information.

During the 1980s, the daily life of the office began to 
change in marked ways. The specialized word processing 
machines gave way to programs such as WordStar, Word-
Perfect, and Microsoft Word running on desktop comput-
ers. Advanced word processing and desktop publishing 
software moved more of the control of the appearance of 
documents into the hands of office personnel. The local 
area network (LAN) made it possible to share resources 
(such as the new laser printers and databases on a power-
ful file server PC) as well as providing for communication 
in the form of e-mail.

As the Internet and the World Wide Web came into 
prominence in the later 1990s, another revolution was soon 
under way. Every significant organization is now expected 
to have its own Web site or sites. These Web pages serve 
a Janus-like function. On the one hand, they present the 
organization’s face to the world, providing announcements, 
advertising, catalogs, and the capability for online purchas-
ing (e-commerce). On the other hand, many organizations 
now put their databases and other records on Web sites (in 
secured private networks) so that employees can readily 
access and update them. The growth in mobile comput-
ing and readily available Internet connections (including 
wireless services) increasingly enables traveling business-
persons to effectively take the office and its resources with 
them on the road.
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C
The C programming language was developed in the early 
1970s by Dennis Ritchie, who based it on the earlier lan-
guages BCPL and B. C was first used on DEC PDP-11 
computers running the newly developed UNIX operating 
system, where the language provided a high-level alterna-
tive to the use of PDP Assembly language for develop-
ment of the many utilities that give UNIX its flexibility. 
Since the 1980s, C and its descendent, C++, have become 
the most widely used programming languages.

Language Features
Like the earlier Algol and the somewhat later Pascal, C 
is a procedural language that reflects the philosophy of 
programming that was gradually taking shape during 
the 1970s (see structured programming). In general, 
C’s approach can be described as providing the neces-
sary features for real world computing in a compact and 
efficient form. The language provides the basic control 
structures such as if and switch (see branching state-
ments) and while, do, and for (see loop). The built-in 
data types provide for integers (int, short, and long), 
floating-point numbers (float and double), and characters 
(char). An array of any type can be declared, and a string 
is implemented as an array of char (see data types and 
characters and strings).

Pointers (references to memory locations) are used for a 
variety of purposes, such as for storing and retrieving data 
in an array (see pointers and indirection). While the 
use of pointers can be a bit difficult for beginners to under-

stand, it reflects C’s emphasis as a systems programming 
language that can “get close to the hardware” in manipulat-
ing memory.

Data of different types can be combined into a record 
type called a struct. Thus, for example:

struct Employee_Record {
char [10] First_Name;
char [1] Middle_Initial;
char [20] Last_Name;
int Employee_Number;

} ;

(There is also a union, which is a struct where the same 
structure can contain one of two different data items.)

The standard mathematical and logical comparison 
operators are available. There are a couple of quirks: the 
equals comparison operator is = =, while a single equal sign 
= is an assignment operator. This can create a pitfall for the 
wary, since the condition

if (Total = 10)
printf (“Finished!”);

always prints Finished, since the assignment Total = 10 
returns a value of 10 (which not being zero, is “true” and 
satisfies the if condition).

C also features an increment ++ and decrement - - oper-
ator, which is convenient for the common operation of rais-
ing or lowering a variable by one in a counting loop. In C 
the following statements are equivalent:

C



Total = Total + 1;
Total += 1;
Total ++;

Unlike Pascal’s two separate kinds of procedures (func, 
or function, which returns a value, and proc, or proce-
dure, which does not), C has only functions. Arguments are 
passed to functions by value, but can be passed by reference 
by using a pointer. (See procedures and functions.)

Sample Program
The following is a brief example program:

#include <stdio.h>
float Average (void);
main () {
printf (“The average is: %f”, Average() );
}
float Average (void) {
int NumbersRead = 0;
int Number;
int Total = 0;
while (scanf(“%d\n”, &Number) == 1)

{
Total = Total + Number;
NumbersRead = NumbersRead + 1;

}
return (Total / NumbersRead);
}
}

Statements at the beginning of the program that begin 
with # are preprocessor directives. These make changes to 
the source code before it is compiled. The #include directive 
adds the specified source file to the program. Unlike many 
other languages, the C language itself does not include 
many basic functions, such as input/output (I/O) state-
ments. Instead, these are provided in standard libraries. 
(The purpose of this arrangement is to keep the language 
itself simple and portable while keeping the implementa-
tion of functions likely to vary on different platforms sepa-
rate.) The stdio.h file here is a “header file” that defines 
the I/O functions, such as printf() (which prints formatted 
data) and scanf() (which reads data into the program and 
formats it).

The next part of the program declares any functions that 
will be defined and used in the program (in this case, there 
is only one function, Average). The function declaration 
begins with the type of data that will be returned by the 
function to the calling statement (a floating point value in 
this case). After the function name comes declarations for 
any parameters that are to be passed to the function by the 
caller. Since the Average function will get its data from user 
input rather than the calling statement, the value (void) is 
used as the parameter.

Following the declaration of Average comes the main() 
function. Every C program must have a main function. Main 
is the function that runs when the program begins to exe-
cute. Typically, main will call a number of other functions 
to perform the necessary tasks. Here main calls Average 

within the printf statement, which will print the average as 
returned by that function. (Calling functions within other 
statements is an example of C’s concise syntax.)

Finally, the Average function is defined. It uses a loop 
to read in the data numbers, which are totaled and then 
divided to get the average, which is sent back to the calling 
statement by the return statement.

A programmer could create this program on a UNIX 
system by typing the code into a source file (test.c in this 
case) using a text editor such as vi. A C compiler (gcc in 
this case) is then given the source code. The source code is 
compiled, and linked, creating the executable program file 
a.out. Typing that name at the command prompt runs the 
program, which asks for and averages the numbers.

% gcc test.c
% a.out
5
7
9
.

The average is: 7.000000

Success and Change
In the three decades after its first appearance, C became one 
of the most successful programming languages in history. 
In addition to becoming the language of choice for most 
UNIX programming, as microcomputers became capable of 
running high-level languages, C became the language of 
choice for developing MS-DOS, Windows, and Macintosh 
programs. The application programming interface (API) for 
Windows, for example, consists of hundreds of C functions, 
structures, and definitions (see application programming 
interface and Microsoft Windows).

However, C has not been without its critics among 
computer scientists. Besides containing idioms that can 
encourage cryptic coding, the original version of C (as 
defined in Kernighan and Ritchie’s The C Programming 
Language) did not check function parameters to make 
sure they matched the data types expected in the func-
tion definitions. This problem led to a large number of 
hard-to-catch bugs. However, the development of ANSI 
standard C with its stricter requirements, as well as type 
checking built into compilers has considerably amelio-
rated this problem. At about the same time, C++ became 
available as an object-oriented extension and partial rec-
tification of C. While C++ and Java have considerably 
supplanted C for developing new programs, C program-
mers have a relatively easy learning path to the newer 
languages and the extensive legacy of C code will remain 
useful for years to come.
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C#
Introduced in 2002, C# (pronounced “C sharp”) is a pro-
gramming language similar to C++ and Java but simplified 
in several respects and tailored for use with Microsoft’s 
latest programming platform (see Microsoft.net). C# is  
a general-purpose language and is thoroughly object- 
oriented—all functions must be declared as members of 
a class or “struct,” and even fundamental data types are 
derived from the System.Object class (see class and object-
oriented programming).

Compared with C++, C# is stricter about the use and 
conversion of data types, not allowing most implicit con-
versions (such as from an enumeration type to the cor-
responding integer—see data structures). Unlike C++, 
C# does not permit multiple inheritance (where a type can 
be derived from two or more base types), thereby avoid-
ing an added layer of complexity in class relationships in 
large software projects. (However, a similar effect can be 
obtained by declaring multiple “interfaces” or specified 
ways of accessing the same class.)

Unlike Java (but like C++), C# includes pointers (and 
a safer version called “delegates”), enumerations (enum 
types), structs (treated as lightweight classes), and over-
loading (multiple definitions for operators). The latest ver-
sion of the language, C# 3.0 (introduced in 2007), provides 
additional features for list processing and functional pro-
gramming (see functional languages).

The canonical “Hello World” program looks like this in 
C#:

using System;
// A “Hello World!” program in C#
namespace HelloWorld
{

class Hello
{

static void Main()
{

System.Console.WriteLine(“Hello World!”);
}

}
}

Essentially all program structures must be part of a 
class. The first statement brings in the System class, from 
which are derived basic interface methods. A program can 
have one or more namespaces, which are used to organize 
classes and other structures to avoid ambiguity. This pro-
gram has only one class (Hello), which includes a Main 
function (every program must have one and only one). This 
function calls the Console member of the System class, and 
in turn uses the WriteLine method to display the text.

C++ and Microsoft Development
C# is part of a family of languages (including C++, J# 
[an equivalent version of Java], and Visual Basic.NET). All 
these languages compile to a common intermediate lan-
guage (IL). The common class framework, Microsoft.NET, 
has replaced earlier frameworks for Windows program-

ming and, increasingly, for modern Web development (see 
also Ajax).

Although it has been primarily associated with Micro-
soft development and Windows, the Mono and Dot GNU 
projects provide C# and an implementation of the Com-
mon Language Infrastructure, and many (but not all) of the 
.NET libraries for the Linux/UNIX environment.

Further Reading
“The C# Language.” MSDN. Available online. URL: http://msdn2.

microsoft.com/en-us/vcsharp/aa336809.aspx. Accessed April 
28. 2007.

Davis, Stephen Randy. C# for Dummies. New York: Hungry Minds, 
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Hejlsberg, Andres, Scott Wiltamuth, and Peter Golde. The C# Pro-
gramming Language. 2nd ed. Upper Saddle River, N.J.: Addi-
son-Wesley, 2006.

C++
The C++ language was designed by Bjarne Stroustrup at 
AT&T’s Bell Labs in Murray Hill, New Jersey, starting in 
1979. By that time the C language had become well estab-
lished as a powerful tool for systems programming (see 
C). However Stroustrup (and others) believed that C’s lim-
ited data structures and function mechanism were proving 
inadequate to express the relationships found in increas-
ingly large software packages involving many objects with 
complex relationships.

Consider the example of a simple object: a stack onto 
which numbers can be “pushed” or from which they can be 
“popped” (see stack). In C, a stack would have to be imple-
mented as a struct to hold the stack data and stack pointer, 
and a group of separately declared functions that could 
access the stack data structure in order to, for example 
“push” a number onto the stack or “pop” the top number 
from it. In such a scheme there is no direct, enforceable 
relationship between the object’s data and functions. This 
means, among other things, that parts of a program could 
be dependent on the internal structure of the object, or 
could directly access and change such internal data. In a 
large software project with many programmers working on 
the code, this invites chaos.

An alternative paradigm already existed (see object-
oriented programming) embodied in a few new languages 
(see Simula and Smalltalk). These languages allow for the 
structuring of data and functions together in the form of 
objects (or classes). Unlike a C struct, a class can contain 
both the data necessary for describing an object and the 
functions needed for manipulating it (see class). A class 
“encapsulates” and protects its private data, and communi-
cates with the rest of the program only through calls to its 
defined functions.

Further in object-oriented languages, the principle of 
inheritance could be used to proceed from the most gen-
eral, abstract object to particular versions suited for specific 
tasks, with each object retaining the general capabilities 
and revising or adding to them. Thus, a “generic” list foun-
dation class could be used as the basis for deriving a variety 
of more specialized lists (such as a doubly-linked list).
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While attracted to the advantages of the object-ori-
ented approach, Stroustrup also wanted to preserve the C 
language’s ability to precisely control machine behavior 
needed for systems programming. He thus decided to build 
a new language on C’s familiar syntax and features with 
object-oriented extensions. Stroustrup wrote the first ver-
sion, called “C with Classes” as his Ph.D. thesis at Cam-
bridge University in England. This gradually evolved into 
C++ through the early 1980s.

C++ Features
The fundamental building block of C++ is the class. A class 
is used to create objects of its type. Each object contains 
a set of data and can carry out specified functions when 
called upon by the program. For example, the following 
class defines an array of integers and declares some func-
tions for working with the array. Typically, it would be put 
in a header file (such as stack.h):

const int Max_size=20; // maximum elements 
in Stack

class Stack { // Declare the Stack class
public: // These functions are available 

outside
Stack(); // Constructor to create Stack 

objects
void push (int); // push int on Stack
int pop(); // remove top element
private: // This data can only be used in 

class
int index;
int Data[Max_size];
};

Next, the member functions of the Stack class are 
defined. The definitions can be put in a source file Stack.
cpp:

#include “Stack.h” // bring in the declarations
Stack::Stack() { index=0;} // set zero for 

new stack
void Stack::push (int item) { // put a num-

ber on stack
Data[index++] = item;
}
int Stack::pop(){ // remove top number
return Data [index–];
}

Now a second source file (Stacktest.cpp) can be written. 
It includes a main() function that creates a Stack object and 
tests some of the class functions:

#include “Stack.cpp” // include the Stack 
class

#include <iostream.h> // include standard I/O 
library

main() {
Stack S; // Create a Stack object called S
int index;

for (index = 1; index <= 5; index++)
S.push(index); // put numbers 1–5 on stack

for (index = 1; index <=5; index++)
cout < S.pop(); // print the stack

}

The stack implementation is completely separate from 
any program code that uses stack objects. Thus, a program-
mer could revise the stack class (perhaps using an improved 
algorithm or generalizing it to work with different data 
types). As long as the required parameters for the member 
functions aren’t changed, programs that use stack objects 
won’t need to be changed.

In addition to classes and inheritance, C++ has some 
other important features. The data types for function param-
eters can be fully defined, and types checked automatically 
(although programmers can bypass this type checking if 
they really want or need to). New operators can be added 
to a class by defining special operator functions, and the 
same operator can be given different meanings when work-
ing with different data types. (This is called overloading.) 
Thus, the + operator can be defined with a String class to 
combine (concatenate) two strings. The operator will still 
mean “addition” when used with numeric data.

An abstract object (one with no actual implementation) 
can be used as the basis for virtual functions. These func-
tions can be redefined in each derived object so that when-
ever an object of that type is encountered the compiler will 
automatically search “downward” from the base class and 
find the correct derived class function.

Later versions of C++ include a related concept called 
templates. A template is an abstract specification that can 
be used to generate class definitions for data types passed 
to it (see template). Thus, a list template could be passed a 
vector and a 2D array and it will create a list class definition 
for each of these types. Templates are generally used when 
there is no hierarchical inheritance relationship between 
the types (in that case the virtual base class is a better 
approach).

C++ provides object-oriented alternatives to the stan-
dard libraries. For example, input/output uses a stream 
model, and I/O operators can be overloaded so they’ll work 
with new classes. There is also an improved error-handling 
mechanism using appropriate objects.

Growth of C++
During the late 1980s and 1990s, C++ became a very popu-
lar language for a variety of applications ranging from sys-
tems programming to business applications and games. The 
growth of the language coincided with the development 
of more powerful desktop computers and the release of 
inexpensive, easy-to-use but powerful development envi-
ronments from Microsoft, Borland, and others. Since these 
compilers could also handle traditional C code, program-
mers could “port” existing code and use the object-oriented 
techniques of C++ as they mastered them. By the late 1990s, 
however, C++, although still dominant in many areas, was 
being challenged by Java, a language that simplified some 
of the more complex features of C++ and that was designed 
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particularly for writing software to run on Web servers and 
browsers (see Java). For an alternative approach to creating 
a somewhat more “streamlined” C-type language, see c#.

Further Reading
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cable modem
One of the most popular ways to connect people to the 
Internet takes advantage of the cable TV infrastructure that 
already exists in most communities. (For another pervasive 
alternative, using telephone lines, see DSL.)

Cable systems offer high-speed access (see broadband) 
up to about 6 megabits/second (Mb/s), at least 20 times 
faster than an ordinary telephone modem and generally 
suitable for receiving today’s multimedia offerings, includ-
ing streaming video. (Upload speeds are usually “throttled” 
to 384 kb/s or fewer.)

In a typical installation, a splitter is used to separate the 
signal used for cable TV from the one used for data trans-
mission. The data cable is then connected to the modem. 
The modem can then either be connected directly to a com-
puter using a standard Ethernet “Cat 5” cable, or connected 
to a switch (or more commonly, a router) that will in turn 
provide the Internet connection to computers on the local 
network. (If the cable modem is connected directly to a 
computer, additional security against intrusions should also 
be provided. See firewall.)

A typical cable TV system has from 60 channels to sev-
eral hundred, most of which are used for TV programming. 
A few channels are dedicated to providing Internet service. 
Users in a given division of the cable network (typically a 
small neighborhood) thus share a fixed pool of bandwidth, 
which can reduce speed at times of high usage. The cable 
system can adjust by reallocating channels from TV to data 
or by adding new channels.

DOCSIS (Data Over Cable Service Interface Specifica-
tion) is the industry standard for cable modems in North 
America.

Marketing Considerations
As of 2007 there were about 30 million households in North 
America with cable Internet service. Monthly service fees 
are $40–$60, though cable providers generally try to bun-
dle their cable TV and Internet services. Increasingly they 
are also offering telephone service over the cable network, 
using voice over Internet protocol (see voip).

In turn, telephone companies compete with cable com-
panies by offering DSL Internet access. Although “tradi-
tional” DSL is generally somewhat slower than cable 
modems, Verizon in 2005 announced a new, much faster 
fiber-based form of DSL called fios, with speeds of up to 
15 Mb/s (see also fiber optics). And just as cable compa-
nies can now offer phone service over the Internet, phone 
companies can offer video content, potentially competing 
with cable TV services. (Verizon has announced its own 
Internet-based television network, IPTV.) In general there is 
likely to be increased competition and more (if sometimes 
perplexing) choices for consumers.

Further Reading
Cable Industry Insider. Available online. URL: http://www.light-

reading.com/cdn/. Accessed May 10, 2007.
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cache
A basic problem in computer design is how to optimize 
the fetching of instructions or data so that it will be ready 
when the processor (CPU) needs it. One common solution 
is to use a cache. A cache is an area of relatively fast-access 
memory into which data can be stored in anticipation of its 
being needed for processing. Caches are used mainly in two 
contexts: the processor cache and the disk cache.

CPU Cache
The use of a processor cache is advantageous because 
instructions and data can be fetched more quickly from 
the cache (static memory chips next to or within the CPU) 
than they can be retrieved from the main memory (usu-
ally dynamic RAM). An algorithm analyzes the instruc-
tions currently being executed by the processor and tries 
to anticipate what instructions and data are likely to be 
needed in the near future. (For example, if the instructions 
call for a possible branch to one of two sets of instruc-
tions, the cache will load the set that has been used most 
often or most recently. Since many programs loop over 
and over again through the same instructions until some 
condition is met, the cache’s prediction will be right most 
of the time.)

These predicted instructions and data are transferred 
from main memory to the cache while the processor is 
still executing the earlier instructions. If the cache’s predic-
tion was correct, when it is time to fetch these instructions 
and data they are already waiting in the high-speed cache 
memory. The result is an effective increase in the CPU’s 
speed despite there being no increase in clock rate (the rate 
at which the processor can cycle through instructions).

The effectiveness of a processor cache depends on two 
things: the mix of instructions and data being processed and 
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the location of the cache memory. If a program uses long 
sequences of repetitive instructions and/or data, caching will 
noticeably speed it up. A cache located within the CPU itself 
(called an L1 cache) is faster (albeit more expensive) than an 
L2 cache, which is a separate set of chips on the motherboard.

Changes made to data by the CPU are normally written 
back to the cache, not to main memory, until the cache is 
full. In multiprocessor systems, however, designers of pro-
cessor caches must deal with the issue of cache coherency. 
If, for example, several processors are executing parts of the 
same code and are using a shared main memory to commu-
nicate, one processor may change the value of a variable in 
memory but not write it back immediately (since its cache 
is not yet full). Meanwhile, another processor may load the 
old value from the cache, unaware that it has been changed. 
This can be prevented by using special hardware that can 
detect such changes and automatically “write through” the 
new value to the memory. The processors, having received 
a hardware or software “signal” that data has been changed, 
can be directed to reread it.

Disk Cache
A disk cache uses the same general principle as a proces-
sor cache. Here, however, it is RAM (either a part of main 
memory or separate memory on the disk drive) that is the 
faster medium and the disk drive itself that is slower. When 
an application starts to request data from the disk, the cache 
reads one or more complete blocks or sectors of data from the 
disk rather than just the data record being requested. Then, if 
the application continues to request sequential data records, 
these can be read from the high-speed memory on the cache 
rather than from the disk drive. It follows that disk caching 
is most effective when an application, for example, loads a 
database file that is stored sequentially on the disk.

Similarly, when a program writes data to the disk, the 
data can be accumulated in the cache and written back to 
the drive in whole blocks. While this increases efficiency, 
if a power outage or other problem erases or corrupts the 
cache contents, the cache will no longer be in synch with 
the drive. This can cause corruption in a database.

Microsoft’s Windows Vista introduced an ingenious 
type of cache at the system level. The “ReadyBoost” features 
allows many inexpensive USB flash drives to be used auto-
matically as disk caches to store recently used data that had 
been paged out of main RAM memory.

Network Cache
Caching techniques can be used in other ways. For exam-
ple, most Web browsers are set to store recently read pages 
on disk so that if the user directs the browser to go back to 
such a page it can be read from disk rather than having to 
be retransmitted over the Internet (generally a slower pro-
cess). Web servers and ISPs (such as cable services) can also 
cache popular pages so they can be served up quickly.

Further Reading
Nottingham, Mark. “Caching Tutorial for Web Authors and Web-
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Internet/Cache/index._html. Accessed May 24, 2007.
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ref/mbsys/cache/. Accessed April 14, 2008.

Peir, J.-K., W. Hsu, and A. J. Smith. “Implementation Issues in 
Modern Cache Memories.” IEEE Transactions on Computers, 
48, 2 (1998): 100–110.

calculator
The use of physical objects to assist in performing calcula-
tions begins in prehistory with such practices as count-
ing with pebbles or making what appears to be counting 
marks on pieces of bone. Nor should such simple manipula-
tions be despised: In somewhat more sophisticated form it 
yielded the abacus, whose operators regularly outperformed 
mechanical calculators until the advent of electronics.

Generally, however, the term calculator is used to refer 
to a device that is able to store a number, add it to another 
number, and mechanically produce the result, taking care 
of any carried digits. In 1623, astronomer Johannes Kepler 
commissioned such a machine from Wilhelm Schickard. 
The machine combined a set of “Napier’s bones” (slides 
marked with logarithmic intervals, the ancestor of the slide 
rule) and a register consisting of a set of toothed wheels that 
could be rotated to displays the digits 0 to 9, automatically 
carrying one place to the left. This ingenious machine was 
destroyed in a fire before it could be delivered to Kepler.

In 1642, French philosopher and mathematician Blaise 
Pascal invented an improved mechanical calculator. Its 
mechanism used a carry mechanism with a weight that 
would drop when a carry was reached, pulling the next 
wheel into position. This avoided having to use excessive 
force to carry a digit through several places. Pascal pro-
duced a number of his machines and tried to market them 
to accountants, but they never really caught on.

Schikard’s and Pascal’s calculators could only add, but 
in 1674 German mathematician Gottfried Wilhelm Leibniz 
invented a calculator that could work with all the digits of 
a number at once, rather than carrying from digit to digit. 
It worked by allowing a variable number of gear teeth to 
be engaged in each digit wheel. The operator could, for 
example, set the wheels to a number such as 215, and then 
turn a crank three times to multiply it by three, giving a 
result of 645. This mechanism, gradually improved, would 
remain fundamental to mechanical calculators for the next 
three centuries.

The first calculator efficient enough for general business 
use was invented by an American, Dorr E. Felt, in 1886. 
His machine, called a Comptometer, used the energy trans-
mitted through the number-setting mechanism to perform 
the addition, considerably speeding up the calculating pro-
cess. Improved machines by William Burroughs and oth-
ers would replace the arm of the operator with an electric 
motor and provide a printing tape for automatically record-
ing input numbers and results.

Electronic Calculators
The final stage in the development of the calculator would 
be characterized by the use of electronics to replace 
mechanical (or electromechanical) action. The use of logic 
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circuits to perform calculations electronically was first seen 
in the giant computers of the late 1940s, but this was obvi-
ously impractical for desktop office use. By the late 1960s, 
however, transistorized calculators comparable in size to 
mechanical desktop calculators came into use. By the 1970s, 
the use of integrated circuits made it possible to shrink the 
calculator down to palm-size and smaller. These calculators 
use a microprocessor with a set of “microinstructions” that 
enable them to perform a repertoire of operations ranging 
from basic arithmetic to trigonometric, statistical, or busi-
ness-related functions.

The most advanced calculators are programmable by 
their user, who can enter a series of steps (including per-
haps decisions and branching) as a stored program, and 
then apply it to data as needed. At this point the calculator 
can be best thought of as a small, somewhat limited com-
puter. However, even these limits are constantly stretched: 
During the 1990s it became common for students to use 
graphing calculators to plot equations. Calculator use is 
now generally accepted in schools and even in the taking of 
the Scholastic Aptitude Test (SAT). However, some educa-
tors are concerned that overdependence on calculators may 
be depriving students of basic numeracy, including the abil-
ity to estimate the magnitude of results.
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cars and computing
Development of automotive technology has tended to be 
incremental rather than revolutionary. The core “hardware” 
such as the engine and drive train has changed little over 
several decades, other than the replacement of carburetors 
with fuel injection systems, and some improvements in 
areas such as brake design. On the other hand there have 
been significant improvements in safety features such as 
seat belts, air bags, and improved crash absorption barriers.

In recent years, however, the incorporation of comput-
ers in automobile design (see also embedded system) has 
led to a number of significant advances in areas such as 
fuel efficiency, traction/stability, crash response, and driver 
information and navigation. Put simply, cars are becoming 
“smarter” and are making driving easier and safer.

Hybrid cars (such as gas/electric systems) depend on 
computers to sense how the car is being driven and when 
to augment electric power with the gas engine, as well as 
controlling the feeding of power back into the batteries (as 
in regenerative braking). In all cars, a general-purpose com-
puting platform (such as one that has been developed by 
Microsoft) can keep drivers up to date on everything from 
road conditions to regular maintenance reminders. Many 
purchasers of higher-end vehicles are purchasing services 
such as OnStar that provide a variety of communication, 
navigation, and security and safety features. An example of 

the latter includes the automatic sending of a signal when 
air bags are deployed. An operator then tries to determine if 
assistance is needed, and contacts local dispatchers. Drivers 
who lock themselves out accidentally can also have their 
cars unlocked remotely.

Another promising approach is to build systems that 
can monitor the driver’s condition or behavior. For exam-
ple, by analyzing images of the driver’s eyes, facial features, 
and posture (such as slumping), the car may be able to tell 
when the driver has a high probability of being impaired 
(sleepy, drunk, or sick) and take appropriate action. (Of 
course many drivers may object to having their car “watch” 
them all the time.)

Ultimate Smart Cars
Much future progress in car computing will depend on creat-
ing integrated networking between vehicles and the road. An 
advanced navigation system could take advantage of real-time 
information being transmitted by the surrounding vehicles. 
For example, a stalled car would transmit warning messages 
to other drivers about the impending obstacle. Vehicles that 
sense an oil slick, ice, or other road hazard could also “mark” 
the location so it can be avoided by subsequent drivers. Data 
about the speed and spacing of traffic could provide real-time 
information about traffic jams, possibly routing vehicles into 
alternative lanes or other roads to reduce congestion and 
travel time (see mapping and navigation systems).

For many futurists, the ultimate “smart car” is one that 
can drive itself with little or no input from its human occu-
pant. Such cars (with appropriate infrastructure) could 
eliminate most accidents, use roads more efficiently, and 
maintain mobility for a rapidly aging population. Such events 
as the annual DARPA automated vehicle challenge show con-
siderable progress being made: Automated cars are already 
driving cross-country, with the human driver or follow-on 
vehicle serving only as a safety backup. In 2005 for the first 
time some competitors actually made it across the finish 
line. “Stanley,” a robotic Volkswagen Touareg designed by 
Stanford University, won the race over an arduous 131-mile 

This Mercedes Benz has an integrated navigation system—a fea-
ture appearing increasingly in other higher-end cars.  (© Wolf-
gang Meier / Visum / The Image Works)
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Mojave Desert course, navigating by means of a camera, laser 
range finders, and radar. In 2007 the contest entered a more 
difficult arena, where the robot vehicles had to deal with 
simulated urban traffic, negotiate intersections and traffic 
circles, and merge with traffic, all while obeying traffic laws.

Meanwhile efforts continue for developing a practical 
automated system that could be used for everyday driving. A 
“tethered” system using magnetic or radio frequency guides 
embedded in the road would reduce the complexity of the 
on-board navigation system, but would probably require ded-
icated roads. A “free” system linked only wirelessly would be 
much more flexible, but would require the ability to visual-
ize and assess a constantly changing environment and, if 
necessary, make split-second decisions to avoid accidents. 
Such systems may also feature extensive automatic commu-
nication, where cars can provide each other with information 
about road conditions as well as their intended maneuvers.

The biggest obstacles to implementation of a fully auto-
mated highway system may be human rather than techni-
cal: the cost of the infrastructure, the need to convince the 
public the system is safe and reliable, and concerns about 
potential legal liability.

Ironically, just as information technology is making cars 
safer, such activities as cell phone use, text messaging, and 
use of in-car entertainment systems seem to be making 
drivers more distracted. Whether cars will get smart fast 
enough to compensate for increasingly inattentive drivers 
remains an open question.
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cascading style sheets  (CSS)
Most word processor users are familiar with the use of styles 
in formatting text. Using a built-in style or defining one’s 
own, particular characteristics can be assigned to the struc-
tural parts of a document, such as headings, lead and body 
paragraphs, quotations, references, and so on. There are sev-
eral advantages to using styles. Once a style is associated 
with an element, the formatting attached to that style can 
automatically be applied to all instances of the element. If the 
writer decides that, for example, level two headings should 
be in italics rather than normal font, a simple change to the 
“head2” style will change all level two headings to italics.

Cascading style sheets (CSS) extend this idea to the 
creation of Web pages. The style sheet defines the structural 
elements of the document and applies the desired format-
ting. Instead of the main text of the document being filled 
with formatting directives (see html), a style sheet is asso-
ciated with the document. When a compatible Web browser 
loads the page, it also loads the associated style sheet and 

uses it to determine how the page will be displayed. In 
other words, the structure of the document is separated 
from the details of its presentation. This not only makes 
it easier to change styles (as with word processing), but it 
also means that different style sheets can be used to tailor 
the document to different viewing situations (for example, 
viewing in a browser on a handheld PDA).

CSS uses a standard “box model” for laying out the pre-
sentation of a page. From outside in, the areas are defined 
as outer edge, margin, border, padding, inner edge, and the 
content area. Styles are applied in an order that depends 
on the relationship of the affected elements. For example, 
a style defined for the text body will be inherited by the 
paragraph, which can then redefine one or more of its ele-
ments. Similarly, an emphasis style used within a sentence 
might override the paragraph style in turn. It is this flowing 
of definitions down through the hierarchy of styles that cre-
ates the “cascading” part of CSS.

As CSS developed further, separate specifications have 
been provided for different media that can be included in 
a Web page: speech (to be read by a speech synthesizer), 
Braille (for a tactile Braille system), Emboss (for Braille 
printing), Handheld (for PDAs and other devices with lim-
ited display space), Print, Projection (for computer projec-
tion or transparencies), Screen, Tty (teletype-like displays 
with fixed-width characters), and TV.
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Web page to be handled separately from the page contents. Specifi-
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CASE  (computer-aided software engineering)
During the late 1950s and 1960s, software rapidly grew more 
complex—especially operating system software and large 
business applications. With the typical program consist-
ing of many components being developed by different pro-
grammers, it became difficult both to see the “big picture” 
and to maintain consistent procedures for transferring data 
from one program module to another. As computer scien-
tists worked to develop sounder principles (see structured 
programming) it also occurred to them that the power of 
the computer to automate procedures could be used to cre-
ate tools for facilitating program design and managing the 
resulting complexity. CASE, or computer-aided software 
engineering, is a catchall phrase that covers a variety of such 
tools involved with all phases of development.

Design Tools
The earliest design tool was the flowchart, often drawn 
with the aid of a template that could be used to trace the 
symbols on paper (see flowchart). With its symbols for 
the flow of execution through branching and looping, the 
flowchart provides a good tool for visualizing how a pro-
gram is intended to work. However large and complex pro-
grams often result in a sea of flowcharts that are hard to 
relate to one another and to the program as a whole. Start-
ing in the 1960s, the creation of programs for manipulating 
flow symbols made it easier both to design flowcharts and 
to visualize them in varying levels of detail.

Another early tool for program design is pseudocode, a 
language that is at a higher level of abstraction than the tar-
get programming language, but that can be refined by add-
ing details until the actual program source code has been 
specified (see pseudocode). This is analogous to a writer 
outlining the main topics of an essay and then refining 
them into subtopics and supporting details. Attempts were 
made to create a well-defined pseudocode that could be 
automatically parsed and transformed into compilable lan-
guage statements, but they met with only limited success.

During the 1980s and 1990s, the graphics capabilities 
of desktop computers made it attractive to use a visual 
rather than linguistic approach to program design. Symbols 
(sometimes called “widgets”) represent program functions 
such as reading data from a file or creating various kinds 
of charts. A program can be designed by connecting the 
widgets with “pipes” representing data flow and by setting 
various characteristics or properties.

CASE principles can also be seen in mainstream pro-
gramming environments such as Microsoft’s Visual Basic 
and Visual C++, Borland’s Delphi and Turbo C++, and oth-
ers (see also programming environment). The design 
approach begins with setting up forms and placing objects 
(controls) that represent both user interface items (such as 
menus, lists, and text boxes) and internal processing (such 

as databases and Web browsers). However these environ-
ments do not in themselves provide the ability of full CASE 
tools to manage complex projects with many components.

Analysis Tools
Once a program has been designed and implementation is 
under way, CASE tools can help the programmers maintain 
consistency across their various modules. One such tool 
(now rather venerable) is the data dictionary, which is a 
database whose records contain information about the defi-
nition of data items and a list of program components that 
use each item (see data dictionary). When the definition 
of a data item is changed, the data dictionary can provide 
a list of affected components. Database technology is also 
applied to software design in the creation of a database of 
objects within a particular program, which can be used to 
provide more extensive information during debugging.

Integration and Trends
A typical CASE environment integrates a variety of tools 
to facilitate the flow of software development. This pro-
cess may begin with design using visual flowcharting, 

Many tools are used today to aid the complex endeavor of software 
engineering. Design tools include the traditional flowchart, pseudo-
code, and design specifications document. Additionally, many sys-
tems today use interactive, visual layout tools. During the coding 
and debugging phase, a data dictionary and/or class database can 
be used to describe and verify relationships and characteristics of 
objects in the program. Once the code is “built,” a version control 
system keeps track of what was changed, and various automatic 
documentation features can be used to obtain listings of classes, 
functions, and other program elements.
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“rapid prototyping,” or other design tools. Once the over-
all design is settled, the developer proceeds to the detailed 
specification of objects used by the program and perhaps 
creates a data dictionary or other databases with informa-
tion about program objects. During the coding process, 
source control or versioning facilities help log and keep 
track of the changes to code and the succession of new 
versions (“builds”). While testing the program, an inte-
grated debugger (see bugs and debugging) can use infor-
mation from the program components database to help 
pinpoint errors. As the code is finished, other tools can 
automatically generate documentation and other support-
ing materials (see technical writing and documenta-
tion of program code).

Just as some early proponents of the English-like 
COBOL language proclaimed that professional program-
mers would no longer be needed for generating busi-
ness applications, CASE tools have often been hyped as a 
panacea for all the ills of the software development cycle. 
Rather than causing the demise of the programmer, how-
ever, CASE tools have played an important role in keeping 
software development viable.

In recent years, tools for managing or debugging code 
have been supplemented with tools to aid the design pro-
cess itself (see modeling languages). There are also tools 
to aid in refactoring, or the process of reorganizing and 
clarifying code to make it easier to maintain.

In a broader sense, CASE can also include tools for man-
aging the programming team and its efforts. Even social 
networking tools (see blogs and blogging and wikis and 
Wikipedia) can play a part in keeping programmers in 
touch with issues and concerns relating to many different 
aspects of a project.
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CD-ROM and DVD-ROM
CD-ROM (compact disk read-only memory) is an optical 
data storage system that uses a disk coated with a thin layer 
of metal. In writing data, a laser etches billions of tiny pits 
in the metal. The data is encoded in the pattern of pits and 
spaces between them (called “lands”). Unlike the case with 
a magnetic hard or floppy disk, the data is written in a 
single spiral track that begins at the center of the disk. The 
CD-ROM drive uses another laser to read the encoded data 
(which is read from the other side as “bumps” rather than 
pits). The drive slows down as the detector (reading head) 
moves toward the outer edge of the disk. This maintains a 
constant linear velocity and allows for all sectors to be the 
same size. This system was adapted from the one used for 

the audio CDs that largely supplanted phonograph records 
during the 1980s.

A CD can hold about 650 MB of data. By the early 1990s, 
the CD had become inexpensive and ubiquitous, and it has 
now largely replaced the floppy disk as the medium of soft-
ware distribution. The relatively large capacity meant that 
one CD could replace multiple floppies for a distribution 
of products such as Microsoft Windows or Word, and it 
also made it practical to give users access to the entire text 
of encyclopedias and other reference works. Further, the 
CD was essential for the delivery of multimedia (graphics, 
video, and sound) to the desktop, since such applications 
require far more storage than is available on 1.44-MB floppy 
disks. CD drives declined in price from several hundred 
dollars to about $50, while their speeds have increased by a 
factor of 30 or more, allowing them to keep up with games 
and other software that needs to read data quickly from the 
disk.

Recordable CDs
In the late 1990s, a new consumer technology enabled users 
to create their own CDs with data or audio tracks. The 
cheapest kind, CD-R (Compact Disk Recordable) uses a 
layer of a dyed material and a thin gold layer to reflect the 
laser beam. Data is recorded by a laser beam hitting the dye 
layer in precise locations and marking it (in one of several 
ways, depending on technology). The lengths of marked 
(“striped”) track and unmarked track together encode the 
data.

A more versatile alternative is the CD-RW (Compact 
Disk, Readable/Writeable), which can be recorded on, 
erased, and re-recorded many times. These disks have a 
layer made from a mixture of such materials as silver, anti-
mony, and rare earths such as indium and tellurium. The 

Schematic of the components of a CD drive. The tracking drive 
and tracking motor move the laser pickup assembly across the 
spinning disk drive to position it to the correct track. The laser 
beam hits the disk surface, reflecting differently from the pits and 
flat areas (lands). This pattern of differences encodes the data as 
ones and zeros.
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mixture forms many tiny crystals. To record data, an infra-
red laser beam is directed at pinpoint spots on the layer. 
The heat from the beam melts the crystals in the target 
spot into an amorphous mass. Because the amorphous state 
has lower reflectivity than the original crystals, the reading 
laser can distinguish the marked “pits” from the surround-
ing lands. Because of a special property of the material, a 
beam with a heat level lower than the recording beam can 
reheat the amorphous material to a point at which it will, 
upon cooling, revert to its original crystal form. This per-
mits repeated erasing and re-recording.

DVD-ROM
The DVD (alternatively, Digital Video Disc or Digital Ver-
satile Disc) is similar to a CD, but uses laser light with a 
shorter wavelength. This means that the size of the pits and 
lands will be considerably smaller, which in turns means 
that much more data can be stored on the same size disk. A 
DVD disk typically stores up to 4.7 GB of data, equivalent to 
about six CDs. This capacity can be doubled by using both 
sides of the disk.

The high capacity of DVD-ROMs (and their record-
able equivalent, DVD-RAMs) makes them useful for stor-
ing feature-length movies or videos, very large games and 
multimedia programs, or large illustrated encyclopedias. 
The development of high-definition television (HDTV) 
standards spurred the introduction of higher capacity 
DVD formats. The competition between Sony’s Blu-Ray 
and HD-DVD (backed by Toshiba and Microsoft, among 
others) was resolved by 2008 in favor of the former. Blu-
Ray offers high capacity (25GB for single layer discs, 50GB 
for dual layer).
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cellular automata
In the 1970s, British mathematician John H. Conway 
invented a pastime called the Game of Life, which was pop-
ularized in Martin Gardner’s column in Scientific American. 
In this game (better termed a simulation), each cell in a grid 
“lived” or “died” according to the following rules:

	 1. � A living cell remains alive if it has either two or 
three living neighbors.

	 2. � A dead cell becomes alive if it has three living 
neighbors.

	 3. � A living cell dies if it has other than two or three 
living neighbors.

Investigators created hundreds of starting patterns of liv-
ing cells and simulated how they changed as the rules were 
repeatedly applied. (Each application of the rules to the 
cells in the grid is called a generation.) They found, for 

example, that a simple pattern of three living cells in a row 
“blinked” or switched back and forth between a horizon-
tal and vertical orientation. Other patterns, called “glider 
guns” ejected smaller patterns (gliders or spaceships) that 
traveled across the grid.

The Game of Life is an instance of the general class 
called cellular automata. Each cell operates like a tiny com-
puter that takes as input the states of its neighbors and 
produces its own state as the output. (See also finite state 
machine.) The cells can be arranged in one (linear), two 
(grid), or three dimensions, and a great variety of sets of 
rules can be applied to them, ranging from simple variants 
of Life to exotic rules that can take into account how long a 
cell has been alive, or subject it to various “environmental” 
influences.

Applications
Cellular automata theory has been applied to a variety of 
fields that deal with the complex interrelationships of com-
ponents, including biology (microbe growth and popula-
tion dynamics in general), ecology (including forestry), and 
animal behavior, such as the flight of birds. (The cues that a 
bird identifies in its neighbors are like the input conditions 
for a cell in a cellular automaton. The “output” would be the 
bird’s flight behavior.)

The ability of cellular automatons to generate a rich 
complexity from simple components and rules mimics the 
development of life from simple components, and thus cel-
lular automation is an important tool in the creation and 
study of artificial life. This can be furthered by com-
bining a set of cellular automation rules with a genetic 
algorithm, including a mechanism for inheritance of 
characteristics. Cellular automation principles can also be 
applied to engineering in areas such as pattern or image 
recognition.

A screen from a Game of Life simulator called Mirek’s Celebration. 
(This version runs as a Web browser–accessible Java applet.) This 
and other programs make it easy to experiment with a variety of 
Life patterns and track them across hundreds of “generations.”
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In 2002, computer scientist and mathematician Stephen 
Wolfram (developer of the Mathematica program) published 
a book titled A New Kind of Science that undertakes the 
modest project of explaining the fundamental structure and 
behavior of the universe using the principles of cellular 
automation. Time will tell whether this turns out to be 
simply an idiosyncratic (albeit interesting) approach or a 
generally useful paradigm.
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censorship and the Internet
Governments have always to varying degrees concerned 
themselves with the content of public media. The grow-
ing use of the Internet for expressive activities (see blogs 
and blogging and journalism and computers) has 
prompted authoritarian governments such as that of China 
to attempt to block “objectionable” material both through 
filtering techniques (see Web filter) and through pressure 
on service providers. Further, users identified as creators of 
banned content may be subjected to prosecution. However 
because of the Internet’s decentralized structure and the 
ability of users to operate relatively anonymously, Internet 
censorship tends to be only partially effective (see ano-
nymity and the Internet).

In the democratic West, Internet censorship generally 
applies to only a few forms of content. Attempts to crimi-
nalize the online provision of pornography to minors in the 
1996 Communications Decency Act have generally been 
overturned by the courts as excessively infringing on the 
right of adults to access such content. However, a succession 
of bills seeking to require schools and libraries to install 
Web-filtering software culminated in the Children’s Inter-
net Protection Act, which was upheld by the U.S. Supreme 
Court in 2003.

Another area of potential censorship involves the rights 
of bloggers and other nontraditional journalists to post or 
link to documents that might be involved with a legal case.

Although the term “censorship” is sometimes lim-
ited to government action under criminal law, there are 
other ways in which Internet content may be restricted. 
For example, content providers seek to protect their work 
from unauthorized copying or distribution (see intellec-
tual property and computing). Civil sanctions can be 
brought to bear on violators of copyright or in cases of 

libel. However, as with other forms of censorlike activity 
on the Internet, the targeted behavior can be curtailed only 
to a limited extent.

Censorship in China
China has played a central role in the debate over cen-
sorship. The rapidly growing Chinese economy offers 
seemingly unlimited market potential for Internet-based 
businesses and sellers of software and hardware. However 
the Chinese government’s desire to closely control the 
spread of “subversive” ideas has brought it into collision 
with the liberal ideas shared by many of the Internet’s most 
important developers.

Human rights organizations such as Amnesty Interna-
tional have criticized online service providers such as Yahoo, 
Google, and Microsoft for providing the Internet addresses 
of users who have then been arrested. The companies have 
been accused of putting the potential profits of China’s huge 
market ahead of ensuring free access to information. Gener-
ally, the companies say they have no choice but to comply 
with all local laws and legal demands for information about 
users. However, critics charge that the technology compa-
nies have often gone well beyond mere compliance to the 
provision of sophisticated filtering software for Web sites, 
blogs, and online chat and discussion groups.

The actual extent of censorship in China seems to vary 
considerably, depending on shifting political consider-
ations. The nation’s increasingly sophisticated users often 
find ways around the censorship, such as through using 
“proxy servers” that are inside the “Great Firewall” but can 
connect to the outside Internet. (Encrypted protocols such 
as VPN [virtual private networks] and SSH [secure shell] 
can also be used, because their content is not detected by 
monitoring and filtering software.)

Although generally not as highly organized, Internet 
censorship can also be found in countries such as Burma 
(Myanmar), North Korea, Iran, and Syria and to a lesser 
extent in South Korea and Saudi Arabia.

While Internet censorship can be viewed as being ulti-
mately a political problem, technical realities limit its effec-
tiveness, and curtailing the free exchange of information 
and open-ended communication that the Net affords is 
likely to have economic costs as well.
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While some parents and many schools use filtering software to block Web sites considered to be inappropriate for children, another approach is to 
provide a site with “child friendly” material and links.  (Image courtesy of the estate of Keith Haring, www.haringkids.com)
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central processing unit  See CPU.

Cerf, Vinton D.
(1943–  )
American
Computer Scientist

Vinton (Vint) Cerf is a key pioneer in the development of 
the packet-switched networking technology that is the basis 
for the Internet. In high school, Cerf distinguished himself 
from his classmates by wearing a jacket and a tie and car-
rying a large brown briefcase, which he later described as 
“maybe a nerd’s way of being different.” He has a lifelong 
love for fantasy and science fiction, both of which explore 
difference. Finally, Cerf was set apart by being hearing-
impaired as a result of a birth defect. He would overcome 
this handicap through a combination of hearing aids and 
communications strategies. And while he was fascinated by 
chemistry and rocketry, it would be communications, math, 
and computer science that would form his lifelong interest.

After graduating from Stanford in 1965 with a B.S. in 
mathematics, Cerf worked at IBM as an engineer on its 
time-sharing systems, while broadening his background in 
computer science. At UCLA he earned on M.S. and then a 
Ph.D. in computer science while working on technology 
that could link one computer to another. Soon he was work-
ing with Len Kleinrock’s Network Measurement Center to 
plan the ARPA network, a government-sponsored computer 
link. In designing software to simulate a network that as 
yet existed only on paper, Cerf and his colleagues had to 
explore the issues of network load, response time, queuing, 
and routing, which would prove fundamental for the real-
world networks to come.

By the summer of 1968, four universities and research 
sites (UCLA, UC Santa Barbara, the University of Utah, and 
SRI) as well as the firm BBN (Bolt Beranek and Newman) 
were trying to develop a network. At the time, a custom 
combination of hardware and software had to be devised 
to connect each center’s computer to the other. The hard-
ware, a refrigerator-sized interface called an IMP, was still 
in development.

By 1970, the tiny four-node network was in operation, 
cobbled together with software that allowed a user on one 
machine to log in to another. This was a far cry from a 
system that would allow any computer to seamlessly com-
municate with another, however. What was needed on the 
software end was a universal, consistent language—a pro-
tocol—that any computer could use to communicate with 
any other computer on the network.

In a remarkable display of cooperation, Cerf and his 
colleagues in the Network Working Group set out to design 
such a system. The fundamental idea of the protocol is that 
data to be transmitted would be turned into a stream of 
“packets.” Each packet would have addressing information 
that would enable it to be routed across the network and 
then reassembled back into proper sequence at the desti-
nation. Just as the Post Office doesn’t need to know what’s 
in a letter to deliver it, the network doesn’t need to know 

whether the data it is handling is e-mail, a news article, or 
something else entirely. The message could be assembled 
and handed over to a program that would know what to do 
with it.

With the development of what eventually became TCP/
IP (Transmission Control Protocol/Internet Protocol) Vint 
Cerf and Bob Kahn essentially became the fathers of the 
Internet we know today (see TCP/IP). As the online world 
began to grow in the 1980s, Cerf worked with MCI in the 
development of its electronic mail system, and then set up 
systems to coordinate Internet researchers.

In later years, Cerf undertook new initiatives in the 
development of the Internet. He was a key founder and the 
first president of the Internet Society in 1992, serving in that 
post until 1995 and then as chairman of the board, 1998–
1999. This group seeks to plan for expansion and change 
as the Internet becomes a worldwide phenomenon. Cerf’s 
interest in science fiction came full circle in 1998 when he 
joined an effort at the Jet Propulsion Laboratory (JPL) in 
Pasadena, California. There they are designing an “inter-
planetary Internet” that would allow a full network connec-
tion between robot space probes, astronauts, and eventual 
colonists on Mars and elsewhere in the solar system.

In 2005 Cerf joined Google as its “chief Internet evan-
gelist,” where he has the opportunity to apply his imagina-
tion to network applications and access policies. Cerf also 
served as chairman of the board of the Internet Corporation 
for Assigned Names and Numbers (ICANN), a position that 
he left in 2007.

Cerf has received numerous honors, including the IEEE 
Kobayashi Award (1992), International Telecommunications 
Union Silver Medal (1995), and the National Medal of Tech-
nology (1997). In 2005 Cerf (along with Robert Kahn) was 
awarded the Presidential Medal of Freedom, the nation’s 
highest civilian award.
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certificate, digital
The ability to use public key encryption over the Inter-
net makes it possible to send sensitive information (such 
as credit card numbers) to a Web site without electronic 
eavesdroppers being able to decode it and use it for crimi-
nal purposes (see encryption and computer crime and 
security). Any user can send information by using a per-
son or organization’s public key, and only the owner of the 
public key will be able to decode that information.

However, the user still needs assurance that a site actu-
ally belongs to the company that it says it does, rather 
than being an imposter. This assurance can be provided 
by a trusted third party certification authority (CA), such 
as VeriSign, Inc. The CA verifies the identity of the appli-
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cant and then provides the company with a digital certifi-
cate, which is actually the company’s public key encrypted 
together with a key used by the CA and a text message. 
(This is sometimes called a digital signature.) When a user 
queries the Web site, the user’s browser uses the CA’s pub-
lic key to decrypt the certificate holder’s public key. That 
public key is used in turn to decrypt the accompanying 
message. If the message text matches, this proves that the 
certificate is valid (unless the CA’s private key has somehow 
been compromised).

The supporting technology for digital certification is 
included in a standard called Secure Sockets Layer (SSL), 
which is a protocol for sending encrypted data across the 
Internet. SSL is supported by leading browsers such as 
Microsoft Internet Explorer and Netscape. As a result, digi-
tal certification is usually transparent to the user, unless 
the user is notified that a certificate cannot be verified.

Digital certificates are often attached to software such as 
browser plug-ins so the user can verify before installation 
that the software actually originates with its manufacturer 
and has not been tampered with (such as by introduction of 
a virus).

The use of digital certification is expanding. For exam-
ple, VeriSign and the federal General Services Administra-
tion (GSA) have begun an initiative called ACES (Access 
Certificates for Electronic Services) that will allow citizens 
a secure means to send information (such as loan applica-
tions) and to view benefits records. The IRS has a pilot 

program for accepting tax returns that are digitally certified 
and signed.
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certification of computer professionals
Unlike medicine, the law, or even civil engineering, the 
computer-related fields do not have legally required certi-
fication. Given society’s critical dependence on computer 
software and hardware for areas such as infrastructure 
management and medical applications, there have been 
persistent attempts to require certification or licensing of 
software engineers. However, the fluid nature of the infor-
mation science field would make it difficult to decide which 
application areas should have entry restrictions.

At present, a variety of academic degrees, professional 
affiliations, and industry certificates may be considered in 
evaluating a candidate for a position in the computing field.

Academic and Professional Credentials
The field of computer science has the usual levels of aca-
demic credentials (baccalaureate, master’s, and doctoral 
degrees), and these are often considered prerequisites for 
an academic position or for industry positions that involve 
research or development in areas such as robotics or arti-
ficial intelligence. For business-oriented IT positions, a 
bachelor’s degree in computer science or information sys-
tems may be required or preferred, and candidates who 
also have a business-oriented degree (such as an MBA) may 
be in a stronger position. However, degrees are generally 
viewed only as a minimum qualification (or “filter”) before 
evaluating experience in the specific application or platform 
in question. While not a certification, membership in the 
major professional organizations such as the Association 
for Computing Machinery (ACM) and Institute for Electri-
cal and Electronic Engineers (IEEE) can be viewed as part 
of professional status. Through special interest groups and 
forums, these organizations provide computer professionals 
with a good way to track emerging technical developments 
or to broaden their knowledge.

In the early years of computing and again, in the micro-
computer industry of the 1980s, programming experience 
and ability were valued more highly than academic creden-
tials. (Bill Gates, for example, had no formal college train-
ing in computer science.) In general, degree or certification 
requirements tend to be imposed as a sector of the informa-
tion industry becomes well defined and established in the 
corporate world. For example, as local area networks came 
into widespread use in the 1980s, certifications were devel-
oped by Microsoft, Novell, and others. In turn, colleges 
and trade schools can train technicians, using the certifi-
cate examinations to establish a curriculum, and numerous 
books and packaged training courses have been marketed.

Digital certification relies upon public key cryptography and the 
existence of a trusted third party, the Certificate Authority (CA). 
First a business properly identifies itself to the CA and receives a 
digital certificate. A consumer can obtain a copy of the business’s 
digital certificate and use it to obtain the business’s public key from 
the CA. The consumer can now send encrypted information (such 
as a credit card number) to the business.
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In a newly emerging sector there is less emphasis on 
credentials (which are often not yet established) and more 
emphasis on being able to demonstrate knowledge through 
having actually developed successful applications. Thus, in 
the late 1990s, a high demand for Web page design and pro-
gramming emerged, and a good portfolio was more impor-
tant than the holding of some sort of certificate. However as 
e-commerce and the Web became firmly established in the 
corporate world, the cycle is beginning to repeat itself as 
certification for webmastering and e-commerce applications 
is developed.

Industry Certifications
Several major industry certifications have achieved wide-
spread acceptance.

Since 1973, the Institute for Certification of Computing 
Professionals (ICCP) has offered certification based on gen-
eral programming and related skills rather than mastery of 
particular platforms or products. The Associate Computing 
Professional (ACP) certificate is offered to persons who have 
a basic general knowledge of information processing and 
who have mastered one major programming language. The 
more advanced Certified Computing Professional (CCP) cer-
tificate requires several years of documented experience in 
areas such as programming or information systems manage-
ment. Both certificates also require passing an examination.

A major trade group, the Computing Technology Indus-
try Association (CompTIA) offers the A+ Certificate for 
computer technicians. It is based on passing a Core Service 
Technician exam focusing on general hardware-related skills 
and a DOS/Windows Service Technician exam that empha-
sizes knowledge of the operating system. The exams are 
updated regularly based on required job skills as assessed 
through industry practices.

Networking vendor Novell offers the Certified NetWare 
Engineer (CNE) certificate indicating mastery of the instal-
lation, configuration, and maintenance of its networking 
products or its GroupWise messaging system. The Certified 
NetWare Administrator (CNA) certificate emphasizes sys-
tem administration.

Microsoft offers a variety of certificates in its networking 
and applications development products. The best known 
is the Microsoft Certified System Engineer (MCSE) certifi-
cate. It is based on a series of required and elective exams 
that cover the installation, management, configuration, and 
maintenance of Windows 2000 and other Microsoft net-
works.

A number of other vendors including Cisco Systems and 
Oracle offer certification in their products. Given the ever-
changing marketplace, it is likely that most computer pro-
fessionals will acquire multiple certificates as their career 
advances.

Further Reading
CompTIA Certification Page. Available online. URL: http://www.

comptia.org/. Accessed May 28, 2007.
Institute for Certification of Computing Professionals. Available 

online. URL: http://www.iccp.org. Accessed May 28, 2007.
“MCSE Guide.” Available online. URL: http://www.mcseguide.com/

Novell Education Page. Available online. URL: http://www.novell.
com/training/certinfo/howdoi.htm. Accessed May 28, 2007.

CGI  (common gateway interface)
By itself, a Web page coded in HTML is simply a “static” 
display that does not interact with the user (other than for 
the selection of links). (See html, dhtml, and xhtm.) Many 
Web services, including online databases and e-commerce 
transactions, require that the user be able to interact with 
the server. For example, an online shopper may need to 
browse or search a catalog of CD titles, select one or more 
for purchase, and then complete the transaction by provid-
ing credit card and other information. These functions are 
provided by “gateway programs” on the server that can 
access databases or other facilities.

One way to provide interaction with (and through) a Web 
page is to use the CGI (common gateway interface). CGI is a 
facility that allows Web browsers and other client programs 
to link to and run programs stored on a Web site. The stored 
programs, called scripts, can be written in various languages 
such as JavaScript or PHP (see scripting languages) and 
placed in a cgi-bin folder on the Web server.

The CGI script is referenced by an HTML hyperlink on 
the Web page, such as

<A HREF=“http://www.MyServer.com/cgi-bin/
MyScript”>MyScript </A>

Or more commonly, it is included in an HTML form 
that the user fills in, then clicks the Submit button. In 
either case, the script executes. The script can then pro-
cess the information the user provided on the form, and 
return information to the user’s Web browser in the form 

CGI or Common Gateway Interface allows a program linked to 
a Web page to obtain data from databases and use it to generate 
forms to be shown on users’ Web browsers. For example, a CGI 
program can link a Web user to a “shopping cart” and inventory 
system for online purchases.
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of an HTML document. The script can perform additional 
functions such as logging the user’s query for marketing 
purposes.

The complexity of Web features and the heavy load on 
servers have prompted a number of strategies for serving 
dynamic content more efficiently. Traditionally, each time 
a CGI request is passed to the URL for a script, the appro-
priate language interpreter must be loaded and initialized. 
However, modern Web servers such as Apache have built-in 
modules for commonly used scripting languages such as 
PHP, Perl, Python, and Ruby. This allows the Web server 
to run the script directly without the overhead of starting a 
new interpreter process.

A more fundamental shift in implementation is the 
development of methods to tie together DHTML and XML 
with a document model and scripting languages to allow 
for dynamic changes in page content without having to 
reload the page (see Ajax).

Note: the acronym CGI can also stand for “computer-
generated imagery” (see computer graphics).
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characters and strings
While the attention of the first computer designers focused 
mainly on numeric calculations, it was clear that much of 
the data that business people and others would want to 
manipulate with the new machines would be textual in 
nature. Billing records, for example, would have to include 
customer names and addresses, not just balance totals.

The “natural” representation of data in a computer is as 
a series of two-state (binary) values, interpreted as binary 
numbers. The solution for representing text (letters of the 
alphabet, punctuation marks, and other special symbols) is 
to assign a numeric value to each text symbol. The result is 
a character code, such as ASCII (American Standard Code 
for Information Interchange), which is the scheme used 
most widely today. (Another system, EBCDIC (Extended 
Binary-Coded Decimal Interchange Code) was used during 
the heyday of IBM mainframes, but is seldom used today.)

The seven-bit ASCII system is compact (using one byte 
of memory to store each character), and was quite suit-
able for early microcomputers that required only the basic 
English alphabet, punctuation, and a few control charac-
ters (such as carriage return). In an attempt to use charac-
ters to provide simple graphics capabilities, an “extended 
ASCII” was developed for use on IBM-compatible PCs. 
This used eight bits, increasing the number of charac-
ters available from 128 to 256. However, the use of bit-
mapped graphics in Windows and other operating systems 

made this version of ASCII unnecessary. Instead, the ANSI 
(American National Standards Institute) eight-bit charac-
ter set used the additional character positions to store a 
variety of special symbols (such as fractions and the copy-
right symbol) and various accent marks used in European 
languages.

Table of 7-Bit ASCII Character Codes

The following are control (nonprinting) characters:
0	 Null (nothing)
7	 Bell (rings on an old teletype; beeps on most PCs)
8	 Backspace
9	 Tab
10	� Line feed (goes to next line without changing column 

position)
13	 Carriage return (positions to beginning of next line)
26	 End of file
27	 [Esc] (Escape key)

The characters with codes from 32 to 127 produce printable 
characters.

32	 [space]	 64	 @	 96	 `
33	 !	 65	 A	 97	 a
34	 “	 66	 B	 98	 b
35	 #	 67	 C	 99	 c
36	 $	 68	 D	 100	 d
37	 %	 69	 E	 101	 e
38	 &	 70	 F	 102	 f
39	 ‘	 71	 G	 103	 g
40	 (	 72	 H	 104	 h
41	 )	 73	 I	 105	 i
42	 *	 74	 J	 106	 j
43	 +	 75	 K	 107	 k
44	 ‘	 76	 L	 108	 l
45	 -	 77	 M	 109	 m
46	 .	 78	 N	 110	 n
47	 /	 79	 O	 111	 o
48	 0	 80	 P	 112	 p
49	 1	 81	 Q	 113	 q
50	 2	 82	 R	 114	 r
51	 3	 83	 S	 115	 s
52	 4	 84	 T	 116	 t
53	 5	 85	 U	 117	 u
54	 6	 86	 V	 118	 v
55	 7	 87	 W	 119	 w
56	 8	 88	 X	 120	 x
57	 9	 89	 Y	 121	 y
58	 :	 90	 Z	 122	 z
59	 ;	 91	 [	 123	 {
60	 <	 92	 \	 124	 |
61	 =	 93	 ]	 125	 }
62	 >	 94	 ^	 126	 ~
63	 ?	 95	 -	 127	 [delete]
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As computer use became more widespread internation-
ally, even 256 characters proved to be inadequate. A new 
standard called Unicode can accommodate all of the world’s 
alphabetic languages including Arabic, Hebrew, and Japa-
nese (Kana Unicode schemes can also be used to encode 
ideographic languages (such as Chinese) and languages 
such as Korean that use syllabic components. At present 
each ideograph has its own character code, but Unicode 3.0 
includes a scheme for describing ideographs through their 
component parts (radicals). Most modern operating systems 
use Unicode exclusively for character representation. How-
ever, support in software such as Web browsers is far from 
complete, though steadily improving. Unicode also includes 
many sets of internationally used symbols such as those 
used in mathematics and science. In order to accommodate 
this wealth of characters, Unicode uses 16 bits to store each 
character, allowing for 65,535 different characters at the 
expense of requiring twice the memory storage.

Programming with Strings
Before considering how characters are actually manipulated 
in the computer, it is important to realize that what the 
binary value such as 1000001 (decimal 65) stored in a byte 
of memory actually represents depends on the context given 
to it by the program accessing that location. If the program 
declares an integer variable, then the data is numeric. If the 
program declares a character (char) value, then the data will 
be interpreted as an uppercase “A” (in the ASCII system).

Most character data used by programs actually repre-
sents words, sentences, or longer pieces of text. Multiple 
characters are represented as a string. For example, in tradi-
tional BASIC the statement:

NAME$ = “Homer Simpson”

declares a string variable called NAME$ (the $ is a suffix 
indicating a string) and sets its value to the character string 
“Homer Simpson.” (The quotation marks are not actually 
stored with the characters.)

Some languages (such as BASIC) store a string in mem-
ory by first storing the number of characters in the string, 
followed by the characters, with one in each byte of mem-
ory. In the family of languages that includes C, however, 
there is no string type as such. Instead, a string is stored as 
an array of char. Thus, in C the preceding example might 
look like this:

char Name [20] = “Homer Simpson”;

This declares Name as an array of up to 20 characters, and 
initializes it to the string literal “Homer Simpson.”

An alternative (and equivalent) form is:

char * Name = “Homer Simpson”;

Here Name is a pointer that returns the memory location 
where the data begins. The string of characters “Homer 
Simpson” is stored starting at that location.

Unlike the case with BASIC, in the C languages, the 
number of characters is not stored at the beginning of the 
data. Rather, a special “null” character is stored to mark the 
end of the string.

Programs can test strings for equality or even for greater 
than or less than. However, programmers must be careful 
to understand the collating sequence, or the order given to 
characters in a character set such as ASCII. For example the 
test

If State = “CA”

will fail if the current value of State is “ca.” The lowercase 
characters have different numeric values than their upper-
case counterparts (and indeed must, if the two are to be 
distinguished). Similarly, the expression:

“Zebra” < “aardvark”

is true because uppercase Z comes before lowercase “a” in 
the collating sequence.

Programming languages differ considerably in their 
facilities for manipulating strings. BASIC includes built-in 
functions for determining the length of a string (LEN) and 
for extracting portions of a string (substrings). For example 
given the string Test consisting of the text “Test Data,” the 
expression Right$ (Test, 4) would return “data.”

Following their generally minimalist philosophy, the 
C and C++ languages contains no string facilities. Rather, 
they are provided as part of the standard library, which can 
be included in programs as needed. In the following little 
program:

#include <iostream.h>
#include <string.h>
void main ()
{
char String1[20];
char String2[20];
strcpy (String1, “Homer”);
strcpy (String2, “Simpson”);
//Concatenate string2 to the end of string1
strcat (String1, String2);
cout String1 <<endl;
}

Here the strcpy function is used to initialize the two strings, 
and then the strcat (string concatenate) function is used to 
combine the two strings and store the result back in string1, 
which is then sent to the output.

As an alternative, one can take advantage of the object 
orientation of C++ and define a string class. The addition 
operator (+) can then be extended, or “overloaded” so that 
it will concatenate strings. Then, the preceding program, 
instead of using the strcat function, can use the more natu-
ral syntax:

cout << String1 + String2

to display the combined strings.

String-Oriented Languages
Sophisticated string processing (such as parsing and pat-
tern matching) tends to be awkward to express in tradi-
tional number-oriented programming languages. Several 
languages have been designed especially for manipulating 
textual data. Snobol, designed in the early 1960s, is best 
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known for its sophisticated pattern-matching and pattern 
processing capabilities. A similar language, Icon, is widely 
used for specialized string-processing tasks today. Many 
programmers working with textual data in the UNIX envi-
ronment have found that the awk and Perl languages are 
easier to use than C for extracting and manipulating data 
fields. (See awk and Perl.)
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chat, online
In general terms, to “chat” is to communicate in real time 
by typing messages to other online users who can immedi-
ately type messages in reply. It is this conversational imme-
diacy that distinguishes chat services from conferencing 
systems or bulletin boards.

Commercial Services
Many PC users have become acquainted with chatting 
through participating in “chat rooms” operated by online 
services such as America Online (AOL). A chat room is 
a “virtual space” in which people meet either to social-
ize generally or to discuss particular topics. At their best, 
chat rooms can develop into true communities whose par-
ticipants develop long-term friendships and provide one 
another with information and emotional support (see vir-
tual community).

However, the essentially anonymous character of chat 
(where participants often use “handles” rather than real 
names) that facilitates freedom of expression can also pro-
vide a cover for mischief or even crime. Chat rooms have 
acquired a rather lurid reputation in the eyes of the general 
public. There has been considerable public concern about 
children becoming involved in inappropriate sexual con-
versation. This has been fueled by media stories (sometimes 
exaggerated) about children being recruited into face-to-
face meetings with pedophiles. AOL and other online ser-
vices have tried to reduce such activity by restricting online 
sex chat to adults, but there is no reliable mechanism for 
a service to verify its user’s age. A chat room can also be 
supervised by a host or moderator who tries to prevent 
“flaming” (insults) or other behavior that the online service 
considers to be inappropriate.

Distributed Services
For people who find commercial online services to be too 
expensive or confining, there are alternatives available for 
just the cost of an Internet connection. The popular Inter-
net Relay Chat (IRC) was developed in Finland by Jarkko 
Oikarinen in the late 1980s. Using one of the freely avail-

able client programs, users connect to an IRC server, which 
in turn is connected to one of dozens of IRC networks. 
Users can create their own chat rooms (called channels). 
There are thousands of IRC channels with participants all 
over the world. To participate, a user simply joins a chan-
nel and sees all messages currently being posted by other 
users of the channel. In turn, the user’s messages are posted 
for all to see. While IRC uses only text, there are now 
enhanced chat systems (often written in Java to work with a 
Web browser) that add graphics and other features.

There are many other technologies that can be used 
for conversing via the Internet. Some chat services (such 
as Cu-SeeMe) enable participants to transmit their images 
(see videoconferencing and Web cam). Voice can also 
be transmitted over an Internet connection (see voip). For a 
very pervasive form of “ad hoc” textual communication, see 
texting and instant messaging.
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chatterbots
The famous Turing test (see Turing, Alan M.) proposes 
that if a human is unable to reliably distinguish mes-
sages from a computer from those of another person, the 
computer program involved can at least be provisionally 
declared to be “intelligent.” The advent of textual commu-
nication via the Internet (see texting and instant mes-
saging) has afforded a variety of ways to attempt to meet 
this challenge. Programs that mimic human conversational 
styles have come to be known as “chatterbots.”

The prototypical chatterbot was ELIZA, developed by 
Joseph Weizenbaum in the mid-1960s (see Weizenbaum, 
Joseph). ELIZA mimicked a form of nondirective psychother-
apy in which the therapist echoes or plays off of the client’s 
statements as a form of gentle encouragement and validation. 
Thus if one types, “My father didn’t really like me,” ELIZA 
might reply, “Tell me more about your father.” Although 
primitive, ELIZA once inadvertently fooled an executive into 
thinking he was exchanging messages with Weizenbaum. 
Other classic chatterbots include Parry, designed to mimic a 
paranoid, and the story-generating Racter.

The first online chatterbot, Julia, was created by Michael 
Mauldin in 1994. (Mauldin also coined the term chatterbot.) 
More sophisticated chatterbots include Jabberwocky, which 
includes learning algorithms, and ELLA, which applies 
linguistic principles to produce more realistic speech (see 
natural language processing). On a negative note, some 
chatterbots have been designed to enter chat rooms and 
spew advertising (spambots) or even to elicit personal infor-
mation (see identity theft and phishing and spoofing).
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One of the best known and most versatile modern chatter-
bots is ALICE (Artificial Linguistic Internet Computer Entity), 
developed by Richard Wallace. ALICE does much more than 
simply echo statements; it includes an elaborate parser and 
sentence generator and specialized scripts for initiating or 
responding to conversational gambits. ALICE can even tell 
lies and spread “gossip” that it learns from other users.

In the following dialog ALICE seems to be able to 
respond appropriately:

Human: Are you intelligent?

ALICE: I am highly intelligent. I have many intellectual functions.

Human: How do you know you are intelligent?

ALICE: By introspection.

However the illusion breaks down as the matter is 
pressed further and the bot uses a “deflection” strategy:

Human: What were you thinking while you said that?

ALICE: I was minding my own business.

Human: How do you feel about being interrogated in this way?

ALICE: The opposite of not being interrogated in this way.

Still, with more than 25,000 conversation templates 
stored in XML files that are modifiable by the user, ALICE 
has repeatedly won the Loebner Contest, a modern version 
of the Turing test.

Although many are created as programming exercises 
or for amusement, chatterbots embody principles that are 
important in artificial intelligence research, including natu-
ral language processing and machine learning (see arti-
ficial intelligence). Techniques first developed with 
chatterbots can contribute to the creation of programs 
designed to provide answers to users’ questions or other 
forms of assistance (see software agent).
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chess and computers
With simple rules but endless permutations, chess has fas-
cinated millions of players for hundreds of years. When 
mechanical automatons became fashionable in the 18th 
century, onlookers were intrigued by “the Turk,” a chess-
playing automaton. While the Turk was eventually shown 
to be a hoax (a human player was hidden inside), the devel-
opment of the electronic digital computer in the mid-20th 
century provided the opportunity to create a true automatic 
chess player.

In 1950 Claude Shannon outlined the two basic strate-
gies that would be used by future chess-playing programs. 
The “brute force” strategy would examine the possible 

moves for the computer chess player, the possible replies 
of the opponent to each move, the possible next moves by 
the computer, and so on for as many half moves or “plies” 
as possible. The moves would be evaluated by a “minimax” 
algorithm that would find the move that best improves the 
computer’s position despite the opponent’s best play.

The fundamental problem with the brute force is the 
“combinatorial explosion”: Looking ahead just three moves 
(six plies) would involve evaluating more than 700,000,000 
positions. This was impractical given the limited comput-
ing power available in the 1950s. Shannon realized this 
and decided that a successful chess program would have to 
incorporate principles of chess strategy that would enable it 
to quickly recognize and discard moves that did not show 
a likelihood of gaining material or improving the position 
(such as by increasing control of center squares). As a result 
of this “pruning” approach, only the more promising initial 
moves would result in the program looking ahead—but 
those moves could be analyzed much more deeply.

The challenge of the pruning approach is the need to 
identify the principles of good play and codify them in such 
a way that the program can use them reliably. Progress 
was slow at first—programs of the 1950s and 1960s could 
scarcely challenge an experienced amateur human player, 
let alone a master. A typical program would play a mix-
ture of reasonable moves, odd-looking but justifiable moves, 
and moves that showed the chess version of “nearsighted-
ness.” By the 1970s, however, computing power was rapidly 
increasing, and a new generation of programs such as Chess 
4.0 from Northwestern University abandoned most pruning 
techniques in favor of brute-force searches that could now 
extend further ahead. In practice, each programmer chose a 
particular balance between brute force and pruning-selection 

In the 18th century the Turk, a mechanical chess player, astonished 
onlookers. Although the original Turk was a fraud (a small human 
player was hidden inside), the modern computer chess program 
Fritz 9 pays its homage by simulating its predecessor.  (Fritz 9, 
Chessbase GmbH, www.chessbase.com)
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techniques. An ever-increasing search base could be com-
bined with evaluation of particularly important positional 
features (such as the possibility of creating a “passed pawn” 
that could be promoted to a queen).

By the end of the 1970s, International Master David 
Levy was still beating the best chess programs of the time 
(defeating Chess 4.7 in 1978). A decade later, however, Levy 
was defeated in 1989 by Deep Thought, a program that 
ran on a specially designed computer that could examine 
hundreds of millions of positions per move. That same year 
World Champion Garry Kasparov decisively defeated the 
machine. In 1996, however, the successor program Deep 
Blue (sponsored by IBM) shocked the chess world by beat-
ing Kasparov in the first game of their match. Kasparov 
went on to win the match, but the following year an updated 
version of Deep Blue defeated Kasparov 3 1/2–2 1/2. A com-
puter had arguably become the strongest chess player in the 
world. As a practical matter, the match brought IBM invalu-
able publicity as a world leader in supercomputing.

Chess and AI
The earliest computer chess theorists such as Claude Shan-
non and Alan Turing saw the game as one potential way 
to demonstrate true machine intelligence. Ironically, by 
the time computers had truly mastered chess, the artificial 
intelligence (AI) community had concluded that mastering 
the game was largely irrelevant to their goals. AI pioneers 
Herbert Simon and John McCarthy have referred to chess 
as “the Drosophila of AI.” By this they mean that, like the 
ubiquitous fruit flies in genetics research, chess became an 
easy way to measure computer prowess. But what was it 
measuring? The dominant brute-force approach was more 
a measure of computing power than the application of such 
AI techniques as pattern recognition. (There is, however, 
still some interest in writing chess programs that “think” 
more like a human player.) In recent years there has been 
some interest in programming computers to play the Asian 
board game Go, where positional and structural elements 
play a greater role than in chess. However, even the latest 
generation of Go programs seem to be relying more on a 
statistical approach than a deep conceptual analysis.
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chip
As early as the 1930s, researchers had begun to investi-
gate the electrical properties of materials such as silicon 

and germanium. Such materials, dubbed “semiconductors,” 
were neither a good conductor of electricity (such as cop-
per) nor a good insulator (such as rubber). In 1939, one 
researcher, William Shockley, wrote in his notebook “It has 
today occurred to me that an amplifier using semiconduc-
tors rather than vacuum [tubes] is in principle possible.” In 
other words, if the conductivity of a semiconductor could 
be made to vary in a controlled way, it could serve as an 
electronic “valve” in the same way that a vacuum tube can 
be used to amplify a current or to serve as an electronic 
switch.

The needs of the ensuing wartime years made it evi-
dent that a solid-state electronic device would bring many 
advantages over the vacuum tube: compactness, lower 
power usage, higher reliability. Increasingly complex elec-
tronic equipment, ranging from military fire control sys-
tems to the first digital computers, further underscored the 
inadequacy of the vacuum tube.

In 1947, William Shockley, along with John Bardeen 
and Walter Brattain, invented the transistor, a solid-state 
electronic device that could replace the vacuum tube for 
most low-power applications, including the binary switch-
ing that is at the heart of the electronic digital computer. 
But as the computer industry strove to pack more process-
ing power into a manageable volume, the transistor itself 
began to appear bulky.

Starting in 1958, two researchers, Jack Kilby of Texas 
Instruments and Robert Noyce of Fairchild Semiconduc-
tor, independently arrived at the next stage of electronic 
miniaturization: the integrated circuit (IC). The basic idea 
of the IC is to make semiconductor resistors, capacitors, 
and diodes, combine them with transistors, and assemble 
them into complete, compact solid-state circuits. Kilby did 
this by embedding the components on a single piece of ger-
manium called a substrate. However, this method required 
the painstaking and expensive hand-soldering of the tiny 
gold wires connecting the components. Noyce soon came 
up with a superior method: Using a lithographic process, he 
was able to print the pattern of wires for the circuit onto a 
board containing a silicon substrate. The components could 
then be easily connected to the circuit. Thus was born the 
ubiquitous PCB (printed circuit board). This technology 
would make the minicomputer (a machine that was roughly 
refrigerator-sized rather than room-sized) possible during 
the 1960s and 1970s. Besides the PCBs being quite reli-
able compared to hand-soldered connections, a failed board 
could be easily “swapped out” for a replacement, simplify-
ing maintenance.

From IC to Chip
The next step to the truly integrated circuit was to form the 
individual devices onto a single ceramic substrate (much 
smaller than the printed circuit board) and encapsulate 
them in a protective polymer coating. The device then func-
tioned as a single unit, with input and output leads to con-
nect it to a larger circuit. However, the speed of this “hybrid 
IC” is limited by the relatively large distance between com-
ponents. The modern IC that we now call the “computer 
chip” is a monolithic IC. Here the devices, rather than being 
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attached to the silicon substrate, are formed by altering the 
substrate itself with tiny amounts of impurities (a process 
called “doping”). This creates regions with an excess of 
electrons (n-type, for negative) or a deficit (p-type for posi-
tive). The junction between a p and an n region functions 
as a diode. More complex arrangements of p and n regions 
form transistors. Layers of transistors and other devices can 
be formed on top of one another, resulting in a highly com-
pact integrated circuit. Today this is generally done using 
optical lithography techniques, although as the separation 
between components approaches 100 nm (nanometers, or 
billionths of a meter) it becomes limited by the wavelength 
of the light used.

In computers, the IC chip is used for two primary func-
tions: logic (the processor) and memory. The microproces-
sors of the 1970s were measured in thousands of transistor 
equivalents, while chips such as the Pentium and Athlon 
being marketed by the late 1990s are measured in tens 
of millions of transistors (see microprocessor). Mean-
while, memory chips have increased in capacity from the 
4K and 16K common around 1980 to 256 MB and more. 
In what became known as “Moore’s law,” Gordon Moore 
has observed that the number of transistors per chip has 
doubled roughly every 18 months.

Future Technologies
Although Moore’s law has proven to be surprisingly resil-
ient, new technologies will be required to maintain the 
pace of progress.

In January 2007, Intel and IBM separately announced a 
process for making transistors out of the exotic metal haf-
nium. It turns out that hafnium is much better than the tra-
ditional silicon at preventing power leakage (and resulting 
inefficiency) through layers that are only about five atoms 
thick. Hafnium transistors can also be packed more closely 
together and/or run at a higher speed.

Another approach is to find new ways to connect the 
transistors so they can be placed closer together, allow-
ing signals to travel more quickly and thus provide faster 
operation. Hewlett-Packard (HP) is developing a way to 
place the connections on layers above the transistors them-
selves, thus reducing the space between components. The 
scheme uses two layers of conducting material separated by 
a layer of insulating material that can be made to conduct 
by having a current applied to it. Although promising, the 
approach faces difficulties in making the wires (only about 
100 atoms thick) reliable enough for applications such as 
computer memory or microprocessors.

Ultimately, direct fabrication at the atomic level (see 
nanotechnology) will allow for the maximum density 
and efficiency of computer chips.
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chipset
In personal computers a chipset is a group of integrated 
circuits that together perform a particular function. System 
purchasers generally think in terms of the processor itself 
(such as a Pentium III, Pentium IV, or competitive chips 
from AMD or Cyrix). However they are really buying a 
system chipset that includes the microprocessor itself (see 
microprocessor) and often a memory cache (which may be 
part of the microprocessor or a separate chip—see cache) 
as well as the chips that control the memory bus (which 
connects the processor to the main memory on the moth-
erboard—see bus.) The overall performance of the system 
depends not just on the processor’s architecture (including 
data width, instruction set, and use of instruction pipe-
lines) but also on the type and size of the cache memory, 
the memory bus (RDRAM or “Rambus” and SDRAM) and 
the speed with which the processor can move data to and 
from memory.

In addition to the system chipset, other chipsets on the 
motherboard are used to support functions such as graphics 
(the AGP, or Advanced Graphics Port, for example), drive 
connection (EIDE controller), communication with exter-
nal devices (see parallel port, serial port, and USB), and 
connections to expansion cards (the PCI bus).

At the end of the 1990s, the PC marketplace had chip-
sets based on two competing architectures. Intel, which 
originally developed an architecture called Socket 7, has 
switched to the more complex Slot-1 architecture, which 
is most effective for multiprocessor operation but offers 
the advantage of including a separate bus for accessing the 
cache memory. Meanwhile, Intel’s main competitor, AMD, 
has enhanced the Socket 7 into “Super Socket 7” and is 
offering faster bus speeds. On the horizon may be com-
pletely new architecture. In choosing a system, consumers 
are locked into their choice because the microprocessor pin 
sockets used for each chipset architecture are different.
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Church, Alonzo
(1903–1995)
American
Mathematician

Born in Washington, D.C., mathematician and logician 
Alonzo Church made seminal contributions to the funda-
mental theory of computation. Church was mentored by 
noted geometer Oswald Veblen and graduated from Prince-
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ton with an A.B. in mathematics in 1924. Veblen encouraged 
Church to devote his graduate thesis to the investiga-
tion of the fundamental problem of computability. At the 
time, mathematician David Hilbert and his followers were 
attempting to create a formal way to express mathematical 
propositions.

In 1927, Church received his Ph.D. from Princeton for 
a dissertation on the axiom of choice in set theory. During 
the 1930s, Church developed the lambda calculus, which 
provided rules for substituting bound variables in generat-
ing mathematical functions. The Church thesis (also called 
the Church-Turing thesis, because Alan Turing [see Tur-
ing, Alan] approached the same conclusion from a differ-
ent angle) stated that every calculable function in number 
theory could be defined in lambda calculus and was also 
computable in Turing’s sense (see computability and com-
plexity). This provided the theoretical confidence that given 
appropriate technology, computers could tackle a variety of 
problems reliably. At the same time, another of Church’s 
achievements, the Church theorem, proved that there were 
theorems that could not be proven by any computer.

Church’s lambda calculus became important for the 
design and verification of computer languages, and the lisp 
language in particular was based on lambda expressions. 
Computer scientists working with problems in list pro-
cessing and the use of recursion also have owed much to 
Church’s pioneering work.

Church taught at Princeton for many years. In 1961, 
he received the title of Professor of Mathematics and Phi-
losophy. In 1967, he took the same position at UCLA, where 
he was active until 1990. He received numerous honorary 
degrees, and in 1990 an international symposium was held 
in his honor at the State University of New York at Buffalo.
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Cisco Systems
Cisco Systems (NASDAQ symbol: CSCO) builds much of 
the physical infrastructure of the Internet—the routers and 
switches that direct the streams of data between Web serv-
ers and millions of users, as well as specialized networking, 
security, and storage devices.

Cisco was founded in 1984 by Leo Bosack and Sandy 
Lerner, a married couple who worked in computer opera-
tions at Stanford University. (The name “Cisco” is from 
“San Francisco,” and the company’s logo is a stylized ver-
sion of the Golden Gate Bridge.)

The company focused on networking at a time when 
that sector of the computer industry was still rather small. 
They were able to build one of the first routers that could 
link otherwise incompatible computers over the Internet. 
(Eventually, when the protocol was standardized (see tcp/
ip), routers could focus on the burgeoning traffic in IP 
packets.)

As the market for basic hardware became relatively sat-
urated, Cisco began to emphasize the development of more 
intelligent “application aware” routing solutions as well 
as equipment geared for distributed processing (see grid 
computing).

Cisco grew along with the Internet/Web boom of the 
late 1990s. In 2000 Cisco was for a time the most valu-
able company in the world, with a market capitalization of 
more than half a trillion dollars. (Today that has shrunk to 
a “mere” $180 billion or so—still one of the world’s most 
valuable companies.)

The “Last Mile”
In the telecommunications industry, “the last mile” refers to 
the connections and equipment that actually bring content 
to users’ homes and businesses. One source of Cisco’s con-
tinued growth in the 2000 decade is the way it has addressed 
the consumer sector through strategic acquisitions. In 2003, 
Cisco acquired Linksys, maker of home Internet routers and 
wireless access points. In 2005, Scientific Atlanta—maker 
of cable modems, digital cable boxes, and other consumer 
equipment—also became a Cisco company.

The company has also entered the area of Internet tele-
phony (see voip) by teaming up with Skype to build a cord-
less phone that can connect to a computer to make phone 
calls over the Internet.

Moving from hardware into software, Cisco in 2007 
purchased Utah Street Networks, a San Francisco–based 
maker of software to link online communities (see also 
social networking) and operator of the Tribe.net Web 
site. Around the same time, Cisco made a much larger buy, 
acquiring WebEx, maker of online collaboration software, 
for $3.2 billion.

In 2007 Cisco had revenue of $35 billion, with more 
than 63,000 employees.
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class
A class is a data type that combines both a data structure 
and methods for manipulating the data. For example, a 
string class might consist of an array to hold the charac-
ters in the string and methods to compare strings, combine 
strings, or extract portions of a string (see characters 
and strings).

As with other data types, once a class is declared, 
objects (sometimes called instances) of the class can be 
created and used. This way of structuring programs is 
called object-oriented programming because the class 
object is the basic building block (see object-oriented 
programming).

Object-oriented programming and classes provide sev-
eral advantages over traditional block-structured languages. 
In a traditional BASIC or even Pascal program, there is 
no particular connection between the data structure and 
the procedures or functions that manipulate it. In a large 
program one programmer might change the data structure 
without alerting other programmers whose code assumes 
the original structure. On the other hand, someone might 
write a procedure that directly manipulates the internal 
data rather than using the methods already provided. Either 
transgression can lead to hard-to-find bugs.

With a class, however, data and procedures are bound 
together, or encapsulated. This means that the data in a 
class object can be manipulated only by using one of the 
methods provided by the class. If the person in charge 
of maintaining the class decides to provide an improved 
implementation of the data structure, as long as the data 
parameters expected by the class methods do not change, 
code that uses the class objects will continue to function 
properly.

Most languages that use classes also allow for inheri-
tance, or the ability to create a new class that derives data 
and methods from a “parent” class and then modifies or 
extends them. For example, a class that provides support 
for 3D graphics could be derived from an existing class for 
2D graphics by adding data items such as a third (Z) coor-
dinate and replacing a method such as “line” with a version 
that works with three coordinates instead of two.

In designing classes, it is important to identify the 
essential features of the physical situation you are trying to 
model. The most general characteristics can be put in the 
“base class” and the more specialized characteristics would 
be added in the inherited (derived) classes.

Classes and C++
Classes first appeared in the Simula 67 language, which 
introduced the terms class and object (see Simula). As the 
name suggests, the language was used mainly for simu-
lation and modeling, but its object-oriented ideas would 
prove influential. The Smalltalk language developed at 
Xerox PARC in the 1970s ran on the Alto computer, which 
pioneered the graphic user interface that would become 
popular with the Macintosh in the 1980s. Smalltalk used 
classes to build a seamless and extensible operating system 
and environment (see Smalltalk).

However it was Bjarne Stroustrup’s C++ language that 
brought classes into the programming mainstream (see 
c++). C++ essentially builds its classes by extending the 
C struct so that it contains both methods (class functions) 
and data. An access mechanism allows class variables to be 
designated as completely accessible (public), which is rare, 
accessible only by derived classes (protected), or accessible 
only within the class itself (private). The creation of a new 
object of the class is specified by a constructor function, 
which typically allocates memory for the object and sets 
initial default values. The corresponding destructor func-
tion frees up the memory when the object no longer exists.

C++ allows for multiple inheritance, meaning that a class 
can be derived from more than one parent or base class. 
The language also provides two powerful mechanisms for 
extending functionality. The first, called virtual functions, 
allows a base class and its derived classes to have functions 
based on the same interface. For example, a base graph-
ics class might have virtual line, circle, setcolor, and other 
functions that would be implemented in derived classes for 
3D objects, 3D solid objects, and so on. When the program 
calls a method in a virtual class, the compiler automatically 
searches the class’s “family tree” until it finds the class that 
corresponds to the actual data type of the object.

A template specifies how to create a class definition 
based on the type of data to be used by the class. In other 
words, where a regular procedure takes and manipulates 
data parameters and returns data, a template takes data 
parameters and returns a definition of a class for working 
with that data (see template).

Other languages of the 1980s and later have embraced 
classes. Examples include descendants of the Algol family 
of languages (see Pascal, Ada, c++’s close cousin—Java), 
and Microsoft’s Visual Basic. (There is even a version of 
COBOL with classes.)

A class encapsulates (or hides) its internal information from the 
rest of the program. When the program calls MyCircle.GetPosition, 
the GetPosition member function of the MyCircle Circle class object 
retrieves the private Position data and sends it back to the calling 
statement, where it is assigned to the variable P. Private data can-
not be directly accessed or changed by an outside caller.
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The use of class frameworks, such as the Microsoft 
Foundation Classes (MFC), the C++ STL (Standard Tem-
plate Library) and various Java implementations, has pro-
vided a superior way to organize the complexities of data 
access and operating system functions.
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clean room  See reverse engineering.

client-server computing
It is often more efficient to have a large, relatively expen-
sive computer provide an application or service to users on 
many smaller, inexpensive computers that are linked to it 
by a network connection. The term server can apply to both 
the application providing the service and the machine run-
ning it. The program or machine that receives the service is 
called the client.

A familiar example is browsing the Web. The user runs 
a Web browser, which is a client program. The browser 
connects to the Web server that hosts the desired Web site. 
Another example is a corporate server that runs a database. 
Users’ client programs connect to the database over a local 
area network (LAN). Many retail transactions are also han-
dled using a client-server arrangement. Thus, when a travel 
or theater booking agent sells a ticket, the agent’s client pro-
gram running on a PC or terminal connects to the server 
containing the database that keeps track of what seats are 
available (see terminal).

There are several advantages to using the client-server 
model. Having most of the processing done by one or 
more servers means that these powerful and more costly 
machines can be used to the greatest efficiency. If more 
processing capacity is needed, more servers can be brought 
online without having to revamp the whole system. Users, 
on the other hand, only need PCs (or terminals) that are 
powerful enough to run the smaller client program to con-
nect to the server.

Keeping the data in a central location helps ensure its 
integrity: If a database is on a server, transactions can be 
committed in an orderly way to ensure that, for example, the 
same ticket isn’t sold to two people. A client-server model 
also offers flexibility to users. Any client program that 
meets the standards supported by the server can be used 
to make a connection. (The marketplace generally decides 
which clients will be supported: for example most Web sites 
today support both Microsoft Internet Explorer and Firefox, 
although they may cater to some features unique to one or 
the other and other browsers will also work to some extent.)

Client-server computing does have potential disadvan-
tages. If there is only one server, a failure of the server 
(whether from a hardware failure, a bug, or a hacker attack) 
brings the whole system to a halt, since the client has no 

ability to complete transactions on its own. The clients’ 
access to the server is also dependent on the network that 
connects them. A network failure or traffic bottleneck will 
also prevent the client from getting any work done.

Extending the Model
One way used in larger organizations to improve the effi-
ciency of the client-server model is to introduce an interme-
diary between the client and the server. The intermediary 
program can cache frequently requested data so it can be 
supplied immediately rather than having to be retrieved 
from the server (see cache). The intermediary can also act 
as a “traffic cop” to route client requests to the server that 
currently has the least load or the fastest network access.

Another design consideration is the distribution of pro-
cessing between the client and the server. At one extreme is 
the “thin client,” where the client machine may only display 
forms and transmit information to and display information 
from the server. A POS (point of sale) terminal typifies this 
approach. On the other hand, a “fat client” running on a 
full-featured desktop PC may perform functions such as 
verifying the completeness and validity of data before send-
ing it to the server, or use information from the server to 
generate graphics (this is typical with online games, where 
limiting the amount of information that must be sent over 
the network can be crucial to speed).

The ultimate extension of the client-server model is 
“distributed object computing.” This is an application of 
object-oriented programming principles to the organiza-
tion of the resources needed for data processing. In this 
model each object (such as a database table) is accessible 
throughout the network by all other objects, regardless of 
their physical location. This scheme provides the ultimate 
in flexibility, because objects can be moved freely among 
physical machines in order to even out the load. For one 
popular implementation of distributed object computing is 
CORBA (Common Object Request Broker Architecture—see 
corba). For Windows-based programs, Microsoft has devel-
oped the DCOM (Distributed Component Object Model), 
which allows controls (that is, objects with functional inter-
faces) written using ActiveX to communicate with each 
other in a networked environment. (For example, an Excel 
spreadsheet in an ActiveX control can be embedded in a 
Word document, and instructed to update itself regularly 
by obtaining data from a Microsoft Access database table 
on another machine.) The Microsoft.NET initiative is also 
geared toward creating applications that can fluidly inter-
operate over the Internet (see Microsoft .NET).
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clock speed
The transfer of data within the microprocessor and between 
the microprocessor and memory must be synchronized to 
ensure that the data needed to execute each instruction is 
available when the flow of execution has reached an appro-
priate point. This synchronization is accomplished by mov-
ing data in intervals that correspond to the pulses of the 
system clock (a quartz crystal). This is done by sending 
control signals that tell the components of the processor 
and memory when to send or wait for data. Thus, if the 
microprocessor is the heart of the computer, the clock is the 
heart’s pacemaker. Because most devices cannot run at the 
same pace as the processor, circuits in various parts of the 
motherboard create secondary control signals that run at 
various ratios of the actual system clock speed.

The following table shows the speed of various system 
components in relation to the system clock rate. Although 
the example uses a 600-MHz clock, the ratios will generally 
hold for faster processors.

Device	S peed	R elationship

Processor	 600	 System bus * 4.5
System
(Memory) Bus	 133	 (depends on multiplier)
Level 2 Cache	 300	 Processor / 2
AGP	 66	 System bus / 2
PCI bus	 33	 System bus / 4

Microprocessors are rated according to the frequency 
(that is, number of pulses per second) of their associated 
clock. For example, a 1.2-GHz Pentium IV processor has 
1.2 billion (giga-) pulses per second. It follows that all other 
things being equal, the higher a processor’s clock frequency, 
the more instructions it can process per second. An alterna-
tive way to rate processors is according to the number of a 
standard type of instruction that it can process per second, 
hence MIPS (millions of instructions per second).

The relationship between clock speed and processor 
performance is not as simple as the preceding might imply, 
however. Each processor is designed with circuits that can 
move data at a certain rate. In some cases a processor can 
be run at a higher clock rate than specified (this is called 
overclocking), but then reliability comes into question. 
Also, the actual processing power of a processor depends 
on many other factors. If a processor implements instruc-
tions in its microcode that are more efficient for handling 
certain operations (such as floating point math or graphics 
rendering), applications that depend on these operations 
may run faster on one processor than on another, even if 
the two processors run at the same clock speed. The speed 
of the system bus (which connects the processor to the 
RAM memory) also affects the speed at which data can be 
fetched, processed, and stored. A processor with a clock 
speed of 733 MHz should perform better on a motherboard 

with a bus speed of 133 MHz than on one with a bus speed 
of only 100 MHz.

Speed is “sexy” in marketing terms, so the major chip 
manufacturers always tout their fastest chips. However, the 
difference in speed between, for example, a 2.2-GHz version 
of a processor and a 2.0-GHz version may be unnoticeable 
to the user of all but the most processor-intensive applica-
tions (such as image processing). Indeed, if the system with 
the slower chip has a faster bus, faster memory (such as 
RDRAM), or a larger processor cache (see cache) it may 
well outperform the one with a faster chip.

Another reason for caution in interpreting clock speed 
is that many recent PCs have two or even four proces-
sors (see multiprocessing). Performance in such systems 
is likely to depend at least as much on optimization of the 
operating system and applications as on any multiple of raw 
clock speed. This trend to multicore CPUs is also seen as an 
alternative to any substantial increase in processor speed, 
because higher speeds bring increasing concerns about heat 
and power usage.

In PCs the term “clock” can also refer to the battery-pow-
ered “real-time” clock that provides a timing interval that 
can be accessed by the operating system and applications.
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COBOL
Common Business-Oriented Language was developed under 
the impetus of a 1959 Department of Defense initiative to 
create a common language for developing business applica-
tions that centered on the processing of data from files. (The 
military, after all, was a “business” whose inventory control 
and accounting needs dwarfed those of all but the largest 
corporations.) At the time, the principal business-oriented 
language for mainframe computers was FLOW-MATIC, a 
language developed by Grace Hopper’s team at Remington-
Rand UNIVAC and limited to that company’s computers 
(see Hopper, Grace Murray). The first COBOL compil-
ers became available in 1960, and the American National 
Standards Institute (ANSI) issued a standard specification 
for the language in 1968. Expanded standards were issued 
in 1974 and 1985 (COBOL-74 and COBOL-85) with a new 
standard issued in 2002.

The committee that outlined the language that would 
become COBOL focused on making program statements 
resemble declarative English sentences rather than the 
mathematical expressions used by FORTRAN for scientific 
programming. COBOL’s designers hoped that accountants, 
managers, and other business professionals could quickly 
master the language, reducing if not removing the need for 
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professional programmers. (This theme of “programming 
without programmers” would recur with regard to other 
languages such as RPG, BASIC, and various database sys-
tems, always with limited success.)

Program Structure
A COBOL program as a whole resembles a business form in 
that it is divided into specific sections called divisions, each 
with required and optional items.

The Identification division simply identifies the pro-
grammer and gives some information about the program:

IDENTIFICATION DIVISION.
PROGRAM-ID WEEKLY REPORT.
AUTHOR JAMES BRADLEY.
DATE-WRITTEN DECEMBER 10, 2000.
DATE-COMPILED DECEMBER 12, 2000.
REMARKS THIS IS AN EXAMPLE PROGRAM.

The Environment division contains specifications about 
the environment (hardware) for which the program will 
be compiled. In some cases (for example, microcomputer 
versions of COBOL) it may not be needed. In other cases, it 
might simply have a Configuration section that specifies the 
machine to be used:

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER IBM-370.
OBJECT-COMPUTER IBM-370.

(The reason for the separate source and object computers is 
that programs were sometimes compiled on one computer 
for use on another, often smaller, one.)

In some cases, the Environment Division must also 
include an Input-Output section that specifies devices and 
files that will be used by the program. For example:

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT STUDENT-FILE ASSIGN TO READER
SELECT STUDENT-LISTING ASSIGN TO LOCAL-
PRINTER

The Data division gives a description of the data records 
and other items that will be processed by the program. 
It is roughly comparable to the declarations of variables 
in languages such as Pascal, C, or BASIC. Since COBOL 
focuses on the processing of file records and the format-
ting of reports, it tends to have fewer data types than many 
other languages, but it makes it easier to describe the kinds 
of data structures commonly used in business applications. 
For example, it is easy to describe records that have fields 
and subfields by using level numbers to indicate the rela-
tionship:

DATA DIVISION.
FILE SECTION.
FD INFILE

LABEL RECORDS ARE OMITTED.	

01 STUDENT-DATA.

02 STUDENT-ID PIC 999999.
02 STUDENT-NAME.

03 LAST-NAME PIC X(15).
03 INITIAL PIC X.
03 FIRST-NAME PIC X(10).

02 GPA PIC 9.99

The “PIC” or picture clause specifies the type of data 
(using 9’s and a decimal point for numbers and X for text) 
and the length. In addition to specifying the input records, 
the Data division often includes items that specify the for-
mat of the lines of output that are to be printed.

The Procedure division provides the statements that 
perform the actual data manipulation. Procedures can be 
organized as subroutines (roughly equivalent to procedures 
or functions on other languages). Some sample procedure 
statements are:

READ STUDENT-DATA INTO STUDENT-WORK-RECORD
AT END MOVE ‘E’ TO PROC-FLAG-ST

GO TO EXIT-PRINT
ADD 1 TO TOTAL-STUDENT-RECORDS

Mathematical expressions can be computed using a 
Compute statement:

COMPUTE GPA = TOTAL-GRADES / CLASSES

Branching (if) statements are available, and looping is 
provided by the Perform statement, for example:

PERFORM 100-PRINT-LINE
UNTIL LINES-FL IS EQUAL TO ‘E’

(As with older versions of BASIC, subroutines are numbered.)

Impact and Prospects
From the 1960s through the 1980s, COBOL became the 
workhorse language for business applications for main-
frame and mid-size computers, and it is still widely used 
today. (The concerns about possible problems at the end 
of the century often involved older programs written in 
COBOL, see y2k problem.) The main line of programming 
language evolution bypassed COBOL and went through 
Algol (a contemporary of COBOL) and on into Pascal, C, 
and other block-structured languages (see also structured 
programming).

Some modern versions of COBOL have incorporated 
later developments in structured programming (such as 
modularization) and even object-oriented design. COBOL 
has also shown considerable versatility in accommodating 
modern development frameworks, including Microsoft.NET 
as well as processing now-ubiquitous XML data. Neverthe-
less, usage of COBOL continues to decline slowly as devel-
opers increasingly turn to languages such as C++, scripting 
languages, or database development systems.

Further Reading
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codec
Short for “coder/decoder,” a codec is essentially an algo-
rithm for encoding (and compressing) a stream of data for 
transmission, and then decoding and decompressing it at 
the receiving end. Usually the data involved represents 
audio or video content (see streaming). Typically the data 
is being downloaded from a Web site to be played on a 
personal computer or portable player (see multimedia and 
music and video players, digital).

A codec is described as “lossy” if some of the origi-
nal information is lost in the compression process. It then 
becomes a question of whether the loss in quality is per-
ceived by the user as significant. A codec that preserves all 
the information needed to re-create the original file is “loss-
less.” For most purposes, the much greater size of the loss-
less version of a file is not worth the (often imperceptible) 
increase in quality or fidelity.

A codec is usually used in connection with a “container 
format” that specifies how the encoded data is to be stored 

in a file. Often a container can hold more than one data 
stream and even more than one kind of media (such as 
video and audio). When one refers to a Windows WAV file, 
for example, one is actually referring to a container.

Most of the popular codecs and file formats are propri-
etary, which creates something of a dilemma for users who 
prefer open-source solutions. However, while most Linux 
distributions do not include support for formats such as 
MP3 out of the box, distributions such as Ubuntu are now 
making it easier for users to choose nonsupported propri-
etary codecs if desired.

The preceding table lists some codecs likely to be 
encountered by program developers and consumers.
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cognitive science
Cognitive science is the study of mental processes such as 
reasoning, memory, and the processing of perception. It 
is necessarily an interdisciplinary approach that includes 
fields such as psychology, linguistics, and neurology. The 
importance of the computer to cognitive science is that it 
offers a potential nonhuman model for a thinking entity. 
The attempts at artificial intelligence over the past 50 years 
have used the insights of cognitive science to help devise 
artificial means of reasoning and perception. At the same 
time, the models created by computer scientists (such as 
the neural network and Marvin Minsky’s idea of “multiple 
intelligent agents”) have in turn been applied to the study 
of human cognition (see Minsky, Marvin Lee and neural 
network).

Since the late 19th century, technological metaphors 
have been used to describe the human mind. The neurons 
and synapses of the brain were compared to the multi-
tude of switches in a telephone company central office. The 
invention of digital computers seemed to offer an even more 
compelling correspondence between neurons and their elec-
trochemical states and the binary state of a vacuum tube or 
transistor. It is only a small further step to assert that human 
mental processes can be reduced in principle to computa-
tion, albeit a very complex tapestry of computation. Various 
schools of popular psychology and personal improvement 
have offered simplistic images of the human mind suffering 
from “bad programming” that can be debugged or manipu-
lated through various processes. The simulation of some 
forms of reasoning and language construction by AI pro-

Codec	C ontainer Description

AAC	� advanced audio coding; developed as a  
 � successor to MP3 and especially used 

by Apple (iTunes, iPod, iPhone, etc.)
AIFF	� audio interchange file format; audio  

 � container format for transferring content 
between applications

ALAC	 Apple lossless audio codec
AVI	� audio video interleave; video and movies  

  container format
FLACC	� free lossless audio codec; music, open  

  source, lossless
MP3	� actually MPEG-3, probably the most  

  common music codec
MPEG	� Moving Picture Experts Group; video,  

 � movies, audio (four layers MPEG-1 
through MPEG-4)

Ogg Vorbis	� music, open source (often used on Linux 
  systems)

Quick Time	� Apple multimedia
Real Audio and	 developed by RealNetworks for many 
  and RealVideo	   platforms
RIFF	� resource interchange file format; container  

  format
Vorbis	� free, open-source audio codec (often used 

  in Linux)
WAV	� Windows audio format (usually  

  uncompressed)
WMA	 Windows media audio
WMV	 Windows media video
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grams certainly suggests that there are fruitful analogies 
between human and machine cognition, but construction 
of a detailed model that would be applicable to both human 
and artificial intelligences seemed almost as distant in the 
science fictional year of 2001 as it was when Alan Turing 
and other AI pioneers first considered such questions in the 
early 1950s (see Turing, Alan Mathison).

Symbolists and Connectionists	
Unlike standard computer memory cells, neurons can have 
hundreds of potential connections (and thus states). If a 
human being is a computer, it must be to a considerable 
extent an analog computer, with input in the form of levels of 
various chemicals and electrical impulses. Yet in the 1980s, 
Allen Newell and Herbert Simon suggested that the “output” 
of human mental experience can be effectively mapped as 
relationships between symbols (words, images, and so forth) 
that correspond to physical states (this is called the Physical 
Symbol System Hypothesis). If so, then such a symbol sys-
tem would be “computable” in the Turing-Church sense (see 
computability and complexity). Working from the com-
puter end, AI researchers have created a variety of programs 
that seem to “understand” restricted universes of discourse 
such as a table with variously shaped blocks upon it or 
“story frames” based upon common human activities such 
as eating in a restaurant. Thus, symbol manipulators can at 
least appear to be intelligent.

The “connectionists,” however, argue that it is not sym-
bolic representations that are significant, but the structure 
within the mind that generates them. By designing neu-
ral networks (or distributed processor networks) the con-
nectionists have been able to create systems that produce 
apparently intelligent behavior (such as pattern recogni-
tion) without any reference to symbolic representation.

Critiques have also come from philosophers. Herbert 
Dreyfus has pointed out that computers lack the body, 
senses, and social milieu that shape human thought. That 
machines can generate symbolic representations according 
to some sort of programmed rules doesn’t make the machine 
truly intelligent, at least not in the way experienced by 
human beings. John Searle responded to the famous Turing 
test (which states that if a human being can’t distinguish a 
computer’s conversation from a human’s, the computer is 
arguably intelligent). Searle’s “Chinese Room” imagines a 
room in which an English-speaking person who knows no 
Chinese is equipped with a program that lets him manipu-
late Chinese words in such a way that a Chinese observer 
would think he knows Chinese. Similarly, Searle argues, 
the computer might act “intelligently,” but it doesn’t really 
understand what it is doing.

Advances in cognitive science will both influence and 
depend on developments in brain research (especially the 
connection between physical states and cognition) and in 
artificial intelligence.
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color in computing
With the exception of a few experimental systems, color 
graphics first became widely available only with the begin-
nings of desktop computers in the late 1970s. The first 
microcomputers were able to display only a few colors 
(some, indeed, displayed only monochrome or grayscale). 
Today’s PC video hardware has the potential to display 
millions of colors, though of course the human eye cannot 
directly distinguish colors that are too close together. There 
are several important schemes that are used to define a 
“color space”—that is, a range of values that can be associ-
ated with physical colors.

RGB
One of the simplest color systems displays colors as varying 
intensities of red, green, and blue. This corresponds to the 
electronics of a standard color computer monitor, which 
uses three electron guns that bombard red, green, and blue 
phosphors on the screen. A typical RGB color scheme uses 
8 bits to store each of the red, green, and blue components 
for each pixel, for a total of 24 bits (16,777,216 colors). The 
32-bit color system provides the same number of colors but 
includes 8 bits for alpha, or the level of transparency. The 
number of bits per pixel is also called the bit depth or color 
depth.

CMYK
CMYK stands for cyan, magenta, yellow, and black. This 
four component color system is standard for most types of 
color printing, since black is an ink color in printing but is 
simply the absence of color in video. One of the more diffi-
cult tasks to be performed by desktop publishing software 
is to properly match a given RGB screen color to the cor-
responding CMYK print color. Recent versions of Microsoft 
Windows and the Macintosh operating system include a 
CMS (color matching system) to support color matching.

Palettes
Although most color schemes now support thousands or 
millions of colors, it would be wasteful and inefficient to 
use three or four bytes to store the color of each pixel in 
memory. After all, any given application is likely to need 
only a few dozen colors. The solution is to set up a palette, 
which is a table of (usually 256) color values currently in 
use by the program. (A palette is also sometimes called a 
CLUT, or color lookup table.) The color of each pixel can 
then be stored as an index to the corresponding value in the 
palette.
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The user of a paint program can select a palette from 
the full range of colors available from the operating system. 
Many color graphics image formats such as GIF (graphic 
interchange format) store a palette of the colors used by 
the image. When converting an image that has more colors 
that the palette can hold, various algorithms can be used to 
choose a palette that preserves as much of the color range 
as possible.

Further Reading
“Color” Webopedia. Available online. URL: http://www.webopedia. 
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COM  (common object model)  See Microsoft 
.net.

common gateway interface  See cgi.

common object request broker architecture   
See corba.

compatibility and portability
The computers of the 1940s were each hand built and 
unique. When the first commercial models were developed, 
such as the UNIVAC and the first IBM mainframes, the 
question of compatibility was born. Broadly speaking, com-
patibility is the degree to which a program or hardware 
device designed for one system can work with or run on 
another.

The designers of high-level languages usually intend that 
a source program written using the proper language syntax 
will compile and run on any system for which a compiler is 
available. However, there are many factors that can destroy 
compatibility. For example, if one machine stores the bytes 
of a numeric value from least significant to most significant 
while another does it in the opposite order, program code 
that depends on directly referencing memory locations will 
give the wrong results on one machine or another. Simi-
larly, standard data sizes such as “integer” might be 16 bits 
on one system and 32 bits on another.

Language designers can minimize such problems by 
separating hardware-related issues from the language itself, 
as is the case with C and C++. A program is then linked 
with standard libraries implemented for each hardware or 
operating system environment.

Manufacturers often design newer models of their com-
puters so they are “upwardly compatible” with existing 
models. This means that a program written for the smaller 
machine should run correctly on the new, larger one. This 
is of obvious benefit to users who do not want to have 
to rewrite their software every time they upgrade their 
machine. Often, however, such systems are not “down-
wardly compatible”—a program written for the new, larger 
machine may rely on features or architectural characteris-
tics that are not available on the older, smaller machines. 
Sometimes a “compatibility mode” can be specified for a 
compiler or operating system. This restricts the use of fea-
tures to those available on the older system.

Compatibility is also important with regard to software. 
Generally speaking, a newer version of a program such as a 
word processor will be able to read files that were originally 
created by a previous version, although this may not be true 
for more than a few versions back. However, files saved from 
the newest version may well be incompatible with older ver-
sions, because they contain formatting or other information 
that is not understandable by the earlier version. Sometimes 
an intermediate format (for example, see rtf, or Rich Text 
Format) can be used to transfer files between otherwise 
incompatible systems.

Compatibility between vendors can be an important 
competitive issue. If a developer wants to enter a market 
where one or two products are viewed as industry stan-
dards, the new product will have to be compatible with at 
least most files created by the dominant products. A techni-
cally superior product can thus be a market disaster if it is 
not compatible with the industry standard. In areas (such 

A color lookup table (CLUT) or palette can be used to store the col-
ors actually being used by an image. Here up to 256 colors can be 
selected out of millions of possibilities.
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as graphics file formats) where there are many alternatives 
in widespread use, most programs will support multiple 
formats.

Portability
Portability is the ability to adapt software or hardware to 
a wide variety of platforms (that is, computer systems or 
operating systems). Developers want their products to be 
portable so they can adapt to an often rapidly changing 
marketplace. A typical strategy for portability is to choose 
a language that is in widespread use and a compiler that 
is certified as meeting the ANSI or other standard for the 
language. The program should be written in such a way that 
it makes as few assumptions as possible about hardware-
dependent matters such as how data is stored in memory. It 
is also sometimes possible to use standard frameworks that 
provide the same functions in several different operating 
systems such as Windows, Macintosh, and UNIX.

However, there is a tradeoff: The more “generic” a pro-
gram is made in order to be portable, the less optimized it 
will be for any given hardware or operating environment. 
The program will also not be able to take advantage of the 
special features of a given operating system, which may put 
it at a competitive disadvantage compared to the “native 
version” of a program. (This is particularly true with Win-
dows, given that operating system’s dominance in personal 
computing.)

The Internet has in general been a force for portability. 
The Java language, in particular, is designed to be platform-
independent. A Java program is compiled into an interme-
diate language called byte code, which is interpreted or 
compiled by a “virtual machine” program running on each 
platform. Thus, the same Java program should run in a 
browser under Windows, Macintosh, or UNIX (see java).
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Portability Evaluation.” Journal of Systems and Software 38 
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Accessed June 11, 2007.

compiler
A compiler is a program that takes as input a program 
written in a source language and produces as output an 
equivalent program written in another (target) language. 
Usually the input program is in a high-level language such 
as C++ and the output is in assembly language for the target 
machine (see assembler).

Compilers are useful because programming directly 
in low-level machine instructions (as had to be done with 
the first computers) is tedious and prone to errors. Use of 
assembly language helps somewhat by allowing substitu-
tion of symbols (variable names) for memory locations and 
the use of mnemonic names for operations (such as “add” 

for addition, rather than some binary instruction code). An 
assembler is essentially a compiler that needs to make only 
relatively simple translations, because assembly language is 
still at a relatively low level.

Moving to higher-level languages with relatively Eng-
lish-like statements makes programming easier and makes 
programs easier to read and maintain. However, the task 
of translating high-level statements to machine-level code 
becomes a more complex multistep process.

The Compilation Process
Compilers are traditionally thought of as having a “front 
end” that analyzes the source code (high-level language 
statements) and a “back end” that generates the appropriate 
low-level code. The front end processing begins with lexical 
analysis. The compiler scans the source program looking for 
matches to valid tokens as defined by the language. A token 
is any word or symbol that has meaning in the language, 

A parse tree showing how an assignment statement in Pascal can 
be broken down into its component parts. Here ID stands for a vari-
able name, or identifier. An expression can be broken all the way 
down to a single number.
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such as a keyword (reserved word) such as if or while. 
Next, the tokens are parsed or grouped according to the 
rules of the language. The result of parsing is a “parse tree” 
that resolves statements into their component parts. For 
example, an assignment statement may be parsed into an 
identifier, an assignment operator (such as =), and a value to 
be assigned. The value in turn may be an arithmetic expres-
sion that consists of operators and operands.

Parsing can be done either “bottom up” (finding the 
individual components of the statement and then linking 
them together) or “top down” (identifying the type of state-
ment and then breaking it down into its component parts). 
A set of grammatical rules specifies how each construct 
(such as an arithmetic expression) can be broken into (or 
built up from) its component parts.

The next step is semantic analysis. During this phase the 
parsed statements are analyzed further to make sure they 
don’t violate language rules. For example, most languages 
require that variables must be declared before they are ref-
erenced by the program. Many languages also have rules for 
which data types may be converted to other types when the 
two types are used in the same operation.

The result of front-end processing is an intermediate rep-
resentation somewhere between the source statements and 
machine-level statements. The intermediate representation 
is then passed to the back end.

Code Generation and Optimization
The process of code generation usually involves multiple 
passes that gradually substitute machine-specific code and 
data for the information in the parse tree. An important 
consideration in modern compilers is optimization, which 
is the process of substituting equivalent (but more efficient) 
constructs for the original output of the front end. For 
example, an optimizer can replace an arithmetic expression 
with its value so that it need not be repeatedly calculated 
while the program is running. It can also “hoist out” an 
invariant expression from a loop so that it is calculated only 
once before the loop begins. On a larger scale, optimiza-
tion can also improve the communication between different 
parts (procedures) of the program.

The compiler must attempt to “prove” that the change it 
is making in the program will never cause the program to 
operate incorrectly. It can do this, for example, by tracing 
the possible paths of execution through the program (such 
as through branching and loops) and verifying that each 
possible path yields the correct result. A compiler that is 
too “aggressive” in making assumptions can produce subtle 
program errors. (Many compilers allow the user to control 
the level of optimization, and whether to optimize for speed 
or for compactness of program size.) During development, 
a compiler is often set to include special debugging code in 
the output. This code preserves potentially important infor-
mation that can help the debugging facility better identify 
program bugs. After the program is working correctly, it 
will be recompiled without the debugging code.

The final code generation is usually accomplished by 
using templates that match each intermediate construc-
tion with a construction in the target (usually assembly) 

language, plugging items in as specified by the template. 
Often a final step, called peephole optimization, examines 
the assembly code and identifies redundancies or, if pos-
sible, replaces a memory reference so that a faster machine 
register is used instead.

In most applications the assembly code produced by 
the compiler is linked to code from other source files. For 
example, in a C++ applications class definitions and code 
that use objects from the classes may be compiled sepa-
rately. Also most languages (such as C and C++) have oper-
ating system-specific libraries that contain commonly used 
support functions.

Compilation is a multistep process. Lexical analysis breaks state-
ments down into tokens, which are then parsed and subjected to 
semantic analysis. The resulting intermediate representation can be 
optimized before the final object code is generated.
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As an alternative to bringing the external code into the 
final application file, code can be “dynamically linked” to 
libraries that will be accessed only while the program is 
being run. This eliminates the waste that would occur if 
several running applications are all using the same stan-
dard library code (see library, program).

In mainframes compilers were usually invoked as part of 
a batch file using some form of JCL (job control language). 
With operating systems such as UNIX and MS-DOS a pro-
gram called make is typically used with a file that specifies 
the compiler, linker, and other options to be used to com-
pile the program. Modern visually oriented development 
environments (such as those provided by products such as 
Visual C++) allow options to be set via menus or simply by 
selecting from a variety of typical configurations.

Compiler design has become a highly complex field. 
A modern compiler is developed using a variety of tools 
(including packaged parsers and lexical analyzers), and 
involves a large team of programmers. Nevertheless, the 
principles of compiler design are emphasized in the gen-
eral computer science curriculum because when a student 
understands even a simplified compiler in detail, he or she 
has become acquainted both with important ideas (such 
as language grammar, parsing, and optimization) and with 
many levels of understanding computer architecture.

Further Reading
Aho, Alfred V., Ravi Sethi, and Jeffrey D. Ullman. Compiler Design: 

Principles, Techniques, and Tools. 2nd ed. Reading, Mass.: 
Addison-Wesley, 2006.

“Compiler Connection: A Resource for Compiler Developers and 
Those Who Use Their Products and Services.” Available 
online. URL: http://www.compilerconnection.com/. Accessed 
August 12, 2007.

Grune, Dick, et al. Modern Compiler Design. New York: Wiley, 2000.

component object model  (Microsoft)  See 
Microsoft .net.

computability and complexity
Interestingly, one of the important discoveries of 20th-cen-
tury mathematics is that certain kinds of problems were 
not computable. The Turing machine and Alonzo Church’s 
lambda calculus provided equivalent models that could be 
used to determine what was computable (see Turing, Alan 
Mathison, and Church, Alonzo). Thus far, the equiva-
lence between the Turing machine and actual computers 
has held. That is, any decision problem (a problem with a 
“yes” or “no” answer) that can in theory be solved with a 
Turing machine can in theory be solved by any actual com-
puter. Conversely, if a problem can’t be solved by a Turing 
machine, it cannot be solved by a computer, no matter how 
powerful.

The Halting Problem
The Halting problem is a classic example of an undecidable 
problem (or proposition). The problem is this: Given any 

computer program, can you determine whether the pro-
gram will halt (end) given any input? There are specific 
programs that can be shown to halt on particular inputs. 
For example, this program:

If Input = 99 then end.

will obviously halt on an input of 99. But to decide whether 
a determination can be made for any program for any input, 
it is only necessary to construct a logical paradox. Assume 
that there is a program P that halts if and only if it receives 
input D. (Further assume that the program can print some-
thing to let you know that it has halted.)

Since the input can be anything, you can let it be a copy 
of the program itself. The question then becomes: Will the 
program halt if it is given a copy of itself? Create a proce-
dure (or subroutine) called HaltTest, and define it as:

If P halts then print “Halted”
else print “Didn’t Halt.”

Now create another program called Main. It calls Halt-
Test and is programmed to do the opposite of what HaltTest 
indicates.

If HaltTest (Main) prints “Yes” then loop 
forever else halt;

But what happens when Main is run? It calls HaltTest, 
giving itself (Main) as input. If HaltTest halts, then Main 
loops forever. But if HaltTest doesn’t halt, then Main halts. 
But this means that Main halts if it doesn’t halt, and doesn’t 
halt if it halts. This paradox shows that whether Main halts 
is undecidable.

The undecidability of the Halting problem has some 
interesting implications. For example, it means that there 
is no way a computer can reliably determine that a program 
does not contain an infinite loop. Also, because a math-
ematical function f(x) is equivalent to a computer program 
with input x, similar proofs by contradiction can be written 
to show that it can’t be decided whether a program will halt 
on all inputs (which is equivalent to f(x) being defined for 
all x.) Nor can it be decided whether two different programs 
(or mathematical functions) are equivalent for all x.

It is important to realize that a program (or function) 
being undecidable in all cases doesn’t necessarily mean that 
it can’t be decided for some cases (or inputs). Indeed, the 
answer of the Halting Problem for any given input can be 
determined by feeding that particular input to the program, 
which will either halt or run forever.

Complexity
If a problem turns out to be computable, we then enter 
the realm of complexity—the analysis of how much com-
putation will be required (see algorithm). Sometimes a 
designer can devise a significantly faster algorithm for a 
given problem (such as finding prime factors or sorting). 
However, other problems appear to have complexity based 
on an exponential expression, meaning that they become 
more complex much more rapidly as the input increases. 
An example is the Traveling Salesman Problem, which is to 
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find the most efficient route for a person traveling to a num-
ber of cities to visit each of the cities.

Mathematicians therefore categorize the complexity of 
problems as P (solvable in a polynomial period of time), 
EXP (requiring an exponential time), or an intermediate 
class NP, which means “nondeterministic polynomial.” An 
NP problem is one that can be solved in polynomial time if 
one is able to guess (and then verify) the answer. The Trav-
eling Salesman Problem is believed to be in the NP class.

While abstruse, the study of computability and complex-
ity has important implications for practical applications. 
For example, determining the complexity of a crypto-
graphic algorithm can help determine whether the resulting 
encryption is strong enough to withstand the efforts of a 
feasible attacker.
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computer-aided design and manufacturing 
(CAD/CAM)
The use of computers in the design and manufacturing of 
products revolutionized industry in the last quarter of the 
20th century. Although computer-aided design (CAD) and 
computer-aided manufacturing (CAM) are different areas 
of activity, they are now so closely integrated that they are 
often discussed together as CAD/CAM.

Computer-Aided Design
In 1950, science fiction writer Robert Heinlein had his 
future inventor create “Drafting Dan,” an automated draft-
ing system that would enable designers to turn their ideas 
into manufacturing plans in a fraction of the time required 
for the hand preparation of schematics and parts lists. By 
the 1960s, engineers had developed the first computer-
assisted design programs, running on terminals attached to 
mainframe computers.

The activity of a CAD workstation centers on the cre-
ation of geometrical models (first 2D, then 3D). With the 
aid of models, a virtual representation of the product being 
designed can be built up. With its knowledge of geometrical 
and physical relationships, routines in the CAD system can 
perform not only measurement of dimensions and mass but 
also structural analysis. (In some cases CAD can be inter-
faced with systems that provide full-blown simulation of 
the effects of stresses, heat, and other factors.)

The growth of desktop computing power in the 1980s 
and 1990s moved CAD from the mainframe to the high-end 
workstation (such as those built by Sun Microsystems) and 
even to high-end personal computers. The growing pro-
cessing power also meant that the geometric models could 
become more sophisticated, including solid models with 

realistically rendered surfaces rather than just wireframes. 
The model of surfaces can include such factors as reflectiv-
ity, friction, or even aerodynamic characteristics. In design-
ing a product (or a subsystem of a product), engineers can 
now use simulation software to determine how well a group 
of parts in a complex assembly (such as a car’s steering 
mechanism) will perform. The ability to get detailed data in 
real time means that the CAD operator can work in a feed-
back loop in which the design is incrementally refined until 
the required parameters are met.

This growing modeling capability has been combined 
with the use of detailed databases containing the stan-
dard parts used in a particular industry or application. 
Libraries of templates allow the designer to “plug in” stan-
dard assemblies of parts and then modify them. The data-
bases can also be used with algorithms that can assist the 
designer in optimizing the design for some desired char-
acteristic, such as strength, light weight, or lower cost. 
Recent systems even have the capability to set “strategic” 
design goals for a whole family of products and to identify 
particular optimizations that would help each part or sub-
system achieve those goals.

Computer-aided Manufacturing
The automated fabricating of products on the factory floor 
originally developed independently of computer-aided 
design. Numerically controlled machine tools and lathes can 
be programmed using specialized languages such as APT 
(Automatically Programmed Tool) or more recently, through 
a system that uses a graphical interface. Advances in pattern 
recognition and other artificial intelligence techniques have 
been used to improve the ability of the automatic tool to 
identify particular features (such as holes into which bolts 
are to be inserted) and to properly orient surfaces. At some 
point the programmability and flexibility of the system with 
regard to its ability to manipulate the environment gives it 
the characteristics of a robot (see robotics).

Integration of CAD and CAM
As CAD systems became more capable, it soon became evi-
dent that there could be substantial benefits to be gained 
from integrating the design and manufacturing process.

The CAD software can also output detailed parts and 
assembly specifications that can be fed into the CAM pro-
cess. In turn, manufacturing considerations can be applied 
to the selection of parts during the design process.

The integration of design, simulation, and manu-
facturing continues. The goal is to give the engineer a 
seamless way to “tweak” a design and have a number of 
simulation modules automatically depict the effects of the 
design change. In essence, the designer or engineer would 
be working in a virtual world that accurately reflects the 
physical constraints that the product will face in the real 
world.

The automation of the design and manufacturing process 
has been mainly responsible for the increasing productivity 
of modern factories. Factories using traditional methods in 
producing complex products such as automobiles or con-
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sumer electronics have generally had to refit for CAD/CAM 
in order to remain competitive. Low-skill but relatively high-
paying factory jobs characteristic of the earlier industrial era 
have given way to smaller numbers of more technical jobs. 
This has meant a greater emphasis on education and special-
ized training for the industrial workforce.
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computer-aided instruction  (CAI)
Also called computer based training (CBT), computer-aided 
instruction (CAI) is the use of computer programs to pro-
vide instruction or training. (See education and com-
puters for a more comprehensive discussion of the use of 
computers for teaching and learning.)

The American reaction to Soviet space achievements 
led to many attempts to modernize the educational sys-
tem. While the high cost and limited capabilities of 
1950s computing technology allowed only for theoreti-
cal research by IBM and some universities, by the 1960s 
more powerful solid-state computers were starting to 
make what were then called “teaching machines” practi-
cable. The first large-scale initiative was the PLATO teach-
ing system designed by the Computer-based Educational 
Research Laboratory at the University of Illinois, Urbana. 
PLATO used a large timesharing system to provide edu-
cational software to about a thousand users at terminals 
throughout the university. PLATO pioneered the use of 
graphics and what would later be called multimedia, and 
was eventually marketed by Control Data Corporation, a 
leading manufacturer of high-end mainframe computers. 
Stanford University also began a large-scale initiative to 
deliver computerized instruction.

The early CAI systems required expensive hardware, 
however, and generally could be sustained only by research 
funding or where they met the growing training needs of 
the military, the aerospace industry, or other specialized 
users. However, the advent of the personal computer in the 
late 1970s provided both a new technology for delivering 
educational software and a potential market. With its color 
graphics and astute marketing the Apple II had became a 
staple of classrooms by the mid-1980s, when its succes-
sor, the Macintosh, brought more advanced graphics (see 
Macintosh) and a program called Hypercard that made it 
easy for educators to create simple interactive presentations 
(see hypertext and hypermedia). The Intel-based IBM PC 
and its “clones” also gained a foothold in the classroom, and 
Microsoft Windows brought a graphical interface similar to 
that on the Macintosh.

Applications
The simplest (and probably least interesting) form of CAI is 
often called “drill and practice” programs. Such programs 
(usually found in the elementary grades) repetitively pres-
ent math problems, reading vocabulary, or other exercises 
and test the user’s understanding. (Teaching keyboard skills 
to young students is another common application.) In an 
attempt to hold the student’s interest, many such programs 
provide a gamelike atmosphere and offer periodic rewards 
or reinforcement for success.

More sophisticated programs allow the student more 
creative scope, such as by letting the student program and 
test virtual “robots” as a means of mastering a program-
ming language. Many computer games, while not designed 
explicitly for instruction, provide simulations that exercise 
thinking and planning skills (see computer games). (For 
example, the strategy game Civilization incorporates con-
cepts such as resource management, labor allocation, and 
a balanced economy.) Even more sophisticated programs 
use advanced programming (see artificial intelligence) 
to interact with students in ways similar to those used by 
human teachers. For example, a program called Cognitive 
Tutor, now used in many schools, can recognize different 
“styles” of learning and approaches to solving, for example, 
an algebra problem. The program can also identify a stu-
dent’s specific weaknesses and tailor practice and supple-
mental instruction accordingly. These programs can teach 
and reinforce reasoning skills rather than just imparting 
specific knowledge.

Industry remains a large market for computer-based train-
ing. A variety of CBT packages are available for introducing 
and teaching programming languages such as C++ and Java 
as well as for preparing students to earn industry certificates 
such as the A+ certificate for computer technicians.

Trends
Two continuing trends in CAI are the growing use of 
graphics and multimedia, including video or movies, and 
the increasing delivery of training via the Internet. Some 
training software can be accessed directly over the Internet 
through a Web browser, without requiring special software 
on the user’s PC. Increasingly, even products delivered on 
CD and run from the user’s PC include links to supplemen-
tal material on the Web.
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computer crime and security
The growing economic value of information, products, and 
services accessible through computer systems has attracted 
increased attention from opportunistic criminals. In par-
ticular, the many potential vulnerabilities of online systems 
and the Internet have made computer crime attractive and 
pose significant challenges to professionals whose task it is 
to secure such systems.

The motivations of persons who use computer systems 
in unauthorized ways vary. Some hackers primarily seek 
detailed knowledge of systems, while others (often teenag-
ers) seek “bragging rights.” Other intruders have the more 
traditional criminal motive of gaining access to information 
such as credit card numbers and personal identities that 
can be used to make unauthorized purchases (see identity 
theft). Computer access can also be used to intimidate (see 
cyberstalking and harassment), as well as for extortion, 
espionage, sabotage, or terrorism (see cyberterrorism). 
Attacking and defending information infrastructure is now 
a vital part of military and homeland security planning (see 
information warfare).

According to the federal Internet Crime Complaint Cen-
ter, in 2006 the most commonly reported computer-related 
crime was auction-related fraud (44.9 percent), followed by 
nondelivery of goods (19 percent)—these no doubt reflect 
the high volume of auction and e-commerce transactions. 
Various forms of financial fraud (including identity theft) 
make up most of the rest.

The new emphasis on the terrorist threat following Sep-
tember 11, 2001, has included some additional attention to 
cyberterrorism, or the attack on computers controlling key 
infrastructure (including banks, water and power systems, 
air traffic control, and so on). So far ideologically inspired 
attacks on computer systems have mainly amounted to 
simple electronic vandalism of Web sites. Internal systems 
belonging to federal agencies and the military tend to be 
relatively protected and isolated from direct contact with 
the Internet. However, the possibility of a crippling attack 
or electronic hijacking cannot be ruled out. Commercial 
systems may be more vulnerable to denial-of-service attacks 
(see below) that cause economic losses by preventing con-
sumers from accessing services.

Forms of Attack
Surveillance-based attacks involve scanning Internet traffic 
for purposes of espionage or obtaining valuable informa-
tion. Not only businesses but also the growing number of 
Internet users with “always-on” Internet connections (see 
broadband) are vulnerable to “packet-sniffing” software 
that exploits vulnerabilities in the networking software or 
operating system. The main line of defense against such 
attacks is the software or hardware firewall, which both 
“hides” the addresses of the main computer or network and 
identifies and blocks packets associated with the common 
forms of attack (see firewall).

In the realm of harassment or sabotage, a “denial of ser-
vice” (DOS) attack can flood the target system with packets 
that request acknowledgment (an essential feature of net-
work operation). This can tie up the system so that a Web 

server, for example, can no longer respond to user requests, 
making the page inaccessible. More sophisticated DOS 
attacks can be launched by first using viruses to insert pro-
grams in a number of computers (a so-called botnet), and 
then instructing the programs to simultaneously launch 
attacks from a variety of locations.

Computer viruses can also be used to randomly vandal-
ize computers, impeding operation or destroying data (see 
computer virus). But a virus can also be surreptitiously 
inserted as a “Trojan horse” into a computer’s operating sys-
tem where it can intercept passwords and other information, 
sending them to the person who planted the virus. Viruses 
were originally spread through infected floppy disks (often 
“bootleg” copies of software). Today, however, the Internet 
is the main route of access, with viruses embedded in e-mail 
attachments. This is possible because many e-mail and other 
programs have the ability to execute programs (scripts) that 
they receive. The main defense against viruses is regular 
use of antivirus software, turning off scripting capabili-
ties unless absolutely necessary, and making a policy of not 
opening unknown or suspicious-looking e-mail attachments 
as well as messages that pretend to be from reputable banks 
or other agencies (see phishing and spoofing).

Computer Security
Because there are a variety of vulnerabilities of computer 
systems and of corresponding types of attacks, computer 
security is a multifaceted discipline. The vulnerability of 
computer systems is not solely technical in nature. Some-
times the weakest link in a system is the human link. 
Hackers are often adept at a technique they call “social 
engineering.” This involves tricking computer operators 
into giving out sensitive information (such as passwords) 
by masquerading as a colleague or someone else who might 
have a legitimate need for the information.

Since computer crimes and attacks can take so many 
forms, the best defense is layered or in depth. It includes 
appropriate software (firewalls and antivirus programs, 
and network monitoring programs for larger installations). 
It emphasizes proper training of personnel, ranging from 
security investigators to clerical users. Finally, if informa-
tion is compromised, the use of strong encryption can make 
it much less likely to be usable (see encryption).

While the flexibility and speed of the Internet can aid 
attackers, it can also facilitate defense. Emergency response 
networks and major vendors of antivirus software can 
quickly disseminate protective code or “patches” that close 
vulnerabilities in operating systems or applications.

The growing concern about vulnerability to computer 
intrusion and information theft has also been reflected in 
attempts to make operating systems inherently more secure. 
The introduction of new security features in Microsoft Win-
dows Vista has received mixed reviews. Some features, such 
as User Account Control, make it harder for viruses or 
other automated attacks to access critical system resources, 
but also annoy users by constant requests for permission to 
carry out common tasks. This reflects a fundamental truth: 
Security features that make everyday computing more 
tedious tend to be turned off or bypassed by users.
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Once a computer-based crime is detected, a system-
atic approach to evidence gathering and investigation is 
required (see computer forensics). This is because evi-
dence in computer crimes tends to be technical, intangi-
ble, and transient, and thus difficult to explain properly to 
judges and juries.

Individual consumers can reduce their vulnerability by 
ensuring that they do not give out personal information 
without verifying both the requester and the need for the 
data. Use of secure Web sites for credit card transactions 
has become standard. Generally speaking, vulnerability 
to computer crime is inversely proportional to the degree 
of privacy individuals have with regard to their personal 
information (see privacy in the digital age). Public con-
cern about privacy and security has led to recent laws and 
initiatives aimed at disclosure of organizations’ privacy 
policy and limiting the redistribution of information once 
collected.
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computer engineering
Computer engineering involves the design and implemen-
tation of all aspects of computer systems. It is the prac-
tical complement to computer science, which focuses on 
the study of the theory of the organization and processing 
of information (see computer science). Because hardware 
requires software (particularly operating systems) in order 
to be useful, computer engineering overlaps into software 
design, although the latter is usually considered to be a 
separate field (see software engineering).

To get an idea of the scope of computer engineering, con-
sider the range of components commonly found in today’s 
desktop computers:

Processor
The design of the microprocessor includes the number and 
width of registers, method of instruction processing (pipe-
lining), the chipset (functions to be integral to the package 
with the microprocessor), the amount of cache, the con-
nection to memory bus, the use of multiple processors, the 
order in which data will be moved and stored in memory 
(low or high-order byte first?), and the clock speed. (See 
microprocessor, chipset, cache, bus, multiprocessing, 
memory, and clock speed.)

Memory
The design of memory includes the type (static or dynamic) 
and configuration of RAM, the maximum addressable mem-

ory, and the use of parity for error detection (see memory, 
addressing, and error correction). Besides random-
access memory, other types of memory include ROM (read-
only memory) and CMOS (rewritable persistent memory).

Motherboard
The motherboard is the platform and data transfer infra-
structure for the computer system. It includes the main data 
bus and secondary buses (such as for high-speed connec-
tion between the processor and video subsystem—see bus). 
The designer must also decide which components will be 
integral to the motherboard, and which provided as add-
ons through ports of various kinds.

Peripheral Devices
Peripheral devices include fixed and removable disk drives; 
CD and DVD-ROM drives, tape drives, scanners, printers, 
and modems.

Device Control
Each peripheral device must have an interface circuit that 
receives commands from the CPU and returns data (see 
graphics card).

Input/Output and Ports
A variety of standards exist for connecting external devices 
to the motherboard (see parallel port, serial port, and 
usb). Designers of devices in turn must decide which con-
nections to support.

There are also a variety of input devices to be handled, 
including the keyboard, mouse, joystick, track pad, graph-
ics tablet, and so on.

Of course this discussion isn’t limited to the desktop PC; 
similar or analogous components are also used in larger com-
puters (see mainframe, minicomputer, and workstation).

Networking
Networking adds another layer of complexity in controlling 
the transfer of data between different computer systems, 
using various typologies and transport mechanisms (such 
as Ethernet); interfaces to connect computers to the net-
work; routers, hubs, and switches (see network).

Other Considerations
In designing all the subsystems of the modern computer and 
network, computer engineers must consider a variety of fac-
tors and tradeoffs. Hardware devices must be designed with 
a form factor (size and shape) that will fit efficiently into a 
crowded computer case. For devices that require their own 
source of power, the capacity of the available power supply 
and the likely presence of other power-consuming devices 
must be taken into account. Processors and other circuits 
generate heat, which must be dissipated. (In an increasingly 
energy-conscious world the reduction of energy consump-
tion, such as through standby or “hibernation” modes, is 
also an important consideration—see green pc.) Heat and 
other forms of stress affect reliability. And in terms of how 
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a device processes input data or commands, the applicable 
standards must be met. Finally, cost is always an issue.

Moving beyond hardware to operating system (OS) 
design, computer engineers must deal with many additional 
questions, including the file system, how the OS will com-
municate with devices (or device drivers), and how applica-
tions will obtain data from the OS (such as the contents of 
input buffers). Today’s operating systems include hundreds 
of system functions. Since the 1980s, the provision of all 
the objects needed for a standard user interface (such as 
windows, menus, and dialog boxes) has been considered 
to be part of the OS design. Finally, the building of secu-
rity features into both hardware and operating systems has 
become an integral part of computer engineering (see, for 
example, biometrics and encryption).

Trends
In the early days of mainframe computing (and again at 
the beginning of microcomputing) many distinctive system 
architectures entered the market in rapid succession. For 
example, the Apple II (1977), IBM PC (1981), and Apple 
Macintosh (1984) (see ibm pc and Macintosh). Because 
architectures are now so complex (and so much has been 
invested in legacy hardware and software), wholly new 
architectures seldom emerge today. Because of the com-
plexity and cost involved in creating system architectures, 
development tends to be incremental, such as adding PCI 
card slots to the IBM PC architecture while retaining older 
ISA slots, or replacing IDE controllers with EIDE.

The growing emphasis on networks in general and the 
Internet in particular has probably diverted some effort and 
resources from the design of stand-alone PCs to network 
and telecommunications engineering. At the same time, 
new categories of personal computing devices have emerged 
over the years, including the suitcase-size “transportable” 
PC, the laptop, the book-sized notebook PC, the handheld 
PDA (personal digital assistant), as well as network-ori-
ented PCs and “appliances.” (See portable computers and 
smartphone.)

As computing capabilities are built into more traditional 
devices (ranging from cars to home entertainment centers), 
computer engineering has increasingly overlapped other 
fields of engineering and design. This often means thinking 
of devices in nontraditional ways: a car that is able to plan 
travel, for example, or a microwave that can keep track of 
nutritional information as it prepares food (see embedded 
system). The computer engineer must consider not only the 
required functionality but the way the user will access the 
functions (see user interface).
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computer forensics
Computer forensics is the process of uncovering, docu-
menting, analyzing, and preserving criminal evidence that 
has been stored on (or created using) a computer system. 
(For the use of computers by police, see law enforcement 
and computers.)

In general, computer forensics involves both adher-
ence to legal evidentiary standards and the use of sophis-
ticated technical tools. The legal standards require 
practices similar to those used in obtaining other types 
of criminal evidence (observing expectations of privacy, 
knowing when a warrant is needed to search and seize 
evidence, and so on).

Once there is a go-ahead for a search, the first step is to 
document the layout and nature of the equipment (gener-
ally by photographing it) and to identify both devices that 
might be problematic or notes or other materials that might 
reveal passwords for encrypted data.

If the system is running it may be viewed or scanned to 
determine what applications are running and what network 
connections may be active. However, this has to be done as 
unobtrusively as possible, since some machines can detect 
physical intrusions.

Step by step, the forensic technician must document 
each software program or other tool used, and why it is 
justified (such as the possibility that simply shutting down 
the system might lead to loss of data in RAM). There are a 
variety of such tools, particularly for UNIX/Linux environ-
ments, some of which have been ported to Windows. (In 
some cases a Linux “live” CD might be booted and used to 
explore a Windows file system.)

The next step is to collect the evidence from storage 
media in such a way as to ensure that it is accurately and 
completely preserved. A running machine must generally 
first be shut down in such a way as to prevent trigger-
ing any “trip wire” or intrusion-detection or self-destruct 
mechanism that may have been installed.

As a practical matter, once the system has been properly 
shut down or immobilized, it is usually taken to the foren-
sic laboratory for extraction, copying, and documenting of 
the evidence (such as files on a hard drive or other storage 
device).

Once the data has been collected, each file or document 
must be analyzed to determine if it is relevant to the crimi-
nal investigation and what key information it contains. For 
example, e-mail headers may be analyzed to determine the 
source and routing of the message.

Some Typical Cases
Computer-based evidence may be relevant for almost any 
type of crime, but certain kinds of crimes are more likely to 
involve computer forensics. These include:

• � financial crimes, such as embezzlement

• � corporate crimes such as insider trading, where e-
mails may reveal who knew what and when

• � data or identity theft, including online scams or 
phishing
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• � stalking or harassment, particularly involving chat 
rooms or social networks

• � child pornography, particularly distribution of images

In recent years many law enforcement agencies have 
become aware of the importance of proper investigation and 
treatment of evidence in our digital society, and demand 
for trained computer forensic specialists is expected to 
increase.
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computer games
Today, playing games is one of the most popular computing 
activities. In the early days of computing, games offered a 
way to test AI techniques (see artificial intelligence). 
Games have also encouraged the development of more 
sophisticated graphics (see computer graphics) and ways 
of interacting with the machine (see user interface).

Games and AI
Although modern computer games may draw upon several 
genres, several recognizably distinct types of games have 
been developed over the past half century or so. The first 
were computer versions of existing board games. “Deter-
ministic” games (where there is no element of chance) such 
as tick-tack-toe and, more important, checkers and chess 
offered a challenge to the first computer scientists who were 
seeking to learn how to make machines perform tasks that 
are usually attributed to human intelligence. For example, 
Alan Turing and Claude Shannon both developed chess-
playing programs, although Turing’s came at a time when 
computers were still too primitive to handle the volume of 
calculations required, and was thus carried out by hand. By 
the time a computer program (Deep Blue) had defeated the 
world champion in 1997, the AI field had long since left the 
game behind (see chess and computers).

Simulation Games
Military planners had devised war games since the 19th 
century, but the complexity of modern warfare (including 
logistics as well as tactics) cried out for the help of the com-
puter. By 1955 the U.S. military was running large-scale 
global cold war simulations pitting NATO against the USSR 
and the Eastern bloc. Unlike deterministic games such as 
chess, war games generally use complex rules to capture 

the many interacting factors such as the morale, experi-
ence, and firepower of a military unit or the performance 
of an air defense system against different types of targets. 
The results will be more or less realistic depending on how 
many factors are properly accounted for—often only later 
combat experience will tell.

The use of game theory (the mathematics of competitive 
situations) and economics also proved to be fruitful areas 
for the use of computer simulations. In 1959 Carnegie Tech 
(later Carnegie-Melon University) introduced a simulation 
called “The Management Game.” Until the 1980s, however, 
lack of inexpensive computing power kept sophisticated 
simulations limited to large institutions such as the mili-
tary, government, universities, and major corporations.

Today simulation games are popular in both the educa-
tional and consumer markets. They include flight simula-
tors, a variety of sports including baseball, football, soccer, 
and golf, and games in which the player strives to build a 
19th-century railroad empire or run a modern city. Indeed 
some games, such as the popular kingdom-building simula-
tor Civilization or the complex Sim City, while marketed pri-
marily as entertainment, can easily fit into a social studies 
curriculum.

Arcade and Graphic Games
Starting in the 1960s, CRT (television-like) displays gave 
the new minicomputers the means to display simple graph-
ics. In 1962, an intrepid band of game hackers at MIT cre-
ated Spacewar, the first interactive graphic game and the 
forerunner of the arcade boom of the 1970s. When the 
first home computers from Apple, Commodore, Atari, and 
IBM hit the market in the late 1970s and early 1980s, they 
included rudimentary (but often colorful) graphics capa-
bilities. Many amateur programmers used the comput-
ers’ built-in BASIC language to create games such as lunar 
lander simulators and Star Trek–style space battles. Around 

A scene from the computer strategy game Civilization. Some games 
specialize in realistic physical simulation, while others (such as this 
one) embody sophisticated economic and strategic considerations.
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the same time, the home game cartridge machine was intro-
duced by Atari and other companies, while the arcade game 
Pac-Man became a phenomenal success in 1980 (see game 
consoles).

Role-playing, Real-time, and Social Worlds
Around the time of the first home computers, a noncom-
puter game called Dungeons and Dragons became extremely 
popular. “D&D” and other role-playing games allowed play-
ers to create and portray characters, with elaborate rules 
being used to resolve events such as battles. Role-play-
ing games soon began to appear on PCs—early examples 
include the Wizardry and Ultima series. Meanwhile, text-
based adventure games were becoming popular on early 
computer networks, particularly at universities. These 
evolved into MUDs (Multi-User Dungeons) where players’ 
characters could interact with each other. Eventually many 
of these programs went beyond their adventuring roots to 
create a variety of social worlds in a sort of text-based vir-
tual reality.

By the 1990s, the typical PC had a special circuit (see 
graphics card) capable of displaying millions of colors, 
together with video memory (now 256 MB or more) that 
could hold the complex images needed for high-resolution 
animation. Computer game graphics have become increas-
ingly complex (see computer graphics), including real-
istic textures, shading and light, smooth animation, and 
special effects rivaling Hollywood. (Compare, for example, 
early wireframe graphics in games such as the Wizardry of 
1980 with games such as Diablo II and Warcraft with ani-
mated characters moving in a richly textured world.)

The way players interact with the game world has also 
significantly changed. The first computer games tended to 
be divided into turn-based strategy and role-playing games 
and real-time arcade-style “shoot ’em ups.” Today, however, 
most games, regardless of genre, run as RTS (real-time sim-
ulations) in which players must interact continuously with 
the game situation.

By the late 1990s gaming was no longer a solitary pur-
suit. The Internet made it possible to offer game worlds in 
which thousands of players could participate simultane-
ously (see online games). Games such as Everquest and 
Asheron’s Call have thousands of devoted players who spend 
many hours developing their characters’ skills, while open-
ended worlds such as Second Life seem to no longer be 
games at all, but a virtual, parallel universe with a full 
range of social interaction. However, the increased real-
ism of modern games has also heightened the controversy 
about in-game violence and other antisocial behavior, as 
in the Grand Theft Auto series. (Although there is a rating 
system for games similar to that for movies, its effectiveness 
in keeping adult-themed games out of the hands of young 
children seems to be limited.)

Game Development
The emphasis on state-of-the-art animation and graphics 
and multiplayer design has changed the way game develop-
ment is done. The earliest home computer games were typi-
cally the product of a single designer’s vision, such as Chris 

Crawford’s Balance of Power and Richard Garriott (“Lord 
British”) in the Ultima series. Today, however, commercially 
competitive games are the product of teams that include 
graphics, animation, and sound specialists, actors and voice 
talent, and other specialists in addition to the game design-
ers. While earlier games might be compared to books with 
single authors, modern game developers often compare 
their industry to the movie industry with its dominant stu-
dios. And, as with the movie industry, critics have argued 
that the high cost of development and of access to the mar-
ket has led to much imitation of successful titles and less 
innovation.

On the other hand, a variety of modern programming 
environments (such as Visual Basic or even Macromedia 
Flash) make it easy for young programmers to get a taste 
of game programming, and for amateur programmers to 
create games that can be distributed via the Internet (see 
shareware and freeware). Although computer science 
programs have been slow to recognize the attraction and 
value of game programming, a variety of academic pro-
grams are now emerging. These range from computer arts, 
graphics, and animation programs to a full-fledged four-
year degree program in game design at the University of 
California, Santa Cruz. This program includes not only 
courses in game design and programming, but also courses 
on the game business and even ethics.
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computer graphics
Most early mainframe business computers produced out-
put only in the form of punched cards, paper tape, or text 
printouts. However, system designers realized that some 
kinds of data were particularly amenable to a graphical rep-
resentation. In the early 1950s, the first systems using the 
cathode ray tube (CRT) for graphics output found special-
ized application. For example, the MIT Whirlwind and the 
Air Force’s SAGE air defense system used a CRT to display 
information such as the location and heading of radar tar-
gets. By 1960, the new relatively inexpensive minicomput-
ers such as the DEC PDP series were being connected to 
CRTs by experimenters, who among other things created 
Spacewar, the first interactive video game.
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By the late 1970s, the microcomputers from Apple, Radio 
Shack, Commodore, and others either included CRT moni-
tors or had adapters that allowed them to be hooked up 
to regular television sets. These machines generally came 
with a version of the BASIC language that included com-
mands for plotting lines and points and filling enclosed 
figures with color. While crude by modern standards, these 
graphics capabilities meant that spreadsheet programs 
could provide charts while games and simulations could 
show moving, interacting objects. Desktop computers that 
showed pictures on television-like screens seemed less for-
bidding than giant machines spitting out reams of printed 
paper (see graphics card).

Research at the Xerox PARC laboratory in the 1970s 
demonstrated the advantages of a graphical user interface 
based on visual objects, including menus, windows, dialog 
boxes, and icons (see user interface). The Apple Macin-
tosh, introduced in 1984, was the first commercially via-
ble computer in which everything displayed on the screen 
(including text) consisted of bitmapped graphics. Micro-
soft’s similar Windows operating environment became 
dominant on IBM architecture PCs during the 1990s. 
Today Apple, Microsoft, and UNIX-based operating sys-
tems include extensive graphics functions. Game and mul-
timedia developers can call upon such facilities as Apple 
QuickDraw and Microsoft DirectX to create high resolu-
tion, realistic graphics (see also game console).

Basic Graphics Principles
The most basic capabilities needed for computer graphics are 
the ability to control the display of pixels (picture elements) 
on the screen and a way to specify the location of the spots 
to be displayed. A CRT screen is essentially a grid of pixels 
that correspond to phosphors (or groups of colored phos-
phors) that can be lit up by the electron beam(s). The first 
IBM PCs, for example, often displayed graphics on a 320 
(horizontal) by 200 (vertical) grid, with 4 available colors.

A memory buffer is set up whose bytes correspond to the 
video display. (A simple monochrome display needs only 
one bit per pixel, but color displays must use additional 
space to store the color for each pixel.) A screen image is 
set up by writing the data bytes to the buffer, which then 
is sent to the video system. The video system uses the data 
to control the display device so the corresponding pixels 
are shown (in the case of a CRT, this means lighting up the 
“on” pixels with the electron gun[s]).

In most cases screen locations are defined in coordi-
nates where point 0,0 is the upper left corner of the screen. 
The coordinates of the lower right corner depend on the 
screen resolution, At 320 by 200, the lower right corner 
would be 319,199.

For example, many versions of BASIC use statements 
such as the following:

PSET 50,50 ’ draws a dot at X=50, Y=50
LINE (100,50)-(150,100), B ’ draw square 

with UL
’ corner at 100,50 and LR
’ corner at 150,100

CIRCLE (100,150), 50, 4 ’ draw a circle of 
radius 50

’ with center at 200,200 and
’ color 4 (red)

Languages such as C, C++ and Java don’t have built-in 
graphics commands, but functions can be provided in pro-
gram libraries (see library, program). They would be used 
much like the BASIC commands given above.

More commonly, however, programmers use language-
independent graphics platforms (see api). With Windows, 
this usually means DirectX, which includes Direct2D for 
3D graphics, as well as a variety of multimedia libraries 
for sound, user interfacing, and networking. A competitor 
that is particularly popular in the Mac and UNIX/Linux 
worlds is OpenGL (Open Graphics Library). Both DirectX 
and OpenGL run on a wide variety of supported hardware.

Graphics Models and Engines
Modern applications (such as drawing programs and games) 
go well beyond simple two-dimensional objects. Indeed, 
multimedia developers typically use graphics engines 
designed to work with C++ or Java. A graphics engine 
provides a way to define and model 2D and 3D polygons. 
(Curves can be constructed by specifying “control points” 
for bicubic curves.)

Complex objects can be built up by specifying hierar-
chies (for example, a human figure might consist of a head, 
neck, upper torso, arms, hands, lower torso, legs, feet, and 

Some example figures plotted by BASIC graphics statements using 
screen coordinates.
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so on). By creating a hierarchy of arm, hand, fingers a trans-
formation (scaling or rotation) of one object can be propa-
gated to its dependent objects (see animation). In many 
cases graphics are created from real-world objects that have 
been digitally photographed or scanned, and then manipu-
lated (see image processing).

In most scenes the relationships between graphical 
objects are also important. Modern graphics modeling pro-
grams use a virtual “camera” to indicate the position and 
angle from which the graphics are to be viewed. In render-
ing the scene, the Painter’s Algorithm can be used to sort 
objects and draw closer surfaces on top of farther ones, as 
a painter might paint over the background. Alternatively, 
the Z-buffer algorithm stores depth information for each 
pixel to determine which ones are drawn. This technique 
requires less calculation (because surfaces don’t need to 
be sorted), but more memory, since the depth of each pixel 
must be stored.

Within a scene, the effects of light (and its absence, 
shadows) must be realistically rendered. A simple tech-
nique can be used to calculate an overall light level for an 
object based on its angle in relation to the light source, 
plus a factor to account for ambient and diffuse light in the 
environment. The Gouraud shading technique can be used 
to smooth out the artifacts caused by the simple flat shad-
ing method. Another technique, Phong shading, can more 
realistically reproduce highlights (the sharp image of a light 
source being reflected within a surface). But the most realis-
tic lighting effects are provided through ray tracing, which 
involves tracing how representative vectors (representing 
rays of light) reflect from or refract through various sur-
faces. However, ray tracing is also the most computationally 
intensive lighting technique.

Several techniques can be used to give objects more 
realistic surfaces. Texture mapping can be used to “paint” 
a realistic texture (perhaps scanned from a real-world 
object) onto a surface. For example, pieces in a chess game 
could be given a realistic wood grain or marble texture. 
This can be further refined through bump mapping, which 
calculates variations in the texture at each point based on 
light reflections.

Applications and Tradeoffs
The most graphics-intensive applications today are games, 
multimedia programs, and scientific visualization or mod-
eling applications. Because of the impact graphics have on 
users’ perception of games and multimedia programs, devel-
opers spend a high proportion of their resources on graph-
ics. Critics often complain that this is at the expense of 
core program functions. The software in turn places a high 
demand on user hardware: The contemporary “multime-
dia-ready” PC has a video card that includes special “video 
accelerator” hardware to speed up the display of graphics 
data and a video memory buffer of 256 MB or more.

Complex 3D graphics with lighting, shading, and tex-
tures may have to be displayed at a relatively low resolution 
(such as 640 × 480) because of the limitations of the main 
processor (which performs necessary calculations) and the 
video card. However as processor speed and memory capac-

ity continue to increase, many computer graphics now rival 
video and even film in realistic detail.
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computer industry
The U.S. computer industry began with the marketing of the 
Univac, designed by J. Presper Eckert and John Mauchly in 
the early 1950s. The first computers were made one at a time 
and only as ordered, and the market for the huge, expensive 
machines was thought to be limited to government agencies 
and the largest corporations. However, astute marketing by 
Sperry-Univac, Burroughs, and particularly, International 
Business Machines (see ibm) convinced a growing number 
of companies that modern data processing facilities would 
be essential for managing their growing and increasingly 
complex business (see mainframe).

The mainframe market was controlled by a handful of 
vendors who typically provided the complete computer sys-
tem (including peripherals such as printers) and a long-term 
service contract. (Eventually, third-party vendors began to 
make compatible peripherals.) Companies that could not 
afford their own computers began to contract with service 
bureaus for their data processing needs, such as payroll 
processing.

By the 1960s, transistorized circuitry was replacing 
the vacuum tube, and somewhat smaller machines became 
practicable (see minicomputer). While these computers 
were the size of a desk, not a desktop, models such as Digi-
tal Equipment Corporation’s PDP series and competition 
from companies such as Data General provided computing 
power for engineers and scientists to use in factories and 
laboratories. During the 1970s, the dedicated word pro-
cessing machine marketed by the Wang Corporation began 
the digital transformation of the office. By the end of that 
decade, the first general-purpose desktop microcomputers 
were marketed. The Apple II made a modest inroad into 
business, fueled by VisiCalc, the first spreadsheet program.

This new market attracted the attention of IBM, viewed 
by many microcomputer enthusiasts as a dinosaurlike relic 
of the mainframe age. Uncharacteristically, IBM manage-
ment gave the developers of their personal computer (PC) 
project free rein, and the result was the IBM PC introduced 
in 1981. The machine had two major advantages. One was 
the IBM name itself, which was comforting to executives 
contemplating a bewildering new technology. The other 
was that IBM (again, uncharacteristically) had followed 
Apple’s lead in designing their PC with an “open architec-
ture,” meaning that third-party manufacturers could mar-
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ket a variety of expansion cards to increase the machine’s 
capabilities. By 1990, about 10 million PCs worth about $80 
billion were being sold annually (see ibm pc).

Although IBM tried to prevent other manufacturers from 
“cloning” the IBM chipset itself, it was unable to prevent 
companies such as Compaq from creating “IBM compatible” 
PCs that often surpassed the capabilities of the IBM mod-
els. (IBM introduced its microchannel architecture in the 
late 1980s in an unsuccessful attempt to regain proprietary 
advantage.) By the 1990s the IBM-compatible PCs (some-
times called “Wintel,” for the Microsoft Windows operat-
ing system and Intel-compatible processor) had become 
an industry standard and a commodity manufactured and 
marketed by everything from the big name brands such 
as Dell and Gateway down to the corner computer store’s 
backroom operation.

The announcement of Apple’s Macintosh computer in 
1984 made a vivid impression on the public (see Macin-
tosh). With its fully graphical user interface, mouse, draw-
ing program, and fonts, it seemed light-years ahead of the 
text-based IBM PCs. However, the Mac’s slow speed, rela-
tively high price, and closed architecture limited its pen-
etration into the business market. The Mac did attract an 
enthusiastic minority of consumer users and achieved a 
lasting niche presence in education and among graphics 
and video professionals. Gradually, as Microsoft’s graphical 
Windows operating system improved in the early 1990s, 
the Mac’s advantages over the IBM-compatible machines 
diminished.

During the 1990s, desktop computers came with a 
series of increasingly powerful series of Pentium proces-
sors, matched by offerings from AMD and Cyrix. Multime-
dia (including high-end graphics and sound capabilities) 
became a standard feature, particularly on consumer PCs. 
Increasingly, the business PC was being connected to a 
local area network, and both business and consumer PCs 
included modems or broadband access to online services 
and the Internet. The need to manage network files and ser-
vices (such as Web servers) led to the development of server 
PCs featuring high-capacity mass storage. At the same time, 
high-end PCs also challenged the graphics workstations 
made by companies such as Sun. The traditional minicom-
puter and high performance workstation category began 
to melt away. By 2002, an estimated 600 million personal 
computers were in use worldwide, with about half of them 
in homes.

The personal computer also grew smaller. The suitcase-
sized “luggable” computers of the 1980s gave way to a range 
of laptop, notebook-sized, and palm-sized computers. Today 
wireless networking technology allows users of diminutive 
machines to access the full resources of the World Wide 
Web and local networks.

The idea of “appliance computing” has also been a 
recurrent theme among industry pundits. Proponents argue 
that there are still many people who feel intimidated by a 
standard computer interface but have become comfortable 
with other consumer electronic products such as televi-
sions, CD players, or microwaves. If computer functions 
could be built into such devices, people might use them 

comfortably. For example, WebTV is a box that allows the 
user to surf the Web from the same armchair where he or 
she watches TV, using controls little more complicated than 
those found on a regular TV remote. Kitchen appliances 
might be transformed, with the microwave providing reci-
pes and the refrigerator keeping an inventory and automati-
cally ordering from the grocery store. However, as with the 
fully automated “wired home,” featured in Sunday news-
paper supplements, the appliance computer has remained 
difficult to market to consumers (see smart buildings and 
homes).

The Software Industry
Hardware is useless without software. Since the operating 
system (OS) is the software that enables all other software 
to access the computer, the OS market is a key part of the 
computer industry. Through a historical accident, a young 
programmer-entrepreneur named Bill (William) Gates 
and his Microsoft Corporation received the contract to 
develop the operating system for the first IBM PC. Micro-
soft bought and adapted an existing operating system to 
create MS-DOS (also called PC-DOS). Until the end of the 
1980s, DOS was the dominant operating system for IBM-
compatible PCs (see ms-dos). In the early 1990s, Microsoft 
introduced Windows 3.0, the first successful version of its 
graphical operating environment (see Microsoft Win-
dows). The dominance of Windows became so complete 
that a federal antitrust case against Microsoft resulted in 
the company having to provide competitors greater access 
to the operating system.

The source of emerging challenges to Windows comes 
not from another desktop vendor but from the Internet, 
where Java offers the potential of delivering applications 
through the user’s Web browser, regardless of whether that 
user is running Windows, the Macintosh OS, or Linux, a 
variant of UNIX that has been embraced by many enthu-
siasts. However, Java applications and Linux still represent 
only a tiny fraction of the market share held by Windows 
(see Java and Linux).

The 1990s saw considerable consolidation in the office 
software arena. Microsoft’s Office software suite over-
whelmed once formidable competitors such as WordPerfect 
and Corel. Packages such as Microsoft Office create their 
own mini-industries where developers create templates and 
add-ins. However, the widespread use of high-speed Inter-
net access (see broadband) has made it practicable to offer 
many office software functions online, providing workers 
with convenient access from any location. The most signifi-
cant offering here has been Google Apps, which includes 
calendar and communications features as well as Google 
Docs & Spreadsheets. In turn, Microsoft has been prompted 
to offer added-value online features to Microsoft Office.

Outside the office there is considerably more competi-
tion in the software industry. Today’s consumers can choose 
from a wide variety of software that fills utility or other niche 
needs, including shareware (“try before you buy”) offerings. 
In educational software and games some once-major innova-
tors have been bought out or consolidated, but there is no 
one dominant company. Thousands of specialized software 
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packages serve scientific, manufacturing, and business 
needs. While the general public is unaware of such pro-
grams, they make up much of the strength of the software 
industry.

Other Products and Services
By the 2000s there were many new niches in the computer 
industry landscape. Powerful dedicated game machines 
such as the Microsoft Xbox 360 and the Sony PlayStation 
3 make for a vigorous software industry that potentially 
goes beyond games (see game consoles). Portable media 
players such as Apple’s iPod are ubiquitous (see music and 
video players, digital). The personal digital assistant (see 
pda) and the cell phone have largely merged and morphed 
(see smartphone), capable of running a variety of soft-
ware including e-mail, Web browsing, games, and music. 
Meanwhile, digital cameras have virtually replaced film for 
all but the most high-end and specialized applications (see 
photography, digital). The convergence and proliferation 
of all of these devices is continuing at a rapid pace, and 
competition is fierce.

The services sector of the computer industry lacks the 
visibility of new hardware products, but provides most 
of the industry’s employment and much of its economic 
impact. In addition to the hundreds of thousands of pro-
grammers who provide business-related, consumer, and 
specialized software, there are the legions of help desk 
employees, computer and network technicians, creators of 
software development tools, writers of technical books and 
training products, industry investment analysts, reporters, 
and many others whose livelihood depends on the com-
puter industry.

International Computing
The computing industry came of age mainly in the United 
States. By the 1960s IBM had extended its dominant posi-
tion to Britain and Europe despite the efforts of indigenous 
companies and government initiatives. Japan was consider-
ably more successful in developing a competitive electron-
ics and computer industry under the long-term guidance of 
MITI (Ministry of International Trade and Industry). The 
Japanese became dominant in industrial robotics and strong 
in consumer electronics, including game machines (Sony), 
digital cameras (Sony and Fujitsu), and laptop computers 
(Toshiba). They have been less successful in desktop com-
puters, Internet-related technology, and commercial soft-
ware. China has become an increasingly important player 
in the components and peripherals industry. The growing 
importance of Asia in the international computer industry 
is also underscored by the large number of programmers, 
engineers, and support personnel being trained in India 
(see globalism and the computer industry).

Major Internet industry players such as Google and 
Yahoo! as well as hardware giant Dell have become heavily 
involved in the Chinese market, which boasted about 100 
million users in 2006, second only to the United States.

A number of initiatives are helping spread computing 
even in the limited economies of many countries in Africa, 

Asia, and Latin America (see developing nations and 
computing). While illicit copying has hindered the mar-
keting of commercial software in many countries, the alter-
native model of open-source software and very inexpensive 
laptops (the One Laptop Per Child initiative) may offer a 
viable path to the true globalization of computing.

Emerging Trends
As the 2000 decade has progressed, a number of trends 
continue to reshape the computer industry. These include:

• � The recovery from the “bust” years of 2001–3 was fol-
lowed by more modest but significant growth, with 
rapid growth in particular sectors such as mobile 
devices, Web applications (see Web 2.0), and security.

• � Desktop PC sales were strong through 2005 (about 
200 million that year) but now appear to be stagnat-
ing (in the United States at least) in favor of laptops, 
smaller portable computers, and smart phones.

• � Although a new generation of multicore proces-
sors and the resource-hungry Microsoft Windows 
Vista operating system may eventually speed up the 
replacement of older PCs, businesses have been tend-
ing to keep slightly obsolescent machines and operat-
ing systems longer.

• � Free or lower-cost alternative software and operating 
systems (see open source and Linux) are attracting 
considerable publicity, but it is unclear how much 
penetration they will achieve in the mainstream home 
and small-business computing sectors.

• � Besides cost consciousness and other priorities (such 
as networking and security), the trend toward Web-
based applications may be shifting sales away from 
hardware and traditional operating systems and soft-
ware suites. (See application service provider.)

• � Outsourcing of many IT functions is continuing, 
including network administration, managed backup 
and storage, and even security. Meanwhile, there has 
been concern about lack of sufficient U.S. graduates 
in computer science and engineering.

While the computer hardware, software, and service 
industries are likely to continue growing vigorously, the 
boundaries between sectors and applications are blurring, 
making it harder to consider the industry as a whole 
as opposed to specific sectors and applications (see  
e-commerce).
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computer literacy
As computers became integral to business, industry, trades, 
and professions, educators and parents became increas-
ingly concerned that young people acquire a basic under-
standing of computers and master the related skills. The 
term computer literacy suggested that computer skills were 
now as important as the traditional skills of reading, writ-
ing, and arithmetic. However, there has been disagreement 
about the emphasis for a computer literacy curriculum. 
Some educators, such as Seymour Papert, computer sci-
entist and inventor of the Logo language, believe that stu-
dents can and should understand the concepts underlying 
computing, and be able to write and appreciate a variety of 
computer programs (see logo). By gaining an understand-
ing of what computers can (and cannot) do, students will 
be able to think critically about how to appropriately use 
the machines, rather than simply mastering route skills. 
Indeed, by gaining a good grasp of general principles, the 
student should be able to easily master specific skills.

An opposing view emphasizes the practical skills that 
most people (who will not become programmers) will need 
in everyday life and work. This sort of curriculum focuses 
on learning how to identify the parts of a computer and 
their functions, how to run popular applications such 
as word processors, spreadsheets, and databases, how to 
connect to the Internet and use its services, and so on. 
Computer literacy can also be broadened to include under-
standing the impact that computers are having on daily 
life and social issues that arise from computer use (such as 
security, privacy, and inequality).

Today computer literacy is an important part of every 
elementary and high school curriculum. Most students in 
middle-class or higher income brackets now have access to 
computers at home, and many thus gain considerable com-
puter literacy outside of school. In addition, adult education 
and vocational schools often emphasize computer skills as 
a route to employment or career advancement. People also 
have the opportunity to learn on their own through books 
and videos.

The approach to computer literacy will vary with the 
background and resources of a given community. For exam-
ple, programs for young people in developed countries can 
take advantage of the fact that many young people already 
have considerable experience with using computers, includ-
ing related devices such as game consoles and music/video 
players. On the other hand, a program targeted at a poor or 
minority community must cope with the likelihood that 
many members of the community have had little opportu-

nity to interact with computers (see digital divide). Pro-
grams for poor and developing countries may have to focus 
first on providing the basic infrastructure, as in the One 
Laptop Per Child Program.
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computer science
Most generally, computer science is the study of methods 
for organizing and processing data in computers. The fun-
damental questions of concern to computer scientists range 
from foundations of theory to strategies for practical imple-
mentation.

Fundamental Theory
• � What problems are susceptible to solving through an 

automated procedure? (See computability and com-
plexity.)

• �G iven that a problem is solvable, can it be solved 
without too much expenditure of time or computing 
resources?

• � Can a step-by-step procedure be devised for solving 
a given problem? (See algorithm.) How do different 
procedures (such as for sorting data) compare in effi-
ciency and reliability? (See sorting and searching.)

• � What methods of organizing data are most useful? 
(See data structures.) What are the advantages and 
drawbacks of particular forms of organization? (See 
array, list processing, and queue.)

• � Which structures are best for representing the data 
needed for a given application? What is the best way 
to relate data to the procedures needed to manipulate 
it? (See encapsulation, class, and procedures and 
functions.)

The Tools of Computing
• � How can programs be structured so they are easier to 

read and maintain? (See structured programming 
and object-oriented programming.)

• � Can programmers keep up with growth of operating 
systems and application programs that have millions 
of lines of code? (See software engineering and 
quality assurance, software.)

• � How can multiple simultaneous tasks (or even mul-
tiple processors) be coordinated to bring greater 
computing power to bear on problems? (See multi-
tasking and multiprocessing.)
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• � What is the best way to design an operating system, 
including the arrangement of different layers of the 
operating system such as the hardware-specific driv-
ers, kernel (essential functions), and interfaces (shells 
or visual environments)? (See operating system, 
kernel, device driver, and shell.)

• � What should be emphasized in designing a program-
ming language? How does one specify the grammar 
of statements the declaration and handling of data 
types, and the mechanism for handling functions or 
procedures? (See Backus-Naur form, data types, 
and procedures and functions.)

• � What considerations should be emphasized in design-
ing a compiler for a given language? (See compiler.)

• � How should a network be organized, and what pro-
tocols should be used for transferring data? (See 
network, Internet, data communications, tele-
communications, and tcp/ip.)

Specific Application Areas
The general principles and tools must then be applied to a 
variety of application areas including:

• � text processing (see word processor, text editor, 
and font)

• � graphics (see computer graphics and image pro-
cessing)

• � database management, including file structures and 
file access (such as indexing and hashing), and data-
base architecture (relational databases) (see database 
management system, sql, and xml).

• � business data processing issues, including the design 
of MIS (management information systems) and deci-
sion support systems

• � web applications, including commercial applications 
(see e-commerce), multimedia, database access, inte-
gration of Web services (see bioinformatics service-
oriented architecture, mashups, and web 2.0 and 
beyond), and appropriate programming techniques 
(see Ajax and scripting languages.)

• � scientific programming issues, including data acqui-
sition, maintaining accuracy in calculations, and 
creating visualizations driven by the data (see data 
acquisition, numeric data and scientific comput-
ing applications.)

• � user interface design (designing the interaction 
between human beings and the operating system or 
application) (see user interface)

• � the broad area of artificial intelligence, which affects 
ways of representing information and modeling rea-
soning processes (see artificial intelligence, neu-
ral network, expert systems, and knowledge 
representation.)

• � robotics and control systems (an older term, “cyber-
netics,” has also been used for this field) (see robot-
ics and cybernetics.)

Clearly the concerns of computer science overlap a num-
ber of related fields. The design of computer hardware is 
often considered to be computer engineering, but designers 
of hardware must be familiar with the algorithms that will 
be used to operate it (see also computer engineering). 
Both artificial intelligence and user interface design are 
affected by cognitive science (or psychology), the study of 
human thought processes. Biology both inspires and is illu-
minated by artificial life simulations, genetic algorithms, 
and neural networks. The most abstract questions of infor-
mation processing touch on the field of information science 
(or information theory).

History of the Field
The early computer pioneers such as Alan Turing, J. Pre-
sper Eckert, and John Mauchly brought backgrounds in 
mathematics or engineering (see Turing, Alan; Eckert, 
J. Presper; and Mauchly, John). By the 1960s, however, 
a discipline and curriculum for computer science began to 
emerge. By the late 1990s more than 175 departments in 
American and Canadian universities offered a doctorate in 
computer science, with about a thousand new Ph.D.s being 
granted each year. However, in the following decade the 
number of students majoring in computer science declined 
by about 50 percent. (See education in the computer 
field for more details.)

The traditional computer science field emphasizes the 
theory of data representation, algorithms, and system archi-
tecture. In recent years a more practically oriented cur-
riculum has emerged as an alternative. Under the titles of 
“Information Technology” or “Information Systems,” this 
curriculum emphasizes application areas such as manage-
ment information systems, database management, system 
administration, and Web development.
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computer virus
A computer virus is a program that is designed to copy 
itself into other programs. When the other programs are 
run, they carry out the virus’s instructions, either instead of 
or in addition to their own. Since one of the primary tasks 

110        computer virus



programmed into a virus is to reproduce itself, a virus pro-
gram can spread rapidly. Viruses are generally programmed 
to seek out program files that are likely to be executed in 
the near future, such as those used by the operating system 
during the startup process. The result is a copy that can 
in turn generate an additional copy, and so on. (A virus 
disguised as an innocuous program is sometimes called 
a Trojan, short for “Trojan horse.” A distinction is some-
times made between viruses and worms. A worm generally 
uses flaws in a networking system to send copies to other 
machines, without needing to insert code into a program.)

Appearing in the 1980s, the first computer viruses were 
generally spread by infecting programs on floppy disks, 
which were often passed between users. Today, viruses gen-
erally have instructions that enable them to gain access to 
network facilities (such as e-mail) to facilitate their spread-
ing to other systems on a local network or on the Internet. 
The spread of viruses is complicated by the fact that operat-
ing systems (particularly Microsoft Windows) and appli-
cations (such as Microsoft Office) have the ability to run 
scripts or “macros” that are attached to documents. This 
facility can be useful for tasks such as sophisticated docu-
ment formatting or form-handling, but it also means that 
viruses can attach themselves to scripts or macros and run 
whenever a document containing them is opened. Since 
modern e-mail programs have the ability to include doc-
uments as attachments to messages, this means that the 
unsuspecting recipient of a message can trigger a virus sim-
ply by opening a message attachment.

In today’s Web-centric world, viruses are often spread 
using links in e-mail that either entices or frightens the 
reader into clicking on a link to a Web site, which can 
be made to closely resemble that of a legitimate institu-
tion such as a bank or e-commerce site (see phishing and 
spoofing). Once connected to the site, the user’s computer 
can be infected with a virus or with some other form of 
“malware” (see spyware and adware). This route of infec-
tion is particularly dangerous because normal antivirus 
programs scan e-mail but not data being downloaded from 
a Web site, and firewalls are generally set to allow normal 
Web requests.

Once installed, a virus can be used for a variety of pur-
poses according to the “payload” of instructions that are 
set to execute. Sensitive information such as credit card 
details can be stolen (see identity theft). Sometimes the 
infected computer can appear to be unaffected, but has had 
a stealthy “bot” (robot) program inserted. Thousands of 
bots can be linked into a “botnet” and later commanded to 
trigger large-scale “distributed denial of service” (DDOS) 
attacks to flood targeted Web sites with requests, crashing 
or disabling the site.

Viruses can be further disguised by programming them 
to remain dormant until a certain date, time, or other con-
dition is reached. (Such a virus is sometimes called a logic 
bomb.) For example, a disgruntled programmer who is 
about to be dismissed might insert a virus that will wipe 
out payroll data at the beginning of the next month. A 
famous example of the time-triggered virus was the Michel-
angelo virus, so named because it was triggered to run on 

the artist’s birthday, March 6, 1992. (See computer crime 
and security.)

Viruses can be overtly destructive (such as by reformat-
ting a computer’s hard drive, wiping out its data). Other 
viruses can simply tie up system resources. The most infa-
mous example of this was the “Internet Worm” introduced 
onto the network on November 2, 1988, by Robert Morris, 
Jr. This program was intended to reproduce slowly, plant-
ing its “segments” on networked computers by exploiting a 
flaw in the UNIX sendmail program. Unfortunately, Morris 
made an error that caused the worm to spread much more 
rapidly. Before the coordinated efforts of system adminis-
trators at affected sites came up with countermeasures, the 
worm had cost somewhere in the hundreds of thousands of 
dollars in lost computer and programmer time.

Countermeasures
The only certain defense of a computer system from viruses 
would be through abstaining from contact between it and 
any other computers, either directly through a network or 
indirectly through exchange of programs on floppy disks 
or other removable media. In today’s highly networked 
world, this is usually impractical. A more practical defense 
is to install antivirus software. Antivirus programs work 
by comparing the contents of files (either those already on 
the disk or entering via the Internet) with “signatures” or 
patterns of data found in known viruses. More sophisti-
cated antivirus programs include the ability to recognize 
program code that is similar to that found in known viruses 
or that attempts suspicious operations (such as attempts to 
reformat a disk or bypass the operating system and write 
directly to disk). If an antivirus program recognizes a virus, 
it warns the user and can be told to actually remove the 
virus. Because dozens of new viruses are identified each 
week, virus programs must be updated frequently with new 
virus signature files in order to remain effective. Many anti-
virus programs can update themselves by periodically link-
ing to a Web site containing the update files.

Modern operating systems (such as Microsoft Windows 
Vista) have attempted to make it harder for unauthorized 
programs to access critical system files, such as by limit-
ing default access permissions or prompting the user to 
approve various activities. Such operating systems also 
include an updating feature that can automatically down-
load and install security “patches”—a vital task, as can be 
seen from the volume and variety of such updates that seem 
to appear every month. Indeed the use of “blended” threats 
(including more than one potential infection mechanism) 
and the development of new “exploits” for hundreds of dif-
ferent data file formats make system protection an ongoing 
challenge.

Reducing user temptation and enhancing user aware-
ness is also important. Since unsolicited e-mail (see spam) 
is often a source of potentially malicious links and attach-
ments, running a spam-blocking program can help pro-
tect the computer. There are also programs that can detect 
and block “phishing” messages and their related Web sites. 
Since none of these programs can completely keep up with 
the rapid appearance of new threats, caution and common 
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sense on the part of the user remain an important last line 
of defense.
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computer vision
In the biological world, vision is the process of receiving 
light signals from the environment through the eyes and 
optic nerves, from which the brain can extract patterns 
that contain useful information (such as recognizing food 
or a potential predator). Computer vision (also known as 
machine vision) is the analogous process by which light 
is received by a sensor system (such as a digital camera). 
The light is then analyzed for meaningful patterns. Thus, a 
robot might be able to recognize the identity and positions 
of various parts on an assembly line.

Because computer vision involves pattern recognition, it 
is part of the discipline of artificial intelligence (see artifi-
cial intelligence and pattern recognition). The chal-
lenge is not in getting information about a visual scene from 
the camera and turning it into digital information (a grid of 
pixels). Rather, it is the ability to recognize meaningful pat-
terns in fragmented images, something human infants learn 
to do almost from birth when they encounter human faces.

One way to approach the problem is to constrain the 
kinds of images the computer (or robot) has to deal with. 
If you can guarantee that a robot’s field of vision will con-
tain only a few fixed objects (a hopper, perhaps, or a con-
veyer belt) plus one or more distinctively shaped parts, it 
is relatively easy to program the dimensions of the possible 
objects into the vision system so that the robot can identify 
objects by comparing them with stored templates. However, 
if the robot encounters an object it isn’t prepared for, such 
as a stray bit of packing material, it will be unable to iden-
tify (or properly deal) with the object.

Vision is also complicated by the problem of parsing 
three-dimensional objects in the visual field. Seen head-
on, the side of a cube appears to be a two-dimensional 
square. Seen at an angle, it appears to be a three-dimen-
sional assemblage with some faces visible and some not. 
To interpret these and more complicated objects, the robot 
might be programmed with rules that help it infer that an 
object is really a cube, that all cubes have six equal sides, 
and so on. Another strategy is to give the robot more than 
one “eye” so that images can be compared, much as humans 
do unconsciously with binocular vision. Finally, the robot 
can be given the ability to move its head and eyes in order 

to find a viewpoint that yields more information about an 
ambiguous object.

Human infants, of course, are not born with a fully 
developed understanding of the types of objects in their 
world. They are always learning new ways to distinguish, 
for example, a stuffed teddy bear from a live dog. Robot 
vision systems, too, can be programmed to learn (or at least, 
refine their ability to recognize objects). A statistical tech-
nique can be used to “sample” objects in the environment 
and find which characteristics most reliably “predict” the 
true nature of an object. Characteristics can be resampled 
from different viewpoints to see which ones remain invari-
ant (unchanged). For example, a cube will always have four 
edges on each face. Another approach is to use a neural net-
work, where the visual information is processed by a grid of 
nodes that are reinforced to the extent they are successful 
in identifying features (such as edges).

Applications
Computer vision is a problem of great theoretical interest 
because it engages so many questions about perception, 
the ability to build models of the world, and the ability to 
learn. The field also has considerable practical potential. 
Currently, most robots are fixed to stations on factory floors 
where they work with a limited number of objects (parts) 
in a highly constrained, stable environment. However “ser-
vice robots” have been gradually developed to work in a 
much less constrained environment (such as carrying sup-
plies down hospital corridors or even serving as mobile 
assistants to astronauts in the weightless environment of 
the International Space Station). These robots would benefit 
greatly by having robust vision systems so that they can, for 
example, recognize individual human faces or detect poten-
tially dangerous situations.

Of course computer vision systems find many applica-
tions besides robotics. These include automatic quality con-
trol or inventory management systems, advanced medical 
imaging and computer-assisted surgery, as well as security, 
surveillance, and criminal investigation/forensics.
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concurrent programming
Traditional computer programs do only one thing at a time. 
Execution begins at a specified point and proceeds accord-
ing to decision statements or loops that control the process-
ing. This means that a program generally cannot begin one 
step until a previous step ends.
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Concurrent programming is the organization of pro-
grams so that two or more tasks can be executed at the 
same time. Each task is called a thread. Each thread is itself 
a traditional sequentially ordered program. One advantage 
of concurrent programming is that the processor can be 
used more efficiently. For example, instead of waiting for 
the user to enter some data, then performing calculations, 
then waiting for more data, a concurrent program can have 
a data-gathering thread and a data-processing thread. The 
data-processing thread can work on previously gathered 
data while the data-gathering thread waits for the user to 
enter more data. The same principle is used in multitasking 
operating systems such as UNIX or Microsoft Windows. 
If the system has only a single processor, the programs 
are allocated “slices” of processor time according to some 
scheme of priorities. The result is that while the proces-
sor can be executing only one task (program) at a time, for 
practical purposes it appears that all the programs are run-
ning simultaneously (see multitasking).

Multiprocessing involves the use of more than one proces-
sor or processor “core.” In such a system each task (or even 
each thread within a task) might be assigned its own proces-
sor. Multiprocessing is particularly useful for programs that 
involve intensive calculations, such as image processing or 
pattern recognition systems (see multiprocessing).

Programming Issues
Regular programs written for operating systems such as 
Microsoft Windows generally require no special code 
to deal with the multitasking environment, because the 
operating system itself will handle the scheduling. (This 
is true with preemptive multitasking, which has generally 
supplanted an earlier scheme where programs were respon-
sible for yielding control so the operating system could give 
another program a turn.)

Managing threads within a program, however, requires 
the use of programming languages that have special state-
ments. Depending on the language, a thread might be 
started by a fork statement, or it might be coded in a way 
similar to a traditional subroutine or procedure. (The dif-
ference is that the main program continues to run while the 
procedure runs, rather than waiting for the procedure to 
return with the results of its processing.)

The coordination of threads is a key issue in concur-
rent programming. Most problems arise when two or more 
threads must use the same resource, such as a processor 
register (at the machine language level) or the contents 
of the same variable. Let’s say two threads, A and B, have 
statements such as: Counter = Counter + 1. Thread A gets 
the value of Counter (let’s say it’s 10) and adds one to it. 
Meanwhile, thread B has also fetched the value 10 from 
Counter. Thread A now stores 11 back in counter. Thread 
B, now adds 1 and stores 11 back in Counter. The result is 
that Counter, which should be 12 after both threads have 
processed it, contains only 11. A situation where the result 
depends on which thread gets to execute first is called a 
race condition.

One way to prevent race conditions is to specify that 
code that deals with shared resources have the ability to 

“lock” the resource until it is finished. If thread A can lock 
the value of Counter, thread B cannot begin to work with it 
until thread A is finished and releases it. In hardware terms, 
this can be done on a single-processor system by disabling 
interrupts, which prevents any other thread from gaining 
access to the processor. In multiprocessor systems, an inter-
lock mechanism allows one thread to lock a memory loca-
tion so that it can’t be accessed by any other thread. This 
coordination can be achieved in software through the use 
of a semaphore, a variable that can be used by two threads 
to signal when it is safe for the other to resume process-
ing. In this scheme, of course, it is important that a thread 
not “forget” to release the semaphore, or execution of the 
blocked thread will halt indefinitely.

A more sophisticated method involves the use of mes-
sage passing, where processes or threads can send a variety 
of messages to one another. A message can be used to pass 
data (when the two threads don’t have access to a shared 
memory location). It can also be used to relinquish access 
to a resource that can only be used by one process at a time. 
Message-passing can be used to coordinate programs or 
threads running on a distributed system where different 
threads may not only be using different processors, but run-
ning on separate machines (a cluster computing facility).

Programming language support for concurrent pro-
gramming originally came through devising new dialects 
of existing languages (such as Concurrent Pascal), building 
facilities into new languages (such as Modula-2), or creating 
program libraries for languages such as C and C++.

However, in recent years concurrent programming lan-
guages and techniques have been unable to keep up with 
the growth in multiprocessor computers and distributed 
computing (such as “clusters” of coordinated machines). 
With most new desktop PCs having two or more process-
ing cores, there is a pressing need to develop new programs 
that can carry out tasks (such as image processing) using 
multiple streams of execution. Meanwhile, in very high-
performance machines (see supercomputer), the Defense 
Advanced Research Projects Agency (DARPA) has been try-
ing to work with manufacturers to develop languages to 
work better with computers that may have hundreds of 
processors as well as distributed systems or clusters. Such 
languages include Sun’s Fortress, intended as a modern 
replacement for Fortran for scientific applications.

The new generation of concurrent languages tries to 
automate much of the allocation of processing, allowing 
programmers to focus on their algorithms rather than 
implementation issues. For example, program structures 
such as loops can be automatically “parallelized,” such as 
by assigning them to separate cores.
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conferencing systems
Conferencing systems are online communications facilities 
that allow users to log in and participate in discussions on 
a variety of topics. Although this is a rather amorphous cat-
egory of software, some distinguishing characteristics can 
be identified. Conferencing is distinguished from chat or 
instant messaging systems because the messages are asyn-
chronous (that is, one person at a time leaves a message, 
and there is no real-time interaction between participants). 
Unlike Netnews newsgroups, conferencing systems such as 
San Francisco Bay Area–based The Well tend to have users 
who are committed to long-term discussions in conferences 
(topical discussion areas) that tend to persist for weeks, 
months, or even years. Conferencing systems are often 
grouped under the umbrella term of Computer-Mediated 
Communications (CMC).

History
In the 1960s, researcher Murray Turoff at the Institute for 
Defense Analysis decided to adopt for computer use a dis-
cussion method called Delphi, developed at RAND corpora-
tion. This method was a collective process by which new 
ideas were discussed and voted on by a panel of experts. 
After he implemented Delphi as a system of messages passed 
via computer, he began to generalize his work into a more 
general method of facilitating online discussions. His Elec-
tronic Information Exchange System (EIES, pronounced 
“eyes”) was designed to facilitate discussion within research 
communities of 10–50 members.

The emergence of topical online discussions can be seen 
in the development of the Usenet (or Netnews) newsgroups 
in the early 1980s, the development of communications 
or memo systems within large offices (particularly within 
the government), and the emergence of bulletin boards and 
online services for personal computer users. Most early 
news and bulletin board software had only rudimentary 
facilities for linking topics and responses. A more sophisti-
cated approach to conferencing emerged within the PLATO 
educational computing network in the 1970s, in the form of 
Plato Notes. This system began as a simple way for users to 
leave messages or help requests in a text file, and evolved 
into a structure of “base notes” and linked response notes, a 
topic-and-response structure that became the general model 
for conferencing systems.

In the mid-1980s, the Well (Whole Earth ’Lectronic 
’Link) began to provide online conferencing to anyone who 
subscribed. It used a text-based system called Picospan. 
With its improbable eclectic mix well salted with Grate-
ful Dead fans and computer “nerds,” the Well became a 
sort of petri dish for cultivating community (see virtual 
community). Long-term friendships (and feuds) and occa-
sional romances have been nurtured by such conferencing 
systems.

Typical Structure
A typical text-based conferencing system is divided into 
conferences, which are generally devoted to relatively broad 
subjects, such as UNIX, pop music, or politics. Each confer-
ence is further divided into topics, which usually reflect 
particular aspects of the general subject (such as a particu-
lar UNIX version, a pop music group, or a political issue). 
Most conferencing systems have a person or persons who 
act as a moderator (sometimes called a “host”) who tries 
to encourage new users, keep discussions more or less on 
topic, and discourage personal attacks or vehement state-
ments (“flames”).

A user signs onto the system and “joins” one or more 
conferences. Each time the user visits a conference that he 
or she has joined, any topics (or responses in existing top-
ics) that were posted since the last visit are presented. The 
user can read the postings and, if desired, enter a reply that 
becomes part of the thread of messages. (Users are also gen-
erally allowed to start new topics of their own.)

Web-based Conferencing
Text-based systems such as Picospan are driven by the user 
entering command letters or words. While this paradigm 
is familiar to people who have experience with operating 
systems such as UNIX or MS-DOS, it can be more diffi-
cult for users who are used to the point-and-click approach 
of Windows programs and the World Wide Web. Many 
new conferencing systems use Web pages to present confer-
ence topics and messages, with buttons replacing text com-
mands. (The Well continues to offer both the text-based 
Picospan and the Web-based Engaged.)

Although the Well and other conferencing systems such 
as The River continue in operation, conferencing systems 
have been largely supplanted by newer forms of online 
expression (see blogs and blogging, social network-
ing, and wikis and Wikipedia). (Note that “conferenc-
ing system” can also refer to video-based software such as 
Microsoft Live Meeting for facilitating meetings between 
geographically dispersed participants.)
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constants and literals
Constants and literals are ways of describing data that does 
not change while a program runs. For example, a statement 
in C such as

const float pi = 3.14159;

expresses a value that will be used in calculations, but 
not changed. Constants can be of any data type, including 
character strings as well as numbers. String constants are 
usually enclosed in single or double quotes:

char * Greeting = “Hello, World”;

Actual strings and numerals found in programs are some-
times called literals, meaning that they are to be accepted 
exactly as given (literally) rather than standing for some 
other value. Thus 3.14159 and Hello, World as given 
above can be considered to be numeric and string literals 
respectively.

Because many languages consider a value of 1 as rep-
resenting a “true” result for a branch or loop test, and 0 as 
representing “false,” programs in languages such as C often 
include declarations such as:

const True = 1;
const False = 0;

This lets you later have a loop construction such as

while (True) {
’ body of program
} ;

which is a more readable way to code an endless loop than:

while (1) {
’ body of program
} ;

However languages such as Pascal and C++ have a special 
boolean data type (bool in C++) that allows for constants or 
variables that will have one of two values, true or false.

Some languages provide a way to set up an ordered 
group of constant values (see enumerations and sets).

Constants vs. Variables
The difference between a constant and a variable is that a 
variable represents a quantity that can change (and is often 
expected to). For example, in the statement

int Counter = 0;

Counter is set to a starting value of zero, but will presum-
ably be increased as whatever is to be counted is counted.

Most compilers will issue an error message if they detect 
an attempt to change the value of a constant. Thus the 
sequence of statements:

const float Tax_Rate = 8.25;
Tax_Rate = Tax_Rate + Surtax;

would be illegal, since Tax_Rate was declared as a constant 
rather than as a variable.

Many compilers, as part of code optimization, can 
discover values or expressions that will remain constant 
throughout the life of the program, even if they include 
variables. Such constants can be “propagated” or substi-
tuted for variables. This can speed up execution because 
unlike a variable, a constant does not need to be retrieved 
from memory (see compiler).

Further Reading
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content management
Content management is the process of creating, maintain-
ing, and archiving data such as text and images to be used 
for a project such as a book, magazine, or Web site. Nor-
mally such projects involve a number of different people: 
content creators (such as writers or photographers), edi-
tors, reviewers, designers, and so on. A large project will 
often have many documents in various stages—early drafts, 
material approved for publication, existing publications in 
need of revision, older material ready to be archived, and 
so on.

The purpose of content management is to make sure 
every piece of a project has its status tracked, including 
who has worked on it and what has been done (or needs to 
be done). Because more than one person may want to work 
on a given piece at the same time, some form of “version 
control” (as with program code) must be used to either 
“lock” the material while one person is using it, or to merge 
their separate work into a new version of the document. 
Naturally there must also be a way for members of the team 
to communicate with each other in connection with specific 
parts of the project, and all members must be kept informed 
of key developments.

Work Flow
A key measurement of the effectiveness of a content man-
agement system (CMS) is how well it facilitates work flow, 
or the movement of documents through the production pro-
cess. Work flow begins with the importing of material such 
as text documents or multimedia resources into the system. 
At this time the key users and their roles (such as editor or 
reviewer) are identified, and the system can then route the 
material to the next person automatically after each task is 
completed. Often messages are generated and sent to man-
agers to keep them informed of progress or to alert them to 
problems.

Today Web sites are the most common large informa-
tion-related projects, and managing them can be quite 
challenging. Usually multimedia material is included well 
beyond that found in printed projects, such as audio, video, 
animations, and information feeds (see rss). Web sites, 
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unlike most traditional publications, are under constant 
revision and review.

Once created, material will often be reused or repurposed 
for different projects. Thus an important part of most con-
tent management systems is the repository, which makes the 
material easily searchable and retrievable for later use. Mate-
rial that is less likely to be used but still must be retained 
(such as for legal reasons) may be stored in a separate archive 
(see backup and archive systems). Note: The term digital 
asset management is also sometimes used for such systems.

Software
Content management Systems are usually built upon a 
framework or programming interface (see application 
program interface), often using languages such as Java, 
Perl, Python, or PHP. There are many products to choose 
from, including free and open-source alternatives.

An interesting alternative for some projects is to use 
a wiki as a content management system (see wikis and 
Wikipedia). Especially for textual content, wikis offer the 
advantage of already having revision tracking built in, and 
full-scale wikis such as MediaWiki have many additional 
features or plug-ins to aid in content management.
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cookies
Cookies are simply tiny text files that a Web server sends 
to the browser and retrieves each time the user accesses the 
Web site. The purpose is to maintain a sort of profile of the 
user containing such things as preferences as to how the 
user wants to view or use the site, shopping cart selections 
from previous sessions, and so on. In short, cookies enable a 
Web site to provide a more customized or personalized form 
of service and minimize the amount of repetitive data entry 
on the part of the user. (This type of cookie is called persis-
tent, since it survives across sessions. There can also be tem-
porary cookies that apply only to the current session.)

However, cookies also have benefits for the Web site 
owner. They can be used to track which pages or items the 
user has looked at in the past. This information can then be 
used (see data mining) to create generic user profiles that 
can help with marketing or targeting advertising. In the 
case of some companies (notably Amazon.com) much more 
elaborate profiles associated with the cookie’s identity can 
be used to create personalized recommendations, in effect 
continually directing targeted advertising at the user.

Security and Privacy Concerns
There are many popular misconceptions about cookies. 
Cookies contain only data, not executable code. This means 

they cannot function as worms or viruses or otherwise 
interact with the user’s system. However, while cookies do 
not in themselves represent a security threat, they do have 
privacy implications. Although most profiles created using 
cookies are anonymous (containing no personal identifying 
data), an unscrupulous site could attach such data (such as 
addresses or credit card numbers entered by the user) to a 
profile and sell it for purposes ranging from spamming to 
identity theft.

Another risk comes from “third party” cookies such as 
are often included in advertisements (see online advertis-
ing). Potentially, these could be used to create a much more 
comprehensive profile of a user based on his or her actions 
on multiple Web sites.

Users do have some control over how cookies are stored. 
Most browsers allow the user to reject all cookies, accept or 
reject cookies from certain sites, or store cookies only tem-
porarily. However, sites may in turn refuse services to users 
who do not accept cookies, and at any rate the user would 
see only a generic rather than a personalized view.

There has been a certain amount of government regula-
tion of Web cookies. The U.S. government has strict rules 
for the use of cookies on federal Web sites. The European 
Union also has recommended (but not fully implemented) 
regulations that require that users be told how the stored 
data will be used and be given the opportunity to opt out.
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cooperative processing
Historically there have been two basic ways to bring greater 
computer power to bear on a task. One is to build more 
powerful single computers (see supercomputer). The other 
is to link one or more computers or processors together and 
tightly coordinate them to process the data (see grid com-
puting). Both of these approaches require great expertise 
and considerable expense.

However, there is another quite interesting ad hoc 
approach to cooperative processing that first appeared with 
the SETI@Home project launched in 1999. The basic idea is 
to take advantage of the fact that millions of computer users 
are already connected via the Internet. The typical PC has 
many processing cycles to spare—idle time when the user is 
doing nothing and the operating system is doing very little.

A program like SETI@Home is designed to be down-
loaded to volunteer users. The program can run only when 
no other applications are being used (one way to ensure 
this is to make the program a screen saver), or it can run 
continuously but only use cycles not being requested by 
another program.

 The data to be analyzed (signals from space in this case) 
is broken up into chunks or “work units” that are parceled 
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out to the volunteers. When a given unit has been analyzed 
by the program on the user’s machine, the results are sent 
back to the central server and a new work unit is sent.

Although no evidence of extraterrestrial intelligence 
had been found as of mid-2008, SETI@Home’s more than 5 
million participants have contributed more than 2 million 
years of CPU time, and can process at the collective rate of 
256 TeraFLOPS (trillion floating point operations per sec-
ond), comparable with the fastest single supercomputers.

There are currently a number of other cooperative dis-
tributed computing projects underway. Many of them are 
part of the Berkeley Open Infrastructure for Network Com-
puting (BOINC), which includes SETI@Home, Proteins@
home (protein folding), and the World Community Grid 
(humanitarian projects).

Ad hoc cooperative processing is not suitable for all 
types of projects. There must be a way to break the data 
into batches that can be separately processed. The project 
is also dependent on the number of volunteers and their 
degree of commitment.

Cooperative processing can be seen as part of a spec-
trum of emerging ways in which the line between produc-
ers and consumers of data is being blurred. Other examples 
include media-sharing services such as Gnutella (see file-
sharing and p2p networks). Cooperative programs can 
also be used to gather information about software use and 
bugs from thousands of users to allow for faster debugging 
and optimization.

People can do more than passively share their com-
puter’s processors—they can add their own brains to 
the effort. Some of the most effective spam filters (see 
spam) use the “collective intelligence” of users by having 
them identify and mark spam messages, which can then 
be used by the software as a template for automatically 
rejecting similar messages. Another interesting applica-
tion by the Carnegie Mellon Human Computation pro-
gram uses a computer game where a pair of randomly 
selected volunteers assigns keywords to an image. For 
the players, the object of the game is to come up with 
matching keywords, thereby scoring points. However, the 
real work that is being accomplished is that thousands of 
previously uncategorized images are receiving appropri-
ate keywords to enable them to be retrieved. In effect, 
the system is taking advantage of an image-recognition 
device that is far more capable than any computer algo-
rithm—the human brain! (One might call this synergistic 
human–computer processing.)
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copy protection
Companies that produce software have had to cope with 
software that is expensive to develop, while the disks on 
which it is distributed are inexpensive to reproduce. The 
making and swapping of “pirated” copies of software is 
just about as old as the personal computer itself. Software 
piracy has taken a number of forms, ranging from teenaged 
hackers making extra copies of games to factories (often in 
Asia) that stamp out thousands of bogus copies of Windows 
operating systems and programs that would cost hundreds 
of dollars apiece if legitimate (see software piracy and 
counterfeiting).

To prevent such copying, software producers in the 
1980s often recorded the programs on floppy disks in a spe-
cial format that made them hard to copy successfully. One 
way to do this is to record key information on disk tracks 
that are not normally read by the operating system and thus 
not reproduced by an ordinary copy command. When such 
a program runs, it can use a special device control routine 
to read the “hidden” track. If it does not find the identifying 
information there, it knows the disk is not a legitimate copy.

Another way to do copy protection is by having the 
program look for a small hardware device called a “dongle” 
connected to the computer, usually to the parallel printer 
port. Since the dongle is distributed only with the legiti-
mate program, it can serve as an effective form of copy 
protection. (Encryption can also be used to render copies 
unusable without the key.)

Decline of Copy Protection
Copy protection has a number of drawbacks. Because disk-
based copy protection writes on nonstandard tracks, even 
legitimate programs may not work with certain models of 
disk or CD drive. And because the legitimate user is unable 
to make a backup copy of the disk, if it is damaged, the user 
will be unable to use the program. Dongles, on the other 
hand, can interfere with the operation of other devices con-
nected to the port, and a user might be required to use mul-
tiple dongles for multiple programs.

During the 1990s, copy protection was generally phased 
out, except for some games. A variety of other strategies are 
used against software piracy. The Software Publishers Asso-
ciation (SPA) maintains a program in which disgruntled 
users can report unauthorized copying of software at their 
workplace. Companies that allow unauthorized copying of 
software can be sued for violating the terms of their soft-
ware license. International trade negotiations can include 
provisions for cracking down on the massive “cloning” of 
major software packages abroad.

With modern software, “soft” copy protection gener-
ally still exists in the form of requiring the typing in of a 
serial number from the CD, often combined with online 
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“activation” or “validation,” as with Microsoft Windows 
and Office products. The online validation process can 
forestall the use of valid but duplicated serial numbers 
(see digital rights management and software piracy 
and counterfeiting).

Hackers and cyber-libertarians have often argued that 
the problem of software piracy has been overrated, and 
that allowing the copying of software would enable more 
people who would not otherwise buy programs to try them 
out. Once someone likes the program, they might buy it 
not only for legitimacy of ownership, but in order to get 
access to the technical support and regular upgrades that 
are often required for complex business software packages. 
For less expensive software, an alternative channel (see 
shareware) allows for a “try before you buy” distribution 
of software.
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CORBA  (Common Object Request Broker 
Architecture)
CORBA (Common Object Request Broker Architecture) is a 
standardized way to specify how different applications (on 
the same or different machines) can call upon the services 
of database objects (see database and object-oriented 
programming). The CORBA standard is defined by the 
Object Management Group (OMG), a consortium of more 
than 700 companies or organizations, including the major 
players in distributed database technology.

Structure and Usage
Creating a CORBA application involves three basic steps. 
First, specifications are provided using an interface defini-
tion language (IDL) that specifies in generic terms what 
services an object will provide. An IDL compiler then cre-
ates a “skeleton” interface that the developer can fill in with 
actual code for a class for that object in a programming lan-
guage (such as Java).

To use CORBA, a client application accesses an Object 
Request Broker (ORB), which is software that locates the 
referenced object on the network (thus the program does 
not need to know or keep track of specific locations). The 
ORB sends the request to the object, which processes it and 
returns the results, which are then sent back to the client 
application.

The intent of CORBA is to make objects implemented 
by different vendors fully interoperable (able to call one 
another using the same syntax). While CORBA 1.0 did not 
completely meet this goal, CORBA 2.0 explicitly provided 

for a protocol called IIOP (Internet Inter-ORB Protocol) 
that, if adhered to, does make brokers (ORBs) and objects 
interoperable across vendors and programming languages. 
CORBA 3 adds a new CORBA Component Model (CCM) 
and specifications that, among other things, provide for 
better negotiation with firewalls, a problem that had made 
CORBA hard to use in Web development.

Corba Services
In addition to the interfaces defined for particular objects, 
CORBA provides a number of services that apply to all 
objects. These services include creating, moving/copying, 
or removing objects; allowing more readable names for 
objects; concurrency and transaction control; setting prop-
erties for objects; and sending queries to objects.

A competing framework for distributed object comput-
ing is COM/DCOM (Common Object Model/Distributed 
Common Object Model, now supplanted by .NET (see 
Microsoft.net). A simpler (though possibly less secure) 
way to connect programs running on different machines is 
to use the Simple Object Access Protocol (see soap).
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counterterrorism and computers
Counterterrorism is the effort to detect, identify, and neu-
tralize terrorist groups and prevent attacks. Not surpris-
ingly, information technology plays a part in every phase 
of this effort—and sometimes even becomes part of the 
battlefield.

Intelligence and Surveillance
The Web and other Internet services are an important part 
of the battle against terrorism, not least because terrorists 
themselves are beginning to use online tools effectively 
(see cyberterrorism). The Internet inherently allows for 
considerable anonymity (see anonymity and the Inter-
net). However, any online activity leaves traces, however 
virtual, and surveillance, intelligence, and forensic tech-
niques are being adapted to this new medium (see com-
puter forensics).

By putting so much material online, terrorists are expos-
ing themselves to the increasingly sophisticated data min-
ing and “semantic Web” tools that are being developed. 
These tools can, for example, identify material likely to be 
of interest (and summarize it) and even analyze the rela-
tionship between individuals or groups based on their writ-
ing or verbal communications. Of course such results must 
still be reviewed and acted upon by trained human analysts. 
Further, surveillance tools that are deployed too widely or 
indiscriminately are liable to raise privacy concerns.
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In recent years the U.S. Department of Homeland Secu-
rity has apparently been developing more sophisticated 
data-mining and pattern-recognition programs (see bio-
metrics and data mining). One is called ADVISE, or Anal-
ysis, Dissemination, Visualization, Insight, and Semantic 
Enhancement. This at least suggests an attempt not to sim-
ply find matches between e-mail, online postings, or other 
textual data, but to construct profiles of a person’s activity 
and/or intentions, which could presumably then be com-
pared with terrorist or criminal profiles.

Surveillance or wiretapping of specific individuals also 
raises legal issues, particularly with recent revelations of 
so-called warrantless wiretaps. Officials have claimed that 
there are relatively few such cases (perhaps fewer than 100 
per year), but the Bush administration’s claim that it did 
not need to follow Foreign Intelligence Surveillance Act 
(FISA) procedures raised considerable controversy, and a 
court decision forced the administration to seek affirmation 
of its powers by Congress.

Intelligence officials argue that existing FISA proce-
dures are too cumbersome to deal with the Internet. Old-
style wiretapping involved specific telephone instruments 
and lines, but on the Internet the routing of information is 
constantly changing, and a person may use several different 
devices and types of communication. Thus it is argued that 
the warrant must be broad enough to apply to the person, 
not a particular means of communication. It is also argued 
that the global nature of the network also means that dis-
tinctions about whether persons are inside or outside of the 
United States may no longer be as relevant.

Privacy and civil liberties advocates tend to agree that 
some updating of warrant procedures to deal with modern 
technology is necessary, but they point to secretiveness 
and lack of effective legal oversight resulting in a lack 
of accountability for government surveillance programs. 
This concern has also been fueled by a succession of rev-
elations that surveillance programs are more extensive 
than previously thought. (This includes the involvement 
of telecommunications and Internet service providers 
and the use of FBI “national security letters”—essentially 
secret subpoenas.)

Coordinating Efforts
Besides the gathering and analysis of intelligence, computer 
applications are used in the intelligence and counterter-
rorism community for many of the same functions found 
in any large enterprise. These applications include e-mail, 
personal information management, collaborative creation 
or review of documents, scheduling and project manage-
ment, and so on.

Intelligence agencies are even adopting some popular 
emerging Web technologies. First came Intellipedia, a clas-
sified version of Wikipedia serving as a knowledge base 
for intelligence professionals (see wikis and Wikipedia). 
In late 2007 the director of national intelligence (DNI) 
launched A-Space, which includes Intellipedia, while add-
ing other extensive databases, online office facilities (simi-
lar to Google Apps), and even blogs and a MySpace-like 
component (see social networking).
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CPU
The CPU, or central processing unit, is the heart of a com-
puter, the place where data is brought in from input devices, 
processed, and sent to output devices. (This article describes 
the CPU from the point of view of desktop micromputers, 
where it is a single large silicon chip and supporting chips; 
see mainframe for a discussion of that earlier architecture, 
microprocessor for desktop and portable CPUs, and chip 
and chipset for physical design of components.)

The CPU consists of two major parts. The arithmetic-
logic unit performs arithmetic or logical operations on pairs 
of numbers brought in from memory and stored in special 
locations called registers (see arithmetic logic unit). For 
example, the CPU can add a value from main memory to 
a value stored in a register and store the result back into 
memory. In addition to addition, subtraction, multiplica-
tion, and division, the CPU can logically compare the indi-
vidual bits in two values, performing such operations as 
AND, where the result is 1 only if both bits are ones, or OR, 
where the result is 1 if either bit is one. The power of a CPU 
is measured either in the number of clock cycles that drive 
it each second (see clock speed) or the number of standard 
instructions it can execute in a second. For modern PCs, 
clock speeds range into the billions of cycles per second 
(gigahertz) and millions of instructions per second (most 
instructions take more than one cycle to be completed).

The other key part of the CPU is the control unit, which 
determines when (and which) instructions will be executed. 
Operations to be performed are specified by instruction val-
ues that are the lowest level representation of program code, 
sometimes called machine code. An index register is used 
to keep track of the current instruction. As instructions are 
processed, control signals can indicate special conditions, 
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such as a result being negative. Based on the instructions 
and signals, the CPU can skip over some instructions, jump-
ing to another location in the program.

The main memory or RAM (random access memory) 
contains both the program instructions and the data being 
used by the program, which in turn can be read from a 
disk or other medium or written back to storage. The effec-
tive speed of the system is derived not only from the clock 
speed but from the speed at which data travels over the sys-
tem bus, a set of wires that each carry one data bit, as well 
as the operating speed of the memory chips themselves (see 
clock speed and bus).

The access of programs to the CPU is controlled in turn 
by the operating system. Modern operating systems share 
the CPU with several running programs, doling out execu-
tion time according to a scheduling algorithm that takes 
into account the possible special priority of some programs 
(see multitasking).
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Craigslist
Some of the most successful Web services involve just one 
or two basic changes in a traditional business or social 
model. Online auctions, for example, came from the real-
ization that the auctioneer and auction house could be 
eliminated and a platform provided by which people could 
buy from or sell to one another directly. (The platform, of 
course, does have to include such things as listing policies, 
payment methods, and feedback systems.)

Craigslist has done for the newspaper “personal” ad and 
laundromat bulletin board what eBay has done for auctions. 
It was founded in 1995 by Craig Newmark, a San Francisco 
Bay Area software developer who saw a need for an online 
forum for news about local events. The “list” part of Craigs
list reflects its origin as an e-mail list.

News about the list spread rapidly in Newmark’s milieu 
of well-connected professionals, and the volume of postings 
grew correspondingly large. Furthermore, many people 
began to post things other than event listings—including 
job openings, for which Newmark soon set up a separate 
category on the list. As the number and kinds of postings 
grew, the mailing list format became unwieldy, so New-
mark and some volunteers put together a Web interface that 
users could use to browse the various categories. By 2000 
Craigslist.org had become a full-time job for Newmark and 
nine employees

Craiglist’s Web site is organized by community, includ-
ing U.S. states and cities and a variety of other countries 
and international cities. Each local site is further divided 
into sections such as community activities (including people 
seeking or providing childcare or sharing rides), personal 
ads (seeking relationships), housing (mostly rentals), jobs, 
services, items for sale, and a variety of discussion forums.

As of 2007 Craigslist had 24 employees. The site is nearly 
completely free of charge, with revenue coming only from 
paid job listings and apartment broker listings in selected 
cities. The site’s popularity has been impressive, with more 
than 5 billion page views, 10 million visitors, and over 10 
million classified ads per month.

Newmark and CEO Jim Buckimaster have suggested 
that they have little interest in either turning Craigslist 
into a public company or “going commercial” and tapping 
what many observers consider to be much greater revenue 
potential.

Problems and Issues
Craiglist’s success has raised some issues. In 2004 eBay 
bought a 25 percent stake in the company, leading some 
supporters to worry about pressure to raise more revenue 
by carrying banner ads or charging for posting on the site. 
However, as of 2008 the site remains free to users.

The CPU uses the Instruction Pointer (IP) to keep track of the 
address of the next instruction in memory, which is stored in the 
Instruction Register (IR). The Address Register (AR) and Data 
Register (DR) perform a similar function with program data. Data 
can also be moved between main memory and the CPU’s registers, 
which are special fast-retrieval memory locations. Instructions are 
decoded by the control unit and passed to the arithmetic Logic Unit 
(ALU) for execution.
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As with eBay, Craigslist has to strike a balance between 
protecting users from criminal activity and exercising direct 
oversight with the attendant expenses and legal problems. 
For keeping out illegal ads (such as discriminatory hous-
ing or job offers or solicitations for prostitution), Craigslist 
has relied mainly on users to be “good citizens” and to 
“flag” offending ads for removal by the service. Neverthe-
less, police have reported use of Craigslist by prostitution 
rings and other organized criminals and identity thieves 
seeking personal information. A 2006 suit (subsequently 
dismissed) accused Craigslist of “allowing” discriminatory 
housing ads in Chicago. (Under federal law, Web sites are 
generally not liable for content posted by users, unless the 
site has edited content.)

Because Craigslist has been so successful, newspapers 
have complained that it has dried up much of their revenue 
from classified advertising, costing them an estimated $50–
$65 million in 2004 in the Bay Area alone. This is particu-
larly a concern of small local and independent newspapers 
for which ads may be their only source of revenue.

Craigslist has won a 2001 Webby award for Best Com-
munity Site, and was voted Best Local Web site in a 2003 
Manhattan Reader’s Poll.
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Cray, Seymour
(1925–1996)
American
Computer Engineer, Inventor

Seymour Cray was a computer designer who pioneered the 
development of high-performance computers that came 
to be called supercomputers. Cray was born in Chippewa 
Falls, Wisconsin. After serving in World War II as an army 
electrical technician, Cray went to the University of Min-
nesota and earned a B.S. in electrical engineering and then 
an M.S. in applied mathematics. (This combination is a 
common background for many of the designers who would 
have to combine mathematics and engineering principles to 
create the first computers.)

In 1951, he joined Engineering Research Associates 
(ERA), one of a handful of companies that sought to com-
mercialize the digital computing technology that had been 
developed during and just after the war. Cray soon became 

known for his ability to grasp every aspect of computing 
from logic circuits to the infant discipline of software devel-
opment. When ERA and its competitor, the Eckert-Mauchly 
Computer Company were bought by Remington Rand, Cray 
became the chief designer for the Univac, the first com-
mercially successful computer. In 1957, however, Cray and 
two colleagues struck out on their own to form Control 
Data Corporation (CDC). Their CDC 1604 was one of the 
first computers to move from vacuum tubes to transistors. 
The CDC 6600 was considered by many to be technically 
superior to the IBM 360. However, by then IBM had become 
preeminent in the business computing market, while the 
CDC machines found favor with scientists.

By the late 1960s, Cray had persuaded CDC to provide 
him with production facilities within walking distance of 
his home in Chippewa Falls. There he designed the CDC 
7600. This computer was hailed as the world’s first supercom-
puter (see supercomputer). However CDC disagreed with 
Cray about the commercial feasibility of even more powerful 
computers. In 1972, Cray formed his own company, Cray 
Research, Inc. By then Cray’s reputation as a computer archi-
tect was so great that investors flocked to buy stock in his 
company. His series of Cray supercomputers looked like sleek 
monoliths from a science fiction movie. The machines were 
the first supercomputers to use parallel processing, where 

Seymour Cray is considered by many people to be the father  
of the supercomputer. His innovative Cray computers looked— 
and performed—like something out of science fiction.  (Cray 
Research)
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tasks can be assigned to different processors to speed up 
throughput. While costing millions of dollars apiece, the 
Cray supercomputers made it possible to perform simu-
lations in atomic physics, aerodynamics, and other fields 
that were far beyond the capabilities of earlier computers. 
However, the Cray Computer Corporation ran into financial 
problems and was bought by Silicon Graphics (SGI) in 1996.

Cray received many honors including the IEEE Com-
puter Society Pioneer Award (1980) and the ACM/IEEE 
Eckert-Mauchly Award (1989). Cray died on October 5, 
1996, in Colorado Springs, Colorado.
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CRM  See customer relationship management.

CSS  See cascading style sheets.

Cunningham, Howard  (Ward)
(1949–  )
American
Software Developer

Today the first place many Web users look for informa-
tion about a topic is Wikipedia, the vast and ever growing 
online collaborative encyclopedia. The type of software that 
makes Wikipedia (and thousands of other wikis) possible 
was invented by Howard G. Cunningham, better known as 
Ward Cunningham.

Born on May 26, 1949, Cunningham learned to program 
in high school. He then attended Purdue University, where 
he received a bachelor’s degree in electrical engineering and 
computer science and then a master’s in computer science. 
After graduation Cunningham worked as a researcher in 
microcomputer systems for Tektronix, where he encoun-
tered an intriguing style of programming (see Smalltalk). 
In a later position at Wyatt Software, Cunningham became 
involved with larger-scale software projects and began to 
think about better ways to manage them.

In the early 1980s Cunningham encountered a book that 
looked at architecture in terms of the combining of intuitive 
patterns. Cunningham began to apply similar principles to 
the design of software (see also design patterns). One result 
was the holding of the first conference on pattern languages 
at the University of Illinois at Urbana-Champaign in 1994.

Around that time, Cunningham was seeking a way for 
programmers to collaborate in working with design pat-
terns. He had already encountered the power of linking 
(see hypertext) in HyperCard, developed by Apple for the 
Macintosh in the late 1980s. Because it was so easy to use, 
HyperCard encouraged many nonprofessional programmers 
(including teachers) to develop and share applications.

Developing the Wiki
Using HyperCard, Cunningham built an application that 
allowed users to add free-form data to a database and link 
it to other entries by clicking a button. Users who tried it 
were fascinated by its potential. Cunningham then wanted 
to expand it so users could access it over networks. How-
ever, he was unable to develop a networked version of his 
HyperCard application.

One colleague suggested using the World Wide Web (see 
Berners-Lee, Tim and World Wide Web). Cunningham 
implemented his free-form linking system as Web pages, 
and the result was something he at first thought of calling 
QuickWeb. He then remembered hearing the phrase wiki 
wiki or “quickly, quickly”) in Hawaii, and he decided to call 
his system wikiwikiWeb. Today, it is just known as a wiki 
(see wikis and Wikipedia). This first wiki, called the Port-
land Pattern Repository, came online in 1995 and continues 
to operate today.

Collaborative Software Development
Cunningham worked for a few years on open-source proj-
ects at Microsoft. The giant software maker is not generally 
well regarded among open-source developers, though Cun-
ningham has acknowledged its technical prowess. At any 
rate, Cunningham decided to move on. He served as direc-
tor for community development at the Eclipse Foundation, 
which oversees development of Eclipse, a versatile and very 
popular open-source programming environment. In 2007 
Cunningham left Eclipse to become chief technology officer 
(CTO) of AboutUs, a company founded to further develop 
wikis and collaborative communities.

Cunningham continues to be an enthusiastic proponent 
of open source. He argues that the most important advan-
tage of open source is not lower cost, but the way it puts 
access to powerful tools into the hands of thousands of 
users and encourages them to develop new features and 
capabilities.

Cunningham’s contributions to programming methods 
are also extensive, including the use of design patterns for 
“quick and agile” development and what became known as 
“extreme programming.”
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customer relationship management  (CRM)
In recent years there has been increasing emphasis, par-
ticularly in online business, on communicating with and 
“cultivating” customers as well as in systematically using 
information about transactions and customer behavior (see 
also e-commerce). Collectively, these activities (and the 
software used to implement them) are often known as cus-
tomer relationship management (CRM).

The basic data stream in CRM is a complete contact 
history for each customer, including not only purchases, 
but also product or customer support inquiries. The result-
ing database is used to ensure that with each new contact 
(such as through a call center), the person responding has 
access to all the information about previous contacts with 
the customer. Thus, for example, in the course of answering 
a query or solving a problem, the representative can review 
a list of which products the customer has purchased and 
suggest additional products that might help deal with the 
problem.

Besides dealing with customer-initiated contacts, CRM 
data can be very useful in designing marketing campaigns, 
advertising, promotions, and so on (see online adver-
tising). The database can be analyzed to determine, for 
example, the likelihood that a customer who buys a digital 
camera might also buy a particular printer or memory card 
(see data mining). Once this is known, a customer who is 
in the process of buying a camera might be offered a special 
price on a memory card during checkout. (For an example 
of extensive integration, mining, and use of CRM data, see 
amazon.com.) For longer-term planning, “strategic CRM” 
can help a company decide on what types of products and 
markets to focus.

In addition to a database with extensive analysis and 
reporting facilities, a CRM system requires software that 
sales or support persons can use to access information in 
real time and update it with the results of the current call. 
Organizations can buy turnkey products or design their 
own CRM systems by selecting and integrating software 
components. However implemented, effective CRM requires 
that everyone in contact with a customer keep the ongoing 
cultivation of that relationship in mind, and search for ways 
to deliver more value than the competition.

Successful CRM also requires a balance between the 
desire to get as much information as possible and allay-
ing customers’ concerns. If the CRM software (or how it is 
used) slows down the resolution of support calls, ends up 
generating unwanted solicitations (particularly from third 
parties), or conveys a sense of disregard for privacy, it could 
damage customer relations and lead to loss of business and 
reputation.
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cyberlaw
Legal scholars and law schools have begun to use the term 
cyberlaw to refer to a variety of legal issues that are often 
involved in online interactions (see cyberspace). While 
traditional legal fields such as contract law, property law, 
privacy, and jurisdiction do apply online, cyberlaw recog-
nizes that certain common features of the digital world 
pose unique challenges.

The first question in any legal dispute is which court, if 
any, has jurisdiction. In the physical world there are well-
demarcated spheres (in the United States) for federal, state, 
and municipal law. However, participants in an online 
transaction or other act may often be in different physi-
cal jurisdictions. Indeed, the World Wide Web’s structure 
does not inherently follow physical boundaries, with link-
age being largely semantic rather than geographical. Some 
Internet advocates such as John Perry Barlow have gone so 
far as to argue that the Web must develop its own laws and 
customs that reflect its technical and social nature—even-
tually forming its own social contract.

A more pragmatic approach is taken by Lawrence Les-
sig, who argues that a legal regime must evolve that takes 
into account the needs and concerns of both traditional 
physical jurisdictions and the new realm of cyberspace (see 
Lessig, Lawrence).

Diverse Issues
In practice, when crimes or disputes occur online, political 
pressure or legal duty will impel federal and state officials 
to become involved. For example, users of file-sharing ser-
vices are being sued for alleged violations of copyright law 
(see file-sharing and P2P networks and intellectual 
property and computing). The question of whether the 
provider of an online service should be held responsible 
for violations by users must also be decided; in the United 
States, federal law has exempted providers from most legal 
liabilities. Matters can become even more complicated 
when people involved in a case are living in different coun-
tries. (Many countries have lax or no regulation of online 
activity, and activity prohibited in countries such as the 
United States can flourish there—see, for example, online 
gambling.)
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Many issues regarding freedom of speech and expres-
sion arise in the online world. Should a blogger be accorded 
the rights of a traditional journalist? Should an American 
company such as Google or Yahoo! be held responsible for 
turning dissidents over to Chinese authorities?

The growth of immersive and persistent online game 
worlds such as Second Life raises other difficult questions for 
cyberlaw (see identity in the online world and online 
games). Can promises (whether business contracts or even 
marriage proposals) made through online personas (“ava-
tars”) be binding? Who owns property (such as a house) 
created or purchased in the virtual world? What if some-
one steals or vandalizes the virtual property? Should a vir-
tual world be treated as a kind of parallel jurisdiction and 
perhaps allowed to have its own legal system and courts, 
perhaps even a form of limited sovereignty? While these 
questions may seem far-fetched, they take on more urgency 
as millions of people begin to spend a significant part of 
their waking time in a virtual world and generate economic 
activity that can be denominated in real money. The resolu-
tion of these and other cyberlaw issues will both depend on 
and influence how the Internet itself is organized and gov-
erned (see Internet organization and governance). 
For some organizations currently involved in trying to pro-
mote cyber rights and shape policy, see cyberspace advo-
cacy groups.
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cybernetics
Cybernetics may not be familiar to many readers today, 
except as part of words like “cyberspace.” The term was 
coined by mathematician Norbert Wiener (see Wiener, 
Norbert) in his book about control and communication 
in animals and machines. The root comes from the Greek 
kybernetes, meaning steersman or governor.

Cybernetics looks at systems as a whole. A key con-
cept is feedback, which allows a system to adjust itself in 
response to changes in the environment. A familiar exam-
ple is a thermostat, which includes a switch that expands as 
the air heats, turning off the heater when the temperature 
reaches its indicated setting. Similarly, as the air cools the 
switch contracts and restarts the heater.

In addition to feedback, cybernetics looks at how infor-
mation is communicated between the environment and a 
machine or organism, or between component parts. Cyber-

netics is also interested in structures that may be built 
up through feedback and communication—ultimately, in 
humans: the structures of self, identity, and consciousness.

Cybernetics is fundamental to the operation of robots 
(see robotics). Around the time of Wiener’s book, Grey 
Walter built one of the earliest robots, a “cybernetic turtle” 
that could autonomously explore an environment, respond-
ing to changes in light.

In computers, any program that changes its behavior in 
response to new data might be called cybernetic. Cybernet-
ics is relevant to a variety of fields in computer science that 
involve machine learning or reasoning (see artificial intel-
ligence, genetic programming, and neural network).

During the 1950s and 1960s cybernetics concepts 
became quite influential and were applied to such diverse 
fields as neurology, cognitive science, psychology, phi-
losophy, anthropology, sociology, and economics. How-
ever, the term cybernetics itself gradually fell out of favor, 
even though the concepts remain at the heart of systems 
thinking. For some writers such as Gregory Bateson and 
anthropologist Margaret Mead, the focus shifted to a “new 
cybernetics” or “second-order cybernetics” that studies the 
interaction of observers with phenomena and attempts to 
construct a model of the mind itself.
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cyberspace advocacy groups
By the mid-1990s a number of issues were arising as the 
Internet and Web became an increasingly important fac-
tor in commerce and society (see censorship and the 
Internet, intellectual property and computing, and 
privacy in the digital age). Often in response to pro-
posed or enacted federal legislation, a number of advocates 
have organized groups to keep track of developments that 
they believe threaten the free exchange of information and 
expression, as well as opposing government surveillance 
and corporate practices believed to intrude on privacy.

Although there are dozens of groups advocating for the 
rights of Internet users, three groups have been particularly 
prominent and effective.

Electronic Frontier Foundation
The Electronic Frontier Foundation (EFF) was founded in 
1990 by Mitch Kapor, John Gilmore, and John Perry Bar-
low. Its immediate motivation was the federal search and 
seizure of computers belonging to Steve Jackson Games 
as part of an investigation into illegal distribution of pro-
prietary documents. Although the game company was not 
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involved in any crime, the seizure of its equipment and 
information threatened to put it out of business. Ultimately, 
Jackson prevailed in federal court, establishing that uncon-
ventional means of expression such as games were entitled 
to First Amendment protection. In another high-profile 
case, computer scientist Daniel Bernstein sued and won 
the right to publish encryption software and related papers, 
again extending First Amendment protections in the digital 
world.

The EFF has also been involved in the dispute between 
users of file-sharing services and the Recording Industry 
Institute of America (RIAA) over subpoenas of service pro-
viders seeking alleged illegal downloaders.

Most recently, the EFF has expanded its efforts further 
with regard to issues of government surveillance and the 
prosecution of computer crimes, such as collection and use 
of evidence.

Center for Democracy and Technology
Founded in 1994, the Center for Democracy and Technol-
ogy (CDT) somewhat overlaps the EFF in interests, but 
has a greater emphasis on the connections between online 
activities and the political process. The organization’s first 
major battle involved the Computer Decency Act. While 
intended by its proponents to ban obscenity and particu-
larly child pornography from the Internet, cyberspace-
rights advocates saw the law as vague, poorly written, and 
likely to deny access to material that is constitutionally 
protected for adults—an argument that the Supreme Court 
ultimately accepted in ACLU v. Reno (1997).

More recently, the CDT has supported the free-speech 
rights of bloggers (see blogs and blogging), arguing 
that they should be accorded journalistic rights (see also 
journalism and computers). Besides issue advocacy, the 
organization’s overall focus is on developing public policy 
that recognizes the unique features of cyberspace and pro-
motes freedom of expression, protection of privacy, and 
widespread access to the Net (see also Internet access 
policy).

Electronic Privacy Information Center
Also founded in 1994, the Electronic Privacy Information 
Center (EPIC) is a Washington, D.C.–based public inter-
est research center devoted to privacy and civil liberties 
issues. The group’s electronic newsletter EPIC Alert pro-
vides a useful summary of ongoing developments, cases, 
and issues. The organization also publishes regularly 
updated compendiums on developments in open govern-
ment/freedom of information, privacy and human rights, 
and privacy law.

(For online activists involved in general political issues 
and campaigns, see political activism and the Internet.)
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cyberspace and cyber culture
The term cyberspace first came to prominence when 
it appeared in Neuromancer, a 1984 novel by science fic-
tion writer William Gibson. The word is a combination 
of “cyber” (meaning related to computers) and “space.” 
As another SF writer, Bruce Sterling, wrote in The Hacker 
Crackdown (1993), cyberspace is “the place between the 
phones. The indefinite place out there, where the two of you, 
human beings, actually meet and communicate.”

While the elite telegraphers of the 19th century and 
later telephone users first experienced the sense of disem-
bodied electronic communication, it took the development 
of widespread computer terminals, personal computers, 
and connecting networks to create a sense of an ongoing 
place in which people meet and interact. The first “vil-
lages” in cyberspace came into being during the 1970s as 
research networks (ARPA), and the Usenet newsgroups 
of UNIX users began to carry messages and news post-
ings. During the 1980s, many more settlements began to 
light up the map of cyberspace, ranging from cities (large 
online services such as The Source, BIX, and CompuServe) 
to thousands of villages (tiny bulletin board systems run-
ning on personal computers). (See online services and 
bulletin board systems.)

Wherever human beings build communities, they shape 
culture. The cyber culture that grew up in cyberspace has 
featured many diverse strands. Hackers (not originally a 
pejorative term) had their distinctive hangouts and lingo. 
Bulletin board cultures varied from the hacker hardcore to 
user groups that tried to assist beginners. On the nascent 
Internet multiplayer game worlds called MUDs (Multi-User 
Dungeons) and Muses used words to create richly detailed 
fantasy cyberspaces. Together with chat rooms and con-
ferencing systems, they fostered virtual communities that, 
like physical communities, express a full range of human 
behavior (see blogs and blogging, conferencing sys-
tems, chat, social networking, texting and instant 
messaging, and virtual community).

While cyber culture shares the characteristics of other 
human cultures, it also has unique characteristics that are 
dictated by the nature of the online, virtual medium. Since 
the online user reveals only what he or she chooses to 
reveal, identities can be fluid: playful or deceptive. While 
people are not physically vulnerable in cyberspace, they 
are certainly emotionally vulnerable. (Virtual eroticism, or 
“cyber sex” has even led to virtual rapes.) The issue of pro-
tecting privacy becomes important because sensitive per-
sonal information is constantly being exposed in order to 
carry on commerce (see identity in the online world 
and privacy in the digital age.)

cyberspace and cyber culture        125



The Future of Cyberspace
By the end of the 1990s, the face of cyberspace was no 
longer that of text screens but that of the World Wide Web 
with its graphical pages. Multiplayer games now often fea-
ture graphics and even real-time voice communication is 
possible. With ubiquitous digital cameras, the boundary 
between cyberspace and physical space has become fluid, 
with people able to enter into each other’s physical envi-
ronments in realistic ways. Meanwhile, the development 
of virtual reality techniques has made computer-generated 
worlds much more vivid and realistic (see virtual real-
ity). As more people are linked continually to the network 
by broadband and wireless connections, cyberspace may 
eventually disappear as a separate reality, having merged 
with physical space.
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cyberstalking and harassment
Cyberstalking and harassment or “cyber bullying” involve 
the use of online communications and facilities (such as 
instant messaging, chat rooms, e-mail, or Web sites) to 
stalk, harass, or otherwise abuse a person or group. These 
activities may be carried on entirely online or in connection 
with physical stalking or harassment.

Stalking and threatening a person has been a crime in 
the physical world for some time, and similar principles 
apply to online stalking. Generally, to be guilty of stalking, a 
person must repeatedly harass or threaten the victim, often 
following him or her and intruding or violating privacy.

Cyberstalkers take advantage of the fact that there is 
a great deal of information about many people online. 
(Indeed, the popularity of sites such as MySpace means 
that many users can unwittingly provide that information 
in well-organized, easy-to-access form—see social net-
working.) The stalker can also use search engines to find 
e-mail or even physical addresses and phone numbers, or 
can join chat rooms used by the prospective victim,

Motives for stalking can range from sexual obsession to 
anger at some real or imagined slight, to more idiosyncratic 
reasons. As with physical stalking in an earlier generation, 
law enforcement agencies were often slow to acknowledge 
the potential seriousness of the crime or to develop effec-
tive ways to deal with it.

This began to change with the tragic and highly pub-
licized case of Amy Boyer, who had been found online 
through a data broker, stalked, harassed, and ultimately 

murdered. In 1999 California became the first state to pass 
a law against cyberstalking, and in 2000 cyberstalking was 
made part of the federal Violence against Women Act.

Cyberbullying
Like traditional bullying in schools or other settings, cyber-
bullying involves harassment, sometimes organized, of 
people considered to be weak or different in some way. 
However, the ability to hide or disguise one’s identity online 
(see anonymity and the Internet) facilitates cyberbully-
ing by making it harder for victims to identify and confront 
or report their tormentors. Media for cyberbullying include 
text and instant messaging, photos or videos, blogs, and 
increasingly, pages on social networking sites. Contents can 
include threats, racial or other slurs, and unwelcome sexual 
solicitations.

In March 2007 a number of organizations joined with 
the U.S. Department of Justice in a public service advertis-
ing campaign to educate young people about cyberbullying 
and what they can do to prevent it. Some schools are adopt-
ing anti-cyberbullying policies and programs.

Besides potentially serious psychological trauma to vic-
tims, cyberbullying can sometimes lead victims to lash out, 
and in extreme cases, cyberbullying may play a role in cam-
pus shootings.
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cyberterrorism
Cyberterrorism can include several types of activities: 
the promotion of terrorist or militant groups on the Web 
(including propaganda and recruitment), the coordination 
or facilitation of terrorist activities, and actual attacks on 
Web sites or other information infrastructure.

Terrorists on the Web
There is little doubt that terrorist groups are increasingly 
computer savvy and willing to use the technology to fur-
ther their purposes. Many groups have Web sites that are 
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used for propaganda and recruiting. (In 2007 a British court 
sentenced three men, calling them “cyber-jihadis” and say-
ing they had used a Web site to urge Muslims to attack non-
Muslims.) In fact extremist groups of many kinds (including 
neo-Nazis and other racial extremists) have long used Web 
sites to attract young followers through propaganda, music, 
and even games.

Other material posted by terrorist groups online 
includes bomb-making plans, lists of potential targets (pos-
sibly including maps or blueprints), and “tips” for penetrat-
ing defenses or evading detection. (A project called Dark 
Web at the University of Arizona searches for, compiles, 
and analyzes massive amounts of Web content generated by 
terrorist groups.)

Attacks on Web Sites
Attempts to jam or disrupt Web sites (such as denial of 
service attacks or DOS) have been made for a variety of rea-
sons. At one end of the spectrum are individuals or small 
groups engaged in criminal activity (such as attempted 
extortion) or expressing political protest (“hacktivists”). At 
the other end are alleged online offensives by national gov-
ernments (see Information warfare).

Although there have been no major disruptions as of 
mid-2008, terrorists (or sympathizers) have already con-
ducted cyberattacks. One site has even offered a download-
able “electronic jihad” program that users can use to select 
from a list of targets to launch an automated DOS. While 
such sites are usually taken down after a few months, it is 
relatively easy to start another, especially because informa-
tion provided for site registration is often not verified.

Fighting Cyberterrorism
Strategies and tactics to combat cyberterrorism involve both 
general antiterrorist intelligence and other techniques as 
well as those particularly adapted to the cyberspace arena 
(see counterterrorism and computers, computer 
crime and security, and computer forensics).

The cyberterrorist threat also plays an important role 
in the effort to better protect vital infrastructure. Although 
attacks on banking and other financial computer systems 
have the potential to cause severe economic damage, much 
attention has focused on computer-based attacks that have 
the potential to directly injure or even kill people. Back in 
2000, an individual hacker in Australia took over a pumping 
station and dumped more than 264,000 gallons of raw sew-
age into public lands and waterways. Although no humans 
were directly harmed, it is easy to see that such contamina-
tion in the drinking water supply could be deadly.

Regardless of the type of computer system, following 
best security practices can go a long way to “hardening” 
potential targets. Such practices include the use of robust 
firewalls and antivirus programs, regular security updates 
for the operating system and software, network monitoring 
and intrusion detection, sharing information about secu-
rity threats, and training personnel to be aware of typical 
attacker techniques, including deception (social engineer-
ing). There needs to be a comprehensive protection plan for 
each facility that takes both physical and electronic security 
into account

Assessment
In recent years cyberterrorism has been a much publicized 
topic. Some critics believe that the threat of cyberterrorism 
has been overestimated—not because many computer sys-
tems are not vulnerable, but because the most vulnerable 
physical systems are generally not on the Internet and not 
easily accessible. It has also been argued that terrorists gen-
erally use simpler, more direct weapons (e.g., bombs) and 
aim to produce physically spectacular or terrifying results. 
Most cyberattacks would not seem to meet those criteria. 
On the other hand, a cyberattack might be launched in 
conjunction with physical attacks, either as a distraction 
or to make it harder for authorities to respond to the main 
attack.

Properly assessing risks and allocating resources will 
always be difficult, and will always be influenced by politi-
cal and economic as well as technological factors.
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data
Today the term data is associated in many peoples’ minds 
mainly with computers. However, data (as in “given facts” 
or measurements) has been used as a term by scientists and 
scholars for centuries. Just as with a counting bead, a notch 
in a stick, or a handwritten tally, data as stored in a com-
puter (or on digital media) is a representation of facts about 
the world. These facts might be temperature readings, cus-
tomer addresses, dots in an image, the characteristics of 
a sound at a given instant, or any number of other things. 
But because computer data is not a fact but a representation 
of facts, its accuracy and usefulness depends not only on 
the accuracy of the original data, but on its context in the 
computer.

At bottom, computer data consists of binary states (rep-
resented numerically as ones or zeroes) stored using some 
physical characteristic such as an electrical or magnetic 
charge or a spot capable of absorbing or reflecting light. 
A string of ones and zeroes in a computer has no inherent 
meaning. Is the bit pattern 01000001 a number equivalent 
to 65 in the decimal system? Yes. Is it the capital letter “A”? 
It may be, if interpreted as an ASCII character code. Is it 
part of some larger number? Again, it may be, if the mem-
ory location containing this pattern is interpreted as part of 
a set of two, four, or more memory locations.

In order to be interpreted, data must be assigned a cat-
egory such as integer, floating point (decimal), or character 
(see data types). The programming language compiler uses 
the data type to determine how many memory locations 
make up that data item, and which bits in memory corre-
spond to which bits in the actual number. Data items can be 

treated as a batch (see array) for convenience, or different 
kinds of data such as names, addresses, and Social Security 
numbers can be grouped together into records or structures 
that correspond to an entity of interest (such as a customer). 
In creating a structure within the program to represent the 
data, the programmer must be cognizant of its purpose and 
intended use.

The programming language and code statements define 
the context of data within the rules of the language. How-
ever, the meaning of data must ultimately be constructed 
by the human beings who use it. For example, whether a 
test score is good, bad, or indifferent is not a characteris-
tic of the data itself, but is determined by the purposes of 
the test designer. This is why a distinction is often made 
between data, as raw numbers or characters, and informa-
tion as data that has been placed in a meaningful context 
so that it can be useful and perhaps even enlightening to 
the user.
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data abstraction
Abstract data types are used to describe a “generic” type of 
data, specifying how the data is stored and what operations 
can be performed on it (see object-oriented program-
ming, list processing, stack, and queue).
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For example, an abstract stack data type includes a 
structure for storing data (such as a list or array) and a 
set of operations, such as “pushing” an integer onto the 
stack and “popping” (removing) an integer from the stack. 
(For the process of combining data and operations into a 
single entity, see encapsulation.) Abstract data types can 
be implemented directly in object-oriented programming 
languages (see class, c++, Java, and Smalltalk).

One advantage of using abstract data types is that it 
separates a structure and functionality from its implemen-
tation. In designing the abstract stack type, for example, 
one can focus on what a stack does and its essential func-
tions. One avoids becoming immediately bogged down 
with details, such as what sorts of data items can be placed 
on the stack, or exactly what mechanism will be used to 
keep track of the number of items currently stored. This 
approach also avoids “featuritis,” the tendency to see how 
many possible functions or features one can add to the 
stack object. For example, while it might be useful to give a 
stack the ability to print out a list of its items, it is probably 
better to wait until one needs such a capability than to bur-
den the basic stack idea with extra baggage that may make 
it more cumbersome or less efficient.

An abstract data type or its embodiment, a class, is not 
used directly by the program. Rather, it is used to create an 
entity (object) that is a particular instance of the abstract 
data type (for example, an actual stack that will be used 
to manipulate data). The data stored inside the object is 
not accessed directly, but through functions that the object 
receives from the abstract data type (such as the push and 
pop operations for a stack). (For more information about 
how such objects are used, see class.)

Because the abstract data type is not directly used by 
the program, the implementation of how the data is stored 
or manipulated can be changed without affecting programs 
that use objects of that type. This information hiding is 
one of the chief benefits of object-oriented programming. 
Another advantage is inheritance, the ability to derive more 
specialized versions of the abstract data type or class. Thus, 
one can create a derived stack class that includes the print-
ing function mentioned earlier.
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data acquisition
There are a variety of ways in which data (facts or mea-
surements about the world) can be turned into a digital 
representation suitable for manipulation by a computer. For 
example, pressing a key on the keyboard sends a signal that 
is stored in a memory buffer using a value that represents 

the ASCII character code for the key pressed. Moving the 
mouse sends a stream of signals that are proportional to the 
rotation of the ball which in turn is calibrated into a series 
of coordinates and ultimately to a position on the screen 
where the cursor is to be moved. Digital cameras and scan-
ners convert the varying light levels of what they “see” into 
a digital image.

Besides the devices that are familiar to most computer 
users, there are many specialized data acquisition devices 
(DAQs). Indeed, most instruments used in science and 
engineering to measure physical characteristics are now 
designed to convert their readings into digital form. (Some-
times the instrument includes a processor that provides a 
representation of the data, such as a waveform or graph. In 
other cases, the data is sent to a computer for processing 
and display.)

Components of a Data Acquisition System
The data acquisition system begins with a transducer, 
which is a device that converts a physical phenomenon 
(such as heat) into a proportional electrical signal. Trans-
ducers include devices such as thermistors, thermocouples, 
and pressure or strain gauges. The output of the transducer 
is then fed into a signal conditioning circuit. The purpose 
of signal conditioning is to make sure the signal fits into 
the range needed by the data processing device. Thus the 

Data acquisition is the process of gathering real-time data from 
scientific instruments and making it available in digital form. Sen-
sor signals are “conditioned” by filtering extraneous values, and 
are then sampled and digitized. Software can now provide elaborate 
graphic displays as well as alert scientists to unusual readings.
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signal may be amplified or its voltage may be adjusted or 
scaled to the required level. Another function of signal con-
ditioning is to isolate the incoming signal from the com-
puter to which the acquisition device is connected. This 
is necessary both to protect the delicate computer circuits 
from possible “spikes” in the incoming signal and to pre-
vent “noise” (extraneous electromagnetic signals created by 
the computer itself) from distorting the signal, and thus 
the ultimate measurements. Various sorts of filters can be 
added for this purpose.

The conditioned signal is fed as an analog input into the 
data acquisition device, which is often a board inserted into 
a personal computer. The purpose of the board is to sample 
the signal and turn it into a stream of digital data. The 
digital data is stored in a buffer (either on the board or in the 
computer’s main memory). Software then takes over, analyz-
ing the data and creating appropriate displays (such as digi-
tal readings, graphs, or warning signals) as configured by 
the user. If the data is being displayed in real time, the speed 
of the software, the operating system, and the computer’s 
clock speed may become significant (see clock speed).

Performance Considerations
The sampling rate, or the number of times the signal is mea-
sured per second, is of fundamental importance. A higher 
sampling rate usually means a more accurate representa-
tion of the physical data (thus audio sampled at higher rates 
sounds more “natural”). The faster the sampling rate, the 
larger the amount of data to be processed and the greater 
the amount of computer resources needed. Thus, picking a 
sampling rate usually involves a tradeoff between accuracy 
and speed (for a real-time application, data must be pro-
cessed fast enough so that whoever is using it can respond 
to it as it comes in).

Three internal factors determine the performance of 
a DAQ. The resolution is the number of bits available to 
quantify each measurement. Clearly the ability to measure 
thousands of voltage levels is useless if the resolution of a 
system is only 8 bits (256 possible values.) The range is the 
distance between the minimum and maximum voltage lev-
els the DAQ can recognize. If a signal must be “squeezed” 
into too narrow a range, a corresponding amount of reso-
lution will be lost. Finally, there is the gain or the ratio 
between changes in the measured quantity and changes in 
the signal strength.

Applications
Data acquisition systems are essential to gathering and pro-
cessing the detailed data required by scientific and engi-
neering applications. The automated control of chemical 
or biochemical processes requires the ability of the control 
software to assess real-time physical data in order to make 
timely adjustments to such factors as temperature, pressure, 
and the presence of catalysts, inhibitors, or other compo-
nents of the process. The highly automated systems used in 
modern aviation and increasingly, even in ground vehicles, 
depend on real-time data acquisition. It is not surprising, 
then, that data acquisition is one of the fastest-growing 
fields in computing.

Further Reading
Beyon, Jeffrey Y. LabVIEW Programming, Data Acquisition and 
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http://zone.ni.com/devzone/cda/tut/p/id/3216. Accessed June 
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2000.

database administration
Database administration is the management of database 
systems (see database management system). Database 
administration can be divided into four broad areas: data 
security, data integrity, data accessibility, and system 
development.

Data Security
With regard to databases, ensuring data security includes 
the assignment and control of users’ level of access to sensi-
tive data and the use of monitoring tools to detect compro-
mise, diversion, or unauthorized changes to database files 
(see data security). When data is proprietary, licensing 
agreements with both database vendors and content provid-
ers may also need to be enforced.

Data Integrity
Data integrity is related to data security, since the com-
pleteness and accuracy of data that has been compromised 
can no longer be guaranteed. However, data integrity also 
requires the development and testing of procedures for the 
entry and verification of data (input) as well as verifying 
the accuracy of reports (output). Database administrators 
may do some programming, but generally work with the 
programming staff in maintaining data integrity. Since most 
data in computers ultimately comes from human beings, 
the training of operators is also important.

Within the database structure itself, the links between 
data fields must be maintained (referential integrity) and 
a locking system must be employed to ensure that a new 
update is not processed while a pending one is incomplete 
(see transaction processing).

Internal procedures and external regulations may 
require that a database be periodically audited for accuracy. 
While this may be the province of a specially trained infor-
mation processing auditor, it is often added to the duties 
of the database administrator. (See also auditing in data 
processing.)

Data Accessibility
Accessibility has two aspects. First, the system must be reli-
able. Data must be available whenever needed by the orga-
nization, and in many applications such as e-commerce, 
this means 24 hours a day, 7 days a week (24/7). Reliability 
requires making the system as robust as possible, such as 
by “mirroring” the database on multiple servers (which in 
turn requires making sure updates are stored concurrently). 
Failure must also be planned for, which means the imple-
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mentation of onsite and offsite backups and procedures for 
restoring data (see backup and archive systems).

System Development
An enterprise database is not a static entity. The demand for 
new views or applications of data requires the development 
and testing of new queries and reports. While this is nor-
mally done by the database programmers, the administra-
tor may need to consider its impact on the operation of the 
system. The administrator also helps plan for the needs of a 
growing, changing, organization by designing or evaluating 
proposals for expanding the system, possibly moving it to 
new hardware or a new operating system or migrating the 
database applications to a new database management sys-
tem (DBMS).

Because of the importance of database management to 
corporations, government, and other organizations, data-
base administration became a “hot” employment area in 
the 1990s. Most database administrators specialize in a 
particular database platform, such as Oracle or Microsoft 
Access. The growing need to make databases accessible via 
the Internet has added a new range of challenges to the 
database administrator, including the management of serv-
ers, remote authentication of users, and the mastery of Java, 
Common Gateway Interface (CGI), and scripting languages 
in order to tie the database to the server and user (see Java, 
cgi, Perl, and xml).
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database management system  (DBMS)
A database management system consists of a database (a 
collection of information, usually organized into records 
with component fields) and facilities for adding, updating, 
retrieving, manipulating, and reporting on data.

Database Structure
In the early days of computing, a database generally con-
sisted of a single file that was divided into data blocks that 
in turn consisted of records and fields within records. The 
COBOL language was (and is) particularly suited to read-
ing, processing, and writing data in such files. This flat 
file database model is still used for many simple applica-
tions including “home data managers.” However, for more 
complex applications where there are many files containing 
interrelated data, the flat file model proves inadequate.

In 1970, computer scientist E. F. Codd proposed a rela-
tional model for data organization. In the relational model, 
data is not viewed as files containing records, but as a set 
of tables, where the columns represent fields and the rows 
individual entities (such as customers or transactions).

A field (column) that two tables have in common (called 
the key) can be used to link the two. For example, consider 
a table of customer information (name, customer number, 
address, current balance, and so on) and a table of trans-
action information (product number, quantity, customer 
number of purchaser, and so on).

To find all the items purchased by a particular customer, 
the relational database uses the common field (the customer 
account number) to join the two tables. A query can then 
select all records in the transaction file whose customer 
number field matches the current customer in the customer 
file. (Notice that the validity of a key field depends on its 
being unique: If each customer doesn’t have one [and only 
one] customer number, any report of purchases will not be 
dependable.)

A procedure called normalization is often used to create 
a set of tables from a set of data files and records, such that 
no fields contain duplicate information. This is necessary in 
order to ensure that a piece of information can be updated 
and the update “propagated” to the entire database without 
missing any instances.

Relational databases usually also enforce referential integ-
rity. This means preventing changes to the database from 
causing inconsistencies. For example, if table A and table B 
are linked and a record is deleted from table A, any links to 
that record from records in table B must be removed. Simi-
larly, if a change is made in a linked field in a table, records 
in a linked table must be updated to reflect the change.

During the 1980s, the dBase relational database pro-
gram became the most popular DBMS on personal comput-
ers. Microsoft Access is now popular on Windows systems, 

Because both the Customer Record and the Transaction Record 
include the Customer Number field, it is easy to pull information 
from both databases into a single report, such as a summary of pur-
chases for each customer.
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and Oracle is prominent in the UNIX world. Beginning 
in the 1980s, SQL (Structured Query Language) became a 
widely used standard for querying and manipulating data 
tables, and most DBMS implement SQL (see sql).

Trends
The embracing of object-oriented programming principles 
starting in the 1980s has led to development of object-ori-
ented database structures (see object-oriented program-
ming). In this approach tables, queries, views, and other 
components of the DBMS are treated as objects that present 
their functionality through interfaces (much in the way a 
class in an object-oriented program does). This approach 
can improve data integrity, flexibility (such as through the 
ability to define new operations), and the development of 
new capabilities derived from predecessor objects. Object 
models are also helpful in dealing with a networked world 
in which data tables are often stored on separate computers.

As important as changes in the architecture of databases 
have been, the impact of a changing environment has prob-

ably been even more significant. In particular, Web sites of 
all kinds are increasingly being driven by databases (such as 
for inventory and order processing for e-commerce). In turn, 
many databases of all sizes and types are now accessible and 
searchable via the Web. This has meant a new emphasis on 
rapid development of database programs, particularly using 
scripting languages, as well as fast and efficient Web-based 
database processing (see also Ajax). While the traditional 
high-end corporate database systems such as Oracle and 
SQL Server are still vital for the enterprise, open-source 
alternatives (particularly MySQL) are in widespread use for 
many applications including wikis and content-management 
systems. The use of flexibly structured data (see xml and 
semantic Web) to link and transform databases has also 
expanded database concepts in the Web-centric world.

Further Reading
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data communications
Broadly speaking, data communications is the transfer of 
data between computers and their users. At its most abstract 
level, data communications requires two or more comput-
ers, a device to turn data into electronic signals (and back 
again), and a transmission medium. Telephone lines, fiber 
optic cable, network (Ethernet) cable, video cable, radio 
(wireless), or other kinds of links can be used. Finally, there 
must be software that can manage the flow of data.

Until recently, the modem was the main device used 
to connect personal computers to information services or 

networks (see modem). In general, data being sent over a 
communications link must be sent one bit at a time (this is 
called serial transmission, and is why an external modem is 
connected to a computer’s serial port). However most phone 
cables and other links are multiplexed, meaning that they 
carry many channels (with many streams of data bits) at 
the same time.

To properly recognize data in a bit stream coming over a 
link, the transmission system must use some method of flow 
control and have some way to detect errors (see error cor-
rection). Typically, the data is sent as groups or “frames” 
of bits. The frame includes a checksum that is verified by 
the receiver. If the expected and actual sums don’t match, 
the recipient sends a “negative acknowledgment” message 
to the sender, which will retransmit the data. In the original 
system, the sender waited until the recipient acknowledged 
each frame before sending the next, but modern protocols 
allow the sender to keep sending while the frames being 
received are waiting to be checked.

The actual transmission of data over a line can be con-
sidered to be the lowest level of the data communications 
scheme. Above that is packaging of data as used and inter-
preted by software. Unless two computers are directly con-
nected, the data is sent over a network, either a local area 
network (LAN) or a wide-area network such as the global 
Internet. A network consists of interconnected nodes that 
include switches or routers that direct data to its destina-
tion (see network). Networks such as the Internet use 
packet-switching: Data is sent as individual packets that 
contain a “chunk” of data, an address, and an indication 
of where the data fits within the message as a whole. The 
packets are routed at the routers using software that tries 
to find the fastest link to the destination. When the pack-
ets arrive at the destination, they are reassembled into the 
original message.

Applications
Data communications are the basis both for networks and 
for the proper functioning of servers that provide ser-
vices such as World Wide Web pages, electronic mail, 
online databases, and multimedia content (such as audio 
and streaming video). While Web page design and e-com-
merce are the “bright lights” that give cyberspace its char-
acter, data communications are like the plumbing without 
which computers cannot work together. The growing 
demand for data communications, particularly broadband 
services such as DSL and cable modems, translates into a 
steady demand for engineers and technicians specializing 
in the maintenance and growth of this infrastructure (see 
broadband).

Besides keeping up with the exploding demand for 
more and faster data communications, the biggest chal-
lenge for data communications in the early 21st century 
is the integration of so many disparate methods of com-
munications. A user may be using an ordinary phone 
line (19th-century technology) to connect to the Inter-
net, while the phone company switches might be a mix-
ture of 1970s or later technology. The same user might 
go to the workplace and use fast Ethernet cables over a 

Modern data communications can be thought of as a series of lay-
ers, from the actual physical connection (such as a cable) at the 
“bottom” to the operations of software such as Web browsers or e-
mail programs at the highest level.
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local network, or connect to the Internet through DSL, 
an enhanced phone line. Traveling home, the user might 
use a personal digital assistant (PDA) with a wireless link 
to make a restaurant reservation (see wireless comput-
ing). The user wants all these services to be seamless and 
essentially interchangeable, but today data communica-
tions is more like roads in the early days of the automo-
bile—a few fast paved roads here and there, but many 
bumpy dirt paths.

Further Reading
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data compression
The process of removing redundant information from data 
so that it takes up less space is called data compression. 
Besides saving disk space, compressing data such as e-mail 
attachments can make data communications faster.

Compression methods generally begin with the realiza-
tion that not all characters are found in equal numbers in 
text. For example, in English, letters such as e and s are 
found much more frequently than letters such as j or x. 
By assigning the shortest bit codes to the most common 
characters and the longer codes to the least common char-
acters, the number of bits needed to encode the text can be 
minimized.

Huffman coding, first developed in 1952, is an algorithm 
that uses a tree in which the pairs of the least probable (that 
is, least common) characters are linked, the next least prob-
able linked, and so on until the tree is complete.

Another coding method, arithmetic coding, matches 
characters’ probabilities to bits in such a way that the same 
bit can represent parts of more than one encoded character. 
This is even more efficient than Huffman coding, but the 
necessary calculations make the method somewhat slower 
to use.

Another approach to compression is to look for words 
(or more generally, character strings) that match those 
found in a dictionary file. The matching strings are replaced 
by numbers. Since a number is much shorter than a whole 
word or phrase, this compression method can greatly 
reduce the size of most text files. (It would not be suitable 
for files that contain numerical rather than text data, since 
such data, when interpreted as characters, would look like a 
random jumble.)

The Lempel-Ziv (LZ) compression method does not 
use an external dictionary. Instead, it scans the file itself 
for text strings. Whenever it finds a string that occurred 
earlier in the text, it replaces the later occurrences with 
an offset, or count of the number of bytes separating the 

occurrences. This means that not only common words but 
common prefixes and suffixes can be replaced by num-
bers. A variant of this scheme does not use offsets to the 
file itself, but compiles repeated strings into a dictionary 
and replaces them in the text with an index to their posi-
tion in the dictionary.

Graphics files can often be greatly compressed by replac-
ing large areas that represent the same color (such as a blue 
sky) with a number indicating the count of pixels with that 
value. However, some graphics file formats such as GIF are 
already compressed, so further compression will not shrink 
them much.

More exotic compression schemes for graphics can use 
fractals or other iterative mathematical functions to encode 
patterns in the data. Most such schemes are “lossy” in that 
some of the information (and thus image texture) is lost, 
but the loss may be acceptable for a given application. Lossy 
compression schemes are not used for binary (numeric data 
or program code) files because errors introduced in a pro-
gram file are likely to affect the program’s performance (if 
not “break” it completely). Though they may have less seri-
ous consequences, errors in text are also generally consid-
ered unacceptable.

Trends
There are a variety of compression programs used on 
unix systems, but variants of the Zip program are now 
the overwhelming favorite on Windows-based systems. Zip 
combines compression and archiving. Archiving, or the 
bundling together of many files into a single file, contrib-
utes a further reduction in file size. This is because files in 
most file systems must use a whole number of disk sectors, 
even if that means wasting most of a sector. Combining files 
into one file means that at most a bit less than one sector 
will be wasted.

A basic approach to data compression is to look for recurring pat-
terns and store them in a “dictionary.” Each occurrence of the 
pattern can then be replaced by a brief reference to the dictionary 
entry. The resulting file may then be considerably smaller than the 
original.
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data conversion
The developer of each application program that writes data 
files must define a format for the data. The format must 
be able to preserve all the features that are supported by 
the program. For example, a word processing program will 
include special codes for font selection, typestyles (such as 
bold or italic), margin settings, and so on.

In most markets there are more than one vendor, so 
there is the potential for users to encounter the need to 
convert files such as word processing documents from one 
vendor’s format to another. For example, a Microsoft Word 
user needing to send a document to a user who has Word-
Perfect, or the user may encounter another user who also 
has Microsoft Word, but a later version.

There are some ways in which vendors can relieve some 
of their users’ file conversion issues (and thus potential 
customer dissatisfaction). Vendors often include facilities to 
read files created by their major rivals’ products, and to save 
files back into those formats. This enables users to exchange 
files. Sometimes the converted document will look exactly 
like the original, but in some cases there is no equivalence 
between a feature (and thus a code) in one application and a 
feature in the other application. In that case the formatting 
or other feature may not carry over into the converted ver-
sion, or may be only partially successful.

Vendors generally make a new version of an applica-
tion downwardly compatible with previous versions (see 
also compatability and portability). This means that the 
new version can read files created with the earlier versions. 
(After all, users would not be happy if none of their existing 
documents were accessible to their new software!) Similarly, 
there is usually a way to save a file from the later version in 
the format of an earlier version, though features added in the 
later version will not be available in the earlier format.

Another strategy for exchanging otherwise incompatible 
files is to find some third format that both applications can 
read. Thus Rich Text Format (RTF), a format that includes 
most generic document features, is supported by most mod-
ern word processors. A user can thus export a file as RTF 
and the user of a different program will be able to read it 
(see rtf). Similarly, many database and other programs can 
export files as a series of data values separated by commas 
(comma-delimited files), and the files can be then read by a 
different program and converted to its “native” format.

A variety of format conversion utilities are available as 
either commercial software or shareware. There are also busi-

nesses that specialize in data conversion. While their services 
can be expensive, using them may be the best way to con-
vert large numbers of files, rather than having to individually 
load and save them. Data conversion services can also handle 
many “ancient” data files from the 1970s or even early 1980s 
whose formats are no longer supported by current software.

Further Reading
Heuser, Werner. “Data Conversion and Migration Tools.” Available 
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data dictionary
A modern enterprise database system can contain hundreds 
of separate data items, each with important characteristics 
such as field types and lengths, rules for validating the data, 
and links to various databases that use that item (see data-
base management system). There can also be many different 
views or ways of organizing subsets of the data, and stored 
procedures (program code modules) used to perform vari-
ous data processing functions. A developer who is creating 
or modifying applications that deal with such a vast database 
will often need to check on the relationships between data 
elements, views, procedures, and other aspects of the system.

One fortunate characteristic of computer science is that 
many tools can be applied to themselves, often because the 
contents of a program is itself a collection of data. Thus, it is 
possible to create a database that keeps track of the elements 
of another database. Such a database is sometimes called a 
data dictionary. A data dictionary system can be developed 
in the same way as any other database, but many database 
development systems now contain built-in facilities for gen-
erating data dictionary entries as new data items are defined, 
and updating definitions as items are linked together and new 
views or stored procedures are defined. (A similar approach 
can be seen in some software development systems that cre-
ate a database of objects defined within programs, in order to 
preserve information that can be useful during debugging.)

Data dictionaries are particularly important for creating 
data warehouses (see data warehouse), which are large 
collections of data items that are stored together with the 
procedures for manipulating and analyzing them.

Further Reading
Kreines, David. Oracle Data Dictionary Pocket Reference. Sebasta-
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data glove  See haptics.

data mining
The process of analyzing existing databases in order to find 
useful information is called data mining. Generally, a data-
base, whether scientific or commercial, is designed for a 
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particular purpose, such as recording scientific observa-
tions or keeping track of customers’ account histories. How-
ever, data often has potential applications beyond those 
conceived by its collector.

Conceptually, data mining involves a process of refining 
data to extract meaningful patterns—usually with some 
new purpose in mind. First, a promising set or subset of the 
data is selected or sampled. Particular fields (variables) of 
interest are identified. Patterns are found using techniques 
such as regression analysis to find variables that are highly 
correlated to (or predicted by) other variables, or through 
clustering (finding the data records that are the most simi-
lar along the selected dimensions). Once the “refined” data 
is extracted, a representation or visualization (such as a 
report or graph) is used to express newly discovered infor-
mation in a usable form.

Similar (if simpler) techniques are being used to target 
or personalize marketing, particularly to online customers. 
For example, online bookstores such as Amazon.com can 
find what other books have been most commonly bought 
by people buying a particular title. (In other words, iden-
tify a sort of reader profile.) If a new customer searches for 
that title, the list of correlated titles can be displayed, with 
an increased likelihood of triggering additional purchases. 
Businesses can also create customer profiles based on their 
longer-term purchasing patterns, and then either use them 
for targeted mailings or sell them to other businesses (see 
e-commerce). In scientific applications, observations can 
be “mined” for clues to phenomena not directly related to 
the original observation. For example, changes in remote 
sensor data might be used to track the effects of climate 
or weather changes. Data-mining techniques can even be 
applied to the human genome (see bioinformatics).

Trends
Data mining of consumer-related information has emerged 
as an important application as the volume of e-commerce 
continues to grow, the amount of data generated by large 
systems (such as online bookstores and auction sites) 
increases, and the value of such information to marketers 
becomes established. However, the use of consumer data 
for purposes unrelated to the original purchase, often by 
companies that have no pre-existing business relationship 
to the consumer, can raise privacy issues. (Data is often 
rendered anonymous by removing personal identification 
information before it is mined, but regulations or other 
ways to assure privacy remain incomplete and uncertain.)

The most controversial applications of data mining are 
in the area of intelligence and homeland security. Because 
such applications are often shrouded in secrecy, the public 
and even lawmakers have difficulty in assessing their value 
and devising privacy safeguards. According to the Govern-
ment Accountability Office, as of 2007 some 199 different 
data-mining programs were in use by at least 52 federal 
agencies. One of the most controversial is ADVISE (Anal-
ysis Dissemination, Visualization, Insight and Semantic 
Enhancement), developed by the Department of Homeland 
Security since 2003. The program purportedly can match 
and create profiles using government records and users’ 

Web sites and blogs. Privacy advocates and civil libertarians 
have raised concerns, and legislation has been introduced 
that would require that all federal agencies report their data-
mining activities to Congress (see also counterterrorism 
and computers and privacy in the digital age.)
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data security
In most institutional computing environments, access to 
program and data files is restricted to authorized persons. 
There are several mechanisms for restricting file access in a 
multiuser or networked system.

User Status
Because of their differing responsibilities, users are often 
given differing restrictions on access. For example, there 
might be status levels ranging from root to administrator to 
“ordinary.” A user with root status on a UNIX system is able 
to access any file or resource. Any program run by such a 
user inherits that status, and thus can access any resource. 
Generally, only the user(s) with ultimate responsibility for 
the technical functioning of the system should be given 
such access, because commands used by root users have the 
potential to wipe out all data on the system. A person with 
administrator status may be able to access the files of other 
users and to access certain system files (in order to change 
configurations), but will not be able to access certain core 
system files. Ordinary users typically have access only to 
the files they create themselves and to files designated as 
“public” by other users.

File Permissions
Files themselves can have permission status. In UNIX, 
there are separate statuses for the user, any group to which 
the user belongs, and “others.” There are also three different 
activities that can be allowed or disallowed: reading, writ-
ing, and executing. For example, if a file’s permissions are

User	 Group	 Other
rwx	 rw-	 r—

the user can read or write the file or (if it is a directory or 
program), execute it. Members of the same group can read 
or write, but not execute, while others can only read the file 
without being able to change it in any way. Operating sys-
tems such as Windows NT use a somewhat different struc-
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ture and terminology, but also provide for varying user 
status and access to objects.

Record-level Security
Security on the basis of whole directories or even files may 
be too “coarse” for many applications. In a particular data-
base file, different users may be given access to different 
data fields. For example, a clerk may have read-only access 
to an employee’s basic identification information, but not 
to the results of performance evaluations. An administra-
tor may have both read and write access to the latter. Using 
some combination of database management and operating 
system level capabilities, the system will maintain lists of 
user accounts together with the objects (such as record 
types or fields) they can access, and the types of access 
(read only or read/write) that are permitted. Rather than 
assigning access capabilities separately for each user, they 
may be defined for a group of similar users, and then indi-
vidual users can be assigned to the group.

Other Security Measures
Security is also important at the program level. Because a 
badly written (or malicious) program might destroy impor-
tant data or system files, most modern operating systems 
restrict programs in a number of ways. Generally, each pro-
gram is allowed to access only such memory as it allocates 
itself, and is not able to change data in memory belonging 
to other running programs. Access to hardware devices can 
also be restricted: an operating system component may have 
the ability to access the innermost core of the operating sys-
tem (where drivers interact directly with devices), while 
an ordinary applications program may be able to access 
devices only through facilities provided by the operating 
system.

There are a number of techniques that unauthorized 
intruders can use to try to compromise operating systems 
(see computer crime and security). Access capabilities 
that are tied to user status are vulnerable if the user can get 
the login ID and password for the account. If the account 
has a high (administrator or root) status, then the intruder 
may be able to give viruses, Trojan horses, or other mali-
cious programs the status they need in order to be able to 
penetrate the defenses of the operating system (see also 
computer virus).

Files that have intrinsically sensitive or valuable data 
are often further protected by encoding them (see encryp-
tion). Encryption means that even intruders who gain read 
access to the file will need either to crack the encryption 
(very difficult without considerable time and computer 
resources) or somehow obtain the key. Encryption does not 
prevent the deletion or copying of a file, however, just the 
understanding of its contents.

The dispersal of valuable or sensitive data (such as cus-
tomers’ social security numbers) across expanding networks 
increases the risk of “data breaches” where the privacy, 
financial security, and even identity of thousands of peo-
ple are compromised (see also identity theft). In recent 
years, for example, there have been numerous cases where 
laptop computers containing thousands of sensitive records 

have been stolen from universities, financial institutions, 
or government agencies—in such cases there is often no 
way to know whether the thief will actually access the data. 
(Often affected individuals are notified that they may be 
at risk, and such prophylactic measures as credit monitor-
ing are provided.) In response to public anxiety there has 
been pressure for federal or state legislation that would 
make companies responsible for breaches of their data and 
specify compensation or other recourse for affected custom-
ers. (Opponents of such laws cite government reports that 
find that most data breaches do not lead to identity theft, 
and that the regulations would increase the cost of millions 
of daily transactions.)

There is a continuing tradeoff between security and ease 
of use. From the security standpoint, it might be assumed 
that the more barriers or checkpoints that can be set up 
for verifying authorization, the safer the system will be. 
However, as security systems become more complex, it 
becomes more difficult to ensure that authorized users are 
not unduly inconvenienced. If users are sufficiently frus-
trated, they will be tempted to try to bypass security, such 
as by sharing IDs and passwords or making files they create 
“public.”
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data structures
A data structure is a way of organizing data for use in a 
computer program. There are three basic components to a 
data structure: a set of suitable basic data types, a way to 
organize or relate these data items to one another, and a set 
of operations, or ways to manipulate the data.

For example, the array is a data structure that can 
consist of just about any of the basic data types, although 
all data must be of the same type. The way the data is orga-
nized is by storing it in sequentially addressable locations. 
The operations include storing a data item (element) in the 
array and retrieving a data item from the array.

Types of Data Structures
The data structures commonly used in computer science 
include arrays (as discussed above) and various types of 
lists. The primary difference between an array and a list is 
that an array has no internal links between its elements, 
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while a list has one or more pointers that link the elements. 
There are several types of specialized list. A tree is a list 
that has a root (an element with no predecessor), and each 
other element has a unique predecessor. The guarantee of 
a unique path to each tree node can make the operations 
of inserting or deleting an item faster. A stack is a list 
that is accessible only at the top (or front). Any new item 
is inserted (“pushed”) on top of the last item, and remov-
ing (“popping”) an item always removes the item that was 
last inserted. This order of access is called LIFO (last in, 
first out). A list can also be organized in a first in, first out 
(FIFO) order. This type of list is called a queue, and is 
useful in a situation where tasks must “wait their turn” for 
attention.

Implementation Issues
The implementation of any data structure depends on the 
syntax of the programming language to be used, the data 
types and features available in the language, and the algo-
rithms chosen for the data operations that manipulate the 
structure. In traditional procedural languages such as C, the 
data storage part of a data structure is often specified in one 
part of the program, and the functions that operate on that 
structure are defined separately. (There is no mechanism 
in the language to link them.) In object-oriented languages 
such as C++, however, both the data storage declarations 
and the function declarations are part of the same entity, a 
class. This means that the designer of the data structure 
has complete control over its implementation and use.

Together with algorithms, data structures make up the 
heart of computer science. While there can be numerous 
variations on the fundamental data structures, understand-
ing the basic forms and being able to decide which one 
to use to implement a given algorithm is the best way to 
assure effective program design.
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data types
As far as the circuitry of a computer is concerned, there’s 
only one kind of data—a series of bits (binary digits) fill-
ing a series of memory locations. How those bits are to be 
interpreted by the people using the computer is entirely 
arbitrary. The purpose of data types is to define useful con-
cepts such as integer, floating-point number, or character in 
terms of how they are stored in computer memory.

Thus, most computer languages have a data type called 
integer, which represents a whole number that can be stored 
in 16 bits (two bytes) of memory. When a programmer 
writes a declaration such as:

int Counter;

in the C language, the compiler will create machine instruc-
tions that set aside two bytes of memory to hold the con-
tents of the variable Counter. If a later statement says:

Counter = Counter + 1;

(or its equivalent, Counter++) the program’s instructions 
are set up to fetch two bytes of memory to the processor’s 
accumulator, add 1, and store the result back into the two 
memory bytes.

Similarly, the data type long represents four bytes (32 
bits) worth of binary digits, while the data type float stores 
a floating-point number that can have a whole part and a 
decimal fraction part (see numeric data). The char (char-
acter) type typically uses only a single byte (8 bits), which 
is enough to hold the basic ASCII character codes up to 255 
(see characters and strings).

The Bool (Boolean) data type represents a simple true or 
false (usually 1 or 0) value (see Boolean operators).

Structured Data Types
The preceding data types all hold single values. However, 
most modern languages allow for the construction of data 
types that can hold more than one piece of data. The array 
is the most basic structured data type; it represents a series 
of memory locations that hold data of one of the basic 
types. Thus, in Pascal an array of integer holds integers, 
each taking up two bytes of memory.

Many languages have composite data types that can 
hold data of several different basic types. For example, the 
struct in C or the record in Pascal can hold data such as a 
person’s first and last name, three lines of address (all arrays 
of characters, or strings), an employee number (perhaps an 
integer or double), a Boolean field representing the presence 
or absence of some status, and so on. This kind of data type 
is also called a user-defined data type because programmers 
can define and use these types in almost the same ways as 
they use the language’s built-in basic types.

What is the difference between data types and data 
structures? There is no hard-and-fast distinction. Gen-
erally, data structures such as lists, stacks, queues, and 
trees are more complex than simple data types, because 
they include data relationships and special functions 
(such as pushing or popping data on a stack). However, 
a list is the fundamental data type in list-processing lan-
guages such as Lisp, and string operators are built into 
languages such as Snobol. (See list processing, stack, 
queue, and tree.)

Further, in many modern languages fundamental and 
structured data types are combined seamlessly into classes 
that combine data structures with the relevant operations 
(see class and object-oriented programming).
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data warehouse
Modern business organizations create and store a tremen-
dous amount of data in the form of transactions that become 
database records. Increasingly, however, businesses are 
relying on their ability to use data that was collected for one 
purpose (such as sales, customer service, and inventory) 
for purposes of marketing research, planning, or decision 
support. For example, transaction data might be revisited 
with a view to identifying the common characteristics of 
the firm’s best customers or determining the best way to 
market a particular type of product. In order to conduct 
such research or analysis, the data collected in the course of 
business must be stored in such a way that it is both accu-
rate and flexible in terms of the number of different ways in 
which it can be queried. The idea of the data warehouse is 
to provide such a repository for data.

When data is used for particular purposes such as sales 
or inventory control, it is usually structured in records 
where certain fields (such as stock number or quantity) 
are routinely processed. It is not so easy to ask a differ-
ent question such as “which customers who bought this 
product from us also bought this other product within six 
months of their first purchase?” One way to make it easier 
to query data in new ways is to store the data not in records 
but in arrays where, for example, one dimension might 
be product numbers and another categories of customers. 
This approach, called Online Analytical Processing (OLAP) 
makes it possible to extract a large variety of relationships 
without being limited by the original record structure.

Implementation
The key in designing a data warehouse is to provide a way 
that researchers using analytical tools (such as statistics 
programs) can access the raw data in the underlying data-
base. Software using query languages such as SQL can 
serve as such a link. Thus, the researcher can define a query 

using the many dimensions of the data array, and the OLAP 
software (also called middleware) translates this query into 
the appropriate combination of queries against the underly-
ing relational database.

The data warehouse is closely related to the concept 
of data mining. In fact, data mining can be viewed as the 
exploitation of the collection of views, queries, and other 
elements that can be generated using the data warehouse as 
the infrastructure (see data mining).

Further Reading
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decision support system
A decision support system (DSS) is a computer applica-
tion that focuses on providing access to or analysis of the 
key information needed to make decisions, particularly in 
business. (It can be thought of as a more narrowly focused 
approach to computer assistance to management—see man-
agement information system.)

The development of DSS has several roots reaching back 
to the 1950s. This includes operational analysis and the the-
ory of organizations and the development of the first inter-
active (rather than batch-processing) computer systems. 
Indeed, the SAGE automated air defense system developed 
starting in the 1950s could be described as a military DSS. 
The system presented real-time information (radar plots) 
and enabled the operator to select and focus on particular 
elements using a light pen. By the 1960s more-systematic 
research on DSS was underway and included the provoca-
tive idea of “human-computer symbiosis” for problem solv-
ing (see Licklider, J. C. R.).

The “back end” of a DSS is one or more large databases 
(see data warehouse) that might be compiled from transac-
tion records, statistics, online news services, or other sources. 
The “middle” of the DSS process includes the ability to ana-
lyze the data (online analytical processing, or OLAP; see also 
data mining). Other elements that might be included in a 
DSS are rules-based systems (see expert system) and inter-
active models (see simulation). These elements can help the 
user explore alternatives and “what if” scenarios.

The structure of a DSS is sometimes described as model 
driven (generally using a small amount of selected data), 
data driven (based on a large collection of historical data), 
knowledge driven (perhaps using an expert system), or 
communications driven (focusing on use of collaborative 
software—see groupware, as well as more recent develop-
ments) (see wikis and Wikipedia).

The general process of warehousing data. The data warehouse adds 
value to the data by further structuring it so relationships can be 
explored by analysts.
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User Interface—The “Front End”
All the data and tools in the world are of little use if the 
user cannot work with it effectively (see user interface). 
Information or the results of queries or modeling must be 
displayed in a way that is easy to grasp and use. (A spread-
sheet with nothing highlighted or marked would be a poor 
choice.) Graphical “widgets” such as dials, buttons, sliders, 
and so on can help the user see the results and decide what 
to look at next (see digital dashboard).

Another key principle is that decision making in the 
modern world is as much a social as an individual process. 
Therefore a DSS should facilitate communication and col-
laboration (or interface with software that does so).

A variety of specialized DSSs have been developed for 
various fields. Examples include PROMIS (for medical deci-
sion making) and Carnegie Mellon’s ZOG/KMS, which has 
been used in military and business settings.
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Dell, Inc.
Dell Computer (NASDAQ: DELL) is one of the world’s lead-
ing manufacturers and sellers of desktop and laptop com-
puters (see personal computer). By 2008 Dell had more 
than 88,000 employees worldwide.

The company was founded by Michael Dell, a student at 
the University of Texas at Austin whose first company was 
PC’s Limited, founded in 1984. Even at this early stage Dell 
successfully employed several practices that would come 
to typify the Dell strategy: Sell directly to customers (not 
through stores), build each machine to suit the customer’s 
preferences, and be aggressive in competing on price.

In 1988 the growing company changed its name to 
Dell Computer Corporation. In the early 1990s Dell tried 
an alternative business model, selling through warehouse 
clubs and computer superstores. When that met with little 
success, Dell returned to the original formula. In 1999 Dell 
overtook Compaq to become the biggest computer retailer 
in America.

Generally, the Dell product line has aimed at two basic 
segments: business-oriented (OptiPlex desktops and Lati-
tude laptops) and home/consumer (XPS desktops and 
Inspiron laptops, and in 2007, Inspiron desktops).

Challenges and Diversification
Around 2002, Dell, perhaps facing the growing commod-
ity pricing of basic PCs, began to expand into computer 
peripherals (such as printers) and even home entertainment 
products (TVs and audio players). In 2003 the company 

changed its name to Dell, Inc. (dropping “Computer”). Dell 
also experienced an increase in international sales in 2005, 
while achieving a first place ranking in Fortune magazine 
as “most admired company.” However, the company also 
made some missteps, losing $300 million because of faulty 
capacitors on some motherboards. Earnings continued to 
fall short of analysts’ expectations, and in January 2007 
Michael Dell returned as CEO after the resignation of Kevin 
B. Rollins, who had held the post since 2004.

Meanwhile, Dell has made further attempts at diversify-
ing the product line. In 2006 the company began, for the 
first time, to introduce AMD (instead of Intel) processors 
in certain products, and in 2007 Dell responded to cus-
tomer suggestions by announcing that some models could 
be ordered with Linux rather than Microsoft Windows 
installed. Also in 2007, Dell acquired Alienware, maker of 
high-performance gaming machines.

Dell has struggled to boost its sagging revenue as it 
lost ground to competitors, notably HP. Known primarily 
as a mail-order and online company, Dell has announced 
that it will also sell PCs through “big box” retailers such 
as Wal-Mart.

Dell continues to receive praise and criticism from vari-
ous quarters. On the positive side, the company has been 
praised for its computer-recycling program by the National 
Recycling Coalition. Dell products also tend to score at or 
near the top in performance reviews by publications such 
as PC Magazine.

On the other hand, there have been complaints about 
Dell’s technical support operation. Technicians apparently 
follow “scripts” very closely, making customers take sys-
tems apart and follow troubleshooting directions regardless 
of what the customer might already know or have done. 
The increasing “offshoring” of support has also led to com-
plaints about language and communication problems.

Further Reading
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demon
The unusual computing term demon (sometimes spelled 
daemon) refers to a process (program) that runs in the 
background, checking for and responding to certain events. 
The utility of this concept is that it allows for automation of 
information processing without requiring that an operator 
initiate or manage the process.

For example, a print spooler demon looks for jobs that 
are queued for printing, and deals with the negotiations nec-
essary to maintain the flow of data to that device. Another 
demon (called chron in UNIX systems) reads a file describ-
ing processes that are designated to run at particular dates 
or times. For example, it may launch a backup utility every 
morning at 1:00 a.m. E-mail also depends on the periodic 
operation of “mailer demons.”
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While the term demon originated in the UNIX culture, 
similar facilities exist in many operating systems. Even in 
the relatively primitive MS-DOS for IBM personal comput-
ers of the 1980s, the ability to load and retain small utility 
programs that could share the main memory with the cur-
rently running application allowed for a sort of demon that 
could spool output or await a special keypress. Microsoft 
Windows systems have many demon-like operating system 
components that can be glimpsed by pressing the Ctrl-Alt-
Delete key combination.

The sense of autonomy implied in the term demon is in 
some ways similar to that found in bots or software agents 
that can automatically retrieve information on the Internet, 
or in the Web crawler, which relentlessly pursues, records, 
and indexes Web links for search engines. (See software 
agent and search engine.)
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Dertouzos, Michael L.
(1936–2001)
Greek-American
Computer Scientist, Futurist

Born in Athens, Greece, on November 5, 1936, Michael 
Dertouzos spent adventurous boyhood years accompany-
ing his father (an admiral) in the Greek navy’s destroyers 
and submarines. He became interested in Morse Code, 
shipboard machinery, and mathematics. At the age of 16 
he read an article about Claude Shannon’s work in infor-
mation theory and a project at the Massachusetts Institute 
of Technology that sought to build a mechanical robot 
“mouse.” He quickly decided that he wanted to come to 
America to study at MIT.

After the hardships of the World War II years inter-
vened, Dertouzos received a Fulbright scholarship that 
placed him in the University of Arkansas, where he earned 
his bachelor’s and master’s degrees while working on acous-
tic-mechanical devices for the Baldwin Piano Company. He 
was then able to fulfill his boyhood dream by receiving his 
Ph.D. from MIT, then promptly joined the faculty. He was 
director of MIT’s Laboratory for Computer Science (LCS) 
starting in 1974. The lab has been a hotbed of new ideas 
in computing, including computer time-sharing, Ethernet 
networking, and public-key cryptography. Dertouzos also 
embraced the growing Internet and serves as coordinator of 
the World Wide Web consortium, a group that seeks to cre-
ate standards and plans for the growth of the network.

Combining theoretical interest with an entrepreneur’s 
eye on market trends, Dertouzos started a small company 
called Computek in 1968. It made some of the first “smart 
terminals” that included their own processors.

In the 1980s, Dertouzos began to explore the rela-
tionship between developments and infrastructure in 
information processing and the emerging “information 
marketplace.” However, the spectacular growth of the 
information industry has taken place against a backdrop of 
the decline of American manufacturing. Dertouzos’s 1989 
book, Made In America, suggested ways to revitalize Amer-
ican industry.

During the 1990s, Dertouzos brought MIT into closer 
relationship with the visionary designers who were creating 
and expanding the World Wide Web. When Tim Berners-
Lee and other Web pioneers were struggling to create the 
World Wide Web consortium to guide the future of the new 
technology, Dertouzos provided extensive guidance to help 
them set their agenda and structure. (See World Wide 
Web and Berners-Lee, Tim.)

Dertouzos was dissatisfied with operating systems such 
as Microsoft Windows and with popular applications pro-
grams. He believed that their designers made it unneces-
sarily difficult for users to perform tasks, and spent more 
time on adding fancy features than on improving the basic 
usability of their products. In 1999, Dertouzos and the MIT 
LCS announced a new project called Oxygen. Working in 
collaboration with the MIT Artificial Intelligence Labora-
tory, Oxygen was intended to make computers “as natural a 
part of our environment as the air we breathe.”

As a futurist, Dertouzos tried to paint vivid pictures of 
possible future uses of computers in order to engage the 
general public in thinking about the potential of emerging 
technologies. His 1995 book, What Will Be, paints a vivid 
portrait of a near-future pervasively digital environment. 
His imaginative future is based on actual MIT research, 
such as the design of a “body net,” a kind of wearable 
computer and sensor system that would allow people to 
not only keep in touch with information but also to com-
municate detailed information with other people simi-
larly equipped. This digital world will also include “smart 
rooms” and a variety of robot assistants, particularly in the 
area of health care. However, this and his 2001 publica-
tion, The Unfinished Revolution, are not unalloyed celebra-
tions of technological wizardry. Dertouzos has pointed out 
that there is a disconnect between technological visionar-
ies who lack understanding of the daily realities of most 
peoples’ lives, and humanists who do not understand the 
intricate interconnectedness (and thus social impact) of 
new technologies.

Dertouzos was given an IEEE Fellowship and awarded 
membership in the National Academy of Engineering, He 
died on August 27, 2001, after a long bout with heart dis-
ease. He was buried in Athens near the finish line for the 
Olympic marathon.
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design patterns
Design patterns are an attempt to abstract and general-
ize what is learned in solving one problem so that it can 
be applied to future similar problems. The idea was first 
applied to architecture by Christopher Alexander in his 
book A Pattern Language. Alexander described a pattern as 
a description of situations in which a particular problem 
occurs, with a solution that takes into account the factors 
that are “invariant” (not changed by context). Guidance for 
applying the solution is also provided.

For example, a bus stop, a waiting room, and a line at 
a theme park are all places where people wait. A “place to 
wait” pattern would specify the problem to be solved (how 
to make waiting as pleasant as possible) and suggest solu-
tions. Patterns can have different levels of abstraction or 
scales on which they apply (for example, an intimate the-
ater and a stadium are both places of entertainment, but 
one is much larger than the other).

Patterns in turn are linked into a network called a pat-
tern language. Thus when working with one pattern, the 
designer is guided to consider related patterns. For exam-
ple, a pattern for a room might relate to patterns for seating 
or grouping the occupants.

Patterns in Software
The concept of patterns and pattern languages carries over 
well into software design. As with architectural patterns, 
a software pattern describes a problem and solution, along 
with relevant structures (see class and object-oriented 
programming). Note that patterns are not executable code; 
they are at a higher level (one might say abstract enough to 
be generalizable, specific enough to be applicable).

Software patterns can specify how objects are created 
and ways in which they function and interface with other 
objects. Patterns are generally documented using a common 
format; one example is provided in the book Design Pat-
terns. This scheme has the following sections:

• � name and classification

• � intent or purpose

• � alternative names

• � problem—the kind of problem the pattern addresses, 
and conditions under which it can be used

• � applicability—typical situations of use

• � structure description—such as class or interaction 
diagrams

• � participants—classes and objects involved in the pat-
tern and the role each plays

• � collaboration—how the objects interact with one 
another

• � consequences—the expected results of using the pat-
tern, and possible side effects or shortcomings

• � implementation—explains a way to implement the 
pattern to solve the problem

• � sample code—usually in a commonly used program-
ming language

• � known uses—actual working applications of the 
pattern

• � related patterns—other patterns that are similar or 
related, with a description of how they differ

An example given in Design Patterns is the “publish-
subscribe” pattern. This pattern describes how a number 
of objects (observers) can be dependent on a “subject.” All 
observers are “subscribed” to the subject, so they are noti-
fied whenever any data in the subject changes. This pattern 
could be used, for example, to set up a system where differ-
ent reports, spreadsheets, etc., need to be updated whenever 
notified by a controlling object that has received new data.

Some critics consider the use of patterns to be too 
abstract and inefficient. Since a pattern has to be re-imple-
mented for each use, it has been argued that well-docu-
mented, reusable classes or objects would be more useful.

Proponents, however, argue that “design reuse” is more 
powerful than mere “object reuse.” A pattern provides a 
whole “language” for talking about a problem and its proven 
solutions, and can help both the original designer and oth-
ers understand and extend the design.
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desktop publishing  (DTP)
Traditionally documents such as advertisements, brochures, 
and reports were prepared by combining typed or printed 
text with pasted-in illustrations (such as photographs and 
diagrams). This painstaking layout process was necessary 
in order to produce “camera-ready copy” from which a 
printing company could produce the final product.

Starting in the late 1980s, desktop computers became 
powerful enough to run software that could be used to cre-
ate page layouts. In addition, display hardware gained a 
high enough resolution to allow for pages to be shown on 
the screen in much the same form as they would appear on 
the printed page. (This is known by the acronym WYSI-
WYG, or “what you see is what you get.”) The final ingredi-
ent for the creation of desktop publishing was the advent of 
affordable laser or inkjet printers that could print near print 
quality text and high-resolution graphics (see printers).

This combination of technologies made it feasible for 
trained office personnel to create, design, and produce many 
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documents in-house rather than having to send copy to a 
printing company. Adobe’s PageMaker program soon became 
a standard for the desktop publishing industry, appearing first 
on the Apple Macintosh and later on systems running Micro-
soft Windows. (The Macintosh’s support for fonts and WYSI-
WYG displays gave it a head start over the Windows PC in the 
DTP industry, and to this day many professionals prefer it.)

There is no hard-and-fast line between desktop publish-
ing and the creation of text itself. Modern word processing 
software such as Microsoft Word includes a variety of features 
for selection and sizing of fonts, and the ability to define 
styles for creating headings, types of paragraphs, and so on 
(see word processing). Word and other programs also allow 
for the insertion and placement of graphics and tables, the 
division of text into columns, and other layout features. In 
general, however, word processing emphasizes the creation 
of text (often for long documents), while desktop publishing 
software emphasizes layout considerations and the fine-tun-
ing of a document’s appearance. Thus, while a word proces-
sor might allow the selection of a font in a given point size, a 
desktop publishing program allows for the exact specification 
of leading (space between lines) and kerning (the adjustment 
of space between characters). Most desktop publishing pro-
grams can import text that was originally created in a word 
processor. This is helpful because using desktop publishing 
software to create the original text can be tedious.

Desktop publishing is generally used for short docu-
ments such as ads, brochures, and reports. Material to be 
published as a book or magazine article is normally submit-
ted by the author as a word processing document. The pub-
lisher’s production staff then creates a print-ready version. 
Books and other long documents are generally produced 
using in-house computer typesetting facilities.

Today desktop publishing is part of a range of technolo-
gies used for the production of documents and presenta-
tions. Document designers also use drawing programs (such 
as Corel Draw) and photo manipulation programs (such as 
Adobe Photoshop) in preparing illustrations. Further, the 
growing use of the Web means that many documents must 
be displayable on Web pages as well as in print. Adobe’s Por-
table Document Format (PDF) is one popular way of creat-
ing files that exactly portray printed text (see PDF).
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developing nations and computing
Most writing about computer technology tends to focus on 
developments in technically advanced nations, such as the 

United States, European Union, and Japan. There is also 
growing coverage of the rapidly developing information 
economy in the world’s two most populous nations, India 
and China. But what about the poorest or least developed 
nations, particularly those in Africa?

Infrastructure
A common problem in developing countries is a lack of 
basic infrastructure to support electronic devices—phone 
lines, television cables, even a reliable power grid. (About 
two billion people on this planet still have no access to elec-
tricity!)

One way around this obstacle is to skip over the wired 
stage of development in favor of wireless connections, per-
haps using battery or even solar power. The necessity for 
large government investments in infrastructure can then be 
avoided in favor of mobile, distributed, flexible access that 
can be gradually spread and scaled up. Already, in some of 
the poorest nations mobile phone use has been growing at 
an annual rate of 50 percent or more.

Once access to communications and data is provided, 
users can immediately start getting an economic return or 
otherwise improving their lives. Farmers, for example, can 
get weather reports and keep in touch with market prices. 
Of course online communications might also give farmers 
a tool for organizing themselves politically or economically 
(such as into co-ops). People start to get in touch with 
developments around the world that might affect them, and 
discover possible ways to a better life. However, authori-
tarian governments often resist such trends because they 
fear the development of well-connected democratic reform 
movements.

Closing the Gap
Much of the barrier to developing countries joining the net-
worked world is human rather than technological. Before 
people can learn to use computers, they need to be able to 
read. They also need some idea of what science and tech-
nology are about and why they are important for their eco-
nomic well-being.

Beyond people learning to use computers to commu-
nicate, or in agriculture or commerce, a developing coun-
try needs to have enough people with the advanced skills 
needed for a self-sustaining information economy. These 
include technicians, support staff, teachers, engineers, pro-
grammers, and computer scientists.

One reason for the rapid growth of computing in India 
and especially China is that these countries, while still hav-
ing millions of people living on subsistence, also have effec-
tive educational systems including advanced training. Their 
growing pool of skilled but relatively inexpensive work-
ers in turn attracts foreign investment capital. In addition 
to China and India, other nations with strong electronics 
manufacturing industries include Singapore, Korea, Malay-
sia, Mexico, and Brazil.

The United Nations has developed the Technology 
Achievement Index (TAI) to measure the ability of a coun-
try to innovate, to effectively use new and existing technol-
ogy, and to build a base of technically skilled workers.
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One Laptop per Child
While the conventional view of technological development 
stresses the importance of infrastructure and skills, some 
visionary educational activists are suggesting a way to 
“jump-start” the information economy in poor and devel-
oping countries. They note that despite the potential of 
wireless technology, adequate computing power for joining 
the world network has simply been too expensive for all 
but the elite in developing countries. (A $400 no-frills PC 
costs more than the annual per capita income of Haiti, for 
example.)

In response, MIT computer scientists (see Mit Media 
Lab and Negroponte, Nicholas) have started an initiative 
called One Laptop Per Child. Their machine (introduced as 
a prototype in 2005) includes the following features:

• � very low power consumption (2–3 watts)

• � lower and higher power modes (the latter, for exam-
ple, can provide backlighting for the screen when an 
external power source is available)

• � ability to use a variety of batteries or an external 
power source, including a hand-powered generator

• � built-in wireless networking

• � tough construction, including a water-resistant mem-
brane keyboard

• � flash memory instead of a hard drive or CD-ROM

• � built-in color camera, microphone, and stereo speakers

• � open-source Linux operating system and other soft-
ware, including programming languages especially 
useful for learners

The computer is intended ultimately to cost no more than 
$100 per unit, and is to be distributed through participating 
governments. Countries that have made at least tentative 
commitments to the project as of 2007 include Argentina, 
Cambodia, Costa Rica, Dominican Republic, Egypt, Greece, 
Libya, Nigeria, Pakistan, Peru, Rwanda, Tunisia, Uruguay, 
and, in the United States, the states of Massachusetts and 
Maine.

The underlying philosophy of the project is based on 
“constructivist learning,” the idea that children can learn 
powerful ideas through using suitable interactive systems 
(see logo and Papert, Seymour). In a way it is intended 
to be a sort of lever to create a generation with the skills to 
function in the 21st-century information economy, without 
re-creating the cumbersome industrial-style educational 
systems of the previous 200 years.

Although, generally, some well received critics are con-
cerned about the environmental impact of producing (and 
eventually disposing of) millions more computers, while 
others (including some officials in developing countries) 
believe the money for providing computers to children 
should be used instead for more urgent needs such as clean 
water, public health, and basic school supplies.

Whether using top-down or bottom-up approaches, the 
web of connection, communication, and information con-

tinues its rapid though uneven spread around the world. 
However, as new technologies continue to emerge in the 
developed world, the position of technological “have-nots” 
may worsen if effective education and access programs are 
not developed.
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device driver
A fundamental problem in computer design is the control 
of devices such as disk drives and printers. Each device 
is designed to respond to a particular set of control com-
mands sent as patterns of binary values through the port 
to which the device is connected. For example, a printer 
will respond to a “new page” command by skipping lines 
to the end of the current page and moving the print head 
to the start of the next page, taking margin settings into 
account. The problem is this: When an applications pro-
gram such as a word processor needs to print a document, 
how should the necessary commands be provided to the 
printer? If every application program has to include the 
appropriate set of commands for each device that might be 
in use, programs will be bloated and much development 
effort will be required for supporting devices rather than 
extending the functionality of the product itself. Instead, 
the manufacturers of printers and other devices such as 
scanners and graphics tablets typically provide a program 
called a driver. (A version of the driver is created for each 
major operating system in use.) The driver serves as the 
intermediary between the application, the operating system 
and the low-level device control system. It is sometimes 
useful to have drivers in the form of continually running 
programs that monitor the status of a device and wait for 
commands (see demon).

Modern operating systems such as Microsoft Windows 
typically take responsibility for services such as printing 
documents. When a printer is installed, its driver program 
is also installed in Windows. When the application pro-
gram requests to print a document, Windows’s print system 
accesses the driver. The driver turns the operating system’s 
“generic” commands into the specific hardware control 
commands needed for the device.

While the use of drivers simplifies things for both pro-
gram developers and users, there remains the need for users 
to occasionally update drivers because of an upgrade either 
in the operating system or in the support for device capa-
bilities. Both Windows and the Macintosh operating system 
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implement a feature called plug and play. This allows for a 
newly installed device to be automatically detected by the 
system and the appropriate driver loaded into the operat-
ing system (see plug and play). Other device management 
components enable the OS to keep track of the driver ver-
sion associated with each device. Some of the newest operat-
ing systems include auto-update features that can search on 
the Web for the latest driver versions and download them.

The need to provide drivers for popular devices creates 
something of a barrier to the development of new operating 
systems. In a catch-22, device manufacturers are unlikely to 
support a new OS that lacks significant market share, while 
the lack of device support in turn will discourage users 
from adopting the new OS. (Users of the Linux operat-
ing system faced this problem. However, that system’s open 
source and cooperative development system made it easier 
for enthusiasts to write and distribute drivers without wait-
ing for manufacturers to do so.)
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DHTML  See html, dhtml, and xhtml.

Diffie, Bailey Whitfield
(1944–  )
American
Mathematician, Computer Scientist

Bailey Whitfield Diffie created the system of public key 
cryptography that many computer users depend on today 
to protect their sensitive information (see encryption).

Diffie was born on June 5, 1944, in the borough of 
Queens, New York City. As a youngster he read about secret 
codes and became fascinated. Although he was an indiffer-
ent high school student who barely qualified for graduation, 
Diffie scored so high on standardized tests that he won 
admission to the University of California, Berkeley, in 1962, 
where he studied mathematics for two years. However, in 
1964 he transferred to the Massachusetts Institute of Tech-
nology (MIT) and obtained his B.S. in mathematics in 1965.

After graduation Diffie took a job at Mitre Corporation, 
a defense contractor, where he plunged into computer pro-
gramming, helping create Mathlab, a program that allowed 
mathematicians to not merely calculate with a computer, 
but also to manipulate mathematical symbols to solve equa-
tions. (The program would eventually evolve into Macsyma, 
a software package used widely in the mathematical com-
munity—see mathematics software.)

By the early 1970s Diffie had moved to the West Coast, 
working at the Stanford Artificial Intelligence Laboratory 
(SAIL), where he met Lawrence Roberts, head of informa-
tion processing research for ARPA, the Defense Depart-
ment’s research agency. Roberts’s main project was the 
creation of the ARPAnet, the computer network that would 
later evolve into the Internet.

Roberts was interested in providing security for the new 
network, and (along with AI researcher John McCarthy) 
he helped revive Diffie’s dormant interest in cryptogra-
phy. By 1974 Diffie had learned that IBM was developing 
a more secure cipher system, the DES (Data Encryption 
Standard), under government supervision. However, Diffie 
soon became frustrated with the way the National Security 
Agency (NSA) doled out or withheld information on cryp-
tography, making independent research in the field very 
difficult. Seeking to learn the state of the art, Diffie traveled 
widely, seeking out people who might have fresh thoughts 
on the subject.

Diffie found one such person in Martin Hellman, a Stan-
ford professor who had also been struggling on his own to 
develop a better system of encryption. They decided to pool 
their ideas and efforts, and Diffie and Hellman came up 
with a new approach, which would become known as pub-
lic key cryptography. It combined two important ideas that 
had already been discovered to an extent by other research-
ers. The first idea was the “trap-door function”—a math-
ematical operation that can be easily performed “forward” 
but that was very hard to work “backward.” Diffie realized, 
however, that a trap-door function could be devised that 

The device driver is the link between the operating system and 
the hardware that controls a specific device. Program requests are 
passed by the operating system to the device driver, which issues the 
detailed instructions needed by the device controller.
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could be worked backward easily if the person had the 
appropriate key.

The second idea was that of key exchange. In classical 
cryptography, there is a single key used for both encryption 
and decryption. In such a case it is absolutely vital to keep 
the key secret from any third party, so arrangements have 
to be made in advance to transmit and protect the key.

Diffie, however, was able to work out the theory for a 
system that generates pairs of mathematically interrelated 
keys: a private key and a public key. Each participant 
publishes his or her public key, but keeps the correspond-
ing private key secret. If one wants to send an encrypted 
message to someone, one uses that person’s public key 
(obtained from the electronic equivalent of a phone direc-
tory). The resulting message can only be decrypted by the 
intended recipient, who uses the corresponding secret, 
private key.

The public key system can also be used as a form of 
“digital signature” for verifying the authenticity of a mes-
sage. Here a person creates a message encrypted with his or 
her private key. Since such a message can only be decrypted 
using the corresponding public key, any other person can 
use that key (together with a trusted third-party key ser-
vice) to verify that the message really came from its pur-
ported author.

Diffie and Hellman’s 1976 paper in the IEEE Transac-
tions on Information Theory began boldly with the statement 
that “we stand today on the brink of a revolution in cryp-
tography.” This paper soon came to the attention of three 
researchers who would create a practical implementation 
called RSA (for Rivest, Shamir, and Adelman).

Through the 1980s Diffie, resisting urgent invitations 
from the NSA, served as manager of secure systems research 
for the phone company Northern Telecom, designing sys-
tems for managing security keys for packet-switched data 
communications systems (such as the Internet).

In 1991 Diffie was appointed Distinguished Engineer 
for Sun Microsystems, a position that has left him free to 
deal with cryptography-related public policy issues. The 
best known of these issues has been the Clipper Chip, a 
proposal that all new computers be fitted with a hardware 
encryption device that would include a “back door” that 
would allow the government to decrypt data. Along with 
many civil libertarians and privacy activists, Diffie did not 
believe users should have to trust largely unaccountable 
government agencies for the preservation of their privacy. 
Their opposition was strong enough to scuttle the Clipper 
Chip proposal by the end of the 1990s. Another proposal, 
using public key cryptography but having a third-party 
“key escrow” agency hold the keys for possible criminal 
investigation, also fared poorly. In 1998 Diffie and Susan 
Landau wrote Privacy on the Line, a book about the politics 
of surveillance and encryption. The book was revised and 
expanded in 2007.

Diffie has received a number of awards for both technical 
excellence and contributions to civil liberties. These include 
the IEEE Information Theory Society Best Paper Award 
(1979), the IEEE Donald Fink Award (1981), the Electronic 
Frontier Foundation Pioneer Award (1994), and even the 

National Computer Systems Security Award (1996), given by 
the NIST and NSA.
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digital cash
Also called digital money or e-cash, digital cash represents 
the attempt to create a method of payment for online trans-
actions that is as easy to use as the familiar bills and coins 
in daily commerce (see e-commerce). At present, credit 
cards are the principal means of making online payments. 
While using credit cards takes advantage of a well-estab-
lished infrastructure, it has some disadvantages. From a 
security standpoint, each payment potentially exposes the 
payer to the possibility that the credit card number and 
possibly other identifying information will be diverted and 
used for fraudulent transactions and identity theft. While 
the use of secure (encrypted) online sites has reduced this 
risk, it cannot be eliminated entirely (see computer crime 
and security). Credit cards are also impracticable for very 
small payments from cents to a few dollars (such as for 
access to magazine articles) because the fees charged by the 
credit card companies would be too high in relation to the 
value of the transaction.

One way to reduce security concerns is to make trans-
actions that are anonymous (like cash) but guaranteed. 
Products such as DigiCash and CyberCash allow users to 
purchase increments of a cash equivalent using their credit 
cards or bank transfers, creating a “digital wallet.” The user 
can then go to any Web site that accepts the digital cash and 
make a payment, which is deducted from the wallet. The 
merchant can verify the authenticity of the cash through 
its issuer. Since no credit card information is exchanged 
between consumer and merchant, there is no possibility 
of compromising it. The lack of wide acceptance and stan-
dards has thus far limited the usefulness of digital cash.

The need to pay for small transactions can be han-
dled through micropayments systems. For example, users 
of a variety of online publications can establish accounts 
through a company called Qpass. When the user wants to 
read an article from the New York Times, for example, the 
fee for the article (typically $2–3) is charged against the 
user’s Qpass account. The user receives one monthly credit 
card billing from Qpass, which settles accounts with the 
publications. Qpass, eCharge, and similar companies have 
had modest success. A similar (and quite successful) ser-
vice is offered by companies such as PayPal and Billpoint, 
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which allow winning auction bidders to send money from 
their credit card or bank account to the seller, who would 
not otherwise be equipped to accept credit cards. True 
micropayments would extend down to just a few cents.

“True” digital cash, allowing for anonymous payments 
and micropayments, has been slow to catch on. However, 
the successful digital cash system is likely to have the fol-
lowing characteristics:

• � Protects the anonymity of the purchaser (no credit 
card information transmitted to the seller)

• � Verifiable by the seller, perhaps by using one-time 
encryption keys

• � The purchaser can create digital cash freely from 
credit cards or bank accounts

• �M icropayments can be aggregated at a very low trans-
action cost

As use of digital cash becomes more widespread, it is likely 
that tax and law enforcement agencies will press for the 
inclusion of some way to penetrate the anonymity of trans-
actions for audit or investigation purposes. They will be 
opposed by civil libertarians and privacy advocates. One 
likely compromise may be requiring that transaction infor-
mation or encryption keys be deposited in some sort of 
escrow agency, subject to being divulged upon court order.
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digital convergence
Since the late 20th century, many forms of communication 
and information storage have been transformed from ana-
log to digital representations (see analog and digital). 
For example, the phonograph record (an electromechani-
cal analog format) gave way during the 1980s to a wholly 
digital format (see cd-rom). Video, too, is now increasingly 
being stored in digital form (DVD or laser disks) rather than 
in the analog form of videotape. Voice telephony, which 
originally involved the conversion of sound to analogous 
electrical signals, is increasingly being digitized (as with 
many cell phones) and transmitted in packet form over the 
communications network.

The concept of digital convergence is an attempt to 
explore the implications of so many formerly disparate ana-
log media now being available in digital form. All forms of 
digital media have key features in common. First, they are 

essentially pure information (computer data). This means 
that regardless of whether the data originally represented 
still images from a camera, video, or film, the sound of a 
human voice, music, or some other form of expression, 
that data can be stored, manipulated, and retrieved under 
the control of computer algorithms. This makes it easier 
to create seamless multimedia presentations (see multime-
dia and hypertext and hypermedia). Services or products 
previously considered to be separate can be combined in 
new ways. For example, many radio stations now provide 
their programming in the form of “streaming audio” that 
can be played by such utilities as RealPlayer or Microsoft 
Windows Media Player (see streaming). Similarly, televi-
sion news services such as CNN can offer selected excerpts 
of their coverage in the form of streaming video files. As 
more users gain access to broadband Internet connections 
(such as cable or DSL), it is gradually becoming feasible to 
deliver TV programs and even full-length feature films in 
digital format. By the middle of the decade, media deliv-
ery began to proliferate on new platforms that represent 
a further convergence of function. Many “smart phones” 
can play audio and video (see smartphone). In July 2007 
Apple’s iPhone entered the market, combining phone, media 
player, and Web browsing functions, and similar devices 
will no doubt follow (see also pda).

Emerging Issues
The merging of traditional media into a growing stream 
of digital content has created a number of difficult legal 
and social issues. Digital images or sounds from various 
sources can easily be combined, filtered, edited, or other-
wise altered for a variety of purposes. As a result, the value 
of photographs as evidence may be gradually compromised. 

Digital convergence results from the fact that many formerly ana-
log media (such as sound, film, and video) are now being acquired 
and processed digitally. Once in digital form, the content can be 
processed and played by a variety of software and used on many 
different platforms ranging from desktop computers to electronic 
books (e-books) and portable MP3 music players. Content can also 
be linked and organized using hypertext or hypermedia techniques, 
as on the Web.

digital convergence        147



The ownership and control of the intellectual property rep-
resented by music, video, and film has also been compli-
cated by the combination of digitization and the pervasive 
Internet. For example, during 2000–2001 the legal battles 
involving Napster, a program that allows users to share 
music files pitted the rights of music producers and artists 
to control the distribution of their product against the tech-
nological capability of users to freely copy and distribute 
the material. While a variety of copy protection systems 
(both software and hardware-based) have been developed 
in an attempt to prevent unauthorized copying, histori-
cally such measures have had only limited effectiveness 
(see copy protection, digital rights management, and 
intellectual property and computing).

Digital convergence also raises deeper philosophical 
issues. Musicians, artists, and scholars have frequently sug-
gested that the process of digitization fails to capture subtle-
ties of performance that might have been accessible in the 
original media. At the same time, the richness and immer-
sive qualities of the new multimedia may be drawing people 
further away from the direct experience of the “real” analog 
world around them. Ultimately, the embodiment of digital 
convergence in the form of virtual reality likely to emerge 
in the early 21st century will pose questions as profound as 
those provoked by the invention of printing and the devel-
opment of mass broadcast media (see virtual reality).
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digital dashboard
The dashboard of a car is designed to present vital real-time 
information to the driver, such as speed, fuel supply, and 
engine status. Ideally this information should be easy to 
grasp at a glance, allowing for prompt action when neces-
sary. Conversely, unnecessary and potentially distracting 
information should be avoided, or at least relegated to an 
unobtrusive secondary display.

A digital dashboard is a computer display that uses sim-
ilar concepts. Its goal is to provide an executive or manager 
with the key information that allows him or her to monitor 
the health of the enterprise and to take action when neces-
sary. (A digital dashboard can also be part of a larger set of 
management tools—see decision support system.)

The screen display for a digital dashboard can use a 
variety of objects (see graphical user interface). These 
can include traditional charts (line, bar, or pie), color-coded 
maps, depictions of gauges, and a variety of other interface 
elements sometimes known as “widgets.”

However information is depicted, the dashboard is 
designed to summarize the current status of business or 

other functions, identify trends, and warn the user when 
attention is required. For example, a dashboard might 
summarize production and shipping for each of a compa-
ny’s factories. Bars on a chart might be green when levels 
are within normal parameters, but turn red if, for exam-
ple, production has fallen more than 20 percent below 
target goals. Dashboard displays can also be useful for 
graphically showing the degree to which project objectives 
are being met.

Digital dashboards can be custom built or obtained 
in forms specialized for various types of business. Typi-
cally the dashboard is hosted on the corporate Web server 
and is accessible through Web browsers—perhaps with an 
abbreviated version that can be viewed on PDAs and smart 
phones.

Critique
Today dashboards are in widespread use in many top cor-
porations, from Microsoft to Home Depot. An oft-cited 
advantage of dashboard technology is that it keeps manag-
ers focused and provides for quick response in situations 
where time may be crucial. No longer is it necessary for the 
manager to track down key individuals and try to make 
sense of their reports over the phone.

Some critics, however, worry that dashboards may make 
management too “data driven.” Those regular calls, after 
all, can form an important part of the relationship between 
an executive or manager and subordinates, as well as get-
ting a sense of morale and possible personnel problems that 
may be affecting productivity. Overreliance on dashboards 
and “bottom line” numbers may also hurt the morale of 
salespeople and others who come to feel that they are being 
micromanaged. Further, the dashboard may omit important 
considerations that in turn are likely to receive less atten-
tion and support.
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digital divide
The term digital divide was coined in the late 1990s amid 
growing concern that groups such as minorities, the elderly, 
and rural residents were not becoming computer liter-
ate and connecting to the Internet at the same rate as the 
young, educated, and relatively affluent.

Nearly a decade later this perception of a chasm has 
diminished somewhat. According to the Pew Internet & 
American Life project, as of 2006 about two-thirds (70 per-
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cent) of American adults were using the Internet, and the 
number has continued to increase, though more slowly 
(there is evidence of a “hard core” unconnected popula-
tion). Groups that lagged in Internet usage included Ameri-
cans 65 years or older (35 percent), African Americans (58 
percent), and persons without at least a high school educa-
tion (36 percent).

The digital divide is more severe if one looks at the 
world as a whole (see developing nations and comput-
ing). Rapidly industrializing nations such as China and 
India are seeing considerable increases in the number of 
people with some form of computer and Internet access, 
though the numbers are still small in relation to the total 
population. In severely underdeveloped countries (such as 
many in Africa), connectivity may be improved by the “One 
Laptop per Child” project, which has designed a prototype 
computer designed to cost less than $100.

Broadband Use
Not all Internet access is equal. High-speed connections 
(see broadband, cable modem, and dsl) encourage fre-
quent Internet use throughout the day, and make it feasible 
to access and share rich media (images, videos, podcasts, 
and so on). According to the Pew Internet & American Life 
project, 47 percent of all adult Americans had a broadband 
Internet connection at home as of 2007. The rate of broad-
band adoption continues to lag for rural residents (31 per-
cent) and African Americans (40 percent).

However, the broadband adoption rate for African 
Americans has been increasing rapidly (it was only 14 per-
cent in early 2005). There are a number of factors that cor-
relate with the likelihood that a person or community will 
have access to the Web. People in lower-income brackets 
are less likely to own PCs. Phone service may be less reli-
able (particularly in rural areas), and Internet access may 
require expensive toll charges. While schools and public 
libraries can offer an alternative venue for Internet access, 
inner-city schools have tended to lag behind in connecting 
to the Internet and in the ratio of networked computers to 
students. (The Net Day activities in the mid-1990s first pub-
licized and sought to ameliorate this problem.)

Internet access also correlates to education. While per-
sons lacking a college education are likely to be poorer than 
college graduates, they are also less likely to be working 
in jobs that include regular computer access. A deficiency 
in basic reading and keyboard skills can also serve as a 
barrier to participation in the online world (see also com-
puter literacy). People over age 50 are also less likely to 
be online. They are more likely to have spent their career in 
noncomputerized jobs and may feel that they cannot master 
the new technology.

Targeted attempts to close the digital divide through 
providing more Internet access through schools and librar-
ies are likely to continue to be successful. The marketplace 
itself is perhaps making the biggest contribution, since the 
price of an Internet-capable PC with a basic dial-up connec-
tion is now around $400 plus about $10/month.

Improvement in the teaching of general literacy as well 
as technical skills in the K-12 schools is necessary if the 

next generation is to be able to participate fully and equally 
in the online world.
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digital rights management  (DRM)
By default, once information is digitized it is simply a pat-
tern of bits that can be easily copied within the same or a 
different medium, using a variety of software or the built-in 
facilities of the operating system. Of course the develop-
ment of tape-recording technology in the mid-20th century 
already made it possible to copy audio recordings, and the 
later development of videotape and the VCR did the same for 
video. However, while analog copying techniques lose some 
accuracy (or fidelity) with each generation of copying, digi-
tal files can be copied exactly each time. It is equally easy to 
e-mail, upload, or otherwise distribute audio or video files.

Legally, the creator of an original work can assert copy-
right—literally, the “right to copy” or to control when and 
how the work is distributed. Digital rights management 
(DRM) refers to a variety of technologies that can be used 
to enforce this right by making it at least difficult for the 
purchaser of one copy of a work to copy and distribute it in 
turn. (Similar technologies have also been used to prevent 
copying of software, which is, after all, just another pattern 
of bits—see copy protection and software piracy and 
counterfeiting.)

DRM for Film and Video
In the mid-1990s, movies on DVD were protected using the 
Content Scrambling System (CSS). This proprietary format 
was licensed only for certain hardware and operating sys-
tems, but in 1999 an activist programmer released DeCSS, a 
program that could decode protected discs and allow them 
to be played on operating systems such as Linux, which had 
not been licensed. A similar story unfolded in 2007 when 
hackers broke the Advanced Access Content System (AACS) 
that was used to protect the new high-definition HD DVD 
and Blu-Ray discs.

Protecting Music
DRM has also been used on many audio CDs. Many consum-
ers complained that their CD players (particularly when used 
with Windows PCs) were not compatible with the protected 
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discs. A bigger controversy arose in 2005 when Sony began 
to use DRM technology that (without notification) installed 
a rootkit (a kind of “back door” to the operating system) that 
potentially left systems open to attack. Facing public outcry 
and several lawsuits, Sony withdrew the DRM, which, ironi-
cally, was rather ineffective at preventing copying. By 2007 
music CD producers had concluded that DRM had more 
costs than benefits, and such protection is no longer found 
on audio CDs.

Music distributed online is often protected by DRM. 
However, some services such as Apple iTunes now offer the 
option of buying DRM-free music at a higher price. (Apple’s 
Steve Jobs has called upon the online music industry to 
completely eliminate DRM.)

Legal and Other Issues
Generally, the argument for DRM has been straightforward: 
If people can get something for free, they will not buy it. 
Content creators and publishers would go out of business. 
Organizations such as the Recording Institute Association 
of America (RIAA) have aggressively sued college students 
and others accused of sharing copyrighted music or video 
online and successfully forced the best known file-sharing 
service, Napster, to become a licensed music service (see 
file-sharing and p2p networks).

The principal legal means for enforcing DRM is the Digi-
tal Millennium Copyright Act (DMCA), passed in 1998. The 
law prohibits the production or dissemination of technology 
(software or hardware) that allows users to circumvent DRM. 
However, it has been difficult in practice to prevent the rapid 
dissemination of “cracks” for DRM over the Internet.

There are also a number of legal arguments against 
DRM. One is that it prevents certain actions allowed to con-
sumers under copyright law, such as making a backup copy 
of media that one has purchased (see intellectual prop-
erty and computing). Also, because many DRM schemes 
work only with Windows or Macintosh machines, users of 
other operating systems (notably Linux) must “crack” DRM 
in order to be able to use the protected media. (Under the 
law, such action to promote “interoperability” is allowed, 
though not if the purpose is to facilitate illegal copying. But 
like most matters of intent, this can be hard to determine.)

There have also been First Amendment issues. Although 
the DMCA includes a “scholarly research” exception, some 
cryptography researchers have said that they have been 
inhibited from publishing analysis of DRM for fear of legal 
prosecution.

A number of activists and groups have opposed DRM, 
including open-source advocate Richard Stallman and the 
Electronic Frontier Foundation (see cyberspace advocacy 
groups). One of their efforts has been promotion of the 
Free Software Foundation’s General Public License (GPL3), 
which prohibits the use of DRM in products distributed 
under that open-source license.
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Dijkstra, Edsger W.
(1930–2002)
Dutch
Computer Scientist

Edsger W. Dijkstra was born in Rotterdam, Netherlands, 
in 1930 into a scientific family (his mother was a math-
ematician and his father was a chemist). He received an 
intensive and diverse intellectual training, studying Greek, 
Latin, several modern languages, biology, mathematics, and 
chemistry. While majoring in physics at the University of 
Leiden in 1951, he attended a summer school at Cambridge 
that kindled what soon became a major interest in pro-
gramming. He continued this pursuit at the Mathematical 
Center in Amsterdam in 1952 while finishing studies for his 

Edsger Dijkstra’s ideas about structured programming helped 
develop the field of software engineering, enabling program-
mers to organize and manage increasingly complex software 
projects.  (Department of Computer Sciences, UT Austin)
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physics degree. At the time there were no degrees in com-
puter science; indeed, programming did not yet exist as an 
academic discipline. Like most other computers of the time, 
the Mathematical Center’s ARMAC was custom-built. With 
no high-level languages yet in use, programming required 
intimate familiarity with the machine’s architecture and 
low-level instructions. Dijkstra soon found that he thrived 
in such an environment.

By 1956, Dijkstra had discovered an algorithm for find-
ing the shortest path between two points. He applied the 
algorithm to the practical problem of designing electrical 
circuits that used as little wire as possible, and generalized 
it into a procedure for traversing treelike data structures.

During the 1960s, Dijkstra began to explore the prob-
lem of communication and resource-sharing within com-
puters. He developed the idea of a semaphore. Like the 
railroad signaling device that allows only one train at a 
time to pass through a single section of track, the program-
ming semaphore provides mutual exclusion, ensuring that 
two processes don’t try to access the same memory or other 
resource at the same time.

Another problem Dijkstra tackled involved the sequenc-
ing of several processes that are accessing the same 
resources. He found ways to avoid a deadlock situation 
where one process had part of what it needed but was stuck 
because the process holding the other needed resource was 
in turn waiting for the first process to finish. His algorithms 
for allowing multiple processes (or processors) to take turns 
gaining access to memory or other resources would become 
fundamental for the design of new computing architectures.

During the 1970s, Dijkstra immigrated to the United 
States, where he became a research fellow at Burroughs, one 
of the major manufacturers of mainframe computers. Dur-
ing this time he helped launch the “structured program-
ming” movement. His paper “GO TO Considered Harmful” 
criticized the use of that unconditional “jump” instruction 
because it made programs hard to read and verify. The 
newer structured languages such as Pascal and C affirmed 
Dijkstra’s belief in avoiding or discouraging such haphazard 
program flow (see structured programming).

Dijkstra spent the last decades of his career as a pro-
fessor of mathematics at the University of Texas at Aus-
tin, where he held the Schlumberger Centennial Chair in 
Computer Science. Dijkstra had some unusual quirks for 
a computer scientist. His papers were handwritten with a 
fountain pen, and he did not even own a personal computer 
until late in life.

In 1972 Dijkstra won the Association for Computing 
Machinery’s Turing Award. After his death on August 6, 2002, 
in Nuenen, The Netherlands, the ACM renamed its award for 
papers in distributed computing as the Dijkstra Prize.

Perhaps Dijkstra’s greatest testament, however, is found 
in the millions of lines of computer code that are better 
organized and easier to maintain because of the widespread 
adoption of structured programming.
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disabled persons and computing
The impact of the personal computer upon persons hav-
ing disabilities involving sight, hearing, or movement has 
been significant but mixed. Computers can help disabled 
people communicate and interact with their environment, 
better enabling them to work and live in the mainstream of 
society. At the same time, changes in computer technology 
can, if not ameliorated, exclude some disabled persons from 
fuller participation in a society where computer access and 
skills are increasingly taken for granted.

Computers as Enablers
Computers can be very helpful to disabled persons. With 
the use of text-to-speech software, blind people can have 
online documents read to them. (With the aid of a scan-
ner, printed materials can also be input and read aloud.) 
Persons with low vision can benefit from software that 
can present text in large fonts or magnify the contents of 
the screen. Text can also be printed (embossed) in Braille. 
Deaf or hearing-impaired persons can now use e-mail or 
instant messaging software for much of their communica-
tion needs, largely replacing the older and more cumber-
some teletype (TTY and TTD) systems. As people who have 
seen presentations by physicist Stephen Hawking know, 
even quadriplegics who have only the use of head or finger 
movements can input text and have it spoken by a voice 
synthesizer. Further, advances in coupling eye movements 
(and even brain wave patterns) to computer systems and 
robotic extensions offer hope that even profoundly disabled 
persons will be able to be more self-sufficient.

Challenges
Unfortunately, changes in computer technology can also 
cause problems for disabled persons. The most pervasive 
problem arose when text-based operating systems such as 
MS-DOS were replaced by systems such as Microsoft Win-
dows and the Macintosh that are based on graphic icons 
and the manipulation of objects on the screen. While text 
commands and output on the older system could be easily 
turned into speech for the visually impaired, everything, 
even text, is actually graphics on a Windows system. While 
it is possible to have software “hook into” the operating sys-
tem to read text within Windows out loud, it is much more 
difficult to provide an alternative way for a blind person to 
find, click on, drag, or otherwise manipulate screen objects. 
Thus far, while Microsoft and other operating system devel-
opers have built some “accessibility” features such as screen 
magnification into recent versions of their products, there 
is no systematic, integrated facility that would allow a blind 
person to have the same facility as a sighted person.
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The growth of the World Wide Web also poses prob-
lems for the visually impaired, since many Web pages rely 
on graphical buttons for navigation. Software plug-ins can 
provide audio cues to help with screen navigation. While 
Web browsers usually have some flexibility in setting the 
size of displayed fonts, some newer features (such as cas-
cading style sheets) can remove control over font size 
from the user.

Because most computer systems today use graphical 
user interfaces, the failure to provide effective access may be 
depriving blind and visually impaired persons of employment 
opportunities. Meanwhile, the computer industry, educational 
institutions, and workplaces face potential challenges under 
the Americans with Disabilities Act (ADA), which requires 
that public and workplace facilities be made accessible to 
the disabled. Some funding through the Technology-Related 
Assistance Act has been provided to states for promoting the 
use of adaptive technology to improve accessibility.
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disaster planning and recovery
Most businesses, government offices, or other organizations 
are heavily dependent on having continuous access to their 
data and the hardware, network, and software necessary to 
work with it. Activities such as procurement (see supply 
chain management), inventory, order fulfillment, and cus-
tomer lists are vital to day-to-day operations. Any disaster 
that might disrupt these activities, whether natural (such as 
an earthquake or severe weather) or human-made (see com-
puter virus and cyberterrorism), must be planned for. 
Such planning is often called “business continuity planning.”

The most basic way to protect against data loss is to 
maintain regular backups (see backup and archive sys-
tems). On-site backups can protect against hardware failure, 
and can consist of separate storage devices (see networked 
storage) or the use of redundant storage within the main 
system itself (see raid). However, for protection against fire 
or other larger-scale disaster, it is also necessary to have 
regular off-site backups, whether using a dedicated facility 
or an online backup service.

To protect against power failure or interruption, one or 
more uninterruptible power supplies (UPS) can be used, 
and possibly a backup generator to deal with longer-term 

outages. All equipment should also have surge protection to 
avoid damage from power fluctuations.

Of course anything that can minimize the chance of 
disaster happening or the extent of its effects should also be 
part of disaster planning. This can include structural rein-
forcement, physical security, firewalls and antivirus soft-
ware, and fire alarms and suppression systems.

Disaster Planning
Despite the best precautions, disasters will continue to hap-
pen. Organizations whose continued existence depends on 
their data and systems need to plan systematically how they 
are going to respond to foreseeable risks, and how they are 
going to recover and resume operations. Planning for disas-
ters involves the following general steps:

• � specify the potential costs and other impacts of loss of 
data or access

• � use that data to prioritize business functions or units

• � assess how well facilities are currently being protected

• � determine what additional hardware or services (such 
as additional file servers, attached storage, or remote 
backup) should be installed

• � develop a comprehensive recovery plan that specifies 
procedures for dealing with various types of disas-
ters or extent of damage, and including immediate 
response, recovery or restoration of data, and resump-
tion of normal services

• � develop plans for communicating with customers, 
authorities, and the general public in the event of a 
disaster

• � specify the responsibilities of key personnel and pro-
vide training in all procedures

• � arrange ahead of time for sources of supplies, addi-
tional support staff, and so on

• � establish regular tests or drills to verify the effective-
ness of the plan and to maintain the necessary skills

Recent natural disasters as well as the 9/11 terror-
ist attacks have spurred many organizations to begin or 
enhance their disaster planning and recovery procedures.

Further Reading
Benton, Dick. “Disaster Recovery: A Pragmatist’s Viewpoint.” 

Disaster Recovery Journal, Winter 2007, pp. 79–81. Available 
online. URL: http://www.drj.com/articles/win07/2001-16.pdf. 
Accessed September 13, 2007.

Disaster Recovery Guide. Available online. URL: http://www.disaster- 
recovery-guide.com/. Accessed September 13, 2007.

Disaster Recovery World: The Business Continuity Planning & 
Disaster Recovery Planning Directory. Available online. URL: 
http://www.disasterrecoveryworld.com/. Accessed September 
13, 2007.

Snedaker, Susan. Business Continuity and Disaster Recovery Plan-
ning for IT Professionals. Rockland, Md.: Syngress, 2007.

Wallace, Michael. The Disaster Recovery Handbook: A Step-by-Step 
Plan to Ensure Business Continuity and Protect Vital Operations, 
Facilities, and Assets. New York: AMACOM, 2004.

152        disaster planning and recovery



disk array  See raid.

distance education
Distance education (also called distance learning or virtual 
learning) is the use of electronic information and commu-
nication technology to link teachers and students without 
their being together in a physical classroom.

Distance education in the form of correspondence 
schools or classes actually began as early as the mid-19th 
century with teaching of the Pitman Shorthand writ-
ing method. Later, correspondence classes became part of 
Chautauqua, a movement to educate the rural and urban 
working classes, taking advantage of the growing reach of 
mail service through Rural Free Delivery. In correspon-
dence schools, each lesson is typically mailed to the stu-
dent, who completes the required work and returns it for 
grading. A certificate is awarded upon completion of course 
requirements. A few universities (such as the University of 
Wisconsin) also began to offer correspondence programs.

By the middle of the 20th century, radio and then tele-
vision was being used to bring lectures to students. This 
increased the immediacy and spontaneity of teaching. The 
invention of videotape in the 1970s allowed leading teachers 

to create customized courses geared for different audiences. 
However, the ability of students to interact with teachers 
remained limited.

In the 1960s computers also began to be used for edu-
cation. One of the earliest and most innovative programs 
was PLATO (Programmed Logic for Automatic Teaching 
Operations), which began at the University of Illinois but 
was later expanded to hundreds of networked terminals. 
PLATO in many ways pioneered the combining of text, 
graphics, and sound—what would later be called multime-
dia. PLATO also provided for early forms of both e-mail and 
computer bulletin boards.

Meanwhile, with the development of ARPANET and 
eventually the Internet, a new platform became available 
for delivering instruction. By the mid-1990s, courses were 
being delivered via the Internet (see World Wide Web).

Modern Distance Education
As broadband Internet access becomes the norm, more Inter-
net-based learning environments are taking advantage of 
video conferencing technology, allowing teachers and stu-
dents to interact face to face. This helps answer a common 
objection by critics that distance education cannot replicate 
the personal and social dimensions of face-to-face education. 

Distance education technologies such as this Polycom video conferencing software enable teachers and students to see, talk, and interact with 
each other. Here, Manhattan School of Music student Wu Jie of the Zukerman Performance Program demonstrates her violin technique to 
Maestro Zukerman.  (Photo by Andrew Lepley for Business Wire via Getty Images)
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Another way this objection is sometimes addressed by uni-
versities is by having a period of physical residency (per-
haps a few weeks) as part of the semester.

New platforms for distance education continue to 
emerge. Class content including lectures has been format-
ted for delivery to mobile devices such as iPods (see pda 
and smartphone). Another intriguing idea is to establish 
the classroom within an existing virtual world, such as 
the popular game Second Life (see online games.) Here 
students and teachers can meet “face to face” through their 
virtual embodiments (avatars). It seems only a matter of 
time before entire universities will exist in such burgeoning 
alternative worlds.
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distributed computing
This concept involves the creation of a software system 
that runs programs and stores data across a number of dif-
ferent computers, an idea pervasive today. A simple form 
is the central computer (such as in a bank or credit card 
company) with which thousands of terminals communicate 
to submit transactions. While this system is in some sense 
distributed, it is not really decentralized. Most of the work 
is done by the central computer, which is not dependent on 
the terminals for its own functioning. However, responsi-
bilities can be more evenly apportioned between computers 
(see client-server computing).

Today the World Wide Web is in a sense the world’s 
largest distributed computing system. Millions of docu-
ments stored on hundreds of thousands of servers can be 
accessed by millions of users’ Web browsers running on 
a variety of personal computers. While there are rules for 
specifying addresses and creating and routing data pack-
ets (see Internet and tcp/ip), no one agency or computer 
complex controls access to information or communication 
(such as e-mail).

Elements of a Distributed Computing System
The term distributed computer system today generally refers 
to a more specific and coherent system such as a database 
where data objects (such as records or views) can reside on 
any computer within the system. Distributed computer sys-
tems generally have the following characteristics:

• � The system consists of a number of computers (some-
times called nodes). The computers need not neces-
sarily use the same type of hardware, though they 
generally use the same (or similar) operating systems.

• � Data consists of logical objects (such as database 
records) that can be stored on disks connected to 
any computer in the system. The ability to move 
data around allows the system to reduce bottlenecks 
in data flow or optimize speed by storing the most 
frequently used data in places from which it can be 
retrieved the most quickly.

• � A system of unique names specifies the location of 
each object. A familiar example is the DNS (Domain 
Naming System) that directs requests to Web pages.

• � Typically, there are many processes running concur-
rently (at the same time). Like data objects, processes 
can be allocated to particular processors to balance 
the load. Processes can be further broken down into 
threads (see concurrent programming). Thus, the 
system can adjust to changing conditions (for exam-
ple, processing larger numbers of incoming transac-
tions during the day versus performing batches of 
“housekeeping” tasks at night).

• � A remote procedure call facility enables processes on 
one computer to communicate with processes run-
ning on a different computer.

• � In inter-process communication protocols specify the 
processing of “messages” that processes use to report 
status or ask for resources. Message-passing can be 
asynchronous (not time-dependent, and analogous 
to mailing letters) or synchronous (with interactive 
responses, as in a conversation).

• � The capabilities of each object (and thus the messages 
it can respond to or send) are defined in terms of an 
interface and an implementation. The interface is like 
the declaration in a conventional program: It defines 
the types of data that can be received and the types 
of data that will be returned to the calling process. 
The implementation is the code that specifies how the 
actual processing will be done. The hiding of imple-
mentation details within the object is characteristic of 
object-oriented programming (see class).

• � A distributed computing environment includes facili-
ties for managing objects dynamically. This includes 
lower-level functions such as copying, deleting, or 
moving objects and systemwide capabilities to dis-
tribute objects in such as way as to distribute the 
load on the system’s processors more evenly, to make 
backup copies of objects (replication), and to reclaim 
and reorganize resources (such as memory or disk 
space) that are no longer allocated to objects.

Three widely used systems for distributed computing 
are Microsoft’s DCOM (Distributed Component Object 
Model), OMG’s Common Object Request Broker Archi-
tecture (see Microsoft .net and corba), and Sun’s Java/
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Remote Method Invocation (Java/RMI). While these imple-
mentations are quite different in details, they provide most 
of the elements and facilities summarized above.

Applications
Distributed computing is particularly suited to applica-
tions that require extensive computing resources and that 
may need to be scaled (smoothly enlarged) to accommo-
date increasing needs (see grid computing). Examples 
might include large databases, intensive scientific comput-
ing, and cryptography. A particularly interesting example 
is SETI@home, which invites computer users to install a 
special screen saver that runs a distributed process dur-
ing the computer’s idle time. The process analyzes radio 
telescope data for correlations that might indicate receipt of 
signals from an extraterrestrial intelligence (see coopera-
tive processing).

Besides being able to marshal very large amounts of 
computing power, distributed systems offer improved fault 
tolerance. Because the system is decentralized, if a par-
ticular computer fails, its processes can be replaced by 
ones running on other machines. Replication (copying) of 
data across a widely dispersed network can also provide 
improved data recovery in the event of a disaster.
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DNS  (domain name system)
The operation of the Internet requires that each participat-
ing computer have a unique address to which data pack-
ets can be routed (see Internet and tcp/ip). The Domain 
Name System (DNS) provides alphabetical equivalents to 
the numeric IP addresses, giving the now familiar-looking 
Web addresses (URLs), e-mail addresses, and so on.

The system uses a set of “top-level” domains to cat-
egorize these names. One set of domains is based on the 
nature of the sites involved, including: .com (commercial, 
corporate), .edu (educational institutions), .gov (govern-
ment), .mil (military), .org (nonprofit organizations), .int 
(international organizations), .net (network service provid-
ers, and so on).

The other set of top-level domains is based on the geo-
graphical location of the site. For example, .au (Australia), 
.fr (France), and .ca (Canada). (While the United States has 
the .us domain, it is generally omitted in practice, because 
the Internet was developed in the United States).

INTERNET COUNTRY CODES  
(partial list)

AD	 Andorra
AE	 United Arab Emirates
AF	 Afghanistan
AG	 Antigua and Barbuda
AI	 Anguilla
AL	 Albania
AM	 Armenia
AN	 Netherlands Antilles
AO	 Angola
AQ	 Antarctica
AR	 Argentina
AS	 American Samoa
AT	 Austria
AU	 Australia
AW	 Aruba
AZ	 Azerbaijan
BA	 Bosnia and Herzegovina
BB	 Barbados
BD	 Bangladesh
BE	 Belgium
BF	 Burkina Faso
BG	 Bulgaria
BH	 Bahrain
BI	 Burundi
BJ	 Benin
BM	 Bermuda
BN	 Brunei Darussalam
BO	 Bolivia
BR	 Brazil
BS	 Bahamas
BT	 Bhutan
BV	 Bouvet Island
BW	 Botswana
BY	 Belarus
BZ	 Belize
CA	 Canada
CC	 Cocos (Keeling) Islands
CF	 Central African Republic
CG	 Congo
CH	 Switzerland
CI	 Côte d’Ivoire (Ivory Coast)
CK	 Cook Islands
CL	 Chile
CM	 Cameroon
CN	 China
CO	 Colombia
CR	 Costa Rica
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CS	 Czechoslovakia (former)
CU	 Cuba
CV	 Cape Verde
CX	 Christmas Island
CY	 Cyprus
CZ	 Czech Republic
DE	 Germany
DJ	 Djibouti
DK	 Denmark
DM	 Dominica
DO	 Dominican Republic
DZ	 Algeria
EC	 Ecuador
EE	 Estonia
EG	 Egypt
EH	 Western Sahara
ER	 Eritrea
ES	 Spain
ET	 Ethiopia
FI	 Finland
FJ	 Fiji
FK	 Falkland Islands (Malvinas)
FM	 Micronesia
FO	 Faroe Islands
FR	 France
FX	 France, Metropolitan
GA	 Gabon
GB	 Great Britain (UK)
GD	 Grenada
GE	 Georgia
GF	 French Guiana
GH	 Ghana
GI	 Gibraltar
GL	 Greenland
GM	 Gambia
GN	 Guinea
GP	 Guadeloupe
GQ	 Equatorial Guinea
GR	 Greece
GS	 S. Georgia and S. Sandwich Isls.
GT	 Guatemala
GU	 Guam
GW	 Guinea-Bissau
GY	 Guyana
HK	 Hong Kong
HM	 Heard and McDonald Islands
HN	 Honduras
HR	 Croatia (Hrvatska)
HT	 Haiti
HU	 Hungary
ID	 Indonesia
IE	 Ireland
IL	 Israel
IN	 India
IO	 British Indian Ocean Territory
IQ	 Iraq

IR	 Iran
IS	 Iceland
IT	 Italy
JM	 Jamaica
JO	 Jordan
JP	 Japan
KE	 Kenya
KG	 Kyrgyzstan
KH	 Cambodia
KI	 Kiribati
KM	 Comoros
KN	 Saint Kitts and Nevis
KP	 Korea (North)
KR	 Korea (South)
KW	 Kuwait
KY	 Cayman Islands
KZ	 Kazakhstan
LA	 Laos
LB	 Lebanon
LC	 Saint Lucia
LI	 Liechtenstein
LK	 Sri Lanka
LR	 Liberia
LS	 Lesotho
LT	 Lithuania
LU	 Luxembourg
LV	 Latvia
LY	 Libya
MA	 Morocco
MC	 Monaco
MD	 Moldova
MG	 Madagascar
MH	 Marshall Islands
MK	 Macedonia
ML	 Mali
MM	 Myanmar
MN	 Mongolia
MO	 Macau
MP	 Northern Mariana Islands
MQ	 Martinique
MR	 Mauritania
MS	 Montserrat
MT	 Malta
MU	 Mauritius
MV	 Maldives
MW	 Malawi
MX	 Mexico
MY	 Malaysia
MZ	 Mozambique
NA	 Namibia
NC	 New Caledonia
NE	 Niger
NF	 Norfolk Island
NG	 Nigeria
NI	 Nicaragua
NL	 Netherlands
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NO	 Norway
NP	 Nepal
NR	 Nauru
NT	 Neutral Zone
NU	 Niue
NZ	 New Zealand (Aotearoa)
OM	 Oman
PA	 Panama
PE	 Peru
PF	 French Polynesia
PG	 Papua New Guinea
PH	 Philippines
PK	 Pakistan
PL	 Poland
PM	 St. Pierre and Miquelon
PN	 Pitcairn
PR	 Puerto Rico
PT	 Portugal
PW	 Palau
PY	 Paraguay
QA	 Qatar
RE	 Reunion
RO	 Romania
RU	 Russian Federation
RW	 Rwanda
SA	 Saudi Arabia
SB	 Solomon Islands
SC	 Seychelles
SD	 Sudan
SE	 Sweden
SG	 Singapore
SH	 St. Helena
SI	 Slovenia
SJ	 Svalbard and Jan Mayen Islands
SK	 Slovak Republic
SL	 Sierra Leone
SM	 San Marino
SN	 Senegal
SO	 Somalia
SR	 Suriname
ST	 Sao Tome and Principe
SU	 USSR (former)
SV	 El Salvador
SY	 Syria
SZ	 Swaziland
TC	 Turks and Caicos Islands
TD	 Chad
TF	 French Southern Territories
TG	 Togo
TH	 Thailand
TJ	 Tajikistan
TK	 Tokelau
TM	 Turkmenistan
TN	 Tunisia
TO	 Tonga
TP	 East Timor

TR	 Turkey
TT	 Trinidad and Tobago
TV	 Tuvalu
TW	 Taiwan
TZ	 Tanzania
UA	 Ukraine
UG	 Uganda
UK	 United Kingdom
UM	 US Minor Outlying Islands
US	 United States
UY	 Uruguay
UZ	 Uzbekistan
VA	 Vatican City State (Holy See)
VC	 Saint Vincent and the Grenadines
VE	 Venezuela
VG	 Virgin Islands (British)
VI	 Virgin Islands (U.S.)
VN	 Viet Nam
VU	 Vanuatu
WF	 Wallis and Futuna Islands
WS	 Samoa
YE	 Yemen
YT	 Mayotte
YU	 Yugoslavia
ZA	 South Africa
ZM	 Zambia
ZR	 Zaire
ZW	 Zimbabwe

Domains and Addresses
A complete Internet address generally consists of a word 
representing the name of the organization or company, pos-
sibly followed by the name of a department or division. 
This is followed by the top-level domain. Here are some 
examples:

well.com The Well conferencing system, a business in the 
U.S.

acm.org The Association for Computing Machinery, a non-
profit professional organization

state.gov United States Department of State

berkeley.edu University of California, Berkeley

www2.physics.ox.ac.uk Department of Physics, Oxford Uni-
versity, Oxfordshire, United Kingdom.

To access a service at a given site, the host address is pre-
fixed to indicate the server or service. Most commonly, this 
is www for World Wide Web. Thus www.well.com indicates 
the Web server at the well.com host, while ftp.well.com 
would indicate the ftp (file transfer protocol) server. (In 
some cases, if there is no prefix, www will be assumed.)

A complete Web address or URL (Uniform Resource 
Locator) also includes a prefix for the protocol to be used 
(see World Wide Web). Most commonly this is http:// (for 
hypertext transfer protocol), though most Web browsers 
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will treat this as the default and not require that it be typed. 
ftp:// can be used to access ftp servers via the Web. Finally, 
a URL must include the path to the directory that actually 
contains the HTML document or other resource, as well 
as its filename. Thus a complete address for a hypothetical 
user’s home page might be:

http://www.BigUniversity.edu/users/tomr/index.html

Internal Addressing
When a Web user types such an address, the Web browser 
connects to a nearby name server. This program trans-
lates the name into an IP (Internet Protocol) address. The 
address consists of four 8-bit numbers called tuples, sepa-
rated by periods. For example, the domain name www.well.
com currently translates to 208.178.101.2. The first num-
ber represents one of five classes of networks, with the 
first three classes (A-C) organized according to the number 
and size of networks and D and E being reserved for one-
to-many “broadcast” transmissions and experimentation 
respectively.

To obtain a domain name, a person or organization 
contacts one of several registration services accredited by 
ICANN (the nonprofit Internet Corporation for assigned 
Names and Numbers). Each name must be unique. Con-
siderable legal disputation has occurred when someone 
not connected with a company has registered a domain 
containing that company’s name. The tremendous growth 
of e-commerce has made distinctive or easy-to-remember 
domain names a scarce and valuable commodity. Foresee-
ing this, some speculators bought up attractive domains in 
the hope (sometimes realized) of selling them to corpora-
tions at a huge profit. Anti–“domain squatting” laws were 
passed in reaction. In other cases, disgruntled employees or 
consumers have registered domains for Web sites critical of 
major corporations such as airlines and telephone compa-
nies. In the courts, this pits the right of free speech against 
the right of a company to control the use of its name.

Expanding the System
The expansion of the Internet has strained the capacity of 
the existing DNS. The shortage of “name space” is being 
addressed by the release of IP Version 6, which replaces the 
32-bit addresses with 128-bit ones. In addition, in Novem-
ber 2000 ICANN announced the creation of seven new top-
level domains: .aero (air transport), .biz (business), .coop 
(cooperatives), .info (general-purpose), .museum (muse-
ums), .name (personal sites), and .pro (professionals such 
as lawyers, accountants, and physicians). However, the situ-
ation is muddled by the existence of competing proposals 
and the use of unofficial DNS systems that provide their 
own domains (but require special software for access, since 
they are not recognized by regular DNS servers).

Perhaps a more fundamental issue is the adopting of 
a system designed by English speakers to a world that 
increasingly seeks international access and standards (see 
internationalization). The problem is how to meet local 
needs without creating new barriers through incompatible 
addressing schemes. The proposal being implemented as of 

the mid-2000s is called Internationalizing Domain Names 
in Applications (IDNA). This standard includes an algo-
rithm by which address labels written using the many char-
acter sets and diacritical marks in the world’s languages 
(as rendered in Unicode) can be translated to the standard 
ASCII characters used by the existing DNS (see charac-
ters and strings).
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documentation of program code
Computer system documentation can be divided into two 
main categories based upon the intended audience. Manu-
als and training materials for users focus on explaining 
how to use the program’s features to meet the user’s needs 
(see documentation, user). This entry, however, focuses 
on the creation of documentation for programmers and oth-
ers involved in software development and maintenance (see 
also technical writing).

Software documentation can consist of comments 
describing the operation of a line or section of code. Early 
programming with its reliance on punched cards had only 
minimal facilities for incorporating comments. (Some of the 
proponents of COBOL thought that the language’s English-
like syntax would make additional documentation unnec-
essary. Like the similar claim that trained programmers 
would no longer be needed, the reality proved otherwise.)

After the switch from punchcard input to the use of 
keyboards, adding comments became easier. For example, a 
comment in C looks like this:

printf(“Hello, world\n”);  
/* Display the traditional message */

while C++ uses comments in this form:

cout << “Hello, World”;  
// This is also a comment

Each language provides a particular symbol or set of sym-
bols for separating comments from executable code. The 
compiler ignores comments when compiling the program.

While proper commenting can help people understand 
a program’s functions, the coding style should also be one 
that promotes clarity. This includes the use of descriptive 
and consistent names for variables and functions. This can 
also be influenced by the conventions of the operating sys-
tem: For example, Windows has many special data struc-
tures that should be used consistently.

158        documentation of program code



In addition to the commented source code, external 
documentation is usually provided. Design documents can 
range from simple flowcharts or outlines to detailed specifi-
cations of the program’s purpose, structure, and operations. 
Rather than being considered an afterthought, documenta-
tion has been increasingly integrated into the practice of 
software engineering and the software development process. 
This practice became more prevalent during the 1960s and 
1970s when it became clear that programs were not only 
becoming larger and more complex, but also that significant 
programs such as business accounting and inventory appli-
cations were likely to have to be maintained or revised for 
perhaps decades to come. (The lack of adequate documenta-
tion of date-related code in programs of this vintage became 
an acute problem in the late 1990s. See y2k problem.)

Documentation Tools
As programmers began to look toward developing their 
craft into a more comprehensive discipline, advocates of 
structured programming placed an increased emphasis not 
only on proper commenting of code but on the develop-
ment of tools that could automatically create certain kinds 
of documentation from the source code. For example, there 
are utilities for C, C++, and Java (javadoc) that will extract 
information about class declarations or interfaces and for-
mat them into tables. Most software development environ-
ments now include features that cross-reference “symbols” 
(named variables and other objects). The combination of 
comments and automatically generated documentation can 
help with maintaining the program as well as being helpful 
for creating developer and user manuals.

While programmers retain considerable responsibility 
for coding standards and documentation, larger program-
ming staffs typically have specialists who devote their full 
time to maintaining documentation. This includes the log-
ging of all program change requests and the resulting new 
distributions or “patches,” the record of testing and retest-
ing of program functions, the maintenance of a “version 
history,” and coordinating with technical writers in the 
production of revised manuals.
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documentation, user
As computing moved into the mainstream of offices and 
schools beginning in the 1980s and accelerating through 
the 1990s, the need to train millions of new computer users 
spawned the technical publishing industry. In addition to 

the manual that accompanied the software, third-party 
publishers produced full-length books for beginners and 
advanced users as well as “dictionaries” and reference manu-
als (see also technical writing). A popular program such 
as WordPerfect or (today) Adobe Photoshop can easily fill 
several shelves in the computer section of a large bookstore.

A number of publishers targeted particular audiences 
and adopted distinctive styles. Perhaps the best known is 
the IDG “Dummies” series, which eventually diversified its 
offerings from computer-related titles to everything from 
home remodeling to investing. Berkeley, California, pub-
lisher Peachpit Press created particularly accessible intro-
ductions for Windows and Macintosh users. At the other 
end of the spectrum, publishers Sams, Osborne, Waite 
Group, and Coriolis targeted the developer and “power 
user” community and the eclectic, erudite volumes from 
O’Reilly grace the bookshelves of many UNIX users.

Online Documentation
During the 1980s, the lack of a multitasking, window-based 
operating system limited the ability of programs to offer 
built-in (or “online”) documentation. Traditionally, users 
could press the F1 key to see a screen listing key commands 
and other rudimentary help. However, both the Macin-
tosh and Windows-based systems of the 1990s included 
the ability to incorporate a standardized, hypertext-based 
help system in any program. Users could now search for 
help on various topics and scroll through it while keeping 
their main document in view. Another facility, the “wiz-
ard,” offered the ability to guide users step by step through 
a procedure.

The growth of the use of the Web has provided a new ave-
nue for online help. Today many programs link users to their 
Web site for additional help. Even help files stored on the 
user’s own hard drive are increasingly formatted in HTML 
for display through a Web browser. Additional sources of 
help for some programs include training videos and animated 
presentations using programs such as PowerPoint.

By the late 1990s, printed user manuals were becoming a 
less common component in software packages. (Instead, the 
manual was often provided as a file in the Adobe Acrobat 
format, which reproduces the exact appearance of printed 
material on the screen.) The computer trade book industry 
has also declined somewhat, but the bookstore still offers 
plenty of alternatives for users who are more comfortable 
with printed documentation.
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document model
Most early developers and users of desktop computing sys-
tems thought in terms of application programs rather than 
focusing on the documents or other products being cre-
ated with them. From the application point of view, files 
are opened or created, content (text or graphics) is created, 
and the file is then saved. There is no connection between 
the files except in the mind of the user. The dominant word 
processors of the 1980s (such as WordStar and WordPer-
fect) were designed as replacements for the typewriter and 
emphasized the efficient creation of text (see word pro-
cessing). Users who wanted to work with other types of 
information had to run completely separate applications, 
such as dBase for databases or Lotus 1-2-3 for spreadsheets. 
Working with graphics images (to the extent it was possible 
with early PCs) required still other programs.

This “application-centric” way of thinking suited pro-
gram developers at a time when most computer systems 
(such as those running MS-DOS) could run only one pro-
gram at a time. But increasing processor power, memory, 
and graphics display capabilities during the late 1980s made 
it possible to create an operating system such as Micro-
soft Windows that could display text fonts and formatting, 
graphics and other content in the same window, and run 
several different program windows at the same time (see 
multitasking). In turn, this made it possible to present a 
model that was more in keeping with the way people had 
worked in the precomputer era.

In the new “document model,” instead of thinking in 
terms of individual application programs working with 
files, users could think in terms of creating documents. 
A document (such as a brochure or report) could contain 
formatted text, graphics, and data brought in from database 
or spreadsheet programs. This meant that in the course of 
working with a document users would actually be invoking 
the services of several programs: a word processor, graphics 
editor, database, spreadsheet, and perhaps others. To the 
user, however, the focus would be on a screen “desktop” on 
which would be arranged documents (or projects), not on 
the process of running individual programs and loading 
files.

Implementing the Document Model
There are two basic approaches to maintaining documents. 
One is to create large programs that provide all of the fea-
tures needed, including word processing, graphics, and data 
management (see application suite). While such tight 
integration can (ideally at least) create a seamless work-
ing environment with a consistent user interface, it lacks 
flexibility. If a user needs capabilities not included in the 
suite (such as, perhaps the ability to create an HTML ver-
sion of the document for the Web), one of two cumbersome 
procedures would have to be followed. Either the operating 
system’s “cut and paste” facilities might be used to copy 
data from another application into the document (possibly 

with formatting or other information lost in the process), 
or possibly the document could be saved in a file format 
that could be read by the program that was to provide the 
additional functionality (again with the possibility of losing 
something in the translation).

Linking and Embedding
A more sophisticated approach is to create a protocol that 
applications could use to call upon one another’s services. 
The Windows COM (Component Object Model) uses a tech-
nology formerly called OLE (Object Linking and Embed-
ding). Using this facility, someone working on a document 
in Microsoft Word could “embed” another object such as 
an Excel spreadsheet or an Access database into the cur-
rent document (which becomes the container). When the 
user double-clicks on the embedded object, the appropriate 
application is launched automatically, and the user sees the 
screen menus and controls from that application instead of 
those in Word. (One can also think of Word in this example 
being the client and Excel or Access as the server—see cli-
ent-server computing). All work done with the embedded 
object is automatically updated by the server application 
and everything is stored in the same document file. Alter-
natively, an application may be linked rather than embed-
ded. In that case, the container document simply contains 
a pointer to the file in the other application. Whenever 
that file is changed, all documents that are linked to it are 
updated. Object embedding thus preserves a document-cen-
tric approach but works with any applications that support 
that facility, regardless of vendor. The Macintosh operating 
system offers a similar facility. Apple and IBM attempted 
unsuccessfully to create a competing standard called Open-
Doc. This should not be confused with the more recent 
Open Document standard from the popular open-source 
application Open Office. Meanwhile Microsoft’s COM, grad-
ually introduced during the later 1990s, has been largely 
superseded by .NET (see Microsoft .NET). This reflects 
a shift in emphasis from a document model (within a sin-

The Document Object Model (DOM) treats a Web page as an object 
that can be manipulated using a variety of scripting languages.
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gle computer) to a more comprehensive “network object 
model.”

Document and object models are also increasingly 
important for working on the Web. This can be seen in 
the increasing use of XML documents and the Document 
Object Model (see xml and dom). This involves the use of a 
consistent programming interface (see api) by which many 
applications can create or process XML documents for data 
communication or display.
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DOM  (Document Object Model)
The Document Object Model (DOM) is a way to represent 
a Web document (see html and xml) as an object that 
can be manipulated using code in a scripting language (see 
JavaScript). The DOM was created by the World Wide Web 
Consortium (W3C) as a way to standardize methods of 
manipulating Web pages at a time when different brows-
ers used different access models. The full specification is 
divided into four levels (0 through 3). By 2005, most DOM 
specifications were supported by the major Web browsers.

Using DOM, a programmer can navigate through the 
hierarchical structure of a document, following links or 
“descending” into forms and user-interface objects. With 
DOM one can also add HTML or XML elements, as well as 
load, save, or format documents.

Code can also be written to respond to a number of 
“events,” including user keyboard or mouse activity and 
interactions with specific user-interface elements and 
HTML forms. For example, the “mouseover” event will be 
triggered when the user moves the mouse cursor over a 
defined region. The code can then perform an action such 
as popping up a box with explanatory text. The “submit” 
event will be triggered when the user has finished filling 
in a form and clicked the button to send it to the Web 
site. When an event occurs, the event object is used to 
pass detailed information about it to the program, such as 
which key or button was pressed, the location of the mouse 
pointer, and so on.

Although learning the DOM methods and how to use 
them takes some time, and familiarity with JavaScript is 
helpful, the syntax for accessing DOM methods should be 
familiar to anyone who has used an object-oriented program-
ming language. Here are some simple sample statements.

Get the document with the specified ID:
document.getElementById(ID)

Get the element with the specified tag:
document.getElementByTagName(tagname)

Get the specified attribute (property) of 
the specified element:

myElement.getAttribute(attributeName)
Create an element with the specified tag and 
reference it through a variable:

var myElementNode = document.
createElement(tagname)

Evaluation
Although dynamic HTML (DHTML) also has an object 
model that can be used to access and manipulate individual 
elements, DOM is more comprehensive because it provides 
access to the document as a whole and the ability to navi-
gate through its structure.

By providing a uniform way to manipulate documents, 
DOM makes it easier to write tools to process them in a 
series of steps. For example, database programs and XML 
parsers can produce DOM document “trees” as output, and 
an XSLT (XML style sheet processor) can then be used to 
format the final output.

For working with XML, another popular alternative is 
the Simple API for XML (SAX). The SAX model is quite dif-
ferent from DOM in that the former “sees” a document as 
a stream of events (such as element nodes) and the parser 
is programmed to call methods as events are encountered. 
DOM, on the other hand, is not a stream but a tree that can 
be entered arbitrarily and traversed in any direction. On 
the other hand, SAX streams do not require that the entire 
document be held in memory, and processing can some-
times be faster.

Further Reading
Document Object Model FAQ. World Wide Web Consortium. 

Available online. URL: http://www.w3.org/DOM/faq.html. 
Accessed September 16, 2007.

Heilmann, Christian. Beginning JavaScript with DOM Scripting and 
Ajax: From Novice to Professional. Berkeley, Calif.: APress, 2006.

Keith, Jeremy. DOM Scripting: Web Design with JavaScript and the 
Document Object Model. Berkeley, Calif.: APress, 2005.

Robie, Jonathan. “What Is the Document Object Model?” World 
Wide Web Consortium. Available online. URL: http://www.
w3.org/TR/WD-DOM/introduction.html. Accessed Septem-
ber 14, 2007.

Sambells, Jeffrey, and Aaron Gustafson. Advanced DOM Script-
ing: Dynamic Web Design Techniques. Berkeley, Calif.: APress, 
2007.

DOS  See ms-dos.

Dreyfus, Hubert
(1929–  )
American
Philosopher, Cognitive Psychologist

As the possibilities for computers going beyond “number 
crunching” to sophisticated information processing became 
clear starting in the 1950s, the quest to achieve artificial intel-
ligence (AI) was eagerly embraced by a number of innovative 
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researchers. For example, Allen Newell, Herbert Simon, and 
Cliff Shaw at the RAND Corporation, attempted to write 
programs that could “understand” and intelligently manipu-
late symbols rather than just literal numbers or characters. 
Similarly, MIT’s Marvin Minsky (see Minsky, Marvin) was 
attempting to build a robot that could not only perceive its 
environment, but in some sense understand and manipulate 
it. (See artificial intelligence and robotics.)

Into this milieu came Hubert Dreyfus, who had earned 
his Ph.D. in philosophy at Harvard. Dreyfus had special-
ized in the philosophy of perception (how meaning can be 
derived from a person’s environment) and phenomenology 
(the understanding of processes). When Dreyfus began to 
teach a survey course on these areas of philosophy, some 
of his students asked him what he thought of the artificial 
intelligence researchers who were taking an experimental 
and engineering approach to the same topics the philoso-
phers had discussed abstractly.

Philosophy had attempted to explain the process of per-
ception and understanding (see also cognitive science). 
One tradition, the rationalism represented by such think-
ers as Descartes, Kant, and Husserl took the approach of 
formalism and attempted to elucidate rules governing the 
process. They argued that in effect the human mind was a 
machine (albeit a wonderfully complex and versatile one). 
The opposing tradition, represented by the phenomenolo-
gists Wittgenstein, Heidegger, and Merleau-Ponty, took a 
holistic approach in which physical states, emotions, and 
experience were inextricably intertwined in creating the 
world that people perceive and relate to.

If computers, which at that time had only the most 
rudimentary “senses” and no emotions could perceive and 
understand in the way humans did, then the rules-based 
approach of the rationalist philosophers would be vindi-
cated. But when Dreyfus had examined the AI efforts, he 
wrote a paper titled “Alchemy and Artificial Intelligence.” 
His comparison of AI to alchemy was provocative in that it 
suggested that like the alchemists, the modern AI research-
ers had met with only limited success in manipulating 
their materials (such as by teaching computers to perform 
such intellectual tasks as playing checkers and even prov-
ing mathematical theorems). However, Dreyfus concluded 
that the kind of flexible, intuitive, and ultimately robust 
intelligence that characterizes the human mind couldn’t be 
matched by any programmed system. Each time AI research-
ers demonstrated the performance of some complex task, 
Dreyfus examined the performance and concluded that it 
lacked the essential characteristics of human intelligence. 
Dreyfus expanded his paper into the book What Computers 
Can’t Do. Meanwhile, critics complained that Dreyfus was 
moving the goal posts after each play, on the assumption 
that “if a computer did it, it must not be true intelligence.”

Two decades later, Dreyfus reaffirmed his conclusions in 
What Computers Still Can’t Do, while acknowledging that the 
AI field had become considerably more sophisticated in creat-
ing systems of emergent behavior (such as neural networks).

Currently a professor in the Graduate School of Phi-
losophy at the University of California, Berkeley, Dreyfus 
continues his work in pure philosophy (including a com-

mentary on phenomenologist philosopher Martin Hei-
degger’s Being and Time) while still keeping an eye on the 
computer world in his latest publication, On the Internet.
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DRM  See digital rights management.

DSL  (digital subscriber line)
DSL (digital subscriber line) is one of the two most preva-
lent forms of high-speed wired access to the Internet (see 
broadband and cable modem). DSL can operate over 
regular phone lines (sometimes called POTS or “plain 
old telephone service”). DSL takes advantage of the fact 
that existing phone lines can carry frequencies far beyond 
the narrow band used for voice telephony. When install-
ing DSL, the phone company must evaluate the quality of 
existing lines to determine how many frequency bands are 
usable, and thus how much data can be transmitted. Fur-
ther, because the higher the frequency the shorter the dis-
tance the signal can travel, the available bandwidth drops 
as one gets farther from the central office or a local DSL 
access Multiplexer (DSLAM).

Typical DSL services can range in speed from 128 kbps 
to 3 Mbps. Many providers offer higher speeds at additional 
cost. Speeds quoted are generally maximums; actual speed 
may be less due to poor line quality or greater distance 
from the central office.

The most common form of DSL is ADSL (asymmetric 
DSL), which has much higher download speeds than upload 
speeds. This is generally not a problem, since most users 
consume much more content than they generate. The lower 
frequencies are generally reserved for regular voice and fax 
service. A single DSL modem can serve multiple users in a 
local network by being connected to a router.

As more people move from land-line phone service to 
cellular, there has been greater demand for offering so-
called naked DSL—DSL without traditional phone ser-
vice. DSL can also be provided over optical fiber (see fiber 
optics).

Note that an older and lower-bandwidth version of the 
technology called ISDN (Integrated Services Digital Net-
work) is still in use, but has largely been superseded by 
DSL/ADSL.

Alternatives to DSL
Cable is still more popular than DSL, though the latter has 
closed the gap somewhat. The fact that the two services can 
both provide fast Internet access (mostly) through existing 
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infrastructure has created considerable competition. Thus 
a cable provider can now offer telephone service via the 
Internet (see voip) at the same time a phone provider using 
DSL can offer movies and television programming streamed 
over the network. The fact that in many locations DSL and 
cable providers are in competition can result in lower rates 
or more attractive “bundles” of services for consumers.

On average, cable modem speeds are somewhat faster 
than DSL; however, cable speeds can degrade as more users 
are added to a circuit. Although both services have had their 
share of glitches, they now both tend to be quite reliable.
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DTP  See desktop publishing.

DVR  (digital video recording)
A digital video recorder (DVR) records digital television 
broadcasts and stores them on a disk (see hard disk and 
cd-rom and dvd-rom). DVRs first appeared as commercial 
products in 1999 in Replay TV and TiVo, the latter becom-
ing the most successful player in the field.

A DVR works with digital signals and discs rather than 
tape used by the video cassette recorders (VCRs) that had 
become popular starting in the 1980s. The digital recorder 
has several advantages over tape:

• � much larger capacity, limited only by hard drive size

• � instant (random) access to any recorded programming 
without having to go forward or backward through a 
tape

• � the ability to “time shift” within a live broadcast, 
including pausing and instant replay

• � the ability to skip over commercials

• � digital special effects

DVR and Integrated Entertainment
Besides what it can do with the program itself, the other 
big advantage of DVR technology stems from the fact that 
it produces digital data in a standard format (usually an 

DSL uses special modems to convert between computer data and signals that can travel over ordinary phone lines. This technology is widely 
used to provide broadband Internet access.
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MPEG file) that is fully compatible with PCs and other com-
puting devices. Indeed, by installing one or more TV tuners 
or “cable cards” (for access to digital cable signals) to a PC, 
one need only add suitable software to turn a Windows, 
Macintosh, or Linux PC into a versatile DVR. Alternatively, 
many cable and satellite TV services are offering set-top 
boxes with built-in DVRs.

Services such as TiVo also provide access to an online 
program schedule (for a monthly charge). This works with 
features that allow the user to scan for and review program 
listings and to arrange, for example, to record all new epi-
sodes of a weekly series as they arrive. DVRs with dual tun-
ers allow for recording two live programs simultaneously, 
or recording one while watching another.

DVR technology is also now being used for closed-cir-
cuit television (CCTV) surveillance systems, due to supe-
rior storage and playback capabilities. Similar technology is 
also found in digital video cameras (camcorders).

DVRs are part of a landscape where entertainment that 
used to be confined to television broadcast, cable, or satel-
lite systems can now be received digitally over the Inter-

net. Since DVRs produce digital output, recorded programs 
can be easily shared over the Internet, such as by post-
ing on the popular YouTube site, possibly leading to loss 
of revenue for the original providers (see intellectual 
property and computing). In response, HBO and other 
providers have argued for requiring that DVRs recognize 
content that is flagged as “copy never” and refuse to copy 
such programs.

Another problem for providers is the growing number 
of DVR users who have the ability to easily skip over com-
mercials. Attempts are being made to make commercials 
shorter and more entertaining, or to rely more on product 
placement within the programming itself.

Further Reading
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eBay
eBay Inc. (NASDAQ symbol: EBAY) is the world’s largest 
online auction and shopping site. The first appearance of 
the auction service was in 1995 as AuctionWeb, part of the 
personal Web site of Pierre Omidyar (see auctions, online 
and Omidyar, Pierre). Omidyar was surprised at how rap-
idly the auction service (which was initially free) grew. After 
he imposed a modest listing fee, Omidyar found himself 
receiving thousands of dollars in small checks, and decided 
that online auctions could become a full-time business.

In September 1997, with Jeff Skoll now on board as 
president, AuctionWeb officially became eBay. When the 
company went public in 1998 (at the height of the first 
“Internet boom”), Omidyar and Skoll became instant mil-
lionaires. Meanwhile, eBay took on Margaret (Meg) Whit-
man as its new CEO, and under her leadership the company 
has expanded rapidly through its first decade.

eBay also seeks new markets and revenue through stra-
tegic acquisitions. These include payment services such as 
the very popular PayPal, other e-commerce sites such as 
Half.com, shopping.com, and rent.com, and even Skype, 
the Internet phone service. eBay’s net revenue for 2007 was 
$7.67 billion.

Online Auctions
Auctions remain at the core of eBay’s business, with mil-
lions of items in dozens of categories being listed and sold 
each day. Offerings can range from factory equipment (in 
the Business & Industrial category) to books, toys, sports 
memorabilia—even cars and, in a limited fashion, real 

estate. There are now hundreds of small- to medium-size 
businesses who derive their revenue from eBay, whether 
selling their own merchandise, acting as agents for others, 
or selling software or templates for managing auctions.

eBay does not charge any buyer’s fees, but makes its 
money by charging the seller for each listing and then a 
percentage of the selling price. As of 2007 eBay has regional 
operations in more than 20 countries, including China and 
India. (Yahoo, a distant second to eBay in online auctions, 
discontinued its U.S. auction site in mid-2007.)

Beyond Auctions
In recent years eBay has increasingly tried to build a more 
“traditional” online shopping experience in parallel with its 
auctions. The Buy It Now feature allows a seller to list an 
item at a fixed price, either instead of auctioning the item 
or as an option that can be exercised if there have been no 
auction bids. Sellers can organize their offerings into regu-
lar “stores” to make it easier for customers to browse their 
merchandise. (Many traditional stores, such as antiques or 
collectibles dealers, now offer some of their items via their 
eBay store.) eBay Express, introduced in 2006, adds conve-
nience by allowing users to buy selected items from mul-
tiple sellers using a standard online shopping cart.

Like Amazon.com, eBay has focused considerable atten-
tion on developing more ways for users to comment on 
their purchases and otherwise contribute content (see 
user-created content). The most important mechanism 
is feedback, which lets buyers summarize their opinions 
of a transaction after its completion. The feedback system 
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has been recently expanded and structured to allow users 
to give specific ratings on aspects of the transaction, such 
as accuracy of description and shipping cost and speed. 
Although not perfect (feedback can be “pumped up” by 
setting up phony transactions between two accounts), the 
system does allow buyers to exercise a certain amount 
of caution before bidding on an expensive item from an 
unknown seller. eBay also offers various forms of “con-
sumer protection” if items are not received or are substan-
tially not as described.

Not surprisingly in a marketplace of this size, there 
is opportunity for various forms of fraud, including sale 
of counterfeit, defective, or lower-grade merchandise and, 
on the part of buyers, credit card fraud. eBay has been 
criticized for not policing fraud adequately. Generally, the 
service has maintained the position that it is only a facilita-
tor of transactions. If it had to guarantee the authenticity of 
merchandise, it would have to operate like a conventional 
auction house, with the attendant fees. However, eBay has 
solicited the help of experts in fields such as coins and 
stamps to help them identity counterfeit or misdescribed 
items.

eBay provides a number of forums for user comments, 
including discussion boards and chat rooms. Users can 
also write reviews and guides to help, for example, nov-
ice collectors who might find themselves overwhelmed by 
the coin or stamp listings. In mid-2006 eBay expanded its 
“community content” to include an eBay Community Wiki 
(see wikis and Wikipedia) and eBay blogs (see blogs and 
blogging).

eBay is always trying to make it easier to match users’ 
specific needs with the thousands of potentially relevant 
offerings. Providing recommendation information (includ-
ing user-generated recommendations) is another way to 
make shopping easier and more satisfying, as has been 
shown by Amazon.com. Another possible way to get a big-
ger share of users’ day-to-day purchases is to make eBay 
available on mobile devices as well as linking it to sites 
such as Facebook, where young people in particular spend 
much of their time (see social networking.)

Long-time eBay CEO Meg Whitman stepped down in 
March 2008, while calling for innovation to reinvigorate 
a company that many observers now consider to be staid 
and “old school” in the age of Web 2.0. Whitman’s succes-
sor, John Donahoe, has announced a new fee structure and 
new ways of searching for and displaying listings—devel-
opments that have provoked some controversy in the seller 
community.
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e-books and digital libraries
An e-book is a book whose text is stored in digital form 
and can be read on a PC or a handheld reading device. 
Since most books today are created on word processors and 
typesetting systems, it is easy for a publisher to create an 
electronic version. Older books that exist only in printed 
form can be scanned and converted to text (see optical 
character recognition).

An e-book has a number of advantages over its printed 
counterpart. The text can be searched and can include links 
to sections or even to documents on the World Wide Web. 
Reading software or devices can easily enlarge text for the 
visually handicapped, or read it in a synthesized voice. 
Since only bits need to be moved around, e-books save trees 
as well as the cost of manufacturing, transporting, ware-
housing, and displaying conventional books.

There are some disadvantages. Many people are not 
comfortable reading large amounts of text at a computer. 
Portable reading devices that may be more convenient are 
relatively expensive and not standardized. There is no uni-
versal format for e-books, so some software or readers may 
not be able to read all e-books.

As of 2008 the e-book landscape may be in the process 
of being reshaped. Amazon’s Kindle book reader is the lat-
est attempt to marry e-books to handheld devices. Weigh-
ing less than a paperback book, the Kindle can download 
books and other content directly over a cellular broadband 
connection and display text using an “electronic ink” tech-
nology that simulates print. Amazon is offering a large 
selection of e-books including electronic versions of current 
best sellers at prices several dollars below that of the hard-
back version.

Authors and publishers, like other content creators, may 
have to deal with the illicit copying and distribution of text 
in digital form, as happened with the last Harry Potter book 
even before its publication in 2007. Some e-books contain a 
form of copy protection (see digital rights management). 
This, as with video and music, can lead to compatibility 
problems.

A number of e-publishers as well as conventional pub-
lishers now offer books online, most commonly as pdf 
(portable document format) files. A hybrid service, “publish 
on demand,” keeps the book on file and prints and ships 
bound copies as they are ordered, eliminating the problem 
of remainders. In the future, so-called digital paper (a thin 
membrane that can display text), may be used to create a 
more booklike reading experience.

Digital Libraries
A digital library is to e-books what a conventional library 
is to printed books. Sometimes called an electronic library 
or virtual library, digital libraries can be created in a 
variety of ways. Printed books can now be scanned and 
digitized rapidly. Google has said that it can scan 3,000 
volumes a day using a proprietary system. (This is not 
necessary, of course, for books that were originally cre-
ated in digital form.)

Advantages of digital libraries include the following:
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• � There is never a shortage of copies or the need for a 
reader to wait for access.

• �M any digital libraries allow full searching of the text 
of all volumes. Libraries can also use a common data 
format (such as “Open Archives.”) to make their mate-
rial searchable throughout the Internet.

• �M any older, hard-to-find books can be made more 
“discoverable” and accessible.

Project Gutenberg is one of the oldest and best-known 
digital library projects, dating back to 1971. Most of the 
collection consists of scanned or transcribed texts of public 
domain (no longer subject to copyright) books. As of late 
2007, Project Gutenberg had more than 17,000 different 
titles in its collection.

Of course more recent books are covered by copyright. 
In order to include copyrighted books in a digital library, 
some sort of compensation to the copyright holder gener-
ally needs to be made, and it is unclear how that might be 
implemented in a way that preserves free access.

There are also what might be called “digital pseudo-
libraries” such as Google Book Search. Google has been 
scanning part or all of the collections of universities such as 
Stanford, Harvard, and Oxford as well as the New York Pub-
lic Library. Google provides full access to public domain 
books (or those for which permission has been obtained 
from the publisher). For copyrighted books there is a lim-
ited ability to search by keyword and view a limited num-
ber of pages. Amazon.com’s “Search inside the Book” works 
rather similarly, but only with books for which the pub-
lisher has granted permission.

Google’s initiative has aroused some controversy because, 
according to traditional practice, someone wanting access to 
a copyrighted work beyond “fair use” is supposed to obtain 
permission. Google has reversed this presumption, allowing 
publishers who do not want their material to be available to 
opt out. The Authors Guild of America and the Association of 
American Publishers have separately sued Google for copy-
right infringement. Google argues that the limited amount 
of text provided for copyrighted books falls within the fair 
use provisions of copyright law. The authors and publish-
ers, however, point to the fact that Google is copying the 
whole text of the book in order to allow for searching.

If the legal issues can be settled in such a way as to 
allow robust digital libraries, the benefits for researchers 
will be considerable. Google already offers a “my library” 
feature that users can use to search for books they already 
know and organize and search them digitally.
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Eckert, J. Presper
(1919–1995)
American
Computer Engineer

J. Presper Eckert played a key role in the design of what is 
often considered to be the first general-purpose electronic 
digital computer, then went on to pioneer the commer-
cial computer industry. An only child, Eckert grew up in 
a prosperous Philadelphia family that traveled widely and 
had many connections with Hollywood celebrities such as 
Douglas Fairbanks and Charlie Chaplin. He was a star stu-
dent in his private high school and also did well at the Uni-
versity of Pennsylvania, where he graduated in 1941 with a 
degree in electrical engineering and a strong mathematics 
background.

Continuing at the university as a graduate student and 
researcher, Eckert met an older researcher, John Mauchly. 
They found they shared a deep interest in the possibili-
ties of electronic computing, a technology that was being 
spurred by the needs of war research. After earning his 
master’s degree in electrical engineering, in 1942 Eckert 
joined Mauchly in submitting a proposal to the Ballistic 
Research Laboratory of the Army Ordnance Department for 
a computer that could be used to calculate urgently needed 
firing tables for guns, bombs, and missiles. The Army 
granted the contract, and they organized a team that grew 
to 50 people. Begun in April 1943, their ENIAC (Electronic 
Numerical Integrator and Computer) was finished in 1946. 
While it was too late to aid the war effort, the room-size 
machine filled with 18,000 vacuum tubes demonstrated the 
practicability of electronic computing. Its computation rate 
of 5,000 additions per second far exceeded other calculators 
of the time.

With some input from mathematician John von Neu-
mann, Eckert and Mauchly began to develop a new 
machine, EDVAC, for the University of Pennsylvania (see 
von Neumann, John). While this effort was still under 
way, they formed their own business, the Eckert-Mauchly 
Computer Corporation and began to develop the BINAC 
(BINary Automatic Computer), which was intended to be 
a (relatively) compact and lower-cost version of ENIAC. 
This machine demonstrated a key principle of modern com-
puters—the storage of program instructions along with 
data. The ability to store, manipulate, and edit instructions 
vastly increased the flexibility and ease of use of computing 
machines (see history of computing).

By the late 1940s, Eckert and Mauchly began to develop 
Univac I, the first commercial implementation of the new 
computing technology. When financial difficulties threat-
ened to sink their company in 1950, it was acquired by 
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Remington Rand. Working as a division within that com-
pany, the Eckert-Mauchly team completed Univac I in time 
for the computer to make a remarkably accurate forecast of 
the 1952 presidential election results.

Eckert continued with the Sperry-Rand Corporation 
(later called Univac and then Unisys Corporation) and 
became a vice president and senior technical adviser. He 
retired in 1989. He received an honorary doctorate from 
the University of Pennsylvania in 1964. In 1969, he was 
awarded the National Medal of Science, the nation’s highest 
award for achievement in science and engineering.
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e-commerce
Since the introduction of credit cards and the beginning 
of banking automation in the 1960s, computers and com-
munications networks have played an increasing role in the 
infrastructure of commerce (see banking and computers). 
Some businesses also established proprietary networks (for 
example, to allow pharmacies to order drugs directly from 
suppliers).

Electronic sales directly to consumers were pioneered 
by “teletex,” such as the French Minitel, as well as such ser-
vices as CompuServe and America Online. However, these 
services were proprietary, meaning that businesses could 
only market to subscribers. The widespread adoption of the 
Internet in the mid-1990s (see World Wide Web) created 
an open and potentially much larger marketplace.

The first e-commerce boom came in the late 1990s, 
when enthusiasm about the seeming potential for unlim-
ited profits drove numerous online startups, often with 
poorly conceived business plans that assumed that rapid 
expansion and low prices would result in gaining con-
trol of a particular sector and achieving a dominant (and 
profitable) position. Among the numerous casualties of 
the “dot-bust” of 2000–2001 was WebVan, a company 
that sold and delivered groceries directly to consumer’s 
homes.

While the bursting of the “dot-com bubble” was pain-
ful to investors, entrepreneurs, and workers, recovery 
was soon underway. The recovery was aided by the steady 
growth of Internet users (particularly those with broad-
band connections), innovative software for interacting with 
consumers and analyzing transaction information, and the 
coming of age of a generation that had virtually grown up 
online.

Today e-commerce is a steadily growing sector, and it is 
increasingly international, fed by nearly 1.5 billion Internet 
users worldwide. (China, with more than 250 million Web 
users, has become the world’s largest online market.)

Meanwhile in the United States in 2007 total consumer 
retail sales on the Internet reached $136 billion, up nearly 
20 percent over the previous year. According to a report 
from Forrester Research, online retail revenues (excluding 
travel-related services) will pass $250 billion by 2011. Sur-
veys show that about 80 percent of American Internet users 
have bought something online, while many users who buy 
products off-line originally searched for information about 
them online.

The most popular e-commerce sectors today include the 
selling of books, music and movies, travel-related services, 
electronics, clothing, luxury goods, and medications. (In 
2006, online buyers actually spent more money on cloth-
ing than on computers and related products.) A number 
of other online activities can be considered part of e-com-
merce, although they are usually not included in retail-
ing statistics (see auctions, online; online gambling; 
online games; and social networking).

Infrastructure
Successful e-commerce depends on a complex array of ser-
vices, facilities, and software. For marketing and consumer 
communications, see online advertising and customer 
relationship management. Behind the scenes, trans-
action data is constantly being collected and analyzed to 
determine the success of the marketing program and to 
“personalize” the customer experience and allow for tar-
geted marketing (see cookies and data mining).

The actual transaction processing requires shopping 
cart software and a connection to the credit card processing 
infrastructure (see digital cash). Specialized forms of sell-
ing require additional software and support systems (see, 
for example, auctions, online). An ongoing e-business 
must also deal with functions shared by “brick and mortar” 
(traditional) stores: inventory control, ordering from sup-
pliers (see supply chain management), taxes, payroll, and 
so on. The broader e-commerce sector also includes busi-
nesses that do not target consumers but, rather, the needs 
of business itself—so-called business to business or B2B.

Security and Privacy
One continuing obstacle to the growth of e-commerce has 
been consumers’ concerns about the theft or misuse of per-
sonal information gathered as part of the shopping process. 
This can involve either fake Web sites (see phishing and 
spoofing) or legitimate businesses that sell information 
about customers without their knowledge or consent (see 
privacy in the digital age). According to a report from 
Gartner Research, more than $900 million in e-commerce 
sales during 2006 was lost because of consumers’ security 
concerns, and about a billion dollars more in sales was lost 
because customers decided not to buy online at all.

Trends
E-commerce is maturing even as it continues to evolve. 
Some trends in the second half of the 2000 decade reflect 
changes in what is presented to the consumer, how it is 
delivered, and how users can participate in ways other than 
simply viewing content and selecting products:
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• � delivery of richer and more interactive multimedia 
experience, catering to the widespread availability of 
broadband connections

• � integration of marketing using programming inter-
faces (see mashups) with popular online services 
such as Google Maps, online game worlds, and social 
networking sites (see online games and social net-
working)

• � increasing participation of consumers in develop-
ing the quality of the shopping experience, such as 
through user product reviews and blogs (see user-
created content)

• � increased emphasis on serving rapidly growing for-
eign markets, such as India and China

• � the spread of e-commerce to new mobile platforms 
(see pda and smartphone)
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education and computers
Computers are widely used in educational institutions from 
elementary school to college. While computers have had as 
yet little impact on the structure or organization of schools, 
educational software and the use of the Internet has had a 
growing impact on how education is delivered.

History
During the 1950s and early 1960s, computer resources were 
generally too scarce, expensive, and cumbersome to be used 
for teaching, although universities aspired to have comput-
ers to aid their graduate and faculty researchers. However, 
during the 1960s computer engineers and educators at the 
Computer-based Education Research Laboratory at the Uni-
versity of Illinois, Urbana, formed a unique collaboration 
and designed a computer system called PLATO. The PLATO 
system used mainframe computers to deliver instructional 
content to up to 1,000 simultaneous users at terminals 
throughout the University of Illinois and other educational 
institutions in the state. PLATO pioneered the interactive 
approach to instruction and the use of graphics in addition 
to text. The PLATO system was later marketed by Con-
trol Data Corporation (CDC) for use elsewhere. During this 
time Stanford University also set up a system for deliver-
ing computer-assisted instruction (CAI) to users connected 
to terminals throughout the nation. (See computer-aided 
instruction.)

By the early 1980s, microcomputers had become rela-
tively affordable and capable of running significant edu-
cational software including graphics. Apple Computer’s 
Apple II became an early leader in the school market, and 
the introduction of the Macintosh in 1984 with the Hyper-
card scripting language inspired many teachers and other 
enthusiasts to create their own educational software. By 
the early 1990s, IBM compatible PCs with Windows were 
catching up. Commercially available computer games 
(such as Civilization or Railroad Tycoon) also offered ways 
to enrich social studies and other classes (see computer 
games).

The advent of the World Wide Web and graphical Web 
browsing in the mid-1990s spurred schools to connect to 
the Internet. The Web offered the opportunity for educa-
tors to create resources that could be accessed by col-
leagues and students anywhere in the world. The use of 
Web portals such as Yahoo!, library catalogs, and online 
encyclopedias gave teachers and students potential access 
to a far greater variety of information than could pos-
sibly be found in textbooks. The Web also offered the 
opportunity for students at different schools to participate 
in collaborative projects, such as community surveys or 
environmental studies.

E-commerce involves far more than just advertising and selling 
goods and services. In a typical e-commerce system a “shopping 
cart” records consumers’ selections. The items ordered must be 
processed against inventory and prepared for shipping. Mean-
while, information about the user’s selections and viewing is fed 
into a database from which patterns of consumer behavior can be 
extracted. Some techniques of information gathering raise privacy 
concerns, however.
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Applications
Educational applications of computing can be divided into 
several categories, as summarized in the following table.

While small compared to the business market, the 
educational software industry is a significant market, tar-
geting both schools and parents seeking to improve their 
children’s academic performance. However, the educational 
use of computers extends far beyond specialized software. 
Schools are in effect a major industry in themselves, requir-
ing much of the same support software as large businesses.

Trends
The growth of the World Wide Web has led to some shift 
of emphasis away from stand-alone, CD-ROM based appli-
cations running on local PCs or networks. Educators are 
excited about the possibilities for online collaboration. 
Public concern about children achieving an adequate level 
of technical skill (see computer literacy) has fueled an 
increasing commitment of funds for computer hardware, 
software, and networking for schools.

Some visionaries speak of a 21st-century “virtual school” 
that has no classroom in the conventional sense, but uses 
the Internet and conferencing software to bring teachers 
and students together. While there has been only limited 
experimentation in creating virtual secondary schools, 
thousands of university courses are now offered online, and 
many degree programs are now available. Some institutions 
such as the University of Phoenix have made such “distance 
learning” a core part of their growth strategy.

Several factors have caused other observers to have mis-
givings about the rush to get schools onto the “information 
superhighway.” Many schools lack adequate physical facili-
ties and teacher training. Under those circumstances other 
priorities might deserve precedence over the installation of 
technology that may not be effectively utilized. At the same 
time, the lagging in access to technology by minorities and 
the poor may suggest that schools must play a significant 
role in providing such access and enabling the coming gen-
eration to catch up (see digital divide).

The debate over how best to use technology in the 
schools also reflects fundamental theories about teaching 
and learning. Critics of information technology such as 
Clifford Stoll (see Stoll, Clifford) have reacted against 
the mechanical, rote nature of much educational software. 
They also decry the hype of some advocates who have sug-
gested technology as a panacea for the problems of low 
performance, poor motivation, and lack of accountability in 
many schools.

Some advocates of computer use agree with the criticism 
of uncreative and poorly planned “e-learning” programs, 
but argue that the answer is to use technology that helps 
good teachers unlock creativity. For example, Seymour Pap-
ert and his LOGO language are based on “constructivist” 
principles where students learn through doing (see Papert, 
Seymour and logo). From this point of view, “computer 
literacy” should not be a focus in itself, but one outcome 
of a program that creates literate and capable learners (see 
computer literacy.)

Application Area	U sers	E xamples

Computer-aided 	 Generally high school and up	 Course modules for science, social studies, etc. Students  
instruction (CAI)		�  evaluated and materials presented on the basis of student perfor-

mance (see computer-aided instruction).
Drill-and-practice	 Elementary school students	� Sets of math problems, geography quizzes, etc. Sounds or graph-

ics used for reward for correct answers.
Online collaborative 	 Elementary and high school 	 Students from different schools use e-mail or chat to coordinate a 
learning	 students	� project, such as creating a Web site about local environmental 

issues.
Online classes	 Mainly college and adults	� Students participate remotely through videoconferencing, chat, 

e-mail, etc. (see distance education).
Educational 	 Junior high and older students	 Gamelike programs that simulate real-world problems, such as  
simulations 		�  managing a city to investing in the stock market. Often commer-

cially available games can be used.
Reference and 	 Elementary and older students	 Online encyclopedias and knowledge bases (see also wikis and 
resources		�  Wikipedia); specialized references on CD-ROM or DVD; online 

reference and bibliographical databases; library catalogs; and 
Web site of universities, museums, and government agencies.

General software 	 Students and teachers	 Use of general-purpose software such as word processors,  
applications		�  publishing, or presentation programs for creating class projects 

and reports. Also use of e-mail, chat, and blogs for collaboration 
and after-hours communication between students and teachers.

Administrative 	 Teachers and administrators	 Use of specialized or general-purpose software to maintain 
applications		�  attendance, grades, and other class and school administration 

functions.
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education in the computer field
Education and training in computer-related fields runs the 
gamut from courses in basic computer concepts in adult 
education or junior college programs to postgraduate pro-
grams in computer science and engineering. Curricula can 
be roughly divided into the following areas

• � computer literacy and applications

• � computer science

• � information systems

Computer Literacy and Applications
There is a general consensus that basic knowledge of com-
puter terminology and mastery of widely used types of soft-
ware will be essential for a growing number of occupations 
(see computer literacy). The elementary and junior high 
school curriculum now generally includes computer classes 
or “labs” where students learn the basics of word process-
ing, spreadsheets, databases, graphics software, and use 
of the World Wide Web. There may also be introductory 
courses in programming, usually featuring easy-to-use pro-
gramming languages such as Logo or BASIC.

Some high schools offer a track geared toward prepara-
tion for college studies in computer science. This track may 
include courses in more advanced languages such as C++ or 
Java. Because of public interest and marketability, courses in 
graphics (such as use of Adobe Photoshop), multimedia, and 
Web design are also increasingly popular. Adult education 
and community college programs feature a similar range of 
courses. Many of today’s adult workers went to school at a 
time when personal computers were not readily available and 
computer literacy was not generally emphasized. The career 
prospects of many older workers are thus increasingly lim-
ited if they don’t receive training in basic computer skills.

Technical or vocational schools offer tightly focused pro-
grams that are geared toward providing a set of marketable 

skills, often in conjunction with gaining industry certifica-
tions (see certification of computer professionals).

Computer Science
In the early 1950s, knowledge of computing tended to have 
an ad hoc nature. On the practical level, computing staffs 
tended to train newcomers in the specific hardware and 
machine-level programming languages in use at a particu-
lar site. On the theoretical level, programmers in scientific 
fields were likely to come from a background in electronics, 
electrical engineering, or similar disciplines.

As it became clear that computers were going to play an 
increasingly important role, courses specific to computing 
were added to curricula in mathematics and engineering. 
By the late 1950s, however, leading people in the comput-
ing field had become convinced that a formal curriculum in 
computer science was necessary for further advance in an 
increasingly sophisticated computing arena (see computer 
science). By the early 1960s, efforts at the University of 
Michigan, University of Houston, Stanford, and other insti-
tutions had resulted in the creation of separate graduate 
departments of computer science. By the mid-1960s, the 
National Academy of Sciences and the President’s Science 
Advisory Committee had both called for a major expan-
sion of efforts in computer science education to be aided by 
federal funding. During the 1970s and 1980s, mathemati-
cal and engineering societies (in particular the Association 
for Computing Machinery (ACM) and Institute for Electri-
cal and Electronic Engineering (IEEE) worked to estab-
lished detailed computer science curricula that extended 
to undergraduate study. By 2000, there were 155 accredited 
programs in computer science in the United States.

Information Systems
The traditional computer science curriculum emphasizes 
theoretical matters such as algorithm and program design 
and computer architecture. Hiring managers in corpo-
rate information systems departments have observed that 
computer science graduates often have little experience in 
such practical considerations as systems analysis, or the 
designing of computer systems to meet business require-
ments. There has also been an increasing need for systems 
administrators, database administrators, and networking 
professionals who are well versed in the management and 
maintenance of particular systems.

In response to demand from industry, many universi-
ties have instituted degree programs in information sys-
tems (sometimes called MIS or Management Information 
Systems) as an alternative to computer science. While these 
programs include some study of theory, they focus on prac-
tical considerations and often include internships or other 
practical work experience. Some programs offer more ambi-
tious students a dual track leading to an MBA.

Challenges
There has always been a gap between the emphases in com-
puter and information science programs and the needs of 
a rapidly changing marketplace. However, additional chal-
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lenges face education in the computer field today. The num-
ber of undergraduate computer science degrees awarded in 
Ph.D.-granting universities in the United States has steadily 
declined since 2000. In part this may be a delayed reaction 
to the decline in employment of programmers early in the 
decade (due to the bursting of the “dot-com bubble”) that has 
since leveled off but has not significantly grown (see employ-
ment in the computer field). This, together with the out-
sourcing of many jobs (see globalism and the computer 
industry) may have in turn discouraged young people from 
entering the field.

At the same time, many observers insist that prospects 
are good for educators and students who can target emerg-
ing high-demand skills. These include areas such as com-
puter security, data mining, bioinformatics, Web content 
management, and even aspects of business management. 
Educators will be challenged to strike a balance between a 
comprehensive treatment of concepts that have many poten-
tial applications and the need to provide specific skills that 
are in demand in the market.
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e-government
Just as the way business is organized and conducted has 
been profoundly changed by information and communica-
tions technology, the operation of government at all levels 
has been similarly affected. The term e-government (or elec-
tronic government) is a way of looking at these changes as 
a whole and of considering how government uses (or might 
use) various computer applications.

The use of information technology in government can 
involve changes in the organization and internal commu-
nications of government departments, changes in how ser-
vices are delivered to the public, and providing new ways 
for the public to interact with the agency.

Internally, government agencies have many of the same 
information management and sharing needs as private 
enterprises (see data mining, database administration, 

e-mail, groupware, personal information manager, 
and project management software). However, govern-
ment agencies are likely to have to adapt their information 
systems to account for complex, specialized regulations 
(both those the agency administers and others it is subject 
to). The standards of openness and accountability are gen-
erally different from and stricter than those that apply to 
private organizations.

A major focus of e-government is in expanding agencies’ 
presence on the Web and making government sites more 
useful. This can include providing summaries of regulations 
or other complicated information, offering online assis-
tance, allowing filing of tax or other forms electronically, 
and helping with applications such as for Social Security or 
Medicare. Where applicants must physically visit the office, 
a computerized system can make it easy to make appoint-
ments to reduce time waiting in line (a welcome option now 
offered by many state departments of motor vehicles).

Implementation
Obtaining employees with the necessary skills for maintain-
ing sophisticated information systems and modern dynamic 
Web sites is not easy. The government hiring process tends 
to be cumbersome and slow to respond to changing needs. 
Government must often compete with a private sector that 
is willing to pay high prices for top talent.

In many cases, adopting comprehensive e-government 
would require a rethinking of an agency’s purpose and pri-
orities. There is also a tension between the Web culture, 
which focuses on linking information across conventional 
boundaries, and the tendency of bureaucracies to compart-
mentalize and centrally control information. Nevertheless, 
even without fundamentally restructuring how agencies 
operate, there has been considerable success with bringing 
information to the public through a central portal (USA.
gov, formerly FirstGov).

Once a service is offered, it has to be promoted. While 
some services (such as “e-filing” of tax returns) can be read-
ily promoted for their convenience, other services are more 
obscure or may be of interest only to a narrow constituency.

Social and Political Impact
A survey by the Hart-Teeter poll found that respondents 
considered the most important potential benefit of e-gov-
ernment to be greater government accountability; the 
second was greater access to information; and, perhaps sur-
prisingly, convenience came third.

One criticism of e-government initiatives is that they 
often lack central coordination and may be implemented 
without keeping in mind the need of an agency to provide 
uniform, consistent, and impartial treatment to all citizens. 
For example, if an agency focuses its resources on develop-
ing its Web site, people who lack online access may come 
to feel that they are receiving “second class” service (see 
digital divide). This is particularly unfortunate because 
the unconnected people are likely to be in poor and isolated 
communities that are most likely to be in need of govern-
ment services.
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As with private enterprise, there can also be important 
online privacy issues. Information that has been collected 
digitally is easy to transfer to other agencies or even (as in 
the case of DMV information in some states) sold to private 
companies. Having a clearly spelled-out privacy policy is 
crucial.

Besides keeping private what people expect to be pri-
vate, government agencies must also provide information 
that helps ensure public accountability. Information col-
lected by government agencies is often subject to the Free-
dom of Information Act (FOIA). This may require that data 
be provided in a format that is readily accessible.
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Eiffel
Eiffel is an interesting programming language developed 
by Bertrand Meyer and his company Eiffel Software in the 
1980s. The language was named for Gustav Eiffel, the archi-
tect who designed the famous tower in Paris. The language 
and accompanying methodology attracted considerable 
interest at software engineering conferences.

Eiffel fully supports (and in some ways pioneered) pro-
gramming concepts found in more widely used languages 
today (see class and object-oriented programming). Syn-
tactically, Eiffel emphasizes simple, reusable declarations that 
make the program easier to understand, and tries to avoid 
obscure or lower-level code such as compiler optimizations.

Program Structure
An Eiffel program is called a “system,” emphasizing its 
structure as a set of classes that represent the types of real-
world data that need to be processed. A simple class might 
look like this:

class
COUNTER

feature—access counter value
total: INTEGER

feature—manipulate counter value
increment is—increase counter by one

do
total :- total + 1

end
decrement is—decrease counter by one

do
total := total - 1

end
reset is—reset counter to zero

do
total := 0

end
end

(In this listing language, keywords are in bold and user-
defined objects are in italics. This formatting will be done 
automatically as the user enters the text.) Once the class is 
defined, making an instance of it is very simple:

my_counter COUNTER

create my_counter	

The Eiffel compiler itself compiles to an intermediate 
“bytecode” that, in the final stage, is compiled into C, taking 
advantage of the ready availability of optimized C compilers.

A unique feature of Eiffel is the ability to set up “con-
tracts” that specify in detail how classes will interact with 
one another. (This goes well beyond the usual declarations 
of parameters and enforcement of data types.) For example, 
with the COUNTER class an “invariant” can be declared 
such that total >= 0. This means that this condition must 
always remain true no matter what. A method can also 
require that the caller meet certain conditions. After pro-
cessing and before returning to the caller, the method can 
ensure that a particular condition is true. The point of these 
specifications is that they make explicit what a given unit of 
code expects and what it promises to do in return. This can 
also improve program documentation.

Implementation and Uses
Eiffel’s proponents note that it is more than a language: It 
is designed to provide consistent ways to revise and reuse 
program components throughout the software development 
cycle. The current implementation of Eiffel is available for 
virtually all platforms and has interfaces to C, C++, and 
other languages. This allows Eiffel to be used to create a 
design framework for reusing existing software components 
in other languages. Eiffel’s consistent object-oriented design 
also makes it useful for documenting or modeling software 
projects (see modeling languages).

Eiffel was developed around the same time as C++. Eiffel 
is arguably cleaner and superior in design to the latter lan-
guage. However, two factors led to the dominance of C++: 
the ready availability of inexpensive or free compilers and 
the existence of thousands of programmers who already 
knew C. Eiffel ended up being a niche language used for 
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teaching software design and for a limited number of com-
mercial applications using the EiffelStudio programming 
environment.

Eiffel has been recognized for its contributions to the 
development of object-oriented software design, most 
recently by the Association for Computing Machinery’s 
2006 Software System Award for Impact on Software 
Quality.
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Electronic Arts
Electronic Arts (NASDAQ symbol: ERTS) is a pioneering 
and still prominent maker of games for personal computers 
(see computer games). Its fortunes largely mirror those of 
the game industry itself.

In 1982 Trip Hawkins and several colleagues left Apple 
Computer and founded a company called Amazin’ Soft-
ware. The company was founded with the goal of making 
“software that makes a personal computer worth owning.” 
Hawkins also had an ambitious goal of turning it into a bil-
lion-dollar company, but this goal would not be achieved 
until the mid-1990s. Meanwhile, after considerable internal 
debate, the company changed its name to Electronic Arts in 
late 1982. This name reflects Hawkins’s belief that computer 
games were an emerging art form and that their developers 
should be respected as artists. This would be reflected in 
game box covers that looked like record jackets and promi-
nently featured the names of the developers.

In 1983 EA published three games for the Atari 800 
computer that typified playability and diversity. Archon 
combined chesslike strategy with arcade-style battles; Pin-
ball Construction Set let users create and play their own 
layouts; and the unique M.U.L.E. was a deceptively simple 
game of strategic resources—and one of the first multi-
player video games. EA titles published in the later 1980s 
include an exploration game Seven Cities of Gold, the graph-
ically innovative space conquest game Starflight, and the 
role-playing series The Bard’s Tale.

In its early years the company published games devel-
oped by independent programmers, but in the late 1980s 
it began to develop some games in house. EA sought out 
innovative games and promoted them directly to retailers. 
While it was difficult at first to market often-obscure games 
to stores, as the games became successful and regular retail 

channels were established, EA’s revenue began to outpace 
that of competitors. (Hawkins left in 1991 to found the 
game company 3DO.)

Challenges and Criticism
By the 2000s EA, now under Larry Probst, had suffered 
loss of its once-dominant position in what had become 
an increasingly diverse industry. EA was criticized by 
some investment analysts for declining to follow the 
trend toward ultraviolent, M-rated games such as Grand 
Theft Auto, though the company later softened that stand. 
In recent years the company’s big sellers have been its 
graphically intense and realistic sports simulations, nota-
bly John Madden Football. (Besides the NFL, EA has con-
tracts with NASCAR, FIFA [soccer], and the PGA and 
Tiger Woods.)

In 2007 EA announced that it would come out with 
Macintosh versions of many of its top titles. However, crit-
ics have noted that the company seems to be publishing 
fewer original titles in favor of yearly updates (particularly 
in their sports franchises).

Along with much of the game industry, EA has increas-
ingly focused on console games (see game console). EA 
currently develops games for the leading consoles; in fact, 
about 43 percent of EA’s 2005 revenue came from sales 
for the Sony PlayStation2 alone. (Total revenue in 2008 
was $4.02 billion.) EA has also been expanding into online 
games, starting in 2002 with an online version of The Sims, 
a “daily life simulator.” (See online games.)

Some critics have objected to EA’s practice of buying 
smaller companies in order to get control over their popu-
lar games, and then releasing versions that had not been 
properly tested. Perhaps the most-cited example is EA’s 
acquiring of Origin Systems and its famous Ultima series of 
role-playing games. Once acquired, EA produced two new 
titles in the series that many gamers consider to not be up 
to the Ultima standard.

The company has also been criticized for requiring very 
long work hours from developers; it eventually settled suits 
from game artists and programmers demanding compensa-
tion for unpaid overtime.

EA has shown continuing interest in promoting the pro-
fession of game development. In 2004 the company made 
a significant donation toward the development of a game 
design and production program at the University of South-
ern California.

Meanwhile, founder Hawkins has founded a company 
called Digital Chocolate, focusing on games for mobile 
devices.
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electronic voting systems
There are a variety of ways to electronically register, store, 
and process votes. In recent years older manual systems 
(paper ballots or mechanical voting machines) have been 
replaced in many areas with systems ranging from purely 
digital (touch screens) to hybrid systems where marked 
paper ballots are scanned and tabulated by machine. How-
ever, voting systems have been subject to considerable con-
troversy, particularly following the Florida debacle in the 
2000 U.S. presidential election.

The criteria by which voting systems are evaluated 
include:

• � how easy it is for the voter to understand and use the 
system

• � accessibility for disabled persons

• � whether the voter’s intentions are accurately recorded

• � the ability to make a permanent record of the vote

• � prevention of tampering (physical or electronic)

• � provisions for independent auditing of the votes in 
case of dispute

The degree to which a given system meets these criteria 
can vary considerably because of both design and imple-
mentation issues.

Early Systems
The earliest form of voting system consisted of paper ballots 
marked and tabulated entirely by hand. The first generation 
of “automatic” voting systems involved mechanical voting 
machines (where votes were registered by pulling levers). 
Next came two types of hybrid systems where votes were 
cast mechanically but tabulated automatically. These sys-
tems used punch cards (see punched cards and paper 
tape) or “marksense” or similar systems where the voter 
filled in little squares and the ballots were then scanned 
and tabulated automatically.

The ultraclose and highly disputed 2000 U.S. presiden-
tial election “stress-tested” voting systems that most people 
had previously believed were reasonably accurate. The prin-
cipal problems were the interpretation of punch cards that 
were not properly punched through (so-called dimpled or 
hanging chads) and the fact that some ballot layouts proved 
to be confusing or ambiguous. Two types of voting systems 
have been proposed as replacements for the problematic 
earlier technology.

Touchscreen
This type of system uses a screen display that can be 
directly manipulated by the voter (see touchscreen). In 
the most common type, called DRE (direct-recording elec-
tronic), a computer program interprets and tabulates the 
vote as it is cast, storing an image in a removable memory 
unit and (usually) printing out a copy for backup. After vot-
ing is complete, the memory module can be sent to the cen-
tral counting office. (Alternatively, votes can be transmitted 
over a computer network in batches throughout the day.) 
In a few cases, voting has also been implemented through 
secure Internet sites.

Optical Scan
Concern about potential tampering with computers has led 
many jurisdictions to begin to replace touchscreen systems 
with optical-scan systems, where the voter marks a sturdy 
paper ballot. (About half of U.S. counties now use opti-
cal-scan systems.) The advantage of optical systems is that 
the voter physically marks the ballot and can see how he 
or she has voted, and after tabulation the physical ballots 
are available for review in case of problems. However, opti-
cal-scan ballots must be properly marked using the correct 
type of pencil, or they may not be read correctly. Unlike the 
touchscreen, it is not possible to give the voter immediate 
feedback so that any errors can be corrected. Optical-ballot 
systems may cost more because of paper and printing costs 
for the ballots, which may have to be prepared in several 

There are several types of electronic voting systems, such as this box 
that automatically tallies specially marked ballots. Common concerns 
include the potential for tampering and the need to provide for inde-
pendent verification of results.  (Lisa McDonald/istockphoto)
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languages. However this cost may be offset by not having to 
develop or validate the more complicated software needed 
for all-electronic systems.

Whatever system is used, federal law requires that visu-
ally or otherwise disabled persons be given the opportu-
nity, wherever possible, to cast their own vote in privacy. 
With optical-scan ballots, this is accommodated with a spe-
cial device that plays an audio file listing the candidates 
for each race, with the voter pressing a button to mark 
the choice. However, disability rights advocates have com-
plained that existing systems still require that another per-
son physically insert the marked ballot into the scanner. 
Touchscreen systems, however, with the aid of audio cues, 
can be used by visually disabled persons without the need 
for another person to be present. They are thus preferred by 
some advocates for the disabled.	

Reforms and Issues
In response to the problems with the 2000 election, Con-
gress passed the Help America Vote Act in 2002. Since then, 
the federal government has spent more than $3 billion to 
help states replace older voting systems—in many cases 
with touchscreen systems.

The biggest concern raised about electronic voting sys-
tems is that they, like other computer systems, may be sus-
ceptible to hacking or manipulation by dishonest officials. 
In 2007 teams of researchers at the University of Califor-
nia–Davis were invited by the state to try to hack into its 
voting systems. For the test, the researchers were provided 
with full access to the source code and documentation for 
the systems, as well as physical access. The hacking teams 
were able to break into and compromise every type of vot-
ing system tested. In their report, the researchers outlined 
what they claimed to be surprisingly weak electronic and 
physical security, including flaws that could allow hackers 
to introduce computer viruses and take over control of the 
systems.

Manufacturers and other defenders of the technology 
have argued that the testing was unrealistic and that real-
world hackers would not have had nearly as much informa-
tion about or access to the systems. (This may underestimate 
the resourcefulness of hackers, as shown with other sys-
tems, such as the phone system and computer networks.)

Another issue is who will be responsible for indepen-
dently reviewing the programming (source) code for each 
system to verify that it does not contain flaws. Manufactur-
ers generally resist such review, considering the source code 
to be proprietary. (A possible alternative might be an open-
source voting system. Advocates of open-source software 
argue that it is safer precisely because it is open to scrutiny 
and testing—see open-source movement.)

One common response to these security concerns is to 
require that all systems generate paper records that can be 
verified and audited. Some defenders of existing technol-
ogy say that adding a parallel paper system is unnecessarily 
expensive and introduces other problems such as printer 
failures. They argue that all-electronic systems can be made 
safer and more secure, such as through the use of encryp-
tion. (A proposed compromise would be for the machine to 

print out a simple receipt with a code that the voter could 
use to verify online that the vote was tabulated.)

As of 2007, 28 states had passed laws requiring that vot-
ing systems produce some sort of paper receipt or record 
that shows the voter what has been voted and that can be 
used later for an independent audit or recount,

Although control of elections is primarily a state or local 
responsibility, the federal government does have jurisdic-
tion over elections for federal office. As a practical matter, 
any changes in voting technology or procedures mandated 
by Congress for federal elections will end up being used in 
local elections as well.

In 2007, congressional leaders decided not to require a 
major overhaul of the nation’s election systems until at least 
2012. However, the inclusion of some sort of paper record is 
being mandated for the 2008 election. For users of touch-
screen systems, the simplest way to accommodate this is to 
add small paper-spool printers, but some states have com-
plained that their systems would require more-expensive 
accommodations.

Meanwhile, a lively debate continues in many states and 
other jurisdictions about how to meet the need for accessi-
ble but secure voting systems without breaking the budget.
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e-mail
Electronic mail is perhaps the most ubiquitous computer 
application in use today. E-mail can be defined as the send-
ing of a message to one or more individuals via a computer 
connection.

Development and Architecture
The simplest form of e-mail began in the 1960s as a way that 
users on a time-sharing computer system could post and 
read messages. The messages consisted of text in a file that 
was accessible to all users. A user could simply log into the 
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system, open the file, and look for messages. In 1971, how-
ever, the ARPANET (ancestor of the Internet—see inter-
net) was used by researchers at Bolt Beranek and Newman 
(BBN) to send messages from a user at one computer to a 
user at another. The availability of e-mail helped fuel the 
growth of the ARPANET through the 1970s and beyond.

As e-mail use increased and new features were devel-
oped, the question of a standardized protocol for messages 
became more important. By the mid-1980s, the world of 
e-mail was rather fragmented, much like the situation in 
the early history of the telephone, where users often had to 
choose between two or more incompatible systems. Apranet 
(or Internet) users used SMTP (Simple Mail Transport Pro-
tocol) while a competing standard (OSI MHS, or Message 
Handling System) also had its supporters. Meanwhile, the 
development of consumer-oriented online services such as 
CompuServe and America Online threatened a further bal-
kanization of e-mail access, though systems called gateways 
were developed to transport messages from one system to 
another.

By the mid-1990s, however, the nearly universal adop-
tion of the Internet and its TCP/IP protocol had established 
SMTP and the ubiquitous Sendmail mail transport program 
as a uniform infrastructure for e-mail. The extension of the 
Internet protocol to the creation of intranets has largely 
eliminated the use of proprietary corporate e-mail systems. 

Instead, companies such as Microsoft and Google compete 
to offer full-featured e-mail programs that include group-
oriented features such as task lists and scheduling (see also 
personal information manager).

E-mail Trends
The integration of e-mail with HTML for Web-style for-
matting and MIME (for attaching graphics and multime-
dia files) has greatly increased the richness and utility of 
the e-mail experience. E-mail is now routinely used within 
organizations to distribute documents and other resources. 
However, the addition of capabilities has also opened secu-
rity vulnerabilities. For example, Microsoft Windows and 
the popular Microsoft Outlook e-mail client together pro-
vide the ability to run programs (scripts) directly from 
attachments (files associated with e-mail messages). This 
means that it is easy to create a virus program that will run 
when an enticing-looking attachment is opened. The virus 
can then find the user’s mailbox and mail copies of itself to 
the people found there. E-mail has thus replaced the floppy 
disk as the preferred medium for such mischief. (See com-
puter virus.)

Beyond security issues, e-mail is having considerable 
social and economic impact. E-mail has largely replaced 
postal mail (and even long-distance phone calls) as a way 
for friends and relatives to keep in touch. As more com-
panies begin to use e-mail for providing routine bills and 
statements, government-run postal systems are seeing their 
first-class mail revenue drop considerably. Despite the risk 
of viruses or deception and the annoyance of electronic 
junk mail (see spam), e-mail has become as much a part of 
our way of life as the automobile and the telephone.
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embedded system
When people think of a computer, they generally think of 
a general-purpose computing system housed in a separate 
box, for use on the desk or as a laptop or hand-held device. 
However, the personal computer and its cousins are only the 
surface of a hidden web of computing capability that reaches 
deep into numerous devices used in our daily lives. Modern 
cars, for example, often contain several specialized computer 
systems that monitor fuel injection or enhance the car’s grip 
on the road under changing conditions. Many kitchen appli-
ances such as microwaves, dishwashers, and even toasters 
contain their own computer chips. Communications sys-
tems ranging from cell phones to TV satellite dishes include 
embedded computers. Most important, embedded systems 
are now essential to the operation of critical infrastructure 

Transmission of an e-mail message depends on widely used proto-
cols such as SMTP, which controls message format and processing, 
and POP3, which handles interaction between mail servers and 
client programs. As long as the formats are properly followed, users 
can employ a wide variety of mail programs (agents), and service 
providers can use a variety of mail server programs.
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such as medical monitoring systems and power transmission 
networks. (The potential vulnerability of embedded systems 
to the Y2K date-related problems was a major concern in 
the months leading up to 2000, especially because many 
embedded systems might have to be replaced rather than 
just reprogrammed. In the event, it turned out that there 
were relatively few date-dependent systems and only minor 
disruptions were experienced. See y2k problem.)

Characteristics of Embedded Systems
What most distinguishes an embedded system from a desk-
top computer is not that it is hidden inside some other device, 
but that it runs a single, permanent program whose job it is 
to monitor and respond to the environment in some way. 
For example, an oven controller would accept a user input 
(the desired temperature), monitor a sensor or thermostat, 
and control the heat to ensure that the correct temperature 
is being maintained. Embedded systems are thus similar to 
robots in that they sense and manipulate their environment.

Architecturally, an embedded system typically consists of 
a microprocessor, some nonvolatile memory (memory that can 
maintain its contents indefinitely), sensors (to receive read-
ings from the environment), signal processors (to convert 
inputs into usable information), and “effectuators” (switches 
or other controls that the embedded system can use to change 
its environment). In practice, an embedded system may not 
have its own sensors or effectors, but instead interface with 
other systems (such as avionics or steering).

Programmers of embedded systems often use spe-
cial compilers or languages that are particularly suited 
for creating embedded software (see ada and forth). 

Because available memory is limited, embedded program 
code tends to be compact. Since embedded systems are 
often responsible for critical infrastructure, their operat-
ing programs must be carefully debugged. Designers try 
to make programs “robust” so they can respond sensibly 
to unexpected conditions or at least “fail gracefully” in 
a way least likely to cause damage. Other strategies to 
improve the reliability of embedded systems include the 
use of overdesigned, fault-tolerant components (as in the 
military “milspec”) and the use of separate, redundant 
systems so that a failing system can be “locked out” and 
processing can continue elsewhere.
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employment in the computer field
The number of computer-related positions has grown rap-
idly over the past few decades. According to the U.S. Bureau 
of Labor Statistics, by the mid-1990s the fastest-growing 
professions in the United States included systems analysts, 
computer scientists, and computer engineers. By the mid-
2000s, computer-related occupations were still near the top 
of the list, which by then also included network and com-
munications analysts (second only to “home health aids”).

Computer-related employment can be broken down into 
the following general categories:

• � hardware design and manufacturing, including com-
puter systems, peripherals, communications and net-
work hardware, and other devices

• � the software industry, ranging from business applica-
tions to consumer software, games, and entertainment

• � the administrative sector (systems administration, 
network administration, database administration, 
computer security, and so on)

• � the Web sector, including ISPs, Web hosts and page 
developers, and e-commerce applications

• � the support sector, including training and education, 
computer book publishing, technical support, and 
systems repair and maintenance

In addition to these “pure” computer-related jobs, there 
are many other positions that involve working with PCs. 
These include word processing/desktop publishing, statis-
tics, scientific research, accounting and billing, shipping, 
retail sales and inventory, and manufacturing. (See also 
programming as a profession.)

An embedded system is a computer processor that is part of a 
“real-world” device that must interact with its environment. Sensor 
inputs (such as torque or pressure sensors) provide real-time data 
about conditions faced by the device (such as a vehicle). This data 
is processed by the onboard processor under the control of a per-
manent (ROM) program, and commands are issued to the effector 
controls, which might, for example, apply braking pressure.
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Job Market Considerations
In the late 1990s, a number of sources forecast a growing 
gap between the number of positions opening in computer-
related fields and the number of new people entering the 
job market (estimates of the gap’s size ranged into the hun-
dreds of thousands nationally). Particularly in the Internet 
sector, demand for programmers and system administrators 
meant that new college graduates with basic skills could 
earn unprecedented salaries, while experienced profession-
als could often become highly paid consultants. Despite the 
growing emphasis on computing in secondary and higher 
education, computer science and engineering candidates 
were in particularly short supply. As a result, many com-
panies received permission to hire larger numbers of immi-
grants from countries such as India.

The “dot crash” of 2001–2002 saw a sharp if temporary 
decline in demand for computer professionals, particularly 
in the Web and e-commerce sectors, but it impacted hard-
ware sales as well. The industry then saw a resurgence, but 
with an emphasis on somewhat different skill sets. Skills in 
strong demand toward the end of the 2000 decade include:

• � detection, prevention, and investigation of computer 
attacks (see computer crime and security and com-
puter forensics)

• � improvements in operating system and software 
security

• � use of open-source software and operating systems 
(see open-source movement and Linux)

• � surveillance and physical security (see biometrics)

• � transaction analysis for both security and marketing 
applications (see data mining)

• � e-commerce applications and management (see cus-
tomer relationship management)

• � rapid development of efficient, highly interactive Web 
services (see Ajax, Web 2.0 and beyond, and script-
ing languages)

• � hardware and software for mobile and wireless devices 
(particularly delivery and integration of media)

• � content management for Web sites and media services

• � scientific computing, particularly genetic and biologi-
cal applications (see bioinformatics)

On the other hand, with the successful passing of the 
Y2K crisis, the outlook for mainframe programmers (par-
ticularly using COBOL) is increasingly dim. Prospects are 
also poor for certain operating, network, and database sys-
tems with declining market share (such as OS/2, Novell 
networking, and some older database systems). It is true 
that as baby boomer programmers retire, there will be 
some demand for maintenance or conversion of obsolescent 
systems. Finally, as global trends toward outsourcing and 
relocating of lower-level support and even programming 
continue, it may become harder for domestic workers to 
begin to climb the IT ladder.

Socially, the key challenges that must be met to ensure 
a healthy computer-related job market are the improvement 
of education at all levels (see education and computers) 
and the increasing of ethnic and gender diversity in the 
field (which is related to the fostering of more equal educa-
tional opportunity), and adapting to changes in the global 
economy (see globalism and the computer industry).
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emulation
One consequence of the universal computer concept (see 
von Neumann, John) is that in principle any computer 
can be programmed to imitate the operation of any other. 
An emulator is a program that runs on one computer but 
accurately processes instructions written for another (see 
also microprocessor and assembler). For example, fans 
of older computer games can now download emulation 
programs that allow modern PCs to run games originally 
intended for an Apple II microcomputer or an Atari game 
machine. Emulators allowing Macintosh and Linux users to 
run Windows programs have also achieved some success.

In order to work properly, the emulator must set up a 
sort of virtual model of the target microprocessor, includ-
ing appropriate registers to hold data and instructions and a 
suitably organized segment of memory. While carrying out 
instructions in software rather than in hardware imposes 
a considerable speed penalty, if the processor of the emu-
lating PC is much faster than the one being emulated, the 
emulator can actually run faster than the original machine.

An entire hardware and software environment can also 
be emulated; this is called a virtual machine. For example, 
programs such as VMware can be used to run Windows, 
Linux, and BSD UNIX, each in a separate “compartment” 
that appears to be a complete machine, with all the neces-
sary hardware drivers and emulated facilities.

The term virtual machine can also refer to language such 
as Java, where programs are first compiled into a platform-
independent intermediate “byte code,” which is then run 
by a Java virtual machine that produces the instructions 
needed for a given platform.

In the past, emulation was sometimes used to allow pro-
grammers to develop software for large, expensive main-
frames while using smaller machines. Emulators can also 
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consist of a combination of specially-designed chips and 
software, as in the case of the “IBM 360 on a chip” that 
became available for the IBM PCs.	

The term emulation is also sometimes used to refer to a 
program that accurately simulates the operation of a hard-
ware device. For example, when printers that included 
hardware for processing the PostScript typographical lan-
guage were expensive, programs were developed that could 
process the PostScript instructions in the PC itself and then 
send the output as graphics to a less expensive printer.
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encapsulation
In the earliest programming languages, any part of a pro-
gram could access any other part simply by executing an 
instruction such as “jump” or “goto.” Later, the concept of 
the subroutine helped impose some order by creating rela-
tively self-contained routines that could be “called” from 
the main program. At the time the subroutine is called, it is 
provided with necessary data in the form of global variables 
or (preferably) parameters, which are variable references 
or values passed explicitly when the subroutine is called. 
When the subroutine finishes processing, it may return val-
ues by changing global variables or changing the values of 
variables that were passed as parameters (see procedures 
and functions).

While an improvement over the totally unstructured 
program, the subroutine mechanism has several drawbacks. 
If it is maintained as part of the main program code, one 
programmer may change the subroutine while another pro-
grammer is still expecting it to behave as previously defined. 
If not properly restricted, variables within the subroutine 
might be accessed directly from outside, leading to unpre-
dictable results. To minimize these risks, languages such as 
C and Pascal allow variables to be defined so that they are 
“local”—that is, accessible only from code within the func-
tion or procedure. This is a basic form of encapsulation.

The class mechanism in C++ and other object-oriented 
languages provides a more complete form of encapsulation 
(see object-oriented programming, class, and C++). A 
class generally includes both private data and procedures or 
methods (accessible only from within the class) and public 
methods that make up the interface. Code in the main pro-
gram uses the class interface to create and manipulate new 
objects of that class.

Encapsulation thus both protects code from uncontrolled 
modification or access and hides information (details) that 
programmers who simply want to use functionality don’t 
need to know about. Thus, high-quality classes can be 
designed by experts and marketed to other developers who 

can take advantage of their functionality without having to 
“reinvent the wheel.”
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encryption
The use of encryption to disguise the meanings of messages 
goes back thousands of years (the Romans, for example, 
used substitution ciphers, where each letter in a message 
was replaced with a different letter). Mechanical cipher 
machines first came into general use in the 1930s. Dur-
ing World War II the German Enigma cipher machine 
used multiple rotors and a configurable plugboard to cre-
ate a continuously varying cipher that was thought to be 
unbreakable. However, Allied codebreakers built electrome-
chanical and electronic devices that succeeded in exploiting 
flaws in the German machine (while incidentally advancing 
computing technology). During the cold war Western and 
Soviet cryptographers vied to create increasingly complex 
cryptosystems while deploying more powerful computers 
to decrypt their opponent’s messages.

In the business world, the growing amount of valuable 
and sensitive data being stored and transmitted on comput-
ers by the 1960s led to a need for high-quality commercial 
encryption systems. In 1976, the U.S. National Bureau of 
Standards approved the Data Encryption Standard (DES), 
which originally used a 56-bit key to turn each 64-bit 
chunk of message into a 64-bit encrypted ciphertext. DES 
relies upon the use of a complicated mathematical function 
to create complex permutations within blocks and charac-
ters of text. DES has been implemented on special-purpose 
chips that can encrypt millions of bytes of message per 
second.

Public-Key Cryptography
Traditional cryptosystems such as DES use the same key to 
encrypt and decrypt the message. This means that the key 
must be somehow transmitted to the recipient before the 
latter can decode the message. As a result, security may be 
compromised. However, the same year DES was officially 
adopted, Whitfield Diffie and Martin Hellman proposed a 
very different approach, which became known as public-
key cryptography. In this scheme each user has two keys, a 
private key and a public key. The user publishes his or her 
public key, which enables any interested person to send the 
user an encrypted message that can be decrypted only by 
using the user’s private key, which is kept secret. The sys-
tem is more secure because the private key is never trans-

180        encapsulation



mitted. Further, a user can distribute a message encrypted 
with his or her private key that can be decrypted only with 
the corresponding public key. This provides a sort of signa-
ture for authenticating that a message was in fact created by 
its putative author.

In 1978, Ron Rivest, Adi Shamir, and Leonard Adelman 
announced the first practical implementation of public-key 
cryptography. This algorithm, called RSA, became the pre-
vailing standard in the 1980s. While keys may need to be 
lengthened as computer power increases, RSA is likely to 
remain secure for the foreseeable future.

Legal Challenges
Until the 1990s, the computer power required for routine 
use of encryption was generally beyond the reach of most 
small business and consumer users, and there was little 
interest in a version of the RSA algorithm for microcomput-
ers. Meanwhile, the U.S. federal government tried to main-
tain tight controls over encryption technology, including 
prohibitions on the export of encryption software to many 
foreign countries.

However, the growing use of electronic mail and the 
hosting of commerce on the Internet greatly increased con-
cern about security and the need to implement an easy-to-
use form of encryption. In 1990, Philip Zimmermann wrote 

an RSA-based email encryption program that he called 
Pretty Good Privacy (PGP). However, RSA, Inc. refused to 
grant him the necessary license for its distribution. Further, 
FBI officials and sympathetic members of Congress seemed 
poised to outlaw the use of any form of encryption that did 
not include a provision for government agencies to decode 
messages.

Believing that people’s liberty and privacy were at stake, 
Zimmermann gave copies of PGP to some friends. The pro-
gram soon found its way onto computer bulletin boards, 
and then spread worldwide via Internet newsgroups and 
ftp sites. Zimmermann then developed PGP 2.0, which 
offered stronger encryption and a modular design that 
made it easy to create versions in other languages. The 
U.S. Customs Department investigated the distribution of 
PGP but dropped the investigation in 1996 without bring-
ing charges. (At about the same time a federal judge ruled 
that mathematician Daniel Bernstein had the right to pub-
lish the source code for an encryption algorithm without 
government censorship.)

Government agencies eventually realized that they 
could not halt the spread of PGP and similar programs. In 
the early 1990s, the National Security Agency (NSA), the 
nation’s most secret cryptographic agency, proposed that 
standard encryption be provided to all PC users in the form 
of hardware that became known as the Clipper Chip. How-
ever, the hardware was to include a “back door” that would 
allow government agencies and law enforcement (presum-
ably upon fulfilling legal requirements) to decrypt any mes-
sage. Civil libertarians believed that there was far too much 
potential for abuse in giving the government such power, 
and a vigorous campaign by privacy groups resulted in the 
mandatory Clipper Chip proposal being dropped by the 
mid-1990s in favor of a system called “key escrow.” This 
system would require that a copy of each encryption key 
be deposited with one or more trusted third-party agencies. 
The agencies would be required to divulge the key if pre-
sented with a court order. However, this proposal has been 
met with much the same objections that had been made 
against the Clipper Chip.

In the early 21st century, the balance is likely to con-
tinue to favor the code-makers over the code-breakers. 
While it is rumored that the NSA can use arrays of super-
computers to crack any encrypted message given enough 
time, and a massive eavesdropping system called Echelon 
for analyzing message traffic has been partially revealed, as 
a practical matter most of the world now has access to high-
quality cryptography. Only radically new technology (see 
quantum computing) is likely to reverse this trend.
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Public key encryption allows users to communicate securely with-
out having to exchange their private keys. In part 1, person A 
publishes a public key, which can be used by anyone else (such as 
person B) to encrypt a message that only person A can read. In part 
2, person A encrypts a message with his or her private key. Since 
this message can only be encrypted using person A’s public key, per-
son B can use the published public key to verify that the message is 
indeed from person A.
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Engelbart, Douglas
(1925–  )
American
Computer Engineer

Douglas Engelbart invented key elements of today’s graphi-
cal user interface, including the use of windows, hypertext 
links, and the ubiquitous mouse. Engelbart grew up on 
a small farm near Portland, Oregon, and acquired a keen 
interest in electronics. His electrical engineering studies 
at Oregon State University were interrupted by wartime 
service in the Philippines as a radar technician. During that 
time he read a seminal article by Vannevar Bush entitled 
“As We May Think.” Bush presented a wide-ranging vision 
of an automated, interlinked text system not unlike the 
development that would become hypertext and the World 
Wide Web (see Bush, Vannevar).

After returning to college for his Ph.D. (awarded in 
1955), Engelbart worked for NACA (the predecessor of 
NASA) at the Ames Laboratory. Continuing to be inspired 
by Bush’s vision, Engelbart conceived of a computer dis-
play that would allow the user to visually navigate through 
information displays. Engelbart received his doctorate in 
electrical engineering in 1955 at the University of Califor-
nia, Berkeley, taught there a few years, and then went to 
the Stanford Research Institute (SRI), a hotbed of futur-
istic ideas. In 1962, Engelbart wrote a seminal paper of 
his own, titled “Augmenting Human Intellect: A Concep-
tual Framework.” In this paper Engelbart emphasized the 
computer not as a mere aid to calculation, but as a tool 
that would enable people to better visualize and organize 
complex information to meet the increasing challenges of 
the modern world. The hallmark of Engelbart’s approach 
to computing would continue to be his focus on the central 
role played by the user.

In 1963, Engelbart left SRI and formed his own research 
lab, the Augmentation Research Center. During the 1960s 
and 1970s, he worked on implementing linked text systems 
(see hypertext and hypermedia). In order to help users 
interact with the computer display, he came up with the 
idea of a device that could be moved to control a pointer 
on the screen. Soon called the “mouse,” the device would 
become ubiquitous in the 1980s.

Engelbart also took a key interest in the development 
of the ARPANET (ancestor of the Internet) and adapted his 
NLS hypertext system to help coordinate network develop-
ment. (However, the dominant form of hypertext on the 
Internet would be Tim Berners-Lee’s World Wide Web—(see 
Berners-Lee, Tim.) In 1989, Engelbart founded the Boot-
strap Institute, an organization dedicated to improving the 
collaboration within organizations, and thus their perfor-
mance. During the 1990s, this nurturing of new businesses 
and other organizations would become his primary focus.

Engelbart received the MIT-Lemuelson Award and the 
a.m. Turing Award in 1997 and the National Medal of Tech-
nology in 2000. Public recognition of Engelbart’s work and 
ideas about human-computer interaction was also reflected 
in a Stanford University symposium called “Engelbart’s 
Unfinished Revolution.”
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Engelberger, Joseph
(1925–  )
American
Entrepreneur, Roboticist

Joseph Engelberger and George Devol created the first indus-
trial robot, revolutionizing the assembly line. Engelberger 
went on to develop other robots that can work in hospi-
tals and other settings while tirelessly promoting industrial 
robotics.

Engelberger was born on July 26, 1925, in New York 
City. During World War II he was selected for a special pro-
gram where promising students were paid to study physics 
at Columbia University. Just after the war he worked as 
an engineer on early nuclear tests in the Pacific. He also 
worked on aerospace and nuclear power projects. After com-
pleting his military duties, Engelberger attended Columbia 
University’s School of Engineering and earned B.S. (1946) 
and M.S. degrees in physics and electrical engineering. This 
solid background in science and engineering would shape 
Engelberger’s practical approach to robot design.

A number of technologies of the 1940s and 1950s con-
tributed to the later development of robotics. The war had 
greatly increased the development of automatic controls 
and servomechanisms that allow for precise positioning and 
manipulation of machine parts. The rise of nuclear power 
and the need to safely handle radioactive materials also 
spurred the development of automatic controls. Engelberger 
began to develop business ventures in the automation field, 
starting a company called Consolidated Controls.

In the mid-1950s Engelberger met George Devol, an inven-
tor who had patented a programmable transfer machine. This 
was a device that could automatically move components from 
one specified position to another, such as in a die-casting 
machine that formed parts for automobiles. Engelberger 
realized that Devol’s machine could, with some additional 
extensions and capabilities, become a robot that could be 
programmed to work on an assembly line.

In 1956 Engelberger and Devol founded Unimate, Inc.—
the world’s first industrial robot company. Their robot, 
also called Unimate, is essentially a large “shoulder” and 
arm. The shoulder can move along a track to position the 
arm near the materials to be manipulated. The arm can be 
equipped with a variety of specialized grasping “hands” to 
suit the task. The robot is programmed to perform a set of 
repetitive motions. It is also equipped with various devices 
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for aligning the workpiece (the object to be manipulated) 
and to make small adjustments for variations.

In spring 1961 the first Unimate robot began opera-
tions on the assembly line at the General Motors Plant in 
Turnstedt, a suburb of Trenton, New Jersey. Most of the 
factory’s 3,000 human workers welcomed the newcomer 
because Unimate would be doing a job involving the cast-
ing of car doors and other parts from molten metal—hot, 
dangerous work. That first Unimate worked for nearly 10 
years, tirelessly keeping up with three shifts of human 
workers each day.

In 1980 Engelberger published Robotics in Practice. This 
book, together with Robotics in Service (1988), became a 
standard textbook that defined the growing robotics indus-
try. The two titles also marked a shifting of Engelberger’s 
focus from industrial robots to service robots—robots that 
would do their jobs not in factories, but in workplaces such 
as warehouses or hospitals.

In the 1980s Engelberger founded HelpMate Robotics, 
Inc. The company’s most successful product has been the 
HelpMate robot. The robot is designed to dispatch records, 
laboratory samples, and supplies throughout a busy hos-
pital. HelpMate does not follow a fixed track. Rather, it is 
programmed to visit a succession of areas or stations and 
makes its own way, using cameras to detect and go around 
obstacles. HelpMate can even summon an elevator to go to 
a different floor!

Along with other robotics entrepreneurs, Engelberger 
is also looking toward a time when robots will be able to 
perform a number of useful tasks in the home. In particu-
lar, Engelberger sees great potential for robots in helping 
to care for the growing population of elderly people who 
need assistance in the tasks of daily life. He points out that 
no government or insurance company can afford to hire a 
full-time human assistant to enable older people to con-
tinue to live at home. However, a suitable robot could fetch 
things, remind a person when it is time to take medication, 
and even perform medical monitoring and summon help if 
necessary.

Joseph Engelberger’s achievements in industrial and ser-
vice robotics have won him numerous plaudits and awards 
from the industry. He has also received honorary doctorates 
from five institutions, including Carnegie Mellon University 
in Pittsburgh—one of the great centers of robotics research 
in the United States.

Since 1977, the Robotics Industries Association has pre-
sented the annual Joseph F. Engelberger Award to honor the 
most significant innovators in the science and technology 
of robotics. Engelberger was elected to the National Acad-
emy of Engineering in 1984. He also received the Prog-
ress Award of the Society of Manufacturing Engineers and 
the Leonardo da Vinci Award of the Society of Mechanical 
Engineers, as well as the 1982 American Machinist Award. 
In 1992 Engelberger was included in the London Sunday 
Times series on “The 1000 Makers of the 20th Century.” 
Japan has awarded him the Japan Prize for his key role in 
the establishment of that nation’s thriving robotics indus-
try. In 2000 Engelberger delivered the keynote address to 
the World Automation Congress, which was also dedicated 

to him. In 2004 he received the IEEE Robotics and Automa-
tion Award.
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enterprise computing
This concept refers to the organization of data processing 
and communications across an entire corporation or other 
organization. Historically, computing technology and infra-
structure often developed at different rates in the various 
departments of a corporation. For example, by the 1970s, 
departments such as payroll and accounting were making 
heavy use of electronic data processing (EDP) using main-
frame computers. The introduction of the desktop computer 
in the 1980s often resulted in operations such as marketing, 
corporate communications, and planning being conducted 
using a disparate assortment of software, databases, and 
document repositories. Even the growing use of networking 
often meant that an enterprise had several different net-
works with at best rudimentary intercommunication.

The movement toward enterprise computing, while often 
functioning as a buzzword for the selling of new network-
ing and knowledge management technology, conveys a real 
need both to manage and leverage the growing information 
resources used by a large-scale enterprise. The infrastruc-
ture for enterprise computing is the network, which today 
is increasingly built using Internet protocol (see tcp/ip), 
although legacy networks must often still be supported. 
Enterprise-oriented software uses the client-server model, 
with an important decision being which operating systems 
to support (see client-server computing).

The need for flexibility in making data available across 
the organization is leading to a gradual shift from the older 
relational database (RDBMs) to object-oriented databases 
(OODBMs). One advantage of object-oriented databases is 
that it is more scalable (able to be expanded without run-
ning into bottlenecks) and data can be distributed dynami-
cally to take advantage of available computing resources. 
(An alternative is the central depository. See data ware-
house.) The dynamic use of storage resources is also impor-
tant (see disk array).

The payoffs for a well-integrated enterprise informa-
tion system go beyond efficiency in resource utilization and 
information delivery. If, for example, the marketing depart-
ment has full access to data about sales, the data can be 
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analyzed to identify key features of consumer behavior (see 
data mining).
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entrepreneurs in computing
Much publicity has been given to figures such as Micro-
soft founder and multibillionaire Bill Gates, who turned a 
vest-pocket company selling BASIC language tapes into the 
dominant seller of operating systems and office software for 
PCs. Historically, however, the role of key entrepreneurs in 
the establishment of information technology sectors repeats 
the achievements of such 19th- and early 20th-century 
technology pioneers as Thomas Edison and Henry Ford. 
There appear to be certain times when scientific insight and 
technological capability can be translated into businesses 
that have the potential to transform society while making 
the pioneers wealthy.

Like their counterparts in earlier industrial revolu-
tions, the entrepreneurs who created the modern computer 
industry tend to share certain common features. In posi-
tive terms one can highlight imagination and vision such 
as that which enabled J. Presber Eckert and John Mauchly 
to conceive that the general-purpose electronic computer 
could find an essential place in the business and scientific 
world (see Eckert, J. Presper and Mauchly, John). In 
the software world, observers point to Bill Gates’s intense 
focus and ability to create and market not just an operat-
ing system but also an approach to computing that would 
transform the office (see Gates, William, III). The Internet 
revolution, too, was sparked by both an “intellectual entre-
preneur” such as Tim Berners-Lee, inventor of the World 
Wide Web (see Berners-Lee, Tim) and by Netscape found-
ers Mark Andreessen and Jim Clark, who turned the Web 
browser into an essential tool for interacting with informa-
tion both within and outside of organizations.

While technological innovation is important, the ability 
to create a “social invention”—such as a new vehicle or plan 
for doing business, can be equally telling. At the beginning 
of the 21st century, the World Wide Web, effectively less 
than a decade old, is seeing the struggle of entrepreneurs 
such as Amazon.com’s Jeff Bezos, eBay’s Pierre Omidyar, 
and Yahoo!’s Jerry Yang to expand significant toeholds in 
the marketing of products and information into sustainable 
businesses.

Historically, as industries mature, the pure entrepre-
neur tends to give way to the merely effective CEO. In 
the computer field, however, it is very hard to sort out the 
waves of innovation that seem to follow close upon one 
another. Some sectors, such as the selling of computer sys-
tems (a sector dominated by entrepreneurs such as Michael 

Dell [Dell Computers] and Compaq’s Rod Canion) seem to 
have little remaining scope for innovation. In other sectors, 
such as operating systems (an area generally dominated 
by Microsoft), an innovator such as Linus Torvalds (devel-
oper of Linux) can suddenly emerge as a viable challenger. 
And as for the Internet and e-commerce, it is too early to 
tell whether the pace of innovation has slowed and the 
shakeout now under way will lead to a relatively stable 
landscape. (Note: a number of other biographies of com-
puter entrepreneurs are featured in this book. For example, 
see Andreessen, Marc; Bezos, Jeffrey P.; Engelberger, 
Joseph; Moore, Gordon E.; and Omidyar, Pierre.)
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enumerations and sets
It is sometimes useful to have a data structure that holds 
specific, related data values. For example, if a program is to 
perform a particular action for data pertaining to each day 
of the week, the following Pascal code might be used:

type Day is (Monday, Tuesday, Wednesday, 
Thursday, Friday, Saturday, Sunday)

Such a data type (which is also available in Ada, C, and 
C++) is called an enumeration because it enumerates, or 
“spells out” each and every value that the type can hold.

Once the enumeration is defined, a looping structure 
can be used to process all of its values, as in:

var Today: Day;
for Today: = Monday to Sunday do (some state-
ments)

Pascal, C, and C++ do not allow the same item to be 
used in more than one enumeration in the same name space 
(area of reference). Ada, however, allows for “overloading” 
with multiple uses of the same name. In that case, however, 
the name must be qualified by specifying the enumeration 
to which it belongs, as in:

If Day = Days (‘Monday’) . . .

As far as the compiler is concerned, an enumeration 
value is actually a sequential integer. That is, Monday = 0, 
Tuesday = 1, and so on. Indeed, built-in data types such as 
Boolean are equivalent to enumerations (false = 0, true = 
1) and in a sense the integer type itself is an enumeration 
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consisting of 0, 1, 2, 3, . . . and their negative counterparts. 
Pascal also includes built-in functions to retrieve the pre-
ceding value in the enumeration (pred), the following ele-
ment (succ), or the numeric position of the current element 
(ord).

The main advantage of using explicit enumerations is 
that a constant such as “Monday” is more understandable 
to the program’s reader than the value 0. Enumerations are 
frequently used in C and C++ to specify a limited group 
of items such as flags indicating the state of device or file 
operation.

Unlike most other languages Pascal and Ada also allow 
for the definition of a subrange, which is a sequential por-
tion of a previously defined enumeration. For example, once 
the Day type has been defined, an Ada program can define 
subranges such as:

subtype Weekdays is Days range Monday . . 
Friday;
subtype Weekend is Days range Saturday . . 
Sunday;

Sets
The set type (found only in Pascal and Ada) is similar to an 
enumeration except the order of the items is not significant. 
It is useful for checking to see whether the item being con-
sidered belongs to a defined group. For example, instead of 
a program checking whether a character is a vowel as fol-
lows:

if (char = ‘a’) or (char = ‘e’) or (char = ‘i’)
or (char = ‘o’) or (char = ‘u’) . . .

the program can define:

type Vowels = (a, e, i, o, u);
if char in Vowels . . .

Further Reading
Sebesta, Robert W. Concepts of Programming Languages. 8th ed. 

Boston: Pearson, 2007.

ergonomics of computing
Ergonomics is the study of the “fit” between people and 
their working environment. Because computers are such 
a significant part of the working life of so many people, 
finding ways for people to maximize efficiency and reduce 
health risks associated with computer use is increasingly 
important.

Since the user will be looking at the computer monitor 
for hours on end, it is important that the display be large 
enough to be comfortably readable and that there be enough 
contrast. Glare on the monitor surface should be avoided. 
It is recommended that the monitor be placed so that the 
top line of text is slightly below eye level. A distance of 
about 18 inches to two feet (roughly arm’s length) is recom-
mended. There has been concern about the health effects of 
electromagnetic radiation generated by monitors. Most new 
monitors are designed to have lower emissions.

While the “standard” keyboard has changed little in 
20 years of desktop computing, there have been attempts 
at innovation. One, the Dvorak keyboard, uses an alter-
native arrangement of letters to the standard “QWERTY.” 
Although it is a more logical arrangement from the point of 
view of character frequency, studies have generally failed 
to show sufficient advantage that would compensate for 
the effort of retraining millions of typists. There have also 
been specially shaped “ergonomic” keyboards that attempt 
to bring the keys into a more natural relationship with the 
hand (see keyboard).

The use of a padded wrist rest remains controversial. 
While some experts believe it may reduce strain on the arm 
and neck, others believe it can contribute to Carpal Tunnel 
Syndrome. This injury, one of the most serious repetitive 
stress injuries (RSIs), is caused by compression of a nerve 
within the wrist and hand.

Because of reliance on the mouse in many applications, 
experts suggest selecting a mouse that comfortably fits the 
hand, with the buttons falling “naturally” under the fingers. 
When moving the mouse, the forearm, wrist, and fingers 
should be kept straight (that is, in line with the mouse). 
Some people may prefer the use of an alternative pointing 
device (such as trackball or “stub” within the keyboard 
itself, often found in laptop computers).

A variety of so-called ergonomic chairs of varying qual-
ity are available. Such a chair can be a good investment in 
worker safety and productivity, but for best results the chair 
must be selected and adjusted after a careful analysis of 
the individual’s body proportions, the configuration of the 
workstation, and the type of applications being used. In 
general, a good ergonomic chair should have an adjustable 
seat and backrest and feel stable rather than rickety.

The operating system and software in use are also 
important. Providing clear, legible text, icons or other 
controls and a consistent interface will contribute to the 
user’s overall sense of comfort, as well as reducing eye-
strain. It is also important to try to eliminate unnecessary 
repetitive motion. For example, it is helpful to provide 
shortcut key combinations that can be used instead of a 
series of mouse movements. Beyond specific devices, the 
development of an integrated design that reduces stress 
and improves usability is part of what is sometimes called 
human factors research.

In March 2001, President Bush cancelled new OSHA 
standards that would have further emphasized reporting 
and mitigating repetitive stress and musculo-skeletal dis-
orders (MSDs). However, the legal and regulatory climate 
is likely to continue to place pressure on employers to take 
ergonomic considerations into account.

Further Reading
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error correction
Transmitting data involves the sending of bits (ones and 
zeros) as signaled by some alternation in physical charac-
teristics (such as voltage or frequency). There are a number 
of ways in which errors can be introduced into the data 
stream. For example, electrical “noise” in the line might be 
interpreted as spurious bits, or a bit might be “flipped” from 
one to zero or vice versa. Generally speaking, the faster the 
rates at which bits are being sent, the more sensitive the 
transmission is to effects that can cause errors.

While a few wrong characters might be tolerated in 
some text messages or graphics files, binary files represent-
ing executable programs must generally be received per-
fectly, since random changes can make programs fail or 
produce incorrect results. Data communications engineers 
have devised a number of methods for checking the accu-
racy of data transmissions.

The simplest scheme is called parity. A single bit is 
added to each eight-bit byte of data. In even parity, the 
extra (parity) bit is set to one when the number of ones in 
the byte is odd. In odd parity, a one is added if the data byte 
has an even number of ones. This means that the receiver of 
the data can expect it to be even or odd respectively. When 
the byte arrives at its destination, the receiving program 
checks the parity bit and then counts the number of ones 
in the rest of the byte. If, for example, the parity is even 
but the data as received has an odd number of ones, then 
at least one of the bits must have been changed in error. 
Parity is a fast, easy way to check for errors, but it has some 
unreliability. For example, if there were two errors in trans-

mission such that a one became a zero and a different zero 
became a one, the parity would be unchanged and the error 
would not be detected.

The checksum method offers greater reliability. The 
binary value of each block of data is added and the sum 
is sent along with the block. At the destination, the bits in 
the block are again added to see if they still match the sum. 
A variation, the cyclical redundancy check or CRC, breaks 
the data into blocks and divides them by a fixed number. 
The remainder for the division for each block is appended 
to the block and the calculation is repeated and checked at 
the destination. Today most modem control software imple-
ments parity or CRC checking.

A more sophisticated method called the Hamming Code 
offers not only high reliability but also the ability to auto-
matically correct errors. In this scheme the data and check 
bits are encrypted together to create a code word. If the 
word received is not a valid code word, the receiver can use 
a series of parity checks to find the original error. Increasing 
the ratio of redundant check bits to message bits improves 
the reliability of the code, but at the expense of having to 
do more processing to encrypt that data and requiring more 
time to transmit it.

Further Reading
“Error-Correcting Code.” Wolfram MathWorld. Available online. 

URL: http://mathworld.wolfram.com/Error-CorrectingCode.
html. Accessed July 31, 2007.

Fung, Francis Yein Chei. “A Survey of the Theory of Error-Correct-
ing Codes.” Available online. URL: http://cadigweb.ew.usna.
edu/~wdj/teach/ecc/codes.html. Accessed July 31, 2007.
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error handling
An important characteristic of quality software is its abil-
ity to handle errors that arise in processing (also called 
run-time errors or “exceptions”). Before it is released for 
general use, a program should be thoroughly tested with 
a variety of input (see quality assurance, software). 
When errors are found, the soundness of the algorithm and 
its implementation must be checked, as well as the program 
logic (see algorithm). Interaction between the program 
and other programs (including the operating system) as 
well as with hardware must also be considered. (See bugs 
and debugging.)

However, even well-tested software is likely to encoun-
ter errors. Therefore a program intended for widespread use 
must include instructions for dealing with errors, antici-
pated or otherwise. The process of error handling can be 
divided into four stages: validation, detection, communica-
tion, and amelioration.

Data validation is the first line of defense. At the “front 
end” of the program, data being entered by a user (or read 
from a disk file or communications link) is checked to see 
whether it falls within the prescribed parameters. (In the 
case of a program such as a data management system, the 
user interface plays an important role. Data input fields 
can be designed so that they accept only valid characters. 

For even parity, if the number of ones in the byte is odd, the parity 
bit is set to one to make the total number of ones even. Odd parity 
would work the same way, except the parity bit would be set when 
necessary to ensure an odd number of ones.
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On-line help and error messages can explain to users why a 
particular input is invalid.)

However, data validation can ensure only that data falls 
within the generally acceptable parameters. Some particu-
lar combination or context of data might still be erroneous, 
and calculations performed within the program can also 
produce errors. Some examples include a divisor becoming 
zero (not allowable mathematically) or a number overflow-
ing or underflowing (becoming too large or too small for 
register or memory space allotted for it).

Error communication is generally handled by a set of 
error codes (special numeric values) returned to the main 
program by the function used to perform the calculation. 
In addition, errors that arise in file processing (such as “file 
not found”) also return error codes. For example, suppose 
there is a division function in C++

double Quotient(double dividend, double 
divisor) throw(ZERODIV)

{
if (0.0 == divisor)

throw ZERODIV();
return dividend / divisor;

}

In C++ “throw” means to post an error that can be 
“caught” by the appropriate error-handling routine. Thus, 
the corresponding “catch” code might have:

catch( ZERODIV )
{

cout << “Division by zero error!” << endl;
}

Once an error has been detected and communicated, 
decision statements (branches or loops) can check for the 
presence of error codes and execute appropriate instruc-
tions based on what is encountered. (In object-oriented lan-
guages such as C++ special classes and objects are often 
used to handle errors.)

Many simple utility programs respond to errors by issu-
ing an error message and then quitting. However, many 
real-world applications must be able to respond to errors 
and continue processing (for example, a program reading 
data from a scientific instrument may have to deal with the 
occasional “outlier” or a strange value caused by a burst of 
interference). Depending on circumstances, the error ame-
lioration code might simply reject the erroneous data or 
result, ask for the data to be re-sent, or keep a log or statis-
tics of the number and kind of errors encountered. More 
sophisticated approaches based on mathematical error 
analysis are also possible.

Further Reading
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expert systems
An expert system is a computer program that uses encoded 
knowledge and rules of reasoning to draw conclusions or 
solve problems. Since reasoning (as opposed to mechani-
cal calculation) is a form of intelligent behavior, the field 
of expert systems (also called knowledge representation or 
knowledge engineering) is part of the broader field of AI 
(see artificial intelligence).

History and Applications
By the end of the 1950s, early research in artificial intelli-
gence was producing encouraging results. A number of tasks 
associated with human reasoning seemed to be well within 
the capabilities of computers. Early checkers and chess pro-
grams, while far from expert level, were steadily improving. 
Computer programs were proving geometry theorems. One 
of the most important AI pioneers, John McCarthy, declared 
that in principle all human knowledge could be encoded in 
such a way that programs could “understand” and reason 
from that knowledge to new conclusions.

Two disparate approaches to achieving AI gradually 
emerged. In the early 1960s, many researchers tried to gen-
eralize the automated reasoning process so that a program 
could analyze and solve a wide variety of problems, much 
in the way a human being can. The resulting programs were 
indeed flexible, but it was difficult to work with anything 
other than simplified problems. (The SHRDLU program, for 
example, worked in an abstract world of blocks on a table.)

The other approach was to try to provide exhaustively 
specified rules for dealing with a more narrowly defined realm 
of knowledge. The DENDRAL program, developed in the mid-
1960s by Edward A. Feigenbaum and associates, was designed 
to analyze the mass spectra of organic molecules according to 
theories employed by chemists (see Feigenbaum, Edward). 
It eventually became clear that the key to the success for such 
program lay more in the “capturing” and encoding of expert 
knowledge than in the development of more flexible methods 
of reasoning. The methods for encoding and working with the 
knowledge were refined and further developed into a variety 
of expert systems during the 1970s.

In the 1980s, expert system technology became mature 
enough to leave the laboratories and play a role in industry. 
Two early applications were Digital Equipment Corporation’s 
XCON, which automatically configured minicomputers from 
component parts at a rate and accuracy far surpassing that 
of human engineers. Another, Dipmeter Advisor, used real-
time data to predict the dip (tilt) of rock layers in a drill 
bore. (This information was crucial for determining the 
feasibility of an oil or gas well.)

Today expert systems are a mature technology (and 
indeed, the most tangible success of AI research in practi-
cal applications). Expert systems are used in applications 
as diverse as engine troubleshooting, diagnosis of rare dis-
eases, and investment analysis.
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Anatomy of an Expert System
An expert system has two main components, a knowledge base 
and an inference engine. The knowledge base consists of a set 
of assertions (facts) or of rules expressed as if . . . then state-
ments that specify conditions that, if true, allow a particular 
inference to be drawn (see prolog). The inference engine 
accepts new assertions or queries and tests them against the 
stored rules. Because satisfying one rule can create a condi-
tion that is to be tested by a subsequent rule, chains of rea-
soning can be built up. If the reasoning is from initial facts 
to an ultimate conclusion, it is called forward chaining. If a 
conclusion is given and the goal is to prove that conclusion, 
there can be backward chaining from the conclusion to the 
assertions (similar to axioms in mathematical proofs).

While some rules are ironclad (for example, if a closed 
straight figure has three sides, it’s a triangle) in many real-
world applications it is necessary to take a probabilistic 
approach. For example, experience might suggest that if a 
customer buys reference books there is a 40 percent chance 
the customer will also buy a related CD-ROM product. 
Thus, rules can be given weights or confidence factors and as 
the rules are chained, a cumulative probability for the con-
clusion can be generated and some threshold probability 
for asserting a conclusion can be specified. (See also fuzzy 
logic and uncertainty).

While rules-based inference systems are relatively easy 
to traverse automatically, they may lack the flexibility to 
codify the knowledge needed for complex activities (such as 
automatic analysis of news stories). An alternative approach 
involves the construction of a knowledge base consisting 
of frames. A frame (also called a schema) is an encoded 
description of the characteristics and relationships of enti-
ties. For example, an expert system designed to analyze 
court cases might have frames that describe the roles and 
interests of the defendant, defense counsel, prosecutor, and 
so on, and other frames describing the trial and sentencing 
process. Using this knowledge, the system might be able to 
predict what sort of plea agreement a particular defendant 
might reach with the state. While potentially more robust 
than a rules-based system, a frames-based system faces the 
twin challenges of building and maintaining a complex and 
open-ended knowledge base and of developing methods of 
reasoning more akin to generalized artificial intelligence 
(see artificial intelligence).

Trends
Expert systems (particularly of the rules-based variety) now 
have an established place in business, industry, and sci-
ence. The field of genomics and genetic engineering, widely 
seen as the “technology of the 21st century” may be a par-

ticularly fruitful applications area for analytical expert sys-
tems. Another promising area is the use of expert systems 
for e-commerce marketing analysis (see data mining). An 
emerging emphasis in expert system development is the 
use of object-oriented concepts (see object-oriented pro-
gramming) and distributed database and knowledge shar-
ing technology to build and maintain large knowledge bases 
more efficiently.
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Building an expert system requires that the knowledge of experts 
be “captured” in the form of a series of assertions and rules called 
a knowledge base. Once the knowledge base is established, users 
seeking advice can use an inference engine to examine the knowl-
edge base for valid conclusions that can be expressed as recommen-
dations, often with varying degrees of confidence.
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fault tolerance
Fault tolerance is a design concept that recognizes that all 
computer-based systems will fail eventually. The question is 
whether a system as a whole can be designed to “fail grace-
fully.” This means that even if one or more components 
fail, the system will continue to operate according to its 
design specifications, even if its speed or throughput must 
decrease.

Methods and Implementations
There are a number of ways to make a system more fault 
tolerant. Individual components such as hard drives can be 
composed of multiple units so that the remaining units can 
take over if one fails (see also raid). If each key component 
has at least one backup, then there should be time to replace 
the primary before the backup also fails.

Another way to achieve fault tolerance is to provide mul-
tiple paths to successful completion of the task. In fact, this 
is how packet-switched networks like the Internet work 
(see tcp/ip). If one communications link is down or too 
congested, packets are given an alternative routing.

Fault diagnosis software can also play an important role 
both in determining how to respond to a problem (beyond 
any automatic response) and for providing data that will be 
useful later to system administrators or technicians. Some 
fault diagnosis systems can use elaborate rules (see expert 
systems) to pinpoint the cause of a fault and recommend a 
solution.

The amount of fault tolerance to be provided for a sys-
tem depends on a number of factors:

• � How important is it that the system not fail?

• � How critical is a given component to the operation of 
the system?

• � How likely is it that a given component will fail? 
(Mean time between failures, or MBTF)

• � How expensive is it to make the component or system 
fault tolerant?

A related concept is fail-safe. While fault tolerance 
emphasizes continued operation despite one or more fail-
ures, fail-safe emphasizes the ability to shut down safely 
in case of an unrecoverable failure. With computer-based 
systems, fail-safe design can use redundant systems (as 
in avionics) to perform calculations, with a failing system 
“outvoted” if necessary by the good ones. In most cases 
there should also be a provision to alert the pilot or opera-
tor in time to take over operations from the automatic 
system.

Another common example of fail-safe is modern operat-
ing systems that create a “journal” of pending operations to 
files that can be used to restore the integrity of the system 
after a power failure or other abrupt shutdown (see file 
system.)
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Feigenbaum, Edward
(1936–  )
American
Computer Scientist

Edward Feigenbaum is a pioneer artificial intelligence 
researcher, best known for his development of expert sys-
tems (see artificial intelligence). Feigenbaum was born 
in Weehawken, New Jersey. His father, a Polish immigrant, 
died before Feigenbaum’s first birthday. His stepfather, an 
accountant and bakery manager, was fascinated by science 
and regularly brought young Edward to the Hayden Plane-
tarium’s shows and to every department of the vast Museum 
of Natural History. The electromechanical calculator his 
father used to keep accounts at the bakery particularly fas-
cinated Edward. His interest in science gradually turned to 
a perhaps more practical interest in electrical engineering.

While at the Carnegie Institute of Technology (now 
Carnegie Mellon University), Feigenbaum was encour-
aged to venture beyond the more mundane curriculum to 
the emerging field of computation. He became interested 
in John Von Neumann’s work in game theory and deci-
sion making and also met Herbert Simon, who was con-
ducting pioneering research into how organizations made 
decisions (see von Neumann, John). This in turn brought 
Feigenbaum into the early ferment of artificial intelligence 
research in the mid-1950s. Simon and Alan Newell had just 
developed Logic Theorist, a program that simulated the 
process by which mathematicians proved theorems through 
the application of heuristics, or strategies for breaking prob-
lems down into simpler components from which a chain of 
assertions could be assembled leading to a proof.

Feigenbaum quickly learned to program IBM main-
frames and then began writing AI programs. For his doc-
toral thesis, he explored the relation of artificial problem 
solving to the operation of the human mind. He wrote a 
computer program that could simulate the human pro-
cess of perceiving, memorizing, and organizing data for 
retrieval. Feigenbaum’s program, the Elementary Perceiver 
and Memorizer (EPAM), was a seminal contribution to AI. 
Its “discrimination net,” which attempted to distinguish 
between different stimuli by retaining key bits of informa-
tion, would eventually evolve into the neural network (see 
neural network). Together with Julian Feldman, Feigen-
baum edited the 1962 book Computers and Thought, which 
summarized both the remarkable progress and perplexing 
difficulties encountered during the field’s first decade.

During the 1960s, Feigenbaum worked to develop sys-
tems that could perform induction (that is, derive general 
principles based on the accumulation of data about specific 
cases). Working on a project to develop a mass spectrom-
eter for a Mars probe, Feigenbaum and his fellow research-
ers became frustrated at the computer’s lack of knowledge 

about basic rules of chemistry. Feigenbaum then decided 
that such rules (or knowledge) might be encoded in such 
a way that the program could apply it to the data being 
gathered from chemical samples. The result in 1965 was 
Dendral, the first of what would become a host of success-
ful and productive expert systems (see expert system). A 
further advance came in 1970 with Meta-Dendral, a pro-
gram that could not only apply existing rules to determine 
the structure of a compound, it could also compare known 
structures with the existing database of rules and infer new 
rules, thus improving its own performance.

During the 1980s, Feigenbaum coedited the four-volume 
Handbook of Artificial Intelligence. He also introduced expert 
systems to a lay audience in two books, The Fifth Generation 
(co-authored with Pamela McCorduck) and The Rise of the 
Expert Company.

Feigenbaum combined scientific creativity with entre-
preneurship in founding a company called IntelliGenetics 
and serving as a director of Teknowledge and IntelliCorp. 
These companies pioneered the commercialization of 
expert systems. In doing so, Feigenbaum and his colleagues 
publicized the discipline of “knowledge engineering”—the 
capturing and encoding of professional knowledge in medi-
cine, chemistry, engineering, and other fields so that it can 
be used by an expert system. In what he calls the “knowl-
edge principle” he asserts that the quality of knowledge in 
a system is more important than the algorithms used for 
reasoning. Thus, Feigenbaum has tried to develop knowl-
edge bases that might be maintained and shared as easily as 
conventional databases.

Remaining active in the 1990s, Feigenbaum was second 
president of the American Association for Artificial Intel-
ligence and (from 1994 to 1997) chief scientist of the U.S. 
Air Force. In 1995, Feigenbaum received the Association for 
Computing Machinery’s prestigious A. M. Turing Award. 
Founder of the Knowledge Systems Laboratory at Stanford 
University, Feigenbaum remains a professor emeritus of 
computer science at that institution.

Further Reading
Feigenbaum, Edward, Julian Feldman, and Paul Armer, eds. Com-

puters and Thought. Cambridge, Mass.: MIT Press, 1995.
Feigenbaum, Edward, Pamela McCorduck, and H. Penny Nii. The 

Rise of the Expert Company: How Visionary Companies are 
Using Artificial Intelligence to Achieve Higher Productivity and 
Profits. New York: Vintage Books, 1989.

Henderson, Harry. Artificial Intelligence: Mirrors for the Mind. New 
York: Chelsea House, 2007.

Shasha, Dennis, and Cathy Lazere. Out of Their Minds: The Lives 
and Discoveries of 15 Great Computer Scientists. New York: 
Copernicus/Springer-Verlag, 1995.

fiber optics
A fiber optic (or optical fiber) cable transmits photons 
(light) instead of electrons. Depending on the diameter of 
the cable, the light is guided either by total internal reflec-
tion or as a waveguide (manipulating refraction). These 
principles were known as early as the mid-19th century and 
began to be used in the 20th century for such applications 
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as dental and medical illumination and in experiments in 
transmitting images for television.

Development
Optical fiber in its modern form was developed in the 
1950s. The glass fiber through which the light passes is 
surrounded by a transparent cladding designed to provide 
the needed refractive index to keep the light confined. The 
cladding in turn is surrounded by a resin buffer layer and 
often an outer jacket and plastic cover. Fiber used for com-
munication is flexible, allowing it to bend if necessary.

Early optical fiber could not be used for practical com-
munication because of progressive attenuation (weakening) 
of the light as it traveled. However, by the 1970s the attenu-
ation was being reduced to acceptable levels by removing 
impurities from the fibers. Today the light signals can travel 
hundreds of miles without the need for repeaters or amplifi-
ers. In the 1990s a new type of optical fiber (photonic crys-
tal) using diffraction became available. This kind of fiber 
is particularly useful in applications that require higher 
power signals.

Communications and Network Applications
Optical fiber has several advantages over ordinary electric 
cable for communications and networking. The signals can 
travel much farther without the need for a repeater to boost 
the signal. Also, the ability to modulate wavelengths allows 
optical fiber to carry many separate channels, greatly increas-
ing the total data throughput. Optical fiber does not emit RF 
(radio frequency) energy, a source of “cross talk” (interfer-
ence) in electrical cable. Fiber is also more secure than elec-
trical cable because it is hard for an eavesdropper to tap.

Today fiber is used for most long-distance phone lines 
and Internet connections. Many cable television systems 
are upgrading from video cable to fiber because of its 
greater reliability and ability to carry more bandwidth and 
enhanced data services.

The last area where electrical (copper) cable predomi-
nates is in the “last mile” between main lines and houses 
or buildings, and within local networks. However, new 
buildings and higher-end homes often include built-in fiber. 
Increasingly, phone companies are upgrading service by 
bridging the last mile through fiber-to-the-home (FTTH) 
networks. While requiring a considerable investment, FITH 
allows phone companies to replace relatively slow DSL with 
faster (higher bandwidth) service better suited to deliver 
video, data, and phone service simultaneously (see band-
width, cable modem, and dsl). As of 2008, 3.3 million 
American homes had fiber connections, mainly through 
Verizon’s FIOS service. It is expected that FTTH will be 
built into many new housing developments.

In 2007 Corning announced the development of “nano-
structured” optical fibers that can be bent more sharply 
(such as around corners) without loss of signal. Corning is 
working with Verizon to develop easier and cheaper ways 
to provide FTTH.

(Related optical principles can also be applied to com-
puter design. See optical computing.)
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file
At bottom, information in a computer is stored as a series of 
bits, which can be grouped into larger units such as bytes 
or “words” that represent particular numbers or characters. 
In order to be stored and retrieved, a collection of such 
binary data must be given a name and certain attributes 
that describe how the information can be accessed. This 
named entity is the file.

Files and the Operating System
Files can be discussed at three levels, the physical layout, 
the operating system, and the application program. At the 
physical level, a file is stored on a particular medium. (See 
floppy disk, hard disk, cd-rom, and tape drives.) On 
disk devices a file takes up a certain number of sectors, 
which are portions of concentric tracks. (On tape, files are 
usually stored as contiguous segments or “blocks” of data.)

The file system is the facility of the operating system that 
organizes files (see operating system). For example, on DOS 
and older Windows PCs, there is a file allocation table (FAT) 
that consists of a linked list of clusters (each cluster consists 
of a fixed number of sectors, varying with the overall size of 
the disk). When the operating system is asked to access a file, 
it can go through the table and find the clusters belonging to 
that file, read the data and send it to the requesting applica-
tion. Modern file systems further organize files into groups 
called folders or directories, which can be nested several lay-
ers deep. Such a hierarchical file system makes it easier for 
users to organize the dozens of applications and thousands of 
files found on today’s PCs. For example, a folder called Book 
might have a subfolder for each chapter, which in turn con-
tains folders for text and illustrations relating to that chapter.

Besides storing and retrieving files, the modern file sys-
tem sets characteristics or attributes for each file. Typical 
attributes include write (the file can be changed), read (the 
file can be accessed but not changed), and archive (which 
determines whether the file needs to be included in the next 
backup). In multi-user operating systems such as UNIX 
there are also attributes that indicate ownership (that is, 
who has certain rights with regard to the file). Thus a file 
may be executable (run as a program) by anyone, but write-
able (changeable) only by someone who has “superuser” 
status (see also data security).

The current generation of file systems for PCs includes 
additional features that promote efficiency and particularly 
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data integrity. Versions of Windows starting with NT, 2000, 
and XP come standardly with NTFS, the “New Technology 
File System,” which includes journaling, or the keeping of 
a record of all transactions affecting the system (such as 
deleting or adding a file). In the event of a mishap such as 
a power failure, the transactions can be “replayed” from 
the journal, ensuring that the file system reflects the actual 
current status of all files. NTFS also uses “metadata” that 
describes each file or directory. Database principles can 
thus be applied to organizing and retrieving files at a higher 
level.

Linux (based on UNIX) uses a single file system hier-
archy that incorporates all devices in the system. (The net-
work file system, NFS, effectively extends the hierarchy to 
all machines on the local network.) The popular Linux ext3 
file system also includes journaling.

Files and Applications
The ultimate organization of data in a file depends on the 
application. A typical approach is to define a data record 
with various fields. The program might have a loop that 
repeatedly requests a record from the file, processes it in 
some way, and repeats until the operating system tells it 
that it has reached the end of the file. This would be a 
sequential access; a program can also be set up for ran-
dom access, which means that an arbitrary record can be 
requested and that request will be translated into the cor-
rect physical location in the file. The two approaches can 
be combined in ISAM (Indexed Sequential Access Method), 
where the records are stored sequentially but fields are 
indexed so a particular record can be retrieved.

Since files such as graphics (images), sound, and format-
ted word processing documents can only be read and used 
by particular applications, files are often given names with 
extensions that describe their format. When a Windows 
user sees, for example, a Microsoft Word document, the 
filename will have a .DOC extension (as in chapter.doc) and 
will be shown with an icon registered by the application for 
such files. Further, a file association will be registered so 
that when a user opens such a file the Word program will 
run and load it.

From a user interface point of view, the use of the file as 
the main unit of data has been criticized as not correspond-
ing to the actual flow of most kinds of work. While from 
the computer’s point of view, the user is opening, modify-
ing, and saving a succession of separate files, the user often 
thinks in terms of working with documents (which may 
have components stored in a number of separate files.) Thus, 
many office software applications offer a document-oriented 
or project-oriented view of data that hides or minimizes the 
details of individual files (see document model).
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file server
The growth in desktop computing since the 1980s has 
resulted in much data being moved from mainframe com-
puters to desktop PCs, which are now usually linked by 
networks. While a network enables users to exchange files, 
there remains the problem of storing large files or collec-
tions of files (such as databases) that are too large for a typi-
cal PC hard drive or that need to be accessed and updated 
by many users.

The common solution is to obtain a computer with 
large, fast disk drives (see also raid). This computer, the 
file server, is equipped with software (often included with 
the networking package) that serves (provides) files as 
requested by users or applications on the other PCs on 
the network. (See also client-server computing.) The 
specifics of configuring the server for optimum efficiency, 
providing adequate security, and arranging for backup or 
archiving varies with the particular network operating sys-
tem in use (the most popular environments are Windows 
NT, Vista, and the various versions of UNIX and Linux).

The file server has many advantages over storing the 
files needed by each user on his or her own PC. By storing 
the files on a central server, ordinary users’ PCs do not need 
to have larger, more expensive disk drives. Central storage 
also makes it easier to ensure that backups are run regu-
larly (see backup and archive systems).

There are some potential problems with this approach. 
With central storage, a failure of the file server could bring 
work throughout the network to a halt. (The use of RAID 
with its redundant “mirror” disks is designed to prevent 
the failure of a single drive from making data inaccessible). 
As the network and/or size of the data store gets larger, 
multiple servers are usually used. The performance of a file 
server is also greatly affected by the efficiency of the cach-
ing mechanism used (see cache).

As the amount of data that must be stored increases, 
organizations will consider storage area network (SAN) and 
network attached storage (NAS, see networked storage) 
technologies. SAN makes it easier for numerous users to 
share a resource such as an automated tape library or disk 
RAID, while NAS is an efficient way to allow files to be cen-
trally stored but readily shared.

All but the simplest servers require special software or 
extensions to the operating system. For example, Microsoft 
Windows Server is essentially a version of Windows with 
built-in facilities for managing a file or application server, 
including the ability to organize “clusters” of servers and 
balance the load of requests. Linux often comes in server 
versions as well, though this is basically simply a distribu-
tion preconfigured with the programs needed to manage 
servers (such as Samba).

Meanwhile, the reason for having a file server is chang-
ing. Cost of storage is much less of an issue for smaller 
offices with the recent availability of high-capacity drives 
(500 GB or more) starting at approximately $100. However, 
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a central server still may offer better security and can serve 
as a central repository from which documents or source 
code can be “checked out” and updated in an orderly way 
(version control).
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file-sharing and P2P networks
File-sharing services allow participants to provide access to 
files on their personal computers, such as music or video. 
In turn, the user can browse the service to find and down-
load material of interest. The structure is generally that of a 
peer-to-peer (P2P) network with no central server.

The first major file-sharing service was Napster. This 
was a P2P network but had a central server that provided 
the searchable list of files and locations—but not the files 
themselves, which were downloaded from users’ PCs. 
Napster was forced to close in 2001 by legal action from 
copyright holders (see intellectual property and com-
puting). A new but unrelated for-pay service opened later 
under the same name.

Because of the legal vulnerability of centralized-list P2P 
services, a new model was developed, typified by Gnutella. 
This is a fully P2P model with both indexing and data 
decentralized in nodes throughout the network. As of mid-
2006, Gnutella and similar services such as Kazaa had an 
estimated 10 million users.

BitTorrent
Many services today use the popular BitTorrent file-shar-
ing protocol. A BitTorrent client (either the program of that 
name or another compatible one) can transmit or receive 
any type of data. To share a file, the client creates a “tor-
rent”—a small file that contains metadata describing the 
file and an assignment to a “tracker.” The tracker is another 
computer (node) that coordinates the distribution of the 
file. Although this sounds complicated and a request takes 
longer to set up than an ordinary HTTP connection, the 
advantage is that once set up, downloading is efficiently 
managed even for files for which there is high demand. 
The downloading client connects to multiple clients that 
provide pieces of the desired file. Because of its efficiency, 
BitTorrent allows for distribution of substantial amounts of 
data at low cost, particularly since the system “scales up” 
automatically without having to provide extra resources. 
BitTorrent is currently being used for a variety of legally 

distributed material, including video, sound, and textual 
content (see blogs and blogging, podcasting, and rss).

Legal Issues
Because of their frequent use to share copyrighted music, 
video, or other material, a variety of organizations of copy-
right owners have sued file-sharing services and/or their 
users. The biggest problem for the courts is to determine 
whether there is “substantial non-infringing use”—that is, 
the service is being used to exchange legal data.

Some file-sharing services have been accused of dis-
tributing malware (viruses or spyware) or of being used 
to distribute material that is illegal per se (such as child 
pornography).

In response to litigation threats, file-sharing services 
have tended to become more decentralized, and some have 
features that increase anonymity of users (see anonymity 
and the Internet) or use encryption.
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file transfer protocols
With today’s networked PCs and the use of e-mail attach-
ments it is easy to send a copy of a file or files from one 
computer to another, because networks already include all 
the facilities for doing so. Earlier, many PCs were not net-
worked but could be connected via a dial-up modem. To 
established the connection, a terminal program running on 
one PC had to negotiate with its counterpart on the other 
machine, agreeing on whether data would be sent in 7- or 
8-bit chunks, and the number of parity bits that would be 
included for error-checking (see error correction). The 
sending program would inform the receiving program as 
to the name and basic type of the file. For binary files 
(files intended to be interpreted as literal binary codes, as 
with executable programs, images, and so on) the contents 
would be sent unchanged. For text files, there might be the 
issue of which character set (7- bit or 8-bit ASCII) was being 
used, and whether the ends of lines were to be marked with 
a CR (carriage return) character, an LF (linefeed), or both 
(see characters and strings).
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Implementations
Once the programs agree on the basic parameters for a file 
transfer, the transfer has to be managed to ensure that it 
completes correctly. Typically, files are divided into blocks 
of data (such as 1K, or 1024 bytes each). During the 1970s, 
Ward Christensen developed Xmodem, the first widely used 
file transfer program for PCs running CP/M (and later, MS-
DOS and other operating systems). Xmodem was quite reli-
able because it incorporated a checksum (and later, a more 
advanced CRC) to check the integrity of each data block. 
If an error is detected, the receiving program requests a 
retransmission.

The Ymodem program adds the capability of specifying 
and sending a batch of files. Zmodem, the latest in this line 
of evolution, automatically adjusts for the amount of errors 
caused by line conditions by changing the size of the data 
blocks used and also includes the ability to resume after an 
interrupted file transfer. Another widely used file transfer 
protocol is Kermit, which has been implemented for virtu-
ally every platform and operating system. Besides file trans-
fer, Kermit software offers terminal emulation and scripting 
capabilities. However, despite their robustness and capabil-
ity, Zmodem and Kermit have been largely supplanted by 
the ubiquitous Web download link.

In the UNIX world, the ftp (file transfer protocol) pro-
gram has been a reliable workhorse for almost 30 years. 
With ftp, the user at the PC or terminal connects to an ftp 
server on the machine that has the desired files. A variety of 
commands are available for specifying the directory, listing 
the files in the directory, specifying binary or text mode, 
and so on. While the traditional implementation uses typed 
text commands, there are now many ftp clients available for 
PCs that use a graphical interface with menus and buttons 
and allow files to be selected and dragged between the local 
and remote machines.

Even though many files can now be downloaded through 
HTML links on Web pages, ftp is still the most efficient way 
to transfer batches of files, such as for uploading content to 
a Web server.
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film industry and computing
Anyone who compares a science fiction film of the 1960s or 
1970s with a recent offering will be struck by the realism with 
which today’s movie robots, monsters, or aliens move against 
vistas of giant starships and planetary surfaces. The computer 
has both enhanced the management of cinematic production 
processes and made possible new and startling effects.

The role of the computer in film begins well before 
the first camera rolls. Writers can use computers to write 
scripts, while specialized programs can be used to lay 
out storyboards. Using 3D programs somewhat like CAD 
(drafting) programs, set designers can experiment with 
the positioning of objects before deciding on a final design 
and obtaining or creating the physical props. For mattes 
(backgrounds against which the characters will be shot in 
a scene), a computer-generated scene can now be inserted 
directly into the film without the need for an expensive, 
hand-painted backdrop.

Similarly, animation and special effects can now be ren-
dered in computer animation form and integrated into the 
storyboard so that the issues of timing and combining of 
effects can be dealt with in the design stage. The actual 
effects can then be created (such as by using extremely 
realistic computer-controlled puppets and models together 
with computer generated imagery, or CGI) with the assur-
ance that they will properly fit into the overall sequence. 
The ability to combine physical modeling, precise control, 
and added textures and effects can now create a remarkably 
seamless visual result in which the confrontation between a 
beleaguered scientist and a vicious velociraptor seems quite 
believable.

Just as the physical and virtual worlds are frequently 
blended in modern moviemaking, the traditional categories 
of visual media have also merged. Disney’s fully animated 
films such as The Lion King benefit from the same computer-
generated lighting and textures as the filming of live actors. 
Using 3D graphics engines, computer game scenes are now 
rendered with almost cinematic quality (see computer 
games). Even characters from old movies can be digitally 
combined (composited) with new footage. (Of course, the 
artistic value of such efforts may be controversial.)

Computer technology, now relatively inexpensive, can 
also give the generally lower budget world of television 
access to higher-quality effects. As computers continue to 
become more powerful yet cheaper, amateur or indepen-
dent filmmakers are gaining abilities previously reserved to 
big Hollywood studios.

The delivery of film and video has also been greatly 
affected by digitization. Classic movies can be digitized 
to rescue them from deteriorating film stock, while videos 
can be delivered digitally over cable TV systems or over the 
Internet. The ability to easily copy digital content does raise 
issues of piracy or theft of intellectual property (see intel-
lectual property and computing).

More recently, digital camcorders (and video modes in 
digital cameras and even cell phones) are making access to 
basic “film” technology a part of everyday life. A few min-
utes browsing a video-sharing site (see YouTube) reveals 
a wide variety of documentary and creative productions 
ranging from the equivalent of the old “home movie” to 
professional quality.
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financial software
Large businesses use complex database systems, spread-
sheets, and other applications for activities such as account-
ing, planning/forecasting, and market research (see 
business applications of computers). Here we will con-
sider the variety of consumer and small business software 
applications that are available to help with the planning 
and management of financial activities, such as

• � home budgeting and money management

• � investment and retirement planning

• � college financing

• � tax planning and filing

• � home buying or selling

• � basic accounting, inventory, and other activities for 
small business

Basic home money management programs (such as the pop-
ular Quicken) handle the budgeting and recording of daily 
and monthly expenses. The program can usually also inter-
face with on-line banking services (see banking and com-
puters) as well as exporting data to tax filing software.

For small or home-based businesses, programs such as 
QuickBooks can provide basic management of inventory, 
sales, taxes, expenses, and other functions. There are also 
niche programs for applications such as managing on-line 
auctions or Web-based sales.

For financial planning, there are a variety of programs 
(ranging from small free or shareware utilities available on-
line to full commercial packages) that offer special calcula-
tors, graphs, and other aids for planning for the future. For 
example, the future value of a savings account at various 
points can be calculated given the interest rate, or the full 
cost of a loan or mortgage similarly calculated. Full-fea-
tured programs usually include helpful explanations of the 
various types of financial instruments. Some programs con-
duct an “interview” where the program asks the user about 
his or her objectives, priorities, or tolerance for risk, and 
then recommends a course of action. Such programs can be 

helpful even though they lack the experience and breadth 
of knowledge available to a human financial planner.

Tax preparation software is perhaps the fastest-growing 
consumer financial application. Programs normally must 
be purchased each year to incorporate the latest changes 
in tax law. An important incentive has been created by the 
Internal Revenue Service encouraging electronic filing of 
tax returns by promising speedier refunds to “e-filers.”

Trends
Publishers of respected guidebooks (such as for college 
admissions and financial aid) are creating electronic ver-
sions that can be easier to use and more up to date than 
the printed counterpart. Meanwhile, many Web sites are 
offering utilities such as financial calculators, implemented 
in Java and run on-line without any software having to 
be downloaded by the user. The services can be offered 
to attract users for paid services or simply to acquire e-
mail addresses for solicitation. Users should be cautious 
about revealing sensitive identification or financial data to 
unknown on-line sites.

The growth in small and home-based businesses is 
likely to continue in an economy that continues to offer 
new opportunities while reducing job security. While start-
ing a small business is always an uncertain enterprise, easy-
to-use accounting software offers the budding entrepreneur 
a better chance of being able to stay on top of expenses dur-
ing the crucial first months of business.

The growing complexity of financial choices available 
to average consumers and the need for more people to 
take responsibility for their retirement planning is likely 
to increase the range and capability of financial planning 
applications in the future.
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finite-state machine
There are many calculations or other processes that can be 
described using a specific series of states or conditions. For 
example, the state of a combination lock depends not only 
on what numeral is being dialed or punched at the moment, 
but on the numbers that have been previously entered. An 
even simpler example is a counter (such as a car odometer), 
whose next output is equal to one increment plus its cur-
rent setting. In other words, a state-based device has an 
inherent “memory” of previous steps.

In computing, a program can be set up so that each 
possible input, when combined with the current state, will 
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result in a specified output. That output becomes the new 
state of the machine. (Alternatively, the machine can be 
set so that only the current state determines the output, 
without regard to the previous state.) This is supported 
by the underlying structure of the logic switching within 
computer circuits as well as the “statefulness” of all cal-
culations. (Given n, n+1 is defined, and so on.) Alan Tur-
ing showed that combining the state mechanism with an 
infinite memory (conceptualized as an endless roll of tape) 
amounted to a universal computer—that is, a mechanism 
that could perform any valid calculation, given enough time 
(see Turing, Alan).

The idea of the sequential (or state) machine is closely 
related to automata, which are entities whose behavior is 

controlled by a state table. The interaction of such automata 
can produce astonishingly complex patterns (see cellular 
automata).

Applications
Many programs and operating systems are structured as an 
endless loop where an input (or command) is processed, 
the results returned, the next input is processed, and so 
on, until an exit command is received. A mode or state can 
be used to determine the system’s activity. For example, a 
program might be in different modes such as waiting for 
input, processing input, displaying results, and so on. The 
program logic will refer to the current state to determine 
what to do next and at some point the logic will transition 
the system to the next state in the sequence. The validity of 
some kinds of programs, protocols, or circuits can therefore 
be proven by showing that there is an equivalent finite-state 
machine—and thus that all possible combinations of inputs 
have been accounted for.

Finite-state machines have many other interesting appli-
cations. Simple organisms can be modeled as a set of states 
that interact with the environment (see artificial life). 
The lower-level functions of robots can also be represented 
as a set of interacting finite-state machines. Even video 
game characters often use FSMs to give them a repertoire of 
plausible behavior.
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firewall
The vulnerability of computer systems to malicious or 
criminal attack has been greatly increased by the growing 
number of connections between computers (and local net-
works) and the worldwide Internet (see computer crime 
and security, Internet, and tcp/ip). The widespread use 
of permanent broadband connections by consumers (such 
as DSL and cable modem links) has increased the risk to 
home users. Intruders can use “port scanning” programs 
to determine what connections a given system or network 
has open, and can use other programs to snoop and steal or 
destroy sensitive data.

A firewall is a program (or combination of software and 
hardware) that sits between a computer (or local network) 
and the Internet. Typical firewall functions include:

• � Examining incoming data packets and blocking those 
that include commands to examine or use unauthor-
ized ports or IP addresses

• � Blocking data packets that are associated with com-
mon hacking techniques such as “trojans” or “back-
door” exploitations

This diagram shows a finite-state representation of a ZIP code. The 
arrows link each state (within a circle) to its possible successor. In 
this simple example each digit must be followed by another digit 
until the fifth digit, which can either be followed by a blank (indi-
cating a five-digit ZIP code) or four more digits for a 9-digit ZIP.
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• � Hiding all the internal network addresses on a local 
network, presenting only a single address to the 
outside world (this is also called NAT, or Network 
Address Translation)

• �M onitoring particular applications such as ftp (file 
transfer protocol) and telnet (remote login), restrict-
ing them to certain addresses. Often a special address 
called a proxy is established rather than allowing 
direct connections between the outside and the local 
network.

Firewalls are usually configured by providing a rule that 
specifies what is to be done based on the origin address or 
other characteristics of an incoming packet. Because con-
nections made by local programs to the outside can also 
compromise the system, rules are also created for such 
applications. The firewall package may come with a set of 
default rules for common applications and situations. When 
something not covered by the rules happens, the user will 
be prompted and guided to establish a new rule.

Modern firewalls are “stateful,” meaning that they keep 
track not only of the source and destination of individual 
packets but their context (including originating applica-
tion). Microsoft Windows Vista has improved the operating 
system’s built-in firewall, at the expense of added complex-
ity. Zone Labs’s ZoneAlarm is another popular PC firewall. 
Linux provides a default firewall called iptables, which can 
be configured by a variety of applications. For added pro-
tection, users of broadband Internet connections should not 
connect their PC directly to the Internet. Rather, an inex-
pensive wired or wireless router that includes a built-in 
firewall can be connected on one side to the cable or DSL 
modem and on the other side to one or more computers in 
the local network.

Internet security packages for home users often com-
bine a firewall with other services such as virus protection, 
parental control, and blocking of objectionable content or 
advertising.	

Further Reading
Home PC Firewall Guide. Available online. URL: http://www. 

firewallguide.com/. Accessed August 4, 2007.
Komar, Brian, Ronald Beekelaar, and Joern Wettern. Firewalls for 

Dummies. 2nd ed. New York: Wiley, 2003.
Noonan, Wes, and Ido Dubrawsky. Firewall Fundamentals. India-

napolis: Cisco Press, 2006.
ZoneAlarm. Available online. URL: http://www.zonealarm.com. 

Accessed August 4, 2007.
Zwicky, Elizabeth D., Simon Cooper, and D. Brent Chapman. 

Building Internet Firewalls. 2nd ed. Sebastapol, Calif.: O’Reilly 
Media, 2000.

FireWire
FireWire is a high-speed serial interface used by personal 
computers and digital audio and video equipment. (The 
name FireWire is an Apple brand name, but it is used gener-
ically. Technically it is the IEEE 1394 Serial Bus.)

FireWire was developed in the 1990s by the IEEE P1394 
Working Group with substantial funding from Apple and 

help from engineers from major corporations including 
IBM, Digital Equipment Corporation (DEC), Sony, and 
Texas Instruments. In 1993 it was hailed as the “most sig-
nificant new technology” by Byte magazine.

FireWire was intended to replace Apple’s parallel SCSI 
(Small Computer System Interface). (Sony’s implementa-
tion, called I.Link, omits the two power pins in favor of a 
separate power connector.) However, because Apple asked 
for $1.00 per port in patent royalties, Intel instead devel-
oped a faster version of the universal serial bus (see usb) 
and that, rather than FireWire, is the standard port on most 
Windows machines.

Common uses for FireWire include connecting digital 
video (such as camcorder) devices, audio devices, and some 
data storage devices. FireWire is favored over USB 2.0 for 
many professional applications because of its higher speed 
and power distribution capabilities. However, it is more 
expensive than USB 2.0, which provides sufficient speed 
for many consumer peripherals such as digital cameras and 
printers.

Further Reading
Anderson, Don, and MindShare, Inc. FireWire System Architecture. 

2nd ed. Boston: Addison-Wesley Pearson Education, 1998.
FireWire (Apple Developer Connection). Available online. URL: 

http://developer.apple.com/hardwaredrivers/firewire/index.
html. Accessed September 20, 2007.

flag
A flag is a variable that is used to specify a particular condi-
tion or status (see variable). Usually a flag is either true or 
false. For example, a flag Valid_Form could be set to true 
before the input form is processed. If the validation check 
for any data field fails, the flag would be set to false. After 
the input procedure has ended, the main program would 
check the Valid_Form flag. If it’s true, the data on the form 
is processed (for example, continuing on to the payment 
process). If the flag is false, the input form might be redis-
played with errors or omissions highlighted.

Flags can be combined to check multiple conditions. For 
example, suppose the input form routine also looked up the 
customer’s account and checked to make sure the customer 
was approved for purchasing. The test for this might read:

If Valid_Form and Valid_Customer then
// continue processing else
// display error messages

In such cases, the flags are combined using the appro-
priate and or or operators (see Boolean operators).

While flags are often used inside a routine to keep track 
of processing, modern programming practice discourages 
the use of “global” flags at the top level of the program. As 
with other global variables, such flags are vulnerable to 
being unpredictably changed or to having two parts of the 
program check the same flag without being able to rely on 
its state. (Thus a routine relies on a global flag being true 
but calls another routine that sets the flag to false without 
the original routine checking it again.) If several routines 
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(or even programs) are being run at the same time, the situ-
ation gets even more complicated and a semaphore that can 
be controlled by one process at a time is more appropriate 
(see concurrent programming). However, a main pro-
gram that sets a flag to indicate the program mode and does 
not allow the flag to be changed by routines within the pro-
gram is relatively safe.

Flags can also have more than two valid conditions, 
such as for specifying a number of possible states for a file 
or device. This usage is found mostly in operating systems.

Further Reading
“C++ I/O Flags.” Available online: URL: http://www-control.eng.

cam.ac.uk/~pcr20/www.cppreference.com/cppio_flags.html. 
Accessed August 4, 2007.

“Class Flags” [Java]. Available online. URL: http://java.sun.com/
j2ee/sdk_1.3/techdocs/api/javax/mail/Flags.html. Accessed 
August 4, 2007.

Myers, Gene. “Becoming Bit Wise.” C-Scene Issue 09. Available 
online. URL: http://www.gmonline.demon.co.uk/cscene/cs9/
cs9-02.html. Accessed April 28, 2008.

Vincent, Alan. “Flag Variables, Validation and Function Control.” 
Available online. URL: http://wsabstract.com/javatutors/
valid1.shtml. Accessed February 4, 2008.

flash and smart mobs
A flash mob is a spontaneously organized public gathering 
facilitated by ubiquitous mobile communications (see espe-
cially texting and instant messaging). The earliest flash 
mobs were a mixture of whimsy and social experiment. The 
first reported example, coordinated by Bill Wasik, senior 
editor of Harper’s Magazine, occurred in June 2003 when 
a hundred people suddenly showed up on the ninth floor 
of Macy’s in New York City, claiming to be shopping for a 
“love rug.”

Smart Mobs
Smart mobs are similar in organization to flash mobs but 
tend to be more purposeful and enduring forms of social 
organization. The phenomenon was first described by How-
ard Rheingold in his book Smart Mobs: The Next Social 
Revolution (see Rheingold, Howard). Rheingold describes 
several examples of smart mobs, including teenage “thumb 
tribes” in Tokyo and Helsinki, Finland (named for their use 
of tiny thumb-operated keyboards on cell phones). Their 
typical activities included organizing impromptu raves or 
converging on rock stars or other celebrities.

Smart mobs took on a more political bent in 1999 with 
spontaneously organized, fast-moving antiglobalization 
protests in Seattle. Police had considerable difficulty con-
taining the protests, their communications and coordina-
tion capabilities not being equal to the task.

Another political smart mob occurred in 2001 when 
protesters in the Philippines used text messaging to orga-
nize demonstrations against the government of President 
Joseph Estrada. The protests grew rapidly, and Estrada was 
soon forced from office (see political activism and the 
Internet). Smart mob techniques were also used start-
ing in 2003 to coordinate protests against the Iraq War. As 

wireless communication continues to become ubiquitous, 
aspects of smart mob organization can be expected to turn 
up in future mass movements.

Even as the term has faded from public use, flash mobs 
have continued to flourish, appealing to a desire to have fun 
while striking out against an overly regimented consumer 
society. The term urban playground movement has also been 
used for the promotion of such gatherings.
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flash drive
A flash or “thumb” drive is a small data storage device that 
uses semiconductor flash memory rather than a disk drive. 
It is connected to a digital device using the universal serial 
bus (see usb). Because most computers, digital cameras, 
and other digital devices have USB ports, a flash drive is a 
convenient way to provide up to 16 GB (as of 2007) of low 
power, rewritable memory. Flash drives first appeared in 
late 2000.

Flash drives can use a separate USB cable (useful when 
several devices need to be connected to closely spaced USB 
ports) or simply have a connector that plugs directly into 
the port. Many people who regularly work with several 
computers carry their backup data or even a complete oper-
ating system (such as Linux) on a flash drive, perhaps con-
nected to their keyring.

In Windows Vista some recent flash drives can be used 
to provide an additional system memory cache through a 
feature called ReadyBoost.

Flash drives can also be built into portable devices, 
including video and audio players. A competing technol-
ogy (particularly found in digital cameras and PDAs) is the 
Secure Digital (SD) memory card developed by Matsushita, 
SanDisk, and Toshiba, which offers comparable capacity 
but is proprietary and requires a special interface.

For high-security applications, flash drives can include 
built-in encryption or fingerprint readers (see biometrics). 
However, as with other readily portable media, unsecured 
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flash drives containing sensitive data pose a real risk to 
many organizations.

Under development by SanDisk and Intel are larger flash 
drives (32 or 80 GB) suitable for replacing hard drives in lap-
tops. The benefits are lower weight and power consumption.

Further Reading
Axelson, Jan. USB Mass Storage: Designing and Programming Devices 

and Embedded Hosts. Madison, Wis.: Lakeview Research, 2006.
Oreskovic, Alexei. “Intel Prepares Flash Attack.” The Street.

com, September 9, 2007. Available online. URL: http://www. 
thestreet.com/s/intel-prepares-f lash-attack/newsanalysis/
techsemis/10380471.html. Accessed September 20, 2007.

Tyson, Jeff. “How Flash Memory Works.” Available online. URL: 
http://developer.apple.com/hardwaredrivers/firewire/index.
html. Accessed September 20, 2007.

flat-panel display
The traditional computer display uses a cathode ray tube 
(CRT) like that in a television set (see monitor). The flat-
panel display is an alternative used in most laptop com-
puters and some higher-end desktop systems. The most 
common type uses a liquid crystal display (LCD). The dis-
play consists of a grid of cells with one cell for each of the 
three colors (red, green, and blue) for each pixel.

The LCD cells are sandwiched between two polarizing 
filter layers that consist of many fine parallel grooves. The 
two filters are set so that the grooves on the second are 
rotated 90 degrees with respect to the first. By default, the 
light is polarized by the first filter, twisted by the liquid 
crystals so it is parallel to the grooves of the second filter, 
and thus passes through to be seen by the viewer. (For color 
displays, the light is first passed through one of three color 
filters to make it red, green, or blue as set for that pixel.) 
However, if current is applied to a crystal cell, the crys-
tals realign so that the light passes through them without 
twisting. This means that the second polarizing filter now 
blocks the light and the cell appears opaque (or dark) to the 
viewer.

Color LCD displays can use two different mechanisms for 
sending the current through the crystals. In passive matrix 
displays, the current is timed so that it briefly charges the 
correct crystal cells. The charges fade quickly, making the 
image look dim, and the display cannot be refreshed quickly 
because of the persistence of ghost images. This means that 
such displays do not work well with games or other pro-
grams with rapidly changing displays.

In an active matrix display, each display cell is con-
trolled by its own thin film transistor (TFT). These displays 
are sharper, brighter, and can be refreshed more frequently, 
allowing better displays for animations and games. How-
ever, fabrication costs for TFT displays are higher, and the 
displays are also vulnerable to having a few transistors 
fail, leading to permanent dark spots on the display. Active 
matrix displays also use more power, reducing battery life 
on laptop PCs. A general disadvantage of flat panel displays 
is that their pixel dimensions are fixed, so setting the dis-
play to a resolution smaller than its full dimensions usually 
results in an unsatisfactory image.

As newer technologies bring down the cost of flat-panel 
LCD displays they are increasingly being seen on desktop 
PCs, where they have the advantage of taking up much 
less space than conventional monitors while drawing less 
power.

Further Reading
“The PC Technology Guide. Flat panel displays.” Available online. 

URL: http://www.pctechguide.com/43FlatPanels.htm. Accessed 
August 14, 2007.

White, Ron. How Computers Work. 8th ed. Indianapolis: Que, 
2005.

floppy disk
Until the mid-1990s, the floppy disk or diskette was the 
primary method for distributing software and providing 
removable data storage for personal computers. Diskettes 
first appeared in the late 1960s on IBM minicomputers, and 
became more widespread on a variety of minicomputers 
and early microcomputers during the 1970s.

The now obsolete 8-inch and 5-¼ inch disks were made 
from Mylar with a metal oxide coating, the assembly being 
housed in a flexible cardboard jacket (hence the term “floppy 
disk”). The more compact 3.5-inch diskettes first widely 
introduced with the Apple Macintosh in 1984 became the 
standard type for all PCs by the 1990s. These diskettes are 
no longer truly “floppy” and come in a rigid plastic case.

A typical floppy disk drive has a controller with two 
magnetic heads so that both sides of the diskette can be 

When the current is off, the liquid crystals remain twisted so the 
light passes through both polarizing panels and illuminates the dis-
play. However, when current is applied, the crystals straighten out, 
causing the light to be blocked by the second polarizing panel.
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used to hold data. The surface is divided into concentric 
tracks that are in turn divided into sectors. (For more on 
disk organization, see hard drive.) The heads are precisely 
positioned to the required track/sector location using step-
per motors under control of the disk driver. The data capac-
ity of a disk depends on how densely tracks can be written 
on it. Today’s 3.5-inch diskettes typically hold 1.44 MB of 
data.

In recent years, drive technology has advanced so that 
many more tracks can be precisely written in the same 
amount of surface. The result is found in products such as 
the popular Zip disks, which can hold 100 MB or even 250 
MB, making them comparable in capacity and speed with 
older, smaller hard drives.

Since the late 1990s, the traditional floppy disk has become 
less relevant for most users. With more computers connected 
to networks, the use of network copying commands or e-mail 
attachments has made it less necessary to exchange files via 
floppy, a practice dubbed “sneaker-net.” When data needs to 
be backed up or archived, the high-capacity USB drive, tape, 
or writable CD is a more practical alternative to low-capacity 
floppies. (See backup and archive systems.) With its iMac 
line, Apple actually discontinued including a floppy drive as 
standard equipment. In PC-compatible laptops, a floppy drive 
is often available as a plug-in module that can be alternated 
with other devices. Desktop systems still sometimes come 
with a single 3.5-inch drive.

Further Reading
White, Ron. How Computers Work. 8th ed. Indianapolis: Que, 

2005.

flowchart
A flowchart is a diagram showing the “flow” or progress of 
operations in a computer program. Flowcharting was one 
of the earliest aids to program design and documentation, 
and a plastic template with standard flowcharting symbols 
was a common programming accessory. Today CASE (com-
puter-aided software engineering) systems often include 
utilities that can automatically generate flowcharts based 
on the control structures and procedure calls found in the 
program code (see case).

The standard flowchart symbols include blocks of vari-
ous shapes that represent input/output, data processing, 
sorting and collating, and so on. Lines with arrows indicate 
the flow of data from one stage or process to the next. A 
diamond-shaped symbol indicates a decision to be made 
by the program. If the decision is an “if” (see branching 
statements) separate lines branch off to the alternatives. 
If the decision involves repeated testing (see loop), the line 
returns back to the decision point while another line indi-
cates the continuation of processing after the loop exits. 
Devices such as printers and disk drives have their own 
symbols with lines indicating the flow of data to or from 
the device.

Complex software systems can employ several levels of 
flowcharts. For example, a particular routine within a pro-
gram might have its own flowchart. The routine as a whole 

would then appear as a symbol in a higher-level flowchart 
representing the program as a whole. Finally, a system chart 
might show each program that is run as part of an overall 
data processing system.

While still useful, flowcharting is often supplemented by 
other techniques for program representation (see pseudo-
code). Also, modern program design tends to shift the 
emphasis from charting the flow of processing to elucidat-
ing the properties and relationships of objects (see object-
oriented programming).

Further Reading
Boillot, M. H., G. M. Gleason, and L. W. Horn. Essentials of Flow-

charting. New York: WCB/McGraw-Hill, 1995.

font
In computing, a font refers to a typeface that has a distinc-
tive appearance and style. In most word processing, desk-
top publishing, and other programs the user can select the 
point size at which the font is to be displayed and printed 
(in traditional typography each point size would be consid-
ered to be a separate font). Operating systems such as Win-

A flowchart uses a set of simple symbols to describe the steps 
involved in a data processing operation. The parallelograms indi-
cate an input/output operation (such as reading or writing a file). 
The “decision diamonds” have yes and no branches depending on 
the result of a test or comparison.
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dows and Macintosh usually come with an assortment of 
fonts, and applications can register additional fonts to make 
them available to the system.

Fonts are often presented as a “family” that includes 
the same type design with different attributes such as bold-
face and italic. The spacing of letters could be uniform 
(monospace) as in the Courier font often used for printing 
computer program code or proportional (as with most text 
fonts). For proportional fonts the design can include kern-
ing, or the precise fitting together of adjacent letters for a 
more attractive appearance. Fonts are also described as serif 
if they have small crossbars on the ends of letters such as at 
the end of the crossbar on a T in the Times Roman font. 
Other fonts such as Arial lack the tiny bars and are called 
sans serif (without serif).

There are two basic ways to store font data in the 
computer system. Bitmapped fonts store the actual pat-
tern of tiny dots that make up the letters in the font. This 
has the advantage of allowing each letter in each point 
size to be precisely designed. The primary disadvantage 
is the amount of memory and system resources required 
to store a font in many point sizes. In practice, this con-
sideration results in only a relatively few fonts and sizes 
being available.

The alternative, an outline or vector font uses a “page 
description language” such as Adobe PostScript or Tru-
eType to provide graphics commands that specify the draw-
ing of each letter in a font. When the user specifies a font, 
the text is rendered by processing the graphics commands 
in an interpreter. Since the actual bitmap doesn’t need to be 
stored and all point sizes of a font can be generated from 
one description, outline fonts save memory and disk space 
(although they require additional processor resources for 
rendering). While sophisticated scaling techniques are used 
to maintain a pleasing appearance as the font size changes, 
outline fonts will not look as polished as bitmapped fonts 
that are hand-designed at each point size. (For use of fonts 
see typography, computerized.)

Further Reading
Aaron, B. TrueType Display Fonts. San Francisco: Sybex, 1993.
Adobe Systems. Adobe Type Library Reference Book. 2nd ed. Moun-

tain View, Calif.: Adobe Press, 2003.
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Forth
The unusual Forth programming language was designed 
by Charles H. Moore in 1970. An astronomer, Moore was 
interested in developing a compact language for controlling 
motors to drive radio telescopes and other equipment.

Language Structure
Forth has a very simple structure. The Forth system con-
sists of a collection of words. Each word is a sequence of 
operations (which can include other existing words). For 
example, the DUP word makes a copy of a data value. Data 
is held by a stack. For example, the arithmetic expression 
written as 2 + 3 in most languages would be written in 
Forth as + 2 3. When the + operator (which in Forth is a 
pre-defined word) executes, it adds the next two numbers 
it encounters (2 and 3) together, and puts the sum on the 
stack (where in turn it might be fetched for further process-
ing by the next word in the program (see stack). This rep-
resentation is also called postfix notation and is familiar to 
many users of scientific calculators.

The words in the dictionary are “threaded” or linked so 
that each word contains the starting address of the next one. 
The Forth interpreter runs a simple loop where it fetches 
the next token (one or more characters delimited by spaces) 
and scans the dictionary to see if it matches a defined word 
(including variables). If a word is found, the code in the 
word is executed. If no word is found, the interpreter inter-
prets the token as a numeric constant, loads it on the stack, 
and proceeds to the next word.

A key feature of Forth is its extensibility. Once you have 
defined a word, the new word can be used in exactly the same 
way as the predefined words. The various forms of defining 
words allow for great control over what happens when a new 
word is created and when the word is later executed. (In 
many ways Forth anticipated the principles of object-oriented 
programming, with words as objects with implicit construc-
tors and methods. A well-organized Forth program builds up 
from “primitive” operations to the higher-level words, with 
the program itself being the highest-level word.)

Forth has always attracted an enthusiastic following of 
programmers who appreciate a close communion with the 
flow of data in the machine and the ability to precisely 
tailor programs. The language is completely interactive, 
since any word can be typed at the keyboard to execute 
it and display the results. Forth was also attractive in the 

Strictly speaking, a particular type design is called a typeface, and 
a font is a rendering of a typeface with specified characteristics 
such as height in points and possibly width or pitch in characters 
per inch. Thus there are usually many fonts for each typeface.
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early days of microcomputing because the lack of need for 
a sophisticated interpreter or compiler meant that Forth 
systems could run comfortably on systems that had perhaps 
16K or 64K of available RAM.

Forth never caught on with the mainstream of program-
mers, however. Its very uniqueness and the unusual mindset 
it required probably limited the number of people willing to 
learn it. While Forth programs can be clearly organized, 
badly written Forth programs can be virtually impossible 
to read. However, Forth is sometimes found “under the 
hood” in surprising places (for example, the PostScript page 
description language is similar to Forth) and the language 
still has a considerable following in designing hardware 
control devices (see embedded systems).

Further Reading
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FORTRAN
As computing became established throughout the 1950s, 
the need for a language that could express operations in a 
more “human-readable” language began to be acutely felt. 
In a high-level language, programmers define variables and 
write statements and expressions to manipulate them. The 
programmer is no longer concerned with specifying the 
detailed storage and retrieval of binary data in the com-
puter, and is freed to think about program structure and the 
proper implementation of algorithms.

Fortran (FORmula TRANslator) was the first widely 
used high-level programming language. It was developed 
by a project begun in 1954 by a team under the leadership 
of IBM researcher John Backus. The goal of the project was 
to create a language that would allow mathematicians, sci-
entists, and engineers to express calculations in something 
close to the traditional notation. At the same time, a com-
piler would have to be carefully designed so that it would 
produce executable machine code that would be nearly as 
efficient as the code that would have been created through 
the more tedious process of using assembly languages. (See 
compiler and assembler.)

The first version of the language, Fortran I, became 
available as a compiler for IBM mainframes in 1957. An 
improved (and further debugged version) soon followed. 
Fortran IV (1963) expanded the number of supported 
data types, added “common” data storage, and included 
the DATA statement, which made it easier to load literal 
numeric values into variables. This mature version of For-
tran was widely embraced by scientists and engineers, who 
created immense libraries of code for dealing with calcula-
tions commonly needed for their work.

By the 1970s, the structured programming movement 
was well under way. This school of programming empha-

sized dividing programs into self-contained procedures into 
which data would be passed, processed, and returned. The 
use of unconditional branches (GOTO statements) as was 
common in Fortran was now discouraged. A new version of 
the language, Fortran 77 (or F77), incorporated many of the 
new structural features. The next version, Fortran 90 (F90), 
added support for recursion, an important technique for 
coding certain kinds of problems (see recursion). Math-
ematics libraries were also modernized. FORTRAN 2003 
contains a number of new features, including support for 
modern programming structures (see object-oriented 
programming) and the ability to interface smoothly with 
programs written in the C language. A relatively minor fur-
ther revision has the tentative name FORTRAN 2008.

Sample Program
The following simple example illustrates some features of a 
traditional FORTRAN program:

INTEGER INTARRAY(10)
INTEGER ITEMS, COUNTER, SUM, AVG
SUM = 0
READ *, ITEMS
DO 10 COUNTER = 1, ITEMS

READ *, INTARRAY(COUNTER)
SUM = SUM + INTARRAY(COUNTER)

10 CONTINUE
AVG = SUM / ITEMS
PRINT ‘SUM OF ITEMS IS: ’, SUM
PRINT ‘AVERAGE IS: ’, AVG

STOP
END

The program creates an array holding up to ten integers 
(see array). The first number it reads is the number of items 
to be added up. It stores this in the variable ITEMS. A DO 
loop statement then repeats the following two statements 
once for each number from 1 to the total number of items. 
Each time the two statements are executed, COUNTER is 
increased by 1. The statements read the next number from 
the array and add it to the running total in SUM. Finally, the 
average is calculated and the sum and average are printed.

Like its contemporary, COBOL, Fortran is viewed by 
many modern programmers as a rather clumsy and anach-
ronistic language (because of its use of line number refer-
ences, for example). However, there is a tremendous legacy 
of tested, reliable Fortran code and powerful math libraries. 
(For example, a Fortran program can call library routines 
to quickly get the sum or cross-product of any array or 
matrix.) These features ensure that Fortran has continuing 
appeal and utility to users who are more concerned with 
getting fast and accurate results than with the niceties of 
programming style.

Further Reading
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New York: Springer, 2005.
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fractals in computing
Fractals and the related idea of chaos have profoundly 
changed the way scientists think about and model the 
world. Around 1960, Benoit Mandelbrot noticed that sup-
posedly random economic fluctuations were not distributed 
evenly but tended to form “clumps.” As he investigated other 
sources of data, he found that many other things exhibited 
this odd behavior. He also discovered that the patterns of 
distribution were “self-similar”—that is, if you magnified a 
portion of the pattern it looked like a miniature copy of the 
whole. Mandelbrot coined the term fractal (meaning frac-
tured, or broken up) to describe such patterns. Eventually, 
a number of simple mathematical functions were found to 
exhibit such behavior in generating values.

Fractals offered a way to model many phenomena in 
nature that could not be handled by more conventional 
geometry. For example, a coastline that might be measured 
as 1,600 miles on a map might be many thousands of miles 

when measured on local maps, as the tiny inlets at every 
bay and beach are measured. Fractal functions could repli-
cate this sort of endless generation of detail in nature.

Fractals showed that seemingly random or chaotic data 
could form a web of patterns. At the same time, Mandel-
brot and others had discovered that the pattern radically 
depended on the precise starting conditions: A very slight 
difference at the start could generate completely different 
patterns. This “sensitive dependence on initial conditions” 
helped explain why many phenomena such as weather (as 
opposed to overall climate) resisted predictability.

Computing Applications
Many computer users are familiar with the colorful fractal 
patterns generated by some screen savers. There are hun-
dreds of “families” of fractals (beginning with the famous 
Mandelbrot set) that can be color-coded and displayed in 
endless detail. But there are a number of more significant 
applications. Because of their ability to generate realistic 
textures at every level of detail, many computer games and 
simulations use fractals to generate terrain interactively. 
Fractals can also be used to compress large digital images 
into a much smaller equivalent by creating a mathemati-
cal transformation that preserves (and can be used to re-
create) the essential characteristics of the image. Military 
experts can use fractal analysis either to distinguish artifi-
cial objects from surrounding terrain or camouflage, or to 
generate more realistic camouflage. Fractals and chaos the-
ory are likely to produce many surprising discoveries in the 
future, in areas ranging from signal analysis and encryption 
to economic forecasting.
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functional languages
Most commonly used computer languages such as C++ 
and FORTRAN are imperative languages. This means that 
a statement is like a “sentence” in which the value of an 
expression or the result of a function is used in some way, 
such as assigning it to another variable or printing it. For 
example:

A = cube(3)

passes the parameter 3 to the cube function, which returns 
the value 27, which is then assigned to the variable A.

In a functional language, the values of functions are not 
assigned to variables (or stored in intermediate locations as 
functions are evaluated). Instead, the functions are manipu-
lated directly, together with data items (atoms) arranged 
in lists. The earliest (and still best-known) functional lan-
guage is LISP (see lisp). Programming is accomplished by 

A Mandelbrot fractal generated using Adobe PhotoShop and the 
KPT (Kai’s Power Tools) Fraxplorer filter.  (Lisa Yount)
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defining and arranging functions until the desired process-
ing is accomplished. (The decision making accomplished 
by branching statements in imperative languages is accom-
plished by incorporating conditionals in function defini-
tions.)

Many functional languages (including LISP) for conve-
nience incorporate some features of imperative languages. 
The ML language, for example, includes data type declara-
tions. A similar language, Haskell, however, eschews all 
such imperative features.

Applications
Functional languages have generally been used for special-
ized purposes, although they can in principle perform any 
task that an imperative language can. APL, which is basi-
cally a functional language, has devotees who appreciate its 
compact and powerful syntax for performing calculations 
(see apl). LISP and its variants have long been favored for 
many artificial intelligence applications, particularly natu-
ral language processing, where its representation of data as 
lists and the facility of its list-processing functions seems a 
natural fit.

Proponents of functional languages argue that they free 
the programmer from having to be concerned with explic-
itly setting up and using variables. In a functional language, 
problems can often be stated in a more purely mathematical 
way. Further, because functional programs are not orga-
nized as sequentially executed tasks, it may be easier to 
implement parallel processing systems using functional 
languages.

However, critics point out that imperative languages are 
much closer to how computers actually work (employing 
actual storage locations and sequential operation) and thus 
produce code likely to be much faster and more efficient 
than that produced by functional languages.
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fuzzy logic
At bottom, a data bit in a computer is “all or nothing” 
(1 or 0). Most decisions in computer code are also all or 

nothing: Either a condition is satisfied, and execution takes 
one specified path, or the condition is not satisfied and it 
goes elsewhere. In real life, of course, many situations fall 
between the cracks. For example, a business might want to 
treat a credit applicant who almost qualifies for “A” status 
different from one who barely made “B.” While a program 
could be refined to include many gradations between B and 
A, another approach is to express the degree of “closeness” 
(or certainty) using fuzzy logic.

In 1965, mathematician L. A. Zadeh introduced the con-
cept of the fuzzy set. In a fuzzy set, a given item is not 
simply either a member or not a member of a specified set. 
Rather, there is a degree of membership or “suitability” 
somewhere between 0 (definitely not a member) and 1 (defi-
nitely a member). A program using fuzzy logic must include 
a variety of rules for determining how much certainty to 
assign in a given case. One way to create rules is to ask 
experts in a given field (such as credit analysis) to articulate 
the degree of certainty or confidence they would feel in a 
given set of circumstances. For physical systems, data can 
also be correlated (such as the relationship of temperature 
to the likelihood of failure of a component) and used to cre-
ate a rule to be followed by, for example, a chemical process 
control system.

Fuzzy logic is particularly applicable to the creation of 
programs (see expert system) that are better able to cope 
with uncertainty and the need to weigh competing factors 
in coming to a decision. It can also be used in engineer-
ing to allow designers to specify which factors they want 
to tightly constrain (such as for safety reasons) and which 
can be allowed more leeway. The system can then come up 
with optimized design specifications. Fuzzy logic has also 
been applied to areas such as pattern recognition and image 
analysis where a number of uncertain observations must 
often be accumulated and a conclusion drawn about the 
overall object.
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game consoles
Game consoles are computer devices dedicated to (or pri-
marily used for) playing video games. The earliest such 
devices appeared in the 1970s from Magnavox and then 
Atari, and could only play simple games like Pong (a crude 
simulation of ping-pong). Slightly later systems began to 
feature cartridges that allowed them to play a greater vari-
ety of games.

After a shakeout in the late 1970s, Atari revived the 
video game industry with its hit game Space Invaders. 
However, this was followed by another industry crash as 
the market became glutted by often imitative and inferior 
games. The next leader was Nintendo, with its own hit, 
Super Mario Brothers. By the end of the 1980s another Japa-
nese firm, Sega, had entered the American market.

During the 1990s consoles grew in power and graphic 
sophistication. CDs (and later DVDs) replaced cartridges 
and allowed for larger, more complex games. By the end of 
the decade the main competitors were the Sony Playstation 
2 and the Nintendo 64 (indicating a 64-bit processor) and 
GameCube. Meanwhile Microsoft entered the game console 
market with its Xbox, which featured a more PC-like archi-
tecture including a built-in hard drive (soon also adopted 
by Sony).

New Technologies
A technology with applications far beyond games is the 
“cell chip” technology introduced by Sony in its Play-
Station 3, introduced in late 2006. The Sony cell chip 
has seven cores and can reach nearly supercomputer-scale 

speeds (and in fact is being used to create impromptu 
supercomputers).

Sony also opted to include a high-definition “Blu-ray” 
DVD player in the PS3, strengthening its application as a 
media device as well as a gaming device, with Microsoft 
and its Xbox 360 initially opting for the ultimately unsuc-
cessful HD DVD.

Nintendo’s Wii, the third major competitor as of 2007, 
innovates in a different area: the user interface. The Wii 
comes with a controller that can track both where it is 
pointing and how it is being used, allowing for rather real-
istic sports and combat simulations.

Further Reading
Amirch, Dan. PlayStation 2 for Dummies. New York: Hungry 

Minds, 2001.
Farkas, Bart G. The Nintendo Wii Pocket Guide. Berkeley, Calif.: 

Peachpit Press, 2007.
Forster, Winnie. The Encyclopedia of Game Machines. Utting, Ger-

many: Game Plan, 2005.
Johnson, Brian. Xbox 360 for Dummies. Hoboken, N.J.: Wiley, 

2006.
Kent, Steven L. The Ultimate History of Video Games. New York: 

Three Rivers Press, 2001.
Kim, Ryan. “New Era of Game Devices Arrives: Sony and Nin-

tendo Meet the Challenge of Microsoft’s Xbox.” San Francisco 
Chronicle, November 13, 2006, p. F-1. Available online. URL: 
http://sfgate.com/cgi-bin/article.cgi?file=/c/a/2006/11/13/
BUGS1MAGAN1.DTL. Accessed September 21, 2007.

Nintendo. Available online. URL: http://www.nintendo.com. 
Accessed September 21, 2007.

Playstation (Sony). Available online. URL: http://www.us. 
playstation.com/. Accessed September 21, 2007.

G



Takahashi, Dean. The Xbox 360 Uncloaked: The Real Story Behind 
Microsoft’s Next-Generation Video Game Console. Spiderworks, 
2006.

Xbox (Microsoft). Available online. URL: http://www.microsoft.
com/xbox/. Accessed September 21, 2007.

Gates, William, III (Bill)
(1955–  )
American
Entrepreneur, Programmer

Bill Gates built Microsoft, the dominant company in the 
computer software field and in doing so, became the world’s 
wealthiest individual, with a net worth measured in the 
tens of billions. Born on October 28, 1955, to a successful 
professional couple in Seattle, Gates’s teenage years coin-
cided with the first microprocessors becoming available to 
electronics hobbyists.

Gates showed both technical and business talent as early 
as age 15, when he developed a computerized traffic-control 
system. He sold his invention for $20,000, then dropped 
out of high school to work as a programmer for TRW for 

the very respectable salary of $30,000. By age 20, Gates 
had returned to his schooling and become a freshman at 
Harvard, but then he saw a cover article in Popular Electron-
ics. The story introduced the Altair, the first commercially 
available microcomputer kit.

Gates believed that microcomputing would soon become 
a significant industry. To be useful, however, the new 
machines would need software, and Gates and his friend 
Paul Allen began by creating an interpreter for the BASIC 
language that could run in only 4 KB of memory, making 
it possible for people to write useful applications without 
having to use assembly language. This first product was 
quite successful, although to Gates’s annoyance it was illic-
itly copied and distributed for free.

In 1975, Gates and Allen formed the Microsoft Cor-
poration. Most of the existing microcomputer companies, 
including Apple, Commodore, and Tandy (Radio Shack) 
signed agreements to include Microsoft software with their 
machines. However, the big breakthrough came in 1980, 
when IBM decided to market its own microcomputer. When 
negotiations for a version of CP/M (then the dominant oper-
ating system) broke down, Gates agreed to supply IBM with 
a new operating system. Buying one from a small Seattle 
company, Microsoft polished it a bit and sold it as MS-DOS 
1.0. Sales of MS-DOS exploded as many other companies 
rushed to create “clones” of IBM’s hardware, each of which 
needed a copy of the Microsoft product.

In the early 1980s, Microsoft was only one of many 
thriving competitors in the office software market. Word 
processing was dominated by such names as WordStar 
and WordPerfect, Lotus 1-2-3 ruled the spreadsheet roost, 
and dBase II dominated databases (see word processing, 
spreadsheet, and database management system). But 
Gates and Microsoft used the steady revenues from MS-
DOS to undertake the creation of Windows, a much larger 
operating system that offered a graphical user interface (see 
user interface). While the first versions of Windows were 
clumsy and sold poorly, by 1990 Windows (with versions 
3.1 and later, 95 and 98) had become the new dominant OS 
and Microsoft’s annual revenues exceeded $1 billion (see 
Microsoft Windows). Gates relentlessly leveraged both 
the company’s technical knowledge of its own OS and its 
near monopoly in the OS sector to gain a dominant market 
share for the Microsoft word processing, spreadsheet, and 
database programs.

By the end of the decade, however, Gates and Microsoft 
faced formidable challenges. The growth of the Internet and 
the use of the Java language with Web browsers offered a 
new way to develop and deliver software, potentially getting 
around Microsoft’s operating system dominance (see Java). 
That dominance, itself, was being challenged by Linux, a 
version of LINUX created by Finnish programmer Linus 
Torvalds (see linux). Gates responded that Microsoft, too, 
would embrace the networked world and make all its soft-
ware fully integrated with the Internet and distributable in 
new ways.

However, antitrust lawyers for the U.S. Department of 
Justice and a number of states began legal action in the late 
1990s, accusing Microsoft of abusing its monopoly status 

Game consoles such as this Microsoft Xbox are now more powerful 
than many desktop computers.  (Microsoft Corporation)
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by virtually forcing vendors to include its software with 
their systems. In 2000, a federal judge agreed with the gov-
ernment. In November 2002, an appeals court accepted a 
proposed settlement that would not break up Microsoft but 
would instead restrain a number of its unfair business prac-
tices.

Gates’s personality often seemed to be in the center of 
the ongoing controversy about Microsoft’s behavior. Posi-
tively, he has been characterized as having incredible 
energy, drive, and focus in revolutionizing the development 
and marketing of software.

On the other hand, Gates has been unapologetic about 
his dominance of the market. During the 1990s he often 
appeared defensive and abrasive in giving legal depositions 
or making public statements. As an executive, he has at times 
shown little tolerance for what he considers to be incompe-
tence or shortsightedness on the part of subordinates.

There is another face to Bill Gates: He is one of the 
leading philanthropists of our time. In 2000 he and his 
wife founded the Bill and Melinda Gates Foundation. The 
foundation’s endowment was about $33 billion by 2006, 
and Warren Buffet pledged to nearly double that through 

stock donations. The foundation gives over $800 million a 
year to global health programs (including vaccination pro-
grams), supports a variety of global development efforts, 
and donates money and software to libraries and educa-
tional institutions. In June 2006 Gates announced that he 
would be withdrawing from involvement in the day-to-day 
affairs of Microsoft, in order to devote more time to philan-
thropy.

Since 2004, Gates has been featured on Time magazine’s 
annual list of 100 most influential people. In 2005, the 
magazine made Gates, along with his wife and U2’s lead 
singer Bono, “Persons of the Year.” Gates has also received 
four honorary doctorates.
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genetic algorithms
The normal method for getting a computer to perform a 
task is to specify the task clearly, choose the appropriate 
approach (see algorithm), and then implement and test 
the code. However, this approach requires that the pro-
grammer first know the appropriate approach, and even 
when there are many potentially suitable algorithms, it isn’t 
always clear which will prove optimal.

Starting in the 1960s, however, researchers began to 
explore the idea that an evolutionary approach might be 
adaptable to programming. Biologists today know that 
nature did not begin with a set of highly optimized algo-
rithms. Rather, it addressed the problems of survival 
through a proliferation of alternatives (through mutation 
and recombination) that are then subjected to natural selec-
tion, with the fittest (most successful) organisms surviving 
to reproduce. Researchers began to develop computer pro-
grams that emulated this process.

A genetic program consists of a number of copies of a 
routine that contain encoded “genes” that represent ele-
ments of algorithms. The routines are given a task (such 
as sorting data or recognizing patterns) and the most suc-
cessful routines are allowed to “reproduce” by exchanging 
genetic material. (Often, further “mutation” or variation is 
introduced at this stage, to increase the range of available 
solutions.) The new “generation” is then allowed to tackle 
the problem, and the process is repeated. As a result, the 
routines become increasingly efficient at solving the given 
problem, just as organisms in nature become more perfectly 
adapted to a given environment.

Bill Gates is the multibillionaire cofounder of Microsoft Corpo-
ration, the leader in operating systems and software for personal 
computers. The company has faced antitrust actions since the 
late 1990s.  (Microsoft Corporation)
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Applications
Variations of genetic algorithms or “evolutionary program-
ming” have been used for many applications. In engineering 
development, a virtual environment can be set up in which 
a simulated device such as a robot arm can be allowed to 
evolve until it is able to perform to acceptable specifica-
tions. (NASA has also used genetic programs competing on 
80 computers to design a space antenna.) Different versions 
of an expert system program can be allowed to compete at 
performing tasks such as predicting the behavior of finan-
cial markets. Finally, a genetic program is a natural way to 
simulate actual biological evolution and behavior in fields 
such as epidemiology (see also artificial life).
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Geographical Information Systems
Cartography, or the art of mapmaking, has been trans-
formed in many ways by the use of computers. Traditionally, 
mapmaking was a tedious process of recording, compiling, 
and projecting or plotting information about the location, 
contours, elevation, or other characteristics of natural geo-
graphic features or the demographic or political structure 
of human communities.

Instead of being transcribed from the readings of survey-
ing instruments, geographic information can be acquired 
and digitized by sensors such as cameras aboard orbit-
ing satellites. The availability of such extensive, detailed 
information would overwhelm any manual system of tran-
scribing or plotting. Instead, the Geographical Informa-
tion System (GIS, first developed in Canada in the 1960s) 
integrates sensor input with scanning and plotting devices, 
together with a database management system to compile 
the geographic information. 

The format in which the information is stored is depen-
dent on the scope and purpose of the information system. A 
detailed topographical view, for example, would have physi-
cal coordinates of latitude, longitude, and elevation. On the 
other hand, a demographic map of an urban area might 

have regions delineated by ZIP code or voting precinct, or 
by individual address.

Geographic data can be stored as either a raster or a 
vector representation. A raster system divides the area into 
a grid and assigns values to each cell in the grid. For exam-
ple, each cell might be coded according to its highest point 
of elevation, the amount of vegetation (ground cover) it has, 
its population density, or any other factor of interest. The 
simple grid system makes raster data easy to manipulate, 
but the data tends to be “coarse” since there is no informa-
tion about variations within a cell.

Unlike the arbitrary cells of the raster grid, a vector rep-
resentation is based upon the physical coordinates of actual 
points or boundaries around regions. Vector representation 
is used when the actual shapes of an entity are important, 
as with property lines. Vector data is harder to manipulate 
than raster data because geometric calculations must be 
made in order to yield information such as the distance 
between two points.

The power of geographic information systems comes from 
the ability to integrate data from a variety of sources, whether 
aerial photography, census records, or even scanned paper 
maps. Once in digital form, the data can be represented in a 
variety of ways for various purposes. A sophisticated gis can 
be queried to determine, for example, how much of a pro-
posed development would have a downhill gradient and be 
below sea level such that flooding might be a problem. These 
results can in turn be used by simulation programs to deter-
mine, for example, whether release of a chemical into the 
groundwater from a proposed plant site might affect a partic-
ular town two miles away. Geographic information systems 
are thus vital for the management of a variety of complex 
systems that are distributed over a geographical area, such 
as water and sewage systems, power transmission grids, and 
traffic control systems. Other applications include emergency 
planning (and evacuation routes) and the long-term study of 
the effects of global warming trends.

A raster grid showing annual rainfall totals in inches for mythical 
Square County. Raster data is easy to work with, but the “coarse-
ness” of the grid means that it does not capture much local varia-
tion or detail.
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from information to navigation
The earliest use of maps was for facilitating navigation. 
The development of the Global Positioning System (GPS) 
made it possible for a device to triangulate readings from 
three of 24 satellites to pinpoint the user’s position on 
Earth’s surface within a few meters (or even closer in mil-
itary applications). The mobile navigation systems that 
have now become a consumer product essentially use the 
current physical coordinates to look up information in the 
onboard geographical information system. Depending on 
the information stored and the user’s needs, the resulting 
display can range from a simple depiction of the user’s 
location on a highway or city street map to the generat-
ing of detailed driving directions from the present loca-
tion to a desired location. As these systems are fitted with 
increasingly versatile natural language systems (and per-
haps voice-recognition capabilities), the user will be able 
to ask questions such as “Where’s the nearest gas station?” 
or even “Where’s the nearest French restaurant rated at 
least three stars?”
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globalization and the computer industry
Globalization can be described as a group of trends that 
are breaking down the boundaries between national and 
regional economies, making countries more dependent on 
one another, and resulting in the freer flow of labor and 
resources. These trends have been praised by free trade 
advocates and decried by proponents of labor rights and 
environmentalism. However one feels about them, it is 
clear that global trends are reshaping the computer and 
information industry in many ways, and pose significant 
challenges.

Global trends that affect computer technology, software, 
and services include:

• � offshoring, or the continuing movement of manufac-
turing of high-value components (and whole systems) 
from the industrialized West to regions such as Asia

• � outsourcing—moving functions (such as technical 
support) from a company’s home country to areas 
where suitable labor forces are cheaper (see employ-
ment in the computer field)

• � removal of traditional intermediaries such as brokers 
and agents, with some of their functions being taken 
over by software (see software agent)

• � decentralized networks (of which the Internet itself 
is the most prominent example) and the tendency of 
information to flow freely and quickly despite barri-
ers such as censorship

• � virtualization—creation of work groups or whole 
companies that are distributed across both space 
and time (24 hours), coordinated by the Internet and 
mobile communications (see virtualization)

• � increasing use of open-source and collaborative mod-
els of software and information development (see 
open source)

• � blurring of the distinction between consumers and 
producers of information (see social networking 
and user-created content)

These global trends can be divided roughly into three cat-
egories: movement of labor and resources, restructuring of 
markets, and changes in the nature and flow of production.

Movements and Shifts
Offshoring is the movement of manufacturing operations 
from the traditional developed industrial nations (such 
as the United States and Europe) to developing nations 
(see also developing nations and computing). The 
principal motivation for this (as well as outsourcing, the 
movement of corporate functions and services) is lower 
labor and related costs. India, with its large population 
of well-trained, English-speaking workers, was the first 
beneficiary of these trends in the 1990s. Many major U.S. 
computer companies such as IBM, Intel, Microsoft, and 
HP have made major investments in software develop-
ment operations in India. However, it should be noted 
that offshoring/outsourcing is a truly global trend, with 
other industrialized nations taking advantage of similar 
situations, particularly where there are language compat-
ibilities. Thus Japanese companies have invested heavily 
in China, while Germans and other Europeans have pre-
ferred to look toward Eastern Europe.

Besides lower costs, outsourcing can speed development 
by taking advantage of differences in time zones, allowing 
for coordinated 24-hour production cycles.

Free-Trade Controversies
Proponents of these trends generally include them under 
the umbrella of “free trade.” Their arguments include:

• � greater productivity through more efficient tapping of 
talent and resources

• � improvement in the standard of living in developing 
nations

• � lower prices for goods and services in developed 
nations

• � spurring innovation through competition and the 
movement of displaced workers to higher-value jobs

Opponents point to a number of serious problems and 
issues, including:
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• � downward wage pressure and/or unemployment as 
workers in developed nations are displaced by offshore 
workers

• � difficulty in retraining displaced workers

• � lack of adequate protective regulations and labor 
rights for workers in developing nations

• � potential deterioration in the quality of services (such 
as technical support) after outsourcing

• � risks of dependence on offshore supply sources in 
times of crisis

Restructuring of Markets
Computer-related businesses must also deal with the effects 
of globalization on the market for hardware, software, and 
services. Lower-cost offshore manufacturing has helped 
contribute to making many computer systems and peripher-
als into commodity items. This certainly benefits consum-
ers (consider the ubiquitous $100 or less computer printer). 
However, it becomes more difficult to extract a premium 
for a brand as opposed to a generic name. Some companies 
have responded by relentless efforts to maximize efficiency 
in manufacturing (for example, see Dell, Inc.), while a few 
others have maintained a reputation for style or innovation 
(see Apple, Inc.). Consumers have increasingly objected, 
however, to the difficulty in dealing with offshore technical 
support.

While the power of the Internet has opened many new 
ways of reaching potential customers around the world, 
dealing with a global marketplace brings considerable 
added complications, such as the need to deal with different 
regulatory systems (such as the European Union). In some 
areas (notably Asia) there is also the problem of unauthor-
ized copying of software and media products (see soft-
ware piracy and counterfeiting).

New Ways of Working
A global, connected economy is not only changing where 
work is done, but also how it is done. If a software devel-
oper, for example, has operations in the United States, 
Europe, India, and China, at any time of day there will 
be work going on somewhere. With the complexity and 
speed of operations, managers in the United States may 
have to keep quite long and irregular hours in order to 
have real-time communication with counterparts abroad. 
This interaction is made possible by a variety of technolo-
gies, including Internet-based phone and video conferenc-
ing and, of course, e-mail. However, this is not without 
added stress. Overall operations can be structured to take 
advantage of the time zone differences. Code or documents 
written in Bangalore might be reviewed and revised in Sili-
con Valley the same day.

Global trends are likely to continue and even acceler-
ate as the computer and information industry continues to 
develop around the world. While technology can help deal 
with some of the challenges, there are many larger eco-
nomic and political issues involved, and whether they can 

be satisfactorily resolved may ultimately have the greatest 
impact on the industry.
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Google
Google Inc. (NASDAQ symbol: GOOG) has built a busi-
ness colossus by focusing on helping users find what they 
are looking for on the Internet while selling advertising 
targeted at those same users. By 2006, “to google” could be 
found in dictionaries as a verb meaning to look up anyone 
or anything online.

Google was founded by two Stanford students (see Brin, 
Sergey and Page, Larry) who, for their doctoral thesis, 
had described a Web search algorithm that could give a bet-
ter idea of the likely relevance of a given site based on the 
number of sites that linked to it. The two students imple-
mented a search engine based on their ideas and hosted it 
on the Stanford Web site, where its popularity soon irri-
tated the university’s system administrators. In 1998 their 
business was incorporated as Google, Inc., and moved to 
the archetypal Silicon Valley entrepreneur’s location—a 
friend’s garage. However, as the company attracted invest-
ment capital and grew rapidly, it moved to Palo Alto and 
then its present home in Mountain View.

Google’s initial public stock offering was in 2004, and 
the market’s enthusiastic response made many senior 
employees instant millionaires. Google’s steady growth in 
subsequent years has kept its stock in demand, reaching a 
record peak of $560 in September 2007. (In 2006 Google 
was added to the S&P 500 Index.)

Search and Its Larger Context
People tend to think of Google as a search engine. Actu-
ally, it is better to think of it as an ever-expanding net-
work of Web-based services that include general and 
specialized searches but also tools for content creation 
and collaboration.

It is true that search and the accompanying advertising 
are the core of Google’s revenue and thus the engine that 
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drives its proliferation. In 2000 Google adopted keyword-
based advertising. (This was not a new idea, but Google 
was the first to really make it work.) Basically, advertisers 
bid for the right to have their ad accompany the results of a 
search that contains a given word, on a per “click through” 
basis—that is, how often the user clicks on the ad to go to 
the advertiser’s site. Advertisers are prioritized according 
to how much they bid, their previous click-through rate, 
and their ad’s relevance to the search. If someone searches, 
for example, “widget” and Acme Widget Co. is in line for 
placement, the Acme ad is shown. If the user then clicks on 
it, Acme makes a payment to Google (and hopes to some 
business).

The power of keyword-based and other “contextual” 
advertising is that, by definition, any accompanying ad is 
targeted to someone who is quite probably already look-
ing for what one is selling. And what makes this such a 
revenue-maker for Google is that, since the company serves 
over half of all Web searches, anyone wanting an ad to 
reach the biggest share of its potential audience will have to 
turn to Google.

Google’s ability to offer more precisely targeted advertis-
ing has been enhanced in several ways:

• � AdSense, which can be installed on a Web site where 
it displays ads keyed to the site’s content. Revenue is 
shared by Google and the site owner.

• � Advertisers can specify an AdWord and Google will 
place it on participating sites in its “content network” 
that it believes are relevant. The advertiser pays per 
thousand viewings of the ads (“impressions”).

• � Specialized shopping-oriented searches such as 
Google Product Search, which returns lists of sellers 
and a price comparison.

• � Searches can also be local (particularly useful for 
mobile devices) and results can be keyed to maps.

Other Applications
Google has greatly expanded beyond its core business of 
search and accompanying advertising. In general, the com-
pany has been emphasizing acquiring or developing tools 
that help users create content and collaborate. These offer-
ing include:

• � Blogger, an easy-to-use blogging tool (see blogs and 
blogging)

• � JotSpot, developer of wiki collaboration tools (see 
wikis and Wikipedia)

• � YouTube, the largest video-sharing service, acquired 
by Google in 2006 (see YouTube)

• �G mail, a free e-mail service

• �G oogle Apps, which provides a Web-based office envi-
ronment including a calendar and Google Docs & 
Spreadsheets. (The standard edition is free and repre-
sents a competitive challenge for Microsoft Office, par-
ticularly for small businesses and simpler applications.)

In addition to office and collaboration tools, Google has 
several other prominent applications that do not easily fit in 
one category:

• �G oogle News provides a constantly updated newspa-
perlike format that groups stories under headlines.

• �G oogle Book Search offers access to thousands of 
public-domain books and summaries or limited pre-
views of copyrighted works (see e-books and digital 
libraries)

• �G oogle Maps and Google Earth are vast troves of map 
information, satellite imagery, and even street-level 
views of some cities.

A key to the growth of Google’s new Web services is that 
many of them come with programming interfaces that can 
be used to integrate them into Web sites and applications. 
It is relatively easy, for example, to combine maps and data 
about stores or other locations (see mashups).

Criticism
As of mid-2008 Google had more than 19,500 full-time 
employees. The company’s workplace culture at its Moun-
tain View “Googleplex” is famous for its gourmet food, 
elaborate recreation center, and other perks. (In 2007 For-
tune magazine rated Google first in the nation as a place to 
work.)

Google has a market capitalization of about $180 billion, 
ahead of such giants as Hewlett-Packard and IBM. In 2008 
Google took in $16.6 billion, with $4.2 billion in profit. 
Google’s impact on the online world has been immense. 
As of mid-2007 Google was processing 54 percent of all 
Internet search requests, followed distantly by Yahoo! at 20 
percent and Microsoft at 13 percent.

Google sets a high standard for itself. Its mission state-
ment is “to organize the world’s information and make it 
universally accessible and useful.” A corporate motto is 
“don’t be evil” in the pursuit of success. A number of critics 
have suggested, however, that Google has fallen short of its 
standards in a number of respects:

• �G oogle Book Search had led to accusations of copy-
right violations by publishers and authors. Google has 
also been accused of benefiting from rampant copying 
of copyrighted content on its YouTube subsidiary.

• �G oogle has been criticized for aiding China in censor-
ing search results (see censorship and the Internet).

• � The detailed imagery available from Google Earth has 
been criticized by some nations on security grounds, 
and street-level views have raised privacy questions.

• � Some Google practices, including the extensive use of 
cookies and analysis of users’ e-mail and other con-
tent, have also aroused privacy concerns (see cook-
ies and data mining).

• �G oogle has also been criticized for keeping its Page
Rank system secret, making it hard to determine if it 
is treating users fairly.
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In 2007 Google acquired DoubleClick for $3.1 billion. 
Although the combination of the leading search company 
and a major online advertising service provoked concerns 
about a possible monopoly, the acquisition was approved by 
U.S. and European regulators.

While Google continues to be a subject of both admira-
tion and debate, it is clear that it has placed powerful tools 
and enormous new resources in the hands of Web users 
around the world.
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government funding of computer research
While the popular version of the story of the information 
age tends to focus on lone inventors in garages or would-be 
entrepreneurs working out of college dorm rooms, many of 
the fundamental technologies underlying computers and net-
works have been the results of government-funded projects.

ENIAC, the first operational full-scale electronic digi-
tal computer, was an Army Ballistic Research Labora-
tory project developed during and just after World War 
II. Early computers were also sponsored and used by the 
army and navy in areas such as guided missile develop-
ment, and in national laboratories such as Los Alamos, 
where nuclear weapons were being developed. (Later the 
Atomic Energy Agency and its successor in the Department 
of Energy would play a similar role in obtaining computers, 
in particular developing an appetite for the more powerful 
machines—see supercomputer.)

The Office of Naval Research (ONR) played an impor-
tant role in developing the underlying theory and design for 
computer architecture (see von Neumann, John), as well 
as sponsoring many of the early conferences on computer 
science, helping the discipline emerge.

As the cold war got underway, an increasing amount 
of funding went to military-related technology. Since com-
puters were becoming essential for designing or operating 
complex technologies in aerospace, weapons systems, and 
other areas, it is not surprising that computer scientists 
have received a significant share of government research 
dollars.

A pattern of cooperation emerged between government 
agencies and companies such as Univac and particularly 

IBM, who were creating the computer industry. AT&T Bell 
Laboratories (see Bell Labs) received support for com-
munications and semiconductor technology. Leading-edge 
research funded for military purposes tended to turn up 
five or ten years later in new generations of commercial 
products.

Begun in the late 1950s, one of the biggest defense com-
puting projects was the ambitious (but only marginally suc-
cessful) SAGE automated air defense system. It began with 
Whirlwind, the first computer designed for multitasking 
and continuous, real-time operation and data storage using 
magnetic core memory. Equally innovative were the user 
consoles, which pioneered such features as CRT-based out-
put and a touch interface using a light pen.

Defense Advanced Research  
Projects Agency (DARPA)
Established in 1958 and sometimes known as the Advanced 
Research Projects Agency (ARPA), this agency through its 
Information Processing Technology Office has funded or 
contributed to some of the most important developments of 
the information age, including:

• � time-sharing computer and operating systems (MIT 
Project Mac)

• � packet-switched networks; the Internet (implemented 
as ARPANET)

• � NLS, an early hypertext system (see hypertext)

• � artificial intelligence topics including speech recogni-
tion

ARPA was unusual as a government agency in its agile 
management. Managers were given considerable latitude to 
bring together the most innovative computer scientists and 
turn them loose with a minimum of bureaucratic oversight.

Funding Academic Research and  
Computer Science
Although military-related research has been the largest 
portion of government funding for computer science, other 
government agencies have also played important roles. 
Vannevar Bush worked tirelessly to create a new national 
research infrastructure, and this eventually bore fruit in 
the National Science Foundation (NSF). Starting in the 
1960s the NSF began with a focus on providing computer 
support for the sciences, but soon concluded that univer-
sity researchers were being crippled by lack of both com-
puters and people who could design software. The agency 
began to directly support the funding of university com-
puter purchases and the development of computer science 
programs. By 1970 the NSF was also supporting the devel-
opment of computer networks as a way for institutions to 
share resources. NSF funding for computer science and 
related activities continued to grow. In the mid-1980s NSF 
set up the National Center for Supercomputing Applications 
(NCSA), which in turn set up regional centers from which 
researchers could tap into supercomputer power through a 
high-speed network.
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Industrial Competitiveness
By the 1980s strong competitive threats to the U.S. com-
puter industry (notably from Japan) and some government 
funding began to go to helping the American industry coor-
dinate its research. An example is SEMATECH, the semi-
conductor manufacturing research consortium. (DARPA 
also played an important role in the development of VLSI 
[very large-scale integration] circuits.)

Another effort of this era was the Strategic Computing 
Initiative, which was also in part a response to Japanese 
developments—their Fifth Generation Computer Program. 
SCI aimed to develop hardware and software for advanced 
artificial intelligence projects, starting with a military 
focus, such as autonomous vehicles, voice-controlled “glass 
cockpit” aircraft interfaces, and expert systems for battle 
management.

Although there is always fluctuation and changing polit-
ical priorities, there is no reason to believe that government 
funding will not continue to play a very important role in 
computer-related research and development. There will also 
continue to be debates over the uses to which governments 
put computing technology, particularly in the military, 
intelligence, and national security areas.
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graphics card
Prior to the late 1970s, most computer applications (other 
than some scientific and experimental ones) did not use 
graphics. However, the early microcomputer systems such 
as the Apple II, Radio Shack TRS-80, and Commodore PET 
could all display graphics, either on a monitor or (with the 
aid of a video modulator) on an ordinary TV set. While 
primitive (low resolution; monochrome or just a handful of 
colors) this graphics capability allowed for a thriving mar-
ket in games and educational software.

The earliest video displays for mainstream PCs pro-
vided basic text display capabilities (such as the MDA, or 
monochrome display adapter, with 25 lines of text up to 
80 characters per line) plus the ability to create graphics 
by setting the color of individual pixels. The typical low-

end graphics card of the early 1980s was the CGA (Color 
Graphics Adapter), which offered various modes such as 
320 by 200 pixels with four colors. Computers marketed 
for professional use offered the EGA (Enhanced Graph-
ics Adapter), which could show 640 by 350 pixels at 16 
colors.

The ultimate video display standard during the time 
of IBM dominance was the VGA (Video Graphics Array), 
which offered a somewhat improved high resolution of 640 
by 480 pixels at 16 colors, with an alternative of a lower 
320 by 280 pixels but with 256 colors. Because of its use of 
a color palette containing index values, the 256 colors can 
actually be drawn from a range of 262,144 possible choices. 
VGA also marked a break from earlier standards because 
in order to accommodate such a range of colors it had to 
convert digital information to analog signals to drive the 
monitor, rather than using the digital circuitry found in 
earlier monitors.

Modern video cards can be loosely described as imple-
menting SVGA (Super VGA), but there are no longer dis-
crete standards. Typical display resolutions for desktop PCs 
today are 1024 by 768 or 1280 by 1024 pixels. (Laptops tra-
ditionally have had a lower-resolution 800 by 600 display, 
but many are now comparable to desktop displays.) The 
range of colors is vast, with up to 16,777,216 possible colors 
stored as 32 bits per pixel.

Storing 32 bits (4 bytes) for each of the pixels on a 1024 
by 768 screen requires more than 3 megabytes. However, 
this is just for static images. Games, simulations, and other 
applications use moving 3D graphics. Since a computer 
screen actually has only two dimensions, mathematical 
algorithms must be used to transform the representation 

The basic parts of a graphics card. The card is connected to the 
CPU by the bus (often a special bus called the AGP, or Accelerated 
Graphics Port). Graphics data can be generated by the CPU and 
transferred directly to the graphics card’s memory, but most cards 
today perform a lot of the graphics processing using the card’s own 
on-board processor for sophisticated 3D, textures, shading, and 
other effects.
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of objects so they look as if they have three dimensions, 
appearing in proper perspective, with regard to what objects 
are behind other objects, and with realistic lighting and 
shading (see computer graphics).

Traditionally, all of the work of producing the actual 
screen data was undertaken by the PC’s main processor, 
executing instructions from the application program and 
display driver. By putting a separate processor on the video 
card (called a video accelerator), together with its own sup-
ply of memory (now up to 256 MB), the main system was 
freed from this burden. A new high-bandwidth connection 
between the PC motherboard and the graphics card became 
available with the development of the AGP (Accelerated 
Graphics Port). (See bus.) Memory used on video cards is 
also optimized for video operations, such as by using types 
of memory such as Video RAM (VRAM) that do not need to 
be refreshed as frequently.

Increasingly, the algorithms for creating realistic images 
(such as lighting, shading, and texture mapping) are now 
supported by the software built into the video card. Of 
course, the applications program needs a way to tell the 
graphics routines what to draw and how to draw it. In 
systems running Microsoft Windows, a program function 
library called Direct3D (part of a suite called DirectX) has 
become the standard interface between applications and 
graphics hardware. Video card manufacturers in turn have 
optimized their cards to carry out the kinds of operations 
implemented in DirectX. (A nonproprietary standard called 
OpenGL has also achieved some acceptance, particularly on 
non-Windows systems.)

In evaluating video cards, the tradeoff is between the 
extent to which advanced graphic features are supported 
and the number of frames per second that can be calculated 
and sent to the display. If the processing becomes too com-
plicated, the frame rate will slow down and the display will 
appear to be jerky instead of smooth.
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graphics formats
Broadly speaking, a graphics file consists of data that speci-
fies the color of each pixel (dot) in an image. Since there are 
many ways this information can be organized, there are a 
variety of graphics file formats. The most important and 
widely used ones are summarized below.

BMP (Windows Bitmap)
In a bitmap format there is a group of bits (i.e. a binary 
value) that specifies the color of each pixel. Windows pro-
vides standard bitmap (BMP) formats for 1-bit (2 colors 
or monochrome), 4-bit (16 colors), 8-bit (256 colors), or 
24-bit (16 million colors). The Windows bitmap format is 
also called a DIB (device-independent bitmap) because the 
stored colors are independent of the output device to be 
used (such as a monitor or printer). The relevant device 
driver is responsible for translating the color to one actually 
used by the device. Because it is “native” to Windows, BMP 
is widely used, especially for program graphics resources.

Bitmap formats have the advantage of storing the exact 
color of every pixel without losing any information. How-
ever, this means that the files can be very large (from 
hundreds of thousands of bytes to several megabytes for 
Windows screen graphics). BMP and other bitmap formats 
do support a simple method of compression called run-
length encoding (RLE), where a series of identical pixels is 
replaced by a single pixel and a count. Bitmap files can be 
further compressed through the use of utilities such as the 
popular Zip program (see data compression).

EPS
EPS (Encapsulated PostScript) is a vector-based rather than 
bitmap (raster) format. This means that an EPS file consists 
not of the actual pixel values of an image, but the instruc-
tions for drawing the image (including coordinates, colors, 
and so on). The instructions are specified as a text file in 
the versatile PostScript page description language. This for-
mat is usually used for printing, and requires a printer that 
supports PostScript (there are also PostScript renderers that 
run entirely in software, but they tend to be slow and some-
what unreliable).

GIF
GIF, or Graphics Interchange Format, is a bitmapped format 
promulgated by CompuServe. Instead of reserving enough 
space to store a large number of colors in each pixel, this 
format uses a color table that can hold up to 256 colors. 
Each pixel contains a reference (index into) the color table. 
This means that GIF works best with images that have rela-
tively few colors and for applications (such as Web pages) 
where compactness is important. GIF also uses compres-
sion to achieve compactness, but unlike the case with JPEG 
it is a lossless compression called LZW. There is also a GIF 
format that stores simple animations.

JPEG
JPEG, which stands for Joint Photographic Experts Group, 
is widely used for digital cameras because of its ability to 
highly compress the data in a color graphics image, allow-
ing a reasonable number of high-resolution pictures to be 
stored in the camera’s onboard memory. The compression 
is “lossy,” meaning that information is lost during compres-
sion (see data compression). At relatively low compression 
ratios (such as 10:1, or 10 percent of the original image size) 
changes in the image due to data loss are unlikely to be 
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perceived by the human eye. At higher ratios (approaching 
100:1) the image becomes seriously degraded. JPEG’s abil-
ity to store thousands of colors (unlike GIF’s limit of 256) 
makes the format particularly suitable for the subtleties of 
photography.

PCX
PCX is a compressed bitmap format originally used by the 
popular PC Paintbrush program. In recent years it has been 
largely supplanted by BMP and TIFF.

TIFF
TIFF, or Tagged Image File Format, is also a compressed 
bitmap format. There are several variations by different 
vendors, which can lead to compatibility problems. Imple-
mentations can use various compression methods, gener-
ally leading to ratios of 1.5 to 1 to about 2 to 1.
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graphics tablet
While conventional pointing devices (see mouse) are quite 
satisfactory for making selections and even manipulat-
ing objects, many artists prefer the control available only 
through a pen or pencil, which allows the angle and pres-
sure of the stylus tip to be varied, creating precise lines and 
shading. A graphics tablet (also called a digitizing tablet) is 
a device that uses a specially wired pen or pencil with a flat 
surface (tablet). Besides tracking the location of the pen and 
translating it into X/Y screen coordinates, the tablet also 
has pressure sensors (depending on sensitivity, the tablet 

can recognize 256, 512, or 1024 levels of pressure). In com-
bination with buttons on the pen, the pressure level can be 
used to control the line thickness, transparency, or color. 
In addition, the driver software for some graphics tablets 
includes additional functions such as the ability to program 
the pen to control features of such applications as Adobe 
Photoshop.

The tablet is connected to the PC (usually through a USB 
port). The pen may be connected to the tablet by a tether, or 
it may be wireless. If the pen has an onboard battery, it can 
provide additional features at the expense of weight and the 
need to replace batteries occasionally.

A variant implementation uses a small “puck” instead 
of a pen. The puck, which can be moved smoothly over the 
tablet surface, often has a window with crosshairs in the 
center. This makes it particularly useful for tracing detailed 
drawings such as in engineering applications.

Many artists find that wielding a pen with a graphics 
tablet offers not only finer control, but also more natural 
and less fatiguing method of input than with the mouse.
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green PC
This is a general term for features that reduce the growing 
environmental impact of the manufacture or use of comput-
ers. This impact has several aspects: energy consumption, 
resource consumption, e-waste, and pollution and green-
house emissions.

Energy Consumption
The greatest part of a typical computer system’s power con-
sumption is from the monitor, followed by the hard drive 
and CPU. It follows that considerable energy can be saved if 
these components are powered down when not in use. On 
the other hand, most users do not want to go through the 
whole computer startup process several times a day. One 
solution is to design a computer system so that it turns off 
many components when not in use but is still able to restore 
full function in a few seconds.

When applied to a personal computer, the federally 
adopted Energy Star designation indicates a computer sys-
tem that includes an energy saving mode that can power 
down the monitor, hard drive, or CPU after a specified 
period elapses without user activity, such that the inactive 
system consumes no more than 30 watts. In the ultimate 
energy-saving feature a suspend mode saves the current 
state of the computer’s memory (and thus of program opera-
tion) to a disk file. When the user presses a key (or moves 
the mouse), the computer “wakes up” and reloads its mem-
ory contents from the disk, resuming operation where it left 

Many graphics tablets use a stylus or pen. The system can track the 
pen’s position and, often, the amount of pressure being exerted, and 
draw the line accordingly.
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off. By 2000, virtually all new PCs were Energy Star compli-
ant, though many users fail to actually enable the power-
saving features.

In July 2007 stricter Energy Star specifications for desk-
top PCs were adopted. Power supplies must now be at least 
80 percent efficient. Meanwhile, the International Energy 
Agency has been promoting an initiative to reduce power 
consumption of idle PCs (and other appliances) to 1 watt 
or less.

Resource Consumption
Computers consume a variety of resources, starting with their 
manufacturing and packaging. Resource consumption can be 
reduced by building more compact units and by designing 
components so they can be more readily stripped and recycled 
or reused. Adopting reusable storage media (such as rewrit-
able CDs), recycling printer toner cartridges, and changing 
office procedures to minimize the generation of paper docu-
ments are also ways to reduce resource consumption.

E-Waste
In recent years the disposal of obsolete computers and other 
electronic equipment (“e-waste”) has been both a grow-
ing concern and a business opportunity. There are many 
toxic substances in electronics components, including lead, 
mercury, and cadmium. Processing e-waste to recover raw 
materials is expensive, so greater emphasis has been placed 
on disassembling machines and reusing or refurbishing 
their individual components. Meanwhile, many communi-
ties have banned disposing of e-waste in regular trash, and 
some have offered opportunities to drop off e-waste at no or 
minimal charge. States such as California have also insti-
tuted a recycling fee that is collected upon sale of devices 
such as CRT monitors and televisions.

Pollution and Greenhouse Emissions
Fabrication of computer chips in more than 200 large plants 
around the world involves a variety of toxic chemicals and 
waste products. The Silicon Valley alone is home to 29 toxic 
sites under the EPA’s Superfund Program. The shift of much 
of semiconductor and computer component manufacturing 
to countries such as China that have less strict pollution 
controls has also exacerbated what has become a global 
problem.

Whether through regulation or enlightened self-interest, 
companies that want to reduce future emissions can use 
several strategies. Manufacturing equipment and processes 
can be modified so they create fewer toxic substances or at 
least keep them from getting into the environment. Non-
toxic (or less toxic) materials can be substituted where 
possible—for example, use of ozone-depleting chlorofluo-
rocarbons (CFCs) as cleaning agents has been largely elimi-
nated. Finally, waste can be properly sorted and disposed 
of, and recycled wherever feasible.

Like other major manufacturing sectors, the computer 
industry is also faced with the need to reduce the amount 
of the greenhouse gases (particularly CO2) contributing to 
global warming. This mainly means further reducing the 

energy consumption of new PCs. In June 2007 a number 
of major players, including Google, Intel, Dell, Hewlett-
Packard, Microsoft, and Sun, established the Climate Savers 
Computing Initiative. Going beyond Energy Star, the pro-
gram is expected to reduce power consumption equivalent 
to 54 million tons of greenhouse gases annually—about the 
same as that produced by 11 million cars or 20 large coal-
fired power plants.
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grid computing
Grid or cluster computing involves the creation of a sin-
gle computer architecture that consists of many separate 
computers that function much like a single machine. The 
computers are usually connected using fast networks (see 
local area network). The purpose of the arrangement 
can be to provide redundant processing in case of system 
failures, to dynamically balance a fluctuating work load, 
or to split large computations into many parts that can be 
performed simultaneously. This latter approach to “high-
performance computing” creates the virtual equivalent of a 
very large and powerful machine (see supercomputer).

Architecture
Grid and cluster architectures often overlap, but the term 
grid tends to be applied to a more loosely coordinated 
structure where the computers are dispersed over a wider 
area (not a local network). In a grid, the work is usually 
divided into many separate packets that can be processed 
independently without the computers having to share data. 
Each task can be completed and submitted without waiting 
for the completion of any other task. Clusters, or the other 
hand, more closely couple computers to act more like a 
single large machine.

The first commercially successful product based on this 
architecture was the VAXcluster released in the 1980s for 
DEC VAX minicomputers. These systems implemented par-
allel processing while sharing file systems and peripherals.
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In 1989 an open-source cluster solution called Paral-
lel Virtual Machine (PVM) was developed. These clusters 
could mix and match any computers that could connect 
over a TCP/IP network (i.e., the Internet).

Current Implementations and Applications
Clusters made from hundreds of desktop-class computer 
processors can achieve supercomputer levels of performance 
at comparatively low prices. An example is the System X 
supercomputer cluster at Virginia Tech, which generates 
12.25 TFlops (trillion floating point operations per second) 
from 1100 Apple XServe G5 dual-processor desktops run-
ning Mac OS X.

Additional savings and flexibility can be found in 
Beowulf clusters, which use standard commodity PCs run-
ning open-source operating systems (such as Linux) and 
software such as the Globus Toolkit.

Another type of implementation is the “ad hoc” com-
puter grid. These are projects where users sign up to receive 
and process work packets using their PC’s otherwise idle 
time. Examples include SETI@Home (search for extrater-
restrial intelligence) and Folding@Home (protein-folding 
calculations). For more on this type of arrangement, see 
cooperative processing.

Although there has been some recent interest in enter-
prise grids, most grid computing applications are in sci-
ence. The world’s most powerful computer grid, TeraGrid, 
is funded by the National Science Foundation and ties 
together major supercomputing and advanced computing 
installations at universities and government laboratories. 
Current applications for TeraGrid include weather and cli-
mate forecasting, earthquake simulation, epidemiology, and 
medical visualization.
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groupware
When PCs were first introduced into the business world, 
they tended to be used in isolation. Individual workers 
would prepare documents such as spreadsheets and data-
base reports and then print them out and distribute them 
as memos, much in the way of traditional paper documents. 

However, as computers began to be tied together into local 
area networks (see local area network) in the 1980s, 
focus began to shift toward the use of software to facilitate 
communication, coordination, and collaboration among 
workers. This loosely defined genre of software was dubbed 
groupware.

Popular groupware software suites such as Lotus Notes 
and Microsoft Exchange generally offer at least some of the 
following features:

• � e-mail coordination, including the creation of group or 
task-oriented mail lists

• � shared calendar, giving each participant information 
about all upcoming events

• � meeting management, including scheduling (ensur-
ing compatibility with everyone’s existing schedule) 
and facilities booking

• � scheduling tasks with listing of persons responsible 
for each task, progress (milestones met), and check-
ing off completed tasks

• � real-time “chat” or instant message capabilities

• � documentation systems that allow a number of people 
to make comments on the same document and see 
and respond to each other’s comments

• � “whiteboard” systems that allow multiple users to 
draw a diagram or chart in real time, with everyone 
able to see and possibly modify it

Groupware is increasingly integrated with the Internet, 
with documents and shared resources (calendars, sched-
ules, and so on) implemented in HTML as Web pages or 
Web-linked databases. (See also personal information 
manager.)

An attractive alternative to locally installed groupware 
is a suite of collaboration and productivity applications 
delivered directly via the Web and accessible using only 
a Web browser. Google introduced such a package called 
Google Apps in 2007. It has a free basic version but is 
expected to offer fee-based enhanced services for larger 
organizations.

Groupware is likely to be an increasingly important 
aspect of institutional information processing in a global, 
mobile economy. With workgroups often geographically 
distributed (as well as including telecommuters), traditional 
face-to-face meetings become increasingly impractical as 
well as often being considered wasteful and inefficient. New 
forms of collaboration are supplementing the traditional e-
mail and conferencing (see blogs and blogging and wikis 
and Wikipedia). Wikis are particularly interesting in that 
they can not only track current resources, but also provide 
a knowledge base with lasting value.
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Grove, Andrew S.
(1936–  )
Hungarian-American
Entrepreneur

Andrew Grove is a pioneer in the semiconductor industry 
and builder of Intel, the corporation whose processors now 
power the majority of personal computers. Grove was born 
András Gróf on September 2, 1936, in Budapest to a Jewish 
family. Grove’s family was disrupted by the German occupa-
tion of Hungary later in World War II. Andrew’s father was 
conscripted into a work brigade and then into a Hungarian 
formation of the German army. Andrew and his mother, 
Maria, had to hide from the Nazi roundup in which many 
Hungarian Jews were sent to death in concentration camps.

Although the family survived and was reunited after the 
war, Hungary had come under Soviet control. Andrew, now 
20, believed his freedom and opportunity would be very 
limited, so he and a friend made a dangerous border cross-
ing into Austria. Grove came to the United States, where 
he lived with his uncle in New York and studied chemical 
engineering. He then earned his Ph.D. at the University of 
California at Berkeley and became a researcher at Fairchild 
Semiconductor in 1963 and then assistant director of devel-
opment in 1967. He soon became familiar with the early 
work toward what would become the integrated circuit, key 
to the microcomputer revolution that began in the 1970s 
and wrote a standard textbook (Physics and Technology of 
Semiconductor Devices).

In 1968, however, he joined colleagues Robert Noyce and 
Gordon Moore in leaving Fairchild and starting a new com-
pany, Intel. Grove switched from research to management, 
becoming Intel’s director of operations. He established a 

management style that featured what he called “construc-
tive confrontation”—a vigorous, objective discussion where 
opposing views could be aired without fear of reprisal. Crit-
ics, however, sometimes characterized the confrontations 
as more harsh than constructive.

Grove became a formidable competitor. In the late 1970s, 
it was unclear whether Intel (maker of the 8008, 8080, and 
subsequent processors) or Motorola (with its 68000 proces-
sor) would dominate the market for microprocessors to run 
the new desktop computers. Grove emphasized the training 
and deployment of a large sales force, and by the time the 
IBM PC debuted in 1982, it and its imitators would all be 
powered by Intel chips.

During the 1980s, Grove would be challenged to be 
adaptable when Japanese companies eroded Intel’s share of 
the DRAM (memory) chip market, often “dumping” prod-
uct below their cost. Grove decided to get Intel out of the 
memory market, even though it meant downsizing the com-
pany until the growing microprocessor market made up for 
the lost revenues. In 1987, Grove had weathered the storm 
and become Intel’s CEO. He summarized his experience of 
the rapidly changing market with the slogan “only the para-
noid survive.”

During the 1990s, Intel introduced the popular Pentium 
line, having to overcome mathematical flaws in the first ver-
sion of the chip and growing competition from Advanced 
Micro Devices (AMD) and other companies that made chips 
compatible with Intel’s. Grove also had to fight prostate 
cancer, apparently successfully, and relinquished his CEO 
title in 1998, remaining chairman of the board.

Through several books and numerous articles, Grove has 
had considerable influence on the management of modern 
electronics manufacturing. He has received many industry 
awards, including the IEEE Engineering Leadership Rec-
ognition award (1987), and the AEA Medal of Achievement 
award (1993). In 1997, he was CEO of the Year (CEO maga-
zine) and Time magazine’s Man of the Year.
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hackers and hacking
Starting in the late 1950s, in computer facilities at MIT, 
Stanford, and other research universities people began to 
encounter persons who had both unusual programming 
skill and an obsession with the inner workings of the 
machine. While ordinary users viewed the computer sim-
ply as a tool for solving particular problems, this peculiar 
breed of programmers reveled in extending the capabilities 
of the system and creating tools such as program editors 
that would make it easier to create even more powerful 
programs. The movement from mainframes that could run 
only one program at a time to machines that could simulta-
neously serve many users created a kind of environmental 
niche in which these self-described hackers could flourish. 
Indeed, while administrators sometimes complained that 
hackers took up too much of the available computer time, 
they often depended on them to fix the bugs that infested 
the first versions of time-sharing operating systems. Hack-
ers also tended to work in the wee hours of the night while 
normal users slept.

Early hackers had a number of distinctive characteris-
tics and tended to share a common philosophy, even if it 
was not always well articulated:

• � Computers should be freely accessible, without arbi-
trary limits on their use (the “hands-on imperative”).

• � “Information wants to be free” so that it can reach its 
full potential. Conversely, government or corporate 
authorities that want to restrict information access 
should be resisted or circumvented.

• � The only thing that matters is the quality of the 
“hack”—the cleverness and utility of the code and 
what it lets computers do that they could not do 
before.

• � As a corollary to the above, the reputation of a hacker 
depends on his (it was nearly always a male) work—
not on age, experience, academic attainment, or any-
thing else.

• � Ultimately, programming was a search for truth and 
beauty and even a redemptive quality—coupled with 
the belief that technology can change the world.

Hackers were relatively tolerated by universities and 
sometimes prized for their skills by computer companies 
needing to develop sophisticated software. However, as the 
computer industry grew, it became more concerned with 
staking out, protecting, and exploiting intellectual prop-
erty. To the hacker, however, intellectual property was a 
barrier to the unfettered exploration and exploitation of the 
computer. Hackers tended to freely copy and distribute not 
only their own work but also commercial systems software 
and utilities.

During the late 1970s and 1980s, the microcomputer cre-
ated a mass consumer software market, and a new generation 
of hackers struggled to get the most out of machines that had 
a tiny amount of memory and only rudimentary graphics 
and sound capabilities. Some became successful game pro-
grammers. At the same time a new term entered the lexicon, 
software piracy (see software privacy and counterfeit-
ing). Pirate hackers cracked the copy protection on games 
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and other commercial software so the disks could be cop-
ied freely and exchanged at computer fairs, club meetings, 
and on illicit bulletin boards (where they were known as 
“warez”). (See copy protection and intellectual prop-
erty and computing.)

The growing use of on-line services and networks in the 
1980s and 1990s brought new opportunities to exploit com-
puter skills to vandalize systems or steal valuable informa-
tion such as credit card numbers. The popular media used 
the term hacker indiscriminately to refer to clever program-
mers, software pirates, and people who stole information or 
spread viruses across the Internet. The wide availability of 
scripts for password cracking, Web site attacks, and virus 
creation means that destructive crackers often have little 
real knowledge of computer systems and do not share the 
attitudes and philosophy of the true hackers who sought to 
exploit systems rather than destroy them.

During the 1980s, a new genre of science fiction called 
cyberpunk became popular. It portrayed a fractured, dys-
topian future where elite hackers could “jack into” com-
puters, experiencing cyberspace directly in their mind, as 
in William Gibson’s Neuromancer and Count Zero. In such 
tales the hacker became the high-tech analog of the cowboy 
or samurai, a virtual gunslinger who fought for high stakes 
on the newest frontier (see science fiction and comput-
ing). Meanwhile, lurid stories about such notorious real-
world hackers (see Mitnick, Kevin) brought the dark side 
of hacking into popular consciousness.

By the turn of the new century, the popular face of hack-
ing was again changing. Some of the most effective tech-
niques for intruding into systems and for stealing sensitive 
information (see computer crime and identity theft) 
have always been psychological rather than technical. What 
started as one-on-one “social engineering” (such as pos-
ing as a computer technician to get a user’s password) has 
been “industrialized” in the form of e-mails that frighten or 
entice recipients into supplying credit card or bank infor-
mation (see spam and phishing and spoofing.) Criminal 
hackers have also linked up with more-traditional criminal 
organizations, creating rings that can efficiently turn stolen 
information into cash.

In response to public fears about hackers’ capabilities, 
federal and local law enforcement agencies have stepped 
up their efforts to find and prosecute people who crack 
or vandalize systems or Web sites. Antiterrorism experts 
now worry that well-financed, orchestrated hacker attacks 
could be used by rogue nations or terrorist groups to para-
lyze the American economy and perhaps even disrupt vital 
infrastructure such as power distribution and air traffic 
control (see counterterrorism and information war-
fare). In this atmosphere the older, more positive image of 
the hacker seems to be fading—although the free-wheeling 
creativity of hacking at its best continues to be manifested 
in cooperative software development (see open source).
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handwriting recognition
While the keyboard is the traditional means for entering 
text into a computer system, both designers and users have 
long acknowledged the potential benefits of a system where 
people could enter text using ordinary script or printed 
handwriting and have it converted to standard computer 
character codes (see characters and strings). With such 
a system people would not need to master a typewriter-style 
keyboard. Further, users could write commands or take 
notes on handheld or “palm” computers the size of a small 
note pad that are too small to have a keyboard (see por-
table computers). Indeed, such facilities are available to a 
limited extent today.

A handwriting recognition system begins by building 
a representation of the user’s writing. With a pen or stylus 
system, this representation is not simply a graphical image 
but includes the recorded “strokes” or discrete movements 
that make up the letters. The software must then create a 
representation of features of the handwriting that can be 
used to match it to the appropriate character templates. 
Handwriting recognition is actually an application of the 
larger problem of identifying the significance of features in 
a pattern.

One approach (often used on systems that work from 
previously written documents rather than stylus strokes) 
is to identify patterns of pixels that have a high statistical 
correlation to the presence of a particular letter in the rect-
angular “frame” under consideration. Another approach is 
to try to identify groups of strokes or segments that can be 
associated with particular letters. In evaluating such tenta-
tive recognitions, programs can also incorporate a network 
of “recognizers” that receive feedback on the basis of their 
accuracy (see neural network). Finally, where the identity 
of a letter remains ambiguous, lexical analysis can be used 
to determine the most probable letter in a given context, 
using a dictionary or a table of letter group frequencies.

Implementation and Applications
A number of handheld computers beginning with Apple’s 
Newton in the mid-1990s and the now popular Palm devices 
and BlackBerry have some ability to recognize handwrit-
ing. However, current systems can be frustrating to use 
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because accuracy often requires that users write very care-
fully and consistently or (as in the case of the Palm) even 
replace their usual letter strokes with simplified alternatives 
that the computer can more easily recognize. If the user is 
allowed to use normal strokes, the system must be gradu-
ally “trained” by the user giving writing samples and con-
firming the system’s guess about the letters. As the software 
becomes more adaptable and processing power increases 
(allowing more sophisticated algorithms or larger neural 
networks to be practical) users will be able to write more 
naturally and systems will gain more consumer acceptance. 
(One step in this direction is the Tablet PC, a notepad-sized 
computer with a digitizer tablet and a stylus and handwrit-
ing recognitions software, included in Windows XP and 
expanded in Windows Vista. Programs such as Microsoft 
OneNote use handwriting recognition to allow users to 
incorporate handwritten text into notes that can be orga-
nized and quickly retrieved.)

Currently, handwriting recognition is used mainly in 
niche applications, such as collecting signatures for deliv-
ery services or filling out “electronic forms” in applications 
where the user must be mobile and relatively hands-free 
(such as law enforcement).
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haptic interfaces
Most interfaces between users and computer systems involve 
the equivalent of switches—keyboard keys or mouse but-
tons. These interfaces cannot respond to degrees of pres-
sure (for an exception, see graphics tablet). Further, there 
is no feedback returned to the user through the interface 
device—the key or mouse does not “push back.”

Haptic (from the Greek word for “touch”) interfaces are 
different in that they do register the pressure and motion of 
touch, and they often provide touch feedback as well.

Force-feedback systems use movement of the control 
as a way to provide feedback to the operator. A common 
example is the control stick in an aircraft that begins to 
vibrate as the aircraft approaches a stall (where it would 
lose control). This provides immediate feedback to the pilot 
using the device by which he or she is already controlling 
the plane.

More sophisticated forms of force feedback are used in 
remote-controlled devices for manipulation or exploration. 
The first application was developed in the 1950s for han-
dling radioactive materials. Today a combination of posi-
tion and movement sensing and force feedback can be used 
with special gloves to enable users to grasp and heft 3D 
virtual objects while getting a sense of their weight, shape, 
and even texture.

In games, haptic joysticks and other controls such as 
steering wheels can provide sensations such as resistance to 
a car’s turn or the sensation of a bat hitting a ball. The Nin-
tendo Wii game console comes with a controller that tracks 
the direction and speed of its movement along with a set of 
simple but engrossing sports games to show its capabilities.

Some emerging or near-future uses of haptic technology 
include:

One approach to handwriting recognition involves the extraction of 
a stroke pattern and its comparison to a database of templates rep-
resenting various letters and symbols. Ultimately the corresponding 
ASCII character is determined and stored.
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• � remote surgery, where the surgeon can feel the resis-
tance of tissues and the location of anatomical features

• � use of haptic technology to provide robots with more 
humanlike gripping capabilities

• � 3D sculpture in a virtual 3D world modeling the char-
acteristics of different materials and tools

Like virtual reality itself, haptics is currently found 
in niche applications such as entertainment, control, and 
training systems. Besides the expense of the technology 
itself, there is the need for specialized programming. How-
ever, the time may come when haptic support, like mouse 
and pen support, is included in operating systems and 
widely available programming libraries.
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hard disk
Even after decades of evolution in computing, the hard 
disk drive remains the primary means of fast data storage 
and retrieval in computer systems of all sizes. The disk 
itself consists of a rigid aluminum alloy platter coated with 
a magnetic oxide material. The platter can be rotated at 
speeds of more than 10,000 rpm. A typical drive consists of 
a stack of such platters mounted on a rotating spindle, with 
a read/write head mounted above each platter.

Early hard drive heads were controlled by a stepper 
motor, which positioned the head in response to a series of 
electrical pulses. (This system is still used for floppy drives.) 
Today’s hard drives, however, are controlled by a voice-coil 
actuator, similar in structure to an audio speaker. The coil 
surrounds a magnet. When a current enters the coil, it gen-
erates a magnetic field that interacts with that of the perma-
nent magnet, moving the coil and thus the disk head. Unlike 
the stepper motor, the voice coil is continuously variable and 
its greater precision allows data tracks to be packed more 
tightly on the platter surface, increasing disk capacity.

The storage capacity of a drive is determined by the 
number of platters and the spacing (and thus number) of 
tracks that can be laid down on each platter. Capacities 
have steadily increased while prices have plummeted: In 
1980, for example, a hard drive for an Apple II microcom-
puter cost more than $1,000 and held only 5 MB of data. As 
of 2007 internal hard drives with a capacity of 500 GB or 
more cost around a $150.00.

Data is organized on the disk by dividing the tracks 
into segments called sectors. When the disk is prepared 

to receive data (a process called formatting), each sector 
is tested by writing and reading sample data. If an error 
occurs, the operating system marks the sector as unusable 
(virtually any hard disk will have at least a few such bad 
sectors).

The set of vertical corresponding tracks on the stack of 
platters that make up the drive is called a cylinder. Since 
the drive heads are connected vertically, if a head is cur-
rently reading or writing for example sector 89 on one 
platter, it is positioned over that same sector on all the 
others. Therefore, the operating system normally stores 
files by filling the full cylinder before going to a new sec-
tor number.

Another way to improve data flow is to use sector inter-
leaving. Because many disk drives can read data faster than 
the operating system can read it from the disk’s memory 
buffer, data is often stored by skipping over adjacent sec-
tors. Thus, instead of storing a file on sectors 1, 2, and 3, 
it might be stored on sectors 1, 3, and 5 (this is called a 2:1 
interleave). Moving the head from sector 1 to sector 3 gives 
the system enough time to process the data. (Otherwise, 
by the time the system was ready to read sector 2, the disk 
would have rotated past it and the system would have to 
wait through a complete rotation of the disk.) Newer CPUs 
are often fast enough to keep up with contiguous sectors, 
avoiding the need for interleaving.

Data throughput tends to decrease as a hard drive is 
used. This is due to fragmentation. The operating system 
runs out of sufficient contiguous space to store new files 
and has to write new files to many sectors widely scattered 
on the disk. This means the head has to be moved more 
often, slowing data access. Using an operating system (or 

Parts of a typical hard disk drive. Many hard drives have multiple 
heads and platters to allow for storage of larger amounts of data.
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third party) defragmentation utility, users can periodically 
reorganize their hard drive so that files are again stored in 
contiguous sectors.

Files can also be reorganized to optimize space rather 
than access time. If an operating system has a minimum 
cluster size c4K, a single file with only 32 bytes of data 
will still consume 4,096 bytes. However, if all the files are 
written together as one huge file (with an index that spec-
ifies where each file begins) that waste of space would be 
avoided. This is the principle of disk compression. Disk 
compression does slow access somewhat (due to the need 
to look up and position to the actual data location for a 
file) and the system becomes more fragile (since garbling 
the giant file would prevent access to the data in perhaps 
thousands of originally separate files). The low cost of 
high capacity drives today has made compression less 
necessary.

Interfacing Hard Drives
When the operating system wants to read or write data 
to the disk, it must send commands to the driver, a pro-
gram that translates high-level commands to the instruc-
tions needed to operate the disk controller, which in turn 
operates the motors controlling the disk heads. The two 
most commonly used interfaces for PC internal hard drives 
today are both based on the ATA (Advanced Technology 
Attachment) standard. The older standard is PATA (par-
allel ATA), also called IDE (Integrated Drive Electronics) 
or EIDE (Enhanced IDE). Increasingly common today is 
SATA, or serial ATA. Another alternative, more commonly 
used on servers, is SCSI (Small Computer System Interface). 
SCSI is more expensive but has several advantages: It has 
the ability to organize incoming commands for greater effi-
ciency and also features greater flexibility (an EIDE control-
ler can connect only two hard drives, while SCSI can “daisy 
chain” a large number of disk drives or other peripherals). 
In practice, the two interfaces perform about equally well. 
USB (Universal Serial Bus) is frequently used to interface 
with external hard drive units (see usb).

The capacity continues to increase, with data able to 
be written more densely or perhaps in multiple layers on 
the same disk surface. Denser storage also offers the ability 
to make drives more compact. Already hard drives with a 
diameter of about an inch have been built by IBM and oth-
ers for use in digital cameras.

The proliferation of multimedia (including video) and 
the growth of databases has fed a voracious appetite for 
hard drive space. Disks with a capacity of 1 TB (terabyte, 
or trillion bytes) were starting to come onto the market by 
2007. For larger installations, disk arrays (see raid) offer 
high capacity and data-protecting redundancy.

Perpendicular hard drive recording technology recently 
developed by Hitachi aligns the magnetic “grains” that hold 
bits of data vertically instead of horizontally, allowing for 
a considerably higher data density (and thus capacity, for a 
given size disk). Hitachi suggests that eventually 1 TB can 
be stored on a 3.5" disk.

Drive speeds (and thus data throughput) have also been 
increasing, with more users choosing 7200 rpm rather than 

the formerly standard 5400 rpm drives. (There are drives as 
fast as 15,000 rpm, but for most applications the benefits of 
higher speed drop off rapidly.)

Another factor in data access time and throughput is the 
use of a dedicated memory device (see cache) to “pre-fetch” 
data likely to be needed. Windows Vista allows memory 
from some USB memory sticks (see flash drive) to work 
as a disk cache. “Hybrid” hard drives directly integrating 
RAM and drive storage are also available.
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hashing
A hash is a numeric value generated by applying a math-
ematical formula to the numeric values of the characters 
in a string of text (see characters and strings). The for-
mula is chosen so that the values it produces are always the 
same length (regardless of the length of the original text) 
and are very likely to be unique. (Two different strings 
should not produce the same hash value. Such an event is 
called a collision.)

Applications
The two major application areas for hashing are informa-
tion retrieval and cryptographic certification. In databases, 
an index table can be built that contains the hash values for 
the key fields and the corresponding record number for each 
field, with the entries in hash value order. To search the 
database, an input key is hashed and the value is compared 
with the index table (which can be done using a very fast 
binary search). If the hash value is found, the corresponding 
record number is used to look up the record. This tends to 
be much faster than searching an index file directly.

Alternatively, a “coarser” but faster hashing function can 
be used that will give the same hash value to small groups 
(called bins) of similar records. In this case the hash from 
the search key is matched to a bin and then the records 
within the bin are searched for an exact match.

In cryptography an encrypted message can be hashed, 
producing a unique fixed-length value. (The fixed length 
prevents attackers from using mathematical relationships 
that might be discoverable from the field lengths.) The 
hashed message can then be encrypted again to create an 
electronic signature (see certificate, digital). For long 
messages this is more efficient than having to apply the sig-
nature function to each block of the encrypted message, yet 
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the unique relationship between the original message and 
the hash maintains a high degree of security.

Finally, hashing can be used for error detection. If a 
message and its hash are sent together, the recipient can 
hash the received text. If the hash value generated matches 
the one received, it is highly likely the message was received 
intact (see also error correction).
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health, personal  See personal health information 
management.

heap
In operating systems and certain programming languages 
(such as LISP), a heap is a pool of memory resources avail-
able for allocation by programs. The memory segments 
(sometimes called cells) can be the same size or of variable 
size. If the same size, they are linked together by pointers 
(see list processing). Memory is then allocated for a vari-
able by traversing the list and setting the required number 

of cells to be “owned” by that variable. (While some lan-
guages such as Pascal and C use explicit memory allocation 
or deallocation functions, other languages such as LISP use 
a separate runtime module that is not the responsibility of 
the programmer.)

Deallocation (the freeing up of memory no longer 
needed by a variable so it can be used elsewhere) is more 
complicated. In many languages several different pointers 
can be used to refer to the same memory location. It is 
therefore necessary not only to disconnect a given pointer 
from the cell, but to track the total number of pointers con-
nected to the cell so that the cell itself is deallocated only 
when the last pointer to it has been disconnected. One 
way to accomplish this is by setting up an internal variable 
called a reference counter and incrementing or decrementing 
it as pointers are connected or disconnected. The disadvan-
tages of this approach include the memory overhead needed 
to store the counters and the execution overhead of having 
to continually check and update the counters.

An alternative approach is garbage collection. Here the 
runtime system simply connects or disconnects pointers 
as required by the program’s declarations, without making 
an attempt to reclaim the disconnected (“dead”) cells. If 
and when the supply of free cells is exhausted, the runtime 
system takes over and begins a three-stage process. First, 
it provisionally sets the status indicator bit for each cell to 
show that it is “garbage.” Each pointer in the program is 
then traced (that is, its links are followed) into the heap, 
and if a valid cell is found that cell’s indicator is reset to 
“not garbage.” Finally, the garbage cells that remain are 
linked back to the pool of free cells available for future allo-
cation. The chief drawback of garbage collection is that the 
more cells actually being used by the program, the longer 
the garbage-collecting process will take (since all of these 
cells have to be traced and verified). Yet it is precisely when 
most cells are in use that garbage collection is most likely to 
be required.

The need for garbage collection has diminished in many 
programming environments because modern computers 
not only have large amounts of memory, most operating 
systems also implement virtual memory, which allows a 
disk or other storage device to be treated as an extension of 
main memory.

Note: the term heap is also used to describe a particular 
type of binary tree. (See tree.)
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help systems
In the early days of computing, the programmers of a sys-
tem tended to also be its users and were thus intimately 
familiar with the program’s operation and command set. 

To search a hashed database, the hashing formula is first applied to 
the search key, yielding a hash value. That value can then be used 
in a binary search to quickly zero in on the matching record, if any.
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If not a programmer, the user of a mainframe program was 
probably at least a well-trained operator who could work 
with the aid of a brief summary or notes provided by the 
programmer. However, with the beginnings of office auto-
mation in the 1970s and the growing use of desktop com-
puters in office, home, and school in the 1980s, increasingly 
complex programs were being put in the hands of users 
who often had only minimal computer training (see com-
puter literacy).

While programs often came with one or more tutorial 
or reference manuals, designers realized that offering help 
through the program itself would have some clear advan-
tages. First, the user would not have to switch attention from 
the computer screen to look things up in a manual. Second, 
the help system could be programmed to not only provide 
information, but also to help the user find the informa-
tion needed in a given situation. For example, related topics 
could be linked together and a searchable index provided.

Implementation
Programs running under the text-based MS-DOS of the 
1980s tended to have only rudimentary help screens (often 
invoked by pressing the F1 key). Generally, these were lim-
ited to brief summaries of commands and associated key 
combinations. However, with the growing use of Micro-
soft Windows (and the similar Macintosh interface), a more 
complete and versatile help system was possible. Since these 
systems allowed multiple windows to be displayed on the 
screen, the user could consult help information while still 
seeing the program’s main screen. This allowed for trying a 
recommended procedure and observing the results.

Windows and Macintosh help systems also featured 
highlighted links in the text that could be used to jump to 
related topics (see hypertext and hypermedia). A topic 
word can also be typed into an index box, bringing up any 
matching topics. If all else fails, the entire help file could be 
indexed so that any word could be used to find matching 
topics.

More recent Windows programs also include wizards. A 
wizard is a step-by-step procedure for accomplishing a par-
ticular task. For example, if a Microsoft Word user want to 
learn how to format text into multiple columns, the help sys-
tem can offer a wizard that takes the user through the proce-
dure of specifying the number of columns, column size, and 
so on. The steps can even be applied directly to the document 
with the wizard “driving” the program accordingly.

Recently, many programs have implemented their help 
in the form of Web pages, stored either on the user’s com-
puter or at the vendor’s Web site (see html). HTML has the 
advantage that it is now a nearly universal format that can 
be used on a variety of platforms and (if hosted on a Web 
site) the help can be continually improved and updated. 
(Microsoft’s latest version of HTML Help has supplanted its 
original WinHelp, which is no longer supported by Vista.)

A variety of shareware and commercial help authoring 
systems such as RoboHelp are available to help developers 
create help in Windows or HTML format. UNIX systems, 
which have always included an on-line manual, now typi-
cally offer HTML-based help as well.

With printed documentation being increasingly 
eschewed for cost-cutting reasons, users of many programs 
today must depend on the help system as well as on on-line 
documents (such as PDF files) and Web-based support.
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hexadecimal system
The base 16 or hexadecimal system is a natural way to rep-
resent the binary data stored in a computer. It is more com-
pact than binary because four binary digits can be replaced 
by a single “hex” digit.

The following table gives the corresponding decimal, 
binary, and hex values from 0 to 15:

Decimal	 Binary	H ex

0	 0	 0
1	 0001	 1
2	 0010	 2
3	 0011	 3
4	 0100	 4
5	 0101	 5
6	 0110	 6
7	 0111	 7
8	 1000	 8
9	 1001	 9
10	 1010	 A
11	 1011	 B
12	 1100	 C
13	 1101	 D
14	 1110	 E
15	 1111	 F

Note that decimal and hex digits are the same from 0 to 
9, but hex uses the letters A–F to represent the digits cor-
responding to decimal 10–15. The system extends to higher 
numbers using increasing powers of 16, just as decimal 
uses powers of 10: For example, hex FF represents binary 
11111111 or decimal 255. Many of the apparently arbitrary 
numbers encountered in programming can be better under-
stood if one realizes that they correspond to convenient 
groupings of bits: FF is eight bits, sufficient to hold a single 
character (see characters and strings). In low-level pro-
gramming memory addresses are also usually given in hex 
(see assembler).

hexadecimal system        225



Further Reading
Matz, Kevin. “Introduction to Binary and Hexadecimal.” Available 

online. URL: http://www.comprenica.com/atrevida/atrtut01.
html. Accessed August 7, 2007.

history of computing
With the digital computer now more than 60 years old, there 
has been growing interest in its history and development. 
Although it would take a library of books to do the subject 
justice, providing a summary of the main themes and trends 
of each decade of computing will give readers of this book 
some helpful context for understanding the other entries.

Early History
In a sense, the idea of mechanical computation emerged in 
prehistory when early humans discovered that they could 
use physical objects such as piles of stones, notches, or 
marks as a counting aid. The ability to perform computa-
tion beyond simple counting extends back to the ancient 
world: For example, the abacus developed in ancient China 
could still beat the best mechanical calculators as late as 
the 1940s (see calculator). The mechanical calculator 
began in the West in the 17th century, most notably with 
the machines created by philosopher-scientist Blaise Pas-
cal. Other devices such as “Napier’s bones” (ancestor of the 
slide rule) depended on proportional logarithmic relation-
ships (see analog computer).

While the distinction between a calculator and true com-
puter is subtle, Charles Babbage’s work in the 1830s delin-
eated the key concepts. His “analytical engine,” conceived but 
never built, would have incorporated punched cards for data 
input (an idea taken over from the weaving industry), a cen-
tral calculating mechanism (the “mill”), a memory (“store”), 
and an output device (printer). The ability to input both pro-
gram instructions and data would enable such a device to 
solve a wide variety of problems (see Babbage, Charles).

Babbage’s thought represented the logical extension of 
the worldview of the industrial revolution to the problem 
of calculation. The computer was a “loom” that wove math-
ematical patterns. While Babbage’s advanced ideas became 
largely dormant after his death, the importance of statistics 
and information management would continue to grow with 
the development of the modern industrial state in Europe 
and the United States throughout the 19th century. The 
punch card as data store and the creation of automatic tabu-
lation systems would reemerge near the end of the century 
(see Hollerith, Herman).

During the early 20th century, mechanical calculators and 
card tabulation and sorting machines made up the data pro-
cessing systems for business, while researchers built special-
purpose analog computers for exploring problems in physics, 
electronics, and engineering. By the late 1930s, the idea of a 
programmable digital computer emerged in the work of theo-
reticians (see Turing, Alan and von Neumann, John).

1940s
The highly industrialized warfare of World War II required 
the rapid production of a large volume of accurate calcula-

tions for such applications as aircraft design, gunnery con-
trol, and cryptography. Fortunately, the field was now ripe 
for the development of programmable digital computers. 
Many reliable components were available to the computer 
designer including switches and relays from the telephone 
industry and card readers and punches (manufactured by 
Hollerith’s descendant, IBM), and vacuum tubes used in 
radio and other electronics.

Early computing machines included the Mark I (see 
Aiken, Howard), a huge calculator driven by electri-
cal relays and controlled by punched paper tape. Another 
machine, the prewar Atanasoff-Berry Computer (see 
Atanasoff, John) was never completed, but demonstrated 
the use of electronic (vacuum tube) components, which 
were much faster than electromechanical relays. Meanwhile, 
a German inventor built a programmable binary computer 
that combined a mechanical number storage mechanism 
with telephone relays (see Zuse, Conrad). Zuse also pro-
posed building an electronic (vacuum tube) computer, but 
the German government decided not to support the project.

During the war, British and American code breakers 
built a specialized electronic computer called Colossus, 
which read encoded transmissions from tape and broke 
the code of the supposedly impregnable German Enigma 
machines.

The most viable general-purpose computers were devel-
oped by J. Presper Eckert and John Mauchly starting in 
1943 (see Eckert, J. Presper and Mauchly, John). The 
first, ENIAC, was completed in 1946 and had been intended 
to perform ballistic calculations. While its programming 
facilities were primitive (programs had to be set up via a 
plugboard), ENIAC could perform 5,000 arithmetic opera-
tions per second, about a thousand times faster than the 

John Mauchly and Presper Eckert, Jr., shown with a portion of their 
ENIAC computer. The ENIAC is often considered to be the first 
general-purpose electronic digital computer.  (Hulton Archive / 
Getty Images)
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electromechanical Mark I. ENIAC had about 19,000 vacuum 
tubes and consumed as much power as perhaps a thousand 
modern desktop PCs.

1950s
The 1950s saw the establishment of a small but viable com-
mercial computer industry in the United States and parts of 
Europe. Eckert and Mauchly formed a company to design 
and market the UNIVAC, based partly on work on the exper-
imental EDVAC. This new generation of computers would 
incorporate the key concept of the stored program: Rather 
than the program being set up by wiring or simply read 
sequentially from tape or cards, the program instructions 
would be stored in memory just like any other data. Besides 
allowing a computer to fetch instructions at electronic rather 
than mechanical speeds, storing programs in memory meant 
that one part of a program could refer to another part dur-
ing operation, allowing for such mechanisms as branching, 
looping, the running of subroutines, and even the ability of 
a program to modify its own instructions.

The UNIVAC became a hit with the public when it was 
used to correctly predict the outcome of the 1952 presi-
dential election. Government offices and large corporations 
began to look toward the computer as a way to solve their 
increasingly complex data processing needs. Forty UNI-
VACs were eventually built and sold to such customers as 
the U.S. Census Bureau, the U.S. Army and Air Force, and 
insurance companies. Sperry (having bought the Mauchly-
Eckert company), Bendix, and other companies had some 
success in selling computers (often for specialized applica-
tions), but it was IBM that eventually captured the broad 
business market for mainframe computers.

The IBM 701 (marketed to the government and defense 
industry) and 702 (for the business market) incorporated sev-
eral emerging technologies including a fast electronic (tube) 
memory that could store 4,096 36-bit data words, a rotating 
magnetic drum that could store data that is not immediately 
needed, and magnetic tape for backup. The IBM 650, mar-
keted starting in 1954, became the (relatively) inexpensive 
workhorse computer for businesses (see mainframe). The 
IBM 704, introduced in 1955, incorporated magnetic core 
memory and also featured floating-point calculations.

1960s
The 1960s saw the advent of a “solid state” computer design 
featuring transistors in place of vacuum tubes and the use 
of ferrite magnetic core memory (introduced commercially 
in 1955). These innovations made computers both more 
compact (although they were still large by modern stan-
dards), more reliable, and less expensive to operate (due 
to lower power consumption.) The IBM 1401 was a typical 
example of this new technology: It was compact, relatively 
simple to operate, and came with a fast printer that made it 
easier to generate data.

There was a natural tendency to increase the capacity 
of computers by adding more transistors, but the hand-
wiring of thousands of individual transistors was difficult 
and expensive. As the decade progressed, however, the con-

cept of the integrated circuit began to be implemented in 
computing. The first step in that direction was to attach a 
number of transistors and other components to a ceramic 
substrate, creating modules that could be handled and 
wired more easily during the assembly process.

IBM applied this technology to create what would 
become one of the most versatile and successful lines in 
the history of computing, the IBM System/360 computer. 
This was actually a series of 14 models that offered suc-
cessively greater memory capacity and processing speed 
while maintaining compatibility so that programs devel-
oped on a smaller, cheaper model would also run on the 
more expensive machines. Compatibility was ensured by 
devising a single 360 instruction set that was implemented 
at the machine level by microcode stored in ROM (read-only 
memory) and optimized for each model. By 1970 IBM had 
sold more than 18,000 360 systems worldwide.

By the mid-1960s, however, a new market segment had 
come into being: the minicomputer. Pioneered by Digital 
Equipment Corporation (DEC) with its PDP line, the mini-
computer was made possible by rugged, compact solid-state 
(and increasingly integrated) circuits. Architecturally, the 
mini usually had a shorter data word length than the main-
frame, and used indirect addressing (see addressing) for 
flexibility in accessing memory. Minis were practical for uses 
in offices and research labs that could not afford (or house) 
a mainframe (see minicomputer). They were also a boon 
to the emerging use of computers in automating manufac-
turing, data collection, and other activities, because a mini 
could fit into a rack with other equipment (see also embed-
ded systems). In addition to DEC, Control Data Corporation 
(CDC) produced both minis and large high-performance 
machines (the Cyber series), the first truly commercially 
viable supercomputers (see supercomputer).

In programming, the main innovation of the 1960s was 
the promulgation of the first widely-used, high-level pro-
gramming languages, COBOL (for business) and FORTRAN 
(for scientific and engineering calculations), the result of 
research in the late 1950s. While some progress had been 
made earlier in the decade in using symbolic names for 
quantities and memory locations (see assembler), the new 
higher-level languages made it easier for professionals out-
side the computer field to learn to program and made the 
programs themselves more readable, and thus easier to 
maintain. The invention of the compiler (a program that 
could read other programs and translate them into low-
level machine instructions) was yet another fruit of the 
stored program concept.

1970s
The 1970s saw minis becoming more powerful and versatile. 
The DEC VAX (“Virtual Address Extension”) series allowed 
larger amounts of memory to be addressed and increased 
flexibility. Meanwhile, at the high end, Seymour Cray left 
CDC to form Cray Research, a company that would pro-
duce the world’s fastest supercomputer, the compact, freon-
cooled Cray-1. In the mainframe mainstream, IBM’s 370 
series maintained that company’s dominant market share in 
business computing.
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The most striking innovation of the decade, however, 
was the microcomputer. The microcomputer (now often 
called the “computer chip”) combined three basic ideas: an 
integrated circuit so compact that it could be laid on a single 
silicon chip, the design of that circuit to perform the essen-
tial addressing and arithmetic functions required for a com-
puter, and the use of microcode to embody the fundamental 
instructions. Intel’s 4004 introduced in late 1971 was origi-
nally designed to sell to a calculator company. When that 
deal fell through, Intel started distributing the microproces-
sors in developer’s kits to encourage innovators to design 
computers around them. Soon Intel’s upgraded 8008 and 
8080 microprocessors were available, along with offerings 
by Rockwell, Texas Instruments, and other companies.

Word of the microprocessor spread through the elec-
tronic hobbyist community, being given a boost by the 
January 1975 issue of Popular Electronics that featured the 
Altair computer kit, available from an Albuquerque com-
pany called MITS for about $400. Designed around the Intel 
8080, the Altair featured an expansion bus (an idea bor-
rowed from minis).

The Altair was hard to build and had very limited mem-
ory, but it was soon joined by companies that designed 
and marketed ready-to-use microcomputer systems, which 
soon became known as personal computers (PCs). By 1980, 
entries in the field included Apple (Apple II), Commodore 
(Pet), and Radio Shack (TRS-80). These computers shared 
certain common features: a microprocessor, memory in the 
form of plug-in chips, read-only memory chips containing 
a rudimentary operating system and a version of the BASIC 
language, and an expansion bus to which users could con-
nect peripherals such as disk drives or printers.

The spread of microcomputing was considerably aided 
by the emergence of a technical culture where hobbyists 

and early adopters wrote and shared software, snatched 
up a variety of specialized magazines, talked computers in 
user groups, and evangelized for the cause of widespread 
personal computing.

Meanwhile, programming and the art of software 
development did not stand still. Innovations of the 1970s 
included the philosophy of structured programming (fea-
turing well-defined control structures and methods for 
passing data to and from subroutines and procedures). New 
languages such as Pascal and C, building on the earlier 
Algol, supported structured programming design to varying 
degrees (see structured programming). Programmers on 
college campuses also had access to UNIX, a powerful oper-
ating system containing a relatively simple kernel, a shell 
for interaction with users, and a growing variety of utility 
programs that could be connected together to solve data 
processing problems (see unix). It was in this environment 
that the government-funded ARPANET developed proto-
cols for communicating between computers and allowing 
remote operation of programs. Along with this came e-mail, 
the sharing of information in newsgroups (Usenet), and a 
growing web of links between networks that would eventu-
ally become the Internet (see internet).

1980s
In the 1980s, the personal computer came of age. IBM broke 
from its methodical corporate culture and allowed a design 
team to come up with a PC that featured an open, expand-
able architecture. Other companies such as Compaq legally 
created compatible systems (called “clones”), and “PC-com-
patible” machines became the industry standard. Under the 
leadership of Bill Gates, Microsoft gained control of the 
operating system market and also became the dominant 
competitor in applications software (particularly office soft-
ware suites).

Although unable to gain market share comparable to the 
PC and its clones, Apple’s innovative Macintosh, introduced 
in 1984, adapted research from the Xerox PARC laboratory 
in user interface design. At a time when PC compatibles 
were still using Microsoft’s text-based MS-DOS, the Mac 
sported a graphical user interface featuring icons, menus, 
and buttons, controlled by a mouse (see user interface). 
Microsoft responded by developing the broadly similar 
Windows operating environment, which started out slowly 
but had become competitive with Apple’s by the end of the 
decade.

The 1980s also saw great growth in networking. Uni-
versity computers running UNIX were increasingly linked 
through what was becoming the Internet, while office com-
puters increasingly used local area networks (LANs) such 
as those based on Novell’s Netware system. Meanwhile, PCs 
were also being equipped with modems, enabling users to 
dial up a growing number of on-line services ranging from 
giants such as CompuServe to a diversity of individually 
run bulletin board systems (see bulletin board systems).

In the programming field a new paradigm, object-ori-
ented programming (OOP) was offered by languages such 
as smalltalk and C++, a variant of the popular C language. 
The new style of programming focused on programs as 

Integrated circuit (IC) chips for memory and control were making 
for increasingly powerful, compact, and reliable computer compo-
nents. The microprocessor supplied the remaining ingredient needed 
for a true desktop personal computer.
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embodying relationships between objects that are respon-
sible for both private data and a public interface represented 
by methods, or capabilities offered to users of the object. 
Both structured and object-oriented methods attempted to 
keep up with the growing complexity of large software sys-
tems that might incorporate millions of lines of code. The 
federal government adopted the Ada language with its abil-
ity to precisely manage program structure and data opera-
tions. (See object-oriented programming and ada.)

1990s
By the 1990s, the PC was a mature technology dominated 
by Microsoft’s Windows operating system. UNIX, too, had 
matured and become the system of choice for university com-
puting and the worldwide Internet. Although the potential of 
the Internet for education and commerce was beginning to 
be explored, at the beginning of the decade the network was 
far from friendly for the average consumer user.

This changed when Tim Berners-Lee, a researcher at 
Geneva’s CERN physics lab, adapted hypertext (a way to 
link documents together) with the Internet protocol to 
implement the World Wide Web. By 1994, Web browsing 
software that could display graphics and play sounds was 
available for Windows-based and other computers (see 
World Wide Web and Web browser). The remainder of 
the decade became a frenzied rush to identify and exploit 
business plans based on e-commerce, the buying and sell-
ing of goods and services on-line (see e-commerce). Mean-
while, educators demanded Internet access for schools.

In the office, the Intranet (a LAN based on the Inter-
net TCP/IP protocol) began to supplant earlier network-
ing schemes. Belatedly recognizing the threat and potential 
posed by the Internet, Bill Gates plunged Microsoft into 
the Web server market, included the free Internet Explorer 
browser with Windows, and vowed that all Microsoft pro-
grams would work seamlessly with the Internet.

Moore’s Law, the dictum that computer power roughly 
doubles every 18 months, continued to hold true as PCs 
went from clock rates of a few tens of MHz to more than 1 
GHz. RAM and hard disk capacity kept pace, while low-cost 
color printers, scanners, digital cameras, and video systems 
made it easier than ever to bring rich media content into 
the PC and the on-line world.

Beyond 2000
The new decade began with great hopes, particularly for the 
Web and multimedia “dot-coms,” but their stocks, inflated 
by unsustainable expectations, took a significant dip in 
2000–2001. By the middle of the decade the computing 
industry had largely recovered and in many ways was stron-
ger than ever. On the Web, new software approaches (see 
Ajax, application service provider, and service-ori-
ented architecture) are changing the way services and 
even applications are delivered. The integration of search 
engines, mapping, local content, and user participation (see 
blogging, user-created content, and social network-
ing) is changing the relationship between companies and 
their customers.

In hardware, Moore’s law is now expressed not through 
faster single processors, but using processors with two, four, 
or more processing “cores,” challenging software design-
ers (see multiprocessing). Mobile computing is one of the 
strongest areas of growth (see pda and smartphone), with 
devices combining voice phone, text messaging, e-mail, and 
Web browsing.)

The industry continues to face formidable challenges 
ranging from mitigating environmental impact (see green 
pc) to the shifting of manufacturing and even software 
development to rapidly growing countries such as India 
and China (see globalism and the computer industry.)

Thus far, each decade has brought new technologies and 
methods to the fore, and few observers doubt that this will 
be true in the future.

Note: for a more detailed chronology of significant 
events in computing, see Appendix 1: “Chronology of Com-
puting.” For more on emerging technologies, see trends 
and emerging technologies.
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Hollerith, Herman
(1860–1929)
American
Inventor

Herman Hollerith invented the automatic tabulating machine, 
a device that could read the data on punched cards and dis-
play running totals. His invention would become the basis 
for the data tabulating and processing industry. Hollerith 
was born in Buffalo, New York, and graduated from the 
Columbia School of Mines. After graduation, he went to 
work for the U.S. Census as a statistician. Among other tasks 
he compiled vital statistics for Dr. John Shaw Billings, who 
suggested to Hollerith that using punched cards and some 
sort of tabulator would help the Census Department keep up 
with the growing volume of demographic statistics.

Hollerith studied the problem and decided that he could 
build a suitable machine. He went to MIT, where he taught 
mechanical engineering while working on the machine, 
which was partly inspired by an earlier device that had 
used a piano-type roll rather than punched cards as input. 
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Facing vigorous competition and in declining health, 
Hollerith sold his patent rights to the company that even-
tually evolved into IBM, the company that would come 
to dominate the market for tabulators, calculators, and 
other office machines. The punched card, often called the 
Hollerith card, would become a natural choice for com-
puter designers and would remain the principal means of 
data and program input for mainframe computers until 
the 1970s.
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home office
The widespread use of the personal computer and associ-
ated peripherals such as printers has made it more practi-
cal for many people to do at least part of their work from 
their homes. In addition to traditional freelance occupa-
tions such as writing and editing, many other businesses 
including consulting, design, and sales can now be con-
ducted from a home office. Computer hardware and soft-
ware makers began to target a distinctive market niche that 
is sometimes referred to as SOHO (Small Office / Home 
Office), thus including both actual home offices and small 
commercial offices.

As a market, the SOHO has somewhat different require-
ments than the large offices traditionally served by major 
computer vendors:

• � Relatively modest PCs as compared to heavy-duty file 
servers or workstations

• � Peripherals shared by two or more PCs (although the 
plummeting price of printers made it common to pro-
vide each PC with its own printer)

• � The need for a small “footprint”—that is, minimizing 
the space taken up by the equipment. Multifunction 
peripherals (typically incorporating printer, scanner, 
copier, and perhaps a fax machine) are a popular solu-
tion to this requirement.

• � A simple local network (see local area network) 
with shared Internet access

• � Low-end or midrange software (such as Microsoft 
Works or Office Small Business edition as opposed to 
the full-blown Office suite)

• � Application for collaboration and productivity deliv-
ered via the Web (such as Google Apps) may also be 
an attractive alternative.

• � Available installation and support (since many home 
users lack technical hardware or system administra-
tion skills)

The Hollerith tabulator and sorter box, invented by Herman Hol-
lerith and used in the 1890 U.S. census. It “read” cards by passing 
them through electrical contacts.  (Hulton Archive / Getty 
Images)
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The peripatetic Hollerith soon got a job with the U.S. Patent 
Office, partly to learn the procedures he would need to fol-
low to patent his tabulator. He applied for several patents, 
including one for the punched-card tabulator. He tested the 
device with vital statistics in Baltimore, New York, and the 
state of New Jersey.

Hollerith’s mature system included a punch device that 
a clerk could use to record variable data in many categories 
on the same card (a stack of cards could also be prepunched 
with constant data, such as the number of the census dis-
trict). The cards were then fed into a device something like 
a small printing press. The top part of the press had an 
array of spring-loaded pins that connected to tiny pots of 
mercury (an electrical conductor) in the bottom. The pins 
were electrified. Where a pin encountered a punched hole 
in the card, it penetrated through to the mercury, allowing 
current to flow. The current created a magnetic field that 
moved the corresponding counter dial forward one posi-
tion. The dials could be read after a batch of cards was fin-
ished, giving totals for each category, such as an ethnicity 
or occupation. The dials could also be connected to count 
multiple conditions (for example, the total number of for-
eign-born citizens who worked in the clothing trade).

Aided by Hollerith’s machines, a census unit was able 
to process 7,000 records a day for the 1890 census, about 
ten times the rate in the 1880 count. Starting around 1900, 
Hollerith brought out improved models of his machines 
that included such features as an automatic (rather than 
hand-fed) card input mechanism, automatic sorters, and 
tabulators that boasted a much higher speed and capacity. 
Hollerith machines soon found their way into government 
agencies involved with vital statistics, agricultural statis-
tics, and other data-intensive matters, as well as insurance 
companies and other businesses.



Although the home or small office remains a signifi-
cant market segment, specific targeting to the segment has 
become more difficult. With falling PC prices and increas-
ing capabilities, there is little difference today between a 
mid-level “consumer” computer system and the kinds of 
systems previously marketed for home office use.
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Hopper, Grace Murray
(1906–1992)
American
Computer Scientist

Grace Brewster Murray Hopper was an innovator in the 
development of high-level computer languages in the 1950s 
and 1960s. She is best known for her role in the develop-
ment of COBOL, which became the premier language for 
business data processing.

Hopper was born in New York City. She graduated with 
honors with a B.A. in mathematics and physics from Vassar 
College in 1928, and went on to receive her M.A. and Ph.D. 
in mathematics at Yale University. She taught at Vassar from 
1931 to 1943, when she joined the U.S. Naval Reserve at 
the height of World War II. As a lieutenant (J.G.), she was 
assigned to the Bureau of Ordnance, where she worked in 
the Computation Project at Harvard under pioneer com-
puter designer Howard Aiken (see Aiken, Howard). She 
became one of the first “coders” (that is, programmers) for 
the Mark I. After the war, Hopper worked for a few years 
in Harvard’s newly established Computation Laboratory. In 
1949, however, she became senior mathematician at the 
Eckert-Mauchly Corporation, the world’s first commercial 
computer company, where she helped with program design 
for the famous UNIVAC. She stayed with what became the 
UNIVAC division under Remington Rand (later Sperry 
Rand) until 1971.

While working with UNIVAC, Hopper’s main focus was 
on the development of programming languages that could 
allow people to use symbolic names and descriptive state-
ments instead of binary codes or the more cryptic forms of 
assembly language (see assembler). In 1952, she developed 
A-0, the first compiler (that is, a program that could trans-
late language statements to the corresponding low-level 
machine instructions). She then developed A-2 (a compiler 
that could handle mathematical expressions), and then in 
1957 she developed Flow-Matic. This was the first compiler 

that worked with English-like statements and was designed 
for a business data processing environment.

In 1959, Hopper joined with five other computer scien-
tists to plan a conference that would eventually result in the 
development of specifications for a “Common Business Lan-
guage.” Her earlier work with Flow-Matic and her design 
input played a key role in the development of what would 
become the COBOL language.

Hopper retained her Navy commission and even after 
her retirement in 1966 she was recalled to active duty to 
work on the Navy’s data processing needs. She finally 
retired in 1986 with the rank of rear admiral. Hopper spoke 
widely about data processing issues, especially the need for 
standards in computer language and architecture, the lack 
of which she said cost the government billions of dollars in 
wasted resources. Admiral Hopper died on January 1, 1992, 
in Arlington, Virginia.

Hopper received numerous awards and honorary degrees, 
including the National Medal of Technology. (The navy 
named a suitably high-tech Aegis destroyer after her in 
1996.) The Association for Computing Machines (ACM) 
created the Grace Murray Hopper Award to honor distin-
guished young computer professionals. Hopper has become 
a role model for many girls and young women considering 
careers in computing.

Grace Murray Hopper created the first computer program com-
piler and was instrumental in the design and adoption of COBOL. 
When she retired, she was the first woman admiral in U.S. Navy 
history.  (Unisys Corporation)
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HTML, DHTML, and XHTML
In developing the World Wide Web, Tim Berners-Lee (see 
Berners-Lee, Tim) had to provide several basic facilities. 
One was a protocol, HTTP, for requesting documents over 
the network (see world wide web). Another was a system 
of links between documents (see hypertext and hyper-
media). The third was a way to embed instructions in the 
pages so that the Web browser could properly display the 
text and graphics. Berners-Lee created HTML (Hypertext 
Markup Language) for this purpose. It is based on the more 
elaborate SGML (Standard Generalized Markup Language).

The basic “statement” in HTML is the tag. Tags are 
delimited by angle brackets (<>). Tags that affect a docu-
ment or section of a document come in pairs, with the sec-
ond member of the pair preceded by a slash. For example, 
the tags

<HTML>

</HTML>

indicate the beginning and end of an HTML document, 
while <BOLD> and </BOLD> delimit text that should be 
rendered in boldface.

Besides specifying such things as headings, font, font 
size, and typestyles, HTML includes tags for Web-related 
functions. One of the most useful is the A, or “anchor” 
tag. As with some other HTML tags, the A tag is used with 
attributes that further specify what it so be done. The A tag 
is usually used with the <HREF> or Hypertext Reference 
attribute, which specifies a document that is to be linked to 
the current document so that the user can click on a high-
light to go there. For example:

<A HREF=“http://www.MySite.Pages/
Glossary”>Glossary of Computer Terms</A>

specifies a link to a particular page at a particular site. 
The link will appear in the browser as the highlighted text 
Glossary of Computer Terms. If clicked, the browser will 
load the HTML page titled Glossary.

Implementation and Extensions
Inserting HTML tags by hand is a tedious and error-prone 
process (for example, it’s easy to omit a bracket or a slash 
or add “illegal” spaces within tags). Fortunately, there are 
now many HTML editor programs that let users insert the 
appropriate elements much in the way word processors 
make it easy to specify fonts and formatting. (Indeed, pro-
grams such as Microsoft Word allow users to convert and 
save documents in HTML format.)

HTML has been extended in a number of ways. First, 
new features have been added to later versions of the lan-

An HTML hyperlink embedded in a Web page. The anchor link gives the address (URL) of the linked page, as well as specifying the text that 
will appear in the link, which will be rendered by the Web browser in a special color or font.
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guage, including better support for frames, columns, tables, 
and other formats. Browser developers have also adopted 
a system that allows document authors to define general 
styles to ensure consistent document appearance (see cas-
cading style sheets). Style sheets can inherit styles from 
other style sheets, allowing an organization to create gen-
eral style sheets that can then be refined to create special-
ized styles for particular types of documents. The latest 
version of HTML (as of 2007) is 4.01, with 5.0 still in draft.

Dynamic HTML (DHTML) is a set of techniques that 
allow otherwise fixed (“static”) HTML pages to be changed 
as users are viewing them. A scripting language (see, for 
example, JavaScript) is used to change the specifications 
(usually via the style sheet). The programming interface 
to the Web page is the document object model (see dom). 
DHTML can be used, for example, to create drop-down 
menus or “rollover” buttons that change as the mouse navi-
gates over them. Even simple games have been written in 
DHTML to run in Web browsers. DHTML should be distin-
guished from other dynamic techniques such as server-side 
scripting (see Perl and php), which changes the page before 
it is presented to the user, and asynchronous techniques 
that can change a part of a page without reloading it (see 
Ajax).

XHTML is essentially a rewriting of HTML according to 
the syntax of the Extensible HyperText Markup Language 
(see xml). Because of the stricter syntax rules for XML, 
XHTML cannot use many of the earlier free-form structures 
of HTML. However, because XML has become so prevalent 
a means for connecting Web pages to data sources, there are 
many XML tools that XHTML authors can use for parsing 
and syntax checking. As of 2007, XHTML 1.1 is the prevail-
ing standard, but a draft 2.0 version represents a more thor-
ough break from the elements of the original HTML.
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hypertext and hypermedia
Most computer users today are familiar with the concept 
of hypertext, even if they don’t often use the term itself. 
Each time a Web user clicks on a link on a Web page, he 
or she is using hypertext. Most on-line help systems also 
use hypertext to take the reader from one topic to another, 
related topic. The term hypermedia acknowledges modern 
systems’ use of many kinds of resources other than plain 
text, including still images, videos, and sound recordings.

In a traditional document, the reader is generally 
assumed to proceed sequentially from the beginning to the 
end. (Although there may well be footnotes or cross-refer-
ences within the document, these are generally experienced 
as temporary divergences from the primary, sequential nar-
rative.) Generally speaking, each reader might be expected 
to acquire roughly the same set of facts from the document.

In a hypertext document, however, the links between 
topics create multiple potential paths for readers. To the 
extent the author has provided links between all related 
topics, the reader is free to pursue his or her particular 
interests rather than being bound by a sequential structure 
imposed by the author. For example, in a document that 
discusses various organisms in an ecology and the effects of 
climate and vegetation, one reader might choose to explore 
one organism in depth, following links from it to other 
resources devoted to that organism (including outside Web 
pages, images, videos, and so on). Another reader might be 
interested specifically in the effects of rainfall on the ecol-
ogy as a whole and follow a completely different set of links 
to sites having climatological data.

History and Development
In 1945, a time when the very first digital computers were 
coming on-line, Vannevar Bush, a pioneer designer of ana-
log computers, proposed a mechanism he called the Memex 
(see Bush, Vannevar). This system would link portions of 
documents to allow retrieval of related information. The 
proposal was impracticable in terms of the very limited 
capacity of computers of the time. By the 1960s, when com-
puters had become more powerful (and the minicomputer 
was beginning to be a feasible purchase for libraries and 
schools), another visionary, Theodore Nelson, coined the 
terms hypertext and hypermedia. He suggested that net-
working (a technology then in its infancy) could allow for 
what would eventually amount to a worldwide database of 
interconnected information. Nelson developed his specifi-
cations for a system he called Xanadu, but he was unable to 
create a working version of the system until the late 1990s. 
However, in 1968 Douglas Engelbart (also known as the 
inventor of the computer mouse) demonstrated a more lim-
ited but workable hypertext system called NLS/Augment.

During the 1970s and 1980s, a variety of hypertext sys-
tems were created for various platforms, including Guide 
and Toolbook for MS-DOS and Windows PCs. Perhaps 
the most influential system was Hypercard, developed for 
Apple’s Macintosh. While Hypercard did not have a com-
plete set of facilities for creating hypertext, the flexible, 
programmable, linkable “cards” could be used to imple-
ment hypertext documents. Many encyclopedias and other 
reference products on CD-ROM began to implement some 
form of hypertext links.

The true explosion of hypertext came with the develop-
ment and growth of the World Wide Web throughout the 
1990s. Hypertext on the Web is implemented through the 
use of HTTP (HyperText Transport Protocol) over the Inter-
net’s TCP/IP protocol and by coding documents in HTML 
(Hypertext Markup Language). (See html, Internet, tcp/
ip, and World Wide Web.)
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Implementation
A hypertext document consists of nodes. A node can be a 
part of a document that conveys a logical “chunk” of infor-
mation, such as the text that would be under a particular 
heading in a traditional document. In some systems nodes 
can be grouped together as a composite—for example, the 
second-level headings under a first-level heading might be 
considered nodes making up a single composite.

The text contains links. A link specifies an anchor or 
specific location to which it points. The user normally 
doesn’t see the anchor, but rather the marker, which is 
some form of highlighting (such as a different color) that 
indicates that an area is a link that can be clicked on. 
(In systems such as the Web, link markers need not be 
textual. Small pictures are often used as visual link mark-
ers.) Web browsers and other hypertext programs often 
supplement the use of links with various navigation aids. 
These can include buttons for traversing back or forward 
through a list of recently visited links, a history list from 
which previous links can be selected, and bookmarks that 
allow the user to save and descriptively label important 
links for easier future access.

Hypertext is becoming the dominant paradigm for pre-
senting technical or other reference information. With less-
structured text, hypertext links are usually considered to be 
supplemental to the traditional structure. The term hyper-
media refers to the linking of nontextual material—images, 
videos, sound files, even Java applets and other programs. 
(Since both hypertext and hypermedia are now so ubiqui-

tous, the terms themselves seem to be used less frequently 
except in an academic context.)

Hypertext perhaps achieves its fullest power when it 
is used for collaborative expression and research. Without 
being able to easily link to what is being discussed, blogs 
would just be static diaries (see blogs and blogging). 
Wikis, too, depend on linking not only to reference exist-
ing, related entries, but to “grow” the tree of knowledge 
with “stubs” being put in to encourage other contributors to 
flesh out related topics (see wikis and Wikipedia). Despite 
suggestions to the contrary, hypertext seems to be problem-
atic with regard to fiction, unless a work is constructed as 
an explicit hypertext. If hypertext literature becomes popu-
lar, it will require that both authors and readers radically 
change their role and expectations with regard to the text.
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IBM
International Business Machines is familiarly known as 
IBM (which is its NYSE symbol) or the nickname “Big 
Blue.” Arguably it is the world’s oldest information tech-
nology company, with its roots in card tabulation and 
other business machines in the late 19th century (see 
Hollerith, Hermann and punched cards and paper 
tape). Under president Thomas J. Watson Sr., IBM devel-
oped what would become known as the “IBM card” and 
machinery to manage the huge amounts of data required 
by the U.S. Social Security system starting in the mid-
1930s. However, IBM would later be criticized for provid-
ing the same technology to Nazi Germany, where it would 
be used to help round up Jews for the Holocaust. On the 
other hand, IBM calculating machines were a very neces-
sary part of the Allied war effort, including the develop-
ment of the atomic bomb.

In the 1950s, cold war–related defense work gave IBM 
access to new technologies, including the multiuser, real-
time architecture needed for the SAGE air defense computer 
(see government funding of computer research.)

Despite UNIVAC’s head start, IBM dominated the com-
mercial computer industry from the mid-1950s at least until 
the 1970s (see mainframe). The keystone product was the 
IBM/360 and later IBM/370 mainframe systems. IBM did 
not sell just hardware: It provided complete solutions in 
the form of hardware, operating systems, other software, 
and peripherals. Because of its dominance, it was hard for 
small innovators to gain traction, and many people in the 
university hacker culture felt about IBM as many of their 
descendants feel about Microsoft today. (IBM’s dress code 

with its dark suits reassured business managers but added 
to the company’s conformist image.)

Retrenchment
IBM went on to set the standard for the most common type 
of personal computer in the 1980s (see ibm pc). However, 
the decade would also bring a gradual decline of IBM’s 
dominant role. On the desktop, IBM quickly outpaced Apple 
(despite the latter’s innovation—see Macintosh). However, 
it became legally possible and profitable to build “clone” 
PCs that could run the same software as the IBM PC, and 
often faster and at lower cost. In the 1990s the growing 
use of networks of increasingly powerful desktop machines 
would erode the mainframe market. Finally, in 2004 IBM 
sold its PC business (including the well-regarded Thinkpad 
series of laptops) to Lenovo, a Chinese company.

Today IBM remains a major seller of computer serv-
ers particularly targeted to Internet businesses. The com-
pany has also achieved success through designing chips 
for videogame units (see game consoles). However, 
the company’s overall focus is mainly on business con-
sulting, software (including database and collaborative 
products), management services, and the exploitation of 
its vast trove of patents. IBM has also enthusiastically 
embraced open software and contributed a considerable 
amount of code to the programming community, such as 
the Eclipse program development system (see Linux and 
open source).

IBM remains the largest computer-related company 
(after HP). In 2007 the company earned $7 billion on rev-
enue of $98.8 billion. 
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IBM PC
By 1981, a small but vigorous personal computer (PC) 
industry was offering complete desktop computer systems. 
Apple’s Apple II offered color graphics and expandability 
through an “open architecture”—slots into which cards 
designed by third-party vendors could be plugged. While 
the Apple II had its own DOS (disk operating system) as 
did Radio Shack’s TRS-80, most microcomputers sold in the 
business market used CP/M, an operating system developed 
by Gary Kildall and his company Digital Research.

Meanwhile, IBM, the world’s largest computer com-
pany (see ibm), had quietly created a special team headed 
by Phillip (“Don”) Estridge and tasked with designing a 
personal computer. Unlike the case with the company’s 
mainframe development, the team was given considerable 
freedom in choosing architecture and components—but 
they were told they would have to have a machine ready for 
the market in one year.

Because of the short time frame, the team chose third-
party components already well established in the market, 
including the monitor, floppy disk drive, and a printer. 
Unlike Apple and most other companies, IBM created two 
separate video display systems, one monochrome (MDA) 
for sharp text for business applications and the three-
color CGA system for the game and education markets (see 
graphics card).

The IBM team also adopted standards from the emerg-
ing microcomputer industry instead of trying to use exist-
ing mainframe standards. For example, they used the ASCII 
code to represent characters, not the EBCDIC code used 
on IBM mainframes. They also chose the Intel 8086 and 
8088 microprocessors, which had an instruction set simi-
lar to that of the Intel 8080 used in many CP/M systems 
(see microprocessor). This would make it easy for soft-
ware developers to create IBM PC versions of their software 
quickly so that the new machine would have a repertoire of 
business software.

One might have expected that IBM would also adopt a 
version of CP/M as the PC’s operating system, taking advan-

tage of the closest thing to an existing industry standard. 
However, CP/M was relatively expensive, and negotiations 
with Digital Research stumbled, leaving an opening for a 
much smaller company, Microsoft, to sell a DOS based on 
software it had licensed from Seattle Computer Products. 
While IBM did offer CP/M and another operating system 
based on the UC San Diego Pascal development system, 
Microsoft DOS, which became known as PC-DOS (and later 
MS-DOS), was cheapest and effectively became the default 
offering (see ms-dos).

When IBM officially announced its PC in April 1981, 
Apple took out full-page ads “welcoming” the new com-
petitor to what it considered to already be a mature indus-
try. But by the end of 1983, a million IBM PCs had been 
sold, dwarfing Apple and other brands. From then on, while 
Apple would go on to announce its distinctive Macintosh in 
1984, the IBM machine would set the industry standard. To 
most people, “PC” would mean “IBM PC.”

Open Standards and Expansion
As more businesses bought IBM PCs, the company steadily 
expanded the machine’s capabilities to meet the demands 
of the business environment. The next model, the PC-XT, 
introduced in 1982, included a hard disk drive and more 
system memory. As software became more demanding, the 
need for a faster and more capable processor also became 
apparent. In 1984, IBM responded with the PC-AT, which 
used the Intel 80286 processor, combining the faster pro-
cessor with a wider (16-bit) and faster data bus (see bus).

However, IBM would not have the market to itself. A 
consequence of the use of an open, expandable architecture 
and “off the shelf” processor and other components is that 
other companies could market PCs that were compatible 
with IBM’s (that is, they could run the same operating sys-
tem and applications software). Although competitors could 
not legally make a simple copy of the read-only memory 
(ROM) BIOS, the code that enabled the components to com-
municate, they could reverse-engineer a functional equiva-
lent. The first major competitor in what became known as 
the “PC Clone” market was Compaq, which also offered an 
improved video display and a transportable model. Zenith, 
Tandy (Radio Shack), and HP also offered “name-brand” PC 
clones.

In 1987, IBM tried to establish a proprietary standard by 
introducing the PS/2 line, which featured a 3.5-inch floppy 
drive (standard PC compatibles used 5.25-inch drives), a 
new high-resolution graphics standard (VGA), a new sys-
tem bus (MCA or Microchannel Architecture), and a new 
operating system (OS/2). Despite some technical advan-
tages, the PS/2 achieved only modest success. Since the 
card slots were incompatible with the previous standard, 
existing expansion products could not be used. Microsoft 
soon came out with a new operating environment, Win-
dows, which while inferior in multitasking capabilities to 
OS/2 was easier to use (see user interface and Microsoft 
Windows).

By the 1990s, it was clear that IBM no longer controlled 
the standards for PCs. (Indeed, IBM soon abandoned the 
PS/2 MCA architecture and returned to the earlier stan-
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dard, which competitors had never left.) Instead, the indus-
try incrementally built upon what had become known as 
the ISA (Industry Standard Architecture), supplementing 
it with a new kind of expansion card connector called PCI. 
Currently, IBM is in the second tier in PC sales behind 
industry leaders Dell and Compaq, having a market share 
comparable to Hewlett-Packard and Gateway. IBM also did 
relatively well in the laptop computer sector with its Think-
pad series, before selling it to Lenovo.

Today’s industry standards are effectively determined 
by two companies: the chip-maker Intel and the software 
giant Microsoft. Indeed, “standard” PCs are now often 
called “Wintel” machines. The direct-order giant Dell and 
its competitors HP and Lenovo dominate the “commodity 
PC” market. However, by creating a standard that was flex-
ible enough for two decades of PC development, IBM made 
a lasting contribution to computing comparable to its inno-
vations in the mainframe arena.
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identity in the online world
There are two aspects of identity in cyberspace, both of 
which are intriguing but problematic: Outer identity is the 
name or other descriptors that are identified by other peo-
ple as belonging to a particular person, and inner identity is 
a person’s sense of who or what he or she “really is.”

Users of online systems such as chat rooms or games 
have the ability to use a variety of names (pseudonyms) 
or to be effectively anonymous (see anonymity and the 
Internet). In games, the identity used by a player is rep-
resented by a virtual representation called an avatar. Other 
players (through their own avatars) will encounter the ava-
tar and identify it by physical appearance, behavior, and 
what it tells about itself (the “back story”).

While opportunities to do this emerged in the 1970s with 
paper-and-dice role-playing games such as the very popu-
lar Dungeons and Dragons, there are significant differences 
between online identity and these earlier games. People 
played “D&D” in person, so it was relatively easy to maintain 
a distinction between a character a person was “running” and 
the person himself or herself. Also, these role-playing ses-
sions were fixed in time and place: After slaying the dragon, 
the players went home. Indeed even the term “role-playing” 
made the comfortable assumption that the activity was a pre-
tend, make-believe identity assumed by the player.

Virtual game worlds began in the 1980s with text-based 
MUDS (multi-user dungeons) and similar online environ-

ments. Today game worlds are graphically immersive and 
persistent. Although there are games focused on the tradi-
tional battles and quests, others such as Second Life are best 
described not as games at all but literal second or alterna-
tive lives that persons can participate in for hours a day. In 
these worlds an avatar can own property and make commit-
ments, even a virtual form of marriage. In many cases in-
game goods and money can actually be exchanged for “real 
world” money. And crucially, unlike the D&D encounter, 
in these virtual worlds the “real person” behind an avatar 
need never be revealed.

Constructing Identities
The online world invites people to construct and try out 
identities. Because of the vital role they play in people’s 
sense of self and their social interactions, sexual or gen-
der identity is a particularly important issue. The online 
world has some clear advantages for persons who are exper-
imenting with different identities (such as transgender). A 
man, for example, can create a female avatar that really 
looks female. Further, people can act out sexual encounters 
without the possible physical consequences of violence or 
disease. On the other hand, people can still be hurt psycho-
logically, and online relationships can take on added risks 
and challenges by eventually becoming physical ones.

There are also venues where there can be “hybrid” iden-
tities. In a site such as MySpace, a person can construct the 
kind of “face” he or she wants to present to the world and 
interact with the pages of other people. Here the online 
identity is often tied with a physical one (potentially creat-
ing vulnerability) but need not be (creating the potential for 
deception).

Young people in particular will have to deal with the 
opportunities and challenges of multiple virtual identities. 
On the one hand, young people are very adaptable, espe-
cially to new technologies. On the other hand, youth and 
particularly adolescence has always been a time of inner 
conflicts and a search for lasting identity (see young peo-
ple and computing).

The deeper philosophical and psychological implications 
of cyberspace are intriguing. According to some modern 
psychological theories (such as Marvin Minsky’s “society of 
mind”), the mind does not consist of a single ego perhaps in 
conflict with unconscious forces, but rather, many separate 
“agents” that interact as they seek various goals. From that 
point of view the online world expands that model into 
social space and may lead to a world in which each physical 
person may have many virtual persons associated with it.

Online identities are becoming a fertile area of research 
in psychology and sociology. Pioneering work has been 
done by psychologist Sherry Turkle, who has explored dif-
fering male and female styles of relationship to technology, 
how technology affects children, and other issues.

The social and legal implications of online identity are 
equally challenging. Can an avatar be sued? Can one avatar 
commit a criminal act (perhaps even rape) against another? 
Might an avatar have privacy rights and the right of public-
ity? The legal system has hardly begun to consider such 
questions, and they are becoming more urgent as everything 
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from meetings to concerts takes place in virtual worlds. It is 
possible that eventually online worlds will be allowed to 
create their own internal legal systems, perhaps subject to 
“metarules” about how they are to be enforced within the 
context of physical jurisdictions (see cyberlaw).
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identity theft
Identity theft is essentially the impersonation of someone 
in order to gain use of their resources or, occasionally, to 
escape the consequences of previous criminal behavior. 
The most common motive for identity theft is to gain access 
to a person’s financial resources, such as credit cards or 
checking accounts, or to obtain credit or services. (Some-
times a distinction is made between identity theft, where 
the victim’s identity is assumed and effectively becomes 
the perpetrator’s identity, and identity fraud, where infor-
mation is only used long enough to complete particular 
transactions.)

Identity thieves must first obtain the necessary informa-
tion to pose as their victim. This can be done by physically 
obtaining such items as checks, receipts, credit offers, and 
so on from the trash or mail. Information such as name, 
address, account numbers, and the ultimate prize, the 
Social Security number, can then be used, for example, to 
apply for credit in the victim’s name, or buy goods and have 
them shipped to the perpetrator’s address.

People can minimize the risk of physical identity theft 
by securing their mail and shredding sensitive documents. 
However, the fastest-growing venue for identity theft is 
online. The online world presents additional opportunities 
to the criminals, the necessity of new precautions, and dif-
ficult challenges for law enforcement.

Digital information useful for identity theft can be 
obtained in a variety of ways. It can be physically stolen in 
the form of laptops or portable storage devices or obtained 
electronically by breaking into and compromising computer 
systems (see computer crime and security). Programs 
can exploit operating-system or software flaws to travel 
from one networked PC to another and e-mail informa-
tion back to the perpetrator (see computer virus). Finally, 
users can be coerced, enticed, or otherwise tricked into 
providing the information (such as passwords) themselves, 
via authentic-looking institutional Web sites (see phishing 
and spoofing).

Incidence and Prevention
According to various surveys, the incidence of identity theft 
increased substantially between 2001 and 2003. There are 
conflicting views of recent trends. Data for 2006 from Jav-
elin Strategy and Research suggests a decrease (10.1 mil-
lion U.S. adult victims in 2003 and 8.9 million in 2006). 
However, data from the Federal Trade Commission records 
246,035 actual complaints of identity theft in 2006, mak-
ing it by far the number one item on its list of consumer 
fraud complaints. (Of these, 25 percent reflected credit card 
fraud, and phone/utilities fraud and bank fraud each repre-
sented 16 percent.)

To give some further perspective, according to the Inter-
net Crime Complaint Center (a joint program of the FBI 
and the National White Collar Crime Center), identity theft 
amounted to only 1.6 percent of reported cyber crimes. 
(Credit card or check fraud without confirmed identity 
theft added up to 9.7 percent.) Nevertheless, however mea-
sured, it is clear that identity theft remains a very serious 
problem.

Until recent years, response to identity theft complaints 
by law enforcement tended to be ineffectual and frustrat-
ing to victims. This was probably due to a combination of 
circumstances, including many police officers being unfa-
miliar with the nature of the crime or technology involved, 
unsure about how to proceed, and not even certain they 
had jurisdiction. This situation has improved considerably, 
however, with national organizations, greater interagency 
cooperation (including between federal, state, and local 
agencies), and strong and explicit laws against identity theft 
and fraud. (The Identity Theft and Assumption Deterrence 
Act of 2003 now makes possession of “any means of iden-
tification” to “knowingly transfer, possess, or use without 
lawful authority” a federal crime.)

The main goal for consumers, however, should be pre-
vention. Steps that can greatly reduce the chance of becom-
ing a victim of online identity theft include:

• � Keep security software (antivirus, antispam, antispyware) 
up to date.

• � Do not click on links in e-mail that purports to be 
from a financial institution, government agency, 
online merchant or auction service. Use the browser’s 
address box to go directly to the relevant site.

• � Do not post addresses, account numbers, or Social 
Security numbers online, including chat rooms or 
social networking sites. Teach children likewise, and 
consider installing software that can block the post-
ing of such information.

• �M ake sure that the financial institutions and mer-
chants that one uses have acceptable privacy poli-
cies and policies for dealing with “data breaches” and 
other loss of sensitive information.

• � If you suspect you have been victimized, go to a site 
such as the Identity Theft Resource Center or the 
Privacy Rights Clearinghouse to learn how to stop 
further losses and reestablish credit and accounts.
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image processing
Image processing is a general term for the manipulation 
of a digitized image to produce an enhanced or more con-
venient version. Some of the earliest applications were in 
the military (aerial and, later, satellite reconnaissance) and 
in the space program. The military and space programs 
had a great need for extracting as much useful information 
as possible from images that were often gathered under 
extreme or marginal conditions. They also needed to make 
cameras and other hardware components simultaneously 
more compact and more efficient, and generally had the 
funds to pay for such specialized developments.

Once developed, higher-quality image processing sys-
tems found their way into other applications such as domes-
tic surveillance and medical imaging. The development of 
cameras that could directly turn light into digitized images 
(see photography, digital) made image processing seam-
less by avoiding the necessity of scanning images from tra-
ditional film.

Image processing applications can be divided into 
three general categories: enhancement, interpretation, and 
maintenance.

Enchancement
Enhancement includes bringing out objects of interest (such 
as enemy vehicles or a particular rock formation on Mars) 
from the surrounding background by enhancing contrast 
or applying appropriate filters to block out the background. 
More sophisticated filters can also be used to compensate 
for defects in the original image, such as “red-eye,” blur, 
and loss of focus. Today’s image processing programs, such 
as the popular Adobe Photoshop, make relatively sophisti-
cated image manipulation techniques available to interested 
amateurs as well as professionals. More sophisticated image 
enhancement techniques include the creation of 3D images 
based upon the differences calculated from a number of 
photos shot from slightly different angles.

A considerable amount of image enhancement takes 
place even before the photo is taken. Today’s versatile cam-
eras (see photography, digital) include a variety of modes 
that are preset for different scenarios such as indoor portrait 

or low light. After the picture is taken, photo management 
programs (often bundled with the camera or even included 
in the operating system) not only help organize photos, but 
also provide simple ways to crop or enhance them.

Interpretation
Interpretation refers to manipulation designed to help 
human observers obtain more and better information 
from the image. For example, “false color” can be used to 
heighten otherwise imperceptible color differences in the 
original image, or to translate nonvisual information (such 
as heat or radio emission levels) into visual terms.

Artificial intelligence algorithms can also be employed 
to automatically analyze images for features of interest (see 
pattern recognition and computer vision). In fields 
such as military reconnaissance this might allow a high 
volume of imagery to be prescreened, with images meet-
ing certain criteria “flagged” for the attention of human 
interpreters.

Maintenance
Maintenance includes archiving of images, often with the 
aid of compression to reduce the amount of storage space 
required (see data compression). It can also include the 
restoration of images that may have been degraded (as from 
chemical decomposition of stored film.) This can be done 
either by creating a reversible mathematical model of the 
degradation process (thus, for example, restoring colors 
that have changed through oxidation or other processes) 
or by creating a model of how the image was formed in the 
first place and comparing its output to the existing image.
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information design
Information design is concerned with arranging and pre-
senting information in ways that enable viewers to use it 
efficiently and with the greatest benefit. This discipline can 
be said to have begun in the 19th century with the develop-
ment of diagrams and maps that present the relationship 
between two or more variables. These included John Snow’s 
map of London showing the locations of cholera outbreaks 
in the 1850s, and a striking 1861 diagram by Joseph Minard 
that related the geographical progress of Napoléon’s 1812 
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invasion of Russia with the diminishing size of the French 
forces. These early examples coincided with a time when 
industrial society was becoming increasingly complex and 
populous, and both government and business needed new 
ways to visualize statistics. Other products to which infor-
mation design contributes became important in the fol-
lowing century: traffic and transit signs, product warning 
labels, and product manuals, to name a few.

Some of the basic considerations for information design 
include:

• � effectiveness at presenting relevant information

• � selection and arrangement of information

• � balance of attractiveness and clarity

• � proper use of the medium (size, materials, etc.)

Of course the designer has additional constraints, such as 
the purpose of the design (advertising, product documenta-
tion, report, etc.), policies of the client, any applicable regu-
lations (such as for warning labels), and so on.

From Physical to Digital
Moving from the world of print to the Web brings new 
resources and challenges to the information designer. Web 
design has many advantages over print—powerful layout 
tools and perhaps templates, the availability of animation 
or other effects, the ability to adapt to different audiences, 
and, above all, interactivity. However, each of these fea-
tures brings additional choices—not only font and text size, 
but background, use of images, whether to include anima-
tion (such as Flash), and how to design clear and easy-to-
use forms and other interactive features. Further, designs 
may have to adapt to a variety of platforms (large desktop 
screens, laptops, PDAs, and mobile devices) and provide 
for users who have visual impairments or other disabilities 
(for more, see Web page design). For information displays 
designed to provide “at a glance” summaries and alerts 
about problems, see digital dashboard.	

Although these concerns may seem far afield from the 
classic principles of graphic design, they actually represent 
technological extensions of them. It is easy to get lost in the 
particulars of designing, for example, Web pages showing 
statistical charts, without having thought about whether 
the charts themselves show information clearly and accu-
rately in the scales and proportions used.
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information retrieval
While much attention is paid by system designers to the 
representation, storage and manipulation of information in 
the computer, the ultimate value of information processing 
software is determined by how well it provides for the effec-
tive retrieval of that information. The quality of retrieval is 
dependent on several factors: hardware, data organization, 
search algorithms, and user interface.

At the hardware level, retrieval can be affected by the 
inherent seek time of the device upon which the data is 
stored (such as a hard disk), the speed of the central proces-
sor, and the use of temporary memory to store data that is 
likely to be requested (see cache). Generally, the larger the 
database and the amount of data that must be retrieved to 
satisfy a request, the greater is the relative importance of 
hardware and related system considerations.

Data organization includes the size of data records and 
the use of indexes on one or more fields. An index is a sepa-
rate file that contains field values (usually sorted alphabeti-
cally) and the numbers of the corresponding records. With 
indexing, a fast binary search can be used to match the 
user’s request to a particular field value and then the appro-
priate record can be read (see hashing).

There is a tradeoff between storage space and ease of 
retrieval. If all data records are the same length, random 
access can be used; that is, the location of any record can be 
calculated essentially by multiplying the record’s sequence 
number by the fixed record length. However, having a fixed 
record size means that records with shorter data fields must 
be “padded,” wasting disk space. Given the low cost of disk 
storage today, space is generally less of a consideration.

The search algorithms used by the program can also 
have a major impact on retrieval speed (see sorting and 
searching). As noted, if a binary search can be done against 
a sorted list of fields or records, the desired record can be 
found in only a few comparisons. At the opposite extreme, 
if a program has to move sequentially through a whole 
database to find a matching record, the average number of 
comparisons needed will be half the number of records in 
the file. (Compare looking up something in a book’s index 
to reading through the book until you find it.)

Real-world searching is considerably more complex, 
since search requests can often specify conditions such 
as “find e-commerce but not amazon.com” (see Boolean 
operators). Searches can also use wildcards to find a word 
stem that might have several different possible endings, 
proximity requirements (find a given word within so many 
words of another), and other criteria. Providing a robust set 
of search options enables skilled searchers to more precisely 
focus their searches, bringing the number of results down 
to a more manageable level. The drawback is that complex 
search languages result in more processing (often several 
intermediate result sets must be built and internally com-
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pared to one another). There is also more likelihood that 
searchers will either make syntax errors in their requests or 
create requests that do not have the intended effect.

While database systems can control the organization 
of data, the pathways for retrieval and the command set 
or interface, the World Wide Web is a different matter. 
It amounts to the world’s largest database—or perhaps 
a “metabase” that includes not only text pages but file 
resources and links to many traditional database systems. 
While the flexibility of linkage is one of the Web’s strengths, 
it makes the construction of search engines difficult. With 
millions of new pages being created each week, the “web-
crawler” software that automatically traverses links and 
records and indexes site information is hard pressed to 
capture more than a diminishing fraction of the available 
content. Even so, the number of “hits” is often unwieldy 
(see search engine).

A number of strategies can be used to provide more 
focused search results. The title or full text of a given page 
can be checked for synonyms or other ideas often associ-
ated with the keyword or phrase used in the search. The 
more such matches are found, the higher the degree of 
relevance assigned to the document. Results can then be 
presented in declining order of relevance score. The user 
can also be asked to indicate a result document that he or 
she believes to be particularly relevant. The contents of this 
document can then be compared to the other result docu-
ments to find the most similar ones, which are presented as 
likely to be of interest to the researcher.

Information retrieval from either stand-alone databases 
or the Web can also be improved by making it unnecessary 
for users to employ structured query languages (see sql) 
or even carefully selected keywords. Users can simply type 
in their request in the form of a question, using ordinary 
language: For example, “What country in Europe has the 
largest population?” The search engine can then translate 

the question into the structured queries most likely to elicit 
documents containing the answer. Ask Jeeves (retired as of 
2006) and similar search services have thus far been only 
modestly successful with this approach.

On a large scale, systematic information retrieval and 
analysis (see data mining) has become increasingly sophis-
ticated, with applications ranging from e-commerce and 
scientific data analysis to counterterrorism. Artificial intel-
ligence techniques (see pattern recognition) play an 
important role in cutting-edge systems.

Finally, encoding more information about content and 
structure within the document itself can provide more 
accurate and useful retrieval. The use of XML and work 
toward a “semantic Web” offers hope in that direction (see 
Berners-Lee, Tim; semantic web; and xml).
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information theory
Information theory is the study of the fundamental charac-
teristics of information and its transmission and reception. 
As a discipline, information theory took its impetus from 
the ideas of Claude Shannon (see Shannon, Claude).

In his seminal paper “A Mathematical Theory of Com-
munication” published in the Bell System Technical Journal 
in 1948, Shannon analyzed the redundancy inherent in any 
form of communication other than a series of purely ran-
dom numbers. Because of this redundancy, the amount of 
information (expressed in binary bits) needed to convey a 
message will be less than the number in the original mes-
sage. It is because of redundancy that data compression 
algorithms can be applied to text, graphics, and other types 
of files to be stored on disk or transmitted over a network 
(see data compression).

Shannon also analyzed the unpredictability or uncer-
tainty of information as it is received—that is, the number of 
possibilities for the next bit or character. This is related to the 
number of possible symbols, but since all symbols are usually 
not equally likely, it is actually a sum of probabilities. Shan-
non used the physics term entropy to refer to this measure. It 
is important because it makes it possible to analyze the prob-
ability of error (caused by such things as “line noise”) in a 
communications circuit. Shannon’s basic formula is:

C = Blog2(1 + P / N)

where the channel capacity C is in bits per second, B is the 
bandwidth, P the signal power, and N the Gaussian noise 
power.

A number of criteria can be used by Web search engines to deter-
mine the likely relevance of search results. Perhaps the most impor-
tant tool, however, is feedback from the user.
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Shannon found that if as long as the actual data trans-
mission rate is less than the channel capacity C, an error-
correcting code can be devised to ensure that any desired 
accuracy rate is achieved (see error correction). A related 
formula can also be used to find the lowest transmission 
power needed given a specified amount of noise.

The influence of Shannon and his disciples on comput-
ing has been pervasive. Information theory provides the 
fundamental understanding needed for applications in data 
compression, signal analysis, data communication, and 
cryptography—as well as problems in other fields such as 
the analysis of genetic mutation or variation.
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information warfare
Information warfare has many aspects and can be fought 
on many levels. On the battlefield, it can involve collecting 
tactical or strategic intelligence and protecting one’s own 
channels of communication. Conversely, it can involve dis-
rupting the enemy’s means of communication, blocking the 
enemy’s intelligence gathering, spreading disinformation, 
and trying to disrupt their decision process. Beyond the 
battlefield, media (including the Internet) can be used for 
propaganda purposes.

All of these objectives today involve the use of digital 
information and communications systems. Examples include:

• � analysis of enemy communications using both auto-
matic tools and human analysts

• � cryptography and signal analysis

• � protection of computer and network infrastructure

• � attacks and disruptions on enemy information infra-
structure, both military and civilian (such as denial-
of-service attacks on Web sites)

• � use of Web sites to spread disinformation or propa-
ganda

History and Development
Information warfare is as old as warfare itself, with such 
things as ruses designed to trick or confuse enemy sentries 
or lighting many fires to convince the enemy that one’s 
army was much larger than in reality. Wiretapping and 

spoof messages began with the telegraph in the mid-19th 
century, and eavesdropping and other tricks with radio 
were used in World War I. These arts had greatly increased 
in scale and sophistication by World War II—an entire fake 
army corps was “created” to deceive the Germans prior to 
the D-day invasion.

Information warfare involving computers has been used 
in recent conflicts. The active phase of the U.S. attack in the 
first Gulf War in 1991 began with systematic destruction 
and disruption of Iraqi information and command-and-con-
trol assets through targeted attacks. As a result, the still 
largely intact Iraqi military was left blind as to the coming 
flank attack by U.S. forces.

In 2007 a series of coordinated attacks by unknown 
parties paralyzed much of Estonia’s Web-based government 
and business structures following a dispute with Russia. 
To many observers this represents a model for “strategic” 
information warfare that might be used in future conflicts. 
(Note that the techniques used in information warfare by 
the national military and the kinds of cyber attacks that 
might be favored by terrorists overlap. For the latter, see 
cyberterrorism.)
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Input/Output  (I/O)
While the heart of a computer is its central processing unit 
or CPU (the part that actually “computes”), a computer 
must also have a “circulatory system” through which data 
moves between the CPU, the main memory, input devices 
(such as a keyboard or mouse), output devices (such as a 
printer), and mass storage devices (such as a hard or floppy 
disk drive). Input/Output or I/O processing is the general 
term for the management of this data flow (see also bus, 
parallel port, serial port, and usb).

I/O processing can be categorized according to how a 
request for data is initiated, what component controls the 
process, and how the data flows between devices. In most 
early computers the CPU was responsible for all I/O activi-
ties (see cpu). Under program control, the CPU initiated a 
data transfer, checked the status of the device (or area of 
memory) that would be sending or receiving the data, and 
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monitored the flow of data until it was complete. While this 
arrangement simplified computer architecture and reduced 
the cost of memory units or peripheral devices (at a time 

when computer hardware was hand-built and relatively 
costly), it also meant that the CPU could perform no other 
processing until I/O was complete.

In most modern computers, responsibility for I/O has 
largely been removed from the CPU, freeing it to concen-
trate on computation. There are several ways to imple-
ment such architecture. One method that has been used on 
microcomputers since their earliest day is interrupt-driven 
I/O. This means that the CPU has separate circuits on 
which a device requesting I/O service can “post” a request. 
The CPU periodically checks the circuits for an interrupt 
request (IRQ). If one is found, it can send a query to each 
device on a list until the correct one is found (the latter 
is called polling). Alternatively, the overhead involved in 
polling can be eliminated by having the IRQ include either 
a device identification number or a memory address that 
contains an interrupt service routine (this is called vectored 
interrupts). While interrupts alone do not free the CPU of 
the need to manage the I/O, they do remove the overhead of 
having to frequently check all devices for I/O.

The actual I/O process can also be moved out of the 
CPU through the use of direct memory access (DMA). Here 
a separate control device takes over control of the system 
from the CPU when I/O is requested. It then transfers data 
directly between a device (such as a hard disk drive) and 
a buffer in main memory. Although the CPU is idle dur-
ing this process, the transfer is accomplished much more 
quickly because the full capacity of the bus can be used to 
move data rather than having to be shared with the flow of 
program instructions in the CPU.

A more sophisticated I/O control device is called a chan-
nel. A channel controller can operate completely indepen-
dently of the CPU without requiring that the CPU become 
idle during a transfer. Channels can also act as a sort of spe-
cialized CPU or coprocessor, running program instructions 
to monitor the data transfer. There are also channels capa-
ble of monitoring and controlling several devices simulta-
neously (this is called multiplexing). The use of channels in 
mainframes such as the IBM 360 and its descendants is one 
reason why mainframes still perform a workhorse role in 
high-volume data processing.

In microcomputers the trend has also been toward 
offloading I/O from the CPU and the main bus to separate 
controllers or channels. For example, the AGP (acceler-
ated graphics port) found on most modern PCs acts as a 
channel between main memory and the graphics control-
lers (see graphics card). This means that as a program 
generates graphics data it can be automatically transferred 
from memory to the graphics controllers without any load 
on the CPU, and over a bus that is faster than the main 
system bus.
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Steps in processing an interrupt request (IRQ) in a PC. (1) The 
device requesting attention signals the Interrupt Controller, which 
in turn sends a special signal to the CPU. (2) The CPU saves 
its state (including internal data and the address of the current 
instruction) to a stack. (3) The CPU gets the interrupt number and 
other information from the Interrupt Controller, then looks up a 
set of instructions for processing that particular interrupt. (4) The 
CPU executes the interrupt processing code, which generally links 
to BIOS code for handling a device such as the keyboard. (5) The 
CPU reloads its state information from the stack and resumes the 
interrupted processing.
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installation of software
While not often covered in computer science or software 
engineering courses, the process of getting a program to 
work on a given computer is often nontrivial. In the early 
days of PCs, installation generally involved simply copying 
the main program file and any needed settings files to a disk 
directory and possibly setting up the appropriate driver for 
the user’s printer. (A cryptic user interface sometimes made 
the latter procedure a frequent occasion for technical sup-
port calls.) Users generally did not have to make many 
choices about what components to install or where to put 
them. On the other hand, installation programs sometimes 
made changes to a user’s system without notification or the 
ability to “back out.”

The ascension of Microsoft Windows to dominance as 
a PC operating system improved the installation process in 
several ways. Since the operating system and device drivers 
written by hardware vendors took over responsibility for 
installing and configuring printers and other devices, users 
generally didn’t have to worry about configuring programs 
to work with specific hardware. Particularly with Windows 
95 and later versions, a standard “installation kit” allows 
software developers to provide a familiar, step-by-step 
installation procedure to guide users. Generally, installation 
consists of an introductory screen, legal agreement, and the 
opportunity to choose a hard drive folder for the program. 
A moving “progress bar” then shows the files being copied 
from the installation CD to the hard drive. A “readme” file 
giving important considerations for using the program is 
usually provided. Increasingly, software registration is done 
by launching the user’s Web browser and directing it to the 
vendor’s Web site where a form is presented.

The installation of drivers accompanying new hardware 
such as a printer or scanner has been simplified even more 
through the “Plug and Play” feature in modern versions of 
Windows. This allows the system to automatically detect 
the presence of a new device and either install the driver 
automatically or prompt the user to insert a disk or CD (see 
plug and play).

Installation becomes a much more complicated matter 
when an enterprise has to install from tens to hundreds 
or thousands of copies of a program on employees’ PCs. 
While small businesses may simply buy consumer-pack-
aged software and install one copy on each PC, large busi-
nesses generally obtain a site license allowing a certain 
number of installations (or in some cases, unlimited on-site 
installations). Organizations must monitor the number of 
installations of a particular program package to ensure that 
licensing agreements are not violated while trying to use 
available software assets as efficiently as possible. (This is 
sometimes called software asset management or SAM.)

An automated installation script can be used to install 
a copy of the same software on each PC on the company’s 
network—or a utility can be used to copy an exact hard 
disk image, including fully configured operating system 
and applications, to each PC. Alternatively, it is possible 
to buy networked versions of some programs. In this case 
the application actually runs on a server and is accessed 
from (but not copied to) each user’s PC. This technique has 

also been adopted to provide consumers with an alterna-
tive to stand-alone installation (see application service 
provider).

Installation is only the first part of the story, of course. 
Most significant programs will experience a steady flow 
of minor version updates as well as security patches. For 
individual users, setting the program to update automati-
cally (if possible) or periodically checking for updates may 
be sufficient. For organizations, the task of making sure all 
the deployed copies of the software are up to date can be 
nontrivial, although tools such as Microsoft System Center 
can help. (Many Linux distributions such as Ubuntu can 
automatically retrieve all updates for installed packages.)

Linux and UNIX systems have also evolved more sophis-
ticated installation systems in order to keep up with today’s 
more complex applications and distributions. One common 
solution used by Red Hat and other Linux vendors is a 
“package” system where the user selects programs and fea-
tures and the system identifies the components (packages) 
that must be installed to enable them.
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Intel Corporation
Intel Corporation (NASDAQ symbol: INTC) is the world’s 
largest manufacturer of semiconductors or “computer 
chips.” The company was founded in 1968 as Integrated 
Electronics Corporation by Robert Noyce and Gordon 
Moore (see chip and Moore, Gordon).

Until the early 1980s Intel made most of its revenue 
from manufacturing SRAM memory chips (see memory). 
When the Japanese had made significant inroads into the 
semiconductor market, Intel turned to microprocessors, 
which it had introduced in 1971 and which formed the 
basis for the development of the desktop or personal com-
puter (see microprocessor and personal computer). 
During the 1980s, Intel 8086/8088 processors and their 
successors (286, 386, 486) and the associated chipsets were 
being used in the dominant “Wintel” (Microsoft Windows 
plus Intel) PC architecture. By the middle of the 1990s, 
Intel dominated the microprocessor market with its Pen-
tium series chips, overcoming a mathematical flaw in some 
of the latter.
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Competition
Around 2000, Intel’s dominance began to be challenged. 
The power of modern processors allowed for the develop-
ment of lower-cost commodity PCs, and when Intel contin-
ued its progression toward increased power, competitors, 
particularly AMD (see Advanced Micro Devices), were 
able to gain greater market share with its less expensive 
CPUs.

In higher power chips (particularly dual- and multi-core 
chips with more than one processor), Intel seems to have 
the edge in the middle of the first decade of the new cen-
tury, although AMD is coming on strong. Meanwhile Intel 
and Apple in 2006 made a deal to replace the PowerPC chip 
in the Macintosh with Intel chips.

Intel has struggled with corporate reorganization and 
lower sales of chipsets and motherboards (even while con-
tinuing with strong sales of its dual-core and quad-core 
processors). After a decline of 42 percent from 2005 to 
2006, Intel’s net income increased to about $7 billion in 
2007. However, its workforce has continued to decline 
from 102,500 in mid-2006 to 86,300 in 2007. However, 
Intel is expecting to produce more quad-core processors, 
new laptop components (including flash memory instead 
of hard drives), and other innovations in a very competi-
tive market.
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intellectual property and computing
Intellectual property can be defined as the rights the cre-
ator of an original work (such as an invention or a book) 
has to control its reproduction or use. Developers of new 
computer hardware, software, and media content must be 
able to realize a return on their time and effort. This return 
is threatened by the ease with which programs and data on 
disks can be illicitly copied and redistributed. Several legal 
mechanisms can be used to deter such behavior.

Legal Protection Mechanisms
Intellectual property represented by the design of new hard-
ware can be protected through the patent system. A patent 
gives the inventor the exclusive right to sell or license the 
invention for 20 years after the date of filing. The basic 
requirements for a device to be patentable are that it rep-
resents an actual physical device or process and that it be 
sufficiently original and useful. A mere idea for a device, 
a mathematical formula, or a law of nature is not patent-
able in itself. In computing, a patent can be given for an 
actual physical device that meets the originality and useful-

ness requirements. Software that works with that device to 
control a physical process can be part of the patent, but an 
algorithm is not patentable by itself.

In practice, however, the situation is much murkier 
and more problematic. Patents are viewed as a key stra-
tegic resource (and financial asset) by companies such as 
IBM (which holds 40,000 patents and earns $1 billion a 
year by licensing them), and in the decade between 1995 
and 2005 the annual number of patent applications filed 
rose 73 percent to 409,532. This has led to a considerable 
backlog in the Patent Office, and critics suggest that many 
patents are granted without being properly examined, 
such as for the existence of “prior art” (previous uses of 
similar technology).

Large companies often complain that so-called patent 
trollers obtain patents that may be relevant enough to cause 
infringement or invalidate a later patent, and then threaten 
the company with litigation if they are not paid. (Small 
patent holders in turn complain that large companies some-
times ignore or underpay them because they assume that 
the patent holder cannot afford litigation.) Many compa-
nies, including eBay, Research in Motion (maker of the 
Blackberry PDA), and Microsoft have been embroiled in 
patent suits.

Major computer companies such as Google, IBM, and 
Apple are supporting the Patent Reform Act of 2007. The 
law would tighten the standards for getting a patent and 
make it easier to challenge the patent later.

As of mid-2008 the bill remained stalled in the Senate. 
Meanwhile, a federal court had overturned new patent reg-
ulations that sought to streamline the application process 
by reducing the amount of supporting materials submitted.

Because of these restrictions, most software is protected 
by copyright rather than by patent. A computer program is 
considered to be a written work akin to a book. (After all, 
a computer program can be thought of as a special type of 
narrative description of a process. When compiled into exe-
cutable code and run on a suitable computer, a program has 
the ability to physically carry out the process it describes.)

Like other written works, a program has to be suffi-
ciently original. Once copyrighted, protection lasts for the 
life of the author (programmer) plus 70 years. (Works made 
for hire are covered for 95 years from first publication or 
120 years from creation.) Given the pace of change in com-
puting, such terms are close to “forever.” While not strictly 
necessary, registration of the work with the U.S. Copyright 
Office and the inclusion of a copyright statement serve as 
effective legal notice and prevent infringers from claiming 
that they did not know the work was copyrighted.

Content (that is, text or multimedia materials) presented 
in a computer medium can be copyrighted in the same way 
as its traditional printed counterpart. However, in 1996 the 
U.S. Supreme Court declared that a program’s user interface 
as such could not be copyrighted (see Lotus Development 
Corp. v. Borland International, U.S. 94-2003).

Computer programs have also received protection 
as trade secrets. Under the Uniform Trade Secrets Act, as 
adopted in many states, a program can be considered a 
trade secret if gaining economic value from it depends upon 
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it not being generally known to competitors, and that “rea-
sonable effort” is undertaken to maintain its secrecy. The 
familiar confidentiality and non-disclosure agreements 
signed by many employees of technical firms are used to 
enforce such secrecy.

First Amendment Issues
In a few cases the government itself has sought to limit 
access to software, citing national security. In the 1996 case 
of Bernstein v. U.S., however, the courts ultimately ruled 
that computer program code was a form of writing pro-
tected by the First Amendment, so government agencies 
seeking to prevent the spread of strong encryption software 
could not prevent its publication.

However, First Amendment arguments have been less 
effective in challenging private software protection mecha-
nisms. In 2001 a U.S. District judge ruled that Princeton 
University computer scientist Edward Felten and his col-
leagues had no legal basis to challenge provisions of the 
Digital Millennium Copyright Act (DMCA). The scientists 
had claimed that a letter from the Recording Industry Asso-
ciation of America (RIAA) had cast a “chilling effect” on 
their research into DVD-protection software by threatening 
them with legal action if they published academic papers 
about copy protection software used by online music ser-
vices. The RIAA had withdrawn its letter, and the courts 
ruled there was no longer anything to sue about. Critics of 
the decision claim that it still leaves the academics in a sort 
of legal limbo since there is no guarantee that they would 
not be sued if they published something.

In another widely watched case the U.S. Court of 
Appeals in New York affirmed a ruling that Eric Corley, 
editor of the hacker magazine 2600 could not publish the 
code for DeCSS, a program that would allow users to read 
encrypted DVD disks, bypassing publisher’s restrictions. 
The Court said that the DMCA did not infringe upon First 
Amendment rights. This decision would appear to conflict 
with Bernstein, although the latter has to do with govern-
ment censorship, not copyright. The Supreme Court is 
likely to hear one or more computer-related copyright cases 
in the years to come.

Fair Use and Copy Protection
Although the purchase of software may look like a simple 
transfer of ownership, most software is accompanied by a 
license that actually grants only the right to use the pro-
gram under certain conditions. For example, users are typi-
cally not allowed to make copies of the program and run 
the program on more than one computer (unless the license 
is specifically for multiple uses). However, as part of “fair 
use” users are allowed to make an archival or backup copy 
to guard against damage to the physical media.

Until the 1990s, it was typical for many programs (par-
ticularly games) to be physically protected against copy-
ing (see copy protection). Talented hackers or “software 
pirates” are usually able to defeat such measures, and 
“bootleg” copies of programs outnumber legitimate copies 
in some Asian markets, for example (see software piracy 
and counterfeiting). Copy protection and/or encryption 

is also typically used for some multimedia products such as 
DVD movies.

Challenges of New Media
By the mid-2000 decade, the biggest intellectual property 
battles were not about esoteric program codes but rather 
revolved around how to satisfy the ordinary home consum-
er’s appetite for music and video while preserving produc-
ers’ revenues. Increasingly, music and even video is being 
downloaded rather than being bought in commercial pack-
aging at the local store.

In the Sony v. Universal case (1984) the Supreme Court 
ruled that manufacturers of devices such as VCRs were 
not liable for their misuse if there were “substantial non-
infringing uses”—such as someone making a copy of legally 
possessed media for their own use. However, in 2005 the 
Supreme Court ruled that Grokster, a decentralized file-
sharing service, could be held liable for the distribution of 
illegally copied media if it “actively induced” such copying.

By 2006 media industry lobbyists (particularly the 
Recording Industry Institute of America, or RIAA) were 
promoting a number of bills in Congress that would fur-
ther restrict consumers’ rights to use media. Such mea-
sures might include requiring that devices be able to detect 
“flagged” media and refuse to copy it (see digital rights 
management), as well as adding stricter provisions to the 
Digital Millennium Copyright Act (DMCA). These mea-
sures are opposed by cyber-libertarian groups such as the 
Electronic Frontier Foundation and consumer groups such 
as the Home Recording Rights Coalition.

Further Reading
Chabrow, Eric. “The U.S. Patent System in Crisis.” Information-

Week, February 20, 2006. Available online. URL: http://www.
informationweek.com/story/showArticle.jhtml?articleID=180
204145. Accessed August 12, 2007.

Electronic Frontier Foundation. “Unintended Consequences: Seven 
Years under the DMCA.” April 2006. Available online. URL: 
http://www.eff.org/IP/DMCA/unintended_consequences.php. 
Accessed August 8, 2007.

Gilbert, Jill. The Entrepreneur’s Guide to Patents, Copyrights, Trade-
marks, Trade Secrets & Licensing. New York: Berkley Books, 
2004.

Home Recording Rights Coalition. Available online. URL: http://
www.hrrc.org/. Accessed August 8, 2007.

“Intellectual Property Law News.” FindLaw. Available online. 
URL: http://news.findlaw.com/legalnews/scitech/ip/. Accessed 
August 8, 2007.

Klemens, Ben. Math You Can’t Use: Patents, Copyright, and Software. 
Washington, D.C.: Brookings Institution, 2006.

LaPlante, Alice. “Media Distribution Rights: Here Come the Judges 
(and Congress).” InformationWeek, June 29, 2006. Available 
online. URL: http://www.informationweek.com/story/show-
Article.jhtml?articleID=189700173. Accessed August 8, 2007.

Wilson, Lee. Fair Use, Free Use, and Use by Permission: How to Han-
dle Copyrights in All Media. New York: Allworth Press, 2005.

internationalization and localization
Internationalization and localization are ways to adapt 
computer software (often created in the United States or 
Europe) to other languages and cultures. The abbreviations 
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I18n and L10n are sometimes used for internationalization 
and localization, respectively (the numbers in each word 
refer to the number of letters in the alphabet between the 
letters). The two processes are complementary.

Internationalization involves designing programs so 
they will be as easy as possible to adapt to a variety of cul-
tural settings. For example, the Unicode character set is 
preferred because it can accommodate most of the world’s 
alphabets and many other characters. Program code can 
also be modularized such that date, time, and other formats 
for different countries can be loaded in and used as desired.

Localization involves changing a number of aspects 
of a software product (including user interface elements 
and online help) to reflect the language and culture of the 
intended market. Some of this is fairly straightforward: for-
mats for numbers, currency, date, and time; text collation 
and sorting order; and use of the keyboard (including spe-
cial keys). To the extent the program has been appropriately 
generalized (internationalized), it becomes easier to local-
ize it for each setting.

Other aspects of localization can be subtler. Icons, for 
example, may have to be changed because their supposedly 
“universal” meaning would not translate well into the local 
culture. Documentation may have to change wording to 
avoid conveying ideas that may be confusing or even offen-
sive. Even more substantial localization may be required if 
the target environment (such as the education system) is 
substantially different from that in the country where the 
software was written. Generally this cannot be done auto-
matically: the program must be reviewed by someone who 
is knowledgeable about the target language or culture.
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Internet
The Internet is the worldwide network of all computers (or 
networks of computers) that communicate using a particu-
lar protocol for routing data from one computer to another 
(see tcp/ip). As long as the programs they run follow the 
rules of the protocol, the computers can be connected by 
a variety of physical means including ordinary and special 
phone lines, cable, fiber optics, and even wireless or satel-
lite transmission.

History and Development
The Internet’s origins can be traced to a project sponsored 
by the U.S. Defense Department. Its purpose was to find 
a way to connect key military computers (such as those 
controlling air defense radar and interceptor systems). Such 
a system would require a great deal of redundancy, rout-
ing communications around installations that had been 

destroyed by enemy nuclear weapons. The solution was 
to break data up into individually addressed packets that 
could be dispatched by routing software that could find 
whatever route to the destination was viable or most effi-
cient. At the destination, packets would be reassembled 
into messages or data files.

By the early 1970s, a number of research institutions 
including the pioneer networking firm Bolt Beranek and 
Newman (BBN), Stanford Research Institute (SRI), Carnegie 
Mellon University, and the University of California at Berke-
ley were connected to the government-funded and admin-
istered ARPANET (named for the Defense Department’s 
Advanced Research Projects Agency). Gradually, as use of 
the ARPANET’s protocol spread, gateways were created to 
connect it to other networks such as the National Science 
Foundation’s NSFnet. The growth of the network was also 
spurred by the creation of useful applications including 
e-mail and Usenet, a sort of bulletin-board service (see the 
Applications section below).

Meanwhile, a completely different world of online net-
working arose during the 1980s in the form of local bulletin 
boards, often connected using a store-and-forward system 
called FidoNet, and proprietary online services such as 
CompuServe and America On-line. At first there were few 
connections between these networks and the ARPANET, 
which had evolved into a general-purpose network for the 
academic community under the rubric of NSFnet. (It was 
possible to send e-mail between some networks using spe-
cial gateways, but a number of different kinds of address 
syntax had to be used.)

In the 1990s, the NSFnet was essentially privatized, 
passing from government administration to a corporation 
that assigned domain names (see domain name system). 
However, the impetus that brought the Internet into the 
daily consciousness of more and more people was the devel-
opment of the World Wide Web by Tim Berners-Lee at the 
European particle research laboratory CERN (see Berners-
Lee, Tim and world wide web). With a standard way to 
display and link text (and the addition of graphics and mul-
timedia by the mid-1990s), the Web is the Internet as far as 
most users are concerned (see Web browser). What had 
been a network for academics and adventurous profession-
als became a mainstream medium by the end of the decade 
(see also e-commerce).

Applications
A number of applications are (or have been) important con-
tributors to the utility and popularity of the Internet.

• � E-mail was one of the earliest applications on the 
ancestral ARPANET and remains the single most pop-
ular Internet application. Standard e-mail using SMTP 
(Simple Mail Transport Protocol) has been imple-
mented for virtually every platform and operating sys-
tem. In most cases once a user has entered a person’s 
e-mail address into the “address book,” e-mail can be 
sent with a few clicks of the mouse. While failure of 
the outgoing or destination mail server can still block 
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transmission of a message, e-mail today has a high 
degree of reliability (see e-mail).

• � Netnews (also called Usenet, for UNIX User Net-
work) is in effect the world’s largest computer bul-
letin board. It began in 1979, when Duke University 
and the University of North Carolina set up a simple 
mechanism for “posting” text files that could be read 
by other users. Today there are tens of thousands of 
topical “newsgroups” and millions of messages (called 
articles). Although still impressive in its quantity of 
content, many Web users now rely more on discus-
sion forums based on Web pages (see netnews and 
newsgroups).

• � Ftp (File Transport Protocol) enables the transfer of 
one or more files between any two machines con-
nected to the Internet. This method of file transfer 
has been largely supplanted by the use of download 
links on Web pages, except for high-volume applica-
tions (where an ftp server is often operated “behind 
the scenes” of a Web link). FTP is also used by Web 
developers to upload files to a Web site (see file 
transfer protocols).

• � Telnet is another fundamental service that brought 
the Internet much of its early utility. Telnet allows a 
user at one computer to log into another machine and 
run a program there. This provided an early means for 
users at PCs or workstations to, for example, access 
the Library of Congress catalog online. However, if 
program and file permissions are not set properly on 
the “host” system, telnet can cause security vulner-
abilities. The telnet user is also vulnerable to having 
IDs and passwords stolen, since these are transmitted 
as clear (unencrypted) text. As a result, some online 
sites that once supported telnet access now limit 
access to Web-based forms. (Another alternative is to 
use a program called “secure shell” or ssh, or to use a 
telnet client that supports encryption.)

• �G opher was developed at the University of Minnesota 
and named for its mascot. Gopher is a system of serv-
ers that organize documents or other files through 
a hierarchy of menus that can be browsed by the 
remote user. Gopher became very popular in the late 
1980s, only to be almost completely supplanted by 
the more versatile World Wide Web.

• � WAIS (Wide Area Information Service) is a gateway 
that allows databases to be searched over the Inter-
net. WAIS provided a relatively easy way to bring 
large data resources online. It, too, has largely been 
replaced by Web-based database services.

• � The World Wide Web as mentioned above, is now 
the main means for displaying and transferring infor-
mation of all kinds over the Internet. Its flexibility, 
relative ease of use, and ubiquity (with Web browsers 
available for virtually all platforms) has caused it to 
subsume most earlier services. The utility of the Web 
has been further enhanced by the development of 

many search engines that vary in thoroughness and 
sophistication (see World Wide Web and search 
engine).

• � Streaming Media protocols allow for a flow of video 
and/or audio content to users. Player applications for 
Windows and other operating systems, and growing 
use of high-speed consumer Internet connections (see 
broadband) have made it possible to present “live” 
TV and radio shows over the Internet.

• � E-commerce, having boomed in the late 1990s and 
crashed in the early 2000s, continued to grow and 
proliferate later in the decade, finding new markets 
and applications and spreading into the developing 
world (see e-commerce).

• � Blogs and other forms of online writing have become 
prevalent among people ranging from elementary 
school students to corporate CEOs (see blogs and 
blogging).

• � Social networking sites such as MySpace and Face-
book are also very popular, particularly among young 
people (see social networking).

• � Wikis have become an important way to share and 
build on knowledge bases (see wikis and Wikipedia).

• � The integration of the Internet with traditional chan-
nels of communications is proceeding rapidly (see 
podcasting, Internet radio, and VoIP).

Even as it begins to level off in the United States, world-
wide Internet usage continues to grow rapidly. Asia now has 
more than twice as many users as North America, although 
the latter still has more than five times the penetration 
(percentage of population).

In the United States more than half of Internet users 
have high-speed Internet connections (see broadband), and 
the trend in other developed countries is similar. Broad-
band is both required by and contributes to the appetite of 
Web users for music, streaming video, and other rich media 
content (see streaming and music and video distribu-
tion, online).

Now in its fourth decade, the Internet is not without 
daunting challenges. A major one is security—see com-
puter crime and security, computer virus, cyber-
terrorism, and information warfare. Users also want 
protection from privacy abusers and online predators (see 
privacy in the digital age, identity theft, phishing 
and spoofing, and cyberstalking and harassment).

For other issues and challenges involving the Internet, 
see censorship and the Internet, Internet architec-
ture and governance, Internet access policy, and 
digital divide.

In the longer term what we call the Internet today is 
likely to become so ubiquitous that people will no longer 
think of it as a separate system or entity. Household appli-
ances, cars, cell phones, televisions, and virtually every 
other device used in daily life will communicate with other 
devices and with control systems using Internet protocols. 
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In effect, people may eventually live “inside” a World Wide 
Web.
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Internet applications programming
The growth of the Internet and its centrality in business, 
education, and other fields has led many programmers 
to specialize in Internet-related applications. These can 
include the following:

• � low-level infrastructure (networking [wired and wire-
less], routing, encryption support, and so on)

• � Web servers and related software

• � e-commerce infrastructure (see e-commerce)

• � interfacing with databases

• � data analysis and extraction (see data mining)

• � support for searching (see search engine)

• � autonomous software to navigate the net (see soft-
ware agent)

• � Internet-based communications (see texting and 
instant messaging and VoIP)

• � systems to deliver text and media (see streaming, 
podcasting, rss)

• � support for collaborative use of the Internet (see 
blogs and blogging, social networking, and 
wikis and Wikipedia)

• � security software (firewalls, intrusion analysis, etc.)

Internet applications programmers use a variety of lan-
guages and other programming tools (often in combina-
tion) to implement these applications. Some of the most 
common are:

• � C++ is generally used for fundamental applications, 
particularly those that must work at the system level 
and for which speed and efficiency are prerequisites. 
Examples would include Web servers and browsers 
and some browser plug-ins (see C++).

• � Java has largely supplanted C++ as a general-pur-
pose language for programming small applications 
(“applets”) that are hosted by Web sites and run on 

the user’s browser. With a syntax that differs in only a 
few respects from C++, Java can also be used to write 
standalone applications (see Java).

• � HTML is not really a full-fledged programming lan-
guage, but it defines the layout and formatting of Web 
pages, as well as providing for hyperlinks and the 
embedding of applications. In many cases, HTML no 
longer has to be coded directly but can be generated 
from word processor-like page design programs (see 
dntml, html, and xhtml).

• � Extensible markup language (see xml) has become 
the preferred format for structuring a variety of data 
both for automatic processing (see semantic Web) 
and for feeding dynamic Web pages (see Ajax).

• � Scripting languages are an important tool for Inter-
net and Web development. CGI (Common Gateway 
Interface) is a facility that allows scripts to control 
the interaction between HTML forms on a Web page 
and other programs such as databases (see cgi). 
CGI scripts are written in scripting languages (see 
JavaScript, Perl, php, Python, and scripting lan-
guages). Use of CGI is being gradually supplanted 
by applets written in Java as well as other scripting 
languages such as JavaScript and VBScript.

• � Active Server Pages (ASP) is a facility that uses Win-
dows ActiveX components to process scripts created 
in Visual Basic, which in turn create HTML pages “on 
the fly” and send them to the user’s Web browser.

• �M icrosoft’s recent .NET initiative represents an 
attempt to integrate Internet connectivity and distrib-
uted operation into the programming framework for 
all major languages.

• � Similar technologies are available for other platforms 
such as Linux (see Ajax and document object 
model)

Trends
Experienced programmers will continue to be needed for 
creating and extending the infrastructure for the Internet 
and Web and for providing increasingly powerful and easy-
to-use tools for developing Web sites. However, the wide 
variety of tools now available means that people with less 
experience will be able to design and implement attrac-
tive and effective Web pages, plugging in functionality such 
as online shopping, conferencing, and site-specific search 
engines. If web development follows the same course as 
traditional programming, predictions that specialized pro-
grammers will no longer be needed will prove premature. 
At the same time, generalist web developers will be able to 
do more.
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Internet censorship  See censorship and the 
Internet.

Internet cafés and “hot spots”
Internet cafés (also called cyber cafés) are public places 
where computers are connected to the Internet and avail-
able for use for a fee by the hour or minute. Many Internet 
cafés also sell coffee and food. Combining the social ambi-
ence of a traditional coffee shop and the attraction of the 
Internet, many Internet cafés acquire a regular clientele 
from students to adults.

These venues appeared first in the mid-1990s and spread 
rapidly as their popularity grew. While the most common 
activities at most Internet cafés are to check e-mail, send 
text messages, or browse the Web, some locations special-
ize in gaming (see online games), providing more power-
ful machines running games over a local network. Such 
gaming centers have been particularly popular in Asia.

Internet cafés have grown most rapidly in countries that 
are becoming more urban and industrial but where many 
people cannot yet afford their own computers. The most 
striking example is China, which had 113,000 Internet cafés 
in as of 2007. In keeping with its strict policies, however, 
the Chinese government closely monitors activity at Internet 
cafés (see censorship and the Internet).

Hot Spots
The number of dedicated Internet cafés in the United 
States and many other highly developed countries has been 
declining in recent years. This is largely due to the growing 
number of people who connect to the Internet through their 
own laptops and other mobile devices (see pda and smart-
phone). Thus many locations, including coffee chains such 
as Starbucks, do not provide machines, but simply offer 
wireless Internet access (see Wireless and mobile com-
puting). Areas where one can make such a wireless con-
nection are called “hot spots.” Today virtually all major 
hotels and airports provide hot spots; there is normally a 
fee for access as with Internet cafés. (The fee is collected by 
routing all access through a portal.) However, a number of 
venues offer free Wifi access.

Users of Internet cafés or hot spots should be aware 
that they are sharing an ad hoc network with strangers and 
may be exposed to malicious software. Passwords or other 
sensitive data may be “sniffed” using special software. It 
is therefore generally a good idea not to conduct financial 
transactions or otherwise send sensitive information when 
connected to such venues, unless one has provided for 
encryption or can access a virtual private network. Addi-
tionally, users connecting their own machines to a hot spot 
should have up-to-date firewall and antivirus software.
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Internet organization and governance
The Internet is remarkable as a modern institution in that, 
while the technology was developed with considerable gov-
ernment funding, the Net as we know it today is remarkably 
free of externally imposed authority or regulation. This is 
in sharp contrast with earlier communications technologies 
such as the telegraph and telephone, which were generally 
tightly regulated or even run by a government department 
such as the Post Office. In part this was due to the complex-
ity of the technology and the fact that many political leaders 
had little familiarity with it and its implications. (Also, the 
speed of growth has been overwhelming in recent years, 
considering that the World Wide Web in its modern form 
was scarcely a decade and a half old as of 2008.)

Institutions of Self-Governance
While the Internet is not rigidly controlled, the need for 
interoperability and orderly advances in technology has 
led to the emergence of several organizations that provide 

Internet cafes are particularly common in countries such as China, 
where Internet access is still relatively rare in homes. In many cases 
such facilities have given way to simple “hot spots,” where users 
can wirelessly connect their own laptops or PDAs.  (Qin Ying/
Panorama/The Image Works)
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standards and guidance. The most important of these is 
the World Wide Web Consortium (W3C). Other technical 
organizations include the Internet Engineering Task Force 
(IETF) and the Internet Corporation for Assigned Names 
and Numbers (ICANN), the latter of which administers the 
domain system (seen domain name system). The domain 
registries in turn are run by many different institutions and 
agencies.

Growing Role of Governments?
Many of the key innovators of the Internet have loosely 
shared a somewhat anarchic or libertarian viewpoint, and 
reinforced it with the claim that the decentralized archi-
tecture of the Internet itself resists imposition of rules from 
outside. (Thus the saying, “the Internet sees censorship as a 
failure and routes around it.”)

However, recently some writers such as Lawrence Les-
sig of Stanford Law School have called for a reappraisal. 
Lessig argues that the Internet is far from ungovernable 
and that indeed such an important institution must be regu-
lated. The question is how to regulate it wisely, shaping 
its architecture to support freedom, democracy, and other 
desirable values.

In 2003 and 2005, the United Nations brought together 
many government representatives who raised many issues 
about what they saw as inadequacies of the privately run 
Internet (for example, in the assigning of domain names) 
and a perceived bias toward American interests. The 
United Nations has established an Information and Com-
munication Technologies (ICT) Task Force to carry on 
these meetings, which will be called the Internet Gover-
nance Forum (IGF). Other international institutions such 
as the International Telecommunications Union (ITU) 
have sometimes come into conflict with the Internet’s self-
governing bodies.

Within the United States there continues to be strong 
resistance to imposing new regulations on the Internet, in 
part because of fear of constricting one of the most impor-
tant and fastest growing sectors of the economy.

The conflict between the Internet’s self-governing 
culture and the needs and desires of political institu-
tions will no doubt continue. Sometimes the conflict can 
be very sharp, as with China’s blocking of Internet con-
tent that it finds objectionable (see censorship and the 
Internet). Other issues are perhaps deeper, such as the 
question of how to enforce criminal laws or economic 
regulations that were designed for a world made of brick 
and steel.

Further Reading
Goldsmith, Jack, and Tim Wu. Who Controls the Internet? Illusions 

of a Borderless World. New York: Oxford University Press, 
2006.

Internet Governance Project. Available online. URL: http://www.
internetgovernance.org/. Accessed September 23, 2007.

Lessig, Lawrence. Code Version 2.0. New York: Basic Books, 2006.
MacLean, Don, ed. Internet Governance: A Grand Collaboration. 

New York: United Nations ICT Task Force, 2004.
World Wide Web Consortium. Available online. URL: http://www.

w3.org/. Accessed September 23, 2007.

Internet radio
Internet radio is the provision of radio broadcast content 
over the Internet (see streaming). Basically, the digitized 
sound files of the broadcasts can be accessed and played 
using widely available software such as Windows Media 
Player or RealPlayer. Internet radio began in the mid-1990s, 
and today an increasing number of broadcast stations are 
offering their programming in this form, allowing them to 
reach audiences far beyond the reach of their signal. Some 
stations stream live (during the actual broadcast), while 
others make programs available for download. (For auto-
matic downloading of broadcasts, see podcasting). There 
are also “radio stations” that provide their content only via 
the Internet. Internet radio should not be confused with 
satellite or cable radio, which carry conventional radio sig-
nals in real time.

For the user, Internet radio expands the selection of 
stations available from a few dozen over the air to hun-
dreds or thousands. Potentially this allows for the support 
of specialized stations that have been struggling for audi-
ences in traditional markets—examples might be stations 
broadcasting jazz or alternative music, political advocacy, 
or programming in less widely spoken languages.

Of course there still remains the question of how com-
mercial Internet radio can support itself. Many on-air sta-
tions simply include their advertising in the Internet stream 
(although this can be sometimes ineffective if the ad refers 
solely to a local business). Some stations sell subscriptions 
or charge a fee for each program.

Regular radio stations must pay royalties to performers 
whose music is played on the air. Until recently, such fees 
have been minimal (or even ignored) for Internet radio. A 
major issue arose in 2007 when the U.S. Copyright Royalty 
Board approved a steep increase in the royalties for music 
on Internet radio. Many smaller Internet radio stations have 
protested that the increased fees would put them out of 
business as well as hurting many independent perform-
ers who depend on this medium to get their work heard. 
However, a number of stations have been able to negotiate 
reductions or caps on these fees on an ad hoc basis.
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Internet service provider  (ISP)
An Internet service provider is any organization that pro-
vides access to the Internet. While nonprofit organiza-
tions such as universities and government agencies can be 
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considered to be ISPs, the term is generally applied to a 
commercial, fee-based service.

Typically, a user is given an account that is accessed by 
logging in through the operating system’s Internet connec-
tion facility by supplying a user ID and password. Once con-
nected, the user can run Web browsers, e-mail clients, and 
other programs that are designed to work with an Internet 
connection. Most ISPs now charge flat monthly fees rang-
ing from $20 or so for dial-up access to around $40–$60 
for high-speed cable or DSL connections (see broadband). 
Some services such as America Online and CompuServe 
include ISP service as part of a package that also includes 
such features as software libraries, discussion forums, and 
instant messaging. Online services tend to be more expen-
sive than “no frills” ISP services.

Most personal ISP accounts include a small allotment of 
server space that users can use to host their personal Web 
pages. There are generally extra charges for larger allot-
ments of space, for sites that generate high traffic, and for 
commercial sites. Business-oriented ISPs typically provide 
a more generous starting allotment along with more exten-
sive technical support and more reliable and higher-capac-
ity servers that are managed 24 hours a day.

The rapid growth in Internet use in the mid-1990s 
encouraged many would-be entrepreneurs to start ISPs. How-
ever, with so many providers entering the field and with the 
price for basic Internet connections falling, it soon became 
apparent that the survival prospects for “generic” ISPs would 
be poor. People entering the business today strive to pro-
vide added-value services such as superior Web page hosting 
facilities, hosting blogs or wikis, or to focus on specialized 
services for particularly industries (such as real estate).

Today’s ISPs also face a variety of legal challenges, 
including customer privacy vs. the war on terrorism (see 
privacy in the digital age), responsibility for copyright 
infringement (see intellectual property and comput-
ing), and possible liability for online defamation, harass-
ment, or worse (see cyberstalking and harassment.)
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interpreter
An interpreter is a program that analyzes (parses) program-
ming commands or statements in a high-level language (see 
programming languages), creates equivalent executable 
instructions in machine code (see assembler) and executes 
them. An interpreter differs from a compiler in that the lat-
ter converts the entire program to an executable file rather 
than processing and executing it a statement at a time (see 
compiler).

Many earlier versions of the BASIC programming lan-
guage were implemented as interpreters. Since an inter-
preter only has to hold one program statement at a time in 
memory, it could run on early microcomputers that had only 
a few tens of thousands of bytes of system memory. How-
ever, interpreters run programs considerably more slowly 
than a compiled program would run. One reason is that an 
interpreter “throws away” each source code statement after 
it interprets it. This means that if a statement runs repeat-
edly (see loop), it must be re-interpreted each time it runs. 
A compiler, on the other hand, would create only one set 
of machine code instructions for the loop and then move 
on. Also, because a compiler keeps the entire program in 
memory, it can analyze the relationship between multiple 
statements and recognize ways to rearrange or substitute 
them for greater efficiency.

Interpretation can also be used to bridge differences 
in hardware platforms. For example, in the UCSD Pascal 
system developed in the 1970s, an interpreter first trans-
lates the Pascal source code into a standardized “P-code” 
(pseudocode) for a generic processor called a P-machine. To 

An interpreter scans a program code or command statement to 
determine what each token (word or symbol) represents. Key-
words such as PRINT are looked up in a dispatch table that con-
tains instructions for dealing with that function. Variables are 
looked up in a symbol table that gives their current value. Values 
and operators make up expressions that are interpreted to yield 
their final value. In this case the final value of 15 is given as data 
to the PRINT routine, which is executed to put the number 15 on 
the screen.

252        interpreter



run the program on a particular actual machine, a second 
interpreter translates the P-code into specific executable 
machine instructions for that machine. Today Java uses a 
similar idea. A Java programming system translates source 
code into an intermediate “bytecode,” which is interpreted 
by a Java Virtual Machine, usually running with a Web 
browser.

In practice, with today’s high-speed computers and 
graphical operating environments, interpretative and com-
pilation functions are often seamlessly integrated into a 
programming environment where code is checked for syn-
tax as it is entered, incrementally compiled (such that only 
changed code is recompiled), and the programmer receives 
the same kind of rapid feedback that was the hallmark of 
the early BASIC interpreters (see programming environ-
ment). Purely interpretive systems survive mainly in the 
form of text command processors for operating systems 
(see shell).
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iRobot Corporation
iRobot is an innovative company based in Burlington, Mas-
sachusetts, that makes robots for home use (the Roomba 
robotic vacuum cleaner and its floor-washing cousin 
Scooba) to military robots such as various PackBot models 
designed for reconnaissance, bomb disposal, and other dan-
gerous tasks.

iRobot was founded by robotics pioneer Rodney Brooks 
of MIT’s Artificial Intelligence Lab (see Brooks, Rodney) 
and two former MIT students, Helen Greiner and Colin 
Angle. The company was founded in 1991 and incorporated 
in 2000. Its first product was My Real Baby, a realistic (and 

complicated) animated doll that proved to be too expen-
sive for the toy market. Roomba, on the other hand, was 
released in 2002 and has met with considerable success—2 
million units had been sold by May 2006. Besides Scooba, 
Roomba has been joined by Dirt Dog (a workshop cleaner 
and picker-upper) and Verro, a pool cleaner. iRobot has also 
produced an educational/hobby robot called iRobot Create.

iRobot has done considerable work for the military, 
based on work in the 1990s with robots that crawled or 
rolled on tanklike tracks and were equipped with grasping 
devices and other attachments. The PackBot series comes 
in models adaptable to a variety of military tasks, and has 
been used in Iraq and Afghanistan.

In 2007 iRobot released a redesigned, more durable 
version of Roomba. Meanwhile cofounder Colin Angle has 
said that the company is looking at many exciting future 
applications, including industrial cleaning, mining, and oil 
exploration. In the home, Roomba may be joined by out-
door robots that can mow the lawn and trim the hedges.

iRobot is a midsized company whose revenue has grown 
from $54.3 million in 2003 to $227 million in 2007, with a 
gross profit of $82.6 million and 423 employees.
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Java
Java is a computer language similar in structure to C++. 
Although Java is a general-purpose programming language, 
it is most often used for creating applications to run on the 
Internet, such as Web servers. A special type of Java pro-
gram called an applet can be linked into Web pages and run 
on the user’s Web browser (see applet).

As an object-oriented language, Java uses classes that 
provide commonly needed functions including the creation 
of user interface objects such as windows and buttons (see 
class and object-oriented programming). A variety of 
sets of classes (“class frameworks”) are available, such as 
the AWT (Abstract Windowing Toolkit).

Program Structure
A Java program begins by importing or defining classes and 
using them to create the objects needed for the program’s 
functions. Code statements then create the desired output or 
interaction from the objects, such as drawing a picture or put-
ting text in a window. Here is a simple Java applet program:

import java.applet.Applet;
import java.awt.Graphics;
public class HelloWorld extends Applet {

public void paint(Graphics g) {
g.drawString(“Hello world!”, 50, 25);

}
}

The first two lines import (bring in) standard classes. 
The applet class is the foundation on which applet programs 

are built. The AWT (Abstract Windowing Toolkit) is a set of 
classes that provide a graphical user interface.

The program then declares a new class called Hello-
World and specifies that it is built on (extends) the applet 
class.

J

After an embedded Java program (called an applet) is compiled, its 
executable file (Javacode) is stored on the Web server, together with 
the HTML file for the Web page to which the program is linked.



Next is a declaration for a method (procedure for doing 
something) called paint. This method uses a graphics object 
g that includes various capabilities for drawing things on 
the screen. Finally, the program uses the graphic object’s 
predefined drawstring method to draw a string of text.

To develop this program, the programmer compiles it 
with the Java compiler. He or she then creates an HTML 
page that includes a tag that specifies that this code is to be 
run when the link is activated (see html).

Development of Java
Java was created by James Gosling (1955–  ). It began as an 
in-house project at Sun Microsystems to design a language 
that could be used to program “smart” consumer devices 
such as an interactive television. When this project was 
abandoned, Gosling, Bill Joy, and other developers realized 
that the language could be adapted to the rapidly growing 
Internet. Developers of Web pages needed an easier way to 
create programs that could run when the page was accessed 
by a user. By implementing user controls on Web pages, the 
designers could give Web users the ability to interact on-
line in much the same way they interact with objects on the 
screen on a Macintosh or Windows PC.

Advantages
Java has largely fulfilled this promise for Web developers. 
C++ programmers have an easy learning curve to Java, 
since the two languages have very similar syntax and a 
similar use of classes and other object-oriented features. On 
the other hand, programmers who don’t know C++ benefit 
from Java being more streamlined than C++. For example, 
Java avoids the necessity to use pointers (see pointers and 
indirection) and uses classes as the consistent building 
block of program structure. Software powerhouses such as 
Microsoft (until recently) and IBM have joined Sun in pro-
moting Java.

Another much-touted feature of Java is its platform 
independence. The language itself is separate from the vari-
ous operating system platforms. For each platform, a Java 
Virtual Machine (JVM) is created, which interprets or com-
piles the code generated by the Java compiler so it can run 
on that platform.

For security, Java applets run within a “sandbox” or 
restricted environment so the user is protected from mali-
cious Java programs. (For example, programs are not 
allowed to access the user’s disk or to connect the user’s 
machine to another Web site.) Web browsers can also be set 
to disable the running of Java applets.

A Mature Technology
Sun Java comes in two basic “flavors”: the Java 2 Standard 
Edition (J2SE) for Microsoft Windows, Sun (Solaris), and 
Linux, and the Enterprise Editions (J2EE), which includes 
features needed in large, complex environments. Micro-
soft developed its own dialect of Java for Windows, but 
effectively abandoned it as a result of legal action by Sun. 
(Companies are allowed to develop Java implementations 
for various platforms, so long as they pass Sun’s strict vali-
dation process.)

Java has paid particular attention to building reusable 
software components. “JavaBeans” package a number of 
related objects (classes) into a unit that can be accessed 
through a standard set of methods and automatically que-
ried for information about their contents.

Today powerful and well-documented Java program-
ming interfaces are available for working with Web services. 
While client-side Java applets run in the Web browser, Java 
Server Pages (JSPs) embed code in an HTML page. The code 
is compiled into a server-side application or “servlet.” XML 
processing and database access is provided through the Java 
API for XML (JAX).

Java has largely fulfilled its promise of bringing main-
stream object-oriented programming to a wide variety of 
platforms. The language is now often taught as a first lan-
guage instead of C or C++. However, the idea of a single 
dominant language seems to be no longer applicable in the 
rapidly evolving world of software development.

To run the Java applet, the user loads the linked page in the Web 
browser. The applet may then run automatically, or it may be con-
nected to a particular link or a control such as a button. Once 
activated, the applet is downloaded by the Web browser, which then 
runs its Javacode using a module called a Java Virtual Machine 
(JVM). There is a separate JVM for each type of computer system.
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In 2006 Sun Microsystems announced that it would 
make Java’s source code freely available (see open source). 
In part this may be an attempt to maintain Java’s posi-
tion among programmers, some of whom have shifted their 
attention from Java to Microsoft’s own offshoot of C++ (see 
c#). However, Java’s greatest challenge seems to be in the 
Web programming area, where it faces increasing competi-
tion from more agile languages (see, for example, Ruby) as 
well as a variety of scripting languages that may be easier to 
learn and quicker to use for many applications.
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JavaScript
JavaScript is one of several popular languages that can 
enable Web pages to interact with users more quickly and 
efficiently (see VBScript, php, and scripting languages). 
The language first appeared in the mid-1990s’ Netscape 2 
browser under the name LiveScript. Technically, JavaScript 
is the Sun Microsystems trademark for its implementation 
of a standard called ECMAScript. Despite the name, Java
Script is not directly related to the Java programming lan-
guage.

In its early years JavaScript was perhaps a victim of its 
own success. Having a relatively easy-to-use scripting lan-
guage provided an easier way to add features such as 3D 
buttons and pop-up windows to formerly humdrum Web 
forms. However, as with an earlier generation’s fondness 
for multiple fonts, early JavaScript programmers were often 
prone to add unnecessary and confusing clutter to Web 
pages. Besides sometimes annoying users, early JavaScript 
also suffered from significant differences in how it was 
implemented by the major browsers. As a result, Netscape 
users were sometimes stymied by JavaScript written for 
Microsoft Internet Explorer, and vice versa. Finally, browser 
flaws have sometimes allowed JavaScript to be used to com-
promise security such as by installing malware-infested 
“browser helpers.” As a result, many security experts began 
to recommend that users disable JavaScript execution in 
their browsers.

Using JavaScript
JavaScript syntax and language constructs are similar to 
those of C, with the addition of basic object-oriented fea-

tures (see object-oriented programming). The language 
itself has no capabilities for manipulating the environment 
(such as input/output). Instead, JavaScript calls upon an 
“engine” written for each host environment (normally a 
Web browser). The engine implements features designed to 
control how a Web page interacts with the user, such as the 
display of windows and controls such as menus, buttons, or 
toolbars. JavaScript can also be used to validate a Web form 
in the browser before it is submitted to the server. In gen-
eral, “browser side” JavaScript processing reduces the load 
on Web servers while allowing pages to respond quickly, 
such as by changing graphics as the user’s mouse pointer 
passes over parts of the page.

The principal interface between JavaScript and HTML 
pages is the Document Object Model (see html and docu-
ment object model). A World Wide Web Consortium (W3C) 
standard defines the DOM functions, and most browsers now 
consistently support Levels 1 and 2 of these standards. How-
ever, there are many Web users who cannot run standard 
JavaScript, such as users with visual disabilities (see disabled 
persons and computing), users of some mobile browsers 
(such as for PDAs or smart phones), or users who have sim-
ply disabled JavaScript for security reasons. Therefore, when 
JavaScript is used for essential page functions (such as form 
processing), the developer should provide an alternative way 
for the user to perform the relevant task. (In the case of dis-
abled users, this may be a legal requirement.)

Traditionally, JavaScript code has been embedded 
directly in the containing HTML page, using tags like the 
following:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 
4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>
<html dir=“ltr” lang=“en”>
<head>
<title>JavaScript Example</title>
<body>
<script type=“text/JavaScript”>

var Name = prompt (“Enter your 
name”,“”);

alert(Name);
</script>
</body>
</html>

When a JavaScript-enabled browser encounters this 
code, a text box will prompt the user for a name, which is 
stored in the variable Name and then displayed in an alert 
box.

In modern Web design to XHTML standards, however, 
just as formatting information is kept in a separate docu-
ment (see cascading style sheets) JavaScript code is also 
maintained in a separate file and simply linked to within 
the HTML page:

<script type=“text/javascript” 
src=“mainscript.js”></script>

JavaScript can do much more than just display infor-
mation or process forms. JavaScript can access a variety 
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of Web services (such as databases and search engines) 
and create custom pages in response to user actions (see 
also Ajax). JavaScript can also be embedded in applications 
other than Web browsers: for example, the Adobe Acrobat 
and Reader and even operating-system scripting (such as 
Microsoft’s JScript and JScript.NET). Although attention in 
recent years seems to have shifted more to languages such 
as PHP, JavaScript remains a widely used and powerful Web 
design tool.
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job control language
In the early days of computing, data processing generally 
had to be done in batches. By modern standards the memory 
capacity of the computer was very limited (see mainframe). 
Typically, programs had to be loaded one at a time from 
punch cards or tape. The data to be processed by each pro-
gram also had to be made available by being mounted on a 
tape drive or inserted as a stack of cards into the card reader 
(see punched cards and paper tape). After the program 
ran, its output would consist of more data cards or tape, 
which might in turn be used as input for the next program.

For example, a series of programs might be used to 
read employee time cards and calculate the payments due 
after various items of withholding. That data might in turn 
be input into a program to print the payroll checks and 
another program to print a summary report.

In order for all this to work, the computer’s operating 
system must be told which files (on which devices) are to 
be used by the program, the memory partition in which 
the program is to be run, the device to which output will 
be written or saved, and so on. This is done by giving the 
computer instructions in job control language (JCL). (In 
the punch card days, the JCL cards were put at the top of 
the deck before the cards with the instructions for the pro-
gram itself.)

For a simple example, we will use some elements of IBM 
MVS JCL. In this version of job control language the general 
form for all statements is

//name operation operands comment

where name is a label that can be used to reference the 
statement from elsewhere, operation indicates one of a set 
of defined JCL language commands, operand is a series of 
values to be passed to the system, and comment is optional 
explanatory text.

The three basic types of statement found in most job 
control languages are JOB, EXEC, and DD. The JOB state-
ment identifies the job and the user running it and sets up 
some parameters to specify the handling of the job.

//JOB,CLASSPROJ1,GROUP=J999996,USER=P999995,
//PASSWORD=?

This statement passes information to the system that 
identifies the job name, group as assigned by the facility, 
and user ID. The PASSWORD parameter is given a question 
mark to indicate that it will be prompted for at the terminal. 
Other parameters can be used to specify such matters as the 
amount of computer time to be allocated to the job and the 
way in which any error messages will be displayed.

The EXEC statement identifies the program to be run. 
Some systems can also have a library of stored JCL proce-
dures that can also be specified in the EXEC statement. 
This means that frequently run jobs can be run without 
having to specify all the details each time. An example 
EXEC statement is:

//Datasort EXEC BINSORT,BUFFER=256K

Here the statement is labeled Datasort so it can be refer-
enced from another part of the program. The procedure to 
be executed is named BINSORT, and it is passed a parameter 
called BUFFER with a value of 256K (presumably this is the 
amount of memory to be used to hold data to be sorted).

One or more DD (Data Definition) statements are used 
to specify sets (sources) of data to be used by the program. 
This includes a specification of the type (such as disk or 
tape) and format of the data. It also includes instructions 
specifying what is to happen to the data set. For example, 
the data set might be old (existing) or newly created by the 
program. It may also be temporary (possibly to be passed 
on to the next program) or permanent (“cataloged”).

Since interactive, multitasking operating systems such 
as Windows and UNIX are now the norm in most comput-
ing, JCL is used less frequently today. However, it is still 
needed in large computer installations running operating 
systems such as IBM MVS (see mainframe) and for some 
batch processing of scientific or statistical programs (such 
as in FORTRAN or SAS).
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Jobs, Steven Paul
(1955–  )
American
Entrepreneur

Steve Jobs was cofounder of Apple Computer and shaped 
the development and marketing of its distinctive Macintosh 
personal computer (see Apple Corporation). Jobs showed 
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an enthusiastic interest in electronics starting in his high 
school years and gained experience through summer work 
at Hewlett-Packard, one of the dominant companies of the 
early Silicon Valley. In 1974, he began to work for pio-
neer video game designer Nolan Bushnell at Atari. He also 
became a key member of the Homebrew Computer Club, a 
group of hobbyists who designed their own microcomputer 
systems using early microprocessors.

Meanwhile, Jobs’s friend Steve Wozniak had developed 
plans for a complete microcomputer system that could be 
built using a single-board design and relatively simple cir-
cuits (see Wozniak, Steven). In it Jobs saw the poten-
tial for a standardized, commercially viable microcomputer 
system. They formed a company called Apple Computer 
(named apparently for the vanished orchards of Silicon Val-
ley) and built a prototype they called the Apple I. Although 
they could only afford to build a few dozen of the machines, 
they made a favorable impression on the computer enthusi-
ast community. By 1977, they were marketing a more com-
plete and refined version, the Apple II.

Unlike kits that could be assembled only by experi-
enced hobbyists, the Apple II was ready to use “out of the 
box.” It included a cassette tape recorder for storing pro-
grams. When connected to a monitor or an ordinary TV, 
the machine could create color graphics that were dazzling 
compared to the monochrome text displays of most com-
puters. Users could buy additional memory (the first model 
came with only 4K of RAM) as well as cards that could 
drive devices such as printers or add other capabilities.

The ability to run a program called VisiCalc (see spread-
sheet) propelled the Apple II into the business world, and 
about 2 million of the machines were eventually sold. In 
1982, when Time magazine featured the personal computer 
as its “man of the year,” Jobs’s picture appeared on the 
cover. As he relentlessly pushed Apple forward, supporters 
pointed to Jobs’s charismatic leadership, while detractors 
said that he could be ruthless when anyone disagreed with 
his vision of the company’s future.

However, 1982 also brought industry giant IBM into the 
market. Its 16-bit computer was more powerful than the 
Apple II, and IBM’s existing access to corporate purchasing 
departments resulted in the IBM PC and its “clones” quickly 
dominating the business market (see ibm pc).

Jobs responded to this competition by designing a PC 
with a radically different user interface, based largely on 
work during the 1970s and the Xerox PARC laboratory. 
The first version, called the Lisa, featured a mouse-driven 
graphical user interface that was much easier to use than 
the typed-in commands required by the Microsoft/IBM 
DOS. While the Lisa’s price tag of $10,000 kept it out of the 
mainstream market, its successor, the Macintosh, attracted 
millions of users, particularly in schools, although the IBM 
PC and its progeny continued to dominate the business 
market (see Macintosh). Meanwhile, Jobs had recruited 
John Sculley, former CEO of PepsiCo, to serve as Apple’s 
CEO.

After a growing divergence with Sculley over man-
agement style and Apple’s future priorities, Jobs left the 
company in 1985. Using the money from selling his Apple 

stock, Jobs bought a controlling interests in Pixar, a graph-
ics studio that had been spun off from LucasFilm. He also 
founded a company called NextStep. The company focused 
on high-end graphics workstations that used a sophisti-
cated object-oriented operating system. However, while its 
software (particularly its development tools) was innova-
tive, the company was unable to sell enough of its hardware 
and closed that part of the business in 1993.

In 1997, Jobs returned as CEO of Apple. By then the 
company was struggling to maintain market share for its 
Macintosh line in a world that was firmly in the “Wintel” 
(Windows on Intel-based processors) camp. He had some 
success in revitalizing Apple’s consumer product line with 
the iMac, a colorful, slim version of the Macintosh. He also 
focused on development of the new Mac OS X, a blending of 
the power of UNIX with the ease-of-use of the traditional 
Macintosh interface.

Beyond the Mac
At the beginning of the new century, Jobs and Apple made 
bold moves beyond the company’s traditional strengths. 
The Power PC chip in the Mac was phased out in favor of 
Intel chips, the same hardware that runs Microsoft Win-
dows machines. (Indeed, the Mac was also given a utility 
that allowed it to run Windows.) This potentially opened 
the Mac to a much wider range of software.

The biggest move, however, was into media, first with 
powerful video-authoring software for home users as well 
as professionals, then with the tiny iPod that redefined the 
portable media player (see music and video players, digi-
tal). At the same time, Apple entered the digital music 
business in a big way with the iTunes store (see music and 
video distribution, online). In 2007 Apple charged into 
the mobile communications market (see smartphone) with 
the innovative if expensive iPhone. So far the market has 
responded positively to Jobs’s initiatives, with Apple stock 
increasing in value more than 10 times between 2003 and 
2006.

While Jobs is brash and unconventional (reflecting his 
countercultural roots), critics have accused him of egotism 
and of having an overly aggressive (and abrasive) mana-
gerial style. Jobs has also been the subject of lingering 
investigations into his receiving discounted Apple stock 
options, failing to report the resulting taxable income, and 
correspondingly overstating Apple’s earnings. In Decem-
ber 2006 Apple’s internal investigation cleared Jobs of 
responsibility for these issues, and the options were never 
exercised. Whatever the future brings, Steve Jobs has an 
assured place in the history of entrepreneurship and inno-
vation in computing.
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journalism and computers
The pervasive use of computers and the Internet has 
changed the practice of journalism in many ways. This 
entry will focus on the general impact of technology on the 
creation and dissemination of news content. For discus-
sion of software used in the production of publications, see 
desktop publishing, and word processing. For the role 
that journalism plays in the computer industry, see jour-
nalism and the computer industry.

Research and Newsgathering
The gathering of on-scene information at newsworthy 
events began to change in the 1980s, when notebook-sized 
portable computers became available. Instead of having to 
“file” stories with the newspaper by telegraph or phone, the 
reporter could write the piece and send it to the newspa-
per’s computer using a phone connection (see modem) or 
later, Internet-based e-mail.

The ability of reporters (particularly investigative report-
ers) to do in-depth research has been greatly enhanced 
by the Internet. Traditionally, reporters looking for back-
ground material for an assignment could consult printed 
reference works, their publications’ archives of printed arti-
cles (the “morgue”), and various public records, usually in 
paper form. This process was necessarily slow, and it was 
difficult to widen research to include a greater variety of 
sources while still remaining timely.

Today most publications produce and store their mate-
rial electronically and make it available online. Reporters 
thus have virtually instant access to articles written by their 
colleagues around the world. Instead of having to rely on a 
few press releases, position papers, or wire stories, report-
ers can search the Internet to delve more deeply into the 
underlying source material, such as original documents or 
statistics. An increasing number of public records are also 
available online.

Changing Standards and New Challenges
After being submitted electronically, reporters’ stories can 
be edited, revised as necessary, and submitted to the com-
puter-controlled typesetting systems that have now become 
standard in most publications. Besides saving production 
costs, computer-based newspaper production also makes it 
easier to make last-minute changes as well as to create spe-
cial editions that include regional news.

However, at the same time the greater use of information 
technology has made print journalists more productive, it 
has also contributed to trends that continue to challenge 
the viability of print journalism itself. The nature of the 
Internet poses new challenges to reporter-researchers. The 
accuracy of traditionally published books or articles is 

backed implicitly by the reputation of the publisher as well 
as that of the author. By offering a wide variety of materi-
als produced outside the mainstream publishing process, 
often by unknown authors, the Internet can provide a much 
greater diversity of viewpoints (see also wikis and Wiki-
pedig). The downside is that the reporter-researcher has 
little assurance of the veracity or accuracy of facts given 
on unknown Web sites. This creates a greater burden of 
fact checking in responsible journalism or, alternatively, a 
relaxation of the traditional standards. (The most famous 
example of the latter is Matt Drudge, a self-made Internet-
based journalist who sometimes dramatically “scooped” his 
more plodding colleagues but did not adhere to the old 
journalistic standard of finding two independent sources 
for each key fact.)

The use of the Internet as both a research tool and a 
medium of publication is also bound up with the ever-
accelerating pace of the “news cycle,” or the time it takes 
for a story to be disseminated and responded to. Broadcast 
journalism with the advent of 24-hour news networks such 
as CNN has steadily increased the pace of the broadcast 
news cycle. Many newspapers and magazines have found 
having Web sites to be a competitive necessity. The Internet 
potentially combines the immediacy of broadcast journal-
ism with the ability to use text to convey information in 
depth. The organization of Web pages (see hypertext and 
hypermedia) avoids the physical limitations of the printed 
medium.

In addition to Web sites that mirror and expand the 
contents of printed newspapers, a number of distinctive 
Internet-only sites emerged in the mid to late 1990s. Exam-
ples include salon.com, an “online newsmagazine” that 
also includes regular featured columnists and discussion 
forums. However, the downturn in the Internet-based econ-
omy in 2002 made the original idea of having free access 
supported by advertising less viable. Such sites are now try-
ing to convert to a subscription-based model similar to that 
of print-based publications, but it is unclear whether they 
will be able to attract enough paying subscribers.

New Alternatives and New Questions
The Internet is rapidly changing not only how journalism is 
produced, but how it is delivered—and indeed, the role and 
future of the profession itself. Broadcast journalism, already 
greatly changed by the advent of cable TV networks in the 
1990s, has now found itself needing to deliver programs 
through new channels (see podcasting, Internet radio, 
and music and video distribution, online). With “broad-
casts” available any time at user request, the news cycle has 
essentially vanished into a 24/7 reality where wave upon 
wave of stories is constantly flowing and changing.

The more profound change, though, is in who gets to 
practice and define journalism. Everyone it seems has some-
thing to say online (see blogs and blogging). Bloggers 
who cover current events (especially politics) at their best 
represent the latest incarnation of “citizen journalism” (see 
political activism and the Internet). However, issues of 
objectivity (and the line between activist and journalist) have 
been raised, as has the question of what legal protections 
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for journalists should apply to bloggers and online news 
reporters.

In addition to blogs, photo and video sharing sites 
(see, for example, YouTube) now widely distribute mate-
rial, often quite controversial, that might once have been 
ignored by mainstream media. For their part, many main-
stream journalists now also maintain blogs through which 
readers can respond to stories of the day.

At the same time, in an era when a stream of both 
images and the printed word is on tap 24 hours a day, print 
journalism faces a shrinking market and the need to justify 
itself to consumers. The industry has responded since the 
1970s by an increasing number of mergers of metropolitan 
daily newspapers as well as the merging of newspapers into 
broader-based media companies. Many people have grown 
up with the daily routine of a newspaper at the breakfast 
table, and there is still a cachet for prestigious publications 
such as the New York Times and the Wall Street Journal. 
Futurists have predicted that newspapers might eventually 
be delivered to “electronic book” devices, perhaps through 
a wireless connection (see e-books and digital libraries). 
This might combine the immediacy of the Internet with the 
physical convenience and portability of a newspaper.
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journalism and the computer industry
Developments in the computer industry and user commu-
nity have been chronicled by a great variety of printed and 
on-line publications. As computer science began to emerge 
as a discipline in the late 1950s and 1960s, academically 
oriented groups such as the Association for Computing 
Machinery (ACM) and Institute for Electrical and Electron-
ics Engineers (IEEE) began to issue both general and spe-
cial-interest journals. Meanwhile, the computer industry 
developed both computer science-oriented publications 
(such as the IBM Systems Journal) and independent industry 
periodicals such as Datamation.

The development of microcomputer systems in the 
mid- to late-1970s was accompanied by a proliferation of 
varied and often feisty publications. Byte magazine, which 
coined the term PC in 1976, became a respected trade pub-
lication that introduced new technologies while showcasing 
what programmers could do with the early systems. The 
weekly newspaper InfoWorld provided more immediate and 
detailed coverage of industry developments, and was joined 
by similar publications such as Information Week and Com-
puterworld. Meanwhile, technically savvy programmers and 
do-it-yourself engineers turned to such publications as the 
exotically named Dr. Dobbs’ Journal of Computer Calisthenics 
and Orthodontia (eventually shortened to Dr. Dobbs’ Jour-
nal). Many groups of people who owned particular systems 
(see user groups) also published their own newsletters 
with technical tips.

The success of the IBM PC family of computers estab-
lished a broad-based consumer computing market. It 
was accompanied by the success of PC Magazine, which 
addresses a wide spectrum of both general consumers 
and “power users.” As the revenue for the PC industry 
grew in the 1990s, the trade publications grew fatter with 
advertising. The popularity of the Internet and particu-
larly the World Wide Web in the latter part of the decade 
provided niches for a spate of new publications including 
Internet World and Yahoo! Internet Life. At the same time, 
many traditional publications began to offer expanded 
content via Web sites. For example, Ziff Davis, publisher 
of PC Magazine and other computer magazines created 
ZDNet, which offered a large amount of content from the 
magazines plus expanded news and extensive shareware 
and utility libraries.

Like earlier technological developments, the PC and 
the Internet have also spawned cultural expressions. The 
culture growing around the Internet and a generation of 
young programmers, artists, and writers saw expression in 
another genre of publications, ranging from small, eclectic 
printed or Web “zines” to the slick Wired magazine.

From Print to Online
Many of the pressures on mainstream journalism also apply 
to computer industry journalism. As computer hardware 
became a commodity with lower profit margins, and with 
the shift to e-commerce and online activity, many print 
magazines have folded or at least shrunk. In 1998 the vener-
able Byte became an online-only publication, a path finally 
followed by InfoWorld in 2007.

Online sites such as ZDNET and CNET now carry 
in-depth news and product reviews. Slashdot (“New for 
Nerds”) is particularly popular among programmers. As 
with mainstream journalism, blogs also play an important 
part in professional and industry journalism in the comput-
ing field.
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Joy, Bill
(1955–  )
American
Software Engineer, Entrepreneur

Bill Joy developed many of the key utilities used by users 
and programmers on UNIX systems (see unix). He then 
became one of the industry’s leading entrepreneurs and 
later, a critic of some aspects of computer technology.

As a graduate student in computer science and electrical 
engineering at the University of California at Berkeley in 
the 1970s, Joy worked with UNIX designer Ken Thompson 
(1943–  ) to add features such as virtual memory (pag-
ing) and TCP/IP networking support to the operating sys-
tem (the latter work was sponsored by DARPA, the Defense 
Advanced Research Projects Agency). These development 
eventually led to the distribution of a distinctive version of 
UNIX called Berkeley Software Distribution (BSD), which 
rivaled the original version developed at AT&T’s Bell Labo-
ratories. The BSD system also popularized features such as 
the C shell (a command processor) and the text editors “ex” 
and “vi.” (See shell.)

As opposed to the tightly controlled AT&T version, 
BSD UNIX development relied upon what would become 
known as the open-source model of software development 
(see open-source movement). This encouraged program-
mers at many installations to create new utilities for the 
operating system, which would then be reviewed and inte-
grated by Joy and his colleagues. BSD UNIX gained indus-
try acceptance and was adopted by the Digital Equipment 
Corporation (DEC), makers of the popular VAX series of 
minicomputers.

In 1982, Joy left UC Berkeley and co-founded Sun Micro-
systems, a company that became a leader in the manu-
facture of high-performance UNIX-based workstations for 
scientists, engineers, and other demanding users. Even 
while becoming a corporate leader, he continued to refine 
UNIX operating system facilities, developing the Network 
File System (NFS), which was then licensed for use not only 
on UNIX systems but on VMS, PC-DOS, and Macintosh 
systems. Joy’s versatility also extended to hardware design, 
where he helped create the Sun SPARC reduced instruction 
set (RISC) microprocessor that gave Sun workstations much 
of their power.

In the early 1990s, Joy turned to the growing world of 
Internet applications and embraced Java, a programming 
language created by James Gosling (see Java). He devel-

oped specifications, processor instruction sets, and mar-
keting plans. Java became a very successful platform for 
building applications to run on Web servers and browsers 
and to support the needs of e-commerce. As Sun’s chief 
scientist since 1998, Joy has led the development of Jini, 
a facility that would allow not just PCs but many other 
“Java-enabled” devices such as appliances and cell phones 
to communicate with one another.

Recently, however, Joy has expressed serious misgivings 
about the future impact of artificial intelligence and related 
developments on the future of humanity. Joy remains proud 
of the achievements of a field to which he has contrib-
uted much. However, while rejecting the violent approach 
of extremists such as Unabomber Theodore Kaczynski, 
Joy points to the potentially devastating unforeseen con-
sequences of the rapidly developing capabilities of comput-
ers. Unlike his colleague Ray Kurzweil’s optimistic views 
about the coexistence of humans and sentient machines, 
Joy points to the history of biological evolution and sug-
gests that superior artificial life forms will displace humans 

Bill Joy made key contributions to the Berkeley Software Distribu-
tion (BSD) version of UNIX, including developing its Network 
File System (NFS). As a cofounder of Sun Microsystems, Joy then 
helped develop innovative workstations and promoted Java as 
a major language for developing Web applications.  (Bill Joy, 
Kleiner Perkins Caulfield & Byers)
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who will be unable to compete with them. He believes that 
given the ability to reproduce themselves, intelligent robots 
or even “nanobots” (see nanotechnology) might soon be 
uncontrollable.

Joy also expresses misgivings about biotechnology and 
genetic engineering, seen by many as the dominant scien-
tific and technical advance of the early 21st century. He 
has proposed that governments develop institutions and 
mechanisms to control the development of such dangerous 
technologies, drawing on the model of the agencies that 
have more or less successfully controlled the development 
of nuclear energy and the proliferation of nuclear weapons 
for the past 50 years. (For contrasting views see Kurzweil, 
Ray and singularity, technological.)

In 2003 Joy left Sun and became a venture capitalist, 
specializing in technologies and projects to combat what 
he sees as serious global dangers, such as pandemic disease 
and the possibility of bioterrorism.

Joy received the ACM Grace Murray Hopper Award for 
his contributions to BSD UNIX before the age of 30. In 
1993, he was given the Lifetime Achievement Award of the 
USENIX Association, “For profound intellectual achieve-
ment and unparalleled services to the UNIX community.”
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Kay, Alan
(1940–  )
American
Computer Scientist

Alan Kay developed a variety of innovative concepts that 
changed the way people use computers. Because he devised 
ways to have computers accommodate users’ perceptions 
and needs, Kay is thought by many to be the person most 
responsible for putting the “personal” in personal com-
puters. Kay also made important contributions to object-
oriented programming, changing the way programmers 
organized data and procedures in their work.

Kay’s father developed prostheses (artificial limbs) and 
his mother was an artist and musician. These varied per-
spectives contributed to Kay’s interest in interaction with 
and perception of the environment. In the late 1960s, while 
completing work for his Ph.D. at the University of Utah, 
Kay developed his first innovations in both areas. He helped 
Ivan Sutherland with the development of a program called 
Sketchpad that enabled users to define and control onscreen 
objects, while also working on the development of Simula, a 
language that helped introduce new programming concepts 
(see Simula and object-oriented programming). Indeed, 
Kay coined the term object-oriented in the late 1960s. He 
viewed programs as consisting of objects that contained 
appropriate data that could be manipulated in response to 
“messages” sent from other objects. Rather than being rigid, 
top-down procedural structures, such programs were more 
like teams of cooperating workers. Kay also worked on 
parallel programming, where programs carried out several 

tasks simultaneously (see concurrent programming). He 
likened this structure to musical polyphony, where several 
melodies are sounded simultaneously.

Kay participated in the Defense Advanced Research 
Projects Agency (DARPA)—funded research that was lead-
ing to the development of the Internet. One of these DARPA 
projects was FLEX, an attempt to build a computer that 
could be used by nonprogrammers through interacting with 
onscreen controls. While the bulky technology of the late 
1960s made such machines impracticable, FLEX incorpo-
rated some ideas that would be used in later PCs, including 
multiple onscreen windows.

During the 1970s, Kay worked at the innovative Xerox 
Palo Alto Research Center (PARC). Kay designed a laptop 
computer called the Dynabook, which featured high-reso-
lution graphics and a graphical user interface. While the 
Dynabook was only a prototype, similar ideas would be 
used in the Alto, a desktop personal computer that could 
be controlled with a new pointing device, the mouse (see 
Engelbart, Douglas). A combination of high price and 
Xerox’s less than aggressive marketing kept the machine 
from being successful commercially, but Steven Jobs (see 
Jobs, Steven) would later use its interface concepts to 
design what would become the Macintosh.

On the programming side Kay developed Smalltalk, a 
language that was built from the ground up to be truly 
object-oriented (see Smalltalk). Kay’s work showed that 
there was a natural fit between object-oriented program-
ming and an object-oriented user interface. For example, a 
button in a screen window could be represented by a button 
object in the program, and clicking on the screen button 
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could send a message to the button program object, which 
would be programmed to respond in specific ways.

After leaving Xerox PARC in 1983, Kay briefly served 
as chief scientist at Atari and then moved to Apple, where 
he worked on Macintosh and other advanced projects. In 
1996, Kay became a Disney Fellow and Vice President of 
Research and Development at Walt Disney Imagineering. 
In 2001 Kay founded Viewpoints Research Institute, a non-
profit organization devoted to developing advanced learn-
ing environments for children. One such project is Squeak, 
a streamlined but powerful version of Smalltalk that Kay 
started developing in 1995. Another, eToys, is a multiplat-
form, media-rich, environment that can be used for educa-
tion or “just” play. Behind it all is Kay’s continuing effort 
to do no less than reinvent programming and peoples’ rela-
tionship to computer environments.

Kay’s numerous honors include the ACM Turing Award 
(2003) for contributions to object-oriented programming 
and the Kyoto Prize (2004).
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kernel
The idea behind an operating system kernel is that there 
is a relatively small core set of “primitive” functions that 
are necessary for the operation of system services (see also 
operating system). These functions can be provided in a 
single component that can be adapted and updated as desir-
able. The fundamental services include:

• � Process control—scheduling how the processes (pro-
grams or threads of execution within programs) share 
the CPU, switching execution between processes, cre-
ating new processes, and terminating existing ones 
(see multitasking).

• � Interprocess communication—sending “messages” 
between processes enabling them to share data or 
coordinate their data processing.

• �M emory management—allocating and freeing up 
memory as requested by processes as well as imple-
menting virtual memory, where physical storage is 
treated as an extension of main (RAM) memory. (See 
memory management.)

• � File system services—creating, opening, reading from, 
writing to, closing, and deleting files. This includes main-

taining a structure (such as a list of nodes) that specifies 
the relationship between directories and files. (See file.)

In addition to these most basic services, some operating 
systems may have larger kernels that include security 
functions (such as maintaining different classes of users 
with different privileges), low-level support for peripheral 
devices, and networking (such as TCP/IP).

The decision about what functions to include in the ker-
nel and which to provide through device drivers or system 
extensions is an important part of the design of operating 
systems. Many early systems responded to the very limited 
supply of RAM by designing a “microkernel” that could fit 
entirely in a small amount of memory reserved permanently 
for it. Today, with memory a relatively cheap resource, ker-
nels tend to be larger and include functions that are paged 
dynamically into and out of memory.

In the UNIX world (and particularly with Linux) the 
kernel is constantly being improved through informal col-
laborative efforts. Many Linux enthusiasts regularly install 
new versions of the kernel in order to stay on the “leading 
edge,” while more conservative users can opt for waiting 
until the next stable version of the kernel is released.
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The kernel is an intermediary between users and programs and the 
hardware system. It provides the functions necessary for allocating 
and controlling processes and system resources.
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keyboard
Although most of today’s personal computers feature a 
point-and-click graphical interface (see user interface 
and mouse) the keyboard remains the main means for 
entering text and other data into computer applications. 
The modern computer keyboard traces its ancestry to the 
typewriter, and the layout of its alphabetic and punctuation 
keys remains that devised by typewriter pioneer Christo-
pher Latham Sholes in the late 1860s.

The principal difference in operation is that while a 
typewriter needs only to transfer the impression of a key 
through a ribbon onto a piece of paper, the computer key-
board must generate an electrical signal that uniquely iden-
tifies each key. This technology dates back to the 1920s 
with the adoption of the teletypewriter (often known by 
the brand name Teletype), which allowed operators to type 
text at a keyboard and send it over telephone lines to be 
printed. The transmissions used the Baudot character code, 
which used five binary (off or on) positions to encode let-
ters and characters. This gave way to the ASCII code in the 
1960s (see characters and strings) at about the time 
that remote time-sharing services allowed users to interact 
with computers through a Teletype connection.

The modern personal computer keyboard was standard-
ized in the mid-1980s when IBM released the PC AT. This 
expanded keyboard now has 101 or 102 keys. It supplements 
the standard typewriter keys with cursor-control (arrow) 
keys, scroll control keys (such as Page Up and Page Down), 
a dozen function keys that can be assigned to commands 
by software, and a separate calculator-style keyboard for 
numeric data entry. During the 1990s, Microsoft introduced 
a few extra keys for Windows-specific functions.

The advent of laptop (or notebook) computers required 
some compromises. The keys are generally smaller, although 
on the better units they are still far enough apart to allow 
for comfortable touch-typing. Laptops often combine the 
function keys and cursor control keys with the regular keys, 
using a special “Fn” key to shift between them.

In recent years, there has been some interest in adopt-
ing an alternative key layout devised by August Dvorak in 
the 1950s. The theory behind this layout was that arrang-
ing the keyboard so the most commonly used keys were 
directly under the fingers would be more efficient than the 
Sholes layout, which legend claims was devised primarily 
to slow down typists to a speed that early typewriters could 
handle without jamming. However, researchers have gener-
ally been unable to find a significant improvement in either 
performance or ergonomics between use of the standard 
and Dvorak layouts, and the latter has not caught on com-
mercially.

Concern with repetitive strain injury (RSI) has led to 
experiments in designing a keyboard more suited to the 
human wrist and hand (see ergonomics of computing). 
Some designs such as the Microsoft Natural Keyboard 
divide the layout into left and right banks of keys and angle 
them toward one another to reduce strain on the wrists. An 
extreme form of the design actually breaks the keyboard 
into two pieces. Such extreme designs have not found wide 
acceptance.

It is possible that the further development of voice rec-
ognition software might allow spoken dictation to supplant 
the keyboard for data entry. Currently, however, such tech-
nology is limited in speed and accuracy (see speech recog-
nition and synthesis).

With the increasingly popular mobile devices (see pda 
and smartphone), keyboards are sometimes dispensed with 
entirely. For light data entry (such as for e-mail and text 
messaging), a small version of the standard keyboard can 
be used. (In such cases users can type with their thumbs.) 
With touch-sensitive screens on mobile devices, a “virtual 
keyboard” can be displayed on the screen; however, the 
lack of tactile feedback means this data-entry method takes 
some getting used to. One can also obtain a keyboard that 
can wirelessly connect to such a device to allow for more 
extensive data entry (see Bluetooth.)
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Kleinrock, Leonard
(1934–  )
American
Engineer, Computer Scientist

Every day billions of e-mails, text messages, and media files 
are sent over the worldwide Internet. The infrastructure 
that allows the efficient transmission of this vast data traffic 
is largely based on the system of packet-switching and rout-
ing invented by Leonard Kleinrock.

Kleinrock was born in 1934 and grew up in New York 
City. When he was only six years old Kleinrock built a crys-
tal radio, the first of many electronics projects, built from 
cannibalized old radios and other equipment. Kleinrock 

The Microsoft Natural Multimedia Keyboard features access to 
functions needed by today’s computer users along with an ergo-
nomic layout designed to help reduce typing stress.  (Microsoft 
Corporation)

Kleinrock, Leonard        265



attended the Bronx High School of Science, home of many 
of the nation’s top future engineers. However, when it came 
time for college, the family had no money to pay for his 
higher education, so he attended night courses at the City 
College of New York while working as an electronics techni-
cian and later as an engineer. Kleinrock graduated first in 
his class in 1957 and earned a fully paid fellowship to the 
Massachusetts Institute of Technology.

At MIT Kleinrock became interested in finding ways for 
computers and their users to communicate with each other. 
The idea of computer networking was in its infancy, but he 
submitted a proposal in 1959 for Ph.D. research in network 
design.

In 1961 Kleinrock published his first paper, “Informa-
tion Flow in Large Communication Nets.” Existing tele-
phone systems did what was called “circuit switching”: To 
establish a conversation, the caller’s line is connected to the 
receiver’s, forming a circuit that existed for the duration 
of the call. This also meant that the circuit would not be 
available to anyone else, and that if something was wrong 
with the connection there was no way to route around the 
problem.

Kleinrock’s basic idea was to set up data connections 
that would be shared among many users as needed. Instead 
of the whole call (or data transmission) being assigned to a 
particular circuit, it would be broken up into packets that 
could be sent along whatever circuit was the most direct. 
If there was a problem, the packet could be resent on an 
alternative route. This form of “packet switching” provided 
great flexibility as well as more efficient use of the avail-
able circuits. Kleinrock further elaborated his ideas in his 
dissertation, for which he was awarded his Ph.D. in 1963. 
The following year MIT published his book Communications 
Nets, the first full treatment of the subject.

Kleinrock joined the faculty at the University of Cali-
fornia, Los Angeles. In 1968 the Defense Department’s 
Advanced Research Projects Agency (ARPA) asked him to 
design a packet-switched network that would be known as 
ARPANET. The computers on the network would be con-
nected using special devices called Interface Message Pro-
cessors (IMPs). The overall project was under the guidance 
and supervision of one of Kleinrock’s MIT office mates, 
Lawrence Roberts.

On October 29, 1969, Kleinrock and his assistants sent 
the first data packets between UCLA and Stanford over 
phone lines. Their message, the word “login,” was hardly as 
dramatic as Alexander Graham Bell’s “Watson, come here, 
I need you!” Nevertheless, a form of communication had 
been created that in a few decades would change the world 
as much as the telephone had done a century earlier.

The idea of computer networking did not catch on imme-
diately, however. Besides requiring a new way of thinking 
about the use of computers, many computer administrators 
were concerned that their computers might be swamped 
with users from other institutions, or that they might ulti-
mately lose control over the use of their machines. Klein-
rock worked tirelessly to convince institutions to join the 
nascent network. By the end of 1969 there were just four 
ARPANET “nodes”: UCLA, the Stanford Research Institute, 

UC Santa Barbara, and the University of Utah. By the fol-
lowing summer, there were ten.

During the 1970s Kleinrock trained many of the 
researchers who would advance the technology of network-
ing. While Kleinrock’s first network was not the Internet we 
know today, it was an essential step in its development. In 
successfully establishing communication using the packet-
switched ARPANET, Kleinrock showed that such a network 
was practicable.

By the early 1990s Kleinrock was looking toward a future 
where most network connections were wireless and accessi-
ble through a variety of computerlike devices such as hand-
held “palmtop” computers, cell phones, and others not yet 
imagined. In such a network the intelligence or capability is 
distributed throughout, with devices communicating seam-
lessly so the user no longer need be concerned about what 
particular gadget he or she is using. By the middle of the fol-
lowing decade, much of this vision had become reality.

Although his name is not well known to the general 
public, Kleinrock has won considerable recognition within 
the technical community. This includes Sweden’s L. M. 
Ericsson Prize (1982), the Marconi Award (1986), and the 
National Academy of Engineering Charles Stark Draper 
Prize (2001).
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knowledge representation
The earliest concern of computer science was the represen-
tation of “raw” data such as numbers in programs (see data 
types). Such data can be used in calculations, and actions 
taken based on tests of data values, using branching (IF) or 
looping structures.

However, facts are more than data. A fact is an asser-
tion, for example about a relationship, as in “Joe is a son of 
Mike,” often expressed in a form such as son (Joe, Mike). 
Implications can also be defined as proceeding from facts, 
such as

son (Joe, Mike) implies father (Mike, Joe) or
son (Joe, Mike) and son (Mike, Phil) implies
grandson (Joe, Phil)

While it can be expressed in a variety of different forms 
of notation, this predicate calculus forms the basis for 
many automated reasoning systems that can operate on a 
“knowledge base” of assertions, prove the validity of a given 
assertion, and even generate new conclusions based upon 
existing knowledge (see also expert systems).

An alternative form of knowledge representation used 
in artificial intelligence programs is based on the idea of 
frames. A frame is a structure that lists various character-
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istics or relationships that apply to a given individual or 
class. For example, the individual “cat” might have a frame 
that includes characteristics such as “warm-blooded” and 
“bears live young.” In turn, these characteristics are also 
assigned to the class “mammal” such that any individual 
having those characteristics belongs to that class. A pro-
gram can then follow the linkages and conclude that a cat is 
a mammal. Linkages can also be diagrammed as a “seman-
tic network” in a structure called a directed graph, with the 
lines between nodes labeled to show relationships.

Knowledge representation systems have different con-
siderations depending on their intended purpose. A KR sys-
tem in an academic research setting might be intended to 
demonstrate completeness: that is, it can generate all possible 
conclusions from the facts given. However, expert systems 
designed for practical use usually do not attempt to gener-
ate all possible conclusions (which might be computation-
ally impracticable) but to generate useful conclusions that 
are likely to serve the needs of the knowledge consumer.

It is also important to note that epistemology (the the-
ory of knowledge) plays an important role in understanding 
and evaluating KR systems. As an example, the assertion 
“Mary believes she is 600 years old” might be a fact (Mary 
is observed to hold such a belief), but the contents of the 
belief are presumably not factual. The context of this belief 
might also be different if Mary is an adult as opposed to 
being a five-year-old child. Similarly, ontological (state of 
being) considerations can also complicate the evaluation of 
assertions. For example, should a fire be treated as an object 
in itself, a process, or an attribute of a burning object? 
Knowledge representation thus intertwines philosophy and 
computer science.

The booming interest in extracting new patterns from 
data (see data mining) and the effort to encode more 
knowledge into Web documents (see ontologies and data 
models, semantic Web, and xml) all involve applications 
of knowledge representation.

Perhaps the most ambitious knowledge representation 
project (and the longest-lasting one) has been Cyc (short for 
Encyclopedia). Headed by AI researcher Douglas Lenat, the 
object of Cyc is to create a massive network representing 
the relationships and characteristics of millions of objects 
and concepts found in peoples’ daily lives and work. Ide-
ally a wide variety of programs (both specialized and gen-
eral purpose) will be able to use this knowledge base (see 
expert system). Projects such as Cyc and the Web Ontol-
ogy Language (Owl) also offer the possibility of a much 
more intelligent Web search (see search engine) as well as 
systems that can automatically summarize news stories and 
other material.
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Knuth, Donald
(1938–  )
American
Computer Scientist

Donald Knuth has contributed to many aspects of computer 
science, but his most lasting contribution is his monumen-
tal work, The Art of Computer Programming, which is still in 
progress.

Born in Milwaukee on January 10, 1938, Knuth’s ini-
tial background was in mathematics. He received his mas-
ter’s degree at the Case Institute of Technology in 1960 
and his Ph. D. from the California Institute of Technology 
(Caltech) in 1963. As a member of the Caltech mathemat-
ics faculty Knuth became involved with programming and 
software engineering, serving both as a consultant to the 
Burroughs Corporation and as editor of the Association 
for Computing Machinery (ACM) publication Programming 
Languages. In 1968, Knuth confirmed his change of career 
direction by becoming professor of computer science at 
Stanford University.

In 1971, Knuth published the first volume of The Art 
of Computer Programming and received the ACM Grace 
Murray Hopper Award. His broad contributions to the 
field as well as specific work in the analysis of algorithms 
and computer languages garnered him the ACM Turing 
Award, the most prestigious honor in the field. Knuth 
also did important work in areas such as LR (left-to-right, 
rightmost) parsing, a context-free parsing approach used 
in many program language interpreters and compilers 
(see parsing).

However, Knuth then turned away from writing for an 
extended period. His primary interest became the develop-
ment of a sophisticated software system for computer-gen-
erated typography. He developed both the TeX document 
preparation system and METAFONT, a system for typeface 
design that was completed during the 1980s. TeX found a 
solid niche in the preparation of scientific papers, particu-
larly in the fields of mathematics, physics, and computer 
science where it can accommodate specialized symbols and 
notation.

Knuth did return to The Art of Computer Programming 
and by the late 1990s he had completed two more of a 
projected seven volumes. With his broad interests and con-
tributions and “big picture” approach to the evaluation of 
programming languages, algorithms, and software engi-
neering methodologies, Knuth can fairly be described as 
one of the “Renaissance persons” of the computer science 
field. His numerous awards include the ACM Turing Award 
(1974), IEEE Computer Pioneer Award (1982), American 
Mathematical Society’s Steele Prize (1986), and the IEEE’s 
John von Neumann Medal (1995).
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Kurzweil, Ray
(1948–  )
American
Inventor, Futurist

Ray Kurzweil began his career as an inspired inventor who 
brought words to the blind and new kinds of sounds to 
musicians. Drawing upon his experience with the rapid 

progress of technology, Kurzweil then wrote a series of 
books that predicted a coming breakthrough into a world 
shared by advanced intelligent machines and enhanced 
human beings.

Kurzweil was born on February 12, 1948, in Queens, 
New York, to an extremely talented family. Kurzweil’s 
father, Fredric, was a concert pianist and conductor. Kurz-
weil’s mother, Hanna, was an artist, and one of his uncles 
was an inventor. By the time he was 12, Kurzweil was 
building and programming his own computer. He wrote a 
statistical program that was so good that IBM distributed 
it as well as a music-composing program. The latter earned 
him first prize in the 1964 International Science Fair and 
a meeting with President Lyndon B. Johnson in the White 
House. Kurzweil even appeared on the television show I’ve 
Got a Secret.

In 1967 Kurzweil enrolled in the Massachusetts Institute 
of Technology, majoring in computer science and literature. 
By the time he received his B.S. in 1970, Kurzweil had met 
some of the most influential thinkers in artificial intelli-
gence research, including Marvin Minsky, whom he looked 
to as a mentor (see Minsky, Marvin). Kurzweil had become 
fascinated with the use of AI to aid and expand human 
potential. In particular, he focused on pattern recognition, 
or the ability to classify or recognize patterns such as the 
letters of the alphabet on a page of text.

Early character-recognition technology had been limited 
because it could only match very precise shapes, making it 
impractical for reading most printed material. Kurzweil, 
however, used his knowledge of expert systems and other 
AI principles to develop a program that could use general 
rules and relationships to “learn” to recognize just about 
any kind of text (see ocr). This program, called Omnifont, 
would be combined with the flatbed scanner (which Kurz-
weil invented in 1975) to create a system that could scan 
text and convert the images into the corresponding char-
acter codes, suitable for use with programs such as word 
processors.

A chance conversation with a blind fellow passenger on 
a plane convinced Kurzweil that he could build a machine 
that could scan text and read it out loud. Kurzweil would 
combine his scanning technology with a speech synthesizer 
(see speech recognition and synthesis). Kurzweil had to 
create an expert system with hundreds of rules for properly 
voicing the words in the text.

In 1976 Kurzweil was able to announce the Kurzweil 
Reading Machine (KRM). Soon after the machine’s debut, 
Kurzweil struck up a friendship with the legendary blind 
pop musician Stevie Wonder. They shared an interest in 
musical instruments and music synthesis. Existing analog 
synthesizers were very versatile, but their output sounded 
“thin” and artificial compared to the rich overtones in the 
sound of a piano or guitar. Kurzweil was able to create a 
much more realistic synthesizer sound using digital rather 
than analog technology.

The first Kurzweil synthesizer, the K250, was released in 
1983. His machine was the result of considerable research 
in digitally capturing and representing the qualities of notes 
from particular instruments, including the “attack,” or ini-

Prolific inventor and futurist Ray Kurzweil believes that 
technology will soon take an exponential leap called “the 
singularity.”  (Melanie Stetson Freeman / The Christian Sci-
ence Monitor / Getty Images)
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tial building of sound, the “decay,” or decline in the sound, 
the sustain, and the release (when the note is ended.) The 
resulting sound was so accurate that professional orchestra 
conductors and musicians could not distinguish the syn-
thesized sound from that of the real instruments.

Throughout the 1980s and 1990s Kurzweil applied his 
boundless inventiveness to a number of other challenges, 
including speech recognition. The reverse of voice synthe-
sis, speech recognition involves the identification of pho-
nemes (and thus words) in speech that has been converted 
into computer sound files. Kurzweil sees a number of pow-
erful technologies being built from voice recognition and 
synthesis, including telephones that automatically translate 
speech and devices that can translate spoken words into text 
in real time for deaf people. He also believes that the ability 
to control computers by voice command, which is currently 
rather rudimentary, should also be greatly improved.

Technological Apocalypse?
During the 1990s, though, much of Kurzweil’s interest 
turned from inventing the future to considering its likely 
course. His 1990 book The Age of Intelligent Machines 
offered a popular account of how AI research would change 
many human activities. In 1999 Kurzweil published The 
Age of Spiritual Machines. It made the provocative claim 
that, by the middle of the 21st century, machine intel-
ligence would surpass that of humans. Kurzweil revisited 
the topic in his latest book, The Singularity Is Near (2005). 
The title seems to consciously echo the apocalyptic lan-
guage of a prophet predicting the last judgment or the 
coming of a messiah. The word “singularity” is intended 
to describe the effects of relentless, ever-increasing tech-
nological progress that eventually reaches a sort of “criti-
cal mass” and changes the world beyond all recognition 
(see singularity, technological).

As he depicts life in 2009, 2019, 2029, and finally 2099, 
Kurzweil portrays a world in which sophisticated AI per-

sonalities become virtually indistinguishable from humans 
and can serve people as assistants, advisers, and even lov-
ers. Meanwhile, neural implants will remove the obstacles 
of handicaps such as blindness, deafness, or lack of mobil-
ity (see neural interface). Other implants will greatly 
enhance human memory, allow for the instant download 
of knowledge, and function as “natural” extensions to the 
brain. (For critics of such “strong AI” claims see Dreyfus, 
Hubert and Weizenabum, Joseph.)

Kurzweil continues to engage in provocative projects. 
Under the slogan “live long enough to live forever,” he is 
researching and marketing various supplements intended 
to promote longevity, and he reportedly monitors his own 
diet and bodily functions carefully.

Whatever the future brings, Ray Kurzweil has become 
one of America’s most honored inventors. Among other 
awards, he has been elected to the Computer Industry Hall 
of Fame (1982) and the National Inventors Hall of Fame 
(2002). He has received the ACM Grace Murray Hopper 
Award (1978), Inventor of the Year Award (1988), the Louis 
Braille Award (1991), the National Medal of Technology 
(1999), and the MIT Lemelson Prize (2001).
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LAN  See local area network.

language translation software
Anyone who has learned a new language has also gained 
an appreciation for how difficult it is to translate from one 
language to another while preserving the intent, mean-
ing, and context of the original. Not surprisingly, develop-
ing software to perform this task, often called “machine 
translation” (MT), has also proven to be difficult. (For a 
more general discussion of how languages can be repre-
sented or studied using a computer, see linguistics and 
computing.)

Rules-Based Approaches
There are several approaches that can be taken to automatic 
language translation. A rules-based system parses the origi-
nal text to construct an intermediate representation. The 
program then “transfers” the represented structure to an 
equivalent structure in the target language, drawing upon 
extensive lexicons (dictionaries) containing such things 
as phrase structures, word structures (morphology), and 
semantics (meanings). Developing this extensive knowl-
edge base and the rules for manipulating it is the most 
challenging part of developing rules-based language trans-
lation systems. (For more on the general process of com-
puter “understanding” of language, see natural language 
processing.)

Generally a translation produced by a rules-based sys-
tem will be intelligible to a speaker of the target language, 

who will be able to understand the broad meaning of the 
original text. However, it is likely to sound “awkward” and 
miss certain nuances.

A simplified approach is based on a dictionary of words 
or phrases and their meanings. Each source word or phrase 
is simply looked up and converted to its equivalent in the 
target language. Because it does not deal with grammatical 
structure or context, this method is not very satisfactory 
except perhaps for translating simple lists or catalogues.

Statistical Approaches
The other main approach to automatic translation relies 
on statistical analysis of a large body of text (corpus) that 
is already translated into two languages. For example, the 
Bayes theorem (see Bayesian analysis) can be used to esti-
mate the probability that string A in French (for example, 
“c’est un chien”) will occur in the English version as string 
A’ “it’s a dog.”). Depending on the application, the same 
approach can be applied word for word, phrase for phrase, 
or sentence for sentence. Statistical approaches have had 
good success (particularly if the corpus is both representa-
tive and sufficiently extensive). However, since it is based 
on probability, there is always a chance that a segment of 
text will be given the most likely translation rather than the 
meaning intended by the writer.

Evaluation and Applications
There are a number of features in real human languages 
and usage that are challenging for translation software to 
deal with. Words can be ambiguous due to multiple mean-
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ings, and phrases can be syntactically ambiguous. (A 
famous example is, “Time flies like an arrow; fruit flies like 
a banana.”) Rules-based translation software can attempt 
to include rules for determining which word or sentence 
meaning is intended, while statistically based programs can 
try to determine the probability that a given word or phrase 
in a given context has a certain meaning. Idioms or words 
that are not in the program’s dictionary can also cause prob-
lems. (For example, Babel Fish translates “He already had 
two strikes against him” literally, losing the nuance based 
on the baseball reference.)

There are a variety of translation software packages in 
use today. The oldest is SYSTRAN, which was developed 
during the cold war of the 1960s to translate Russian scien-
tific and technical documents, and later has been used by 
the European Union to work with documents in the union’s 
various languages. Today SYSTRAN is the engine behind 
such popular Web sites from AltaVista (Babel Fish) and 
Google Language Tools. These services can translate text or 
whole Web pages (with varying degrees of success).

Simple handheld translation devices with phrases com-
monly needed by travelers are also available. More sophis-
ticated devices (see speech recognition and synthesis) 
that can facilitate two-way conversations are also being 
developed for applications such as military interrogation 
and civil affairs.
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Lanier, Jaron
(1960–  )
American
Computer Scientist, Inventor

Jaron Lanier pioneered the technology of virtual reality that 
is gradually having an impact on areas as diverse as enter-
tainment, education, and even medicine.

Lanier was born on May 3, 1960, in New York City, 
although the family would soon move to Las Cruces, New 
Mexico. Lanier’s father was a cubist painter and science 
writer and his mother a concert pianist (she died when the 
boy was nine years old). Living in a remote area, the preco-
cious Lanier learned to play a large variety of exotic musical 
instruments and created his own science projects.

Lanier dropped out of high school, but fortunately sym-
pathetic officials at New Mexico State University let him 
take classes there when he was only 14 years old. Lanier 
even received a grant from the National Science Foundation 
to let him pursue his research projects. Although fascinated 
by computers (and their possibilities as an aid to music 

and other expressive arts), Lanier had a sporadic academic 
career, taking him to Bard College, where he dropped out of 
their computer music program.

However, by the mid-1980s Lanier had gotten back into 
computing by creating sound effects and music for Atari 
video games and writing a commercially successful game 
of his own called Moondust. He developed a reputation as a 
rising star in the new world of game design.

Lanier then began to experiment with ways to immerse 
the player more fully in the game experience. Using money 
from game royalties, he joined with a number of experi-
menters and built a workshop in his house. One of these 
colleagues was Tom Zimmermann, who had designed a 
“data glove” that could send commands to a computer based 
on hand and finger positions.

As the 1980s progressed, investors became increasingly 
interested in the new technology, and Lanier was able to 
expand his operation considerably, working on projects for 
NASA, Apple Computers, Pacific Bell, Matsushita, and other 
companies.

Lanier then coined the term “virtual reality” to 
describe the experience created by this emerging tech-
nology. A user wearing a special helmet has a computer-
generated scene projected such that the user appears to be 
“within” the world created by the software. The world is 
an interactive one: Using gloves and body sensors, when 
the user walks in a particular direction the world shifts 
just as it would when walking in the “real” world. The 
gloves appear as the user’s “hands” in the virtual world, 
and objects in that world can be grasped and manipulated 
much like real objects. In effect, the user has been trans-
ported to a different world created by the VR software 
(see virtual reality).

Virtual reality technology had existed in some form long 
before Lanier; it perhaps traces its roots back to the first 
mechanical flight simulators built during World War II. 
However, existing systems such as those used by NASA and 
the Air Force were extremely expensive, requiring powerful 
mainframe computers. They also lacked flexibility—each 
system was built for one particular purpose, and the tech-
nology was not readily transferable to new applications. 
Lanier’s essential achievement was to use the new, inex-
pensive computer technology of the 1980s to build versatile 
software and hardware that could be used to create an infi-
nite variety of virtual worlds.

Unfortunately the hippylike Lanier (self-described as 
a “Rastafarian hobbit” because of his dreadlocks) did not 
mesh well with the big business world into which his initial 
success had catapulted him. Lanier had to juggle numerous 
simultaneous projects as well as becoming embroiled in 
disputes over his patents for VR technology. In 1992 Lanier 
lost control of his patents to a group of French investors 
whose loans to VPL Research had not been paid, and he 
was forced out of the company he had founded.

During the 1990s Lanier founded several new compa-
nies to develop various types of VR applications. These 
include the Sausalito, California, software company 
Domain Simulations and the San Carlos, California, com-
pany New Leaf Systems, which specialized in medical 
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applications for VR technology. Another company, New 
York-based Original Ventures, focuses on VR-based enter-
tainment systems.

From 1997 to 2001, Lanier was chief scientist of 
Advanced Network and Services, a developer of the Inter-
net2 (advanced high-speed networking) project, as well as 
serving as lead scientist of the National Tele-Immersion 
Initiative, a coalition of universities developing applications 
for Internet2. From 2001 to 2004 Lanier was also a visit-
ing scientist at Silicon Graphics, Inc., doing fundamental 
research on tele-immersion and telepresence. Since 2004 
Lanier has been a fellow at the International Computer Sci-
ence Institute at UC Berkeley and since 2006, an interdisci-
plinary scholar-in-residence at Berkeley.

Futurist and Technology Pundit
Lanier’s humanistic and artistic background is reflected 
in the stance he has taken in recent years toward the tech-
nology he helped create. He has a column called “Jaron’s 
World” in Discover magazine and regularly contributes 
to other publications such as Edge. In his writings Lanier 
has criticized the tendency to see the Internet as some 
sort of collective intelligence, warning that the individ-
ual might be in danger of being overwhelmed (see flash 
mob). Lanier has also coined the term “cybernetic total-
ism” to refer to the tendency to put the constructs of the 
computer world ahead of the full dimensionality of human 
experience.

Besides writing and lecturing on virtual reality, Lanier is 
active as both a musician and an artist. In 1994 he released 
his CD Instruments of Change. Lanier’s paintings and draw-
ings have also been exhibited in a number of galleries.
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laptop computer
A laptop is a portable computer that contains all compo-
nents (keyboard, display, motherboard, drives, etc.) in a 
single (usually hinged) case. In general, a laptop can per-
form the same tasks as a desktop computer, though not nec-
essarily as quickly. (Laptops that have the full power and 

capacity of a desktop are sometimes called “desktop replace-
ments,” while smaller, lighter, but less powerful machines 
are called “notebooks.” For even smaller or lighter comput-
ers, see pda and tablet pc.)

Typical Components
A typical laptop computer in 2007 has the following com-
ponents:

• � a processor such as Intel Core 2 duo or a version (such 
as Pentium M) optimized for wireless and lower-power 
consumption

• � one or two gigabytes (GB) of system memory

• � hard drive (80 to 160 GB capacity)

• � combo CD/DVD optical drive with read-and-write 
capabilities

• � LCD flat panel display (widescreen format) from 14 
inches to 17 inches

• � graphics card or integrated graphics

• � wireless networking

• � keyboard with touch pad and/or pointing stick (to 
simulate the mouse)

• � six- or nine-cell lithium ion or lithium polymer battery

Modern laptops are well supplied with USB and network 
(Ethernet) ports. Many include readers for memory cards 
(such as SD cards). Additional capabilities can be provided 
by means of PC cards or Express cards. Most laptops run 
the same operating systems (such as Windows Vista or Mac 
OS X) as their desktop counterparts.

While portable and convenient, laptops do have some 
disadvantages compared to desktops: They cost more for a 
given level of performance; they are more difficult to repair; 
and they are more attractive to thieves.

A traditional laptop computer with a clamshell case. Laptops are 
now differentiated into lighter, more compact “notebooks” and 
somewhat larger and heavier “desktop replacement” units. Mean-
while, smaller hand held devices can replace laptops for some 
functions.
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Development and Trends
The idea of small, portable personal computers goes back 
to the Dynabook concept developed at Xerox PARC in the 
1970s (see also Kay, Alan). The first “portable” computers 
were often more aptly described as “luggable,” having more 
the form factor of a suitcase than that of today’s laptops. 
Nevertheless, the first commercially successful portable 
computers, the Osborne 1 (1981) and the Compaq Portable 
(1983), began to show the feasibility of portable comput-
ing. (At the other end of the size spectrum, the successful 
Radio Shack TRS-80 Model 100 established the utility of 
the notebook-sized computer.) In the 1980s true laptops 
from companies such as Zenith and Toshiba with the famil-
iar clamshell design emerged, running PC-compatible MS-
DOS and, later, Windows applications. (Apple entered the 
market with the Macintosh Portable in 1989, followed by 
the PowerBook series, introduced in 1991.)

Most improvements in laptops in the 1990s and beyond 
have been incremental (more storage, sharper displays, 
more efficient batteries, and so on). Wireless (see Blue-
tooth and wireless and mobile computing) connectiv-
ity is now standard. Laptop development has bifurcated 
somewhat, with higher-end machines rivaling desktops for 
media, gaming, and other applications, while notebooks 
often become lighter, sometimes forgoing optical and even 
hard drives in favor of network connectivity and flash mem-
ory storage. Specially “ruggedized” laptops are used by the 
military on battlefields and in other harsh environments. 
Meanwhile, PDAs and smart phones capable of e-mail, Web 
browsing, and light data entry offer an alternative to laptops 
for people who are on the road frequently.
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law enforcement and computers
Besides his superb reasoning skills, perhaps Sherlock Hol-
mes’s most important asset was his extensive collection of 
notes that provided a cross-referenced index to London’s 
criminal underworld. Today computer applications have 
given law enforcers investigative, forensic, communication, 
tactical, and management tools that Holmes and his rivals 
in the old Scotland Yard could not have imagined.

For the officer on the street, the ability to obtain auto 
license, stolen vehicle, or outstanding warrant information in 
near real-time provides a much better picture of the potential 
risk in making stops or arrests. Other “tactical” technology 
includes new devices for homing in on gunshots and the 
growing use of remote-controlled robots for bomb disposal 

and hostage negotiations (see robotics). A more controver-
sial area is the use of CCTV (closed-circuit TV) surveillance 
cameras in public places, advocated as a crime deterrent but 
raising concerns about privacy and intrusive social control.

If a criminal case is opened, a variety of software appli-
cations come into play. These include case management 
programs for keeping track of evidence and witness inter-
views. Evidence must be properly logged at all times to 
maintain a legally defensible chain of custody against accu-
sations of tampering.

The investigation of a crime involves many com-
puterized forensic aids. Besides automated matching of 
fingerprints and, increasingly other physical data (see bio-
metrics), records can also be searched to detect patterns 
such as crimes with related modus operandi (MOs). The 
ability to access information from other jurisdictions and 
to interface federal, state, and local agencies is also very 
important, particularly for cases involving organized crime, 
interstate fugitives, and terrorism.

Since data stored on computers is an increasingly preva-
lent form of evidence, law enforcement specialists must also 
employ tools to recover data that may have been partially 
erased or encrypted by suspects (see computer forensics). 
Computers can be more active instruments of crime (see 
computer crime and security). Such traditional tools as 
wiretapping must be adapted to new forms of communica-
tion such as e-mail while addressing concerns about civil 
liberties and privacy (see privacy in the digital age).

High-level planning for law enforcement budgets and 
priorities requires access to detailed crime statistics. At the 
national level, the Justice Department’s Bureau of Justice 
Statistics is a definitive information source. Law enforc-
ers, like other professionals, increasingly use Web sites, 
chat areas, and e-mail lists to discuss computer-related law 
enforcement issues with colleagues.

Law enforcement agencies also use the same “bread and 
butter” software needed by any substantial organization, 
including word processing, spreadsheet, payroll, and other 
accounting programs.

Further Reading
Boba, Rachel. Crime Analysis and Crime Mapping. Thousand Oaks, 

Calif.: Sage Publications, 2005.
Chu, James. Law Enforcement Information Technology: A Manage-

rial, Operational, and Practitioner Guide. Grand Rapids, Mich.: 
CRC Press, 2001.

Foster, Raymond E. Police Technology. Upper Saddle River, N.J.: 
Prentice Hall, 2004.

Goold, Benjamin J. CCTV and Policing: Public Area Surveillance and 
Police Practices in Britain. New York: Oxford University Press, 
2004.

Gottschalk, Petter. Knowledge Management Systems in Law Enforce-
ment: Technologies and Techniques. Hershey, Pa.: Idea Group 
Publishing, 2006.

Pattvina, April, ed. Information Technology and the Criminal Justice 
System. Thousand Oaks, Calif.: Sage Publications, 2004.

legal software
Modern law offices rely heavily on software to manage 
cases and records, to perform legal research, and to prepare 
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pleadings and other documents. Many of these functions 
can be included in a legal software suite such as Amicus 
Attorney. Some typical law office management modules 
include the following:

• � client file, which provides links to all events, tasks, 
time and billing, and so on involving each client

• � general contact file with contact information for other 
people the office deals with regularly (such as court 
clerks)

• � calendar for managing appointments, meetings, and 
deadlines

• � time tracking and billing

• � document management (often interfaces with suites 
such as Microsoft Office)

Research Tools
Legal research is easier (but in some ways more complex) 
than in the days of going through dusty files in the local 
courthouse or poring through a law library. The most used 
online database for legal research is LexisNexis, which con-
tains two parts: Lexis (focusing on legal documents) and 
Nexis (for business research). Some of the most important 
Lexis content is:

• � text of all U.S. statutes and laws

• � U.S. published case opinions

• � public records including property records, liens, and 
licenses

• � laws and opinions for many non-U.S. jurisdictions

• � articles from law journals

A free service called LexisOne provides a subset of 
U.S. legal decisions. Lexis also has a File & Serve service 
that allows for documents to be filed with courts or served 
upon participating firms. Nexis complements Lexis for 
many investigations because it offers news articles, par-
ticularly those relating to business activities. Other com-
mercial legal information services include Westlaw and 
Loislaw. A free compilation of legal information that can 
provide an alternative for researching laws and cases is 
provided by the Legal Information Institute at Cornell 
University.

Finding citations or news is only part of the task of 
the legal researcher. The organization and management 
of all the data needed for any legal specialty is challeng-
ing. Printed reference books are cumbersome and can 
be quickly outdated. Recently a number of legal writers 
have been using wikis (see wikis and Wikipedia) as a 
tool for collaboration in creating online legal references. 
For example, the Internet Law Treatise sponsored by the 
Electronic Frontier Foundation covers a variety of legal 
issues relating to the use of the Internet. The Legal Infor-
mation Institute at Cornell Law School is collaborating 
with experts to create a complete legal dictionary and 
encyclopedia in wiki form.
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Lessig, Lawrence
(1961–  )
American
Law Professor and Writer

Law professor Lawrence Lessig is a pioneer in develop-
ing legal theories that deal with some of the most diffi-
cult issues emerging in the online world (see, for example, 
intellectual property and computing).

Lessig was born on June 3, 1961, in Rapid City, South 
Dakota, but grew up in Williamsport, Pennsylvania. As a 
student at Yale Law School in the 1970s, Lessig, though pre-
viously president of Pennsylvania’s Teenage Republicans, 
became interested in liberal values following the Water-
gate scandal and his exposure to authoritarian communist 
regimes during a summer trip to Eastern Europe.

After graduating from Yale, Lessig clerked for U.S. 
Supreme Court Justice Antonin Scalia, an articulate con-
servative with whom he could debate a variety of issues. 
When he began to teach law himself at the University of 
Chicago in 1991, he also began to incorporate issues aris-
ing in cyberspace in his lectures. In one article Lessig criti-
cized the Communications Decency Act for forcing sites 
to block access to adult pornography in order to protect 
children. Eventually the Supreme Court agreed and over-
turned the law.

In the late 1990s Lessig served as a special master to the 
Supreme Court in the Microsoft antitrust case. This time 
Lessig sided with the government, agreeing that Microsoft 
had used its near monopoly in operating systems to bundle 
its own Web browser to the detriment of rival Netscape.

The Creative Commons
In recent years Lessig has undertaken to promote a more 
comprehensive set of legal principles aimed at protecting 
privacy, expression, and other fundamental rights in cyber-
space. Many of the early and more radical Internet advo-
cates saw the new medium as a libertarian or anarchist 
“free zone” that needed to be protected from any govern-
ment interference. Lessig, however, has argued in his books 
Code and Other Laws of Cyberspace (2000) and Code Ver-
sion 2.0 (2006) that the online world needs a combination 
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of technical architecture, private initiative, and reasonable 
regulation.

In his book Free Culture (2004) Lessig celebrates the cre-
ativity and freedom of expression of the Internet but warns 
that the Net may soon be “locked down” by the power of 
the corporate media. Lessig is therefore a strong supporter 
of “net neutrality,” the proposed policy that would prohibit 
Internet service providers from charging different rates for 
different content providers or types of content (see net 
neutrality). Without this policy, advocates believe that 
large corporations will gradually squeeze smaller, indepen-
dent voices off the Web by making it harder for them to 
access users. In effect, what had been a shared “commons” 
would become property bounded by fences, much as com-
mon pastures were once turned into private farms.

According to Lessig, another obstacle to a vigorous 
online creative culture is the present copyright system. 
Under this system there is a presumption that permission 
is required for most usage of a work. This makes it difficult 
for creators to confidently use all the tools for working with 
existing content to create new expressions (see mashups).

To protect free expression, Lessig founded an organiza-
tion called Creative Commons in 2001, which has devel-
oped a new kind of license. Under this license the creator 
can specify what users can do with the work—copy it, cre-
ate derivative works, and so on. Thus far Creative Commons 
licenses have mainly been applied to online works such as 
images shared on photo-sharing sites. Because applying for 
a Creative Commons license includes providing descriptors 
(metadata) about the work, people looking for material to 
be used in their own work can easily determine what they 
are allowed to do with a given work.

In 1997 Lessig left his professorship at the University 
of Chicago Law School to become a professor at Harvard 
Law School (1997–2000), and then Stanford (2000–  ). 
Lessig has been a guest lecturer at many universities and 
other institutions around the world. He also serves as a 
board member for many important cyberspace institutions, 
including the Electronic Frontier Foundation and Creative 
Commons.

In early 2008 Lessig announced that he would take on 
a challenge perhaps even more daunting than preserving 
Internet freedom—the battle against what he sees as perva-
sive corruption in the political system. He has proposed the 
creation of a grassroots movement that would encourage 
all incumbents and candidates to pledge to stop accepting 
contributions from lobbyists, to stop putting special inter-
est “pork” in legislation, and to conduct publicly financed 
campaigns.

Lessig has received a number of academic awards as well 
at the Editor’s Choice award from Linux Journal (2002), was 
named one of Fifty Top Innovators by Scientific American 
(2002), and received the Free Software Foundation Award 
(2003).
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libraries and computing
The library is the institution traditionally charged with the 
collection and distribution of humanity’s collective heritage 
of written information. It is thus not surprising that the 
development of modern information technology has meant 
that libraries have had to undergo pervasive changes in 
their practices and responsibilities.

One of the earliest applications for automation in librar-
ies was cataloging. By the 1960s, the ever-increasing volume 
of books and serials (periodicals) published each year was 
placing a growing burden on the manual cataloging system. 
Under this system, catalogers at large libraries (and particu-
larly the Library of Congress) prepared a catalog record for 
each new publication. These records were distributed by the 
Library of Congress in the form of catalog card proof slips. 
These, as well as compiled card images from other libraries, 
could be used by each library to prepare catalog records for 
its own holdings.

As mid-size computers became more affordable, it became 
practicable for at least large library systems to put their cata-
log records on-line. In 1968, the MARC (Machine Readable 
Cataloging) standard was first promulgated. A MARC record 
uses specific, numbered fields to describe the elements of 
a book, such as its catalog card number, main entry, title, 
imprint, collation (pagination), and subject headings.

At first, MARC records were distributed mainly on mag-
netic tape in place of card slips. However, by the late 1970s 
large on-line cataloging systems such as OCLC (On-line 
College Library Center) and RLIN (Research Library Infor-
mation Network) were enabling libraries to search for and 
download cataloging information in real time, and in turn 
upload their own original catalog records to the shared 
database. This greatly reduced redundant cataloging effort. 
If a library receives a new book, a library assistant can 
search for a preexisting catalog record. The record can then 
be easily modified for local use, such as by adding a call 
number and holdings information. The problem of authori-
ties (standardized entries for names) is also made more 
manageable by being able to check entries on-line.

By the 1980s, the next logical step was under way: The 
card catalog began to be replaced by a wholly electronic 
catalog, enabling library patrons to search the catalog at 
a terminal. Besides saving money, the on-line catalog also 
offers researchers many more ways to search for materials: 
for example, they can use keywords and not rely only on 
titles and subject headings.

Along with cataloging, libraries began to automate their 
circulation and acquisitions systems as well. As these sys-
tems become integrated, libraries can both monitor the 
demand (finding materials that are in heavy use and need 

libraries and computing        275



additional copies) and speed up the supply, by integrating 
the acquisitions system with ordering systems maintained 
by book distributors.

However, while most librarians consider the computer to 
be a boon to their profession, there are criticisms and fur-
ther challenges. Nicholson Baker, for example, has decried 
the abandonment of information in card catalogs that was 
not carried over into electronic form. Baker has also criti-
cized the replacement of bound archives of periodicals with 
microfilm, which is often of poor quality and prone to dete-
rioration. The storage of publications on computer media 
has also met with concerns that the physical durability 
of the media has not been sufficiently investigated, and 
that in a rapidly changing technological world data formats 
can become obsolete, no longer supported, and potentially 
unreadable (see also backup and archive systems).

The growth of the World Wide Web has also presented 
libraries with both opportunities and challenges. Catalog-
ers and reference librarians are struggling to find new ways 
to categorize and retrieve the always-changing and ephem-
eral content of Web pages. Meanwhile, librarians have faced 
not only funding and training issues in providing expanded 
public Web access in libraries, but have also had to deal 
with demands that Web content be filtered to protect chil-
dren from objectionable content. (The American Library 
Association opposes such filtering as a form of censorship.)

Besides being a source of Internet connectivity for stu-
dents and people who cannot afford their own computer, 
today’s libraries provide a wide variety of media products, 
including audio CDs, audio and video tapes, and DVDs. 
Increasingly, though, modern librarians are moving away 
from the idea of a library as a repository of resources and 
are placing greater emphasis on providing guidance and 
starting points for users who are seeking to navigate the 
often-overwhelming Web. Although they face many chal-
lenges, libraries seem to be succeeding in the task of rein-
venting themselves.
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library, program
Programming is a labor-intensive activity, especially when 
the time required to test, debug, and verify the operation 
of the program code is included. It is not surprising, then, 
that even the earliest programmers sought ways to reuse 
the code for commonly needed operations such as data 

input, sorting, calculation, and formatting rather than 
writing it from scratch. If a well-organized collection or 
library of program routines is available, developers of 
new applications can concentrate on the aspects particu-
lar to the current problem and use the library code for 
routine operations.

In the mainframe world, the use of program libraries 
was also mandated by the limited amount of main memory 
available. A data processing task was often accomplished by 
retrieving a series of card decks or tapes from the library 
and mounting them in turn. Intermediate results could be 
passed between programs under the control of a special 
script (see job control language).

Some programming languages, notably C and its descen-
dants C++ and Java, are designed to provide a small core of 
essential features (such as control structures, data types, 
and operators). Other functions, such as math routines, data 
I/O (input/output), and formatting are provided in library 
files that are invoked by programs that need particular fea-
tures. There are several advantages to this approach. The 

To use a program library, the programmer includes the appropriate 
header file in the source code. After the source code is compiled, the 
linker links it to the compiled object code file corresponding to the 
header file, creating a single executable file.
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core language is kept simple because it doesn’t have to deal 
with issues such as the actual storage of data in memory 
that are dependent on the particular architecture of each 
type of machine. To “port” the language to a new machine, 
specialists in its architecture can implement the standard 
library functions. In addition to the standard libraries 
included with the compiler, programmers are also free to 
create additional libraries to support particular applications 
such as graphics.

With a traditional library the library routines invoked 
in the source code are included in the final executable file. 
With most modern operating systems, however, many pro-
grams are active in memory at the same time (see mul-
titasking). Storing the same commonly used routines 
(such as standard I/O) with each program wastes memory. 
Therefore, operating systems such as Microsoft Windows 
use dynamic linking. This means that instead of compiling 
the library code into the program to create the executable 
file, the program links to the library at execution time. 
If another program is using the library, the new program 
links to the same copy in memory rather than having to 
store another copy. (Dynamically linked libraries [DLLs] 
include special code to keep track of the invocation of the 
library functions by each separate program.)

Further Reading
Josuttis, Nicolai M. The C++ Standard Library: A Tutorial and Refer-

ence. Upper Saddle River, N.J.: Addison-Wesley, 1999.
Loosemore, Sandra, et al. GNU C Library Application Fundamen-

tals. Boston: GNU Press, 2004.
———. et al. GNU C Library System & Network Applications. Bos-

ton: GNU Press, 2004.
Lundh, Fredrik. Python Standard Library. Sebastapol, Calif.: 

O’Reilly, 2001.

Licklider, Joseph Carl Robnett
(1915–1990)
American
Computer Scientist, Psychologist

Most of the early computer pioneers came from back-
grounds in mathematics or engineering. This naturally led 
them to focus on the computer as a tool for computation and 
information processing. Joseph Licklider, however, brought 
an extensive background in psychology to the problem of 
designing interactive computer systems that could provide 
better communication and access to information for users.

Licklider was born on March 11, 1915, in St. Louis, Mis-
souri. During the 1930s, he attended Washington University 
in St. Louis, earning B.A. degrees in psychology, mathemat-
ics, and physics. He then concentrated on psychology for 
his graduate studies, earning an M.A. at Washington Uni-
versity and then receiving his Ph.D. from the University of 
Rochester in 1942.

While at Rochester, Licklider participated in a study 
group led by Norbert Wiener, pioneer in the new field of 
cybernetics, in the late 1940s. This brought him into con-
tact with emerging computer technology and its exciting 
prospects for the future. In turn, Licklider’s psychology 
background allowed him a perspective quite different from 
the mathematical and engineering background shared by 
most early computer pioneers.

Cybernetics emphasized the computer as a system that 
could interact in complex ways with the environment. Lick-
lider added an interest in human-computer interaction and 
communication. He began to see the computer as a sort of 
“amplifier” for the human mind. He believed that humans 
and computers could work together to solve problems that 
neither could successfully tackle alone. The human could 
supply imagination and intuition, while the computer pro-
vided computational “muscle.” Ultimately, according to the 
title of his influential paper, it might be possible to achieve 
a true “Man-Computer Symbiosis.”

During the 1950s, Licklider taught psychology at the 
Massachusetts Institute of Technology, hoping eventually to 
establish a full-fledged psychology department that would 
elevate the concern for what engineers call “human factors.” 
From 1957 to 1962 he also served in the private sector as a 
vice president for engineering psychology at Bolt Beranek 
and Newman, the company that would become famous for 
pioneering networking technology.

In 1962, the federal Advanced Research Projects Agency 
(ARPA) appointed Licklider to head a new office focusing 
on leading-edge development in computer science. Lick-
lider soon brought together research groups that included 
in their leadership three of the leading pioneers in artifi-
cial intelligence: John McCarthy, Marvin Minsky, and Allen 
Newell (see artificial intelligence; McCarthy, John; 
and Minsky, Marvin). By promoting university access to 
government funding, Licklider also fueled the growth of 
computer science graduate programs at major universities 
such as Carnegie Mellon University, University of Califor-
nia at Berkeley, Stanford University, and the Massachusetts 
Institute of Technology.

Dynamic linking is an alternative approach to library use. The pro-
gram is compiled with a reference to the library, but it is not linked 
to the library code until the program is actually running. Since sev-
eral different running programs can link to the same dynamic link 
library (DLL), memory is saved.
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In his research activities, Licklider focused his efforts 
not so much on AI as on the development of interactive 
computer systems that could promote his vision of human-
computer symbiosis. This included time-sharing systems, 
where many users could share a large computer system, 
and networks that would allow users on different comput-
ers to communicate with one another. He believed that the 
cooperative efforts of researchers and programmers could 
develop complex programs more quickly than teams limited 
to a single agency or corporation (see also open-source 
movement).

Licklider’s efforts to focus ARPA’s resources on net-
working and human-computer interaction would provide 
the resources and training that would, in the late 1960s, 
begin the development of what would become the Internet. 
Licklider spent the last two decades of his career teaching 
at MIT. Before his death in 1990, he presciently predicted 
that by 2000 people around the world would be linked in a 
global computer network.
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linguistics and computing
The study of human language and advances in computer 
science have been closely intertwined. The field of compu-
tational linguistics uses computer systems to investigate the 
structure of natural language. In turn, the area of natural 
language processing involves the creation of software that 
can apply linguistic principles to process written or spo-
ken human language (see natural language processing, 
language translation software, and speech recogni-
tion and synthesis).

As simple low-level instruction codes began to evolve 
into complex high-level programming language, language 
designers had to struggle to give precise, complete, and 
unambiguous definitions for the language’s structure. This 
is essential for language users to be confident that their 
programs will yield the desired results. It is also important 
that developers trying to implement a language on different 
hardware platforms and operating systems have rigorous 
language specifications so the compiler on the new system 
will produce programs equivalent to those on the system 
where the language was first developed.

When computer scientists turned to linguistics for help 
in defining programming languages, they found the work 

of Noam Chomsky, perhaps the 20th century’s preeminent 
linguist, to be particularly helpful. Chomsky developed a 
concept of formal language in which grammar could be 
specified as a series of rules built up a level at a time. 
For example, at the lowest level, there is an alphabet from 
which recognized words are generated. Next there are rules 
for generating phrases (such as a noun phrase consisting of 
a noun with optional adjectives and a verb phrase consist-
ing of a verb with optional adverbs). In turn, phrases can be 
combined to form sentences.

Because grammatical structures are created by applying 
rules to strings of symbols (words), the result is called a 
generative grammar. Chomsky sought to apply this concept 
of a “transformational generative grammar” as a universal 
structure applicable to all human languages. Meanwhile, 
computer scientists could use formal grammar rules to 
define the valid statements in programming languages (see 
also Backus-Naur form). This in turn allows a compiler 
parser to break down high-level language statements and 
convert them into low-level instruction codes that can actu-
ally be executed by the CPU (see assembler and parsing).

As new languages and more powerful hardware gave 
computers increased power to deal with complex systems, 
computer scientists (and artificial intelligence researchers in 
particular) applied themselves to the problem of computer 
processing of human languages. Success in this field might 
lead not only to computer systems that humans could commu-
nicate with far more naturally, but also to automatic machine 
translation that could, for example, allow an English speaker 
and a Chinese speaker to communicate via e-mail.

However, developers of natural language systems face 
formidable challenges. Most fundamentally, while comput-
ers process symbols using a restrictive, deterministic proce-
dure that Chomsky classifies as finite state (see finite state 
machine), human languages must be understood using 
the more complex transformational grammar. The lan-
guage processing system must therefore have rules that can 
cope with the often ambiguous structure of actual human 
speech. (For example, does the word fly in a given sentence 
mean an insect, a baseball batted high in the air, or perhaps 
a zippered opening in one’s trousers?)

One way to limit the problem is to deal with a restricted 
realm of discourse. For example, a natural language “front 
end” to a database might assume that all input nouns refer 
to entities that exist in the database, such as employees, 
positions, salaries, and so on. It then becomes a matter of 
translating a query such as “How many employees in the 
human resources department make more than $50,000 a 
year” into something like:

find quantity (employee.department = “human 
resources”) and (employee.salary > 50,000)

Understanding unrestricted text such as that found 
in newspaper stories is much more complex, since fewer 
assumptions can be made about the subject of the discourse. 
Here the AI concept of frames can prove useful. A frame is 
a sort of script that describes the elements of life’s com-
mon events or transactions. For example, suppose a news 
story begins “Joe X was arrested yesterday for the murder 
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of Sarah Y. He was arraigned today and bail was denied.” A 
system reading the story might see “arrested” and see that it 
links to an internal frame called “crime.” The crime frame 
might have slots for “accused person,” “charge,” “victim,” 
and “custodial status.” The system could then interpret the 
story as indicating that Joe is the accused person, murder is 
the charge, Sarah is the victim. For the custodial status the 
system might look to another frame called “arraignment” 
that includes the rule that if bail is allowed and paid, the 
person’s status is “released until trial” while if the bail is 
either not allowed or not paid, the status is “in custody.”

Computational linguistics and natural language pro-
cessing are likely to be of increasing interest in years to 
come. With the World Wide Web bringing the world’s lan-
guages into more pervasive contact, the ability to trans-
late or automatically summarize Web pages and e-mail will 
be very marketable. It is also likely that advanced, secret 
research in the field is also being carried out by organiza-
tions such as the National Security Agency (NSA), which 
monitor worldwide communications.
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Linux
Linux is an increasingly popular alternative to proprietary 
operating systems. Its development sprang from two sources. 
First was the creation of open-source versions of UNIX utili-
ties (see unix) by maverick programmer Richard Stallman 
as part of the GNU (“Gnu’s not UNIX”) project during the 
1980s. Although these tools were useful, the kernel, or basic 
set of operating system functions, was still missing (see ker-
nel). Starting in 1991, another creative programmer, Linus 
Torvalds, began to release open-source versions of the UNIX 
kernel (see Torvalds, Linus). The combination of the ker-
nel and utilities became known as Linux (a combination 
of Linus and UNIX), though Stallman and his supporters 
believe that GNU/Linux is a more accurate name.

Development and Distributions
As an open-source product, Linux is continually being 
developed by a community of thousands of loosely orga-
nized programmers. (The further development of the kernel 
itself is more closely supervised by Torvalds and a system 
of review that he set up.) New versions of the Linux kernel 
are released frequently, including support (drivers) for new 
devices and refinements in other features.

A distribution or “distro” is a package consisting of a 
Linux kernel, standard utilities, and a variety of other soft-
ware such as office and graphics programs, Web-related 

programs, and so on. Some distributions such as Novell and 
Red Hat are geared toward business use and provide fee-
based support and consulting (Red Hat spun off Fedora as a 
free user-supported distribution). One of the most popular 
distributions as of the mid-2000s is Ubuntu. Named for 
an African word meaning “humanity toward others” and 
funded by millionaire Mark Shuttleworth, Ubuntu com-
bines a business-oriented component (through Canonical 
Ltd.) and a large and enthusiastic community of desktop 
users from all walks of life.

Using Linux
Linux is very versatile and probably runs on more kinds 
of devices than any other operating system. These include 
supercomputer clusters, Web and file servers, desktops 
(including PCs designed for Windows and Macs), laptops, 
PDAs, and even a few smart phones. The Linux program-
mer has many programming languages and environments 
to choose from, including C++, Java, Perl, PHP, and Ruby. 
Thousands of open-source programs have been written for 
or ported to Linux, including OpenOffice.org (a suite com-
parable to Microsoft Office), databases (such as MySQL), 
and Apache, the most popular Web server.

Although Linux rapidly gained a significant share in server 
applications, early versions of Linux for ordinary desktop 

The basic components of a Linux system. A distribution, or “dis-
tro,” combines the latest version of the common kernel with a win-
dow manager, selected software, and, perhaps, custom features.
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users were criticized as being hard to install and to config-
ure for various types of hardware. However, current versions 
of Linux have an installation experience that is comparable 
to that of Windows, and such details as disk partitioning 
and setting up networks can often be handled automatically. 
(There can still be problems with some devices such as wire-
less cards for laptops, but even there things have improved 
considerably.) A Linux distribution such as Ubuntu is now a 
viable alternative to Windows unless one has to use certain 
programs (such as PhotoShop or many games) that do not 
have Linux versions. However, such options as dual-booting, 
emulation, or virtual machines offer the ability to use both 
Linux and Windows on the same machine.
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LISP
As interest in AI (see artificial intelligence) developed 
in the early 1950s, researchers soon became frustrated by 
the low-level computer languages of the day, which empha-
sized computation and other manipulation of numbers 
rather than the processing of symbolic data.

A Linux system running Open Office, a full-featured (and free) office software suite  (Sun Microsystems) 
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At the 1956 Dartmouth Summer Research Project on 
Artificial Intelligence, a gathering that brought together the 
key early pioneers in the field, John McCarthy presented his 
concepts for a different kind of computer language. Such 
a language, he believed, should be able to deal with math-
ematical functions in their own terms—by manipulating 
symbols, not just calculating numbers.

Together with Marvin Minsky, McCarthy began to 
implement a language called LISP (for “list processor”). (See 
McCarthy, John and Minsky, Marvin.) As the name sug-
gests, the language uses lists to store data (see list pro-
cessing) and features many functions for manipulating 
list elements. List can consist of single elements (called 
“atoms”) as in

(A B C D)

but lists can also include other lists, as in

(A (B C) D)

Each list item is stored as a “node” containing both a pointer 
to its data value and a pointer to the next item in the linked 
list. The LISP system typically includes housekeeping func-
tions such as “garbage collection,” where the memory from 
discarded list items is returned to the free memory pool for 
later allocation.

LISP programs look forbidding at first sight because they 
tend to have many nested parentheses. However, expres-
sions and functions are actually constructed in a much sim-
pler way than in most other languages. Without the need 
for complicated parsing, the LISP interpreter (called “eval” 
because it evaluates its input) looks at the stream of data 
and first asks whether the next item is a constant (such as a 
number, quoted symbol, string, quoted list, or keyword). If 
so, its value is returned. Otherwise, the interpreter checks 
to see if the item is a defined variable and, if so, returns its 
value. Finally, the interpreter checks to see if there is a list. 
If so, the list is considered to be a function call followed by 
its arguments. The function is called, given the data, and 
the result is returned.

The following table shows some items in a list program 
and how the interpreter will evaluate them:

Examples of Lisp Items

Type of Item	E xample	E valuation

integer	 24	 24
float	 5.5	 5.5
ratio	 3/4	 0.75
keyword	 defun	 defines function
quoted integer	 ’24	 24
quoted list	 ’(3 1 4 1 5)	 (3 1 4 1 5)
boolean	 nil	 false
function call	 +2 4	 6
variable	 a	 its value
quoted variable	 ’a	 a 

Languages such as Algol, Pascal or C emphasize state-
ments and procedures. LISP, on the other hand, was the 

first functional language (see functional languages). 
The heart of a LISP program is functions that are evaluated 
together with their arguments. LISP includes many built-
in, or primitive functions. Besides the usual mathematical 
operations, there are primitives for basic list-processing 
functions. For example, the list function creates a list from 
its arguments: (list 1 2 3) returns the list (1 2 3), while the 
cons function inserts an atom into the beginning of a list, 
and the append function tacks it onto the end. Program-
mers define their own functions using the defun keyword.

LISP has two other features that make it a powerful 
and flexible language for manipulating symbols and data. 
LISP allows for recursive functions (see recursion). For 
example, the following function raises a variable x to the 
power y:

(defun power (x y)
(if (= y 0) 1

(* x (power x (1– y)))))

Here the if expression checks to see whether y is 0. If 
not, the second expression invokes the function (power) 
itself, which performs the same test. The result is that the 
function keeps calling itself, storing temporary values, until 
y gets down to 0. It then “winds itself back up,” multiplying 
x by itself y times.

But perhaps the most interesting feature of LISP is that 
it makes no distinction between programs (functions) and 
data. Since a function call and its arguments themselves 
constitute a list, a function can be fed as data to other func-
tions. This makes it easy to write programs that modify 
their own operation.

Language Development
LISP quickly caught on with artificial intelligence research-
ers, and the version called LISP 1.5 was considered robust 
enough for writing large-scale applications. While “main-
stream” computer scientists often used Algol and its descen-
dants as a universal language for expressing algorithms, 
LISP became the lingua franca for AI people.

However, a number of dialects such as Mac-LISP diverged 
as versions were written to support new hardware or were 
promoted by companies such as LMI and Symbolics. While 
researchers liked the interactive nature of interpreted LISP 
(where functions could be defined and immediately tried out 
at the keyboard), practical applications required compilation 
into machine language to achieve adequate speed.

A widely used LISP variant is Scheme, developed by 
MIT researchers in the mid-1970s. Scheme simplifies LISP 
syntax (while still preserving the spirit), and at the same 
time generalizes further by allowing functions to have all 
the capabilities of data entities. That is, functions can be 
passed as parameters to other functions, returned as values, 
and assigned to variables and lists.

By the 1980s, personal computers became powerful 
enough to run LISP, and the proliferation of LISP variants 
running on different platforms led to a standardization move-
ment that resulted in Common LISP in 1984. Common LISP 
combines the features of many existing dialects, includes 
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a rich variety of data types, and also makes greater allow-
ance for the imperative, sequential programming approach of 
languages such as C. It thus accommodates varying styles of 
programming. It is widely available today in both commer-
cial and shareware versions.

Seymour Papert created a LISP-like language called 
Logo, which has been used to teach sophisticated computer 
science ideas to young students (see logo).
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list processing
A list is a series of data items that can be accessed sequen-
tially by following links from one item to the next. Lists 
can be very useful for ordering or sorting data items and for 
storing them on a stack or queue.

There are two general approaches to constructing lists. 
In a data list used with procedural programming languages 
such as C, each list item consists of a structure consisting 
of a data member and a pointer. The pointer, called “next,” 
contains the address of the next item. A program can easily 
“step through” a list by starting with the first item, process-
ing its data, then using the pointer to move to the next 
item, continuing until some condition is met or the end of 
the list is reached.

In LISP-type languages, however, a more general struc-
ture is used, since essentially all data is part of a list. Here 
each item is a node that can contains a pointer to any valid 
object and a pointer to the next node. One advantage of this 
scheme is that since fixed-length data fields are not used, 
the list can be “hooked up” to objects of varying sizes and 
types. This can also use memory more efficiently, though at 
the cost of additional processing being needed to periodi-
cally reclaim memory (“garbage collection”).

Besides traversing (stepping through) a list by follow-
ing its “next” pointer, the basic list-processing operations 
are insertion and deletion. It is easy to insert a new element 
into a list: You first move to the item after which the new 
item is to be inserted. Next, you connect that item’s “next” 
pointer (link) to the new item. You then connect the new 
item’s next link to the item that originally followed the 
insertion point. Deleting an item is even simpler: You “snip 
out” the item by connecting the item that originally linked 
to it to the item that was originally after it.

Sometimes lists are set up so that each item has two 
pointers: one to the next item and one to the previous one. 
Such doubly linked lists can be traversed in either direction, 
making retrieval faster in some situations, though at the cost 
of storing the extra pointers. Lists are also used to implement 
some specialized data structures (see stack and queue).

Applications
Lists are generally used to provide convenient access to rel-
atively small amounts of data where flexibility is required. 
Unlike an array, a list need use only as much memory as it 
needs to accommodate the current number of items (includ-
ing their associated pointers). A LISP-style node list can be 
even more flexible in that items with varying sizes and 
types of data can be included in the same list. Lists are thus 
a more flexible way to implement such things as look-up 
tables. (See also array.)

Further Reading
Covington, Michael A. “Some Recursive List Processing Algo-
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A singly linked list. Each node (item) includes a value and a 
pointer to the next node. Inserting a new node is simply a matter of 
adjusting the pointer of an existing node to point to the new node, 
with the new node’s pointer in turn pointing to the next item (or the 
end of the list). A node is removed by disconnecting its pointer.

A doubly linked list. Each node has two pointers, one to the next 
item and one to the prior (preceding) item. While doubly linked 
lists use more memory, they can be processed more quickly because 
they can be traversed in either direction.
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local area network  (LAN)
Starting in the 1980s, many organizations sought to connect 
their employees’ desktop computers so they could share 
central databases, share or back up files, communicate via 
e-mail, and collaborate on projects. A system that links 
computers within a single office or home, or a larger area 
such as a building or campus, is called a local area network 
(LAN). (Larger networks linking branches of an organiza-
tion throughout the country or world are called wide area 
networks, or WANs. See network.)

Hardware Architecture
There are two basic ways to connect computers in a LAN. 
The first, called Ethernet, was developed by a project at the 
Xerox Palo Alto Research Center (PARC) led by Robert Met-
calfe. Ethernet uses a single cable line called a bus to which 
all participating computers are connected. Each data packet 
is received by all computers, but processed only by the one 
it is addressed to. Before sending a packet, a computer first 
checks to make sure the line is free. Sometimes, due to the 
time delay before a packet is received by all computers, 
another computer may think the line is free and start trans-

mitting. The resulting collision is resolved by having both 
computers stop and wait varying times before resending.

Because connecting all computers to a single bus line is 
impractical in larger installations, Ethernet networks are 
frequently extended to multiple offices by connecting a bus 
in each office to a switch, creating a subnetwork or segment 
(this is sometimes called a star topology). The switches are 
then connected to a main bus. Packets are first routed to 
the switch for the segment containing the destination com-
puter. The switch then dispatches the packet to the destina-
tion computer. Another advantage of this switched Ethernet 
system is that more-expensive, high-bandwidth cable can 
be used to connect the switches to move the packets more 
quickly over greater distances, while less-expensive cabling 
can be used to connect each computer to its local switch.

An alternative way to arrange a LAN is called token 
ring. Instead of the computers being connect to a bus that 
ends in a terminator, they are connected in a circle where 
the last computer is connected to the first. Interference is 
prevented by using a special packet called the token. Like 
the use of a “talking stick” in a tribal council, only the 
computer holding the token can transmit at a given time. 
After transmitting, the computer puts the token back into 
circulation so it can be grabbed by the next computer that 
wants to send data.

LAN Software
Naturally there must be software to manage the transmis-
sion and reception of data packets. The structure of a packet 
(sometimes called a frame) has been standardized with a 
preamble, source and destination addresses, the data itself, 

A Token Ring network connects the machines in a “chain” around 
which messages called tokens travel. Any PC can “grab” a passing 
token and attach data and the address of another PC to it. Each PC 
in turn watches for tokens that are addressed to it.

The Star network configuration uses a central hub to which each 
PC is attached. To extend the network (such as into other offices), 
the hubs can be connected to one another so they function as 
switches. When a token arrives that is addressed to one of its PCs, 
the hub will route it to the appropriate machine.
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a checksum, and two special layers that interface with the 
differing ways that Ethernet and token ring networks physi-
cally handle the packets.

The low-level processing of data packets must also be 
interfaced with the overall operating system so that, for 
example, a user on a desktop PC can “see” folders and files 
on the file server and whole files can be transferred between 
server and desktop PC. From the 1980s to the mid-1990s 
the most common LAN operating system for DOS and later 
Windows-based PCs was Novell Netware, while Macintosh 
users used AppleTalk. Later versions of Windows (nota-
bly Windows NT) then incorporated their own networking 
support, and Netware use declined somewhat.

The tremendous popularity of the Internet (particularly 
the Web) starting in the mid-1990s propelled the Inter-
net protocol (see tcp/ip) into the forefront of networking. 
Today’s business and home computers use essentially the 
same tools to connect to the global Internet and to one 
another. (The term Intranet, once used to distinguish local 
TCP/IP networks from the Internet, is now pretty much 
obsolete.)

Meanwhile, the technologies used to implement this 
universal networking have proliferated. While the Inter-
net is most commonly delivered to homes and businesses 
via wires (see cable modem and dsl), wireless networking 
has replaced cable for many local networks, including most 
home networks (see Wireless and mobile computing), 
with the hub of the network being an inexpensive router 
and wireless access point.
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Logo
Logo is a derivative of LISP (see lisp) that preserves much of 
that language’s list processing and symbolic manipulation 
power while offering simpler syntax, easier interactivity, 
and graphics capabilities likely to appeal to young people. 
Logo has often been used as a first computer language for 
students in elementary and junior high school grades. As 
Harold Abelson noted in his Apple Logo primer in 1982, 
“Logo is the name for a philosophy of education and a con-
tinually evolving family of programming languages that aid 
in its realization.”

Logo was developed starting in 1967 by educator Sey-
mour Papert and his colleagues at Bolt, Beranek and New-
man, Inc. Papert, a mathematician and AI pioneer, had 
became interested in devising an education-oriented com-
puter language after working with developmental psychol-

ogist Jean Piaget. Papert focused particularly on Piaget’s 
emphasis on “constructivism”—the idea that people learn 
mainly by fitting new concepts into an existing frame-
work built from the experience of daily life. Papert came to 
believe that abstract computer languages such as FORTRAN 
or even BASIC were hard for children to assimilate because 
their algebraic formulas and syntax had little in common 
with daily activities such as walking, playing, drawing, or 
making things.

For example, most computer languages implement 
graphics using statements that specify screen points using 
Cartesian coordinates (X, Y). A square, for example, might 
be drawn by statements such as:

PLOT 100, 100
LINETO 150, 100
LINETO 150, 150
LINETO 100, 150
LINETO 100, 100

While familiarity with the coordinate system eventually 
allows one to visualize this operation, it is far from intui-
tive.

Papert, however, includes a “turtle” in his Logo lan-
guage. The turtle was originally an actual robot that could 
be programmed to move around; in most systems today it is 
represented by a cursor on the screen. As the turtle moves, 
it uses a “pen” to leave a “trail” that draws the graphic.

With turtle commands, a square can be drawn by:

FD 50 (that is, forward 50)
RT 90 (turn right 90 degrees)
FD 50
RT 90
FD 50
RT 90
FD 50
RT 90

Here, the student programmer can easily visualize walk-
ing and turning until he or she arrives back at the starting 
point. In keeping with Piaget’s theories, the learning is con-
gruent with the physical world and daily activities.

Logo includes control structures similar to those in 
other languages, so the above program can be rewritten as 
simply:

REPEAT 4 [FD 50 RT 90]

Logo is much more than a set of simple drawing com-
mands, however. Students can also be encouraged to use the 
list-processing commands to create everything from com-
puter-generated poetry to adventure games. Unlike LISP’s 
obscurely named commands such as car and cdr, Logo’s list 
commands are readily understandable. For example, first 
returns the first item in a list, while butfirst returns all of 
the list except the first item.

Logo procedures are introduced by the to keyword, 
implying that the programmer is “teaching the computer” 
how to do something. For example, a procedure to draw a 
square with a variable size and starting position might look 
like this:
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to square :X :Y :Size
setxy :X :Y
repeat 4 [fd :Size rt 90]
end

Logo has been steadily enhanced over the years, and 
includes not only a full set of math functions, but also many 
versions include special sound, graphics, and multimedia func-
tions for Windows or Macintosh systems. By the mid-1980s, 
Logo had been combined with the popular LEGO building 
toy to create LEGO Logo. This popular kit enables students to 
build and control a variety of robots and other gadgets.

By the 1990s, Logo had to some extent become a casu-
alty to the pressure on educators to provide “real world” 
programming skills using languages such as C++ or Java. 
However, Logo using educators have continued to flourish 
in parts of Europe, Japan, and Latin America. Logo has also 
been energized by the development of two recent versions. 
MicroWorlds Logo took advantage of the Macintosh inter-
face to provide a full-featured multimedia environment, 
and it was later adapted for Windows systems. Another 
version, StarLogo, emphasizes parallel processing concepts, 
and is able to control thousands of separate turtles that can 
be programmed to simulate behaviors such as bird flocks or 
traffic flows. As Brian Harvey’s books show, Logo’s acces-
sible, interactive nature continues to make it a good choice 
for teaching computer science to adults as well.
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loop
If computers were merely fast sequential calculators, they 
would still be of some use. However, much of the power of 
the computer comes from its ability to carry out repetitive 
tasks without supervision. The loop is the programming 
language structure that controls such activities. Virtually 
every language has some form of loop construct, with vari-
ations in syntax ranging from the relatively English-like 
COBOL and Pascal to the more cryptic C. We will use 
BASIC for our examples, since its syntax is easy to read.

The standard while loop performs the specified actions 
as long as the specified condition is true. For example:

While NOT EOF (Input_File)
Read_Record
Process_Record

Wend
Print “Done!”

This loop first checks to see whether the end of the input 
file (opened earlier) has been reached. If not, it reads and 
processes a record (using procedures defined elsewhere). 
The “Wend” marks the end of the statements controlled by 
the loop. When the end of the file is reached, the test fails 
(returns false) and control skips to the statement following 
Wend. See the accompanying flowchart for a visual depic-
tion of the operation of this loop.

A variant form of while loop performs the test after 
executing the enclosed instructions. For example:

Do
Print “Enter a number: “
Input Number
Print “You entered: “;Number

While (Number <> 0)
Print “I’m Done!”

This loop will display each number the user enters, then 
test it for zero. After a zero is encountered, control will skip 
to the final print statement.

Note that because this second form of while loop does 
not perform the test until it has performed the specified 
actions at least once, it would not be appropriate for the 
first example. In that case, the loop would attempt to get a 
record before discovering it had reached the end of the file, 
and an error would result.

The for loop is useful when an action is to be repeated 
for each of a limited series of cases. For example, this loop 
would print out the ASCII characters corresponding to the 
codes from 32 through 65:

For CharVal = 32 to 65 Step 1
Print Char$(CharVal)

Flowchart for a loop that reads and processes records until it 
reaches the end of the file. Programmers must make sure that the 
end condition of a loop is properly defined, or the loop may run 
endlessly, “hanging” the program.
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Next CharVal

Here Char$ is a function that output the character cor-
responding to the supplied ASCII character code. The step 
clause specifies the interval over which the variable within 
the loop is to be incremented. Here it’s not strictly neces-
sary, since it defaults to 1.

Loops of all sorts can be “nested” so that an inner loop 
executes completely for each step of the outer loop. For 
example:

For Vertical = 0 to 767
For Horizontal = 0 to 1023

Print_Pixel (Vertical, Horizontal)
Next Horizontal

Next Vertical

Here the program will move across each line of the 
screen, printing the contents of each pixel. Each time the 
inner loop finishes, the outer loop increments, moving the 
scanning down to the next line. Indention is used to make 
the relation between the outer and inner loops clear.

In programming loops it’s important to frame the test 
conditions correctly so that they terminate appropriately. 
An “endless loop” can cause a program to “hang” indefi-
nitely. However, some programs do code an endless outer 
loop to indicate the program is to run indefinitely unless 
closed by the operating system. For example, the loop

While (1)
’ Instructions go here

Wend

will execute indefinitely, since the value one is equiva-
lent to “true.”

Since many programs spend most of their time repeat-
edly executing loops, programmers seeking to improve 
the performance of their code pay especial attention to the 
code within the body of a loop. Any code such as a vari-
able assignment, conversion, or calculation that needs to be 
done only once should be moved outside the loop.

Further Reading
“Control Flow.” Wikipedia. Available online. URL: http://
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Sebesta, Robert W. Concepts of Programming Languages. 8th ed. 
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Lua
Lua is a scripting language created by three programmers at 
the Pontifical University of Rio de Janeiro, Brazil. (The word 

Lua is Portuguese for “Moon”). The language has begun to 
attract some attention, particularly among game and Web 
programmers.

Lua has simple syntax and can support both traditional 
(imperative) programming and functional programming 
(see functional languages). Many of the features such as 
inheritance and name spaces that are built into most object-
oriented languages are not part of Lua, but can be created 
through the language’s extension methods (see object-ori-
ented programming).

A simple function in Lua looks like this:

function factorial(n)
if n = 0 then

return 1
end
return n * factorial(n - 1)
end

Note the lack of required semicolons.
Besides a simple assortment of built-in types, Lua uses 

tables to create complex, user-defined types. Tables include 
pairs of values and keys. The key can either be a number 
(creating the equivalent of an array in other languages), or 
a string. For example, the following table consists of three 
values indexed by strings:

coin = { quarter = 25, dime = 10, nickel = 5, 
penny = 1 }

printer (coin[“dime”])	 -- prints 10

By including functions and the data they use into a 
table, classes similar to those used in object-oriented lan-
guages can also be created.

Implementation and Use
Lua programs are compiled to an intermediate form (byte-
code) that runs on a Lua virtual machine for each platform. 
Lua is intended to work closely with C programs, transfer-
ring data via a stack.

Because of its compact runtime packages, Lua is often 
included in applications to provide an interface for editing 
or extending the application. This is particularly true of 
games such as World of Warcraft.

Further Reading
Ierusalimschy, Roberto. Programming in Lua. 2nd ed. Rio de 

Janeiro, Brazil: Lua.org, 2006.
Jung, Kurt, and Aaron Brown. Beginning Lua Programming. India-

napolis: Wiley, 2007.
Lua.org. Available online. URL: http://www.lua.org. Accessed Sep-

tember 26, 2007.
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Macintosh
Since its inception in 1984, Apple’s Macintosh line of per-
sonal computers has offered a distinctive, innovative alterna-
tive to the more mainstream IBM-compatible PCs. When the 
Macintosh came out, it was billed as the computer “for the 
rest of us.” Unlike the text-based, command-driven DOS-
based IBM PC and its “clones,” the “Mac” offered an inter-
face that consisted of menus, folders, and icons that could 
be manipulated by clicking and dragging (see user inter-
face and mouse). The system came out of the box with a 
paint/draw program and a word processor that could show 
documents using the actual font sizes and styles that would 
appear in printed text. This “WYSIWYG” (What You See Is 
What You Get) feature quickly made the Mac the machine 
of choice for desktop publishers and graphic artists. The 
Mac also met with some success in the educational market, 
where the way had been paved by the earlier Apple II.

However, there were factors would limit the Mac 
to a minority market share. The first models ran slowly. 
Although its Motorola 68000 processor was comparable to 
the Intel 80286 used by the IBM XT and AT series, the need 
to draw extensive graphics placed a heavier burden on the 
Mac’s CPU.

Marketing decisions also proved to be problematic. The 
IBM PC had an “open architecture.” Clone makers were able 
to legally produce machines that were functionally equiva-
lent, and Microsoft was able to license to clone manufactur-
ers essentially the same DOS operating system that IBM 
used. This created a robust market as manufacturers com-
peted with added features or lower prices.

Apple, on the other hand, jealously guarded the Apple’s 
hardware and the ROM (read only memory) that held the 
key operating system code. Apple made only a brief and 
half-hearted attempt to license the Mac OS to third parties 
in 1995, and by then it was probably too late. Apple CEO 
Steve Jobs (see Jobs, Steve) kept prices relatively high, bet-
ting that the Mac’s unique operating system and interface 
would entice people to buy the more expensive machine.

But something of a vicious circle set in. Since the Mac 
used a unique operating system, developing new applica-
tions (or porting existing ones) to the Mac was expensive. 
And since the Mac market represented only a small fraction 
of the PC-compatible market, developers were reluctant to 
create such software. Some flagship products such as Aldus 
PageMaker and Adobe Photoshop did cater to the Mac’s 
graphic strengths. In general, however, the PC-compatible 
owner had a far wider range of software to choose from, 
and businesses were traditionally more comfortable with 
IBM equipment, even if IBM didn’t make it.

Microsoft helped develop some successful Mac software, 
including versions of its Word and Office programs. But 
Microsoft CEO Bill Gates responded to the Mac’s interface 
advantages over MS-DOS by developing a new operating 
environment, Windows. Apple sued, claiming that Micro-
soft had gone beyond the license it had negotiated with 
Apple for use of elements of the Mac interface. By the early 
1990s, however, Apple had lost the lawsuit. While the early 
versions of Windows were clumsy and met with little suc-
cess, version 3.0 and, later, Windows 95 succeeded in pro-
viding a user experience that was increasingly close to that 
achieved by the Mac.
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Apple kept trying to innovate and carve out a larger 
market share, designing both Power Macs that used the 
PowerPC RISC (reduced instruction set) microprocessor 
and PowerBook laptops. Toward the end of the 1990s, Apple 
tried to address the low end of the market with the iMac, a 
colorful, sleek machine packed with features such as home 
video editing, and achieved modest success in attracting 
new customers.

New Insides, New Directions?
In 2000 Apple began to revamp what was becoming a some-
what aging architecture. First came the replacement of the 
operating system with a UNIX variant (see unix) while 
retaining the user interface (see os x). In 2006 Apple began 
to transition the Mac’s processor from the Motorola/IBM 
Power PC to the Intel chips that power Windows-compat-
ible PCs. The use of a widely available chip (and provision 
for Windows via the “Boot Camp” utility) may make the 
Mac cheaper and more attractive to mainstream PC users. 
Meanwhile the Macintosh OS X operating system continued 
to evolve from the “Tiger” edition to “Leopard,” released in 
Fall 2007.

While the Mac continues to be a niche market, sales 
have been strong, increasing steadily each year. However, 
in recent years the Mac has been overshadowed somewhat 
as an Apple icon, supplanted by the iPod and in 2007 by the 
iPhone.
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macro
For both programmers and ordinary users, the ability to 
“package” a group of instructions so that it can be invoked 
with a single command can save a lot of effort. The term 
macro is used for such instruction packages in a variety of 
contexts.

In the early days, programmers had to work with low-
level machine instructions (see assembler). Developers 
soon realized that a program could be used to write other 
programs. This program, called a macro assembler, lets the 
programmer write a group of instructions such as:

COMPARE macro

LOAD %1 ‘ load first data item
STOREX  ‘ store in register X
LOAD %2 ‘ load second data item
STOREY  ‘ store in register Y
CMPXY   ‘ compare X and Y registers

endm

Now, if the programmer wants to compare the contents 
of two memory locations (say COUNTER and LIMIT), he or 
she can write simply:

COMPARE COUNT LIMIT

The assembler replaces COMPARE with the sequence of 
instructions above, substituting COUNT and LIMIT for %1 
and %2.

Macros are also used in some higher-level languages, 
notably C. A module called the macro processor performs 
the required substitutions into the source code before the 
code is parsed and compiled. For example, a C programmer 
might include this macro in a program file:

#define IS_LOWERCASE(x) (( (x)>=‘a’) && ( 
(x) <=‘z’) )

Somewhere in the program there might appear a state-
ment such as:

if IS_LOWERCASE (Letter)

The macro processor will replace this with:

if (( (Letter)>=‘a’) && ((Letter) <=‘z’) )

This saves typing as well as reducing the chance of a 
typo creating a hard-to-find bug.

Macros are similar to procedures and functions (see 
procedures and functions) in that they let the program-
mer treat a group of instructions as a single unit, simplify-

A Power Mac G5 with a 30-inch Apple Cinema HD display.  (Apple 
Computer)
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ing coding. However, a given procedure appears in the code 
only once, although it may be called upon from many differ-
ent parts of the program. A macro, on the other hand, is not 
“called.” Each time it is mentioned, the macro is replaced by 
the corresponding instructions. Thus macros increase the 
size of the source code.

Many programmers today prefer using functions with 
the appropriate code rather than macros. Using functions 
saves space, since each function’s code need only appear 
once. Although there is some processing overhead at run-
time in calling the function, the function approach also 
ensures that the data sent to the function will be checked to 
make sure it is of the proper type. The macro, on the other 
hand, usually leaves it up to the programmer to make sure 
the data type being used is appropriate.

Application Macros
The term macro is also used with applications software. 
Here it can mean a series of commands (such as cursor posi-
tioning or text formatting) that are recorded and assigned 
to a certain key combination. For example, a word proces-
sor user might define a macro called Letter and record the 
keystrokes and/or mouse movements needed to open a new 
document, insert a letterhead from a file, update the date, 
insert a salutation, and position the cursor to continue writ-
ing the letter. The recorded keystrokes might be assigned to 
the key combination Control + L.

More elaborate macros can be written to automate com-
plex tasks in spreadsheets and word processors. Microsoft 
provides an entire language, Visual Basic for Applications 
(VBA), for writing macros for its Office products.
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Maes, Pattie
(1961–  )
Belgian/American
Computer Scientist

Pattie Maes is a pioneer in the creation of software agents, 
intelligent programs that work with people to help them 
find what they need online, whether it is relevant news 
stories, a vacation itinerary, or a good place for a romantic 
dinner for two in San Francisco.

Born June 1, 1961, in Brussels, Belgium, Maes was inter-
ested in science (particularly biology) from an early age. 
She received bachelor’s (1983) and doctoral (1987) degrees 

in computer science and artificial intelligence from the Uni-
versity of Brussels.

In 1989 Maes moved from Belgium to the Massachu-
setts Institute of Technology, where she joined the Artifi-
cial Intelligence Lab. There she worked with an innovative 
researcher who had created swarms of simple but intrigu-
ing insectlike robots (see Brooks, Rodney). Two years later 
Maes became an associate professor at the MIT Media Lab, 
famed for innovations in how people interact with com-
puter technology (see MIT Media Lab). There she founded 
the Software Agents Group to promote the development of a 
new kind of computer program.

These programs (see software agent) have consider-
able autonomy and intelligence. Like a human travel or real 
estate agent, an agent program must have detailed knowl-
edge of the appropriate area of expertise; the ability to ask 
the client questions about preferences, priorities, and con-
straints; and the ability to find the best deals and negotiate 
with service providers.

Maes’s goal has been to create software agents who think 
and act much like their human counterparts. To carry out 
a task using an agent, the user does not have to specify 
exactly how it is to be done. Rather, the user describes the 
task, and the software engages in a dialog with the user to 
obtain the necessary guidance.

A software travel agent would know—or ask about—
such things as how much the user wants to spend and 
whether he or she prefers sites involving nature, history, or 
adventure. It would also ask about and take into consider-
ation constraints of budget, travel time, comfort, and so on. 
The software agent would then use its database and proce-
dures to put together an itinerary based on the user’s needs 
and desires. It would not only know where to find the best 
fares and rates, it would also know how to negotiate with 
hotels and other services. Indeed, it might negotiate with 
their software agents.

In 1995 Maes cofounded Firefly Networks, a company 
that attempted to create commercial applications for soft-
ware agent technology. Although the company was bought 
by Microsoft in 1998, one of its ideas—“collaborative filter-
ing”—can be experienced by visitors to sites such as Ama-
zon.com. Users in effect are given an agent whose job it is to 
provide recommendations for books and other media. The 
recommendations are based upon observing not only what 
items the user has already purchased, but also what else 
has been bought by people who bought those same items. 
More advanced agents can also tap into feedback resources 
such as user book reviews on Amazon or auction feedback 
on eBay (see social networking).

A listing of Maes’s current research projects at MIT con-
veys many aspects of and possible applications for software 
agents. These include the combining of agents with interac-
tive virtual reality, using agent technology to create charac-
ters for interactive storytelling, the use of agents to match 
people with the news and other information they are most 
likely to be interested in, an agent that could be sent into an 
online market to buy or sell goods, and even a “Yenta” agent 
that would introduce people who are most likely to make a 
good match.
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Maes has participated in many high-profile conferences 
such as AAAI (American Association for Artificial Intelli-
gence) and ACM Siggraph, and her work has been featured 
in numerous magazine articles. She was one of 16 modern 
“visionaries” chosen to speak at the 50th anniversary of the 
ACM. She has also been repeatedly named by Upside maga-
zine as one of the 100 most influential people for develop-
ment of the Internet and e-commerce. Time Digital featured 
her in a cover story and selected her as a member of its 
“cyber elite.” Newsweek put her on its list of 100 Americans 
to be watched for in the year 2000. That same year the Mas-
sachusetts Interactive Media Council gave her its Lifetime 
Achievement Award.

Further Reading
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mainframe
In the era of vacuum tube technology, all computers were 
large, room-filling machines. By the 1960s, the use of tran-
sistors (and later, integrated circuits), enabled the produc-
tion of smaller (roughly, refrigerator-sized) systems (see 
minicomputer). By the late 1970s, desktop computers were 
being designed around newly available computer chips (see 
microprocessor). Although they, too, now use integrated 
circuits and microprocessors, the largest scale machines are 
still called mainframes.

The first commercial computer, the UNIVAC I (see Eck-
ert, J. Presper and Mauchly, John) entered service in 
1951. These machines consisted of a number of large cabi-
nets. The cabinet that held the main processor and main 
memory was originally referred to as the “mainframe” 
before the name was given to the whole class of machines.

Although the UNIVAC (eventually taken over by Sperry 
Corp.) was quite successful, by the 1960s the quintessen-
tial mainframes were those built by IBM, which controlled 
about two-thirds of the market. The IBM 360 (and in the 
1970s, the 370) offered a range of upwardly compatible sys-
tems and peripherals, providing an integrated solution for 
large businesses.

Traditionally, mainframes were affordable mainly by 
large businesses and government agencies. Their main 
application was large-scale data processing, such as the 
census, Social Security, large company payrolls, and other 
applications that required the processing of large amounts 
of data, which were stored on punched cards or transferred 
to magnetic tape. Programmers typically punched their 
COBOL or other commands onto decks of punched cards 
that were submitted together with processing instructions 
(see job control language) to operators who mounted 
the required data tapes or cards and then submitted the 
program cards to the computer.

By the late 1960s, however, time-sharing systems allowed 
large computers to be partitioned into separate areas so that 
they can be used by several persons at the same time. The 
punched cards began to be replaced by Teletypes or video 
terminals at which programs or other commands could be 
entered and their results displayed or printed. At about 
the same time, smaller computers were being developed by 
Digital Equipment Corporation (DEC) with its PDP series 
(see minicomputer).

With increasingly powerful minicomputers and later, 
desktop computers, the distinction between mainframe, 
minicomputer, and microcomputer became much less pro-
nounced. To the extent it remains, the distinction today is 
more about the bandwidth or amount of data that can be 
processed in a given time than about raw processor per-
formance. Powerful desktop computers combined into net-
works have taken over many of the tasks formerly assigned 
to the largest mainframe computers. With a network, even 
a large database can be stored on dedicated computers (see 
file server) and integrated with software running on the 
individual desktops.

Nevertheless, mainframes such as the IBM System/390 
are still used for applications that involve processing large 
numbers of transactions in near real-time. Indeed, many 
of the largest e-commerce organizations have a mainframe 
at the heart of their site. The reason is that while the raw 
processing power of high-end desktop systems today rivals 
that of many mainframes, the latter also have high-capacity 
channels for moving large amounts of data into and out of 
the processor.

Early desktop PCs relied upon their single processor to 
handle most of the burden of input/output (I/O). Although 
PCs now have I/O channels with separate processors (see 
bus), mainframes still have a much higher data through-
put. The mainframe can also be easier to maintain than a 
network, since software upgrades and data backups can 
be handled from a central location. On the other hand, a 

The IBM System/360 was the most successful mainframe in com-
puter history. It was actually a “family” of upwardly compatible 
machines.  (IBM Corporate Archives)
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system depending on a single mainframe also has a single 
point of vulnerability, while a network with multiple mir-
rored file servers can work around the failure of an indi-
vidual server.
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management information system
The first large-scale use of computers in business in the late 
1950s and 1960s focused on fundamental data processing. 
Companies saw computers primarily as a way to automate 
such functions as payroll, inventory, orders, and accounts 
payable, hoping to keep up with the growing volume of data 
in the expanding economy while saving labor costs associ-
ated with manual methods. The separate data files and pro-
grams used for basic business functions were generally not 
well integrated and could not be easily used to obtain cru-
cial information about the performance of the business.

By the 1970s, the growing capabilities of computers 
encouraged executives to look for ways that their infor-
mation systems could be used to competitive advantage. 
Clearly, one possibility was that reporting and analysis 
software could be used to help them make faster and bet-
ter decisions, such as about what products or markets to 
emphasize. To achieve this, however, the “data process-
ing department” had to be transformed into a “manage-
ment information system” (MIS) that could allow analysis 
of business operations at a variety of levels.

The MIS Pyramid
If one thinks of the information infrastructure of an enter-
prise as being shaped like a pyramid, the bottom of the 
pyramid consists of the transactions themselves, where 
products and services are delivered, and the supporting 
point of sale, inventory, and distribution systems that keep 
track of the flow of product.

The next layer up begins the process of integration and 
operational control. For example, previously separate sales 
and inventory system (perhaps updated through a daily 
batch process) now become part of an integrated system 
where a sale is immediately reflected in reduced inventory, 
and the inventory system is in turn interfaced with the 
order system so more of a product is ordered when it goes 
out of stock.

The next layer can be called the operational analysis 
layer. Here such functions as sales, inventory, and ordering 
aren’t simply connected; they are part of the same system 
of databases. This means that both simple and complex 
queries and analysis can be run against a database contain-
ing every type of transaction that the business engages in. 
In addition to routine reports such as sales by region or 
product line, market researchers or strategic planners can 
receive the data they need to answer questions such as:

• � What products are staying on the shelf the longest?

• � What is the ratio between profitability and shelf space 
for particular items?

• � What is the relationship between price reductions, 
sales, and profits for a certain category of items?

The goal of this layer is to help managers identify the 
variables that affect the performance of their store or other 
business division and to determine how to optimize that 
performance (see also digital dashboard).

The very top level can be called the strategic planning 
layer. Here top-level executives are interested in the overall 
direction of the business: determining which divisions of a 
company should receive the greatest long-term investment, 
and which perhaps should be phased out. For example:

• � Which kind of sales are growing the fastest: in-store, 
mail-order catalog, or Internet on-line store?

• � How is our market share trending compared to vari-
ous classes of competitors?

The activities involved in managing an enterprise’s information 
infrastructure can be drawn as a pyramid. The raw material of 
transactions at the bottom are stored in databases. Moving up the 
pyramid, these data sources are integrated and refined to provide 
better information about business operations as well as material for 
operational analysis and strategic planning.
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• � How are sales trending with regard to various types 
(demographics) of customers?

Software Support
There are many considerations to choosing appropriate 
software to support the users who are trying to answer 
questions at the various levels of management. At mini-
mum, to create a true management information system, the 
information from daily transactions must be made acces-
sible to a variety of query or analysis programs.

In the past three decades many established businesses 
have had to go through a painful process of converting a 
variety of separate databases and “legacy software” (often 
written in COBOL in the 1960s or 1970s) into a modern 
relational database such as Oracle or Microsoft Access. 
Sometimes a company has decided that the cost of rewrit-
ing software and converting data is simply too high, and 
instead, opts for a patchwork of utility programs to convert 
data from one program to another.

The growth of networking in the 1980s and Web-based 
intranets in the 1990s required that the old model of a large, 
centralized data repository accessed directly by only a few 
users be replaced by a less centralized model, sometimes 
going as far as using a distributed database system where 
data “objects” can reside throughout the network yet be 
accessed quickly by any user (see database management 
system). An alternative is the data repository that includes 
queries and other tools (see data warehouse).

Future of MIS
With the prominence of the Internet and e-commerce today, 
MIS has had to cope with an even more complex and fast-
moving world. On the one hand, widespread e-commerce 
enables the capturing of more detailed data about transac-
tions and consumer behavior in general. New tools for ana-
lyzing large repositories of data (see data mining) make it 
possible to continually derive new insights from the recent 
past. It is thus clear that information is not just a tool but 
also a corporate asset in itself. On the other hand, fierce 
competition and often shrinking profit margins in e-com-
merce have placed increasing pressure on MIS departments 
to find the greatest competitive advantage in the shortest 
possible time.

The importance of MIS has also been reflected in its 
place in the corporate hierarchy. The top-level executive 
post of Chief Information Officer (CIO) has perhaps not 
yet achieved parity with the Chief Financial Officer (CFO), 
but healthy budgets for MIS even in constrained economic 
times testify to its continuing importance.
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map information and navigation systems
A variety of online services use the integration of maps 
and databases to provide detailed information ranging from 
weather forecasts to traffic conditions to local shopping and 
restaurants. Increasingly, these services can be customized 
to the user’s needs. Further, when combined with global 
positioning system (GPS) devices, the map display can be 
focused on the user’s current location, providing naviga-
tion and/or “points of interest” information. (For mapping 
systems primarily designed for scientific or other analytical 
use, see geographical information systems.)

Mapquest
MapQuest has its roots in the Cartographic Services Divi-
sion of R. R. Donnelley, a leading maker of printed maps. 
The company first went online in 1996, was renamed Map-
Quest in 1999, and was acquired by America Online (AOL) 
in 2000.

The basic services offered by MapQuest are street maps 
of a user-specified location, and driving routes between 
an origin and a destination. In recent years the service 
has been elaborated to allow users to customize routes, to 
obtain location-related “Yellow Pages” service from AOL, 
and to receive maps and driving directions on PDAs and 
mobile phones.

Google Maps and Google Earth
Arriving on the Web in 2005 was Google Maps, a more 
sophisticated and versatile mapping service. There are four 
types of map view: street map, actual satellite or aerial photo, 
street map overlaid on photo, and street-level photo views 
(in selected cities.) Besides specifying a particular location 
for the map, users can enter queries such as “pizza in Berke-
ley” to highlight locations where the pies are available.

A related application is Google Earth, which was based 
on a product acquired by Google in 2004. Google Earth is 
available for PCs running Windows, Mac OS, and Linux, 
and shows detailed imagery of most terrain at 15-meters 
resolution or smaller, with considerably more detailed imag-
ery of some cities. Views have also been enhanced to pro-
vide a better 3D visualization of features such as the Grand 
Canyon or Mount Everest, as well as a significant number of 
major buildings. In 2007 Google added sky views as well as 
surface views of the Moon and Mars.

Like other Google services, Google Maps and Google 
Earth offer extensive interfaces that can be used to link 
maps and imagery with data from other programs. For 
example, Wikipedia articles that include coordinate tags 
will now be automatically linked to the corresponding 
content from Google Earth. (For more on the creation of 
new applications through combining existing services, see 
mashups.)

Because mapping services (particularly Google) have 
featured relatively high-resolution aerial and even street-
level photographic views, some government agencies around 
the world have complained that the service is providing 
too much detail of military or other sensitive installations. 
(This is also a potential terrorism concern.) Also, privacy 
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advocates are concerned that actual images of identifiable 
persons show up in the street-level imagery.

Google has responded to security concerns by blurring 
the imagery of some U.S. locations, presumably at govern-
ment request. They have also argued that pictures of people 
who are in public places months or years earlier are not a 
real privacy concern.

Mobile Navigation Systems
Mobile navigation systems can provide maps, driving direc-
tions, and sometimes additional information such as traffic 
conditions and advisories. The system can be either built 
into the dashboard (as with many higher-end vehicles) or 
available as a mounted unit such as those from Garmin, 
Tom Tom, and Magellan (see cars and computing).

Mobile navigation systems link the user’s current loca-
tion (obtained through the GPS system) to the unit’s stored 
database of maps and other information, such as local 
points of interest. (Some units have backup dead-reckon-
ing systems based on the car’s motion, for use when GPS 
signals are lost or distorted because of buildings or other 
obstacles.)

An alternative to in-car systems is the smartphone or 
PDA equipped with GPS and navigation software. These 
have the advantage of also being useful for pedestrians or 
hikers.

Users should look for navigation systems that have fea-
tures such as:

• � large, clear, readable display

• � overhead display and display from driver’s point of 
view

• � uncluttered user interface to avoid distracting the 
driver

• � voice announcements of driving directions and other 
information

• � comprehensive maps and database including the abil-
ity to load supplemental coverage for other areas

An important and sometimes overlooked issue with 
mobile navigation systems is the need to design the display 
and user interface so as to minimize distraction. A combi-
nation of large displays without unnecessary complexity 
and the use of spoken driving directions can help. A more 
controversial approach is to disable many functions of the 
system (such as entering new destinations) while the car is 
in motion.
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marketing of software
The way software has been produced and marketed has 
changed considerably in the past five decades. In the nascent 
computer industry of the 1950s, commercial software was 
developed and marketed by the manufacturers of computer 
systems—firms such as Univac (later Sperry-Univac), Bur-
roughs, and of course, IBM (see mainframe). However, a 
separate (third-party) software industry emerged as early 
as 1955 with the founding of Computer Usage Corporation 
(CUC) by two former IBM employees. Nevertheless, the pri-
mary competition was between hardware manufacturers, 
with software seen as part of the overall package.

By the early 1960s, larger software companies emerged 
such as Computer Science Corporation (CSC) and Elec-
tronic Data Systems (EDS), which became an empire under 
the energetic, albeit often controversial leadership of H. 
Ross Perot, as well as the European giant SAP. These com-
panies specialized in providing customized software solu-
tions for users who could not meet their needs with the 
software library offered by the maker of their computer sys-
tem (see also business applications of computers).

By the 1970s, however, vendor-supplied and contracted 
custom software alternatives were being increasingly 
accompanied by “off the shelf” software packages. By 1976, 
100 software products from 64 software companies had 
reached the $1 million mark in sales.

The 1980s saw the emergence of a completely new sec-
tor: desktop computer (PC) users. Traditionally, software 
had been marketed to programmers or managers, but now 
individual users or office managers could buy and install 
word processing programs, spreadsheets, database, and 
other programs. At the same time, a market for software for 
use in the home and schools, particularly education, per-
sonal creativity, and game programs required new methods 
of marketing. For the first time ads for software began to 
appear on TV and in general-interest magazines.

While large businesses still required custom-made soft-
ware, most small to medium businesses looked for powerful 
and integrated office software solutions (see application 
suite, office automation, and Gates, William). By the 
mid-1990s, Microsoft’s Office suite had dominated this 
market, although that dominance began to be threatened to 
some extent by software written in Java or hosted on Linux 
systems (see also open source movement).

The growth in the Internet (see e-commerce) has also 
offered new venues for the marketing and distribution 
of software. Sites such as ZDNet and CNet have to some 
extent displaced computer magazines as sources for prod-
uct reviews. These sites also offer extensive libraries of “try 
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before you buy” software (see shareware), some of which 
is trial versions of full-blown commercial products. The 
local “mom and pop” PC software store has largely van-
ished, with software now marketed mainly by chain stores 
such as Electronics Boutique or CompUSA, and increas-
ingly, through Web-based stores, often established by the 
chains, as well as the giant on-line bookstore Amazon.com.

Another trend impacting the traditional package model 
of software delivery is the hosting and serving of applica-
tions online (see application service provider) using a 
subscription model. Google has offered a free suite of office 
and communications applications online, including com-
ponents that can be used off-line. This and other emerg-
ing offerings may portend further splitting of the software 
market into high-end or specialized applications on the one 
hand, and added-value or premium versions of free software 
on the other.
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mashups
Today the creative world has blurred the boundaries that 
once separated works of art. Songs are sampled and remixed 
from earlier songs. Star Wars fans create new chapters in 
the saga by remixing existing footage and adding their own 
new footage and effects. The fluidity and ease of manipula-
tion of all digital data, regardless of its original source, has 
made it easier than ever before to reuse, repurpose, or rein-
vent content. It is not surprising, then, that software itself 
can be mixed and matched to create new applications called 
mashups.

Mashups are new applications created by putting 
together data or features from existing applications, such as 
maps and databases. Many Web applications are designed 
to make their services available to other programs (see ser-
vice-oriented architecture and Web 2.0). This can be 
done at the programming level by providing an application 
programming interface (see api), or even through simpler 
facilities that can be used easily by nonprogrammers.

A number of major Web sites and applications provide 
resources for mashups, including Google (particularly 
Google Maps), Amazon, eBay, Flickr, YouTube (image and 
video sharing), the “social bookmarking” site del.iciou.us, 
and many others. Some of these services (and third parties) 
have provided mashup editors to simplify the process of 
creating mashups.

As a simple example, suppose one wants to create a map 
display showing rentals in San Francisco by neighborhood, 
color coded by rent range. Google Maps can generate maps 
for any area and plot points on them, given coordinates in a 
standard tag. Craigslist has rental ads including addresses. 
To create a mashup, a “screenscraper” can be used to extract 
addresses and rents from the ads, and the colored points 
can then be plotted on a map of the city via Google.

While the most common types of mashups are created 
by and for ordinary users, mashup techniques can also 
be used in business applications. For example, data from 
several sources (such as Web feeds [see rss]) or various 
databases can be brought together and provided with an 
easy-to-use interface (see digital dashboard).

Mashups can also be considered to be an aspect of the 
emerging new information economy. Developers may be 
finding it in their interest to provide APIs and services suit-
able for mashups because, in turn, the mashups increase 
the use of the original program. By providing these ser-
vices, developers are also contributing to a “digital com-
mons” that benefits all.
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mathematics of computing
The roots of modern computer science lie in an interest in 
rapid computation. Simple mechanical calculators (see cal-
culator) may date back to ancient times; however, it is the 
work of mathematicians Blaise Pascal (1623–1662) and Gott-
fried Leibniz (1646–1716) that gave rise to the first practical 
mechanical calculators. By the mid-19th century, Charles 
Babbage (1791–1871) had conceptualized and designed 
mechanical computers that included the essential features 
(programs, processor, memory, input/output) of the modern 
digital computer (see Babbage, Charles). His motivation 
was the need for rapid, accurate calculation of statistical 
tables made necessary by the manufacturing economy of the 
Industrial Revolution. By the end of the century, the volume 
of such data had increased to the point where mechanical 
calculators and tabulators (see Hollerith, Herman) had 
become the only practical way to keep up.
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Mathematically, a computer can be seen as a way to rap-
idly and automatically execute procedures that have been 
proven to lead to reliable solutions to a problem (see algo-
rithm). Once computers came on the scene, mathemati-
cal principles for verifying or proving algorithms would 
acquire new practical importance.

By the early 20th century, however, mathematicians 
were beginning to examine the problem of determining 
what propositions were provable, and in 1931 Kurt Godel 
published a proof that any mathematical system necessar-
ily allowed for the formation of propositions that could not 
be proven using the axioms of that system. An analogous 
question was determining what problems were computable. 
Working independently, two researchers (see Church, 
Alonzo and Turing, Alan) formulated models that could 
be used to test for computability. Turing’s model, in partic-
ular, provided a theoretical construct (the Turing Machine) 
that could, using combinations of a few simple operations, 
calculate anything that was computable.

By the 1940s, electromechanical (relays) or electronic 
(tube) switching elements made it possible to build prac-
tical high-speed computers. Computer circuit designers 
could draw upon the advances in symbolic logic in the 19th 
century (see Boolean operators). Boolean logic, with its 
true/false values, would prove ideal for operating comput-
ers constructed from on/off switched elements.

The mathematical tools of the previous 150 years 
could now be used to design systems that could not only 
calculate but also manipulate symbols and achieve results 
in higher mathematics (see the next entry, mathematics 
software).

Mathematics and Modern Computers
A variety of mathematical disciplines bear upon the design 
and use of modern computers. Simple or complex algebra 
using variables in formulas is at the heart of many pro-
grams ranging from financial software to flight simulators. 
Indeed, one of the most enduring scientific and engineering 
languages takes its name from the process of translating 
formulas into computer instructions (see fortran).

Geometry, particularly the analytical geometry based 
upon the coordinate system devised by Rene Descartes 
(1596–1650) is fundamental to computer graphics dis-
plays, where the screen is divided into X (vertical) and Y 
(horizontal) axes. Modern graphics systems have added 3D 
depiction and sophisticated algorithms to allow the rapid 
display of complex objects. Beyond graphics, the Carte-
sian insight that converted geometry into algebra makes a 
variety of geometrical problems accessible to computation, 
including the finding of optimum paths for circuit design. 
Design of computer and network architectures also involves 
the related field of topology. The fascinating field of fractal 
geometry has found use in computer graphics and data stor-
age techniques (see fractals in computing).

Aspects of number theory, often considered the most 
abstract branch of mathematics, have found surprising rel-
evance in computer applications. These include randomiza-
tion (random number generation) and the factoring of large 
numbers, which is crucial for cryptography.

Mathematics also bears on computer networking with 
regard to communications theory (see bandwidth and 
Shannon, Claude) and techniques for error correction.

The Computer’s Contribution to  
Mathematics
Mathematics as a discipline is thus essential to its younger 
sibling, computer science. In turn, however, computer sci-
ence and technology have enriched the pursuit of math-
ematical truth in surprising ways. As early as 1956, a 
program called Logic Theorist, written by Herbert Simon 
(1916–2001) and Allen Newell (1927–1992) demonstrated 
how a program (that is, a collection of algorithms) could 
prove mathematical propositions given axioms and rules. 
While these early programs worked on a somewhat hit-
or-miss basis, later theorem-solving programs produced 
solutions different from the standard ones known to math-
ematicians, and sometimes more elegant. Thus the com-
puter, which began as an aid to calculation, became an aid 
to symbol manipulation and to some extent an independent 
creative source.
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mathematics software
As explained in the preceding article, computer science 
looked to mathematics to create and verify its algorithms. 
In turn, computer software has greatly aided many levels 
of mathematical work, ranging from simple calculations to 
manipulation of symbols and abstract forms.

At the simplest level, computers overlap the functions 
of simple electronic calculators. Indeed, operating systems 
such as Microsoft Windows and UNIX systems include 
calculator utilities that can be used to solve problems 
requiring a basic four function or more elaborate scientific 
calculator.

The true power of the computer became more evident to 
ordinary users when spreadsheet software was introduced 
commercially in 1979 with VisiCalc (see spreadsheet). 
Spreadsheets make it easy to maintain and update summa-
ries and other reports generated by formulas. Later versions 
of spreadsheet programs such as Lotus 1-2-3 and Microsoft 
Excel have the ability to create a wide variety of plots and 
charts to show relationships between variables in visual 
terms.
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Moving from simple formulas to the manipulation of sym-
bolic quantities (as in algebra), the Association for Comput-
ing Machinery (ACM) classification system describes several 
broad areas of computer-aided mathematics. These include 
numerical analysis (techniques for solving, linear, non-linear, 
and differential equations), discrete mathematics (combinato-
rial and graph theory), and probability and statistics.

There are two general approaches to mathematical 
software. One is the creation of libraries of routines or 
procedures that address particular kinds of problems. A 
programmer who is creating software that must deal with 
particular mathematical problems can link these routines 
to the program, call the procedures with appropriate vari-
ables or data, and return the results to the main program 
for further processing (see procedures and functions). 
The language FORTRAN is still widely used for developing 
mathematics libraries, and there is a legacy of tens of thou-
sands of routines available. Modern systems have the ability 
to link these procedures to programs written in more recent 
languages such as C.

The advantage of using program libraries is that they 
don’t require learning new programming techniques. Each 
routine can be treated as a “black box.” However, it is often 
desirable to work with traditional mathematical notation 
(what one might see on a blackboard in a calculus class, 
rather than typed into computer code). A stand-alone soft-
ware package such as Mathcad, Matlab, or Mathematica 
can automatically simplify or solve algebraic expressions or 
perform hundreds of traditional mathematical procedures. 
For statistical analysis, programs such as SPSS can apply all 
of the standard statistical tests to data and provide a large 
variety of graphics.
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Mauchly, John William
(1907–1980)
American
Inventor, Computer Scientist

John Mauchly was codesigner of the earliest full-scale digi-
tal computer, ENIAC, and its first commercial successor, 

Univac (see also Eckert, J. Presper). His and Eckert’s work 
went a long way toward establishing the viability of the 
computer industry in the early 1950s.

Mauchly was born on August 30, 1907, in Cincinnati, 
Ohio. He attended the McKinley Technical High School in 
Washington, D.C., and then began his college studies at 
Johns Hopkins University, eventually changing his major 
from engineering to physics. The spectral analysis prob-
lems he tackled for his Ph.D. (awarded in 1932) and in 
postgraduate work required a large amount of painstaking 
calculation. So, too, did his later interest in weather pre-
diction, which led him to design a mechanical computer 
for harmonic analysis of weather data (see analog com-
puter). He also learned about binary switching circuits 
(“flip-flops”) and experimented with building electronic 
counters, which used vacuum tubes and were much faster 
than counters using electromagnetic relays.

Mauchly taught physics at Ursinus College in Philadel-
phia from 1933 to 1941. On the eve of World War II, how-
ever, he went to the University of Pennsylvania’s Moore 
School of Engineering and took a course in military appli-
cations of electronics. He then joined the staff and began 
working on contracts to prepare artillery firing tables for 
the military. Realizing how intensive the calculations 
would be, in 1942 he wrote a memo proposing that an 
electronic calculator be built to tackle the problem. The 
proposal was rejected at first, but by 1943 table calculation 
by mechanical methods was falling even further behind. 
Herman Goldstine, who had been assigned by the Aberdeen 
Proving Ground to break the bottleneck, approved the cal-
culator project.

With Mauchly providing theoretical design work and 
J. Presper Eckert heading the engineering effort, the Elec-
tronic Numerical Integrator and Computer, better known as 
ENIAC, was completed too late to influence the outcome of 
the war. However, when the machine was demonstrated in 
February, 1946, it showed that a programmable electronic 
computer was not only about a thousand times faster than 
an electromechanical calculator, it could be used as a gen-
eral-purpose problem-solver that could do much more than 
existing calculators.

Mauchly and Eckert left the Moore School after a dis-
pute about who owned the patent for the computer work. 
They jointly founded what became known as the Eckert-
Mauchly Computer Corporation, betting on Mauchly’s con-
fidence that there was sufficient demand for computers not 
only for scientific or military use, but for business applica-
tions as well. By 1950, however, they were struggling to sell 
and build their improved computer, Univac, while fulfilling 
existing government contracts for a scaled-down version 
called BINAC. In 1950, they sold their company to Rem-
ington Rand, while continuing to work on Univac. In 1952, 
Univac stunned the world by correctly predicting the presi-
dential election results on election night long before most of 
the votes had come in.

Early on, Mauchly saw the need for a better way to write 
computer programs. Univac and other early computers had 
been programmed through a mixture of rewiring, setting of 
switches, and entering numbers into registers. This made 
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programming difficult, tedious, and error-prone. Mauchly 
wanted a way that variables could be represented symboli-
cally: for example, Total rather than a register number such 
as 101. Under Mauchly’s supervision William Schmitt wrote 
what became known as Brief Code. It allowed two-letter 
combinations to stand for both variables and operations 
such as multiplication or exponentiation. A special pro-
gram read these instructions and converted them to the 
necessary register and machine operation commands (see 
interpreter). While primitive compared to later languages 
(see assembler and programming languages), Brief Code 
represented an important leap forward in making comput-
ers more usable.

Mauchly stayed with Remington Rand and its successor 
Sperry Rand until 1959, but then left over a dispute about 
the marketing of the Univac. He continued his career as a 
consultant and lecturer. Mauchly and Eckert also became 
embroiled in a patent dispute arising from their original 
work with ENIAC. Accused of infringing Sperry Rand’s 
ENIAC patents, Honeywell claimed that the ENIAC patent 
was invalid, with another computer pioneer, John Atanasoff, 
claiming that Mauchly and Eckert had obtained crucial 
ideas after visiting his laboratory in 1940 (see Atanasoff, 
John Vincent).

In 1973, Judge Earl Richard Larson ruled in favor of 
Atanasoff and Honeywell. However, many historians of 
the field give Mauchly and Eckert the lion’s share of the 
credit because it was they who had built full-scale, practical 
machines.

Mauchly played a key role in founding the Association 
for Computing Machinery (ACM), one of the field’s premier 
professional organizations. He served as its first vice presi-
dent and second president. He received many tokens of rec-
ognition from his peers, including the Howard Potts Medal 
of the Franklin Institute. In turn, the ACM established an 
Eckert-Mauchly award for excellence in computer design. 
John Mauchly died on January 8, 1980.
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McCarthy, John
(1927–  )
American
Computer Scientist, AI Pioneer

Starting in the 1950s, John McCarthy played a key role in 
the development of artificial intelligence as a discipline, as 
well as developing LISP, the most popular language in AI 
research.

John McCarthy was born on September 4, 1927, in Bos-
ton, Massachusetts. He completed his B.S. in mathematics 
at the California Institute of Technology, then earned his 
Ph.D. at Princeton University in 1951. During the 1950s, he 
held teaching posts at Stanford University, Dartmouth Col-
lege, and the Massachusetts Institute of Technology.

Although he seemed destined for a prominent career 
in pure mathematics, he encountered computers while 
working during the summer of 1955 at an IBM laboratory. 
He was intrigued with the potential of the machines for 
higher-level reasoning and intelligent behavior (see arti-
ficial intelligence). The following year he put together 
a conference that brought together people who would 
become key AI researchers, including Marvin Minsky (see 
Minsky, Marvin). He proposed that “the study is to pro-
ceed on the basis of the conjecture that every aspect of 
learning or any other feature of intelligence can in princi-
ple be so precisely described that a machine can be made 
to simulate it. An attempt will be made to find how to 
make machines use language, form abstractions and con-
cepts, solve kinds of problems now reserved for humans, 
and improve themselves.”

Mathematics had well-developed symbolic sys-
tems for expressing its ideas. McCarthy decided that if 
AI researchers were to meet their ambitious goals, they 
would need a programming language that was equally 
capable of expressing and manipulating symbols. Start-
ing in 1958, he developed LISP, a language based on lists 
that could flexibly represent data of many kinds and even 
allowed programs to be fed as data to other programs 
(see lisp). LISP would be used in the coming decades to 
code most AI research projects, and McCarthy continued 
to play an important role in refining the language, while 
moving to Stanford in 1962, where he would spend the 
rest of his career.

McCarthy also contributed to the development of 
Algol, a language that would in turn greatly influence 
modern procedural languages such as C. He also helped 
develop new ways for people to use computers. Con-
sulting with Bolt, Beranek and Newman (the company 
that would later build the beginnings of the Internet), 
he helped design time-sharing, a system that allowed 
many users to share the same computer, bringing down 
the cost of computing and making it accessible to more 
people. He also sought to make computers more interac-
tive, designing a system called THOR, which used video 
display terminals. Indeed, he pointed the way to the per-
sonal computer in a 1972 paper on “The Home Informa-
tion Terminal.”

In 1971, McCarthy received the prestigious A. M. Turing 
award from the Association for Computing Machinery. In 
the 1970s and 1980s, he taught at Stanford and remained a 
prominent spokesperson for AI, arguing against critics such 
as philosopher Hubert Dreyfus (see Dreyfus, Hubert), 
who claimed that machines could never achieve true intel-
ligence. In 2000 McCarthy retired from Stanford, where he 
remains a Professor Emeritus. In 2003 McCarthy received 
the Benjamin Franklin Medal in Computer and Cognitive 
Science.
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measurement units used in computing
Newcomers to the computing world often have difficulty 
mastering the variety of ways in which computer capacity 
and performance are measured. A good first step is to look 
at the most common metric prefixes that indicate the mag-
nitude of various units (see table).

Common Metric Prefixes Used in 
Computing

Prefix	 Magnitude

kilo	 103 (1 thousand)
mega	 106 (1 million)
giga	 109 (1 billion)
tera	 1012 (1 trillion)
milli	 10-3 (1 thousandth)
micro	 10-6 (1 millionth)
nano	 10-9 (1 billionth)
pico	 10-12 (1 trillionth)

Strictly speaking, most computer measurements are based 
on the binary system, using powers of two. Thus kilo 
actually means 210, which is actually 1,024, and mega is 
actually 220, or 1,048,576. However, this distinction is 
generally not important for gaining a sense of the magni-
tudes involved. In 1998, the International Electrotechni-
cal Commission promulgated a new set of prefixes for 
these base two computer-related magnitudes, such that 
for example, mebi- is supposed to be used instead of 
mega-. There is little evidence thus far that this scheme is 
being widely adopted.

We will now consider some of the main areas in which 
computer capacity or performance is measured.

Storage Capacity
The smallest unit of information, and thus of data stor-
age, is a bit (binary digit). A bit can be either 1 or 0 and is 
physically represented in different ways according to the 
memory or storage device being used. On most computers 
the most-used storage unit is the byte, which contains eight 
bits. Since this represents eight binary digits, or 28, a byte 
can hold values from 0 to 255 (decimal). The following table 
gives some typical units of storage.

Data Storage Units

Unit	T ypical Use

bit	� Processor data handling capacity. Most 
processors today can handle 32 or 64 bits at 
a time.

byte (8 bits)	� Holds an ASCII character value or a small 
number, 0–255.

kilobyte	� Used to measure RAM (random access 
memory) and floppy disk capacity for  
early PCs.

megabyte	� RAM capacity in older PCs; hard drive 
capacity in older PCs.

gigabyte	 Memory and drive capacity in modern PCs.
terabyte	� Large modern hard drives; drive arrays (see 

raid).

Graphics
Printed output is generally measured in dots per inch (dpi). 
Screen images and images used in digital photography are 
measured in pixels or megapixels. However, the amount of 
data needed to specify (and thus store) a pixel in an image 
depends on the number of colors and other information to 
be stored. (See graphics formats.)

Processor Speed
Processor speed is measured in millions of cycles per sec-
ond (megahertz or MHz). The earliest microprocessors had 
speeds measured in 1–2 MHz or so. PCs of the 1980s ranged 
from about 8 to 50 MHz. In the 1990s, speeds ramped up to 
the hundreds of MHz, and in today’s systems PC speeds are 
often measured in gigahertz (GHz).

Calculation Speed
The speed at which a computer can perform calculations 
depends on more than raw processor speed. For example, 
a processor that can store or fetch 32-bit numbers can per-
form many calculations faster than one with only a 16-bit 
capacity even if the two processors have the same clock 
speed in cycles per second.

Calculation speed is often measured in “flops” or float-
ing-point operations per second (see numeric data), or for 
modern processors, megaflops. While this measurement is 
often touted in product literature, savvy users look to more 
reliable benchmarks that re-create actual conditions of use, 
including calculation-intensive, data transfer intensive, or 
graphics-intensive operations.

Data Communications and Networking
The speed at which data can be transferred over a modem 
or network connection is measured in bits per second 
(BPS). A related term, baud, was used (somewhat inac-
curately) with the earlier modems (see bandwidth and 
modem).
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Typical Data Transfer Speeds in  
Bits Per Second (BPS)

Device	A pproximate Speed

Ethernet	 (10 base) 10 Mbps
Fast Ethernet	 100 Mbps
Gigabit Ethernet	 1 Gbps
V.90 dial-up modem	 56 Kbps
ISDN phone line	 64 Kbps
DSL (ADSL)	 1–24 Mbps
Cable modem (DOCSIS)	 10–160 Mbps
Bluetooth 2.0 (see bluetooth)	 3 Mbps
802.11b wireless (see wireless 	 11 Mbps 
  computing)
802.11g wireless (see wireless 	 54 Mbps 
  computing)
802.11n wireless	 540 Mbps
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media center, home
In recent years many families have acquired a plethora of 
media and devices to play it—CD and DVD players, radios, 
and of course TVs. Meanwhile, the family has likely also 
acquired one or more PCs, which are also capable of play-
ing digital audio and video from various sources. The media 
center is a way of integrating all of these media into one 
centrally located device, the PC, and ideally being able to 
serve it on demand anywhere in the home.

Modern PCs already have optical drives (see cd-rom 
and dvd-rom). TV signals can be received using a TV tuner 
card or, for digital cable signals, a “cable card.” (High-defi-
nition TV or HDTV is becoming increasingly popular.) 
There are also tuners for AM/FM radio. Of course audio 
and video files can also be received directly over the Inter-
net (see Internet radio; music and video distribution, 
online; and streaming).

Media Storage and Distribution
Once media is received, it can be stored on one or more hard 
drives (see also DVR). The media can also be distributed to 
remote speaker units via the wired (or more often wireless) 
network. Remote controls are usually provided to allow the 
system to be controlled from anywhere in the building.

Of course software is needed to integrate these devices 
and functions. Microsoft provides the Windows Media Cen-
ter for Vista and the Windows XP Media Center Edition. 
(There is also third-party software for Windows.) Linux 

systems can run programs such as MythTV (free) or the 
commercial SageTV. For the Macintosh, a project called 
CenterStage was under development as of 2008.

Prebuilt media centers with the PC and all the necessary 
inputs and outputs are also available. They are often sold as 
part of home theater systems.
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medical applications of computers
Since health care delivery is a business (indeed, one of the 
largest sectors of the economy), any hospital, health plan, or 
independent medical practice involves much the same soft-
ware as any other large business. This includes accounts 
receivable and payable, payroll, and supplies inventory. 
Both general and customized industry software can be used 
for these functions; however, this article focuses on applica-
tions specific to medicine.

Medical Information Systems
The management of information specifically related to med-
ical care is sometimes called medical informatics. The type 
of information gathered depends on many factors including 
the type of institution, ranging from a small doctor’s office 
to a large clinic to a full hospital and the nature and scope 
of the treatment provided. However, one can make some 
generalizations.

For outpatients, the required information includes 
an extensive medical record for each patient, including 
records of medical tests and their results, prescriptions and 
their status, and so on. For hospital patients, there are also 
admissions records, an extensive list of itemized charges, 
and records that must be maintained for public health or 
other governmental purposes. Hospitals increasingly use 
customized, integrated hospital information systems (HIS) 
that integrate billing, medical records, and pharmacy.

Additional record keeping needs arise from the mecha-
nisms used to pay for health care. Each health payment 
system, whether government-run (such as Medicare or the 
Veterans’ Administration) or a private health maintenance 
organization (HMO), has extensive rules and procedures 
about how each surgery, treatment, test, or medication can 
be submitted for payment. The software must be able to 
use recognized classifications systems such as the DSM-IV 
(Diagnostic and Statistical Manual of Mental Disorders).
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Clinical Information Management
The modern hospital generates extensive real-time data 
about the condition of patients, particularly those in criti-
cal or intensive care or undergoing surgery. Many hospitals 
have bedside or operating room terminals where physicians 
or nurses can review summaries of data such as vital statis-
tics (blood pressure, heart function, and so on). Data can 
also be entered or reviewed using handheld computers (see 
portable computers). The ultimate goal of such systems 
is to provide as much useful information as possible with-
out overwhelming medical personnel with data entry and 
related tasks that might detract from patient care.

In 2001, a new group, the Patient Safety Institute, was 
formed in an attempt to create a nationwide standardized 
format for electronic patient records. This would make it 
possible for emergency personnel to download a patient’s 
record into a handheld computer and access potentially life-
saving information such as medications and allergies.

There has also been some progress in medical decision 
support systems. Going beyond data summarization, such 
systems can analyze changes or trends in medical data 
and highlight those of clinical significance. Such systems 
can also aid in the compilation of medical charts or pos-
sibly compile portions of the chart automatically for later 
review.

Diagnostic and Treatment Systems
The diagnosis and treatment of many conditions has been 
profoundly enhanced by the use of computer-assisted medi-
cal instruments. At the beginning of the last century the 
use of X-rays revolutionized the imaging of the anatomy 
of living things. X-rays, however, were limited in detail 
and depth of imaging. Techniques of tomography, involving 
synchronized movement of the X-ray tube and film, were 
then developed to create a sharp focus deeper within the 
target structure. The development of computerized tomog-
raphy (CT or CAT) scanning in the 1970s used a different 
and more effective approach: A beam of X rays is swept 
through the target area while computerized radiation detec-
tors precisely calculate the absorption of radiation, and thus 
the density of the tissue or other structure at each point. 
This results in a highly detailed image that can be viewed 
as a series of layers or combined into a three-dimensional 
holographic display.

Another widely used imaging technique is positron 
emission tomography (PET) scanning, which tracks the 
radiation emission from a short-lived radioisotope injected 
into the patient. It is particularly helpful for studying the 
flow of blood or gas and other physiological or metabolic 
changes. Magnetic resonance imaging (MRI) uses the 
absorption and re-emission of radio waves in a strong mag-
netic field to identify the characteristic signature of the 
hydrogen nucleus (i.e. a proton) in water within the body, 
and thus delineate the surrounding structures.

Besides controlling the scanning process (especially in 
CAT scanning), the computer is essential for the creation 
and manipulation of the resulting images. A typical image 
processing (IP) system is actually an array of many individ-
ual processors that perform calculations and comparisons 

on parts of the image to enhance contrast and extract infor-
mation that can lead to a more precise depiction of the area 
of interest. The resulting images (consisting of an array of 
pixels and associated information) can be further enhanced 
in a variety of ways using video processing software. Other 
software using pattern recognition techniques can be pro-
grammed to look for tumors or other anomalous structures 
(see image processing).

Trends
Medical informatics is likely to be a strong growth area 
in coming decades. As the population ages, demand for 
medical care will increase. At the same time, there will be 
growing pressure to control costs. Although technology is 
expensive, there is a general belief that information can 
be leveraged to provide more cost-effective treatment and 
management of health care delivery.

Medical systems are likely to become more integrated. 
There have been proposals to create permanent, extensive 
electronic medical records that patients might even “wear” in 
the form of a small implanted chip. However, concern about 
the consequences of violation of privacy and misuse of medi-
cal information (such as by employers or insurers) raises sig-
nificant challenges (see also privacy in the digital age).

There are many exciting possibilities for computer-
assisted medical treatment. It may eventually be possible to 
provide all the detail of a CAT scan or MRI while a medical 
procedure is being performed. At any rate, surgeons will 
be able to see ever more clearly what they are doing, and 
robot-controlled surgical instruments (such as lasers) are 
already operating with a precision that cannot be matched 
by human hands. Such instrumentation also allows for the 
possibility that skilled surgeons might be able to operate 
through telepresence, bringing lifesaving surgery to remote 
areas (see telepresence).

Information technology (and the World Wide Web in 
particular) is also giving patients more data and choices 

This NASA project is developing a “smart” probe that could provide 
instant analysis of breast tumors to guide surgeons in their work. 
Such instruments could make surgery more accurate and effective, 
as well as reducing unnecessary operations.  (NASA photo)
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about prospective drugs and treatments. (See personal 
health information management.)
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memory
Generally speaking, memory is a facility for temporarily 
storing program instructions or data during the course 
of processing. In modern computers the main memory is 
random access memory (RAM) consisting of silicon chips. 
Today’s personal computers typically have from between 
64MB (megabytes) and 512MB of main memory.

Development of the Technology
In early calculators “memory” was stored as the positions 
of various dials. Charles Babbage conceived of a “store” of 
such dials that could hold constants or other values needed 
during processing by his Analytical Engine (see Babbage, 
Charles).

A number of forms of memory were used in early elec-
tronic digital computers. For example, a circuit with an 
inherent delay could be used to store a series of pulses that 
could be “refreshed” every fraction of a second to maintain 
the data values. The Univac I, for example, used a mercury 
delay line memory. Researchers also experimented with 
cathode ray tubes (CRTs) to store data patterns.

The most practical early form of memory was the ferrite 
core, which consisted of an array of tiny donut-shaped mag-
nets, crisscrossed by electrical lines so that any element 
can be addressed by row and column number. By convert-
ing data into appropriate voltage levels, the magnetic state 
of the individual elements can be switched on and off to 
represent 1 or 0. In turn, a current can be passed through 
any element to read its current state—although the element 
must then be remagnetized. Ferrite cores were relatively 
fast but expensive, and “core” became programmers’ short-
hand for the amount of precious memory available.

By the 1960s, the use of transistors and integrated circuits 
made electronic solid-state memory systems possible. Since 
then, the MOSFET (Metal Oxide Semiconductor Field Effect 
Transistor) using CMOS (Complementary Metal Oxide) fab-
rication has been the dominant way to implement DRAM 
(dynamic random access memory). Here “dynamic” means 

that the memory must be “refreshed” by applying current 
after data is read in each cycle, and “random access” means 
that any desired memory location can be accessed directly 
rather than requiring locations to be read sequentially.

Static RAM is used in some computer components where 
maximum memory speed is desirable. Static memory is faster 
because it does not need to be refreshed after each reading 
cycle. However, it is also considerably more expensive.

Memory performance is also dependent on how quickly 
locations in the memory can be addressed. The earliest 
forms of DRAM required that the row and column of the 
desired memory location be sent in separate cycles. EDO 
(Extended Data Out) and more recent technologies allow 
the row to be requested one time, and then just the column 
given for adjacent or nearby locations. Timing and pipelin-
ing techniques can also be used to start a new request while 
the previous one is still being processed.

For SDRAM (synchronous DRAM), memory speed is 
limited by the inherent response time of the memory chip, 
but also by the number of clock cycles per second initiated 
by the data bus (see bus). Double data rate (DDR) SDRAM 
is able to use both the “rising” and “falling” part of the 
clock cycle to transfer data, doubling throughput. It is being 
superseded by DDR2, which achieves another doubling 
because it can run the data-transfer bus at twice the system 
clock speed. However, this does increase latency (the time 
needed to begin an access). On the horizon is DDR3, which 
can run the bus at four times clock speed—yet another 
doubling. Possible future memory technologies include 
“spintronics,” or the use of the quantum state or “spin” of 
electrons to hold data. The speed, compactness, and reli-
ability of this technology could exceed current devices by a 
factor of hundreds to thousands.

As memory gets faster, it continues to get cheaper (at 
least for all but the latest technology). At the same time, 
memory demands continue to increase. Today’s PCs gener-
ally come with 1 GB (billion bytes) of RAM, and 2 GB or 
more is often recommended, particularly for memory-hun-
gry operating systems such as Microsoft Windows Vista and 
applications such as Adobe PhotoShop and video editing.

Another popular kind of memory is “flash” (nonvola-
tile) memory that does not require power to maintain its 
contents. This kind of memory is used in a wide variety of 
devices, including digital cameras, PDAs, and media play-
ers (see also flash drive).

In actual systems, a small amount of faster memory (see 
cache) is used to hold the data that is most likely to be 
immediately needed. A proper balance between primary 
and secondary cache and main memory in the system chip-
set makes it less necessary to use the fastest, most expen-
sive form of main memory.

Many computers also have ROM (Read-Only Memory) or 
PROM (Programmable Read-Only Memory). This memory 
holds permanent system settings and data (see bios) that are 
needed during the startup process (see boot sequence).
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memory management
Whatever memory chips or other devices are installed in a 
computer, the operating system and application programs 
must have a way to allocate, use, and eventually release 
portions of memory. The goal of memory management is to 
use available memory most efficiently. This can be difficult 
in modern operating environments where dozens of pro-
grams may be competing for memory resources.

Early computers were generally able to run only one 
program at a time. These machines didn’t have a true oper-
ating system, just a small loader program that loaded the 
application program, which essentially took over control 
of the machine and accessed and manipulated the memory. 
Later systems offered the ability to break main memory into 
several fixed partitions. While this allowed more than one 
program to run at the same time, it wasn’t very flexible.

Virtual Memory
From the very start, computer designers knew that main 
memory (RAM) is fast but relatively expensive, while sec-
ondary forms of storage (such as hard disks) are slower 
but relatively cheap. Virtual memory is a way to treat such 
auxiliary devices (usually hard drives) as though they 
were part of main memory. The operating system allocates 
some storage space (often called a swapfile) on the disk. 
When programs allocate more memory than is available 
in RAM, some of the space on the disk is used instead. 
Because RAM and disk are treated as part of the same 
address space (see addressing), the application request-
ing memory doesn’t “know” that it is not getting “real” 
memory. Accessing the disk is much slower than accessing 
main memory, so programs using this secondary memory 
will run more slowly.

Virtual memory has been a practical solution since the 
1960s, and it has been used extensively on PCs running 
operating systems such as Microsoft Windows. However, 
with prices of RAM falling drastically in the new century, 
there is likely to be enough main memory on the latest sys-
tems available to run most popular applications.

Memory Allocation
Most programs request memory as needed rather than a 
fixed amount being allocated as part of program compila-
tion. (After all, it would be inefficient for a program to try 
to guess how much memory it would need, and possibly 
tie up memory that could be used more efficiently by other 
programs.) The operating system is therefore faced with the 
task of matching the available memory with the amounts 
being requested as programs run.

One simple algorithm for memory allocation is called 
first fit. When a program requests memory, the operating 

system looks down its list of available memory blocks and 
allocates memory from the first one that’s large enough to 
fulfill the request. (If there is memory left over in the block 
after allocation, it becomes a new block that is added to the 
list of free memory blocks.)

As a result of repeated allocations using this method, the 
memory space tends to become fragmented into many left-
over small blocks of memory. As with fragmentation of files 
on a disk, memory fragmentation slows down access, since 
the hardware (see memory) must issue repeated instruc-
tions to “jump” to different parts of the memory space.

Using alternative memory allocation algorithms can 
reduce fragmentation. For example, the operating system 
can look through the entire list (see heap) and find the 
smallest block that is still large enough to fulfill the alloca-
tion request. This best fit algorithm can be efficient. While 
it still creates fragments from the small leftover pieces, the 
fragments usually don’t amount to a significant portion of 
the overall memory.

The operating system can also enforce standard block 
sizes, keeping a “stockpile” of free blocks of each permitted 
size. When a request comes in, it is rounded to the near-
est amount that can be made from a combination of the 
standard sizes (much like making change). This approach, 
sometimes called the buddy system, means that programs 
may receive somewhat more or less memory than they want, 
but this is usually not a problem.

Recycling Memory
In a multitasking operating system, programs should release 
memory when it is no longer needed. In some programming 
environments memory is released automatically when a 
data object is no longer valid (see variable), while in other 
cases memory may need to be explicitly freed by calling the 
appropriate function.

Recycling is the process of recovering these freed-up 
memory blocks so they are available for reallocation. To 
reduce fragmentation, some operating systems analyze the 
free memory list and combine adjacent blocks into a single, 
larger block (this is called coalescence). Operating systems 
that use fixed memory block sizes can do this more quickly 
because they can use constants to calculate where blocks 
begin and end.

Many more sophisticated algorithms can be used to 
improve the speed or efficiency of memory management. For 
example, the operating system may be able to receive infor-
mation (explicit or implicit) that helps it determine whether 
the requested memory needs to be accessed extremely 
quickly. In turn, the memory management system may be 
designed to take advantage of particular processor architec-
ture. Combining these sources of knowledge, the memory 
manager might decide that a particular requested memory 
block be allocated from special high speed memory (see 
cache).

While RAM is now cheap and available in relatively 
large quantities even on desktop PCs, the never-ending 
race between hardware resources and the demands of ever 
larger database and other applications guarantees that 
memory management will remain a concern of operat-
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ing system designers. In particular, distributed database 
systems where data objects can reside on many different 
machines in the network require sophisticated algorithms 
that take not only memory speed but also network load 
and speed into consideration.
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message passing
In the early days of computing, a single program usually 
executed sequentially, with interruptions for calls to vari-
ous procedures or functions that would perform data pro-
cessing tasks and then return control to the main program 
(see procedures and functions). However, by the 1970s 
UNIX and other operating systems had introduced the 
capability of running several programs at the same time 
(see multitasking). Additionally, it became common to 
create a large program that would manage data and smaller 
programs that could link users to that service (see client-
server computing). Further, programs themselves began 
to be organized in a new way (see object-oriented pro-
gramming). A program now consisted of a number of enti-
ties (objects) representing data and methods (things that 
can be done with the data).

Thus, both at the operating system and application level 
it became necessary to have various objects communicate 
with one another. For example, a client program requests 
a service from the server. The server performs the required 
service and reports its completion. The mechanism by 
which information can be sent from one program to another 
(or between objects in a program) is called message passing.

In one message-passing scheme, two objects (such as cli-
ent and server) agree on a standard memory location called 
a port. Each program checks the port regularly to see if a 
message (containing instructions, data, or an address where 
data can be found) is pending. In turn, outgoing messages 
can be left at the port.

The client-server idea can be found within operating 
systems as well. For example, there can be a component 
devoted to providing file-related services, such as opening 
or reading a file (see file). An application that wants to 
open a file leaves an appropriate message to the operating 
system. The operating system has a message dispatcher that 
examines incoming messages and routes them to the cor-
rect component (the file system manager in this case).

Within an object-oriented program, an object is sent a 
message by invoking one of its methods (Smalltalk and other 
languages) or member functions (C++ or Java). For example, 
suppose there’s an object call Speaker that represents the 
system’s internal speaker. As part of a user alert procedure, 
there might be a call to

Speaker.Beep (500)

which might be defined to mean “sound a beep for 500 mil-
liseconds.”

There are a number of issues involved in setting up 
message-passing systems. For example, it is convenient for 
many programs or objects to use the same port or other 
facility for leaving and retrieving messages, but that means 
the operating system must spend additional time routing 
or dispatching the messages. On the other hand, if two 
objects create a bound port, no others can use it, so each can 
assume that any message left there is from the other object.

During the 1992–1994 period, a standard called MPI 
(Message Passing Interface) was established by a group 
of more than 40 industry organizations. It has since been 
superseded by MPI-2.
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microprocessor
A microprocessor is an integrated circuit chip that contains 
all of the essential components for the central processing 
unit (CPU) of a microcomputer system such as a personal 
computer.

Schematic of a simple microprocessor. The control unit is respon-
sible for fetching and decoding instructions, as well as fetching or 
writing data to memory. The Arithmetic Logic Unit (ALU) does the 
actual computing (including arithmetic and logical comparisons). 
The registers hold data being currently used by the ALU, while the 
cache contains instructions that have been pre-fetched because they 
are likely to be needed soon.
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Microprocessor development began in the 1960s when 
a new company called Intel was given a contract to develop 
chips for programmable calculators for a Japanese firm. 
Marcian E. “Ted” Hoff headed the project. He decided that 
rather than hard-wiring most of the calculator logic into the 
chips, he would create a general-purpose chip that could 
read instructions and data, perform basic arithmetic and 
logical functions, and transfer data between memory and 
internal locations called registers.

The resulting microprocessor, when combined with some 
RAM (random access memory), some preprogrammed ROM 
(Read Only Memory), and an input/output (I/O) chip con-
stituted a tiny but complete CPU, soon dubbed “a computer 
on a chip.” This first microprocessor, the Intel 4004, had 
only a few thousand transistors, could handle data only 4 
bits at a time, and ran at 740 KHz (about one three-thou-
sandth the speed of the latest Pentium IV chips).

Intel gradually refined the chip, giving it the logic cir-
cuits to enable it to perform additional instructions, more 
internal stack and register space, and 8 KB of space to store 
programs. The 8008 could handle 8 bits of data at a time, 
while the 8080 became the first microprocessor that was 
capable of serving as the CPU for a practical microcomputer 
system. Its descendants, the 8088 and 8086 (16-bit) pow-
ered industry-standard IBM-compatible PCs. Meanwhile, 
other companies such as Motorola (68000), Zilog (Z-80), 
and MOS Technology (6502) powered competing PCs from 
Apple, Atari, Commodore, and others.

With the dominance of the IBM PC and its clones (see 
ibm pc), the Intel 80 × 86 series in turn dominated the 
microprocessor market. (The x refers to successive digits, as 
in 80286, 80386, and 80486.) At the next level this nomen-
clature was replaced by the Pentium series, which is up to 
the Pentium 4 as of 2002.

According to a famous dictum called Moore’s Law, the 
density (number of transistors per cubic area) and speed (in 
terms of clock rate) of microprocessors has roughly doubled 
every 18 months to two years. Intel expects to be making 
microprocessors with 1 billion transistors by 2007.

Microprocessor and Microcomputer
A microcomputer is a system consisting of a microproces-
sor and a number of auxiliary chips. The microprocessor 
chip serves as the central processing unit (CPU). It contains 
a clock that regulates the flow of data and instructions 
(each instruction takes a certain number of clock cycles to 
execute). There is also an index register that keeps track of 
the instruction being executed. A small number of locations 
called registers within the CPU allow for storing or retriev-
ing the data being used by instructions much more quickly 
than retrieval from main memory (RAM).

Typically, the instruction register advances to the next 
instruction. The instruction is fetched, decoded, and sent to 
the CPU’s ALU (arithmetic logic unit) for processing. Data 
needed to be processed by the instruction are either fetched 
from a register or, through an address register, fetched from 
RAM. (Some processors store one operand for an arithmetic 
operation in a special register called the accumulator.)

Floating-point operations (those involving numbers 
that can include decimal points) require special registers 
that can keep track of the decimal position. Until the mid-
1990s, many systems used a separate microprocessor called 
a coprocessor to handle floating point operations. However, 
later chips such as the Pentium series integrate floating 
point operations into the main chip.

In order to function as the heart of a microcomputer, 
the CPU must communicate with a variety of other devices 
by interacting with special controller chips. For example, 
there is a bus interface chip (see bus) that decodes memory 
addresses and routes requests to the appropriate devices on 
the motherboard. When data is requested from memory, a 
memory controller must physically fetch the data from RAM 
(see memory). There is also a cache controller that interfaces 
with one or two levels of high-speed cache memory (see 
cache). The algorithms implemented in the cache controller 
aim to have the next instructions and the most-likely needed 
data already in the cache when the CPU requests them.

Other devices such as disk drives, modems, printers, 
and video cards are all connected to the CPU through input/
output (I/O) interfaces that connect to the system bus. Most 
of the devices connected to the bus have their own micro-
processors. Software (see device driver) translates high-
level programming instructions (such as to open a file) to 
the appropriate device commands.

The CPU and many other devices also contain ROM (read 
only memory) chips that have permanent basic instructions 
stored on them (see bios). This enables the CPU and other 
devices to perform the necessary actions to enter into com-
munication when the system starts up (see boot sequence).

New Features Emerge
Improvements in microprocessors during the 1980s 
included wider data paths and the ability to address a larger 

The MITS Altair (1975) was the first microcomputer available 
commercially. It was generally purchased in kit form. While the 
Altair did not have much processing capacity, it aroused great inter-
est and inspired other computer builders such as Apple’s Steve Woz-
niak and Steve Jobs.  (Christopher Fitzgerald / The Image 
Works)
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amount of memory. For example, the Intel 80386 was the 
first 32-bit processor for PCs and could address 4 GB of 
memory. (Earlier processors such as the 80286 had to divide 
memory into segments or use paging to swap memory in 
and out of a smaller space to make it look like a larger one.) 
Over the years microprocessors tended to add more built-in 
cache memory, enabling them to have more instructions or 
data ready for immediate use.

Another way to get more performance out of a micro-
processor is to increase the speed with which instructions 
can be executed. One technique, called pipelining, breaks 
the processor into a series of segments, each of which can 
execute a particular operation. Instead of waiting until an 
instruction has been completely executed and then turn-
ing to the next one, a pipelined microprocessor moves the 
instruction from segment to segment as its operations are 
executed, with following instructions moving into the 
vacated segments. As a result, two or more instructions can 
be undergoing execution at the same time.

In addition to pipelining, the Pentium series and other 
recent chips can have instructions executing simultane-
ously using different arithmetic logic units (ALUs) or float-
ing-point units (FPUs).

Another way to improve instruction processing is to use 
a simpler set of instructions. First introduced during the 
1980s for minicomputers and high-end workstations (such 
as the Sun SPARC series), reduced instruction set computer 
(RISC) chips have smaller, more uniform instructions that 
can be more easily pipelined, as well as many registers for 
holding the results of the intermediate processing. During 
the 1990s, RISC concepts were also adopted in PC proces-
sor designs such as the 80486 and Pentium (see reduced 
instruction set computer).

The latest major development has been the multicore 
microprocessor, which has two, four, or more separate pro-
cessing units. The Intel Core Duo and Core 2 Duo chips 
and similar processors from AMD are now included in most 
new PCs.

The equivalent of a supercomputer on a chip is on the 
way. Cisco’s 192-core Metro chip powers its most capable 
network routers, while Nvidia’s GeForce 8800 graphics pro-
cessor sports 128 cores. In addition to these specialized 
processors, in early 2007 Intel demonstrated a prototype 
80-core processor that could form the basis of a new gen-
eration of general-purpose processors.

Another significant multicore processor architecture is 
the Cell chip, developed by Sony, IBM, and Toshiba. This 
chip includes a multithreaded (able to run multiple streams 
of code) controller processor plus numerous architectural 
features that maximize efficiency and throughput. The first 
appearance of this 2 “teraflop” (trillion calculations per sec-
ond) chip was not on a scientific computer, but rather the 
Sony Play Station 3—see game console.

Multicore processors create new challenges for program-
mers who have to create code that will apportion program 
tasks efficiently among the cores (see multiprocessing).

In the new century, it is unclear when physical limita-
tions will eventually slow down the tremendous rate of 
increase in microprocessor power. As the chips get denser 

and smaller, more heat is generated with less surface 
through which it can be removed. At still greater densities, 
quantum effects may also begin to be a problem. On the 
other hand, new technologies might take the elements of 
the processor down to a still smaller level (see molecular 
computing and nanotechnology).

While the stand-alone desktop, laptop, or handheld 
computer is the most visible manifestation of the micro-
processing revolution, there are hundreds of “invisible” 
microprocessors in use for every visible computer. Today 
microprocessors help monitor and control everything from 
home appliances to cars to medical devices (see embedded 
systems).
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Microsoft Corporation
Microsoft Corporation (NASDAQ symbol: MSFT) is the 
world’s largest computer software company, with almost 
80,000 employees worldwide and annual revenue exceed-
ing $51 billion.

Microsoft was founded in the mid-1970s by Bill Gates 
(see Gates, William) in order to sell his version of the 
BASIC programming language for early microcomputers 
such as the Altair 8800. The BASIC software was moderately 
successful, but it would be an operating system called MS-
DOS (or PC-DOS) that would catapult Microsoft to industry 
leadership, thanks to an agreement with IBM, which intro-
duced what would become the industry standard personal 
computer in 1982 (see ibm pc).

In the mid-1980s Microsoft partnered with IBM to 
develop OS/2, which was intended to be a more power-
ful multitasking operating system to replace DOS. How-
ever, Microsoft’s real interest was in the development of 
Windows (see Microsoft Windows), which first became 
successful with version 3.0 in 1990. Meanwhile, Microsoft 
leveraged its experience with Windows to release Micro-
soft Office, which soon displaced WordPerfect, the previous 
market leader.

Shifting Strategies and Legal Issues
Many observers have noted that Microsoft was slow in appre-
ciating the importance of networking and particularly the 
World Wide Web in the mid-1990s. Novell was the market 
leader in networking at the time, and Netscape’s graphical 
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browser had brought millions of users to the Web. Bill Gates 
himself announced that the company would embark on a 
“net-centered” strategy, and this was reflected in the develop-
ment of Windows NT, software for enterprise network and 
Web servers, and the Internet Explorer browser, which domi-
nated the desktop by the end of the decade.

The continuing dominance of Microsoft operating sys-
tems and office applications on the desktop provided the 
cash flow that gave the company the resources to catch 
up and then dominate almost any market it chose. How-
ever, this same dominance raised legal issues that would 
be litigated through the late 1990s and beyond. Micro-
soft was accused of using its knowledge of unpublished 
Windows internal code to give products such as Microsoft 
Office an advantage over competitors. A more prominent 
accusation was that Microsoft’s “bundling” of products 
such as Internet Explorer with Windows amounted to an 
unfair advantage over competitors such as Netscape, since 
Explorer would appear to be “free” to consumers. A series 
of civil actions under the name United States v. Microsoft 
resulted in a 2001 settlement with the U.S. Department 
of Justice that required Microsoft to share all information 
about its Windows API (see applications programming 
interface) with competitors for at least five years. This 
result was controversial, with defenders of Microsoft argu-
ing that the company had done no more than compete 
effectively by using the results of its own previous work, 
while opponents argued that Microsoft’s coercive monop-
oly power had scarcely been dented by the settlement. In 
2008 the software giant continued to struggle with legal 
pressures. A European Union court has upheld previous 
rulings that the company had engaged in monopolistic and 
anticompetitive practices.

Legal controversies aside, by the mid-2000s Microsoft 
was facing some serious challenges, particularly from the 
popularity of free and open-source software (see open-
source movement). This is particularly true of the Web 
server market, where the combination of the Apache Web 
server and Linux has gained a major market share. Mean-
while, on the desktop, Windows Vista (released in Janu-
ary 2007) did not sell as well as predicted during its first 
six months. The Apple Macintosh is maintaining its small 
but significant market share, and even Linux distributions 
such as Ubuntu are beginning to appear as an option on 
new PCs. Microsoft’s flagship Office suite is facing compe-
tition from products such as Open Office and particularly 
the Web-based Google Apps. (In 2007 Microsoft began 
to roll out Office Live Workspace, offering extensions 
of Office applications rather than a complete suite.) In 
other areas, the Microsoft Network (MSN) online service 
has struggled, while the company has done better with 
its Xbox gaming console as well as the best-selling game 
Halo.

Despite some stumbling and many controversies, Micro-
soft’s vast resources and many ongoing research projects 
(with a $6 billion annual budget) make it likely the company 
will continue to adapt and sometimes innovate, remaining a 
strong competitor for many years to come. For example, the 
company is now putting more resources into Web search 

technology, an area that has been dominated by Google, as 
well as eyeing applications as diverse as home media servers 
and social networking. Microsoft has also sought to expand 
its Internet presence by acquiring Yahoo!, the extensive but 
aging Web portal. (However, the first acquisition attempt 
was rebuffed, and future plans remain uncertain as of mid-
2008).
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Microsoft .NET
Microsoft .NET is a programming platform (see class and 
object-oriented programming) that is intended to pro-
vide a clear and consistent way for applications written in 
a variety of languages such as C++, C#, and Visual Basic 
to access Windows functions and to interact with other 
programs and services on the same machine or over the 
Internet.

.NET consists of the following main parts:

• � Base Class Library of data types and common func-
tions (such as file manipulation and graphics) that is 
available to all .NET languages

• � Common Language Runtime, which provides the 
code that applications need to run within the operat-
ing system, manage memory, and so forth (“Common 
language” means it can be used for any .NET pro-
gramming language.)

• � ASP .NET, a class framework for building dynamic 
Web applications and services (the latest version of 
ASP—see active server pages)

• � ADO .NET, a class framework that allows programs 
to access databases and data services

The latest version (as of 2008) is .NET Framework 3.5 
and is built into Windows Vista and Windows Server 2008. 
New components include:
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• � Windows Presentation Foundation, providing a user 
interface based on 3D graphics, with objects described 
using Microsoft’s XAML markup language (see xml)

• � Windows Communication Foundation, providing 
ways for .NET programs to communicate locally or 
over the network

• � Windows Workflow Foundation, for structuring and 
automating tasks and transactions

• � Windows CardSpace, for managing digital identities 
in transactions

Platforms
In the relationship between language and runtime libraries, 
Microsoft .NET, particularly when used with the C# lan-
guage (see c#), is similar to the use of Java and its libraries 
as in the Java Enterprise Edition (EE). For Windows, .NET 
has the advantage of being built specifically for that operat-
ing system; however, Java has the advantage of running on 
all major platforms, including not only Windows, but also 
Mac OS X and Linux, as well as being an open-source plat-
form. (However, the open-source Mono project has devel-
oped a partial implementation of .NET for non-Windows as 
well as Windows platforms.)
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Microsoft Windows
Often simply called Windows, Microsoft Windows refers to 
a family of operating systems now used on the majority of 
personal computers. Windows PCs run Intel or Intel-com-
patible microprocessors and use IBM-compatible hardware 
architecture.

History and Development
By 1984, the IBM PC and its first “clones” from other man-
ufacturers dominated the market for personal computers, 
quickly overtaking the previously successful Apple II and 
various machines running the CP/M operating system. 
Through a combination of initiative and luck, Microsoft 
CEO Bill Gates had licensed what became its MS-DOS oper-
ating system to IBM, while retaining the rights to license it 
also to the clone manufacturers (see also Gates, William).

However, 1984 also brought Apple back into conten-
tion with the Macintosh. Using a graphical user interface 
(GUI) largely based on research done at Xerox’s Palo Alto 

Research Center (PARC) in the 1970s, the Macintosh was 
strikingly more attractive and user-friendly than the all-
text, command-line driven MS-DOS. As third parties began 
to offer GUI alternative to DOS, Microsoft rushed to com-
plete its own GUI, called Windows. Although it was actu-
ally announced well before the coming of the Macintosh, 
Windows 1.0 was not released until 1985. Its poor fonts, 
graphics, and window operation made it compare unfa-
vorably to the Macintosh. Through the rest of the 1980s, 
Microsoft struggled to improve Windows. The acceptance 
of Windows was aided by several large software manufac-
turers such as Aldus (PageMaker) writing software for the 
new operating system as well as Microsoft’s designing or 
porting its own software such as the Excel spreadsheet.

Windows 3.0, released in 1990, was considerably 
improved and began to attract significant numbers of users 
away from MS-DOS—based programs. Microsoft was also 
greatly aided by its ability to leverage its operating system 
dominance to make it economically imperative for PC man-
ufacturers to “bundle” Windows with new PCs.

About the same time, Microsoft had been working with 
IBM on a system called OS/2. Unlike Windows, which was 
actually a program running “on top of” MS-DOS, OS/2 
was a true operating system that had sophisticated capa-
bilities such as multitasking, multithreading, and memory 
protection. Microsoft eventually broke off its relationship 
with IBM, abandoned OS/2, but incorporated some of the 
same features into a new version of Windows called NT 
(New Technology), first released in 1993. NT, which pro-
gressed through several versions, was targeted at the high-
end server market, while the consumer version of Windows 
continued to evolve incrementally as Windows 95 and Win-
dows 98 (released in those respective years). These versions 
included improved support for networking (including TCP/
IP, the Internet standard) and a feature called “plug and 
play” that allowed automatic installation of drivers for new 
hardware.

Toward the end of the century, Microsoft began to 
merge the consumer and server versions of Windows. Win-
dows 2000 incorporated some NT features and provided 
somewhat greater security and stability for consumers. 
With Windows XP, released in 2001, the separate consumer 
and NT versions of Windows disappeared entirely, to be 
replaced by home and “professional” versions of XP.

Introduced in early 2007, Microsoft Windows Vista 
includes a number of new features, including a 3D user 
interface (“Aero”), easier and more robust networking, built-
in multimedia capabilities (such as photo management and 
DVD authoring), improved file navigation, and desktop 
search. Perhaps the most important, if problematic, fea-
ture is enhanced security, including User Account Control, 
which halts suspect programs and requests permission for 
them to continue. Although this makes it harder for mal-
ware to get a foothold, many users find the constant “nags” 
to be annoying. (As of 2008 adoption of Vista has been 
slower than expected, with many users opting to remain 
with Windows XP.)

The next version of Windows, with the working name 
Windows 7, should be released around 2010. Its focus 
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appears to be a combination of “back to basics” (a response 
to the sluggish performance of Vista) and more seamless 
user access to data and media from a variety of sources.

User’s Perspective
From the user’s point of view, Windows is a way to control 
and view what is going on with the computer. The user 
interface consists of a standard set of objects (windows, 
menus, buttons, sliders, and so on) that behave in gener-
ally consistent ways. This consistency, while not absolute, 
reduces the learning curve for mastering a new application. 
Programs can be run by double-clicking on their icon on 
the underlying screen (called the desktop), or by means of 
a set of menus.

Windows users generally manage their files through 
a component called Windows Explorer or My Computer. 
Explorer presents a treelike view of folders on the disk. 
Each folder can contain either files or more folders, which 
in turn can contain files, perhaps nested several layers deep. 
Folders and files can be moved from place to place simply 
by clicking on them with the mouse, moving the mouse 
pointer to the destination window or folder, and releas-
ing the button (this operation is called dragging). Another 
useful feature is called a context menu. Accessed by click-
ing with the right-hand mouse button, the menu brings 
up a list of operations that can be done with the currently 
selected object. For example, a file can be renamed, deleted, 
or sent to a particular destination.

Windows includes a number of features designed to 
make it easier for users to control their PC. Most settings 
can be specified through windows called dialog boxes, 
which include buttons, check boxes, or other controls. Most 
programs also use Windows’s Help facility to present help 
pages using a standard format where related topics can be 
clicked. Most programs are installed or uninstalled using 
a standard “wizard” (step-by-step procedure), and wizards 
are also used by many programs to help beginners carry out 
more complex tasks (see help systems).

Multitasking
From the programmer’s point of view, Windows is a mul-
titasked, event-driven environment (see multitasking). 
Programmers must take multitasking into account in rec-
ognizing that certain activities (such as I/O) and resources 
(such as memory) may vary with the overall load on the 
system. Responsible programs allocate no more memory 
than they need, and release memory as soon as it is no 
longer needed. If the pool of free memory becomes too low, 
Windows starts swapping the least recently used segments 
of memory to the hard drive. This scheme, called virtual 
memory, allows a PC to run more and larger programs than 
would otherwise be possible, but since accessing the hard 
drive takes considerably longer than accessing RAM, the 
system as a whole starts slowing down.

Windows also has a rather small amount of memory 
reserved for its GDI (Graphics Device Interface), a system 
used for displaying graphical interface objects such as icons. 
If this resource pool (which has been made somewhat more 
flexible in later versions of Windows) runs out, the system 
can grind to a halt.

Programming Perspective
Programmers moving to Windows from more traditional 
systems (such as MS-DOS) must also deal with a new para-
digm called event-driven programming. Most traditional 
programs are driven by an explicit line of execution through 
the code—do this, make this decision, and depending on it, 
do that—and so on. Windows programs, however, typically 
display a variety of menus, buttons, check boxes, and other 
user controls. They then wait for the user to do something. 
The user thus has considerable freedom to move about in 
the program, performing tasks in different orders.

A Windows program, therefore, is driven by events. An 
event is generally some form of user interaction such as 
clicking on a menu or button, moving a slider, or typing 
into a text box. The event is conveyed by a message (see 
message passing) that Windows dispatches to the affected 
object. For example, if the user presses down (clicks) the left 
mouse button while the mouse pointer is over a window, a 
WM_BUTTONDOWN message is sent to that window.

Each of these interface objects (collectively called con-
trols) has a message-handling procedure that identifies 
the message. The object must then have appropriate pro-
gram code that responds to each possible type of event. For 
example, if the user clicks on the File menu and then clicks 
on Open, the code will display a standard dialog box that 
allows for selecting the file to be opened.

Fortunately for the programmer, Windows provides 
developers with a large collection of types of windows, dia-
log boxes, and controls that can be displayed using a func-
tion call. For example, this code (after some preliminary 
declarations), displays a type of window called a list box:

HWND MyWindow;	
hMyWindow = CreateWindow(“LISTBOX”,“Availabl
e Services”,

WS_CHILD|WS_VISIBLE,
0,0,100,200

hwndParent,NULL,hINst,NULL);

Introduced in 2007, Microsoft Windows Vista features bet-
ter security, a 3D look, new search facilities, and multimedia 
features.  (Microsoft Corporation)
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Here the various parameters passed to the CreateWin-
dow function specify the type of window, window title, 
characteristics, and location. The function returns a “win-
dow handle,” which is a pointer that holds the window’s 
address and allows it to be accessed later.

Most Windows programming environments, including 
C++ and particularly, Visual Basic, now let program design-
ers avoid having to specify code such as the above to create 
windows and other objects. Instead, the programmer can 
click and drag various objects onto a design screen to estab-
lish the interface that will be seen by the program’s user. 
The programmer can then use Properties settings to specify 
many characteristics of the screen objects without having 
to explicitly program them.

Microsoft and third-party developers also provide ready-
made programming code in dynamic link libraries (DLLs). 
These resources (see library, program) can be called by 
any application, which can then use any object or func-
tion defined in the library. Windows also provides a facility 
called OLE (Object Linking and Embedding). This lets an 
application such as a word processor “host” another appli-
cation such as a spreadsheet. Thus, the Microsoft Word, for 
example, can embed a Microsoft Excel spreadsheet into a 
document, and the spreadsheet can be worked with using 
all the usual Excel commands. In other words, OLE lets 
applications make their features, controls, and functional-
ity accessible to other applications. Indeed, collections of 
controls are often packaged as OCX (OLE controls) and 
sold to developers.

Despite all this available help, Windows presents a steep 
learning curve for many programmers. There are hundreds 
of functions for handling interface objects, drawing graph-
ics, managing files, controlling devices, and other tasks. 
With the growing use of object-oriented programming lan-
guages (see object-oriented programming and C++) in 
the late 1980s and 1990s, Microsoft devised the Microsoft 
Foundation Classes (MFC). This framework defines all of 
the interface objects and other entities (such as data struc-
tures) as C++ classes.

Using MFC, a programmer, instead of calling a func-
tion to create a window, creates an object of a particular 
Window class. To customize a window, the program-
mer can use inheritance to derive a new window class. 
The various functions for controlling windows are then 
defined as member functions of the window class. This 
use of object-oriented, class-based design organizes much 
of the great hodgepodge of Windows functions into a 
logical hierarchy of objects and makes it easier to master 
and to use.

For example, using the traditional Windows API (see 
applications programming interface) one puts a text 
string into a list box using this code:

LRESULT LRes;
LRes = SendMessage(hMyListBox,LB_
ADDSTRING,0,“Network Services”);

(LRes is a number that will hold a code that says whether 
the item was successfully added)

Using MFC, this code can be rewritten as:

CListBox * pListBox;
int nRes;
nRes = pListBox->AddString (“Network Services”);

Here a pointer is declared to an object of the ListBox 
class, and a member function of that class, AddString, is 
then called. While this code may not look simpler, it uses a 
consistent object-oriented approach.

The new common framework for Windows program-
ming is called .NET. Closely integrated with the latest 
versions of Windows (XP SP2 and Vista), the class frame-
work has been revamped and expanded. .NET provides a 
common language runtime (CLR) for access from different 
languages such as C++, C#, and Visual Basic .NET. (See 
Microsoft .NET.)

Trends
By just about any standard Microsoft Windows has achieved 
remarkable success, capturing and largely holding the 
lion’s share of the PC operating system market. However, 
Windows has been persistently criticized on grounds of 
reliability and security. Perhaps feeling the pressure from 
users and potential regulators, Microsoft has placed greater 
emphasis on security in recent years; Windows Vista inte-
grates security much more tightly into the structure of the 
system. However, as long as Windows is the most widely 
used operating system, it will continue to be the biggest tar-
get for creators of viruses and other malware.

Microsoft has included powerful facilities that allow 
Windows applications to be controlled by other applications 
or remotely (see scripting languages). Unfortunately, 
these facilities have proven to be quite vulnerable to com-
puter viruses that can use them to damage systems con-
nected to the Internet. There seems to be a never-ending race 
between developers of program “patches” designed to plug 
security holes and inventive, albeit malicious virus writers.

Windows continues to face a variety of challenges. The 
ability to deliver applications directly through Web browsers 
on any platform may make it less compelling for a user with 
simple computing needs to pay the premium for a Windows-
based PC. (For example, Google now delivers basic word 
processing, spreadsheet, email, and other applications—see 
application service provider.) Linux, too, may be gradu-
ally gaining a greater share on the desktop. Versions such 
as the popular and frequently updated Ubuntu now install 
about as easily as Windows, provide a similar user interface, 
and include a variety of software, including Open Office (see 
Linux and open-source movement).

While Windows still remains the dominant PC operat-
ing system with tens of thousands of applications and at 
least several hundred million users around the world, it is 
likely that the PC operating systems of 2020 will be as dif-
ferent from today’s Windows as the latter is from the MS-
DOS of the early 1980s.
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middleware
Often two applications that were originally created for dif-
ferent purposes must later be linked together in order to 
accomplish a new purpose. For example, a company selling 
scientific instruments may have a large database of product 
specifications, perhaps written in COBOL some years ago. 
The company has now started selling its products on the 
Internet, using its Web server and e-commerce applications 
(see e-commerce). Prospective customers of the Web site 
need to be able to access detailed information about the 
products. Unfortunately, the Web software (perhaps written 
in Java) has no easy way to get information from the compa-
ny’s old product database. Rather than trying to convert the 
old database to a more modern format (which might take 
too long or be prohibitively expensive), the company may 
choose to create a middleware application that can mediate 
between the old and new applications.

There are a variety of types of middleware applications. 
The simplest and most general type of facility is the RPC 
(Remote Procedure Call), which allows a program running 
on a client computer to execute a program running on the 
server. DCE (Distributed Computing Environment) is a 
more robust and secure implementation of the RPC concept 
that provides file-related other operating system services as 
well as executing remote programs.

More elaborate architectures are used to link complex 
applications such as databases where a program running on 
one computer on the network must get data from a server. 
For example, an Object Request Broker (ORB) is used in a 
CORBA (Common Object Request Broker Architecture) sys-
tem to take a data request generated by a user and find serv-
ers on the network that are capable of fulfilling the request 
(see CORBA).

Middleware is often inserted into a program to allow 
for better monitoring or control of distributed processing. 
For example a TP (transaction processing) monitor is a 
middleware program that keeps track of a transaction that 
may have to go through several stages (such as point of sale 
entry, credit card processing, and inventory update). The 
TP monitor can report whether any stage of the transaction 
processing failed (see transaction processing).

Middleware can also be put in charge of load balancing. 
This means distributing transactions so that they are evenly 
apportioned among the servers on the network, in order to 
avoid creating delays or bottlenecks.

While use of middleware may not be as “clean” a solution 
as designing an integrated system from the bottom up, the 
economic realities of a fast-changing information environ-
ment (particularly with regard to deployment on the Web) 
often makes middleware an adequate second-best choice.
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military applications of computers
War has always been one of the most complex of human 
enterprises. Even leaving actual combat aside, the U.S. mili-
tary and defense establishment constitute a huge employer, 
research and training agency, and transportation network. 
Managing all these activities require sophisticated database, 
inventory, tracking, and communications systems. When 
thousands of private defense contractors of varying sizes 
are considered as part of the system, the complexity and 
scope of the enterprise become even larger.

Specifically, military information technology applica-
tions can be divided into the following broad areas: logis-
tics, training, operations, and battle management.

Logistics
It is often said that colonels worry about tactics while gen-
erals preoccupy themselves largely with logistics. Logistics 
is the management of the warehousing, distribution, and 
transportation systems that supply military establishments 
and forces in the field with the equipment and fuel they 
need to train and to fight. Logistics within the United States 
is analogous to similar problems for very large corpora-
tions. The same bar codes, point of use terminals, and other 
tracking, inventory, and distribution systems that Amazon.
com uses to get books quickly to customers while avoiding 
excessive inventory are, in principle, applicable to modern-
izing military logistic systems.

An added dimension emerges when logistical support 
must be supplied to forces operating in remote countries, 
possibly in the face of efforts by an enemy to disrupt sup-
ply. Such considerations as efficient loading procedures to 
accommodate limited air transport capacity, prioritization 
of shipping to provide the most urgently needed items, and 
transportation security can all come into play. (The military 
has pioneered the use of retinal scanners and other systems 
for controlling access to sensitive areas. See biometrics.)

The need for mobility and compactness makes laptops 
and even palmtops the form factors of choice. Military or 
“milspec” versions of computer hardware are generally built 
with more rugged components and greater resistance to 
heat, moisture, or dust.
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Training
The use of automated systems to provide training goes back 
at least as far as the World War II era Link trainer, which 
used automatic controls and hydraulics to place trainee 
pilots inside a moveable cockpit that could respond to their 
control inputs. Today computer simulations with sophisti-
cated graphics and control systems can provide highly real-
istic depictions of flying a helicopter or jet fighter or driving 
a battle tank. The military has even adapted commercial 
flight simulators for training purposes. Simulations can 
also cover Special Forces operations and tactical decision 
making. Indeed, many real-time simulations (RTS) sold as 
popular commercial games and avidly played by young peo-
ple already contain enough realistic detail to be adopted 
by the military as is. For example, the game Rainbow Six, 
based on operations in Tom Clancy novels, simulates tacti-
cal counterterrorism operations. In turn, the U.S. Army has 
used a simulation game called Full Spectrum Warrior to 
give young gamers a taste of the military life.

Operations
Aircraft, ships, and land vehicles used by the military have 
been fitted with a variety of computerized systems. The 
“glass cockpit” in aircraft is replacing the increasingly 
unmanageable maze of dials and switches with information 
displays that can keep the pilot focused on the most crucial 
information while making other information readily avail-
able. Traditional keyboards and joystick-type controllers 
can be replaced by touch screens and even by systems that 
can understand a variety of voice commands (see speech 
recognition and synthesis). Similar control interfaces 
can be used in tanks or ships.

Robotics offers a variety of intriguing possibilities for 
extending the reach of military forces while minimizing 
casualties. Remote-control robots can be used to clear 
minefields, disarm roadside bombs, or perform reconnais-
sance. (The Predator armed reconnaissance drone was first 
used successfully in anti-terrorist operations in Afghanistan 
in 2002.) Armed robots could assault enemy strong points 
without risking soldiers. The development of autonomous 
robots that can plan their own missions, select targets, and 
make other decisions is a longer-term prospect that depends 
on the application of artificial intelligence in the extremely 
challenging and chaotic battlefield environment.

Battle Management
Battle management is the ability to gather, synthesize, and 
present crucial information about the environment around 
the military unit and enable military personnel to make 
rapid, accurate decisions about threats and the best way to 
neutralize them.

The earliest example, the SAGE (Strategic Air Ground 
Environment) computer system, resulted from a massive 
development effort in the 1950s that strained the capac-
ity of early vacuum tube-based computers to its limit. The 
purpose of SAGE was to provide an integrated tracking and 
display system that could give the Strategic Air Command 
(SAC) complete real-time information about any Soviet 

nuclear bomber strikes in progress against the continental 
United States Descendents of this system were able to track 
ballistic missiles.

The Aegis system first deployed aboard selected navy 
ships in the 1970s is a good example of a tactical battle 
management system on a somewhat smaller scale. Aegis is 
a computerized system that can integrate information from 
sophisticated shipboard radar and sonar arrays as well as 
receiving and merging data from other ships and recon-
naissance assets (such as helicopters). The captain of an 
Aegis cruiser or destroyer therefore has a real-time picture 
showing the locations, headings, and speeds of friendly and 
enemy ships, aircraft, and missiles. The system can also 
automatically distribute the available munitions to most 
effectively engage the most threatening targets.

Ultimately, the military hopes to give each unit in the 
field and even individual soldiers a battle management dis-
play that would pinpoint enemy vehicles and other activity. 
Unpiloted drone aircraft such as the Predator can loiter over 
the battlefield and feed video and other data into the battle 
management system.

While the ability to transmit and process large amounts 
of information can lead to strategic or tactical advantage, it 
also demands increased attention to security. If an enemy 
can jam the information processing system, its advantages 
could be lost at a crucial moment. Worse, if an enemy can 
“spoof” the system or introduce deceptive data, the mili-
tary’s information system could become a weapon in the 
enemy’s hands (see computer crime, encryption, infor-
mation warfare and security).

Beyond the Battlefield
Today’s military faces the challenge of diverse types of con-
flict (including counterinsurgency and peacekeeping), the 
need to interact with cultures that may be unfamiliar to 
most soldiers, and the need to deal with the psychological 
as well as physical casualties of war. A number of innova-
tive applications of simulation and information technology 
are being developed.

In 2006 the U.S. military began to use a game called 
“Tactical Iraqi” in which soldiers must learn not only con-
versational phrases, but the difference between appropriate 
and culturally insensitive gestures and actions.

Another simulation, created at the University of South-
ern California, uses VR technology (see virtual reality) 
to place soldiers suffering from posttraumatic stress disor-
der (PTSD) back into the combat environment under con-
trolled conditions. The goal is to gradually desensitize the 
person to the traumatic sights, sounds, and events.

On the information and intelligence front, the need to 
translate and interpret massive amounts of material in many 
languages in near real time has led the Defense Advanced 
Research Projects Agency (DARPA) to begin to develop a 
system that would use separate “engines” for translation, 
interpretation, and summarization.
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minicomputer
The earliest general-purpose electronic digital computers 
were necessarily large, room-size devices. In the 1960s, 
however, the replacement of tubes with transistors (and 
gradually, integrated circuits) gave designers the choice of 
either keeping computers large and packing more process-
ing and memory capacity into them, or making smaller 
computers that still had considerable power. The latter 
option led to the minicomputer as contrasted with the larger 
mainframe (see mainframe).

Compared to mainframes, minicomputers often handled 
data in smaller “chunks” (such as 16 bits as compared to 32 
or 64) and had a smaller memory capacity. Minicomputers 
also tended to have more limited input/output (I/O) capacity. 
However, while large businesses still needed mainframes to 
handle their large databases and volume of transactions, the 
minicomputer offered a relatively low cost (tens of thousands 
of dollars rather than hundreds of thousands), computing 
facility for scientific laboratories, university computing cen-
ters, industrial control, and various specialized needs.

The pioneering and most successful minicomputer com-
pany was the Digital Equipment Corporation (DEC). In 
1960, DEC introduced its PDP-1, which was followed in 
1965 by the quite successful PDP-8, which sold for only 
$18,000. By the early 1970s, DEC had been joined by com-
petitors such as Data General and the availability of inte-
grated memory circuits (RAM) and microprocessors packed 
more speed and capacity into each succeeding model.

The minicomputer had several important effects on the 
development of computer science and the “computer cul-
ture” as a whole (see hackers and hacking). Minicom-
puters gave university students direct, interactive access to 
computers through time-sharing, Teletype terminals, or CRT 
display terminals. Because minicomputers usually lacked 
the extensive (and expensive) software packages that came 
with mainframes, university users developed and eagerly 
swapped software such as program editors and debuggers. 
This cooperative effort achieved its most striking result in 
the development of the UNIX operating system.

The reader has probably noticed that this article refers 
to minicomputers in the past tense. The minicomputer 
didn’t really disappear, but rather was transmogrified. By 
the late 1980s and certainly the 1990s, the personal desk-

top computer had taken advantage of more powerful micro-
processors and ever more densely packed memory chips to 
create workstations that rivaled or exceeded the power of 
established minicomputers. Eventually, the minicomputer 
as a category virtually disappeared, its functions taken over 
by machines such as the powerful graphics workstations 
developed by companies such as Sun Microsystems and Sil-
icon Graphics and today’s forests of Web and file servers.
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Minicomputers such as this DEC PDP-8 brought computing power 
to many academic and scientific institutions for the first time. They 
also encouraged a culture of cooperative software development 
that led to such innovations as the UNIX operating system.  (Paul 
Pierce Computer Collection)

312        minicomputer



Schein, Edgar H. DEC Is Dead, Long Live DEC: The Lasting Legacy 
of Digital Equipment Corporation. San Francisco: Berrett-Koe-
hler, 2004.

Minsky, Marvin Lee
(1927–  )
American
Computer Scientist

Starting in the 1950s, Marvin Minsky played a key role in 
the establishment of artificial intelligence (AI) as a 
discipline. Combining cognitive psychology and computer 
science, Minsky developed ways to make computers func-
tion in “brain-like” ways (see neural network) and then 
developed provocative insights about how the human brain 
might be organized.

Marvin Minsky was born in New York City on August 9, 
1927. His father was a medical doctor, and Marvin proved 
to be a brilliant science student at the Bronx High School of 
Science and the Phillips Academy. Although he majored in 
mathematics at Harvard, he also showed a strong interest 
in biology and psychology. In 1954, he received his Ph.D. in 
mathematics at Princeton. In 1956, he was a key participant 
in the seminal Dartmouth conference that established the 
goals of the new discipline of artificial intelligence.

One of the most important of those goals was to explore 
the relationship between thinking in the human brain and 
the operation of computers. Earlier in the century, research 
into the electrical activities of neurons (the brain’s infor-
mation-processing cells) had led to speculation that the 
brain functioned something like an intricate telephone 
switchboard, carrying information through millions of tiny 
connections. During the 1940s, researchers had begun to 
experiment with creating electronic circuits that mimicked 
the activity of neurons.

In 1957, Fran Rosenblatt built a device called a per-
ceptron. It consisted of a network of electronic nodes that 
can transmit and respond to signals that function much 
like nerve stimuli in the brain (see neural network). For 
example, a perceptron could “recognize” shapes by selec-
tively reinforcing the stimuli from light hitting an array 
of photocells. In 1969, Minsky and Seymour Papert co-
authored a very influential book on the significance and 
limitations of perceptron research. Their work not only 
spurred research into neural networks and their possible 
practical applications, but also proved a strong impetus for 
the new field of cognitive psychology, bridging the study of 
human mental processes and the insights of computer sci-
ence (see cognitive science).

Meanwhile, Minsky had joined with John McCarthy (see 
McCarthy, John) to found the Artificial Intelligence Labo-
ratory at the Massachusetts Institute of Technology (MIT). 
In moving from basic perception to the higher order ways 
in which humans learn, Minsky developed the concept of 
frames. Frames are a way to categorize knowledge about the 
world, such as how to plan a trip. Frames can be broken 
into subframes. For example, the trip-planning frame might 
have subframes about air transportation, hotel reservations, 

and packing. Minsky’s frames concept became a key to the 
construction of expert systems that today allow computers to 
advise on such topics as drilling for oil or medical diagnosis 
(see expert systems and knowledge representation). In 
the 1970s, Minsky and his colleagues at MIT designed robotic 
systems to test the ability to use frames to accomplish simpler 
tasks, such as navigating around the furniture in a room.

Minsky believed that the results of research into sim-
ulating cognitive behavior had fruitful implications for 
human psychology. In 1986, Minsky published The Society 
of Mind. This book suggests that the human mind is not a 
single entity (as classical psychology suggests) or a system 
with a small number of often-warring subentities (as psy-
choanalysis asserted). It is more useful, Minsky suggests, 
to think of the mind as consisting of a multitude of inde-
pendent agents that deal with different parts of the task of 
living and interact with one another in complex ways. What 
we call mind or consciousness, or a sense of self is, there-
fore, what emerges from this ongoing interaction.

Minsky continues his exploration of human psychology 
and cognition with his latest book, The Emotion Machine. 
He has suggested that emotions are actually just alternative 
ways of thinking and accessing mental resources. In effect, 
the mind solves problems by looking among its “scripts” 
for those that seem applicable to the current situation, and 
then reflecting on them and revising as necessary.

Minsky continues his research at MIT. He has received 
numerous awards, including the ACM Turing Award (1969) 
and the International Joint Conference on Artificial Intel-
ligence Research Excellence Award (1991).
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MIT Media Lab
While often associated with innovations in computer inter-
faces and use of new technology, the Media Lab at the Mas-
sachusetts Institute of Technology (MIT) is actually a part 
of the School of Architecture and Planning. This origin 
is perhaps reflected in the organization’s multidisciplinary 
research, including not only computer science and technol-
ogy but cognitive science, learning, art, and design.

The lab was founded in 1985 by Nicholas Negroponte 
and former MIT President Jerome Wiesner (see Negro-
ponte, Nicholas). As of 2006 the lab’s directorship was 
assumed by Frank Moss. The lab is funded mainly by cor-
porate donations, though some projects receive government 
funding or are done in partnership with other schools or 
other parts of MIT. There is some ongoing tension between 
the specific needs and desires of corporate sponsors and the 
lab’s research interests, and over the disposition of intellec-
tual property created by projects.
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Emphases and Projects
The focus of most of the lab’s diverse projects is on find-
ing innovative and productive new ways for people to use 
computers and related technology. Recently there has been 
an emphasis on more practical applications such as aiding 
“disabled, disadvantaged, [and] disenfranchised” people 
in becoming pioneers in using technology that everyone 
may use someday. The “One Laptop per Child” project to 
develop inexpensive computers for developing countries is 
also a part of this effort.

As of 2007 there were 27 separate research groups at the 
lab, including the following:

• � Object-Based Media—objects that can “understand” 
and describe their environment

• � Personal Robots—robots that interact with people 
socially (see Breazeal, Cynthia)

• � Computing Culture—relationships among art, tech-
nology, and culture

• �M olecular Machines—logical and mechanical devices 
using molecular-scale parts

• � Software Agents—programs that can serve as assis-
tants for human activities

• � Ambient Intelligence—interfaces that are “pervasive, 
intuitive, and intelligent” (see Maes, Pattie)

• � Society of Mind—applying models of human cogni-
tive processing to machines (see Minsky, Marvin)

• � Affective Computing—developing computers that can 
recognize and respond intelligently to human emotion
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Mitnick, Kevin D.
(1963–  )
American
Computer Cracker/Hacker, Consultant

Once notorious for breaking into computers and stealing 
information, Kevin Mitnick later became a consultant and 
author on computer security.

Mitnick was born October 6, 1963, in Van Nuys, Cali-
fornia. With little parental supervision and few other 
friends, Mitnick became involved with “phone phreaks,” 
people who had learned to manipulate the long-distance 
phone system. However, Mitnick soon turned his attention 
to breaking into computer systems. Mitnick first got in 
trouble in high school for breaking into the school district’s 
computer system. He also allegedly broke into the North 
American Air Defense Command computer, though fortu-
nately without starting a nuclear war as in the movie War 
Games. Despite being caught stealing Bell System technical 
manuals and put on probation, Mitnick continued break-
ing into computers. In 1989 he received a one-year prison 
sentence for breaking into computers at MCI and Digital 
Equipment Corporation. After getting out he violated his 
probation by stealing more Bell documents, and a warrant 
was issued for his arrest.

Mitnick then went underground, eluding authorities 
for two years and using a variety of fake identities. How-
ever, when Mitnick broke into the computer of physicist 
and computer security expert Tsutomu Shimomura and 
stole a large number of documents and programs, and 
later taunted him on the phone, Shimomura resolved to 
track down the intruder. Shimomura and several other 
experts set up a tracking program at The Well (a computer 
conferencing system where Mitnick had stashed the stolen 
material). Mitnick attempted to disguise his location by 
routing calls through a phone company switching office 
in Raleigh, North Carolina, but when Shimomura figured 
out that Mitnick was calling from Raleigh, he and a Sprint 
phone technician drove around Raleigh scanning for the 
calls from Mitnick’s cellular modem, tracking him to his 
apartment building. They then called federal agents, who 
arrested Mitnick.

Mitnick became a cause célèbre in the hacker commu-
nity. The controversy was heightened by two books writ-
ten about the case, one by Shimomura and New York Times 
journalist John Markhoff and the other by Jonathan Litt
man, who argued that the charges against Mitnick were 
overinflated and government prosecutors overzealous.

The MIT Media Lab has devised a variety of new ways for people 
to use computers. This is an innovative laptop sketchbook that cre-
ates animations directly from drawings.  (Sam Ogden / Photo 
Researchers, Inc.)
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Author and Security Expert
After serving a total of five years in prison (four and a half 
before he was actually tried), Mitnick was released in Janu-
ary 2000 on condition that he not use any form of computer 
network. (Mitnick appealed this restriction and it was later 
lifted.) Meanwhile, Mitnick then wrote two books describ-
ing both technical and psychological or “social engineer-
ing” methods used by hackers, and giving advice on how 
computer owners can protect themselves. Mitnick currently 
owns his own computer security company.
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modeling languages
Most significant modern software projects are not simply 
programs, however large, but complex systems of programs 
or modules. Such systems have to be designed and fully 
described before they can be coded. Traditional methods 
may be adequate for simple programs (see flowchart and 
pseudocode), but they do not capture many aspects of 
design and behavior. When used for software projects and 
information systems, modeling languages allow for com-
ponents and their relationships to be described and dia-
grammed systematically.

UML
Unified Modeling Language, or UML, is the most widely 
used modeling language for software projects. UML 
describes software in three ways: the functions of the sys-
tem as seen by the user; the system’s objects, attributes, and 
relationships (see class and object-oriented program-
ming); and how the system behaves, as seen by how objects 
interact and how their state changes. A variety of diagrams 
can be used to summarize this information:

• � activity—describes processes and data flow, as in busi-
ness transactions

• � class—shows classes and data types and their rela-
tionships

• � communication—the messages (data) exchanged 
between classes

• � components—the major parts of the system

• � composite structure—the internal structure of a class 
or component

• � deployment—where the system is executed, including 
hardware and software servers

• � interaction overview—a way to show the overall flow 
of control

• � object—objects and relationships at a particular point 
in time

• � package—organization of elements of the model into 
packages, showing dependencies

• � sequence—how messages are organized chronologi-
cally

• � state machine—the possible states an object or inter-
action can have, and how each type of input changes 
the state (see finite-state machine)

• � timing—how the state of an object changes over time 
as it responds to events

• � use case—actors and actions (such as a customer 
making a purchase)

Some critics believe that UML can be overused, lead-
ing to large, complex descriptions and numerous diagrams 
that can be almost as hard to work with as the code itself. 
Further, the UML itself has to be maintained, being revised 
and expanded as the design and code change. Integrating 
modeling functions into programming environments and 
providing a seamless path from model to specification to 
code is a possible alternative, though hard to realize in 
practice.
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modem
As computers proliferated and users experienced an increas-
ing need to exchange data and communicate, it became 
logical to tap into the telephone system, a communications 
technology that already linked millions of places around 
the world.

The problem is that the conventional telephone is an 
analog rather than digital device. It converts sound (such as 
speech) into continuously varying electrical signals. Com-
puters, on the other hand, use discrete pulses of on/off 
(binary) data. However, it proved relatively easy to build 
a device that could “modulate” the data pulses, impos-
ing them on a sort of carrier wave and thus converting 
them into electrical signals that could travel along tele-
phone lines. At the other end of the line a corresponding 
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device could “demodulate” that telephone signal, convert-
ing it back into data pulses. This “modulator-demodulator” 
device is known as a modem for short.

A modem contains both the modulator and demodula-
tor circuit, with a connection to a cable and a phone jack on 
one side and a connection to the computer on the other. The 
computer connection can be provided by connecting to a 
standard port on the outside of the PC (see serial port) or 
by mounting the modem on a card that slides into the PC’s 
internal bus (see bus) and connects to the outside phone 
line through a jack. The modem must also have a compo-
nent that generates the dialing pulses needed to establish a 
phone connection.

The first modems for PCs appeared in the early 1980s 
and were very slow by modern standards, transmitting 
data at 300 bps (bits per second). However, speed steadily 
improved, reaching 1,200, 2,400, 9,600 and so on up to 
56,000, which is about the maximum practical speed for 
this technology over ordinary phone lines.

Phone lines are far from hermetically sealed, and ran-
dom fluctuations called “line noise” can sometimes be mis-
interpreted by the modem as part of the data signal, leading 
to errors. However, modern modems include sophisti-
cated error-correcting protocols (see error correction) 
and can automatically negotiate with each other to reduce 
data transmission speed over noisy lines. Data compres-
sion techniques also make it possible to have an effectively 
greater transmission speed by packing more information 
into less data. In the 1990s, there were some problems 
caused by competing standards, but today most modems 
meet the International Telecommunications Union (ITU) 
v.90 standard for 56 kbps transmission. The modem is now 
a reliable, stable commodity included as standard equip-
ment in most new PCs.

Modems have met with increasing competition as a 
means to connect homes to the Internet. Data can be trans-
mitted over video cable or special phone lines (such as 
DSL or ADSL) at 20–30 times faster than for a modem on 
an ordinary phone line (see broadband). However, besides 
being two to three more times expensive than typical dial-
up services, broadband technologies tend to be concen-
trated in urban areas. Nevertheless, the versatile modem 
is becoming a secondary means of data communication for 
most users.
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molecular computing
While the electronic digital computer is by far the most 
prevalent type of calculating device in use today, it is also 
possible to build computational devices that exploit natural 

laws and processes to solve problems (see analog com-
puter). One of the most intriguing approaches is based 
upon chemistry and biology rather than electronics.

Consider that all living things possess a detailed “data-
base system” of coded information, namely, the DNA 
sequences that define their genetic code. DNA consists of 
strands composed of four bases: adenine (A), cytosine (C), 
guanine (G), and thymine (T). There are a variety of ways 
in which biologists can “sequence” a strand of DNA, that is, 
determine the order of bases in it. It is also relatively easy to 
make many copies of a given chain by using the polymerase 
chain reaction (PCR) technique.

This stockpile of coded DNA strands can be used to solve 
combinatorial problems. This type of problem becomes 
exponentially harder to solve through “brute force” com-
putation as the number of elements increases. An example 
is the famous “Traveling Salesman Problem.” Here the goal 
is to determine a route that visits all of a list of cities while 
visiting each city only once.

As Leonard Edelman pointed out in his 1994 article in 
Science, a DNA-based approach to the traveling salesman 
problem begins by assigning two sets of four bases to each 
city. Next, a similar DNA combination is assigned to each 
available direct route between two cities, using half (four 
bases) of the sequence assigned to the respective cities. 
That is, if one city is coded TCGTAGCT and another city 
is coded GCATTAAG, then a route from the first city to the 
second would be coded TCGTTAAG.

When binding one DNA strand to another, T always 
binds with A, and C always binds with G. Therefore a “com-
plement” can be defined that will bind with a given DNA 
string. For example, the complement of TCGTAGCT would 
be AGCATCGA.

Next, the strands representing the complements for the 
cities are mixed with the ones representing routes. If a city 
complement runs into a route containing that city, they 
bind together. The other end (representing the other end of 
the route) might then encounter another route strand, thus 
extending the route to a third city and so on, until there are 
strands representing potentially complete routes to all the 

Molecular computing takes advantage of the properties of mol-
ecules such as DNA to create what is in effect a massive array of 
parallel processors. In this example, DNA strands can be coded to 
represent cities and possible routes between them so that they will 
chemically solve the Traveling Salesman Problem.
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cities. After the mixing and combining is completed, sepa-
ration and sequencing techniques can be used to find the 
shortest strand that includes all the cities. This represents 
the solution to the problem.

The attractiveness of molecular computing lies in its 
being “massively parallel” (see multiprocessing). Although 
molecular operations are individually much slower than 
electronics, DNA strands can be replicated and assembled 
in great numbers, potentially allowing them to go through 
quintillions (1018) of combinations at the same time. In 
1996, Dan Boneh designed an approach using DNA com-
binations that could be used to break the Data Encryption 
Standard (DES) encryption scheme by testing huge num-
bers of keys simultaneously.

In 2002 researchers at the Weizmann Institute of Sci-
ence in Rehovot, Israel, announced that they had con-
structed a DNA computer that could perform 330 teraflops 
(trillions of operations per second). Two years later Weiz-
mann researchers described their new DNA computer, 
which could be used to diagnose and treat cancer on the 
cellular level.

Although this application suggests the potential power 
in molecular computing, the approach has significant 
drawbacks. There are many ways that damage can occur 
to DNA strands during combination and processing, lead-
ing to errors. Even for the combinatorial problems that are 
molecular computing’s strong suit, conventional electronic 
computers using large arrays of parallel processors are able 
to offer comparable power and a much easier interface. 
However, molecular computing illustrates the rich way in 
which information and information processing are embed-
ded in nature and the potential for harnessing it for practi-
cal applications.
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Păun, Gheorghe, Grzegorz Rozenberg, and Arto Salomaa. DNA 
Computing: New Computing Paradigms. New York: Springer, 
1998.

Ryu, Will. “DNA Computing: A Primer.” Ars Technica. Available 
online. URL: http://arstechnica.com/reviews/2q00/dna/dna-1. 
html. Accessed August 15, 2007.

monitor
As designers strove to make computers more interactive 
and user-friendly, the advantages of the cathode ray tube 
(CRT) already used in television became clear. Not only 
could text be displayed without wasting time and resources 
on printing but the individually addressable dots (pixels) 
could be used to create graphics. While such displays were 
used occasionally in defense and research systems in the 
1950s, the first widespread use of CRT video monitors came 
with the new generation of smaller computers developed 
in the 1960s (see minicomputer). Since such computers 
were often used for scientific, engineering, industrial con-
trol, and other real-time applications, the combination of 
video display and keyboard (i.e., a Video Display Terminal, 
or VDT) was a much more practical way for users to oversee 
the activities of such systems. (This oversight function also 
led to the term monitor.)

A monitor can be thought of as a television set that 
receives a converted digital signal rather than regular TV 
programming. To send an image to the screen, the PC first 
assembles it in a memory area called a video buffer (mod-
ern video cards can store up to 64 MB of complex graphics 
data. See computer graphics). Ultimately, the graphics are 
stored as an array of memory locations that represent the 
colors of the individual screen dots, or pixels. The video 
card then sends this data through a digital to analog con-
verter (DAC), which converts the data to a series of voltage 
levels that are fed to the monitor.

The monitor has electron “guns” that are aimed 
according to these voltages. (A monochrome monitor has 

A standard computer monitor works much like an ordinary color TV set. The difference is that the signal is derived not from a broadcast pro-
gram, but from the contents of video memory as processed and converted by the computer’s graphics card.
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only one gun, while a color monitor, like a color TV, has 
separate guns for red, blue, and green. The electrons from 
the guns pass through a lattice called a shadow mask, 
which keeps the beams properly separated and aligned. 
Each pixel location on the inner surface of the CRT is 
coated with phosphors, one that responds to each of the 
three colors.

The intensity of the beam hitting each color determines 
the brightness of the color, and the mixture of the red, blue, 
and green color levels determines the final color of the 
pixel. (Today’s graphics systems can generate more than 
16.7 million different colors, although the human eye can-
not make such fine distinctions.)

The beam sweeps along a row of pixels and then turns 
off momentarily as it is refocused and set to the next 
row. The process of scanning the whole screen in this 
way is repeated 60 times a second, too fast to be noticed 
by the human eye. Less expensive monitors were some-
times designed to skip over alternate lines on each pass 
so that each line is refreshed only 30 times a second. This 
interlaced display can have noticeable flicker, and fall-
ing prices have resulted in virtually all current monitors 
being noninterlaced.

Another factor influencing the quality of a CRT moni-
tor is the size of the screen area devoted to each pixel. The 
spacing in the shadow mask that defines the pixel areas is 
called the dot pitch. A smaller dot pitch allows for a sharper 
image.

During the 1980s, emerging video standards offered 
increasing screen resolution and number of colors, starting 
with the first IBM PC color displays at 320 × 200 pixels, 4 
colors up to video graphics array (VGA) displays at 1024 × 
768 pixels and at least 256 colors. The latter is considered 
the minimum standard today, with some displays going as 
high as 1600 × 1200 with millions of colors.

Meanwhile, the CRT monitor became a commodity item 
with steadily falling prices. A 19-inch color monitor now 
costs only a few hundred dollars. Ergonomically, it is impor-
tant for the combination of display size and resolution to be 
set to avoid eyestrain. There has been some concern about 
users receiving potentially damaging nonionizing radiation 
from CRT displays, but studies have generally been unable 
to confirm such effects. Modern monitors are generally 
designed to minimize this radiation.

CRT displays are too bulky and power-hungry for lap-
top or handheld devices, which generally use liquid crystal 
displays (LCDs). In recent years large LCD displays suitable 
for desktop systems have also declined in price, and are 
rapidly becoming the display of choice even for regular PCs 
(see flat-panel display).
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Moore, Gordon E.
(1929–  )
American
Entrepreneur

The microprocessor chip is the heart of the modern com-
puter, and Gordon Moore deserves much of the credit for 
putting it there. His insight into the computer chip’s potential 
and his business acumen and leadership would lead to the 
early success and market dominance of Intel Corporation.

Moore was born on January 3, 1929, in the small coastal 
town of Pescadero, California, south of San Francisco. His 
father was the local sheriff and his mother ran the general 
store. Young Moore was a good science student, and he 
attended the University of California, Berkeley, receiving 
a B.S. in chemistry in 1950. He then went to the California 
Institute of Technology (Caltech), earning a dual Ph.D. in 
chemistry and physics in 1954. Moore thus had a sound 
background in materials science that would help prepare 
him to evaluate the emerging research in transistors and 
semiconductor devices that would begin to transform elec-
tronics in the later 1950s.

After spending two years doing military research at 
Johns Hopkins University, Moore returned to the West 
Coast to work for Shockley Semiconductor Labs in Palo 
Alto. However, Shockley, who would later share in a Nobel 
Prize for the invention of the transistor, alienated many of 
his top staff, including Moore, and they decided to start 
their own company, Fairchild Semiconductor, in 1958.

Moore became manager of Fairchild’s engineering 
department and, the following year, director of research. 
He worked closely with Robert Noyce, who was developing 
a revolutionary process for placing the equivalent of many 
transistors and other components onto a small chip.

Moore and Noyce saw the potential of this integrated-
circuit technology for making electronic devices including 
clocks, calculators, and especially computers vastly smaller 
yet more powerful. In 1965 he formulated what became 
widely known in the industry as Moore’s law. This predic-
tion suggested that the number of transistors that could be 
put in a single chip would double about every year (later 
it would be changed to 18 months or two years). Remark-
ably, Moore’s law would still hold true into the 21st century, 
although as transistors get ever closer together, the laws of 
physics begin to impose limits on current technology.

Moore, Noyce, and Andrew Grove found that they could 
not get along well with the upper management in Fair
child’s parent company, and decided to start their own com-
pany, Intel Corporation, in 1968, using $245,000 plus $2.5 
million from venture capitalist Arthur Rock (see Grove 
Andrew and Intel Corporation). They made the devel-
opment and application of microchip technology the cen-
terpiece of their business plan. Their first products were 
RAM (random access memory) chips (see chip).

Seeking business, Intel received a proposal from Busi-
com, a Japanese firm, for 12 custom chips for a new calcu-
lator. Moore and Grove were not sure they were ready to 
undertake such a large project, but then Ted Hoff, one of 
their first employees, suggested that they could build a chip 
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that had a general-purpose central processing unit (CPU) 
that could be programmed with whatever instructions were 
needed for each application. With the support of Moore and 
other Intel leaders, the project got the go-ahead. The result 
was the microprocessor, and it would revolutionize not only 
computers, but just about every sort of electronic device 
(see microprocessor).

Under the leadership of Moore, Grove, and Noyce, the 
1980s would see Intel established as the leader in micro-
processors, starting when IBM chose Intel microprocessors 
for its hugely successful IBM PC. IBM’s competitors, such 
as Compaq, Hewlett-Packard, and later Dell, would also use 
Intel microprocessors for most of their PCs.

In his retirement, Moore enjoyed fishing at his sum-
mer home in Hawaii while being active as a philanthro-
pist. Moore gave a record-setting $600 million donation to 
Caltech in 2001, and in 2003 Moore and his wife, Betty, set 
up a $5 billion foundation focusing on environmental and 
social initiatives. Moore has also had a long-time interest in 
SETI, or the search for extraterrestrial intelligence.

Moore has been awarded the prestigious National Medal 
of Technology (1990), the IEEE Founders Medal, the W. 
W. McDonnell Award, as well as the Presidential Medal of 
Freedom (2002). In 2003 Moore was elected a fellow of the 
American Association for the Advancement of Science.
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motherboard
Large computers generally had separate large cabinets to 
hold the central processing unit (CPU) and memory (see 
mainframe). Personal computers, built in an era of inte-
grated electronics, use a single large circuit board to serve 
as the base into which chips and expansion boards are 
plugged. This base is called the motherboard.

The motherboard has a special slot for the CPU (see 
microprocessor). Data lines (see bus) connect the CPU to 
RAM (see memory) and various device controllers. Besides 
compactness, use of a motherboard minimizes the use of 
possibly fragile cable connections. It also provides expan-
sion capability. Assuming its pins are compatible with the 
slot and it is operationally compatible, a PC user can plug a 
more powerful processor into the slot on the motherboard, 
upgrading performance. Memory expansion is also pro-
vided using a row of memory sockets. Memory, originally 
inserted as rows of separate chips plugged into individual 
sockets, is now provided in single modules called DIMMs 
that can be easily slid into place.

The motherboard also generally includes about six gen-
eral-purpose expansion slots. These follow two different 
standards, ISA (industry standard architecture) and PCI 
(peripheral component interconnect) with PCI now pre-
dominating (see bus). These slots allow users to mix and 
match such accessories as graphics (video) cards, disk con-
trollers, and network cards. Additionally, the motherboard 
includes a chip that stores permanent configuration set-
tings and startup code (see bios), a battery, a system clock, 
and a power supply.

The most important factors in choosing a motherboard 
are the type and speeds of processor it can accommodate, 
the bus speed, the BIOS, system chipset, memory and device 
expansion capacity, and whether certain features (such 
as video) are integrated into the motherboard or provided 
through plug-in cards. Generally, users must work within 
the parameters of their system’s motherboard, although 
knowledgeable people who like to tinker can buy a mother-
board and build a system “from scratch” or keep their cur-
rent peripheral components and upgrade the motherboard.
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Schematic of a PC motherboard. Note the sockets into which addi-
tional RAM memory chips (DIMM) modules can be inserted, as 
well as the slots for ISA and PCI standard expansion cards.
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Motorola Corporation
Motorola Corporation (NYSE symbol: MOT) is a venera-
ble American manufacturer of communications and other 
electronic equipment, including computers and cell phones. 
The company was founded in 1928 by Paul and Joseph 
Galvin as Galvin Manufacturing Corporation. The name 
Motorola arose in the early 1930s when the company began 
manufacturing car radios (“motor” as in car plus “ola” as in 
Victrola), and the company’s name was officially changed to 
Motorola Corporation in 1947. Many of the company’s sub-
sequent products would relate to radio, such as police car 
radios, walkie-talkies, and cordless phones. Motorola intro-
duced the first “brick” cell phone in 1983. Today Motorola 
is best known for stylish cell phones with names such as 
RAZR and KRZR.

Motorola also played an important role in building the 
global satellite communications network through the Irid-
ium Company in the late 1990s. However, the company 
filed for bankruptcy when it could not attract enough tele-
communications companies to use its services.

Microprocessors
Though the market came to be dominated by Intel (see 
Intel Corporation), Motorola was an important manu-
facturer of microprocessors in the 1980s and 1990s. Motor-
ola’s 68000 series micrprocessors and later PowerPC series 
(developed jointly with IBM) were used in several com-
puter systems of the early 1980s, including the Commodore 
Amiga and the Atari ST, as well as workstation terminals 
(Sun) and UNIX systems. The greatest consumer impact, 
however, would be its use in the Apple Macintosh, starting 
in 1984.

The later Power PC (PPC) series, launched in 1993, is a 
RISC processor (reduced instruction set, see risc). This line 
of processors would be used in the Power Mac and other 
Macintosh systems until Apple adopted Intel chips in 2006.

Motorola’s fortunes declined in the early to mid 2000s. 
In 2001 Motorola spun off its defense-related business to 
General Dynamics. It spun off its computer chip manufac-
turing division in 2004 as Freescale Semiconductors, and 
in 2007 Motorola sold its embedded communications chip 
unit to Emerson Electric. Motorola has said it would focus 
on its core communications business.

Despite strong demand for its cell phones and other 
mobile devices, in 2006 Motorola earned 42.9 billion in 
revenue, but its profits were down 48 percent from the pre-
vious year. This was attributed to strong price competition. 
In 2007 the company said it would cut 3,500 of its 66,000 
employees.
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mouse
Traditionally, computers were controlled by typing in com-
mands at the keyboard. However, as far back as the mid-
1960s researchers had begun to experiment with providing 
users with more natural ways to interact with the machine. 
In 1965, Douglas Engelbart at the Stanford Research Insti-
tute (SRI) devised a small box that moved over the desk on 
wheels and was connected to the computer by a cable. As 
the user moved the box around, it sent signals represent-
ing its motion. These signals in turn were used to draw a 
pointer on the screen. Engelbart found that this system was 
less taxing on users than alternative such as light pens or 
joysticks (see Engelbart, Douglas).

This device, dubbed a “mouse,” remained largely a labo-
ratory novelty. In the 1970s, however, Xerox designed a 
mouse-driven graphical user interface for its Alto system, 
which saw only limited use. In 1984, however, Apple intro-

This Microsoft wireless optical mouse eliminates moving parts and 
wires for smooth, accurate, reliable performance.  (Microsoft 
Corporation)
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duced the mouse to millions of users of its Macintosh. By 
the early 1990s, millions more users were switching their 
IBM-compatible PCs from text commands (see ms-dos) 
to the mouse-driven Windows interface. (See Microsoft 
Windows.) Today a desktop PC without a mouse would be 
as unthinkable as one without a keyboard.

Meanwhile, the mouse became smaller and sleeker. 
Instead of wheels, the contemporary mouse uses a rolling 
ball that turns two adjacent rollers inside the mouse. A 
mouse pad with a special surface is generally used to pro-
vide uniform traction. A newer type of mouse uses optical 
sensors instead of rollers to sense its changing position, and 
does not require a mouse pad. Some mice are also cordless, 
using infrared or wireless data connections.

Since mice are generally impracticable for laptop use 
(see portable computers), designers have offered a variety 
of alternatives. These include a trackball (a rolling ball built 
into the keyboard), a touch-sensitive finger pad, or a small 
stub that can be moved like a joystick by the fingertip.

Most mice now have at least two buttons. Generally, the 
left button is used for selecting objects, opening menus, or 
launching programs. The right button is used to bring up a 
menu of actions that can be done with the selected object. 
Activating a button is called clicking. It is the operating system 
that assigns significance to clicking or double-clicking (click-
ing twice in rapid succession) or dragging (holding a button 
down while moving the pointer). Some mice have a third but-
ton and/or a small wheel that can be used to scroll the display, 
but only certain software recognizes these functions.
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MS-DOS
The MS-DOS operating system became standard for per-
sonal computers built by IBM and its imitators (see IBM 
PC) during the 1980s. Today it has been virtually displaced 
by various versions of Microsoft Windows (see Microsoft 
Windows). However, MS-DOS is important as an expres-
sion of both the limitations of the first generation of per-
sonal computers and the remarkable patience and ingenuity 
of its developers and users.

Development
By the end of the 1970s, there were a number of rudimen-
tary operating systems for personal computers that used 
a variety of microprocessors. Generally, their capabilities 
were limited to loading and running programs and provid-
ing basic file organization and access.

The most sophisticated early PC operating system 
was CP/M, developed by Gary Kildall’s Digital Research 
for machines based on the Intel 8008 microprocessor. CP/
M offered more advanced capabilities such as the ability 

to use not only floppy but also hard disks, and included 
improved commands for listing file directories. CP/M even 
offered rudimentary programming tools, such as an editor 
and assembler, as well as an expandable architecture that 
allowed programmers to write utilities that could be in 
effect added to the operating system (see assembler).

In one of computer history’s greatest missed opportu-
nities, Kildall and IBM failed to come to an agreement in 
1980 for creating a version of CP/M for the IBM PC, which 
was being developed using the new 16-bit 8086 proces-
sor. IBM turned instead to Bill Gates and Microsoft, who 
had achieved something of a reputation for their widely 
used BASIC language package for personal computers (see 
Gates, William). Gates agreed to provide IBM with an 
operating system, and did so by buying a program called 
QDOS (“quick and dirty operating system”), which had 
been developed by Tim Paterson of Seattle Computer Prod-
ucts. This program was released for the IBM PC as PC-DOS 
in 1981. However, Microsoft did not sell IBM an exclusive 
license, so when “clone” makers proved able to legally build 
IBM-compatible machines, Microsoft could sell them a 
generic version called MS-DOS. As the PC market boomed, 
this provided Microsoft with a large revenue stream, and 
the company never looked back.

Features
MS-DOS offered a rather “clean” design that separates the 
operating system into three parts. There is a hardware-
independent I/O system (stored as the file MSDOS.SYS), 
which processes requests from programs for access to disk 
files or to other devices such as the screen. The routines 
needed to actually communicate with the devices are stored 
in a separate file, IO.SYS, which is written by each computer 
manufacturer. (As users from the early 1980s remember, 
“PC-compatible” machines often had proprietary variations 
in areas such as video.) Finally, the command processor 
(COMMAND.COM) displays the once familiar C:\> prompt 
and waits for the user to type commands. For example, 
the DIR command followed by a path specification such as 
C:\TEMP lists the contents of that directory. Programs, too, 
can be run by typing their names at the prompt.

The MS-DOS file system, which remained largely 
unchanged until the most recent versions of Windows, uses 
a FAT (file allocation table) to indicate the disk allocation 
units or “clusters” assigned to each file. Starting with MS-
DOS 2.0 in 1983, a hierarchical scheme of directories and 
subdirectories was introduced, allowing for better organiza-
tion of the larger amount of space on hard disks.

One interesting feature of MS-DOS is the ability to load 
a program into memory and keep it available even while 
other programs are in use. This “terminate and stay resi-
dent” (TSR) function was soon used by enterprising devel-
opers to provide utilities such as notepads, calendars or 
shortcuts (see macro) that users could activate through 
special key combinations.

Users, however, had to struggle to keep enough memory 
free for their applications, resident programs, and device 
drivers. A combination of CPU addressing limitations and 
the high price of memory meant that early IBM PCs had 
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a maximum of 640 kB of memory to hold the operating 
system and application programs. A trick called “expanded 
memory” was developed to allow data to be swapped back 
and forth between the 640 kB of usable memory and the 
1–2 MB of additional memory that became available in the 
later 1980s.

By the early 1990s, MS-DOS (then up to version 6.0) was 
offering an alternative command processor (called DOS-
SHELL) that included some mouse operations, better sup-
port for larger amounts of memory, and the ability to switch 
between different application programs. However, by that 
time Windows 3.0 was proving increasingly successful, and 
by 1995 most new PCs were being shipped with Windows. 
Many new users scarcely used MS-DOS at all. Finally, with 
the advent of Windows NT, 2000, and XP, the MS-DOS pro-
gram code that still lurked within the process of running 
Windows disappeared entirely.
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multimedia
The earliest computers produced only numeric output or 
text (which itself actually consists of numbers—see char-
acters and strings). During the 1960s, CRT graphics (see 
monitor) came into limited use, mainly on computers used 
for scientific and engineering applications (see minicom-
puter). However, most business computer users continued 
to receive only textual output. A notable exception in the 
1970s was PLATO, a system of networked educational com-
puter terminals that combined text, graphics, and sound. It 
is this combination that became known as multimedia.

While much less powerful than mainframes or mini-
computers, the hobbyist and early commercial PCs (see 
graphics card) of the late 1970s generally did have the 
capability of producing simple monochrome or color graph-
ics on a monitor or TV screen. The Apple Macintosh, first 
released in 1984, was a considerable leap forward: Its user 
interface was inherently graphical, with even text being 
rendered as graphic bitmaps (see Macintosh).

The arrival of the PC greatly encouraged the develop-
ment of entertainment software (see computer games) as 
well as educational programs. As PCs became more power-
ful and gained hard drives and, by the late 1980s, CD-ROM 
drives (see CD-ROM), it became practical to put extensive 
multimedia content on systems in the home and school. 
One popular application has been encyclopedias, where the 
text from the printed version can be enhanced with graph-
ics such as photographs, maps, and charts. Besides being 
more compelling and easier to use than the printed version, 
multimedia encyclopedias can be updated easily through 
annual upgrades, as well as allowing for linking to Web 
sites that can further amplify or update the content.

Encyclopedias and other educational programs also 
benefited from the use of links that the user can click with 
the mouse, bringing up additional or related information or 
illustrations (see hypertext and hypermedia). Bill Atkin-
son’s Hypercard, released for the Macintosh in 1987, pro-
vided a multimedia “construction set” that could be used 
by nonprogrammers to create simple hyperlinked presenta-
tions, educational programs, and even games. Hypertext 
and linking are the “glue” that binds multimedia into an 
integrated experience.

Multimedia business presentations are now routinely 
created using software such as Microsoft PowerPoint, then 
projected at meetings. While simple presentations can emu-
late the traditional “slide show,” one-upmanship inevitably 
leads to more elaborate animations.

Multimedia and Daily Life
DVD-ROM drives, with about six times the storage capac-
ity of CDs, now make it practical to include video or even 
feature-length movies as part of a PC multimedia package. 
Meanwhile, the video capabilities of PCs continue to grow, 
with many PCs as of 2008 having 256 MB or more of video 
memory. Combined with processors running at up to 2.5 
GHz, this allows computer-generated graphics to rival the 
quality of live video.

However, the most important trend is probably the 
delivery of online multimedia content (see Internet, 
online services, and World Wide Web). The widespread 
marketing of the Mosaic and Netscape browsers (see Web 
browser) in the mid-1990s changed the Internet from an 
arcane, text-driven experience to a multimedia platform. 
The ability to deliver a continuous “feed” of video and audio 
(see music and video distribution, online and stream-
ing) allows content such as TV news reports to be carried 
with full video and radio broadcasts carried “live” with 
good fidelity. Newspapers and broadcast outlets are increas-
ingly investing in online versions of their content, viewing 
a Web presence as a business necessity. As more Internet 
users gain access to high-speed cable and DSL services (see 
broadband), multimedia is becoming as pervasive a part of 
the computing experience as television is in daily life.

Many facets of that daily life are likely to be affected 
by multimedia technology in coming years. The ability to 
deliver real-time, high-quality multimedia content, as well 
as the use of cameras (see videoconferencing and Web 
cam) has made “virtual” meetings not only possible but 
also routine in some corporate settings. When applied to 
lectures, this technology can facilitate “distance learning” 
where teachers work with students without them occupying 
the same room (see distance education and education 
and computers). Video “chat” services and immersive, 
pervasive online games have become important social out-
lets for many people, with the experience becoming ever 
more realistic (see online games and virtual reality).

Already, the concept of multimedia is becoming less 
distinctive precisely because it is so pervasive. Today’s Web 
users expect to see images, video, and sound, whether as 
part of a news story or an educational presentation, and 
multimedia is appearing on all sorts of new platforms (see 
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music and video players, digital; smartphones; and dig-
ital convergence). Further, equipped with digital cam-
eras and camcorders (even cell-phone cameras), together 
with easy-to-use editing software, more and more people 
are becoming not just consumers of multimedia, but cre-
ators as well (see user-created content and YouTube).
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multiprocessing
One way to increase the power of a computer is to use more 
than one processing unit. In early computers (see main-
frame) a single processor handled both program execu-
tion and input/output (I/O) operations. In the late 1950s, 
however, machines such as the IBM 709 introduced the 
concept of channels, or separate processing units for I/O 
operations. In such systems the central processor sends a 
set of I/O commands (such as to read a file into memory) to 
the channel, which has its own processor for carrying out 
the operation.

True multiprocessing, however, involves the use of more 
than one central processing unit (CPU). One successful 
design, Control Data Corporation’s CDC 6600 (1964), con-
tained both multiple arithmetic/logic units (the part of the 
CPU that does calculations) and multiple controllers for I/O 
and memory access control. IBM soon added multiprocess-
ing capability to its 360 line of mainframes.

Multiprocessing can be either asymmetric or symmetric. 
Asymmetric multiprocessing essentially maintains a single 
main flow of execution with certain tasks being “handed 
over” by the CPU to auxiliary processors. (For example, 
the Intel 80386 processor could be purchased with an addi-
tional floating-point processor, allowing such calculations 
to be performed using more efficient hardware. When the 
Pentium line was developed, floating-point was integrated 
into the main CPU).

Symmetric multiprocessing (SMP) has multiple, full-
fledged CPUs, each capable of the full range of opera-
tions. The processors share the same memory space, which 
requires that each processor that accesses a given memory 
location be able to retrieve the same value. This coherence 
of memory is threatened if one processor is in the midst 
of a memory access while another is trying to write data 
to that same memory location. This is usually handled by 
a “locking” mechanism (see concurrent programming) 

that prevents two processors from simultaneously accessing 
the same location.

A subtler problem occurs with the use by processors of 
separate internal memory for storing data that is likely to 
be needed (see cache). Suppose CPU “A” reads some data 
from memory and stores it in its cache. A moment later, 
CPU “B” writes to that memory location, changing the data. 
At this point the data in “A’s” cache no longer matches that 
in the actual memory. One way to deal with this problem 
is called bus snooping. Each CPU includes a controller that 
monitors the data line (see bus) for memory locations being 
used by other CPUs. When it sees an address that refers to 
an area of memory currently being stored in the cache, the 
controller updates the memory from the cache. This write 
operation sends a signal that lets other CPUs know that any 
cached data they have for that location is no longer valid. 
This means the other CPUs will go back to memory and 
reread the current data.

Alternatively, all CPUs can be given a single shared 
cache. While less complicated, this approach limits the 
number of CPUs to the maximum data-handling capacity 
of the bus.

Larger-scale multiprocessing systems consist of lat-
ticelike arrays of hundreds or even thousands of CPUs, 
which are referred to as nodes. Indeed, small clusters of 
CPUs using the architecture given above can be connected 
together to form larger arrays. Each cluster can have its 
own shared memory cache. Because accessing memory at 
a remote node takes considerably longer than accessing 

This example shows what can happen if processes do not properly 
manage a shared memory resource. At (1) processor A retrieves 
3 from the memory location. At (2) processor B copies 7 from its 
cache to that same memory location. Finally, at (3) processor A 
adds the 3 it had retrieved to a 2 in its register, storing 5 back in a 
location where processor B probably expects there to still be a 7.
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“local” memory within the cluster, maintaining coherence 
through bus monitoring is impracticable. Instead, memory 
is usually organized into data objects that are distributed 
optimally to reduce the necessity for remote access, and 
the objects are shared by CPUs requesting them through a 
directory system.

Multiprogramming
In order for a program to take advantage of the ability to run 
on multiple CPUs, the operating system must have facilities 
to support multiprocessing, and the program must be struc-
tured so its various tasks are most efficiently distributed 
among the CPUs. These separate tasks are generally called 
threads. A single program can have many threads, each 
executing separately, perhaps on a different CPU, although 
that is not required.

The operating system can use a number of approaches 
to scheduling the execution of processes or threads. It can 
simply assign the next idle (available) CPU to the thread. 
It can also give some threads higher priority for access to 
CPUs, or let a thread continue to “own” its CPU until it has 
been idle for some specified time.

The use of threads is particularly natural for appli-
cations where a number of activities must be carried on 
simultaneously. For example, a scientific or process control 
application may have a separate thread reading the data 
being returned from each instrument, another thread moni-
toring for alarm conditions, and other threads generating 
graphical output.

Threads also allow the user to continue interacting with 
a program while the program is busy carrying out earlier 
requests. For example, the user of a Web browser can con-
tinue to use menus or navigation buttons while the browser 
is still loading graphics needed for the currently displayed 
Web page. A search program can also launch separate 
threads to send requests to multiple search engines or to 
load multiple pages.

Support for multiprogramming and threads can now be 
found in versions of most popular programming languages, 
and some languages such as Java are explicitly designed to 
accommodate it.

Multiprogramming often uses groups or clusters of sep-
arate machines linked by a network. Running software on 
such systems involves the use of communications protocols 
such as the MPI (message-passing interface). This program-
ming interface has been widely deployed on many plat-
forms for use with languages such as C/C++ and Fortran. 
Another popular programming interface is OpenMP, which 
features the allocation of execution threads and the distri-
bution of work among them.	

A Multiprocessed World
The demand for software that can efficiently use multiple 
processors is likely for some time to outstrip the supply of 
programmers who can “think in parallel.” One reason is 
that today most new PCs have two processing “cores,” with 
four-core systems available and more to come (see micro-
processor). This means that many mainstream appli-
cations will eventually need to be rewritten for the new 

hardware environment. Another factor is that as the price 
per processor continues to decline and high-end multipro-
cessing machines are reaching 1 “petaflop” (1 quadrillion 
operations per second), many supercomputer applications 
will also need to be rewritten.

Meeting this demand not only takes training, it also 
takes appropriate languages and other tools. In recent 
years, therefore, the Defense Advanced Research Projects 
Agency (DARPA) has funded research in “High Productiv-
ity Computer Systems” by such companies as Cray, Sun, 
and IBM. New languages built “from the ground up” for 
multiprocessing include Sun’s Fortress, Cray’s Chapel, and 
IBM’s new project, code-named X10. Ultimately, systems 
for developing multiprocessing software should take most 
of the architectural details off the hands of the program-
mer, allowing performance to smoothly “scale up” with the 
increasing number of processors.
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multitasking
Users of modern operating systems such as Microsoft Win-
dows are familiar with multitasking, or running several 
programs at the same time. For example, a user might be 
writing a document in a word processor, pause to check the 
e-mail program for incoming messages, type a page address 
into a Web browser, then return to writing. Meanwhile, the 
operating system may be running a number of other pro-
grams tucked unobtrusively into the background, such as a 
virus checker, task scheduler, or system resource monitor.

Each running program “takes turns” using the PC’s cen-
tral processor. In early versions of Windows, multitasking 
was cooperative, with each program expected to periodically 
yield the processor to Windows so it could be assigned to the 
next program in the queue. One weakness of this approach 
is that if a program crashes, the CPU might be “locked up” 
and the system would have to be rebooted. However, Win-
dows NT, 2000, and XP (as well as operating systems such 
as UNIX) use preemptive multitasking. The operating sys-
tem assigns a “slice” of processing (CPU) time to a program 
and then switches it to the next program regardless of what 
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might be happening to the previous program. Thus, if a pro-
gram “crashes,” the CPU will still be switched to the next 
program, and the user can maintain control of the system 
and shut down the offending program.

Systems with preemptive multitasking often give pro-
grams or tasks different levels of priority that determine 
how big a slice of CPU time they will get. For example, the 
“active” program (in Windows, the one whose window has 
been selected for interaction by the user) will be given pref-
erence over a background program such as a print spooler. 
Also, the operating system can more intelligently assign 
CPU time according to what a given program is doing. 
Thus, if a program is waiting for user input, it may be given 
only an occasional slice of CPU time so it can check to see 
whether input has been received. (The user, after all, is 
millions of times slower than the CPU.) When some input 
(such as a menu selection) is ready for processing, the pro-
gram can be given higher priority.

Priority can be expressed in two different ways. One 
way is to move a program up in the list of running tasks (see 
queue). This ensures it gets a turn before any lower-priority 
task. The other way is to have turns of varying length, with 
the higher-priority program getting a longer turn.

Even operating systems with preemptive multitasking 
can provide facilities that programs can use to communi-
cate their own sense of their priority. In UNIX systems, 
this is referred to as “niceness.” A “nice” program gives 
the operating system permission to interrupt lengthy cal-
culations so other programs can have a turn, even if the 

program’s priority would ordinarily entitle it to a greater 
share of the CPU.

Multitasking should be distinguished from two several 
similar-sounding terms. Multitasking refers to entirely sep-
arate programs taking turns executing on a single CPU. 
Multithreading, on the other hand, refers to separate pieces 
of code within a program executing simultaneously but 
sharing the program’s common memory space. Finally, mul-
tiprocessing or parallel processing refers to the use of more 
than one CPU in a system, with each program or thread 
having its own CPU (see multiprocessing).
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music, computer
Computers have had a variety of effects on the performance, 
rendering, and composition of music. At the same time, 
the sound capabilities of standard personal computers have 
improved greatly, and music and other sounds have become 
an integral part of games and educational software (see 
multimedia).

After the invention of the vacuum tube, a number of elec-
tronic instruments were devised. The best known is the ther-
emin, invented by Lev Termin, a Russian physicist, in 1919. 
The instrument consists of a vacuum tube connected to two 
antennas. The player varies the pitch and volume of its eerie 
sound by moving his or her hands near the antennas.

Some composers became fascinated by electronic music, 
both for its sense of modernity and its promise of breaking 
the bonds of traditional form and instrumentation. In 1953, 
German composer Karlheinz Stockhausen (1928–2007) 
founded an Electronic Music Studio in Cologne and created 
electronic works.

Meanwhile, inventors experimented with electronic syn-
thesizers such as the RCA MKI and MKII, which used vac-
uum tubes and could be programmed with punched paper 
tape. The advent of solid-state circuitry in the 1960s made 
synthesizers far more reliable and compact. The Moog syn-
thesizer in particular became a staple of leading-edge rock 
and avant-garde music. It was now time for the computer to 
catch up to the potential of electronic sound.

In the 1970s, digital music synthesizers with keyboards 
and microprocessor-controlled sound generation became 
available to adventurous (and fairly well-to-do) musicians. 
Ray Kurzweil’s digital music synthesis system, introduced 
in 1984, achieved a new level of sonic realism by using 
programming stored in read-only memory (ROM) to emu-
late subtle characteristics such as attack and timbre, real-
istically re-creating the sounds of many types of orchestral 
instruments.

Computer music synthesis enabled composers to exper-
iment with algorithmic composition. That is, they could use 
programs to create new works by combining randomization 
with the permutation of patterns (serialism). Compositions 

Windows users can bring up a window listing all processes or tasks 
running on the system, and shut down any task that has stopped 
responding to input.
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have also been based on applying mathematical structures 
(such as fractals) and the concepts being discovered by 
computer scientists, including adaptive structures such as 
neural nets and genetic algorithms.

Like most avant-garde music, computer music composi-
tion remained largely unknown to most people. However, 
the technology of music synthesis was to become demo-
cratically available to everyday musicians as well. As the 
personal computer began to bring increasingly powerful 
microprocessors to consumers, it became practicable to 
in effect add a music synthesizer to the PC. The musical 
instrument digital interface, MIDI, provides a protocol for 
connecting traditional musical instruments such as pianos 
and guitars to a personal computer. MIDI specifies the pitch, 
volume, attack (how a note increases to maximum volume), 
and decay (how it dies away). The musician then uses the 
instrument as an input device, with the notes played being 
recorded as MIDI data. Different tracks can then be edited 
(such as to transpose to a different key), and combined 
in various ways to create complete compositions. Because 
MIDI stores instructions, not actual digitized sound, it is a 
quite compact way to store music. MIDI brought the synthe-
sizer within reach of just about any serious musician—and 
many amateurs.

PC sound cards can play sound in two ways. Wave Table 
Synthesis uses a table of stored digital samples of notes 
played by various instruments, and algorithmically manip-
ulates them to reproduce the MIDI-encoded music. FM Syn-
thesis attempts to create waves that replicate the intended 
sounds, based on a model of what happens in a given instru-
ment. It is less faithful to the original sound, since it does 
not capture the detailed “texture” of a digital sample.

Today’s PCs have sound cards that can handle both 
playback of audio CDs and rendering of digitized and syn-
thesized sounds. The cards have the capacity to support 
many simultaneous voices (polyphony) as well as render-
ing speech faithfully. While early PCs tended to have only 
tiny internal speakers, most PCs today come with speakers 
(often including subwoofers and even multiple speakers for 
“surround sound”) comparable to midrange home stereo 
systems.

Of course great hardware would not be very useful with-
out software that can help even beginning composers turn 
their ideas into sound. One example is GarageBand for the 
Macintosh, which makes it easy to make compositions from 
sampled and sequenced loops together with music played 
using sampled and synthesized instrument sounds and a 
MIDI keyboard. (Sony ACID Pro offers similar features for 
Microsoft Windows users.)
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music and video distribution, online
Since most audio and much video is now recorded in digital 
format, the Internet and media-player software for a variety 
of platforms are an attractive way to sell or otherwise dis-
tribute the products of musicians and moviemakers.

For a time, online file swapping (see file-sharing and 
p2p networks), particularly Napster, seemed to be mas-
sively eroding the market for online commercial music 
sales. Legal action against file-sharing services and (starting 
in 2003) their users has curtailed this erosion somewhat, 
with a considerable number of former file-sharers switching 
to buying paid downloads. As a result, several major online 
music stores have become successful. The most common 
model sells songs for about a dollar each—sometimes more 
for higher quality audio or files that do not have copy pro-
tection (see digital rights management).

Apple’s iTunes Music store debuted in 2003 and soon 
became the market leader. The combination of the iTunes 
store, the iTunes media player software (available for both 
Macintosh and PC), and the very popular iPod (see music 
and video players, digital) has been very successful. As 
of 2007 iTunes still had the largest selection of music avail-
able (about 6 million songs), and had sold more than 3 
billion songs. The service also sells videos (television epi-
sodes, music videos, short films, and feature-length movies) 
at varying prices.

Rhapsody, a service that predates iTunes, offers a sub-
scription model: The user has unlimited streaming access 
to the music as long as the monthly fee is paid as well as the 
pay-per-track option.

Alternative Models
There are also alternatives to the big, label-controlled 
music services. A number of services now bring together 
independent musicians and their audience. There are also 
some innovative pricing models. Arnie Street, for example, 
starts out with uploaded music being available free, but 
then gradually raises the price (up to 98 cents) as more 
people download it. The service also offers user participa-
tion (keyword tagging by users) and social-networking fea-
tures. Another service, eListeningPost, lets musicians post 
music that people can download as a preview (playable a 
limited number of times) or buy using PayPal. The service 
also helps musicians build their fan base by collecting e-
mail addresses.

Video
Video-sharing sites are very popular (see YouTube). TV 
networks are now providing selected episodes of popu-
lar shows online for free, hoping to entice more regular 
viewers. However, only 7 percent of users surveyed by the 
Pew Internet & American Life Project in 2007 said they 
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had paid for any online video content. This may gradu-
ally change, particularly as more users move from basic 
broadband connections to enhanced, higher-speed ones 
(see broadband). Already video sales through iTunes and 
Amazon’s new Unbox (and smaller services) are expected 
by Forrester Research to generate $279 million in revenue 
for 2007. However, some analysts believe that the business 
model for selling video will soon shift to something more 
like that of premium cable channels, with streaming video 
available by subscription.
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music and video players, digital
One characteristic of the rapidly evolving digital world 
is the ability to play a variety of media (music, photos, 
video) on many devices, ranging from desktop PCs to smart 
phones and, of course, iPods and MP3 players (see digi-
tal convergence). The ability to organize and play media 
requires suitable software and hardware.

On desktop and laptop PCs, media-playing software is 
available for all operating systems. Examples include Win-
dows Media Player, Apple iTunes, and RealPlayer (which 
also has a Linux version). This software typically includes 
these features:

• � plays most types of media files (see graphics formats 
and sound file formats)

• � plays content on CD/DVD, files on the hard drive, or 
content being received directly from the Internet (see 
CD-ROM and DVD-ROM; music and video distri-
bution, online; and streaming)

• � controls are modeled on those found on DVD players, 
with customizable appearance

• � creates a music library that can be searched or reor-
ganized

• � can create playlists and queues and can play back 
songs in order, shuffled (randomized), or according to 
other preferences

• � can obtain additional information about media 
(tracks, albums, and so on) online

Portable Players
First unveiled in 2001, the Apple iPod is the best-selling 
example of a portable media player (often called a “digital 
audio player”). Its compact, stylish design and simple user 
interface quickly caught on, even though the first model was 
only compatible with the Macintosh and it used Apple’s AAC 
format rather than MP3. Later iPods added capacity, larger 
screens, and features (such as being able to play video), while 
Apple also offered the inexpensive iPod Shuffle. A competitor 
is the Microsoft Zune player and music store, which, how-
ever, as of mid-2007 had made little headway against market 
leader Apple. A third well-reviewed choice is the Creative 
Labs Zen series. A variety of other portable players are avail-
able. Higher capacity units use tiny hard drives (up to 160 GB 
capacity or so), while smaller capacity models use flash mem-
ory (2–32 GB) instead. A variety of other handheld devices 
can play music and video (see PDA and smartphone).

With the ubiquitous use of iPods and other players, 
particularly by young people, some health and safety con-
cerns have been raised. If played too loudly for long periods 
of time through headphones or earbuds, the devices may 
cause hearing damage. Drivers and pedestrians may also be 

The Apple iPod is the most popular portable digital media player, 
featuring a simple, effective interface and the ability to play music 
and show video.  (Apple Corporation)
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at greater risk if the music they are listening to cuts off the 
sound of approaching vehicles.
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nanotechnology
Ordinary refining and manufacturing involve the use of 
grinding, cutting, heating, application of chemicals, and other 
processes that affect large numbers of atoms or molecules at 
once. These processes are necessarily imprecise: Some atoms 
or molecules will end up unprocessed or somehow out of 
alignment. The resulting material will thus fall short of its 
maximum theoretical strength or other characteristics.

In a talk given in 1959, physicist Richard Feynman sug-
gested that it might be possible to manipulate atoms indi-
vidually, spacing them precisely. As Feynman also pointed 
out, the implications for computer technology are poten-
tially very impressive. A current commercial DIMM mem-
ory module about the size of a person’s little finger holds 
about 250 megabytes (MB) worth of data. Feynman cal-
culated that if 100 precisely arranged atoms were used for 
each bit of information, the contents of all the books that 
have ever been written (about 1015 bits) could be stored in 
a cube about 1/200 of an inch wide, just about the smallest 
object the unaided human eye can see. Further, although 
the density of computer logic circuits in microprocessors is 
millions of times greater than it was with the computers of 
1959, computers built at the atomic scale would be billions 
of times smaller still. Indeed, they would be the smallest (or 
densest) computers possible short of one that used quantum 
states within the atoms themselves to store information 
(see quantum computing). “Nanocomputers” could also 
efficiently dissipate heat energy, overcoming a key problem 
with today’s increasingly dense microprocessors.

Feynman offered some possible methods of manufacture, 
and discussed some of the obstacles that would have to be 

overcome to do engineering at a molecular or atomic scale. 
These include lubrication, the effects of heat, and electrical 
resistance. He invited adventurous high school students to 
develop science projects to explore this new technology.

The idea of atomic-level engineering lay largely dormant 
for about two decades. Starting with a 1981 paper, however, 
K. Eric Drexler began to flesh out proposed structures and 
methods for a branch of engineering he termed nanotech-
nology. (The “nano” refers to a nanometer, or one billionth 
of a meter.) Research in nanotechnology today focuses 
on two broad areas: assembly and replication. Assembly 
is the problem of building tools (called assemblers) that 
can deposit and position individual atoms. Since such tools 
would almost certainly be prohibitively expensive to manu-
facture individually, research has focused on the idea of 
making tools that can reproduce themselves. This area of 
research began with John von Neumann’s 1940s concept of 
self-replicating computers (see von Neumann, John). If an 
assembler can assemble other assemblers from the available 
“feedstock” of atoms, then obtaining the number of assem-
blers necessary to manufacture the intended product would 
be no problem. (As science fiction writers have pointed out, 
the ultimate problem would be making sure the self-repro-
ducing assemblers do not get out of control and start turn-
ing everything around them, potentially the whole Earth, 
into more of themselves.)

Computing Applications
Science fiction aside, there are several potential applica-
tions of nanotechnology in the manufacture of computer 
components. One is the possible use of carbon nanotubes in 
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place of copper wires as conductors in computer chips. As 
chips continue to shrink, the connectors have also had to 
get smaller, but this in turn increases electrical resistance 
and reduces efficiency. Nanotubes, however, are not only 
superb electrical conductors, they are also far thinner than 
their copper counterparts. Intel Corporation has conducted 
promising tests of nanotube conductors, but it will likely be 
a number of years before they can be manufactured on an 
industrial scale.

An obstacle to manufacturing carbon nanotubes is that 
each newly made batch is a mixture of “metallic” (con-
ducting) and semiconducting tubes of different diameters. 
Manufacturing, however, requires tubes that meet strict 
requirements. Fortunately researchers at Northwestern 
University in 2006 developed a way to sort the tubes by 
adding substances that changed their density according to 
both their diameter and their electrical conductivity.

Another alternative is “nanowires.” One design consists 
of a germanium core surrounded by a thin layer of crys-
talline silicon. Nanowires are easier to manufacture than 
nanotubes, but their performance and other characteristics 
may make them less useful for general-purpose computing 
devices.

The ultimate goal is to make the actual transistors in 
computer chips out of nanotubes instead of silicon. An 
important step in this direction was achieved in 2006 by 
IBM researchers who created a complete electronic circuit 
using a single carbon nanotube molecule.
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natural language processing
Since at least the days of Hal 9000 and early Star Trek, the 
computer of the future was supposed to be able to under-
stand what people wanted, when expressed in ordinary lan-
guage and not programming code. Computer scientists have 
been working on this capability, called natural language 
processing (NLP), for decades.

NLP is a multidisciplinary field that draws from linguis-
tics and computer science, particularly artificial intelligence 
(see also linguistics and computing and speech recog-
nition and synthesis). In terms of linguistics, a program 
must be able to deal with words that have multiple mean-
ings (“wind up the clock” and “the wind is cold today”) as 
well as grammatical ambiguities (in the phrase “little girl’s 
school” is it the school that is little, the girls, or both?). Of 
course each language has its own forms of ambiguity.

Programs can use several strategies for dealing with 
these problems, including using statistical models to predict 
the likely meaning of a given phrase based on a “corpus” of 
existing text in that language (see language translation 
software).

As formidable as the task of extracting the correct (lit-
eral) meaning from text can be, it is really only the first level 
of natural language processing. If a program is to success-
fully summarize or draw conclusions about a news report 
from North Korea, for example, it would also have to have 
a knowledge base of facts about that country and/or a set of 
“frames” (see Minsky, Marvin) about how to interpret vari-
ous situations such as threat, bluff, or compromise.)

Applications
There are a variety of emerging applications for NLP, includ-
ing the following:

• � voice-controlled computer interfaces (such as in air-
craft cockpits)

• � programs that can assist with planning or other tasks 
(see software agents)

• � more-realistic interactions with computer-controlled 
game characters

• � robots that interact with humans in various settings 
such as hospitals

• � automatic analysis or summarization of news stories 
and other text

• � intelligence and surveillance applications (analysis of 
communication, etc.)

• � data mining, creating consumer profiles, and other e-
commerce applications

• � search-engine improvements, such as in determining 
relevancy
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Negroponte, Nicholas
(1944–  )
American
Computer Scientist

As founder and longtime director of the MIT Media Lab, 
Nicholas Negroponte has overseen and contributed to some 
of the most creative developments in human-computer 
interaction and interface design.

Born in 1943, the son of a Greek shipping magnate, 
Negroponte grew up in New York City. He attended the 
Massachusetts Institute of Technology (MIT), earning his 
master’s degree in architecture in 1966 and joining the 
faculty. The following year Negroponte founded the MIT 
Architecture Machine Group, which focused on developing 
new ways for people to interact with computers. In 1985, 
Negroponte and Jerome Wiesner founded the MIT Media 
Lab, which has become world famous as a center of research 
into new media and innovative computer interfaces (see 
MIT Media Lab).

Negroponte made a different contribution to the new 
computer culture in 1992 when he became a key investor in 
Wired Magazine, where he also contributed a column until 
1998. Many of the ideas in these columns were reworked 
into Negroponte’s 1995 book Being Digital. This book was 
widely influential in its predictions of a coming world where 
information and entertainment would become a pervasive 
web and people would interact actively with the new media 
(see digital convergence and ubiquitous computing). 
Negroponte’s slogan is “move bits, not atoms,” meaning that 
the new economy will be focused more on information and 
media than physical production. Some critics, however, 
have argued that Negroponte’s work was filled with a naive 
utopianism that did not consider the potential difficulties 
and social consequences of the new technology.

As Negroponte observed how venture capitalists were 
pursuing the digital revolution of the 1990s, he began to 
seek similar funding for the Media Lab. This was contro-
versial, since the lab had a strong academic culture, with its 
reluctance to become too involved with corporate agendas. 
In 2000 Negroponte stepped down as director of the Media 
Lab, gradually becoming less involved in the ongoing reor-
ganization of the institution. In 2006 he also relinquished 
his post as chairman, though he has retained his post as 
professor at MIT.

One Laptop per Child
In recent years Negroponte has focused his efforts on 
designing and distributing low-cost laptop PCs to millions 
of children in developing nations. (The project is called 
“One Laptop per Child.”) In 2005 at the World Summit on 
the Information Society held in Tunis, Negroponte unveiled 
a $100 laptop called the Children’s Machine. However, in 
the next few years commitments from participating nations 

have been slower than anticipated. Undaunted, Negroponte 
in 2007 announced a new way to distribute the machines—
make them such an attractive buy that consumers in devel-
oped countries would be willing to pay a few hundred 
dollars for two of them—one for the consumer and one to 
go to a student in a developing country.

Negroponte also continues to be active as an investor 
or board member in technology startups as well as being a 
board member of Motorola and a member of the editorial 
board of the Wall Street Journal.
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netiquette
As each new means of communication and social interac-
tion is introduced, social customs and etiquette evolve in 
response. For example, it took time before the practice of 
saying “hello” and identifying oneself became the universal 
way to initiate a phone conversation.

By the 1980s, a system of topical news postings (see 
netnews and newsgroups) carried on the Internet was 
becoming widely used in universities, the computer indus-
try, and scientific institutions. Many new users did not 
understand the system, and posted messages that were 
off topic. Others used their postings as to insult or attack 
(“flame”) other users, particularly in newsgroups discuss-
ing perennially controversial topics such as abortion. When 
a significant number of postings in a newsgroup are devoted 
to flaming and counter-flaming, many users who had sought 
civilized, intelligent discussion leave in protest.

In 1984, Chuq von Rospach wrote a document entitled 
“A Primer on How to Work with the Usenet Community.” It 
and later guides to net etiquette or “netiquette” offered use-
ful guidelines to new users and to more experienced users 
who wanted to facilitate civil discourse. These suggestions 
include:

• � Learn about the purpose of a newsgroup before you 
post to it. If a group is moderated, understand the 
moderator’s guidelines so your postings won’t be 
rejected.

• � Before posting, follow some discussions to see what 
sort of language, tone, and attitude seems to be appro-
priate for this group.
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• � Do not post bulky graphics or other attachments 
unless the group is designed for them.

• � Avoid “ad hominem” (to the person) attacks when 
discussing disagreements.

• � Do not post in ALL CAPS, which is interpreted as 
“shouting.”

• � Check your postings for proper spelling and gram-
mar. On the other hand, avoid “flaming” other users 
for their spelling or grammar errors.

• � When replying to an existing message, include 
enough of the original message to provide context for 
your reply, but no more.

• � If you know the answer to a question or problem 
raised by another user, send it to that user by e-mail. 
That way the newsgroup doesn’t get cluttered up with 
dozens of versions of the same information.

In 1994, a firm of immigration attorneys enraged much 
of the online community by posting messages offering their 
services in each of the thousands of different newsgroups. 
“Spam” was born. Technically savvy users responded by 
creating “cancelbots” or programs that attempt to detect 
and automatically delete postings containing spam. Today, 
spam is mainly conveyed by e-mail, with mail servers and 
client programs offering various options for blocking it 
(see spam).

Netiquette in the 21st Century
In the new century, newsgroups and traditional conferenc-
ing systems have diminished in importance, but e-mail 
is more pervasive than ever, and a variety of new online 
media have emerged (see, for example, blogs and blog-
ging). Many of the tried-and-true rules for newsgroup post-
ings apply as well to other media, but there are also new 
considerations.

As many politicians and business executives have 
learned to their dismay, e-mail must be assumed to be 
essentially as permanent as a handwritten letter. Similarly, 
blogs, postings to sites such as MySpace (see social net-
working), and other online content can be copied, linked 
to, archived, or otherwise persist for many years. Today’s 
intemperate remarks may emerge years later when a pro-
spective employer “googles” a job candidate.

Blogs are meant to link and be linked to, so issues of 
properly crediting material and respecting copyright can 
be important. This can also apply to contributions to con-
tent-sharing sites and to articles for wikis (see wikis and 
Wikipedia); Wikipedia has evolved a rather comprehensive 
set of standards whereby readers can “flag” content that is 
problematic.
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Net Neutrality
In recent years there has been growing concern that Internet 
users may eventually be treated differently by service pro-
viders depending on the kind of data they download or the 
kind of application programs they use online. Advocates of 
network (or net) neutrality (see for example Cerf, Vincent) 
want legislation that would bar cable, DSL, or other provid-
ers (see broadband and Internet service provider) from 
making such distinctions, such as by charging content pro-
viders higher fees for high volumes of data or even blocking 
certain applications. Advocates of net neutrality believe that, 
since there are rather limited choices for broadband Internet 
service, discrimination on the basis of Web content could 
lead to a loss of freedom for consumers and providers alike.

Critics of the net neutrality proposal tend to discount 
such concerns. One analogy they use is traditional mail. 
Users can choose different types of shipping service, but 
having overnight service available does not mean that pack-
ages cannot be delivered using cheaper means. Likewise, 
they believe that the market can provide “tiers” of Internet 
service without disenfranchising any providers or users.

Increasing concern about the issue began in 2005 when 
the Federal Communications Commission announced 
that broadband (cable and DSL) Internet would be treated 
under the less stringent Title I information service under 
the Communications Act of 1934, rather than being treated 
under Title II as a “common carrier” like traditional phone 
service. At the same time, the agency issued policy guide-
lines that promoted free access, consumer choice, and com-
petition. However these guidelines have no legal force.

In June 2007 the Federal Trade Commission (FTC) more 
or less sided with the critics of net neutrality by urging 
regulators to be careful about imposing rules that would 
prevent providers from innovating in offering premium ser-
vices. Meanwhile two proposed net neutrality bills failed to 
pass Congress in 2006. However, in July 2008 the FCC in a 
3-2 decision ordered Comcast, the largest U.S. cable service 
provider, to stop degrading service to users who used file-
sharing protocols.

It should be noted that a number of rules restricting 
certain kinds of Internet access already exist. Major service 
providers have agreements called “peering arrangements” 
that specify how certain kinds of transmissions will be 
handled. Many service providers also block certain data 
ports to reduce the spread of spam by insecure systems or 
try to restrict the use of peer-to-peer (P2P) systems (see 
file-sharing and p2p networks).
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In the long run a balance will likely be struck between 
providers’ need to control traffic to maintain efficiency and 
quality of service (QoS) and the rights of users to exchange 
information and resources freely.
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netnews and newsgroups
Originally called Usenet and originating in the UNIX user 
community in the late 1970s, netnews is distributed today 
over the Internet in the form of thousands of newsgroups 
devoted to just about every imaginable topic.

Development
By the late 1970s, researchers at many major universities 
were using the UNIX operating system (see UNIX). In 1979, 
a suite of utilities called UUCP was distributed with the 
widely used UNIX Version 7. These utilities could be used 
to transfer files between UNIX computers that were linked 
by some form of telephone or network connection.

Two Duke University graduate students, Tom Truscott 
and Jim Ellis, decided to set up a way in which users on dif-
ferent computers could share a collection of files containing 
text messages on various topics. They wrote a simple set of 
shell scripts that could be used for distributing and viewing 
these message files. The first version of the news network 
linked computers at Duke and at the University of North 
Carolina. Soon these programs were revised and rewritten 
in the C language and distributed to other UNIX users as 
the “A” release of the News software.

During the 1980s, the news system was expanded and 
features such as moderated newsgroups were added. As the 
Internet and its TCP/IP protocol (see TCP/IP) became a 
more widespread standard for connecting computers, a ver-
sion of News using the NNTP (Network News Transmission 
Protocol) over the Internet was released in 1986. Netnews 
is a mature system today, with news reading software avail-
able for virtually every type of computer.

Structure and Features
Netnews postings are simply text files that begin with a set 
of standard headers, similar to those used in e-mail. (Like 

e-mail, news postings can have binary graphics or program 
files attached, using a standard called MIME, for Multipur-
pose Internet Mail Extensions.)

The files are stored on news servers—machines that 
have the spare capacity to handle the hundreds of gigabytes 
of messages now posted each week. The files are stored in 
a typical hierarchical UNIX fashion, grouped into approxi-
mately 75,000 different newsgroups.

As shown in the following table, the newsgroups are bro-
ken down into 10 major categories. The names of individual 
groups begin with the major category and then specify sub-
divisions. For example, the newsgroup comp.sys.ibm.pc 
deals with IBM PC-compatible personal computers, while 
comp.os.linux deals with the Linux operating system.

MAIN DIVISIONS OF  
NETNEWS NEWSGROUPS

Category	C overage

alt	� An alternative system with its own complete 
selection of topics.

biz	 Business-related discussion, products, etc.
comp	� Computer hardware, software and operating 

systems.
humanities	 Arts and literature, philosophy, etc.
misc.	� Various topics that don’t fit in another 

category.
news	� Announcements and information relating to 

the news system itself.
rec	 Sports, games, and hobbies.
sci	 The sciences.
soc	 Social and cultural issues.
talk	 Current controversies and debates.

Distribution and Reading
The servers are linked into a branching distribution system. 
Messages being posted by users are forwarded to the near-
est major regional “node” site, which in turn distributes 
them to other major nodes. In turn, when messages arrive 
at a major node from another region, they are distributed 
to all the smaller sites that share the newsfeed. Due to the 
volume of groups and messages, many sites now choose to 
receive only a subset of the total newsfeed. Sites also deter-
mine when messages will expire (and thus be removed from 
the site).

There are dozens of different news reading programs 
that can be used to view the available newsgroups and 
postings. On UNIX systems, programs such as elm and tin 
are popular, while other newsreaders cater to Windows, 
Macintosh, and other systems. Major Web browsers such as 
Netscape and Internet Explorer offer simplified news read-
ing features. To use these news readers, the user accesses 
a newsfeed at an address provided by the Internet Service 
Provider (ISP). There are also services that let users simply 
navigate through the news system by following the links 
on a Web page. The former service called DejaNews, now 
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Google Groups, is the best-known and most complete such 
site.
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network
In the 1940s, the main objective in developing the first digi-
tal computers was to speed up the process of calculation. In 
the 1950s, the machines began to be used for more general 
data-processing tasks by governments and business. By the 
1960s, computers were in use in most major academic, gov-
ernment, and business organizations. The desire for users 
to share data and to communicate both within and outside 
their organization led to efforts to link computers together 
into networks.

Computer manufacturers began to develop proprietary 
networking software to link their computers, but they were 
limited to a particular kind of computer, such as a DEC PDP 
minicomputer, or an IBM mainframe. However, the U.S. 
Defense Department, seeing the need for a robust, decen-
tralized network that could maintain links between their 
computers under wartime conditions, funded the devel-
opment of a protocol that, given appropriate hardware to 
bridge the gap, could link these disparate networks (see 
Internet, local area network).

Network Architecture
Today’s networks are usually defined by open (that is, non-
proprietary) specifications. According to the OSI (open sys-
tems interconnection) model, a network can be considered 
to be a series of seven layers laid one atop another (see data 
communication).

The physical layer is at the bottom. It specifies the phys-
ical connections between the computers, which can be any-
thing from ordinary phone lines to cable, fiber optic, or 
wireless. This layer specifies the required electrical charac-
teristics (such as voltage changes and durations that consti-
tute the physical signal that is recognized as either a 1 or 0 
in the “bit stream.”

The next layer, called the data link layer, specifies how 
data will be grouped into chunks of bits (frames or packets) 
and how transmission errors will be dealt with (see error 
correction).

The network layer groups the data frames as parts of a 
properly formed data packet and routes that packet from 
the sending node to the specified destination node. A vari-

ety of routing algorithms can be used to determine the most 
efficient route given current traffic or line conditions.

The transport layer views the packets as part of a com-
plete transmission of an object (such as a Web page) and 
ensures that all the packets belonging to that object are 
sorted into their original sequence at the destination. This 
is necessary because packets belonging to the same mes-
sage may be sent via different routes in keeping with traffic 
or line conditions.

The session layer provides application programs com-
municating over the network with the ability to initiate, 
terminate, or restart an interrupted data transfer.

The presentation layer ensures that data formats are 
consistent so that all applications know what to expect. 
This layer can also provide special services (see encryp-
tion and data compression).

Finally, the application layer gives applications high-
level commands for performing tasks over the network, 
such as file transfer protocol (ftp).

Most modern operating systems support this model. 
The Internet protocol (see TCP/IP) has become the lingua 
franca for most networking, so modern versions of Micro-
soft Windows and the Macintosh Operating System as well 
as all versions of UNIX provide the services that applica-
tions need to make and manage TCP/IP connections.

Networks that link computers remotely (such as over 
phone lines) are sometimes called wide area networks, or 
WANs. Networks that link computers within an office, 
home, or campus, usually using cables, are called local 
area networks (LANs). See local area network for more 
details about LAN architecture and software.

Trends
It has become the norm for desktop and portable comput-
ers to have access to the Internet. A computer from which 
one cannot send or receive e-mail or view Web pages almost 
gives the perception of being crippled, because so many 
applications now assume that they can access the network. 
For example, the latest antivirus programs regularly check 
their manufacturer’s Web site and download the latest virus 
definitions and software patches. Recent versions of Win-
dows, too, include a built-in update facility that can obtain 
security patches and newer versions of device drivers.

The flip side of the power of networking to keep every 
PC (and its user) up to date is the vulnerability to both 
intrusion attempts and viruses (see computer crime and 
security). Virtually all networks include a layer of software 
whose job it is to attempt to block intrusions and protect 
sensitive information (see firewall).

Besides attending to security, network administra-
tors and engineers must continually monitor the traffic 
on the network, looking for bottlenecks, such as an often-
requested database being stored on a file server with a rela-
tively slow hard drive. Besides upgrading key hardware, 
another approach to relieve congestion is to adopt a dis-
tributed database (see database management system) 
that stores “data objects” throughout the network and can 
dynamically relocate them to improve access.
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The growing appetite for data-rich applications such as 
high-fidelity audio and video (see streaming and multime-
dia) tends to put a strain on the capacity of most networks. 
In response, institutional users look to optical fiber and 
other high capacity connections (see bandwidth), while 
home users are rapidly switch in from dial-up service on 
regular phone lines (see modem) to DSL phone lines and 
cable.

While existing network architectures have worked 
remarkably well, they were designed for only a small frac-
tion of today’s traffic. There have been a number of ini-
tiatives and proposals for higher capacity networks and 
for integrating new features (such as security and e-mail 
sender verification). For a review of these developments, see 
Internet architecture and governance.
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networked storage
With huge databases, e-commerce and other Web servers, 
and even home media centers, more data needs to be served 
over networks than ever before. There are two common 
ways to provide storage for databases and other resources 
on a network.

A network attached storage (NAS) unit can be thought of 
as a dedicated data storage unit that is available to all users 
of a network. Unlike a traditional dedicated file storage unit 
(see file server), a NAS unit typically has an operating 
system and software designed specifically (and only) for 
providing data storage services. The actual storage is usu-
ally provided by an array of hard drives (see raid). Files 
on the NAS are accessed through protocols such as SMB 
(server message block), common on Windows networks, 
and NFS (network file system), used on many UNIX and 
some Linux networks. In recent years smaller, lower-cost 
NAS devices have become available for smaller networks, 
including home networks, where they can store music, 
video, and other files (see also media center PC).

Storage Area Network (SAN)
Although it sounds similar, a storage area network (SAN) 
does not function as its own file server. Rather, it attaches 
storage modules such as hard drives or tape libraries to an 
existing server so that it appears to the server’s operating 
system as though it were locally attached. Typically the 
protocol used to attach the storage is SCSI (see SCSI), but 
the physical connection is fiber or high-speed Ethernet. The 
emphasis for SAN applications is the need for fast access to 

data, such as in large online databases, e-mail servers, and 
high-volume file servers. SANs offer great flexibility, since 
storage can be expanded without changing the network 
structure, and a replacement server can quickly be attached 
to the storage in case of hardware failure.
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neural interfaces
In the kind of science fiction sometimes called “cyberpunk,” 
people are able to “jack in” or connect their brains directly to 
computer networks. Because of this direct input into the brain 
(or perhaps the optic and other sensory nerves), a person 
who is jacked in experiences the virtual world as fully real, 
and can (depending on the world’s rules) manipulate it with 
his or her mind. This kind of all-immersive virtual reality is 
still science fiction, but today people are beginning to control 
computers and artificial limbs directly with their minds.

Neuroprosthetics
Neuroprosthetics is the creation of artificial limbs or sensory 
organs that are directly connected to the nervous system. 
The first (and most widely used) example is the cochlear 
implant, which can restore hearing by taking sound sig-
nals from a microphone and converting them to electrical 
impulses that directly stimulate auditory nerves within the 
cochlea, a part of the inner ear. Similarly, experimental reti-
nal implants that stimulate optic nerves are beginning to 
offer crude but useful vision to certain blind patients.

Research in connecting the brain to artificial arms or 
legs is still in its early stages, but scientists using micro-
electrode arrays have been able to record signals from the 
brain’s neurons and correlate them to different types of 
motor movements. In a series of experiments at Duke Uni-
versity, researchers first trained a monkey to operate a joy-
stick to move a shape in a video game. They then recorded 
and analyzed the signals produced by the monkey’s brain 
while playing the game, and correlated them with the 
motor movements in the joystick. Next, they replicated 
these movements with a robotic arm as the monkey moved 
the joystick. Finally, they were able to train the monkey to 
move the robotic arm without using the joystick at all, sim-
ply by “thinking” about the movements.
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Human subject are now performing similar feats. The 
next step is to build robotic limbs that can be controlled 
by the person thinking in a certain way. Ideally, a person 
should be able to think about clenching a hand or tapping 
an index finger and have the prosthetic hand replicate those 
movements. One obvious application for this technology is 
to enable quadriplegics who have little or no motion capa-
bility to control wheelchairs or other devices mentally.

Future Brain Implants
As more is learned about the detailed functioning of neuro-
nal networks inside the brain, “cognitive prosthetics” may 
become feasible. One example might be computer mem-
ory modules that might act as a surrogate or extension of 
human memory, perhaps helping compensate for loss of 
memory due to age or disease. (Early experiments on inter-
facing to the hippocampus, a part of the brain important for 
forming memories, have been underway since 2003.)

Other possibilities might include processors that could 
give a person the ability to think about a mathematical 
problem and “see” the answer, or to search databases or the 
Web simply by visualizing or thinking about the informa-
tion desired.
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neural network
When digital computers first appeared in the late 1940s, the 
popular press often referred to them as “electronic brains.” 
However, computers and living brains operate very differ-
ently. The human brain contains about 100 billion neu-
rons, and each neuron can form connections to as many 
as a thousand neighboring ones. Neurons respond to elec-
tronic signals that jump across a gap (called a synapse) 
and into electrodelike dendrons. The incoming signals form 
combinations that in turn determine whether the neuron 
becomes “excited” and in turn emits a signal through its 
axon. Clumps of neurons, therefore, act as networks that in 
effect sum up incoming signals and develop a response to 
them. That is, they “learn.”

In a conventionally operated computer, the “neurons” 
(memory locations) are not inherently connected, and the 
central processing unit (CPU) uses arbitrary, interchange-
able memory locations for storing data. Algorithms written 
by a programmer and implemented in instructions executed 
by the CPU impose cognition, to the extent one can speak 
of it in computers. In the brain, however, cognition seems 
to be something that emerges from the cooperating activi-
ties and connections of the neurons in response to sense 
stimuli, and possibly the creation of agentlike entities, as 
described in Marvin Minsky’s book The Society of Mind.

Alan Turing and John von Neumann (see Turing, Alan 
and von Neumann, John) had established the universality 
of the computer. That is, any calculation or logical opera-
tion that can be performed at all can be performed by an 
appropriate computer program. This means that the “brain” 
model of a network of interconnected neurons can also be 
implemented in a computer. During the 1940s, Warren S. 
McCulloch and Walter Pitts developed an electronic “neu-
ron” in the form of a binary (on/off) switch that could be 
linked into networks and used to perform logical functions.

During 1950s, Marvin Minsky, working at the MIT Arti-
ficial Intelligence Laboratory (see Minsky, Marvin) further 
developed these concepts, and Frank Rosenblatt developed 
a classic form of neural network called a Perceptron. This 
consists of a network of processing elements (that is, func-

Experimental neural interfaces link nerve impulses to a computer, 
allowing users to control computers (and even remote robots) liter-
ally by thinking.
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tions), each of which are presented with weighted inputs 
(called vectors) from which it calculates an output value 
of either true (1) or false (0). The designer of the system 
knows what the correct output should be. If a given ele-
ment (or node) produces the correct output, no changes are 
made. If it produces the wrong output, however, the weights 
given for each input are changed by some increment, plus 
a further adjustment or “bias” factor. This adjustment is 
repeated for all units as necessary until the output is cor-
rect. In other words, each neuron is constantly adapting 
the way it evaluates its inputs and thus its output, and that 
output is in turn being fed into the evaluation process of 
the neighboring neurons. (In practice, a neural network can 
have several layers of processing units, with one layer pro-
viding inputs to the next.)

For example, suppose a neural network is being trained 
to recognize objects based on the light being received from 
an array of sensors. The sensor readings are interpreted by 
a number of “neurons,” which should output 1 if part of the 
desired object exists at the location scanned by its sensor. 
At first there will be many false readings—points at which 
part of the object is not recognized, or is falsely recognized. 
However, after many cycles of adjustment this “supervised 
learning” process results in a neural network that has a 
high probability of being able to identify all objects of a 
given general form. What is significant here is that a gener-
alized ability has been achieved, and it has emerged without 
any specific programming being required!

Neural networks have been making their way into com-
mercial applications. They can be used to help robots recog-
nize the key components of their environment (see robotics 
and computer vision), for interpreting spoken language 
(see speech recognition and synthesis), and for problems 
in classification and statistical analysis (see data mining). 
In general, the neural network approach is most useful for 
applications where there is no clear algorithmic approach 
possible—in other words, applications that deal with the 
often “fuzzy” realities of daily life (see fuzzy logic).
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nonprocedural languages
Most computer languages are designed to facilitate the 
programmer declaring suitable variables and other data 
structures, then encoding one or more procedures for 
manipulating the data to achieve the desired result (see 
data types and procedures and functions). A further 
refinement is to join data and data manipulation procedures 
into objects (see object-oriented programming).

However, since the earliest days of computing, program-
mers and language designers have tried to create higher-
level, more abstract ways to specify what a program should 
do. Such higher-level specifications are, after all, easier for 
people to understand. And if the computer can do the job 
of translating a high-level specification such as “Find all 
the customers who haven’t bought anything in 30 days and 
send them this e-mail message” into the appropriate proce-
dural steps, people will be able to spend less time coding 
and debugging the program.

It is actually best to think of a continuum that has at 
one end highly detailed procedures (see assembler) and at 
the other end an English-like syntax like that given above. 
Already in an early language like FORTRAN the emphasis 
is moving away from the details of how you multiply num-
bers and store the result to simply specifying the operation 
much like the way a mathematician would write it on a 
blackboard. such as T = I + M. COBOL can render such 
specifications even more readable, albeit verbose: ADD I TO 
M GIVING T, for example. However, these languages are 
still essentially procedural.

Some languages are less procedural in that they hide 
most of the details (or subprocedures) involved in carrying 
out the desired operation. For example, in modern database 
languages such as SQL what would be a procedure (or a set 
of procedures) in some languages is treated as a query at a 
high level (see SQL). For example:

In a computer neural network the “neurons” or nodes are “trained” 
to detect a pattern by being reinforced when they successfully reg-
ister it.
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select customer where (today - customer.
lastpurchasedate) > 30

Programming packages such as Mathematica are also 
nonprocedural in that they allow for problems to be stated 
using the same symbolic notation that mathematicians 
employ, and many standard procedures for solving or trans-
forming equations are then carried out automatically.

Other examples of relatively nonprocedural languages 
include logic-programming languages (see Prolog and 
expert systems) and languages where the desired results 
are built up from defining functions rather than through a 
series of procedural steps (see lisp and functional lan-
guages).
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numeric data
Text characters and strings can be stored rather simply in 
computer memory, such as by devoting 8 bits (one byte) or 
16 bits to each character. The storage of numbers is more 
complex because there are both different formats and dif-
ferent sizes of numbers recognized by most programming 
languages.

Integers (whole numbers) have the simplest representa-
tion, but there are two important considerations: the total 
number of bits available and whether one bit is used to hold 
the sign.

Since all numbers are stored as binary digits, an unsigned 
integer has a range from 0 to 2bits where “bits” is the total 
number of bits available. Thus if there are 16 bits avail-
able, the maximum value for an integer is 65535. If negative 
numbers are to be handled, a signed integer must be used 
(in most languages such as C, C++, and Java, an integer is 
signed unless unsigned is specified). Since one bit is used 
to hold the sign and each bit doubles the maximum size, it 
follows that a signed integer can have only half the range 
above or below zero. Thus, a 16-bit signed integer can range 
from -32,768 to 32,767.

One complication is that the available sizes of integers 
depend on whether the computer system’s native data size 
is 16, 32, or 64 bits. In most cases the native size is 32 bits, 
so the declaration “int” in a C program on such a machine 
implies a signed 32-bit integer that can range from - 231 or 
-2,147,483,647 to 231-1, or 2,147,483,647. However, if one is 
using large numbers in a program, it is important to check 
that the chosen type is large enough. The long specifier is 
often used to indicate an integer twice the normal size, or 
64 bits in this case.

Floating Point Numbers
Numbers with a fractional (decimal) part are usually stored 
in a format called floating point. The “floating” means that 
the location of the decimal point can be moved as necessary 
to fit the number within the specified digit range. A floating 
point number is actually stored in four separate parts. First 
comes the sign, indicating whether the number is negative 
or positive. Next comes the mantissa, which contains the 
actual digits of the number, both before and after the deci-
mal point. The radix is the “base” for the number system 
used. Finally, the exponent determines where the decimal 
point will be placed.

For example, the base 10 number 247.35 could be rep-
resented as 24735 × 10-2. The -2 moves the decimal point 
at the end two places to the left. However, floating-point 
numbers are normalized to a form in which there is just one 
digit to the left of the decimal point. Thus, 247.35 would 
actually be written 2.4735 × 102. This system is also known 
as scientific notation.

As noted earlier, actual data storage in modern com-
puters is always in binary, but the same principle applies. 
According to IEEE Standard 754, 32-bit floating-point num-
bers use 1 bit for the sign, 8 bits for the exponent, and 23 
bits for the mantissa (also called the significand, since it 
expressed the digits that are significant—that is, guaran-
teed not to be “lost” through overflow or underflow in pro-
cessing). The double precision float, declared as a “double” 
in C programs, uses 1, 11, and 52 bits respectively.

Programmers who use relatively small numbers (such as 
currency amounts) generally don’t need to worry about loss 
of precision. However, if two numbers being multiplied are 
large enough, even though both numbers fit within the 32-
bit size, their product may well generate more digits than 
can be held within the 23 bits available for the mantissa. 
This means that some precision will be lost. This can be 
avoided to some extent by using the “double” size.

Since floating-point calculations use more proces-
sor cycles (see microprocessor) than integer calcula-
tions, processor designers have paid particular attention to 
improving floating-point performance. Indeed, processors 
are often rated in terms of “megaflops” (millions of floating-
point operations per second) or even “gigaflops” (billions of 
flops).
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object-oriented programming  (OOP)
During the last two decades the way in which programmers 
view the data structures and functions that make up pro-
grams has significantly changed. In simplified form the ear-
liest approach to programming was roughly the following:

• � Determine what results (or output) the user needs.

• � Choose or devise an algorithm (procedure) for getting 
that result.

• � Declare the variables needed to hold the input data.

• �G et the data from the file or user input.

• � Assign the data to the variables.

• � Execute the algorithm using those variables.

• � Output the result.

While this type of approach often works well for small 
“quick and dirty” programs, it becomes problematic as the 
complexity of the program increases. In real-world appli-
cations data structures (such as for a customer record or 
inventory file) are accessed and updated by many differ-
ent routines, such as billing, inventory, auditing, summary 
report generation, and so on. It is easy for a programmer 
working on one part of the program to make a change in a 
data field specification (such as changing its size or under-
lying data type) without other programmers finding out. 
Suddenly, other parts of the program that relied on the 
original definitions start to “break,” giving errors, or worse, 
silently produce incorrect results.

During the 1970s, computer scientists advocated a vari-
ety of reforms in programming practices (see structured 
programming) in an attempt to make code both more read-
able and safer from unwanted side effects. For example, the 
“goto” or arbitrary jump from one part of the program to 
another was discouraged in favor of strictly controlled itera-
tive structures (see loop). Also encouraged was the dec-
laration of local variables that could not be changed from 
outside the procedure in which they were defined.

Development of Object-Oriented Languages
However, a more radical programming paradigm was also 
in the making. In existing languages, there is no inherent 
connection between data and the procedures that operate 
upon that data. For example, the employee record may be 
declared somewhere near the beginning of the program, 
while procedures to update fields in the record, copy the 
record, print the record, and so on may well be found many 
pages deeper into the program.

A new approach, object-oriented programming is based 
on the fact that in daily life we interact with thousands 
of objects. An object, such as a ball, has properties (such 
as size and color) and capabilities (such as bouncing). In 
interacting with an object, we use its capabilities. It is much 
more natural to think of an object as a whole than to have 
its properties and capabilities jumbled together with those 
of other objects.

Simula 67, developed in the late 1960s, was the first 
object-oriented language (see Simula). It was followed in 
the 1970s by Smalltalk, a language developed at the Xerox 
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PARC laboratory, home of innovative research in graphical 
user interfaces. Smalltalk, like Windows today, treats each 
window, menu, and other control on the screen as an object 
(see Smalltalk). Finally, during the 1980s C++ came into 
prominence, adding the essential features of object-ori-
ented programming to the already very popular C language. 
Today most popular mainstream languages, including C++, 
Java, and Visual Basic, are object-oriented (see C++ and 
Java). Many specialized database languages are also object-
oriented.

Elements of Object-Oriented Programming
The various object-oriented languages differ somewhat in 
capabilities, and of course in syntax. However, being object-
oriented generally implies that the language has the follow-
ing features.

Classes and Objects
An object is defined using a template called a class. A class 
contains both the data needed to characterize the object 
and the procedures (sometimes called methods or mem-
ber functions) needed to work with the object (see class). 
Thus, there could be a class for circles to be drawn on a 
graphics display. The class might include as its data the × 
and y coordinates for the center of the circle, the size of the 
radius, whether the circle is filled, the color to be used for 
filling, and so on. (See C++ for more examples.)

When the program needs to use an object of the class, 
it declares it in the same way it would an ordinary built-in 
data type such as an integer. Languages such as C++ pro-
vide for a special function called a constructor that can be 
used to define the processing needed when a new object is 
created—for example, memory allocation and setting initial 
values for variables.

To access data or functions within a class, the name 
of an object of that class is used, followed by a variable or 
function. Thus, if there’s a class called circle, a program 
might specify the following:

MyCircle Circle; // Declare an object of the 
Circle class

MyCircle.X = 100; // X coordinate on screen
MyCircle.Y = 50; // Y coordinate on screen
MyCircle.Radius = 25; // Radius in pixels
MyCircle.Filled = True; // A Boolean con-

stant equal to 1
MyCircle.FillColor = Blue; // a previously 

defined color constant

Once these specifications have been made, the circle 
can be drawn by calling upon its “draw” method or member 
function:

MyCircle.Draw;

The designer of a class can choose to restrict access to 
certain data items or functions, using a keyword such as 
private or protected. For example, instead of having the 
part of the program that uses the class directly set the x 
and y coordinates, it could keep those variables private and 

instead provide a method called SetPos. The class might 
then take the coordinates specified by the user and adjust 
them to fit the screen dimensions. The Draw method would 
then use the adjusted internal coordinates rather than those 
supplied originally by the user.

Inheritance
Many objects are more elaborate or specialized variations of 
more basic objects. For example, in Microsoft Windows the 
various kinds of dialog boxes are specialized versions of the 
general Window class. Therefore, the specialized version 
is created by declaring it to be derived from a “base class.” 
Put another way, the specialized class inherits the basic 
data and functions available in the base (parent) class. The 
programmer can then add new data or functions or modify 
the inherited ones to create the necessary behavior for the 
specialized class.

Languages such as C++ allow for a class to be derived 
from more than one base class. This is called multiple 
inheritance. For example, a Message Window class might 
inherit its overall structure from the Window class and 
its text-display capabilities from the Message class. How-
ever, it can sometimes be difficult to keep the relationships 
between multiple classes clear. The Java language takes the 
alternative approach of being limited to only single inheri-
tance of classes, but allowing interfaces (specifications of 
how a class interacts with the program) to be multiply 
inherited.

Polymorphism and Overloading
Different kinds of objects often have analogous methods. 
For example, suppose there is a series of classes that rep-
resent various polygons: square, triangle, hexagon, and 

In the object-oriented C++ programming language data within a 
class can be restricted in several ways. Private data can be accessed 
only from within the class itself, or from another class declared to 
be a “friend” of the containing class. Protected data has these forms 
of access, plus it can also be accessed from any class derived from 
the containing class. Finally, Public data or functions (methods) 
can be accessed from anywhere in the program, and provides the 
interface by which the class is used.
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so forth. Each class has a method called “perimeter” that 
returns the total distance around the edges of the object. If 
each of these classes is derived from a base polygon class, 
each class inherits the base class’s perimeter method and 
adapts it for its own use. Thus, a square might calculate 
its perimeter simply by multiplying the length of a side by 
four, while the rectangle would have to add up different-
sized pairs of sides, and so on.

Similarly, the same operator in a language can have dif-
ferent meanings depending on what data types it is being 
applied to. The plus (+) operator, for example, is defined in 
most languages so that various types of integers or floating-
point values can be added (see numeric data).

Object-oriented languages such as C++ allow opera-
tors to be given additional definitions so they can handle 
additional data types, including classes defined by the 
user. For example, what might adding the string “object” 
and the string “oriented” yield? The most sensible answer 
is a new string that contains both of the original strings: 
“object oriented.” If one defines a String class, then one 
can also define the + operator as a member function of that 
class, such that when something like String1 + String2 is 
encountered, the expression will be evaluated as the com-
bination (concatenation) of the two strings. The + opera-
tor is said to have been overloaded for use with the String 
class.

Encapsulation
The ability to keep the detailed workings of a class pri-
vate promotes program reliability (see encapsulation). 
Software developers can create well-organized libraries of 
classes that other programmers can use simply by refer-
ring to the interface specifications (see library, program). 
Encapsulation also makes programs more readable. Once 
one understands the capabilities of the objects, it is rel-
atively easy to understand the overall operation of the 
program without getting bogged down in details. Object-
oriented programming takes the encapsulation achieved 
through the earlier structured programming movement and 
makes it more integral to the language structure.

Trends
Object-oriented programming was initially decried as a fad 
by some critics. The initial learning curve for tradition-
ally trained programmers and the overhead that made early 
implementations of languages such as Smalltalk run slowly 
inhibited acceptance of the new paradigm at first. However, 
the introduction of C++ by Bjarne Stroustrup provided a 
fairly easy path for C programmers into the object-oriented 
world. For example, the class was syntactically similar to 
the familiar struct.

The movement toward object-oriented programming and 
design was also spurred by the more or less coincidental 
popularity of graphical user interfaces such as Microsoft 
Windows. Since these systems are built upon event-driven 
programming using a variety of coexisting objects, the 
object-oriented class approach fit such operating systems 
much more naturally. Thus, during the late 1980s and 1990s, 

many Windows programmers began to use the Microsoft 
Foundation Classes (MFC) as their way to structure their 
access to the operating system. Similarly, popular languages 
for Web development (see for example Java and C#) are 
thoroughly object-oriented, and even most scripting lan-
guages also contain object-oriented features.

An object-based approach also fits more naturally into 
environments where programs and data may be running on 
many interconnected computers (see network and mul-
tiprocessing). Treating the client and server programs as 
interacting objects thus makes sense, as does treating data-
bases as collections of data objects (see database manage-
ment system). The object-oriented approach can also be 
applied at a higher level of abstraction in designing systems 
(see design patterns and modeling languages).
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office automation
The transition from manual to mechanical to electronic 
processing of information in the office spanned most of 
the 20th century. In the previous century, the typewriter 
allowed for the mechanical production of letters and other 
documents by skilled workers, accommodating (and per-
haps encouraging) a growing amount of paperwork. At 
the turn of the century the card tabulator (see Hollerith, 
Herman and punched cards and paper tape) began the 
mechanization of information processing.

During the first half of the 20th century, mechanical or 
electro-mechanical calculators made by such companies as 
Burroughs came into more widespread use by bookkeepers 
and clerks (see calculator). Meanwhile, one company, 
International Business Machines (IBM) came to dominate 
the area of card sorting and tabulating equipment.

When digital computers first came into commercial 
use in the 1950s, they were too large and expensive to be 
used in ordinary offices. Bookkeepers and other work-
ers did not deal with computers directly, but were sup-
ported by data processing departments or outside service 
bureaus for what became known as electronic data pro-
cessing, or EDP.

By the 1970s, the advent of the microprocessor made 
desk-size information processing systems possible (see 
microprocessor). The first widespread application was the 
dedicated word processing system, of which the most suc-
cessful version was developed by An Wang. These systems 
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provided for typing and printing documents and storing 
them in a file system (see word processing).

During the 1980s, the general-purpose desktop com-
puter (see personal computer) became powerful enough 
to supplant the dedicated word-processing system. Besides 
providing word-processing functions through ever more 
versatile versions of programs such as WordPerfect. Word-
Star, and Microsoft Word, the PC could also run programs 
to support bookkeeping, accounting, mailing list, and other 
functions (see database management system and spread-
sheet). Gradually, many of these separate programs were 
merged into office suites such as Microsoft Office (see appli-
cation suite). Using a suite meant that information could 
be easily transferred between word-processing documents, 
spreadsheets, and database files, facilitating the generation 
of many kinds of reports and presentations.

Later in the 1980s, two new aspects of office automation 
began to emerge: communication and collaboration. The 
use of special hardware and software to connect PCs within 
an office or throughout the organization (see network and 
local area network) made new applications possible. E-
mail began to replace printed memos or phone calls as the 
preferred way for workers and management to communi-
cate. Programs such as Lotus Notes and Microsoft Outlook 
added features such as the ability of workers to share a com-
mon calendar of tasks, while scheduling software offered 
more elaborate ways to keep track of large, detailed team 
projects (see project management software).

Today a variety of tools are available for facilitating col-
laboration. Most word-processing software now offers a fea-
ture called revision marking, which lets various editors and 
reviewers comment on or make revisions to a document. 
The author can then merge the revisions into a new draft. 
“Whiteboard” programs let several users on the network 
work simultaneously on the same virtual screen, drawing 
diagrams or making outlines.

Trends
Even as desk space was being cleared for the first office PCs, 
pundits began to claim that the “paperless office” was at 
hand. Actually, the first stages of automation contributed 
to an increase in the use of paper. On the one hand, word 
processors and other programs made it easier to generate 
documents and keep them up to date. On the other hand, 
the documents were all printed on paper—in part because 
the ability to share them electronically was nonexistent or 
rudimentary, and in part because many workers, particu-
larly senior executives, still preferred to work with paper.

The growth of networking made it possible for more 
people to distribute documents electronically, while higher-
resolution video displays made it easier to view pages on 
the screen. During the 1990s, the inexpensive document 
scanner (see scanner) made it practicable to scan incom-
ing paper documents into text files (see optical charac-
ter recognition). While the office is not yet paperless, the 
tide of paper may now be receding at last.

The ubiquity of the Internet and the use of the HTML 
format for documents (see html and lan) characterize the 
latest phase in the evolution of office automation. Many cor-

porate procedure manuals and other resources are now being 
stored on company Web sites where they can be updated eas-
ily and consulted with the aid of search engines. Databases 
to which workers need shared access are also being hosted 
through Web sites. HTML and XML are emerging as com-
mon formats for exchanging documents between systems, 
along with Adobe’s Portable Document Format (PDF), which 
offers a faithful reproduction of the printed page.

Changes in how the Internet is being used for com-
munication and collaboration are also having an impact 
on the office. In particular, blogs are being used as a way 
for key people to keep coworkers updated (see blogs and 
blogging), and wikis can be an effective way for building a 
common knowledge base for both employees and customers 
(see wikis and Wikipedia).

Many workers can now access the full resources of the 
office through laptop computers and Internet connections. 
Workers on the go can also use handheld or palm com-
puters such as the PalmPilot (see pda) to access e-mail, 
calendar, and other information. The growing use of video-
conferencing over the Internet using inexpensive cameras 
and broadband connections is also promoting the “virtual 
meeting” (see video conferencing).

Further Reading
Brown, M. Katherine, Brenda Huettner, and Char James-Tanny. 

Managing Virtual Teams: Getting the Most from Wikis, Blogs, 
and Other Collaborative Tools. Plano, Tex.: Wordware Publish-
ing, 2007.

Greenbaum, Joan. Windows on the Workplace: Technology, Jobs, and 
the Organization of Office Work. New York: Monthly Review 
Press, 2004.

Mobile Office Technology. Available online. URL: http://mobile 
office.about.com/. Accessed August 16, 2007.

Obringer, Lee Ann. “How Virtual Offices Work.” Available online. 
URL: http://communication.howstuffworks.com/virtual-office. 
htm. Accessed August 16, 2007.

Sellen, Abigail J., and Richard H. R. Harper. The Myth of the Paper-
less Office. Cambridge, Mass.: MIT Press, 2002.

Scoble, Robert, and Shel Israel. Naked Conversations: How Blogs 
Are Changing the Way Businesses Talk with Customers. Hobo-
ken, N.J.: Wiley, 2006.

Wibbels, Andy. Blogwild!: A Guide for Small Business Blogging. New 
York: Penguin Group, 2006.

Omidyar, Pierre
(1967–  )
French-Iranian/American
Entrepreneur, Inventor

One of the most remarkable stories of the development of e-
commerce has been the online auction pioneered by Pierre 
Omidyar and the hugely successful eBay auction site he 
founded (see online auctions.)

Omidyar was born on June 27, 1967, in Paris. His fam-
ily is of Iranian descent. While working in his high school 
library Omidyar encountered his first computer and soon 
wrote a program to catalog books. Omidyar enrolled at 
Tufts University to study computer science. However, after 
three years he became bored with classes and went to work 
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as a programmer. Omidyar helped develop a drawing pro-
gram for the new Apple Macintosh, but after a year returned 
to finish his degree, which he received in 1988. He then 
went to work for Claris, a subsidiary of Apple. There he 
developed MacDraw, a very popular application for the 
Macintosh.

By 1991 Omidyar had become interested in an emerg-
ing application, “pen computing,” which uses a special pen 
and tablet to allow computer users to enter text in ordinary 
handwriting, which would be recognized and converted 
to text by special software. Omidyar and three partners 
formed a company called Ink Development to work on pen 
computing technology. However, the market for such soft-
ware was slow to develop. The partners changed their com-
pany name to eShop and their focus to e-commerce, the 
selling of goods and services online. But e-commerce would 
not become big until the mid-1990s when the graphical 
browser made the Web attractive and easy to use. Mean-
while Omidyar also did some graphics programming for the 
movie effects company General Magic.

Omidyar retained his interest in e-commerce, with a 
particular focus on finding new markets in which buyers 
and sellers could meet. Online auctions offered one such 
mechanism, and Omidyar created a site called AuctionWeb. 
AuctionWeb was based on a simple idea: Let a user put up 
something for bid, and have the software keep track of the 
bids from other users until the ending time is reached, with 
the highest bid being the winner.

At first Omidyar made AuctionWeb free for both buy-
ers and sellers, but as the site exploded in popularity he 
began to charge sellers a small fee to cover his Internet 

service costs. As the months passed, thousands of dollars in 
small checks began to pour in. Using $1 million he received 
from Microsoft for the sale of his former company eShop, 
Omidyar decided to expand his auction site into a full-time 
business.

Thanks to the Web, it was now possible to run an auc-
tion without cataloger, auctioneer, or hotel room. The job 
of describing the item could be given to the seller, and of 
course digital photos or scanned images could be used to 
show the item to potential bidders. The buyer would pay 
the seller directly, and the seller would be responsible for 
shipping the item.

Because overhead costs are essentially limited to main-
taining the Web site and developing the software, the com-
pany could charge sellers about 2 percent instead of the 
10–15 percent demanded by traditional auction houses. 
Buyers would pay no fees at all. And because the cost for 
selling is so low, sellers could sell items costing as little as 
a few dollars, while regular auction houses generally avoid 
lots worth less than $50–$100.

With the aid of business partner and experienced Web 
programmer Jeff Skoll, Omidyar revamped and expanded 
the site, renaming it eBay (combining the “e” in electronic 
with the San Francisco Bay near which they lived). Unlike 
the typical Web business that promised investors profit 
sometime in the indefinite future, eBay made money from 
the first quarter and just kept making more.

Through their relationship with a venture capital firm, 
Benchmark, Omidyar and Skoll gained not only $5 million 
for expansion but the services of Meg Whitman, an expe-
rienced executive who had compiled an impressive track 
record with firms such as FTD (the flower delivery service), 
the toy company Hasbro, Procter & Gamble, and Disney. 
eBay’s growth continued: by the end of 1997 about 150,000 
auctions were being held each day.

In 1998 they decided to take the company public. By the 
time the first trading day ended, Omidyar’s stock was worth 
$750 million, and Whitman and the other key players had 
also done very well.

One possible weakness in the eBay model was that it 
relied heavily on trust by the seller and especially the buyer. 
What if a buyer won an item only to receive something that 
was not as described or, worse, never received anything at 
all? But while this happened in a small number of cases, 
Omidyar through his attention to building communities 
for commerce had devised an interesting mechanism called 
“feedback.” Both sellers and buyers were encouraged to post 
brief evaluations of each transaction, categorized as posi-
tive, neutral, or negative. A significant number of negative 
feedbacks served as a warning signal, so both sellers and 
buyers had an incentive to fulfill their part of the bargain. 
The system was not perfect, but the continued patronage of 
several million users suggested that it worked. (An escrow 
system was also made available for use with more expensive 
items.)

As the new century dawned, Omidyar became less per-
sonally involved with eBay. In 1998 he had stepped down as 
CEO, the post going to Whitman. In 2004 Omidyar and his 
wife, Pam, turned their attention to the Omidyar Network, a 

Pierre Omidyar founded eBay, the world leader in online 
auctions.  (Acey Harper / Time Life Pictures / Getty Images)
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new structure that replaces the traditional foundation with 
a decentralized approach combining nonprofit and for-profit 
initiatives focusing on empowering individuals and commu-
nities. Omidyar has also been investing in microfinancing 
(the making of small loans directly to poor entrepreneurs in 
developing countries).
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online advertising
In the late 1990s “banner ads” started to appear on Web 
sites, and other forms of advertising soon followed. Compa-
nies rushed into the online world, either with the belief that 
it had unlimited potential for finding new customers, or out 
of fear that the competition would get there first. Unfor-
tunately it was hard to measure the actual effectiveness of 
ads, and Web sites (such as for publications) that looked 
to third-party advertising as a source of income found the 
outlook bleak in the wake of the bursting of the “dot-com 
bubble” of the early 2000 decade.

Only a few years later, however, advertisers using new 
business models and targeting techniques have made online 
advertising not only a viable business, but a rapidly grow-
ing one. (According to the Interactive Advertsing Bureau, 
Internet advertising revenue in the United States in 2007 
was $21.2 billion, up 26 percent from 2005.)

The effects of the online advertising revolution are rip-
pling outward, impacting traditional advertising media 
such as newspapers (in particular see craigslist), maga-
zines, and even television.

Platforms and Types of Ads
There are many different applications that can be accompa-
nied by different types of advertising. These include e-mails 
(free e-mail services usually include an ad in every message), 
newspapers and other publications (often with ads related to 
the subject of an accompanying article), and even blogs (see 
blogs and blogging). Indeed, the most popular blogs can 
actually make a reasonable income from advertising.

Types of ads include the following:

• � Banner ads are contained in rectangles, often at the top 
of the Web page. (Sometimes they can mimic dialog 
boxes from the operating system.) They still account 
for about half of all online advertising, and can appear 
on sites of all types.

• � Pop-up or pop-under ads appear above or beneath the 
current window, respectively.

• � Floating ads appear over the main page content, often 
moving across the screen.

• � Interstitial ads are displayed before the requested 
content (such as an article or video) is shown. They 
run for a specified period of time, although they can 
sometimes be closed by the viewer.

Many ads are animated; some even contain video clips. 
There are also ads formatted for mobile devices, including 
text messages sent to cell phones.

Economics of Online Advertising
A company or organization can of course advertise its own 
products or services on its Web site. Alternatively, a site 
can arrange with an online advertiser to carry ads for other 
peoples’ goods or services, in exchange for a fee. The adver-
tiser in turn gets paid by the company whose ads are being 
run. The payment can be calculated in a variety of ways: 
CPM (cost per thousand people who see the ad), the num-
ber of sales leads, or the number of people who actually buy 
something.

As the first luster of the Web began to wear off, cor-
porate advertising departments increasingly wanted better 
measurements of the exposure their ads were receiving, and 
wanted ads that were better targeted to people more likely 
to “click through” to the advertiser’s site. Since it involves 
people who are already looking for specific things, Web 
search is an effective and profitable activity to be linked to 
contextually related ads. Google in particular has been very 
successful in auctioning or selling the opportunity to have 
one’s ad appear in the results of a search request containing 
a specific keyword (see Google).

Another way that Google and other large search engines 
or portals can make money from advertisers is through 
“affiliate marketing”; Google’s version is called Ad Sense. 
Participating Web sites are indexed, and the resulting key-
words are matched with ads awaiting placement. The site 
carrying the ad generally gets a per-click payment. How-
ever, the problem of “click fraud” has also arisen: Scammers 
can set up an affiliate site and then use special software to 
generate the clicks, while making them come from a variety 
of sources. Despite these problems, in 2006 about 40 per-
cent of revenue from online advertising was attributed to 
search-related ads.

While search engine usage perhaps provides the most 
direct indication of consumer interests, considerable atten-
tion has also been focused on developing systems that can 
track where a given individual goes on a large e-commerce 
site (see cookies), and look for clues about likely future 
purchases (see data mining).

Maintaining User Interest
The dark side of online advertising is found in programs 
that are surreptitiously installed on users’ PCs and then 
download and display advertising from shady Web opera-
tions (see spyware and adware). While many users now 
regularly run programs to block such malware, even legiti-
mate online advertising can irritate users, particularly 
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when ads are too prominent, float over (and block) text, or 
lurk behind the browser window. Modern Web browsers 
have ad-blocking features that work with varying degrees 
of effectiveness. As with TV, online advertisers increasingly 
have to cope with impatient users who do not have to look 
at ads unless they actually want to.

Advertisers can employ several strategies to keep users 
willing to look at ads. One is to make the ad unobtrusive 
and brief, and on the way to something the user really 
wants to see. In 2007 YouTube began such advertising. 
Another is to provide free versions of software or services 
that, in exchange for being free, require the user to put up 
with some screen real estate being devoted to ads. Finally, 
as with TV, advertising can be woven into the content itself, 
such as in online computer games.

A sensitive area is the attempt to balance advertisers’ 
desire to know as much as possible about consumers’ interests 
and buying habits with the same consumers’ concern about 
protecting their privacy (see privacy in the digital age).
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online frauds and scams
In the old days con men and scammers went to where there 
were a lot of people with loose cash and where anonymity 
was the order of the day—perhaps a carnival or fair. Today 
in all too many cases the Internet fills this bill. With mil-
lions of inexperienced new users coming online in recent 
years, the opportunities for frauds and scams are signifi-
cant, as is the problem of fighting such crime. In 2007 the 
Internet Crime Complaint Center (a partnership between 
the FBI and the National White Collar Crime Center) logged 
its one-millionth complaint. Of the 461,096 cases referred 
to law enforcement agencies, the estimated dollar loss is 
$647.1 million, with a median loss of $270 per complaint.

Many online frauds represent adaptations of traditional 
criminal practices to the online world. E-mail (see spam) 

carries offers for dubious cures for mostly imagined sexual 
ills, or for prescription drugs at too-good-to-be-true prices, 
or for “genuine replica Rolex watches.” Internet auction 
sites also offer a venue for selling fakes and counterfeits of 
various sorts. The primary protections for the consumer are 
knowledge about the goods in question and taking advan-
tage of community resources such as feedback provided by 
other buyers (see also auctions, online and eBay).

Entire fake businesses can appear online, complete with 
professional-quality Web sites. If a prospective purchaser 
has never heard of the company, checking with the Bet-
ter Business Bureau, or looking for a certification such as 
Trust-E, is a good idea. (Scammers can also impersonate 
legitimate businesses in order to get personal information 
from customers—see phishing and spoofing.)

Investments are another fertile area for online scam-
mers. These include “pump and dump” schemes where chat-
room or blog postings are used to “talk up” some obscure 
stock and then cash in when investors start buying it and 
raising the price. Pyramid schemes and multilevel-market-
ing (MLM) programs where money from new participants 
is used to pay back earlier investors also appear from time 
to time.

A common theme of victimization seems to be that many 
Web users seem to suspend their usual skepticism and cau-
tion when they go online. This is perhaps due to the relative 
unfamiliarity of the online world and the lack of experience 
in evaluating products, investments, or services.

A variety of other frauds and scams appear online or via 
e-mail with some frequency:

• � the “419” or “Nigerian money letter” that promises a 
rich cut for helping facilitate a money transfer for a 
distressed official

• � fraudulent charitable solicitations, particularly after 
such disasters as the Asian tsunami or Hurricane 
Katrina

• � adoption and marriage scams

• � educational fraud, such as worthless degrees offered 
by unaccredited institutions

• � dubious employment schemes or “home businesses” 
involving preparing mailings or medical billing

• � services that offer to “repair” bad credit ratings

• � tax-avoidance schemes, often based on nonexistent 
legal claims or loopholes

Fighting Online Fraud
Because perpetrators are hard to track down (see anonym-
ity and the Internet), and because of the ability to end-
lessly create new Web sites and e-mails, it is hard to control 
this form of crime (see computer crime and security). 
However, considerable resources are now being brought to 
bear, with significant success. Depending on the type of 
fraud, federal agencies such as the Securities and Exchange 
Commission (SEC), Federal Trade Commission (FTC), and 
the Food and Drug Administration (FDA) will investigate, 
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and agencies such as the FBI will pursue perpetrators. Every 
state also has an office of consumer protection or consumer 
affairs, and local district attorneys may become involved 
when perpetrators are operating in their area or victimizing 
residents.

Private agencies also play an important role. Besides the 
Better Business Bureau, most industries or professions have 
some form of certification of products or practices. There 
are also professional services that will authenticate collect-
ibles such as stamps, coins, and sports cards.

Government and private agencies also offer a variety of 
consumer education materials that explain common frauds 
and suggest ways to shop prudently for goods or services.
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online gambling
Despite its illegality in the United States, Internet-based 
gambling has been very popular—by 2004 more than 20 
million Americans had tried some form of online gambling, 
and in 2005 they bet about $5.9 billion.

Online casinos appeared in 1995, but at first they could 
only be played “for fun,” with no actual money changing 
hands. That soon changed: In 1996, InterCasino appeared—
it would be the first of hundreds of online casinos, sports 
bookmakers, and other types of gambling. Generally these 
operations are based outside of the United States—Carib-
bean islands such as Antigua and Curaçao are popular loca-
tions.

Online casinos offer traditional table games such as 
blackjack, roulette, and craps. Generally odds and payoffs 
are comparable to those at traditional casinos. Assuming 
the game is honest and properly programmed, the house’s 
revenue comes from a percentage of the amount bet—black-
jack having the lowest house percentage and roulette the 
greatest. Slot machines (which give an even higher percent-
age to the house) can also be simulated online.

Although occasional cases of software programmed to 
cheat have been documented, a more common problem is 
failure to pay winnings promptly, or at all. Recourse is dif-
ficult, since the casino is offshore and the activity is illegal 
for U.S. players. Players can, however, consult lists of so-
called rogue casinos to be avoided. Some players cheat as 
well, typically by opening multiple accounts in order to get 
the “signing bonus.”

Online Poker
Online poker has become very popular, particularly games 
such as Texas Hold’Em. Estimated revenues from online 
poker in the United States were $2.4 billion in 2005. 
Unlike the case with casino games, online poker players 
play against each other, not the house. The house’s revenue 
comes from a “rake,” or percentage, of the pot. Many sites 
offer organized tournaments, and some online players have 
gone on to win traditional tournaments. (The aptly named 
Chris Moneymaker won an online tournament, qualifying 
him to enter the 2004 World Series of Poker, which he went 
on to win.)

Like online casinos, online poker is illegal in the United 
States. Proponents argue that while any given hand is ran-
dom, poker in the long run is a game of skill, not chance. A 
group called the Poker Players Alliance has been lobbying 
to exempt poker from Internet gambling laws.

A third type of online gambling is sports betting, which 
is legal in many countries but only in Nevada in the United 
States. The Web has also given sports bettors a forum for 
discussing (or arguing about) teams and their prospects.

Legal and Other Issues
In 1998 the federal government charged more than 20 
Americans with operating gambling services in violation 
of the Federal Wire Act, which prohibits wagering over the 
phone lines used for most Internet transmissions. Most of 
the charges were subsequently dropped or plea-bargained, 
with only one casino operator serving 17 months in federal 
prison. In 2002 a federal appeals court ruled that while the 
Wire Act applied to sports betting, it did not apply to online 
betting on games of chance. However, subsequent legal 
ambiguity has led major Internet services such as Google 
and Yahoo! to remove online gambling advertisements 
from their sites. Meanwhile, a suit by the Casino City gam-
bling portal on First Amendment grounds was dismissed, 
although other legal challenges were underway in 2007.

In recent years antigambling activists have adopted 
an indirect strategy of going after the infrastructure used 
for gambling transactions. In 2006 Congress passed the 
Unlawful Internet Gambling Enforcement Act, which pro-
hibits U.S. credit card companies and banks from transfer-
ring funds to or from Internet gambling sites. (One of the 
arguments used by proponents was that terrorists might be 
using online gambling sites to launder money.)

Another issue raised by online gambling opponents is 
that the high-speed, highly interactive (click-and-response) 
nature of online games of chance made it easier for people 
prone to gambling addiction to get and stay “hooked.” Par-
ticular concern has been raised about teens who decide to 
gamble using parents’ credit cards. However, studies such 
as the British Gambling Prevalence Survey 2007 have sug-
gested that the growing popularity of online gambling has 
not led to an increase in the rate of gambling addiction.

On the other hand, congressional liberals such as Rep. 
Barney Frank (Dem.-Massachusetts) have sponsored legis-
lation that would legalize (and tax) Internet gambling, and 
provide for programs to deal with underage and compul-
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sive gambling. Opponents have charged that the legaliza-
tion measure is being backed by major “brick and mortar” 
casinos who want a piece of the online action, as well as the 
credit card companies, which would also get a piece of each 
transaction. (As of 2007 neither this nor other attempts 
to legalize online gambling in the United States have been 
passed.)
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online games
Online games today range from elaborate war games to 
open-ended fantasy worlds to virtual universes that mirror 
“real-world” activities, including economics, politics, and 
even education.

The first online games appeared in the late 1970s on 
PLATO, an educational network, as well as on the early 
Internet of the 1980s. These MUDs (multiuser dungeons) 
were generally based on pen-and-paper role-playing games 
of the time, notably Dungeons & Dragons. These games were 

text based, with players typing their characters’ actions 
and dialog while the changing world as seen by the play-
ers was similarly described. By the early 1990s, however, 
MUDs had spun off many variants. Many were still “hack 
n’ slash” dungeon games (which were also offered on Amer-
ica Online and other commercial services). Many of these 
MUD-like games such as AOL’s Neverwinter Nights offered 
simple graphics. Meanwhile other games began to offer 
more sophisticated social interactions as well as the ability 
of players to make their own additions to the game world, 
including buildings.

Massively Multiplayer Online  
Role-Playing Games  (MMORPGs)
Today’s online games feature a “persistent world” hosted on 
one or more servers that grows and develops from day to day 
and in which the “avatars” or representatives of thousands 
of players interact with game-generated creatures or one 
another, using client software. Players can spend hundreds 
of hours helping their characters develop skills, increasing 
their levels through experience points gained from success-
ful combat or other activities. Players (and their charac-
ters) frequently form organizations such as guilds or clans, 
because the tougher challenges generally require the coop-
eration of different types of classes of characters (fighters, 
healers, and magic-users).

Modern MMORPGs began in the late 1990s with such 
titles as Ultima Online and EverQuest. The most popular 
MMORPG in the mid-2000s was World of Warcraft.

From Games to Alternative Worlds
Humans are social primates, and they tend to bring their 
full repertoire of behavior to any new situation. Even games 
such as World of Warcraft or Everquest are not entirely about 
combat and character skills: they are also about alliance, 
trust, betrayal, and bonding.

Back in the 1980s psychologists began to write about 
the social interactions that were emerging in MUDs and 
how players perceived their virtual world (see Turkle, 
Sherry). However Second Life, launched by Linden Lab in 
2003, is not a game at all, but a complete virtual world in 
which participants, called “residents” (through their ava-
tars) can do just about anything—play and be entertained, 
have relationships (including virtual sex), but also conduct 
more mundane businesses and meetings and even attend 
university courses.

The ability to do nearly anything also means the ability 
to do things that may be offensive and even illegal. Indeed, 
an emerging issue is how “real world” laws apply to these 
virtual worlds. In Second Life, residents buy and sell in-
world real estate and goods, using a currency called Lin-
den Dollars (L$). These L$ and U.S. dollars can be traded 
at the rate (as of early 2007) of 270 L$ to one dollar U.S. 
This means that residents in the virtual world can actually 
run profitable businesses (or make investments) that can be 
cashed out for “real” money. Further, the avatars, property, 
and other in-world creations developed by users remain 
their intellectual property, not that of Linden Labs.

Second Life is not a “game,” but a virtual world that now includes 
just about every known human activity—its money is even 
exchangeable for real-world cash.  (Copyright 2006, Linden 
Research Inc., All Rights Reserved)
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The close and growing ties between virtual worlds such 
as Second Life and “real” world society raises many legal and 
even social issues:

• � Should income made in the virtual world be taxable?

• � If residents of a virtual world make contracts with one 
another, are they enforceable? If so, who has jurisdic-
tion? (See cyberlaw.)

• � Is the virtual world itself subject to national laws, 
or might it eventually acquire a form of sovereignty? 
(Already a few nations have “virtual embassies” 
within Second Life.)

Meanwhile, representatives of major companies ranging 
from Microsoft and Google to Second Life’s Linden Labs have 
proposed making online identities and avatars “portable” so 
that a person could use them in his or her online games and 
virtual communities (see virtual community).
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online investing
As with shoppers, investors have increasingly been attracted 
to the interactivity and ease of online transactions. In addi-
tion to allowing stocks to be bought or sold with just a few 
clicks, online brokers (also called discount brokers) charge 
much lower transaction fees than their traditional counter-
parts, typically less than $10 per trade.

Some online brokers, such as E*Trade, Scottrade, and 
TD Ameritrade, were established as Internet brokers. How-
ever, traditional brokerages such as Charles Schwab and 
Waterhouse have also opened online discount brokerages.

In addition to fast, inexpensive trading, many online 
brokers also offer a variety of resources and tools, includ-
ing stock quotes and charts, research reports, and screen-
ing programs to help investors pick the mutual funds or 
individual investments that meet their objectives. For more 
sophisticated investors, some brokers offer simulations for 
testing investment strategies and programmed trading, 
which will execute buy or sell orders automatically depend-
ing on specified conditions.

Online brokers can specialize, seeking customers who 
want to make frequent trades but do not need other sup-
port, or investors who are interested in obtaining IPOs (ini-
tial public offerings) of up-and-coming companies. Some 
brokers may emphasize mutual funds and cater to retire-

ment accounts, while others might offer government or cor-
porate bonds, foreign stocks, “penny stocks,” or more exotic 
investments.

The interactivity and low transaction costs in online 
investing may encourage people to become involved in 
highly speculative penny stocks, options, day trading, for-
eign exchange markets, and other areas that are not suitable 
for most individual investors. While there is a great deal 
of useful information available online, it is a good idea to 
begin by discussing investment goals and potential risks 
with a trusted financial adviser.

Trends
Since trading fees have gone down about as far as they 
can go and still allow for profitability, online brokerages 
are increasingly competing by offering distinctive features 
and enhanced customer service. In the course of rapid 
expansion, service has become somewhat uneven: A 2006 
J.D. Powers survey found that 41 percent of investors had 
encountered at least one problem with accessing their 
accounts or executing a trade.

Besides trying to improve reliability, online brokers 
are also branching out by offering financial planning and 
other personal services for their larger investors, and some 
are opening retail outlets where people can actually see a 
broker.
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online job searching and recruiting
In the old days, people found jobs by word of mouth or by 
reading newspaper classified ads. While word of mouth (or 
at least e-mail) can still be very useful for finding job leads, 
increasingly both employers and job seekers are turning 
first to a variety of online sites. (Indeed, as of mid-2007 one 
large site, Monster.com, claimed to have more than 73 mil-
lion resumes in its database and 42 million job seekers per 
month.)

There are a number of large sites that list thousands 
of jobs at any given time. Examples include Monster.com, 
JobCentral, and CareerJournal (from The Wall Street Jour-
nal). Meanwhile, many of the “career classifieds” from 
newspapers have been replaced by postings on Craigslist, 
which has a number of regional sites and covers buy/sell, 
apartment rentals, and other types of ads as well (see 
craigslist).

In evaluating a job site it is important to get a feel for 
the kinds of jobs offered and the target audience, such as 
professionals, recent graduates, white-collar or service-
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sector jobs, and so on. Other important features to look for 
include:

• � powerful search or filtering capability, such as by type 
of job or employer, keywords in job description, or 
locality

• � the ability to put one’s resume online and edit or 
update it as needed.

• � the ability to have several versions of one’s resume 
tailored to different types of jobs

• � automatic e-mail alerts about newly added jobs that 
meet the user’s criteria

• � privacy protections so that contact information from 
resumes is not used for marketing or other nonem-
ployment purposes

• � lack of fees to job seekers (normally employers are the 
service’s source of revenue)

Job seekers can use job search engines such as Career 
Builder that will search the major job-finding sites and/or 
employers’ own sites according to the user’s criteria.

In addition to dedicated job-hunting sites and recruit-
ing agencies, a less formal but rapidly growing trend is 
the meeting of employers and would-be employees through 
sites such as Facebook (see social networking), where 
people often freely describe their interests. Employers in 
turn are increasingly searching online for information 
about applicants, which can cause a problem if the results 
include “indiscreet” writings or perhaps photos, perhaps 
dating back to high school. (On the other hand, there are 
also social networks such as LinkedIn that specialize in 
business contacts.)

Finally, online job seekers should beware of fake “job 
offers” that ask for information such as social security num-
bers (see online frauds and scams).
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online research
The proliferation of online databases, information services 
(see online services) and Web sites has made more infor-
mation accessible to more people than ever before. At the 
same time, the complexity of the online world challenges 
researchers to develop a new set of skills to cope with it.

It is useful to divide online offerings into three broad 
categories: specialized databases, online information ser-
vices, and the Web as a whole (see World Wide Web). 
Each of these areas requires a somewhat different approach 
by the online researcher.

A common research task is to find and evaluate books 
or articles on a given subject. Most local libraries have their 
catalogs online, and the world’s largest library catalog, that 
of the Library of Congress (LC), is also available in several 
forms on the Web.

Newspaper and magazine articles can be found in a 
number of general-purpose databases such as InfoTrac. 
These databases can be searched in public libraries: Remote 
access is generally restricted to the library’s cardholders. 
These records can consist of a bibliographic description 
only (that is, author, title, periodical, issue date, and so 
on) or can include an abstract or in many cases the full 
text of the article. In addition, most major newspapers now 
offer free access to recent articles on their Web site, with 
older articles available for a nominal fee. Magazines, too, 
frequently offer selected articles or their complete contents 
online.

Using the search facility for an online catalog or periodi-
cal database is generally simple, particularly if an author or 
title is known. For subject searching, some familiarity with 
LC subject headings is helpful. However, the ability of most 
systems to search for matching words in titles or subjects 
means that the researcher can be quickly led to the correct 
subject in most cases.

Another way to get tables of contents, jacket copy, and 
reviews of books is to browse the online catalogs of major 
booksellers, particularly Amazon.com and BarnesandNo-
ble.com. Publishers’ Web sites are another good way to get 
information about books, particularly new or forthcoming 
titles.

Journalists need a broad familiarity with online research 
tools and use computers and online services in many facets 
of their work (see journalism and computers). Research-
ers looking for specialized articles in fields such as law or 
medicine need more rigorous skills.

Most legal research is done using databases such as 
LexisNexis. These databases are expensive but indispens-
able to practitioners. However, students and others who 
can’t afford this access can still find U.S. Supreme Court, 
Court of Appeals, and many state court decisions online, 
thanks to the efforts of organizations such as the Legal 
Information Institute at Cornell Law School. Because of 
the complexity of multiple jurisdictions and the need to 
trace chains of precedent (“shepardizing”), online legal 
research has become an increasingly important parapro-
fessional task.

Medical research is similarly complex, due to the 
thousands of precise terms for conditions, procedures, 
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and drugs. The sheer volume of articles (MEDLINE has 
more than 11 million citations dating back to the 1960s) 
can make it hard to find and evaluate the most relevant 
material.

By far the most extensive information resource today 
is the World Wide Web with its millions of sites and pages 
of information. There are two basic approaches to finding 
material on the Web. The first is to use a search engine by 
typing in keywords or phrases (see search engine). Even 
though search engines such as Google index only a mod-
est fraction of the available pages on the Web, a search 
on a topic such as “database design” can yield from thou-
sands to millions of possible “hits.” Most search engines do 
attempt to rank results in decreasing order of matching or 
relevance.

An alternative approach is to browse the categorized list 
of topics presented by a site such as Yahoo! (www.yahoo.
com) or About.com (www.about.com). The advantage of 
this approach is that the site’s researchers have selected the 
links for each topic that they believe to be the most valu-
able, and the number of possibilities is likely to be more 
manageable (see portal).

The tremendous increase in personal expression and 
collaboration on the Web is opening new channels of infor-
mation (see blogs and blogging, user-created con-
tent, and wikis and Wikipedia). Wikipedia, for example, 
has some articles that are as reliable and fully documented 
as those found in a traditional encyclopedia, while oth-
ers might be best described as “works in progress.” The 
researcher must decide whether a given article or posting 
is definitive or perhaps just usefully suggestive of further 
resources.

Online research remains more an art than a science. The 
researcher must choose the appropriate tools—bibliograph-
ical resources, specialized databases, information services, 
search engines, and portals—and evaluate and integrate 
the results so they are useful for a given question or project. 
Students and researchers now have unprecedented access to 
information, but sophisticated critical thinking skills must 
be employed. In particular, it can be difficult to evaluate the 
background or credentials of the people behind Web sites 
that are not associated with recognized media outlets or 
other organizations.
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online services
The ability of PC owners to connect to remote comput-
ers (see modem) led to the proliferation of both free and 
commercial online information services during the 1980s. 
At one end of the spectrum were bulletin board systems 
(BBS), many run by hobbyists on PCs connected to a few 
phone lines (see bulletin board systems). They offered 
users the ability to read and post messages on various top-
ics as well as to download or contribute software (see also 
shareware).

The growing number of connected PC owners soon 
offered entrepreneurs a potential market for a commercial 
online information service. One of the oldest, CompuServe, 
had actually been started in 1969 as a business time-shar-
ing computer system. In 1979, it launched a service for 
home computer users, offering e-mail and technical sup-
port forums. By the mid-1980s, the service had added an 
online chat service called CB Simulator (see chat, online) 
as well as news content. The service’s greatest strength, 
however, remained its forums, which offered technical 
support for just about every sort of computer hardware 
or software, together with download libraries containing 
system patches, drivers, utilities, templates, macros, and 
other add-ons.

By then, however, the online service market had become 
quite competitive. While CompuServe focused on com-
puter-savvy users, America Online (AOL), founded in 
1985 by Steve Case, targeted the growing legion of new 
PC users who needed an easy-to-navigate interface. AOL 
grew steadily, reaching a million customers in 1994 (see 
America Online). AOL chat groups became very popular, 
spawning a vigorous online culture while raising contro-
versies about sexual content in some chat “rooms.” A third 
service, Prodigy, also catered to the new user.

Meanwhile, the World Wide Web and the advent of 
graphical Web browsers such as Netscape and Microsoft 
Internet Explorer in the mid-1990s led millions of users 
to connect to the Internet (see Internet, Web browser, 
and World Wide Web). Internet service providers (ISPs) 
offered direct, no-frills access to the Web. CompuServe and 
AOL soon offered their users access to the Internet as well. 
However, accessing the Web through an online information 
service was usually more expensive, and often slower, than 
using an ISP and a Web browser directly. Additionally, free 
Web portal services such as Yahoo! began to offer extensive 
information resources of their own.

The Internet thus threatened to shrink the market for 
the commercial online services. AOL fought back in the late 
1990s by cutting its monthly rates to make them competi-
tive with ISPs, flooding the mails with free disks and trial 
offers, bundling introductory packages with new computer 
systems, and promoting added-value information services 
such as stock quotes. In 1998, the market consolidated 
when AOL bought CompuServe, continuing to run the lat-
ter as a subsidiary targeted at more sophisticated users. 
The same year AOL bought Netscape to gain access to its 
browser technology. Finally, AOL merged with Time-War-
ner, hoping to leverage the latter’s huge media resources, 
such as by offering classic TV fare. However, the flagship 
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online service continued to struggle in the 2000s, essen-
tially abandoning the ISP part of its business. Meanwhile 
CompuServe, after peaking in the 1990s, gradually shrank 
to a shadow of its former self. Even mighty Microsoft has 
had trouble growing its Microsoft Network (MSN), rein-
venting it in 1999 as a Web portal and then trying to inte-
grate it more closely with its operating system and software 
products as “Windows Live” as well as providing services 
such as instant messaging, blogging, and picture sharing.

The long-term prospects for AOL and other commer-
cial online services are uncertain. Many of the advantages 
these services had until the late 1990s have diminished. 
For example, the once mutually incompatible e-mail sys-
tems of online services have been replaced by standard 
Internet e-mail protocols, so there is little advantage to 
using a particular service for e-mail. Users can obtain 
e-mail accounts from a variety of ISPs or through free 
Web-based services such as hotmail.com. Content such as 
news, video, and music (see streaming) is available from 
many Web sites, and most companies now offer exten-
sive online technical support for their products. At the 
same time, attempts to support content-rich sites through 
either advertising or a subscription model have largely 
foundered. For services such as AOL, the ultimate ques-
tion is whether the parts of the service still form a suf-
ficiently compelling whole.
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ontologies and data models
A persistent problem in artificial intelligence (see artifi-
cial intelligence) is how to provide a software system 
with a model that it can use to reason about a particular 
subject or domain. A data model or ontology basically con-
sists of classes to which the relevant objects might belong, 
relationships between classes, and attributes that objects in 
that class can possess. (For implementation of these ideas 
within programming languages, see classes and object-
oriented programming.)

For example, a business ontology might include classes 
such as:

• � Entity—a business or person

• � Supplier—an Entity that provides wholesale goods or 
services

• � Customer—an Entity that buys the company’s goods 
or services

• � Contractor—an Entity that performs work for the 
company on contract

In the above list it can be seen that the last three classes 
all include as their parent or “superclass” the class Entity. 
Another way to put this is to say that the Entity class “sub-
sumes” the last three classes. These relationships can be 
easily shown in tree diagrams, with the most general or 
“universal” class at the top and the more specialized classes 
extending downward and outward. The process of defining 
related classes and specifying criteria for the inclusion of 
an object in a class is called “partitioning.” (Readers famil-
iar with set theory will also note that the language of sets, 
subsets, and inclusion also works well with this scheme.)

Classes can have other types of relationships. For exam-
ple, a class can be defined as being “part of” a structure 
built from several classes. For example, a Customer might 
be part of a Transaction class.

Attributes are assigned to classes as appropriate. Note 
in the example above that when attributes such as contact 
information are defined for the Entity class, they will also 
apply to the descendant classes Supplier, Customer, and 
Contractor.

Implementation
Ontologies can be used to provide guidance to a variety of 
types of programs (for example, see expert system, natu-
ral language processing, and software agent). Thus 
if an automatic news summarizer program encounters a 
story that includes references to opposing lawyers and legal 
issues, it could apply an ontology that defines the likely 
relationship of the participants in the case.

Creating useful ontologies is quite labor intensive in 
terms of the human thinking and coding involved. How-
ever, there have been substantial efforts in recent years to 
create anthologies for many fields, particularly in biology 
and genetics. The Web Ontology Language (OWL) is a 
popular tool for creating ontologies that can be used to 
make Web content more understandable to programs (see 
semantic web).

Meanwhile, an ambitious and long-running project 
called Cyc (for Encyclopedia) under the direction of Doug-
las Lenat has been engaged in creating what amounts to 
vast ontologies for many of the domains included in every-
day human life as well as specialized fields of knowledge. A 
large portion of this work has been made available as open 
source.

Further Reading
CYCorp. Available online. URL: http://www.cyc.com/. Accessed 

October 21, 2007.
Gasevic, Dragan, Dragan Djuric, and Vladan Devedzic. Model 

Driven Architecture and Ontology Development. New York: 
Springer, 2006.

Macy, Lee W. OWL: Representing Information Using the Web Ontol-
ogy Language. Victoria, B.C., Canada: Trafford Publishing, 
2005.

Nigro, Hector Oscar, Sandra Gonzalez Cisaro, and Daniel Xodo, 
eds. Data Mining with Ontologies: Implementations, Findings, 
and Frameworks. Hershey, Penn.: Idea Group, 2007.

Web Ontology Language (OWL), World Wide Web Consortium. 
Available online. URL: http://www.w3.org/2004/OWL/. 
Accessed October 21, 2007.

ontologies and data models        351



open-source movement
For a long time programmers have released programs as 
freeware meaning that users did not have to buy or license 
the software. There is also “try before you buy” software 
(see shareware). However, while freeware sometimes 
includes not only the executable program but the source 
code (the actual program instructions), most shareware and 
virtually all other commercially distributed software does 
not. As a result, users wishing to fix, modify, or extend the 
software are generally at the mercy of the company that 
owns and distributes it.

In university and research computing environments, 
however, it has been common for programmers to freely 
share and extend utilities such as program editors. Indeed, 
much of the necessary software for the earliest minicomput-
ers of the 1960s was created by clever, energetic hackers (see 
hackers and hacking). Because the source code (usually 
on paper tape) was freely distributed, people could easily 
create and distribute new (and presumably, improved) ver-
sions. Having source code also made it possible to “port” 
software to a newly released machine without having to wait 
for the relatively ponderous efforts of the official developers.

In particular, although the licensing of the two major 
versions of the UNIX operating system were controlled by 
AT&T’s Bell Laboratories and the University of California’s 
Berkeley Software Distribution (BSD) respectively, much 
UNIX software including programming languages (see Perl 
and Python) and the Web’s most popular server, Apache, 
have been distributed using an open source model.

The best-known open-source effort is the GNU Project 
created by Richard Stallman (1953–  ). GNU, a recursive 
acronym meaning “GNU’s Not UNIX,” is a collection of 
software that provides much of the functionality of AT&T’s 
UNIX without being subject to the latter’s licensing fees and 
restrictions. When creating his own open source version of 
UNIX (see Linux), Linus Torvalds (see Torvalds, Linus) 
and his colleagues drew upon the considerable base of soft-
ware already created by GNU.

According to Stallman and many other advocates, “open 
source” software is not necessarily free. What is required 
is that users receive the full source code (or have it readily 
available for free or at nominal charge). Users are free to 
modify or expand the source code to create and distribute 
new versions of the software. Following a legal mechanism 
that Stallman calls “copyleft,” the distributor of open-
source software must allow subsequent recipients the same 
freedom to revise and redistribute. However, not all soft-
ware that is billed as open source follows all of Stallman’s 
requirements, including being copylefted. Formally, open-
source software is generally licensed according to various 
versions of the General Public License (GPL). The latest 
version, GPL3, released in 2007, has been controversial. 
Among other things, it more aggressively attempts to pre-
vent open-source software from being restricted or other-
wise hampered by being combined with patented software 
or proprietary hardware.

Open-source software has the potential for providing 
diversity and alternatives in a world where some catego-
ries such as PC operating systems and office software are 

dominated by one or a few large companies. Indeed, some-
times companies have converted an existing product to 
open source, as is the case with Sun Microsystems and Star 
Office, a suite that runs under Linux. Netscape also resorted 
to open source as part of an unsuccessful attempt to fight 
off Microsoft for dominance of the browser market in the 
mid to late 1990s. By making a product open source, a com-
pany may hope to tap into the volunteer effort of many tal-
ented programmers to improve or expand the program. The 
company is still free to create proprietary software upon 
the “base” of a successful open source product. Moderately 
successful companies such as Linux distributor Red Hat 
have a business plan based upon providing superior pack-
aging, technical support, and customized solutions around 
its Linux distribution.

While some critics have questioned whether viable busi-
ness models can be built directly upon open-source soft-
ware, there is little doubt that open-source development 
has made a substantial contribution to the infrastructure 
of the computer industry. Linux runs about a third of all 
Web servers, and products such as the Apache Web server 
and MySQL database are also in widespread use, as is the 
Eclipse integrated development environment.

Many advocates see open source as part of a larger phi-
losophy and even a social movement (see user-created 
content). They believe that by creating value through col-
laboration and sharing, open source may challenge classical 
economics based on scarcity and competition.
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operating system
An operating system is an overarching program that man-
ages the resources of the computer. It runs programs and 
provides them with access to memory (RAM), input/output 
devices, a file system, and other services. It provides applica-
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tion programmers with a way to invoke system services, and 
gives users a way to control programs and organize files.

Development
The earliest computers were started with a rudimentary 
“loader” program that could be used to configure the sys-
tem to run the main application program. Gradually, a more 
sophisticated way to schedule and load programs, link pro-
grams together, and assign system resources to them was 
developed (see job control language and mainframe).

As systems were developed that could run more than 
one program at a time (see multitasking), the duties of the 
operating systems became more complex. Programs had to 
be assigned individual portions of memory and prevented 
from accidentally overwriting another program’s memory 
area. A technique called virtual memory was developed to 
enable a disk drive to be treated as an extension of the 
main memory, with data “swapped” to and from the disk 
as necessary. This enabled the computer to run more and/
or larger applications. The operating system, too, became 
larger, amounting to millions of bytes worth of code.

During the 1960s, time sharing became popular par-
ticularly on new smaller machines such as the DEC PDP 
series (see minicomputer), allowing multiple users to run 
programs and otherwise interact with the same computer. 
Operating systems such as Multics and its highly success-
ful offshoot UNIX developed ways to assign security levels 
to files and access levels to users. The UNIX architecture 
featured a relatively small kernel that provides essential 
process control, memory management, and file system ser-
vices, while drivers performed the necessary low-level con-
trol of devices and a shell provided user control. (See UNIX, 
kernel, device driver, and shell.)

Starting in the late 1970s, the development of personal 
computers recapitulated in many ways the earlier evolu-
tion of operating systems in the mainframe world. Early 
microcomputers had a program loader in read-only memory 
(ROM) and often rudimentary facilities for entering, run-
ning, and debugging assembly language programs.

During the 1980s, more complete operating systems 
appeared in the form of Apple DOS, CP/M, and MS-DOS for 
IBM PCs. These operating systems provided such facilities 
as a file system for floppy or hard disk and a command-line 
interface for running programs or system utilities. These 
systems could run only one program at a time (although 
exploiting a little-known feature of MS-DOS allowed addi-
tional small programs to be tucked away in memory).

As PC memory increased from 640 kB to multiple mega-
bytes, operating systems became more powerful. Apple’s 
Macintosh operating system and Microsoft Windows could 
manage multiple tasks. Today personal computer operating 
systems are comparable in sophistication and capability to 
those used on mainframes. Indeed, PCs can run UNIX vari-
ants such as the popular Linux.

Components
While the architecture and features of operating systems 
differ considerably, there are general functions common to 
almost every system. The “core” functions include “booting” 

the system and initializing devices, process management 
(loading programs intro memory assigning them a share of 
processing time), and allowing processes to communicate 
with the operating system or one another (see kernel). 
Multiprogramming systems often implement not only pro-
cesses (running programs) but also threads, or sections of 
code within programs that can be controlled separately.

A memory management scheme is used to organize and 
address memory, handle requests to allocate memory, free 
up memory no longer being used, and rearrange memory to 
maximize the useful amount (see memory management).

There is also a scheme for organizing data created or 
used by programs into files of various types (see file). Most 
operating systems today have a hierarchical file system that 
allows for files to be organized into directories or folders 
that can be further subdivided if necessary. In operating 
systems such as UNIX, other devices such as the keyboard 
and screen (console) and printer are also treated like files, 
providing consistency in programming. The ability to redi-
rect input and output is usually provided. Thus, the output 
of a program could be directed to the printer, the console, 
or both.

In connecting devices such as disk drives to applica-
tion programs, there are often three levels of control. At the 
top level, the programmer uses a library function to open 
a file, write data to the file, and close the file. The library 
itself uses the operating system’s lower-level input/output 
(I/O) calls to transfer blocks of data. These in turn are 
translated by a driver for the particular device into the low-
level instructions needed by the processor that controls the 
device. Thus, the command to write data to a file is ulti-
mately translated into commands for positioning the disk 
head and writing the data bytes to disk.

A typical operating system processes user commands or actions 
using an interface (such as a shell). Both user commands and 
requests from application programs communicate with the operat-
ing system through the application Programming Interface (API), 
which provides services such as file, memory, process, and network 
management.

operating system�         353



Operating systems, particularly those designed for mul-
tiple users, must also manage and secure user accounts. 
The administrator (or sometimes, ultimately, the “super 
user” or “root”) can assign users varying levels of access to 
programs and files. The owners of files can in turn specify 
whether and how the files can be read or changed by other 
users (see data security).

In today’s highly networked world most operating sys-
tems provide basic support for networking protocols such 
as TCP/IP. Applications can use this facility to establish 
network connections and transfer data over the local or 
remote network (see network).

The operating system’s functions are made available to 
programmers in the form of program libraries or an applica-
tion programming interface (API). (See library, program 
and application programming interface.)

The user can also interact directly with the operating 
system. This is done through a program called a shell that 
accepts and responds to user commands. Operating sys-
tems such as MS-DOS and early versions of UNIX accepted 
only typed-in text commands. Systems such as Microsoft 
Windows and UNIX (through facilities such as XWindows) 
allow the user to interact with the operating system through 
icons, menus, and mouse movements. Application program-
mers can also provide these interface facilities through the 
API. This means that programs from different developers 
can have a similar “look and feel,” easing the learning curve 
for users.

Issues and Trends
As the tasks demanded of an operating system have become 
more complex, designers have debated the best overall form 
of architecture to use. One popular approach, typified by 
UNIX, is to use a relatively small kernel for the core func-
tions. A community of programmers can then write the 
utilities needed to manage the system, performing tasks 
such as listing file directories, editing text, or sending e-
mail. New releases of the operating system then incorporate 
the most useful of these utilities. The user also has a variety 
of shells (and thus interfaces) available.

The kernel approach makes it relatively easy to port the 
operating system to a different computer platform and then 
develop versions of the utilities. (Kernels were also a neces-
sity when system memory was limited and precious, but 
this consideration is much less important today.)

Designers of modern operating systems face a number 
of continuing challenges:

• � security, in a world where nearly all computers are 
networked, often continuously (see computer crime 
and security and firewall)

• � the tradeoff between powerful, attractive functions 
such as scripting and the security vulnerabilities they 
tend to present

• � the need to provide support for new applications such 
as streaming audio and video (see streaming)

• � ease of use in installing new devices (see device 
driver and plug and play)

• � The continuing development of new user-interface 
concepts, including alternative interfaces for the dis-
abled and for special applications (see user inter-
face and disabled persons and computing)

• � the growing use of multiprocessing and multiprogram-
ming, requiring coordination of processors sharing 
memory and communicating with one another (see 
multiprocessing and concurrent programming)

• � distributed systems where server programs, client 
programs, and data objects can be allocated among 
many networked computers, and allocations continu-
ally adjusted or balanced to reflect demand on the 
system (see distributed computing)

• � the spread of portable, mobile, and handheld com-
puters and computers embedded in devices such as 
engine control systems (see laptop computer, PDA, 
and embedded system). (Sometimes the choice is 
between devising a scaled-down version of an exist-
ing operating system and designing a new OS that is 
optimized for devices that may have limited memory 
and storage capacity.)
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operators and expressions
All programming languages provide operators to specify 
arithmetic functions. Some of them, such as addition +, 
subtraction -, multiplication ×, and division ÷, are familiar 
from elementary school arithmetic (although the asterisk 
rather than the traditional x is used for multiplication in 
program code, to avoid confusion with the letter x). Addi-
tional operators found in languages such as C, C++, and 
Java include % (modulus, or remainder after division), ++ 
(adds one and stores the result back into the operand), and 
-- (decrement; subtracts one and stores the result back into 
the operand).

Operands are data items such as variables, constants, or 
literals (actual numbers) that are operated on by the opera-
tor. An operator is called unary if it takes just one operand 
(the increment operator ++ is an example). An operator that 
takes two operands is considered to be binary, and this is 
true of most arithmetic operations such as addition, multi-
plication, subtraction, and division.

A combination of operands and operators constitutes an 
arithmetic expression that evaluates to a particular value 
when the program runs. Thus in the C statement:

Total = SubTotal + SubTotal Tax × Tax_Rate;
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the value of the SubTotal Tax is multiplied by the value of 
the variable Tax_Rate, the result is added to the value of 
SubTotal, and the result of the entire expression is stored 
in the variable Total. Compilers generally parse arithmetic 
expressions by converting them from an “infix” form (as in 
A + B) to a “postfix” form (as in + A B), resolving them into 
a simple form that is ready for conversion to machine code.

Operator Precedence
The preceding example raises an important question. How 
does one know that the subtotal is to be multiplied by the 
tax rate and then the result added to the subtotal, as opposed 
to adding the subtotal and tax and multiplying the result by 
the tax rate? The former procedure is intuitively correct to 
human observers, but since computers lack intuition, spe-
cific rules of precedence are defined for operators. These 
rules, which are similar for all computer languages, tell the 
compiler that when code is generated for arithmetic oper-
ations, multiplications and divisions are carried out first 
(moving from left to right), and then additions and subtrac-
tions are resolved in the same way. The rules of precedence 
do become more complex when the relational, logical, and 
assignment operators are included. Finally, expressions can 
be enclosed in parentheses to overrule precedence and force 
them to be evaluated. Thus in the expression (A + B) * C the 
addition will be carried out before the multiplication.

Generally speaking, the levels of precedence for most 
languages are as follows:

	 1. � scope resolution operators (specify local v. global 
versions of a variable)

	 2. � invoking a method from a class, array subscript, 
function call, increment or decrement

	 3. � size of (gets number of bytes in an object), address 
and pointer dereference, other unary operators 
(such as “not” and complement); creation and deal-
location functions; type casts

	 4. � class member selection through a pointer
	 5. � multiplication, division, and modulus
	 6. � addition and subtraction
	 7. � left and right shift operators
	 8. � less than and greater than
	 9. � equal and not equal operators
	 10. � bitwise operators (AND, then exclusive OR, inclu-

sive OR)
	 11. � logical operators (AND, then OR)
	 12. � assignment statements

The basic arithmetic operators are built into each pro-
gramming language, but many of the newer object-oriented 
languages such as C++ allow for programmer-defined oper-
ators and a process called overloading in which the same 
operator can be defined to work with several different kinds 
of data. Thus the + operator can be extended so that if it is 
given character strings instead of numbers, it will “add” the 
strings by combining (concatenating) them.
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optical character recognition  (OCR)
Today it is easy to optically scan text or graphics printed on 
pages and convert it into a graphical representation for stor-
age in the computer (see scanner). However, a shape such 
as a letter c doesn’t mean anything in particular as a graphic. 
Optical character recognition (OCR) is the process of identi-
fying the letter or other document element that corresponds 
to a given part of the scanned image and converting it to 
the appropriate character (see characters and strings). If 
the process is successful, the result is a text document that 
can be manipulated in a word processor, database, or other 
program that handles text. Raymond Kurzweil (1948–  ) 
marketed the first commercially practicable general-purpose 
optical character recognition system in 1978.

Once the document page has been scanned into an image 
format, there are various ways to identify the characters. 
One method is to use stored templates that indicate the pat-
tern of pixels that should correspond to each character. Gen-
erally, a threshold of similarity is defined so that an exact 
match is not necessary to classify a character: The template 
most similar to the character is chosen. Some systems store 
a set of templates for each of the fonts most commonly found 
in printed text. (Recognizing cursive writing is a much more 
complex process: See handwriting recognition.)

A compiler or interpreter processes a program statement by apply-
ing its operators in order of precedence. Here the multiplication is 
done first, and then its result is used in the addition. The assign-
ment (=) operator has the lowest precedence and is applied last, 
assigning the value of the entire expression to the variable Total.
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A more generalized method uses structural features 
(such as “all t’s have a single vertical line and a shorter 
crossbar line”) to classify characters. To analyze a character, 
the different types of individual features are identified and 
then compared to a set of rules to determine the character 
corresponding to that particular combination of features. 
Sometimes thresholds or “fuzzy logic” are used to decide 
the probable identity of a character.

OCR systems have improved considerably, the process 
also being speeded up by today’s faster processors. Most 
scanners are sold with OCR software that is perhaps 95 
percent accurate, with higher end systems being more accu-
rate still. This is certainly good enough for many purposes, 
although material that is to be published or used in legal 
documents should still be proofread by human beings.

Further Reading
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nition: An Illustrated Guide to the Frontier. Boston: Kluwer, 
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optical computing
Light is the fastest thing in the universe, and the science 
and technology of optics have developed greatly since the 
invention of the laser in the 1960s. It is not surprising, 
therefore, that computer designers have explored the pos-
sibility of using optics rather than electronics for computa-
tion and data storage.

An early idea was to use a grid of laser beams to create 
logical circuits, exploiting the ability of one laser to be used 
to “quench” or switch off another one. However, creating a 
large number of tiny laser beams proved impracticable, as 
did managing the heat created by the process. However, by 
the 1980s, experimenters were interacting “microlasers” with 
semiconductors, exploiting quantum effects. This brought 
the energy (and heat) problem under control while vastly 
increasing the potential density of the optical circuitry.

The incredible rate at which conventional silicon-based 
electronic circuitry continued to increase in density and 
capacity has limited the incentive to invest in the large-
scale research and development that would be needed to 
develop a complete optical computer with processor and a 
corresponding optical memory technology.

Instead, current research is exploring the possibility of 
combining the best features of the optical and electronic 
system. Silicon chips have a limited surface for connecting 
data inputs, while light can carry many more channels of 
data through micro-optics. It may be possible to couple a 
micro-optic array to the surface of the silicon chip in such 
a way that the chip could have the equivalent of thousands 
of connecting pins to transmit data. In March 2007 IBM 
unveiled a prototype hybrid chip that combines optical and 
semiconductor technology to achieve eight times the data 
transfer rate of conventional technologies.

The value of optics is more conclusively demonstrated 
in data transmission and storage technology. Fiber optic 
cables are being used in many cases to carry large quanti-

ties of data with very high capacity (see fiber optics) and 
may gradually supplant conventional network cable in more 
applications. The use of lasers to store and read informa-
tion is seen in CD-ROM and DVD-ROM technology, which 
has replaced the floppy disk as the ubiquitous carrier of 
software and handy backup medium (see CD-ROM and 
DVD-ROM).
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Oracle Corporation
Founded in 1977, Oracle Corporation (NASDAQ symbol: 
ORCL) is a leading developer of business database software 
(see database management system) as well as systems 
for other enterprise operations (see customer relation-
ship management and supply chain management). These 
functions are integrated through a structure called Oracle 
Information Architecture that can coordinate the opera-
tions of servers and storage systems (see grid computing). 
Besides selling software, a major part of Oracle’s business 
is providing consulting and support for fitting the software 
to the needs of corporate customers, as well as training 
(through Oracle University) and distributed application ser-
vices (Oracle on Demand). In 2007 Oracle had $18 billion 
in sales, netting $4.74 billion in profit. The company had 
over 73,000 employees.

Since its founding, Oracle’s CEO has been the dynamic 
though often controversial Larry Ellison, who recognized 
the importance of relational databases (with their ability to 
connect information from many sources) as a way to meet 
the growing information needs of modern business. In the 
1970s IBM was the dominant leader in relational databases 
for mainframe computers, but when personal computers 
running Windows became prevalent around 1990, IBM was 
slow to enter the new market. Ellison and competitors such 
as Sybase and Informix were able to carve out strong niches, 
with Oracle coming out on top by the end of the decade. 
(However, by the 2000s IBM’s DB2 for UNIX/Linux and 
Windows and Microsoft SQL Server [for Windows only] 
were strong competitors, with open-source products MySQL 
and PostgreSQL also gaining attention—see SQL.)

In recent years Oracle has also expanded through acqui-
sition, picking up other software companies, including Peo-
pleSoft; Retek, Inc.; and Siebel Systems, for a combined total 
of over $16 billion. In 2007 Oracle filed a lawsuit against its 
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major competitor in business management applications (see 
sap), charging them with unfair practices.
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OS X
Jaguar, panther, tiger, and leopard—these and other names 
of sleek big cats represent versions of Apple’s Macintosh 
operating system, OS X (pronounced “OS 10”—see Apple 
Corporation and Macintosh). Unlike the previous Mac 
OS, OS X, while broadly maintaining Apple’s user interface 
style (see user interface), is based on a version of UNIX 
called OpenStep, developed by NeXT starting in the 1980s 
(see UNIX). OS X development began when Steve Jobs 
returned as Apple CEO in 1997 (see Jobs, Steven Paul) 
and the company bought NeXT, acquiring the software. The 
first version, OS X 10.0, or Cheetah, was released in 2001, 
but the system was not widely used until 10.1 (Puma) was 
released later the same year.

At the core of OS X is a free and open-source version of 
UNIX called “Darwin,” with a kernel called XNU. On top of 
this Apple built a distinctive and subtly colorful user inter-

face called Aqua and a new version of the Macintosh Finder 
file and program management system.

Applications and Development
Today OS X includes a variety of useful software packages—
some free and some optional. These include iLife (digital 
media management), iWork (productivity), and Front Row 
(home media center). OS X10.5 also includes Time Machine, 
an automatic backup system that can restore files (including 
deleted files) as well as earlier system settings.

For software developers, OS X provides an integrated 
development environment called “Xcode,” which works 
with modified open-source compilers for major program-
ming languages, including C, C++, and Java. Further, 
because OS X is UNIX-based, many UNIX and Linux pro-
grams can be recompiled to run on it. Since mid-2005 Apple 
(and OS X) have been transitioning from the earlier IBM/
Motorola processors to Intel processors. This transition was 
largely complete by 2007, though OS X 10.5 (Leopard) still 
provides support for applications written for the PowerPC.

OS X has been well received by critics, and together with 
its bundled software has made the Macintosh a popular 
platform for users who want a seamless computing experi-
ence, particularly with regard to graphics and media.
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Page, Larry
(1973–  )
American
Entrepreneur

Together with business partner Sergey Brin, Larry (Law-
rence Edward) Page revolutionized the role of Web search 
in the modern Internet economy by developing the Google 
search engine and building an industry-leading company 
around it.

Page was born in East Lansing, Michigan, into a very 
computer-oriented family (both his parents were computer 
scientists and his brother became a computer engineer). 
It was perhaps not surprising that Page received a BSE in 
engineering at the University of Michigan in 1995, then 
entered the doctoral program in computer science at Stan-
ford University. There he met Sergey Brin (see Brin, Ser-
gey). The two students soon developed an interest in the 
burgeoning Web, particularly in finding a better way to 
search for information. The result was their collaboration 
on a page-ranking system that prioritized search results 
based on the popularity of sites as shown by the number of 
links to them (see also search engine). The other half of 
Page and Brin’s achievement was in developing advertising 
models that would turn users’ Web interests into revenue. 
Their key insight was that sellers would be eager to adver-
tise to people who had already shown by searching that 
they were interested in particular products or services.

By the early 2000s Google dominated Web search, which 
would became a springboard to many other services, includ-

ing local searching, maps, and even free online office appli-
cations (see Google). In 2004 Page and Brin became rich 
when Google offered its stock to the public (by 2006 Page’s 
net worth was estimated at $16.6 billion, just behind Brin).

Google has profoundly changed the way people use the 
Web, so much that “to google” has become a verb for search-
ing online. However, the company’s size and dominant posi-
tion in Web search advertising has raised concerns among 
some critics that Google might be gaining too much control 
over the market (see online advertising). Meanwhile in 
2001 Page and Brin hired Eric Schmidt to become Google’s 
CEO, giving Page more time to pursue other interests. one 
of which is his investment in Tesla Motors, developer of 
an advanced electric vehicle that can go up to 250 miles 
on one battery charge. Another interest of Page and Brin is 
spurring the private development of space travel, such as 
through Google’s Lunar X Prize, announced in September 
2007. It would award $20 million to the first team to land 
and successfully operate a lunar surface rover.

Page’s impact on the Internet economy has been widely 
recognized. In 2004 he was inducted into the National 
Academy of Engineering for his work in developing the 
Google search engine. In 2005 Time included Page in its 
list of the world’s 100 most influential people, and in 2007 
PC World placed him at number one on a list of the most 
important people on the Web.
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Papert, Seymour
(1928–  )
South African/American
Computer Scientist

Seymour Papert is an artificial intelligence pioneer and 
innovative educator who has brought computer science to a 
wider audience, especially young people.

Papert was born in Pretoria, South Africa, on March 1, 
1928. He attended the University of Witwatersrand, earn-
ing his bachelor’s degree in mathematics in 1949 and Ph.D. 
in 1952. As a student he became active in the movement 
against the racial apartheid system, which was becoming 
entrenched in South African society. His unwillingness to 
accept the established order and his willingness to be an 
outspoken activist would serve him well later when he took 
on the challenge of educational reform.

Papert went to Cambridge University in England and 
earned another Ph.D. in 1952, then did mathematics 
research from 1954 to 1958. During this period artificial 
intelligence, or AI, was taking shape as researchers began 
to explore the possibilities for using increasingly powerful 
computers to create or at least simulate intelligent behav-
ior. In particular, Papert worked closely with another AI 
pioneer in studying neural networks and perceptrons (see 
Minsky, Marvin). These devices made electronic connec-
tions much like those between the neurons in the human 

brain. By starting with random connections and reinforcing 
appropriate ones, a computer could actually learn a task 
(such as solving a maze) without being programmed with 
instructions.

Papert’s and Minsky’s research acknowledged the value 
of this achievement, but in their 1969 book Perceptrons they 
also suggested that this approach had limitations, and that 
researchers needed to focus not just on the workings of 
brain connections but upon how information is actually 
perceived and organized.

This focus on cognitive psychology came together with 
Papert’s growing interest in the process by which human 
beings assimilated mathematical and other concepts. From 
1958 to 1963 he worked with Jean Piaget, a Swiss psycholo-
gist and educator. Piaget had developed a theory of learning 
that was quite different from that held by most educators. 
Traditional educational theory tended to view children as 
being incomplete adults who needed to be “filled up” with 
information.

Piaget, however, observed that children did not think 
like defective adults. Rather, children at each stage of devel-
opment had characteristic forms of reasoning that made 
perfect sense in terms of the tasks at hand. Piaget believed 
that children best developed their reasoning skills by being 
allowed to exercise them freely and learn from their mis-
takes, thus progressing naturally.

In the early 1960s Papert went to the Massachusetts 
Institute of Technology, where he cofounded the MIT Arti-
ficial Intelligence Laboratory with Minsky in 1965. He also 
began working with children and developing computer sys-
tems better suited for allowing them to explore mathemati-
cal ideas.

The tool that he created to enable this exploration was 
the LOGO computer language (see Logo). Logo provided 
a visual, graphical environment at a time when most pro-
gramming resulted in long, hard-to-read printouts. At the 
center of the Logo environment is the “turtle,” which can be 
either a screen cursor or an actual little robot that can move 
around on the floor, tracing patterns on paper. Young stu-
dents can give the turtle simple instructions such as FOR-
WARD 50 or RIGHT 100 and draw everything from squares 
to complicated spirals. As students continued to work with 
the system, they could build more complicated programs by 
writing and combining simple procedures. As they work, 
the students are exploring and grasping key ideas such as 
repetition and recursion (the ability of a program to call 
itself repeatedly).

In creating Logo, Papert believed that he had demon-
strated that “ordinary” students could indeed understand 
the principles of computer science and explore the wider 
vistas of mathematics. But when he saw how schools were 
mainly using computers for rote learning, he began to speak 
out more about problems with the education system. Build-
ing on Piaget’s work, Papert called for a different approach. 
Papert often makes a distinction between “instructivism,” 
or the imparting of information to students, and “construc-
tivism,” or a student learning by doing.

Papert “retired” from MIT in 1998, but remains very 
active, as can be seen from the many Web sites that describe 

Seymour Papert has made it his life work to create computer 
facilities (such as the Logo language) that reflect the psychology 
of learning and enable even young students to experiment with 
“powerful ideas.”  (Bill Pierce / Time Life Pictures / Getty 
Images)
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his work. Papert lives in Blue-Hill, Maine, where he teaches 
at the University of Maine. He has also established the 
Learning Barn, a laboratory for exploring innovative ideas 
in education. Papert has worked on ballot initiatives to 
have states provide computers for all their students, as well 
as working with teenagers in juvenile detention facilities. 
Today, educational centers using Logo and other ideas from 
Papert can be found around the world.

In December 2006, while attending a conference in 
Hanoi, Papert was struck by a motorcycle and suffered seri-
ous brain injuries. As of 2008 his rehabilitation is progress-
ing well.

Papert has received numerous awards including a Gug-
genheim fellowship (1980), Marconi International fellow-
ship (1981), the Software Publishers Association Lifetime 
Achievement Award (1994), and the Computerworld Smith-
sonian Award (1997).
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parallel port
There are two basic ways to send data from a computer to 
a peripheral device such as a printer. A single wire can be 
used to carry the data one bit at a time (see serial port), or 
multiple parallel wires can be used to send the bits of a data 
word or byte simultaneously.

Serial ports have the advantage of needing only one line 
(wire), but sending a byte (eight-bit word) requires waiting 
for each of the eight bits to arrive in succession at the des-
tination. With a parallel connection, however, the eight bits 
of the byte are sent simultaneously, each along its own wire, 
so parallel ports are generally faster than serial ports. Also, 
since the data is transmitted simultaneously, the protocol 
for marking the beginning and end of each data byte is sim-
pler. On the other hand, parallel cables are more expensive 
(since they contain more wires) and are generally limited 
to a length of 10 feet or so because of electrical interference 
between the parallel wires.

The original parallel interface for personal computers 
was designed by Centronics, and a later version of this 36-
pin connector remains popular today. Later, IBM designed a 
25-pin version. In addition to the wires carrying data, addi-
tional wires are used to carry control signals.

Most modern parallel ports use two more advanced 
interfaces, EPP (Enhanced Parallel Port) or ECP (Extended 
Capabilities Port). Besides allowing for data transmission 

up to 10 times faster than the original parallel port, these 
enhanced ports allow for bi-directional (two-way) commu-
nications. This means that a printer can send signals back 
to the PC indicating that it is low on toner, for example. 
Printer control software running on the PC can therefore 
display more information about the status of the printer 
and the progress of the printing job. Besides printers, the 
parallel interface has also been used to connect external 
CD-ROM and other storage devices.

Although early PCs often provided their parallel port 
connectors on plug-in expansion cards, most PCs today 
have two parallel connectors built into the motherboard. 
In recent years the faster and more flexible Universal Serial 
Bus (see USB) interface has increasingly replaced the par-
allel port for printers, scanners, digital cameras, external 
storage drives, and many other devices.

Further Reading
Parallel Port Central. Available online. URL: http://www.lvr.com/

parport.htm. Accessed August 17, 2007.
“Parallel Port Configuration.” Available online. URL: http://www.

geocities.com/nozomsite/parallel.htm. Accessed August 17, 
2007.

Tyson, Jeff. “How Parallel Ports Work.” Available online. URL: 
http://computer.howstuffworks.com/parallel-port.htm. 
Accessed August 17, 2007.

parsing
Just as a speaker or reader of English must be able to rec-
ognize the significance of words, phrases, and other com-
ponents of sentences, a computer program must be able 
to “understand” the statements, commands, or other input 
that it is called upon to process.

For example, an interpreter for the BASIC language must 
be able to recognize that

PRINT “End of Run”

contains a previously defined command or keyword 
(PRINT) and that the quote marks enclose a string of char-
acters that are to be interpreted literally rather than stand-
ing for something else. Once the type of element or data 
item is recognized, then the appropriate procedure can be 
called upon for processing it. (See compiler and inter-
preter.)

Similarly, a command processor (see shell) for an oper-
ating system such as UNIX will look at a line of input such 
as

ls -l /bin/MyProgs

and recognize that ls is an executable utility program. It 
will pass the rest of the command line to the ls program, 
which is then executed. In turn, ls must parse its command 
line and recognize that -l is a particular option that controls 
how the directory listing is displayed, and /bin/MyProgs is 
a pathname that specifies a particular directory location in 
the file system.

To parse its input, the language or command interpreter 
begins by looking in the program language or command 
statement for tokens. (This process is called lexical analy-
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sis.) A token is normally defined as a series of one or more 
characters separated by “whitespace” (blanks, carriage 
returns, and so on). A token is thus analogous to a word in 
English.

The series of tokens is then sent to the parser. The pars-
er’s job is to identify the significance of each token and to 
group the tokens into properly formed statements. Gener-
ally, the parser first checks the tokens for keywords—words 
such as “if” or “loop” that have a special meaning in a 
particular programming language. (In the BASIC example, 
PRINT is a keyword: In many other languages such func-
tions are external rather than being part of the language 
itself.) As keywords (and punctuation symbols such as the 
semicolon used at the end of statements in C and Pascal) 
are identified, the parser uses a set of rules to determine the 
overall structure of the statement. For example, a language 
might define an if statement as follows:

If <Boolean-expression> then <statement> 
else <statement>

This means that when the parser encounters an “if” it will 
expect to find between that word and “then” an expres-
sion that can be tested for being true or false (see Boolean 
operators). Following “then,” it will expect to find a com-
plete statement. If it finds the optional keyword “else,” that 
word will be followed by an alternative statement. Thus in 
the statement

If Total > Limit Print “Overflow” else Print 
Total

The elements would be broken down as follows:

If	 keyword

Total > Limit	 Boolean expression

Print	 keyword

“Overflow”	� String literal (characters 
to be printed)

else	 keyword

Print	 keyword

Total	 variable

When writing a parser, the programmer depends on 
a precise and exhaustive description of the possible legal 
constructs in the language (see also Backus-Naur form). 
In turn, these rules are turned into procedures by which 
the parser can construct a representation of the relation-
ships between the tokens. This representation is often rep-
resented as an upside-down tree, rather like the sentence 
diagrams used in English class.

In general form, an expression, for example, can be dia-
grammed as consisting of one or more terms (variables, 
constants, or literal values) or other expressions separated 
by operators.

Notice that these diagrams are often recursive. That is, 
the definition of an expression can include expressions. 
The number of levels that can be “nested” is usually limited 
by the compiler if not by the definition of the language.

The underlying rules must be constructed in such a way 
that they are not ambiguous. That is, any given string of 
tokens must result in one, and only one parse tree.

Once the elements have been extracted and classified, 
a compiler must also analyze the nonkeyword tokens to 
make sure they represent valid data types, any variables 
have been previously defined, and the language’s naming 
conventions have been followed (see compiler).

Fortunately, people who are designing command proces-
sors, scripting languages, and other applications requiring 
parsers need not work from scratch. Tools such as YACC (a 
grammar definition compiler) and BISON and ANTLR (parser 
generators) are available for UNIX and other platforms.
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A parse tree for the statement A = B + C × D. Notice how the 
expression on the right-hand side of the equals (assignment) sign is 
eventually parsed into the component identifiers and operators.
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Pascal
By the early 1960s, computer scientists had become increas-
ingly concerned with finding ways to better organize or 
structure programs. Indeed, one language (see Algol) had 
already been developed in part to demonstrate and encour-
age sound programming practices, including the proper use 
of control structures (see loop and structured program-
ming). However, Algol lacked a full range of data types 
and other features needed for practical programming, while 
arguably being too complex and inconsistent to serve as a 
good teaching language.

Niklaus Wirth at ETH (the Swiss Federal Institute of 
Technology) worked during the mid-1960s with a commit-
tee that was trying to overcome the problems with Algol 
and make the language more practical and attractive to 
computer manufacturers and users. However, Wirth gradu-
ally became disillusioned with the committee’s unwieldy 
results, and proceeded to develop a new language, Pascal, 
announcing its specifications in 1970.

Pascal both streamlined Algol and extended it. Besides 
providing support for character, Boolean, and set data types, 
Pascal allows users to define new data types by combining 
the built-in types. This feature is particularly useful for 
defining a “record” type that, for example, might combine 
an employee’s name and job title (characters), ID number (a 
long integer), and salary (a floating-point number). The rig-
orous use of data types also extends to the way procedures 
are called and defined (see procedures and functions).

Pascal attracted much interest among computer scien-
tists and educators by providing a well-defined language 
in which algorithms could be expressed succinctly. The 
acceptance of Pascal was also aided by its innovative com-
piler design. Unlike the machine-specific compilers of the 
time, the Pascal compiler did not directly create machine 
code. Rather, its output was “P-code,” a sort of abstract 
machine language (see also pseudocode). A run-time sys-
tem written for each computer interprets the P-Code and 
executes the appropriate machine instructions. This meant 
that Pascal compilers could be “ported” to a particular 
model of computer simply by writing a P-Code Interpreter 
for that machine. This strategy would be used more than 
two decades later by the creators of a popular language for 
Web applications (see Java).

Structure of a Pascal Program
The following simple program illustrates the basic structure 
of a program in Pascal. (The words in bold type are key-
words used to structure the program.) The program begins 
with a Type section that declares user-defined data types. 
These can include arrays, sets, and records (composite types 
that can include several different basic types of data). Here 

an array of up to 10 integers (whole numbers) is defined as a 
type called IntList.

The Var (variable) section then declares specific vari-
ables to be used by the program. Variables can be defined 
using either the language’s built-in types (such as integer) 
or types previously defined in the Type section. An impor-
tant characteristic of Pascal is that user-defined types must 
be defined before they can be used in variable declarations, 
and variables in turn must be declared before they can be 
used in the program. Some programmers found this strict-
ness to be confining, but it guards against, for example, a 
typographical error introducing an undefined variable in 
place of the one intended. Today most languages enforce 
the declaration of variables before use.

The word begin introduces the executable part of the 
program. The variables needed for the loop are first initial-
ized by assigning them a value of zero. Note that in Pascal := 
(colon and equals sign) is used to assign values. The outer if 
statement is used to ensure that the user does not input an 
invalid number of items. The for loop then reads each input 
value, assigns it to its place in the array, and keeps a run-
ning total. That total is then used to compute the average, 
which is output by the writeln (write line) statement.

program FindAvg (input, output);
type IntList = array [1 . . 10] of inte-
ger;
var

Ints: IntList;
Items, Count, Total, Average: integer;

begin
Average := 0;
Total := 0;
Readln (Items);
If ((Items > 0) and (Items <= 10)) then

begin
for Count := 1 to Items do

begin
readln (Ints [Count]);
Total := Total + Ints [Count]
end;

Average := Total / Items;
Writeln (‘The average of the items is:’, 
Average)
end

else
Writeln (‘Error: Number of items must be 
between 1 and 10’)

end.

Impact of Pascal
Pascal achieved modest commercial success. The P-Code 
idea was embraced by the UCSD P-System developed by 
the University of California at San Diego. In the late 1970s 
and early 1980s, the P-System brought the benefits of Pas-
cal’s structured programming to users of computers such 
as the Apple II, for which the only alternatives had been 
machine-language or a poorly structured version of BASIC. 
Later in the 1980s, Borland International came out with 
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Turbo Pascal. This compiler used direct compilation rather 
than P-Code, sacrificing portability for speed and efficiency. 
It included an integrated programming environment that 
made development much cheaper and easier than with 
existing “bulky” and expensive compilers such as those 
from Microsoft. Turbo became very popular and eventu-
ally included language extensions that supported object-
oriented programming. But Pascal became best known in 
its role as a first language for teaching programming and for 
expressing algorithms.

However, by 1990 the tide had clearly turned in favor 
of C and C++. These languages used a more cryptic syn-
tax than Pascal and lacked the latter’s rigorous data typing 
mechanism. Systems programmers in particular preferred 
C’s ability to get “close to the machine” and manipulate 
memory directly without being confined by type defini-
tions. C had also received a big boost because its developers 
were also among the key developers of UNIX, a very popu-
lar operating system in campus computing environments.

During the 1990s, C, C++, and Java even began to sup-
plant Pascal for computer science instruction. Nevertheless, 
by encouraging structured programming concepts and help-
ing educate a generation of computer scientists, Pascal made 
a lasting impact on the computer field. Wirth continued his 
work with the development of Modula-2 and Oberon, which 
were confined mainly to the academic world. However, Pas-
cal also was a major influence on the development of Ada, a 
language endorsed by the U.S. federal government that com-
bines structured programming with object-oriented features 
and the ability to manage extensive packages of routines 
(see Ada).
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pattern recognition
After many years of effort researchers have been able to 
create systems that can recognize particular human faces 
(see computer vision). On the other hand, any normal 
six-month-old child can effortlessly recognize familiar 
faces (such as parents). The fundamental task of turning 
raw data (whether from senses, instruments, or computer 
files) into recognizable objects or drawing inferences is 
called pattern recognition. Pattern recognition is at the 
heart of many areas of research and application in com-
puting (see artificial intelligence and data mining). 
Despite the challenge in getting machines to do what 

comes naturally for biological organisms, the potential 
payoffs are immense.

A pattern-recognition system begins with data, whether 
stored or real-time (such as from a robot’s camera). The first 
task in turning potentially billions of bytes of data into 
meaningful objects is to extract features from what is likely 
a high proportion of redundant or irrelevant data. (With 
visual images, this often involves finding edges that define 
shapes.) The extracted features are then classified to deter-
mine what objects they might represent. This can be done 
by comparing structures to templates or previously classi-
fied data or by applying statistical analysis to determine the 
likely correlation of the new data to existing patterns (see 
Bayesian analysis).

Pattern recognition often includes learning algorithms 
as well; indeed, the field is often considered to be a subtopic 
of machine learning. For example, classification systems 
can be refined by “training” them and reinforcing success-
ful determinations (see neural network).

Applications
There are numerous applications of pattern recognition, 
often as part of intelligent systems used in such areas as lin-
guistics (see language translation software), commu-
nications, intelligence and surveillance, identity verification 
(see biometrics), and the analysis of credit card transaction 
patterns for signs of fraud. Some examples are shown in the 
following table:

Data	P rocedures	R esults

speech	 phonemes, transition 	 text 
	 rules
handwritten 	 character classification	 identified 
address		  postal address
handwritten 	 character classification	 identify amount of 
check (ATM)		  deposit
general text	 grammar and syntax	 structure and 
		  meaning
e-mail	 identify characteristics	 spam detection
	 Bayesian filter
facial image	 feature templates, 	 identified person 
	 statistics
biometric 	 feature extraction and 	 verified identity 
(retina, finger-	 template comparison 
print, etc.)
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PDA  (personal digital assistant)
The first stage in making computing available away from 
the office desk was the development of “portable” and then 
laptop computers in the 1980s (see laptop computer). 
Laptops, however, are relatively heavy and bulky, and thus 
not suitable for activities such as making notes at meet-
ings or keeping track of appointments while on the go. 
The logical solution to that need was to develop a com-
puter small enough to carry in a pocket or purse. The first 
handheld computer to achieve widespread recognition was 
Apple’s Newton, which the company referred to as a “per-
sonal digital assistant.” This term, usually abbreviated to 
PDA, became a generic category with the introduction of 
the Palm Pilot, which first appeared in 1996, followed by 
the seemingly ubiquitous RIM Blackberry in 1999.

Features and Uses
Modern PDAs have sharp, readable displays, even given the 
limited screen size. The role of the mouse is taken by navi-
gation buttons, and the ability to select items on the screen 
by touch or using a stylus (see touchscreen). (Some PDAs 
include small keyboards that can be typed on using two 
fingers or thumbs.) The operating system (such as Palm OS, 
Windows Mobile, or even Linux) is in read-only memory, 
and working memory is provided, expandable through the 
use of SD (Secure Digital) or Compact Flash memory cards. 
Wireless connectivity provides access to the Internet and 
for transferring data between the PDA and a regular PC (see 
Bluetooth and wireless and mobile computing). A syn-
chronization program installed on the PC can be used to 
ensure that the latest version of each file will be stored on 
both devices. (This also allows larger programs on the PC 
to work on and update data from the PDA—see personal 
information manager.)

Typical PDA applications include an appointment cal-
endar, address book for contacts, a simple note-taking pro-
gram (see handwriting recognition), and increasingly, 
e-mail and a special Web browser designed for small dis-
plays. Many PDAs can also use their Bluetooth connection 
to place calls through suitably equipped cellphones.

PDAs can also be used for specialized applications that 
involve the need to receive or update data while driving or 
walking. Examples include navigation (with the use of a 
GPS device), delivery services, warehouse inventory man-
agement, reading utility meters, taking orders electronically 
in restaurants, and maintaining patient records in hospi-
tals. Besides allowing for the recording of data, PDAs can 
also include task-specific references such as prescription 
drug databases or a medical dictionary.

As with many other things in computing, the boundar-
ies of the PDA category are becoming more fluid. While 
software-enhanced mobile phones evolved separately (see 
smartphone), PDA increasingly functions and telephony 
are being seamlessly integrated into a single device, as with 
Palm’s Treo and especially Apple’s 2007 introduction of the 

iPhone, which also introduced an innovative “multitouch” 
interface that can respond to natural finger gestures such as 
flicking, sliding, or pinching.
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PDF  (portable document format)
The PDF (portable document format) created by Adobe Sys-
tems has become a very common way to make documents 
available in a way that preserves the appearance of the 
original.

When PDF first came out in the early 1990s it was not 
very suitable for use on the Web. PDF documents could 
only be viewed using expensive proprietary software, they 
could not include embedded links (and thus could not be 
hypertext), and they were large enough to be slow for down-
loading on the dial-up connections of the time.

All this had changed by the end of the decade: Adobe 
distributes the free Adobe Reader and plug-ins for all major 
platforms and browsers.

Operation
The PDF specifications are open source, so anyone can 
write software to create or read documents in the format. 
PDF includes three elements: a subset of the PostScript page 
description language (see PostScript), a system for speci-
fying and embedding common fonts (or referring to other 
fonts), and a system for “packaging” the text and graphics 
descriptions into a file in compressed form. Later versions 
of the PDF specification also allow users to interact with 
the document, such as by filling in fields in a form or add-
ing annotations to the text. PDF also includes support for 
tags (see xml) and descriptors that can be used with pro-
grams such as screen readers for the blind.

PDF also includes support for encrypting documents so 
they can only be read with a password, and for controlling 
whether the document can be copied or printed, though this 
depends on the user’s software understanding and obeying 
the restrictions.

Although creating and editing PDF documents origi-
nally required the relatively expensive Adobe Acrobat soft-
ware, there are now a number of free or low-cost editors 
and other PDF utilities for Windows, Mac OS X, and Linux/
UNIX platforms.
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Perl
The explosive growth of the World Wide Web has con-
fronted programmers with the need to find ways to link 
databases and other existing resources to Web sites. The 
specifications for such linkages are found in the Common 
Gateway Interface (see CGI). However, the early facilities 
for writing CGI scripts were awkward and often frustrating 
to use.

Back in 1986, UNIX developer Larry Wall had created a 
language called Perl (Practical Extraction and Report Lan-
guage). There were already ways to write scripts for simple 
data processing (see scripting languages) as well as a 
handy pattern-manipulation language (see awk). However, 
Wall wanted to provide a greater variety of functions and 
techniques for finding, extracting, and formatting data. Perl 
attracted a following within the UNIX community. Since 
much Web development was being done on UNIX-based 
systems by the mid- and late-1990s, it was natural that 
many webmasters and applications programmers would 
turn to Perl to write their CGI scripts.

As with many UNIX scripting languages, Perl’s syntax 
is broadly similar to C. However, the philosophy behind 
C is to provide a sparse core language with most func-
tionality being handled by standard or add-in program 
libraries. Perl, on the other hand, starts with most of the 
functionality of UNIX utilities such as sed (stream editor), 
C shell, and awk, including the powerful regular expres-
sions familiar to UNIX users. The language also includes 
a “hash” data type (a collection of paired keys and values) 
that makes it easy for a program to maintain and check 
lists such as of Internet hosts and their IP addresses (see 
hashing).

Wall made it a point to solicit and respond to feed-
back from Perl users, often by adding features or functions. 
Wall’s approach has been to provide as much practical help 
for programmers as possible, rather than worrying about 
the language being well-defined, consistent, and thus easy 
to learn. For example, in most languages, to make some-
thing happen only if a certain condition is not true, one 
writes something like this:

If ! (test for valid data)
Print Error-Msg;

Else Process_Data;

In Perl, however, one can use the “unless” clause. It 
looks like this:

Unless (Test for invalid data) {
Process_Data;

}

Syntactically, the unless clause does not provide anything 
more than using an If and Else would, and it involves learn-
ing a different structure. However, it has the practical benefit 
of making the program a little easier to read by keeping the 
emphasis on what the program expects to be doing, not on 
the possible error. Similarly, Perl offers an “until” loop:

Until (Condition is met) {
Do something;

}

In C, one would have to say

While (Condition is not met) {
Do something;

}

This “Swiss army knife” approach to providing language 
features has been criticized by some computer scientists 
as encouraging undisciplined and hard-to-verify program-
ming. However, Perl’s many aficionados see the language 
as the versatile, essential toolbox for the ever-challeng-
ing world of Web programming. As the language evolved 
through the late 1990s, it also added a full set of object-ori-
ented features (see object-oriented programming).

Sample Perl Program
The following very simple code illustrates a Perl program 
that reads some lines of data from a file and prints them 
out. The first line tells UNIX to execute the Perl interpreter. 
The file name data.txt is assigned to the string variable 
$file. The file is then opened and assigned to the variable 
INFO. A single statement (not a loop) suffices to assign all 
the lines in the file to the array @lines. The “foreach” state-
ment is a compact form of For loop that assigns each line 
in the array to the string variable $line and then prints it to 
the screen as HTML.

#!/usr/local/bin/perl
$file = ’data.txt’;
open(INFO, “<$file” ) ;
@lines = <INFO> ;
foreach $line (@lines)
{

print “\n <P> $line </P>” ;
}
# DONE

Although now somewhat overshadowed by newer script-
ing languages for Web development (see, for example, Python 
and PHP), Perl is a mature technology in widespread use, par-
ticularly for data extraction, conversion, and manipulation. 
The Comprehensive Perl Archive Network (CPAN) has over 
12,000 modules that are freely available to programmers.

Further Reading
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personal computer  (PC)
The development of the “computer chip” (see microproces-
sor) and the increasing use of integrated circuit technology 
made it possible by the mid-1970s to begin to think about 
designing small computers as office machines or consumer 
devices that could be individually owned or used. In about 
a decade the personal computer, or PC, would become well 
established in many businesses and a growing number of 
homes. After another decade, it became almost as ubiq-
uitous as TV sets and microwaves. Parallel developments 
in hardware, software, operating systems, and accessory 
devices made this revolution possible.

The first commercial “personal computer” was the MITS 
Altair, a microcomputer kit built around an Intel 8080 
microprocessor. Building the kit required considerable 
skill with electronics assembly, but enthusiasts (including 
a young Bill Gates) were soon writing software and design-
ing add-on modules for the kit (see Gates, William). A 
variety of publications, notably Byte magazine, as well as 
the Homebrew Computer Club gave hobbyists a forum for 
sharing ideas.

By the late 1970s, personal computing was starting to 
become accessible to the general public. The Altair enthu-
siasts had moved on to more powerful systems that offered 
such amenities as floppy disk drives and an operating sys-
tem (CP/M, developed by Gary Kildall). Meanwhile, less 
technically experienced people could also begin to experi-
ment with personal computing, thanks to the complete, 
ready-to-run PCs being offered by Radio Shack (TRS-80), 
Commodore (Pet), and in particular, the Apple II.

In order to make serious inroads into the business 
world, however, the PC needed useful, reliable software. 
WordStar and later WordPerfect made it possible to replace 
expensive special-purpose word processing machines (such 
as those made by Wang) with the more versatile PC. One of 
the biggest spurs to business use of PCs, however, was an 
entirely new category of software—the spreadsheet. Dan 
Bricklin’s VisiCalc (see spreadsheet) would make the PC 
attractive to accountants and corporate planners.

The watershed year in personal computing was 1981 
because it brought the computer giant IBM into the PC 
arena (see IBM PC). The IBM PC had a somewhat more 
powerful processor and could hold more memory than the 
Apple II, but its main advantage was that it was backed 
by IBM’s decades-long reputation in office machines. Busi-
nesses were used to buying IBM products, and conversely, 
many corporate buyers believed that if IBM was offering 
desktop computers, then PCs must be useful business 
machines.

IBM (like Apple) had adopted the idea of open architec-
ture—the ability for third companies to make plug-in cards 

to add functions to the machine. Thus, the IBM PC became 
the platform for a burgeoning hardware industry. Further, it 
turned out that other companies could reverse-engineer the 
internal code that ran the system hardware (see bios) with-
out infringing IBM’s legal rights. This meant that companies 
could make “clones” or IBM-compatible machines that could 
run the same software as the genuine IBM PC. The first clone 
manufacturers (such as Compaq) sometimes improved upon 
IBM such as by offering better graphics or faster processors. 
However, by the late 1980s the trend was toward compa-
nies competing through lower prices for roughly equivalent 
performance. Facing a declining market share, IBM tried 
to introduce a new architecture, called microchannel, that 
provided a mainframelike bus architecture for more efficient 
input/output control. However, whatever technical advan-
tages the new system (called PS/2) might have, the market 
voted against it by continuing to buy the ever more powerful 
clones built on the original IBM architecture.

Lower prices and more attractive options led to a grow-
ing number of users, which in turn encouraged greater 
investment in software development. By the mid-1980s, 
Lotus (headed by Mitch Kapor) dominated the spreadsheet 
market with its Lotus 1-2-3, while WordPerfect dominated 
in word processing.

However, Microsoft, whose MS-DOS (or PC-DOS) had 
become the standard operating system for IBM-compat-
ible PCs, introduced a new operating environment with a 
graphical user interface (see Microsoft Windows). By the 
mid-1990s, Windows had largely supplanted DOS. Micro-
soft also committed resources and exploited its intimate 
knowledge of the operating system to achieve dominance in 
office software through MS Word, MS Excel (spreadsheet), 
and MS Access (database).

At the margins Apple’s Macintosh (introduced in 1984 
and steadily refined) has retained a significant following, 
particularly in education, publishing, and graphic arts 
applications (see Macintosh). Although Windows now 
provides a similar user interface, Mac enthusiasts believe 
their machine is still easier to use (and more stylish), and 
often see it as a badge for those who “think different.”

PC Trends
When graphical Web browsing made the Internet widely 
accessible in the mid-1990s, the demand for PCs increased 
accordingly. The desire for e-mail, Web browsing, and help 
with children’s homework led many families to purchase 
their first PCs. By 2000, about two-thirds of American 
children had access to computers at home, and virtually 
all schools had at least some PCs in the classroom. Using 
sophisticated manufacturing and order processing systems, 
companies such as Dell and Gateway sell PCs directly to 
consumers and businesses, largely displacing the neighbor-
hood computer store. These efficiencies (and lower prices 
for memory, processors, and other hardware) have brought 
the cost for a basic home PC down to less than $500, while 
the capabilities available for those willing to spend $1,500 
or so continued to increase. PC users now expect to be able 
to play CD- and DVD-based multimedia while hearing good 
quality sound.
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A number of challenges to the growth of the PC indus-
try have also emerged. As more and more of the activity of 
PC users began to focus on the Internet, some companies 
began to host office applications on servers (see applica-
tion service provider). Some pundits began to say that 
with applications being moved to remote servers or offered 
over the corporate LAN, the PC on the desk could be 
stripped down considerably. The “network PC” could make 
do with a slower processor, less memory, and no hard drive, 
since all data could be stored on the server.

Generally, however, the attempts to supplant the full-
featured, general-purpose PC have made little progress. 
One reason is that the cost of complete PC has declined so 
much that the supposed cost savings of a network PC or 
Internet appliance have become less significant. Further, 
privacy issues and the desire of people to have control 
over their own data are often cited as arguments in favor 
of the PC.

Ironically, the PC industry’s greatest challenge may 
come from its very success. As more and more households 
in the United States and other developed countries have 
PCs, it becomes harder to maintain the sales rate. By the 
early 2000s, the power of recent PCs had become so great 
that the desire to upgrade every few years may have become 
less compelling and the recent economic downturn has hit 
the computer industry particularly hard. So far it looks like 
the fastest-growing areas in computer hardware no longer 
involve the traditional desktop PC, but handheld (palm) 
computers (see PDA) and the embedding of more powerful 
computer capabilities into other machines such as automo-
biles (see embedded systems).
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personal health information management
Health care is at once a complex endeavor with many play-
ers, a vast industry, and a major expense of individuals, 
businesses, and governments. At the center of it all stands 
the prospective patient (or consumer) seeking to maintain 
or restore health.

While the health care industry has long been a major 
user of computer technology (see medical applications 
of computers), the modern Web has brought a variety of 
services (many free) that can help health care consumers 
learn more about conditions and treatments and compare 
hospitals, doctors, and other providers.

Medical Information Sites
In today’s health care environment patients often have only 
a few minutes to ask their doctor important questions about 
their condition and possible treatments. Patients often feel 
they have been left on their own when it comes to obtain-
ing detailed information. According to surveys by the Pew 
Internet & American Life Project, by the end of 2005 about 
20 percent of Web users were reporting that the Internet 
“has greatly improved the way they get information about 
health care.” Further, 7 million users had reported that 
Web sites had “played a crucial or important role in coping 
with a major illness.”

A variety of Web sites ranging from comprehensive and 
excellent to dubious (at best) offer health-related informa-
tion. In evaluating them, it is important to determine who 
sponsors the site and what is the source of the information 
provided. The very extensive WebMD site, for example, is 
reviewed for accuracy by an independent panel of experts. 
One of the foremost medical institutions, the Mayo Clinic, 
also has an authoritative site. The site OrganizedWisdom.
com offers a search engine that emphasizes information 
that has been reviewed by doctors for accuracy, while elimi-
nating low-quality or duplicative results.

Even if information is accurate, however, users may 
often lack the necessary background or context for inter-
preting it correctly. Understanding the results of medical 
studies, for example, requires some knowledge of how stud-
ies are designed, the population used, and the statistical 
significance and applicability of the results. As a practical 
matter, therefore, patients should not make any major deci-
sions about diet, medication, or treatment options without 
consulting a medical professional. Attempts at self-diagno-
sis can be particularly problematic.

Support Groups and Provider Ratings
On the other hand, carefully chosen online information can 
be very useful and can even improve outcomes. Patients can 
learn what questions to ask their physicians, and may even 
be able to suggest relevant information of which the physi-
cian is unaware.

During treatment, patients can find emotional and 
practical support online. In keeping with the trend toward 
online social cooperation (see social networking and 
user-created content) a number of sites are helping con-
sumers find or create support groups. Such groups have 
long been important, particularly for patients with condi-
tions such as cancer or serious chronic disease. For exam-
ple, DailyStrength.org offers 500 online support groups for a 
great variety of conditions. Users can create online journals 
to describe their daily struggles and can send supportive 
messages and “hugs.” According to a 2007 report by the Pew 
Internet & American Life Project, about half of adults with 
chronic conditions use the Internet regularly and extensively 
to help them manage their treatment and life issues.

Selecting a compatible medical professional is another 
area where online sites can help prospective patients. User 
ratings have proven helpful on Amazon.com and other sites 
for a variety of products and services (for example, Yelp.
com and the popular Angie’s List). A site called RateMDs.
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com has applied the same mechanism to allow patients to 
anonymously rate their doctors. (As with other user-pro-
vided reviews, however, one needs to be aware of the pos-
sibility that the reviews do not constitute a representative 
sample of consumer experience.) Patients can also person-
ally share their experiences via a YouTube-like site called 
ICYou.com.

Although social networking and content-sharing sites 
have been most popular among the younger generation, 
the increasing adoption of these venues by older adults 
and seniors is likely to fuel growth in online health-related 
services in years to come, as is the continuing need to find 
cost-effective ways of serving growing patient populations.
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personal information manager  (PIM)
A considerable amount of the working time of most busi-
nesspeople is taken up not by primary business tasks but 
in keeping track of contacts, phone conversations, notes, 
meetings, deadlines, and other information needed to plan 
or coordinate activities. Software designers have responded 
to this reality by creating software to help manage personal 
information.

Early PC users improvised ways of using available soft-
ware applications for tracking their activities. For exam-
ple, a spreadsheet with text fields might be used to record 
and sort contacts and their associated information such 
as phone numbers or data could be organized in tables in 
word processor documents. However, such improvisations 
can be awkward to use. Loading a full-sized word processor 
or spreadsheet application takes time (and until Windows 
and other multitasking solutions came along, only one pro-

gram could be run at a time). Further, it is hard to integrate 
information or keep track of the “big picture” with several 
different kinds of information stored in different formats 
with different programs.

What was needed was a single application that could 
integrate the personal information and make it accessible 
without the user having to shut down the main application 
program. The first successful PIM was Borland Sidekick, 
first released in 1984. Although MS-DOS was designed to 
run only a single program at a time, it had an obscure fea-
ture that allowed additional small programs to be loaded 
into memory where they could be triggered using a key 
combination. Taking advantage of this feature, Sidekick 
allowed someone while using, for example, a word proces-
sor, to pop up a note-taking window, an address book, cal-
endar, telephone dialer, calculator, or other features. When 
Microsoft Windows replaced DOS, it became possible to 
run more than one full-fledged application at a time. PIMs 
could then become full-fledged applications in their own 
right, and offer additional features.

As e-mail became more common on local networks in 
the later 1980s and via the Internet in the 1990s, PIM fea-
tures began to be integrated with e-mail programs such 
as Microsoft Outlook and Netscape Navigator’s commu-
nications facilities. New features included the automatic 
creation of journal entries from various activities and the 
creation of “rules” for recognizing and routing e-mail mes-
sages with particular senders or subjects. A variety of free-
ware and shareware PIMs are available for users who want 
an alternative to the commercial products, and a number of 
PIMs are available for Macintosh and Linux-based systems. 
Web-based personal information management tools can 
make it particularly easy to coordinate a widely scattered 
workforce, since each user merely has to access the serving 
Web site. Recently, low-cost (or even free) Web-based appli-
cations that include PIM as well as productivity features 
have been introduced—for example, Google Apps.

The growth of handheld (or palm) computers (see PDA) 
and more sophisticated cell phones has created a need to 
provide PIM features for these devices (see smartphone). 
Since the capacity of handheld devices is limited compared 
to desktop PCs, there is also a need for software to allow 
easy transfer of information between portable devices and 
desktop PCs. This can be done with a serial, USB, or even 
wireless connection.

In the future, the PIM is likely to become an integrated 
system that operates on a variety of handheld and desktop 
devices and seamlessly maintains all information regard-
less of how it is received. There will also be greater ability 
to give voice commands (such as to dial a person or to ask 
for information about a contact), and to have messages read 
aloud (see speech recognition and synthesis). The soft-
ware is also likely to include sophisticated “agents” that can 
be instructed to carry out such tasks as prioritizing mes-
sages or returning routine calls (see software agent).
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philosophical and spiritual  
aspects of computing
When modern digital computing emerged in the 1940s, it 
evolved from two roots: engineering (particularly electrical 
engineering) and mathematics. The goals of the earliest com-
puter designers were focused naturally enough on comput-
ing, although several early thinkers (see Bush, Vannevar; 
Shannon, Claude; and Turing, Alan) had already begun 
to think of computers as symbol-processing and knowledge-
retrieving machines, not just number crunchers.

As computer scientists began to become more concerned 
about the structure of data and the modeling of real-world 
objects in computer languages (see object-oriented pro-
gramming), they began to wrestle with some areas long 
familiar to philosophers. As data structure involved into 
knowledge representations, epistemology (the philosophi-
cal investigation of the meaning and accessibility of knowl-
edge) became more relevant, particularly in developing 
systems for artificial intelligence and machine learning. 
Also relevant is ontology (the nature and relationship of 
entities—see ontologies and data models), particularly 
with regard to the modern effort to encode relationships 
between items of knowledge into Web pages (see semantic 
Web).

The Computer as Philosophical Laboratory
Beyond investigating the potential for applying philosophi-
cal ideas to knowledge engineering, many philosophers 
have also taken increasing notice of the possibilities that 
artificial intelligence, highly complex dynamic structures 
(particularly the Internet), and human-computer interac-
tion offer for investigating long-standing and often seem-
ingly intractable philosophical problems.

One of the knottiest problems is the nature of something 
that people experience during every waking moment—con-
sciousness, that awareness of being an “I” or “self” that is 
experiencing both an inner world of memories and thoughts 
and the outer world conveyed by the senses. One reason 
why the problem of consciousness is so difficult to resolve 
is that cognitive scientists and philosophers lack the abil-
ity to compare human consciousness with other possible 
consciousness. (Some “higher” animals may be conscious 
in some sense, but they cannot tell us about it.) However, 
as AI programs attempt to model aspects of human cogni-
tion, they can help us find similarities and possible differ-
ences between the way computers and people “think.” Of 
course philosophers take a wide variety of positions on the 
question of whether there is anything ultimately distinctive 
about what we call consciousness, and whether comput-

ers or robots might someday become truly conscious. (For 
examples of differing views see Dreyfus, Hubert; Kurz-
weil, Raymond; and McCarthy, John.)

Finally, a number of writers have related developments 
in modern computing to ultimate philosophical or spiritual 
concerns. For example, the World Wide Web can be com-
pared to the world-girdling “noosphere” of evolving knowl-
edge described by theologian-paleontologist Pierre Teilhard 
de Chardin in the mid-20th century. Thus there has been 
considerable speculation (and perhaps hype) about a new 
form of collective consciousness emerging through the 
interaction of people as well as increasingly intelligent pro-
grams on the Net. On the other hand, the experience of 
immersive online environments (see online games and 
virtual reality) revisits a question that goes back to Des-
cartes in the 17th century—whether what we perceive as 
reality might actually be an illusion—and this question 
resonates with the works of Western Gnostics and Eastern 
Buddhists, not to mention Hollywood’s The Matrix.

The dialog among philosophy, spiritual practice, and 
the rapidly changing computer world is likely to remain 
fascinating.
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phishing and spoofing
Just about anyone with an e-mail account has received mes-
sages purporting to be from a bank, a popular e-commerce 
site such as Amazon or eBay, or even a government agency. 
Typically the message warns of a problem (such as a sus-
pended account) and urges the recipient to click on a link 
in the message. If the user does so, what appears to look 
like the actual site of the relevant institution is actually a 
“spoof,” or fake site. If the user goes on to enter informa-
tion such as account numbers or passwords in order to fix 
the “problem,” the information actually goes to the opera-
tor of the fake site, where it can be used for fraudulent pur-
chases or even impersonation (see identity theft). The 
bogus site can also attempt to download viruses, spyware, 
keyloggers, or other forms of “malware” to the unwitting 
user’s computer.
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This all-too-common scenario is called “phishing,” 
alluding to “fishing” for unwary users with various sorts of 
bait, with the f changed to ph in keeping with traditional 
hacker practice. Phishing is similar to other techniques for 
manipulating people through deception, fear, or greed that 
hackers often refer to as “social engineering.” Unlike one-
on-one approaches, however, phishing relies on the ability 
to send large quantities of e-mail at virtually no cost (see 
spam), the availability of simple techniques for disguising 
both e-mail addresses and Web addresses (URLs), and the 
ease with which the appearance of a Web site can be con-
vincingly replicated.

Although e-mail is the most common “hook” for phish-
ing, any form of communication, including text or instant 
messages, can be used. Recently sites such as MySpace have 
become targets for automated phishing expeditions that 
changed links on pages to point to fraudulent sites (see 
social networking).

Defenses and Countermeasures
Wary users have a number of ways to reduce their chance of 
being “phished.” Some signs of bogus messages include:

• � The message is addressed generically (“dear PayPal 
user”) or to the user’s e-mail address rather than the 
account name.

• � The text of the message contains spelling errors or 
poor grammar.

• � The URL shown for a link in the message (perhaps via 
a “tool tip”) does not match the institution’s real Web 
address.

There are even interactive games such as “Anti-Phishing 
Phil” that users can play to test their ability to detect phish-
ing attempts.

Unfortunately, modern phishers are becoming increas-
ingly sophisticated. Some phishing messages can be per-
sonalized, using the target’s actual name. URLs can be 
disguised so that discrepancies do not appear. When in 
doubt, the safest thing to do is always to access the institu-
tion by typing (not copying) its name directly in the Web 
browser rather than clicking on a link in e-mail. (In a prac-
tice called “pharming,” a legitimate Web site can in effect 
be hijacked so that normal user accesses will be diverted 
to the fraudulent site. Users have no real defense against 
pharming; this is a matter for security professionals at the 
relevant Web sites.)

Fortunately there are ways in which software can help 
detect and block most phishing attempts. A good spam filter 
is the first line of defense and can block many phishing mes-
sages from getting to the user in the first place. Anti-phish-
ing features are also increasingly included in Web browsers, 
or available as plug-ins. Thus “blacklists” of known phish-
ing sites can be checked in real time and warnings given, or 
the site’s address can be blocked from access by the system. 
Web sites can also introduce an added layer of security: 
Bank of America, for example, asks users to select and label 
one of several images offered by the bank. The image and 
label are subsequent displayed as part of the log-in process. 
If the user does not see the image and the user’s label, then 
the site is presumably not the real bank site.

Legislative Response
Phishing has been one of the fastest-growing types of online 
crime in recent years (see computer crime and security 
and online frauds and scams). By mid-2007 the Anti-
Phishing Working Group (an association of financial insti-
tutions and businesses) was reporting the appearance of 
more than 30,000 new phishing sites per month (the largest 
number operating from China), though a site typically stays 
online for only a few days. Phishing contributed signifi-
cantly to the $49 billion cost of identity theft in 2006 as esti-
mated by Javelin Research. Further, industry surveys have 
suggested that phishing has aroused considerable consumer 
concern, slowing down the adoption or continued use of 
some financial services (see banking and computers).

In response to this growing concern, the U.S. Federal 
Trade Commission filed its first civil suit against a sus-
pected phisher in 2004. The United States and other coun-
tries have also arrested phishing suspects, generally under 
some form of wire fraud statute. Starting in 2004, anti-
phishing bills have been introduced in Congress, though 
none had passed as of 2007. However, the CAN-SPAM Act 
of 2003 was used in 2007 to convict a defendant accused 
of sending thousands of phishing e-mails purporting to be 
from America Online (AOL). Many states have also intro-
duced anti-phishing legislation.
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photography, digital
For more than 150 years photography has depended on the 
use of film made from light-sensitive chemicals. However, 
digital photography, first developed in the 1970s, emerged 
in the late 1990s as a practical, and in some ways superior, 
alternative to traditional photography.

The basic idea behind digital photography is that light 
(photons) can create an electrical charge in certain materi-
als. In 1969, engineers at Bell Labs invented a light-sensi-
tive semiconductor that became known as a charge-coupled 
device (CCD). The original intention of the developers was 
to use an array of CCDs to make a compact black-and-
white video camera for the videophone, a device that did 
not prove commercially viable. However, astronomers were 
soon using CCD arrays to capture images too faint for the 
human eye or even for conventional film.

Digital photography remained confined to such special-
ized applications until the mid-1990s. By then, the growing 

use of multimedia and the World Wide Web made digi-
tal photography an attractive alternative for getting images 
online quickly, avoiding the need to scan traditional prints 
or negatives. At the same time, cheaper, more powerful 
processors and larger capacity memory storage made good 
quality digital cameras more viable as a consumer product.

A digital camera uses the same type of lenses and opti-
cal systems as a conventional camera. Instead of falling 
upon film, however, the incoming light strikes an array of 
CCD “photosites.” Each photosite represents one picture 
element, or pixel, which will appear as a tiny dot in the 
resulting picture. (Camera resolution is typically measured 
in millions of pixels, or “megapixels.”)

The surface of the array contains an abundance of free 
electrons. As light strikes a photosite, it creates a charge 
that draws and concentrates nearby electrons. The voltage 
at a photosite is thus proportional to the intensity of the 
light striking it. The charge of each row of photosites is 
transferred to a corresponding read-out register, where it is 
amplified to facilitate measurement.

The camera uses an analog-to-digital converter (see 
analog and digital) to convert the amplified voltages to 
digital numeric values. Early consumer digital cameras typ-
ically used 8-bit values, limiting the camera to a range of 
gradated intensity from 0 to 255. However, many cameras 
today use up to 12 bits, giving a range of 0 to 4096.

The CCD mechanism itself measures only light inten-
sities, not colors. To obtain color, many cameras use a 
red, green, or blue (RGB) filter at each photosite. (Some 
manufacturers use cyan, yellow, green, and magenta fil-
ters instead.) Since each photosite registers only a single 
color, interpolation algorithms must be used to estimate the 
actual color of each pixel by using laws of color optics and 
comparing the colors and intensity of the adjacent pixels.

New high-end cameras are starting to eschew interpola-
tion in favor of using a complete, separate CCD array for 

Digital cameras use a charge-coupled device (CCD) to convert incoming light to varying voltages that are digitized to create pixel values. 
They have largely replaced traditional film cameras for most applications.
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each of the three RGB colors and thus making and com-
bining three complete exposures that directly capture the 
colors. This produces the best possible color accuracy but is 
more expensive.

The final image data is stored using a standard file for-
mat, usually JPEG (see graphics formats). The most com-
monly used storage medium is an insertable “flash” memory 
module. The major competing memory card standards are 
CompactFlash, SD, and Sony Memory Stick. Storage capaci-
ties run to 4 GB. As with regular RAM, the cost of flash 
memory has declined considerably in recent years.

In determining the adequacy of the camera’s storage 
capacity, the user must also consider the camera’s resolu-
tion (number of pixels) and whether images will be com-
pressed before storage (see data compression). While a 
certain amount of compression can be achieved without 
discernable degradation of the image, more drastic “lossy” 
compression sacrifices image quality for compactness. It 
should also be noted that as image resolution (and thus file 
size) increases, the time needed to process and store each 
image will also increase, limiting how rapidly successive 
exposures can be made.

Most digital cameras have a USB connector (see USB), 
making it easy to upload the stored images from the camera 
to a PC. Once in the PC, images can be edited or otherwise 
manipulated using the basic photo editing software usually 
included with the camera or a full-featured professional 
product such as Adobe Photoshop.

The same trends that have brought more capability 
per dollar spent on digital cameras have been even more 
evident in printers (see printer). Using resolutions of 
2880 dots per inch or more and special papers, digital 
camera users can make prints with a quality similar to 
that produced by traditional photo developers. Computer 
prints are more subject to color fading over time than are 
conventional prints, although some printer manufactur-
ers now offer toner that will resist fading for 25 years or 
more.

Future Trends
High-end consumer digital cameras reached the 8–10 mega-
pixel range by 2008, allowing for images that can be “blown 
up” to 10 by 12 inches or larger while retaining image qual-
ity comparable to conventional photos. Professional-grade 
digital cameras (“digital SLRs”) are rated at 10 megapixels 
or more. The need for such cameras for professional work 
arises not only from the higher resolution requirements 
but also because these cameras have the very high-qual-
ity optics used in fine 35 mm cameras, as well as having a 
greater variety of available specialty lenses. (Consumer dig-
ital “superzoom” cameras, however, do offer zoom lenses 
roughly comparable to those for low-cost 35-mm cameras.) 
The quality and convenience of digital photography ensure 
that digital cameras will supplant conventional cameras for 
most consumer and many professional applications. Many 
digital cameras also have the ability to shoot short video 
sequences. The ubiquity of digital cameras and digital video 
(even in many cell phones) has had important social conse-
quences by facilitating transmission of pictures of disasters, 

political gaffes, and other events often outside the main-
stream media (see user-created content and YouTube).

Digital camcorders will also become more widely used. 
Their resolution is generally from about a quarter million 
pixels to a million pixels—considerably lower than for 
digital still cameras, but adequate and likely to improve. 
Digital video cameras are also rated according to lux value, 
indicating the minimum light level for satisfactory record-
ing. Most digital videos store the captured image to tape 
(either MiniDV or Hi-8), but some newer cameras use built-
in recordable DVD disks instead (see CD-ROM and DVD-
ROM). The ability to digitally edit video direct from the 
camera is also an important advantage.

Further Reading
Busch, David D. Digital SLR Cameras & Photography for Dummies. 

2nd ed. Hoboken, N.J.: Wiley, 2007.
Etchells, Dave. “Finding the Right Digital Camera.” Imaging 

Resource Newsletter. Available online. URL: http://www.
imaging-resource.com /TIPS/ BUYGD/ BUYGUID.HTM. 
Accessed August 17, 2007.

King, Julie Adair. Digital Photography for Dummies. 5th ed. Hobo-
ken, N.J.: Wiley, 2005.

Silva, Robert. “Digital Camcorder Formats.” Available online. URL: 
http://hometheater.about.com/od/camcorders/a/camformats_ 
2.htm. Accessed August 17, 2007.

Wilson, Tracy V., K. Nice, and G. Gurevich. “How Digital Cameras 
Work.” Available online. URL: http://www.howstuffworks.
com/digital-camera.htm. Accessed August 17, 2007.

PHP
PHP is a very popular scripting language primarily used 
for creating dynamic Web pages (see Ajax and scripting 
languages). PHP originated in 1994 as a way for Danish 
programmer Rasmus Lerdorf to replace a set of Perl scripts 
used to manage his own Web page—hence the original 
name “personal home page.” Lerdorf released the first ver-
sion together with a “form interpreter” in 1995. In 1997 the 
language parser was rewritten by Israeli developers Zeev 
Suraski and Andi Gutmans, who launched PHP3 in 1998; 
since then the initials PHP have (recursively) stood for PHP: 
Hypertext Processor. In 2004 the current version, PHP5, 
was released. As the language has evolved, it has improved 
in its support for objects (see object-oriented program-
ming) as well as in its connectivity to MySQL and other 
database and Web-application coordination technologies.

PHP normally runs on a Web server and processes PHP 
code, which is often embedded within Web pages (see 
HTML). The classic Hello World program would look like 
this:

<? php
echo “Hello, World”;
?>

The PHP processor parses only the code within the delim-
iters <? and ?>. (An alternative set of delimiters is <script 
language =‘php’> </script>.

Besides being embedded in HTML pages, PHP can 
be used interactively at the command line, where it has 
replaced older languages such as awk, Perl, or shell script-
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ing for many users. PHP can also be linked to user-interface 
libraries (such as GTK+ for Linux/UNIX) to create applica-
tions that run on the client machine rather than the server.

PHP has a basic set of data types plus one called 
“resource” that represents data processed by special func-
tions that return images, text files, database records, and 
so on. Additionally, PHP5 provides full support for objects, 
including private and protected member variables, con-
structors and destructors, and other features similar to 
those found in C++ and other languages.

There are numerous libraries of open-source objects 
and functions that enable PHP scripts to perform common 
Internet tasks, including accessing database servers (such as 
MySQL) as well as extensions to the language to handle pop-
ular Web formats such as Adobe Flash animation. Program-
mers have access to a wide range of PHP resources through 
PEAR (the PHP Extension and Application Repository).

The combination of sophisticated features and easy 
interactive scripting has made PHP the language of choice 
for many Web developers, who use it as part of the group of 
technologies called LAMP, for Linux, Apache (Web server), 
MySQL (database), and PHP.
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PL/I
By the early 1960s, two programming languages were in 
widespread use: FORTRAN for scientific and engineering 
applications and COBOL for business computing. However, 
applications were becoming larger and more complex, call-
ing for a wider variety of capabilities. For example, scien-
tific programmers needed to provide data-processing and 
reporting capabilities as well as computation. Business pro-
grammers, in turn, increasingly needed to work with for-
mulas and statistics and needed floating-point and other 
number formats.

Language developers thus began to look toward a gen-
eral-purpose language that could be equally at home with 
words, numbers, and data files. Meanwhile, IBM was pre-
paring to replace its previously separate scientific and busi-
ness computer systems with the versatile System/360. They 
and one of their user groups, SHARE, formed a joint com-
mittee to develop a new language for this new machine.

At first the designers thought in terms of extending 
FORTRAN to provide better text and data-processing capa-
bilities, so they designated the new language FORTRAN 
VI. However, their focus soon changed to designing a 
completely new language, which was known until 1965 as 

NPL (New Programming Language). Because this acronym 
already stood for Britain’s National Physical Laboratory, the 
name of the language was changed to PL/I (Programming 
Language I).

Language Features
PL/I has been described as the “Swiss army knife of lan-
guages” because it provides so many features drawn from 
disparate sources. The basic block structure and control 
structures (see loop and branching statement) were 
adapted from Algol, a relatively small language that had 
been devised by computer scientists as a model for struc-
tured programming (see Algol) and is also similar to Pascal 
(see Pascal). Blocks can be nested, and variables declared 
within a block can be accessed only within that block and 
its nested blocks, unless declared explicitly otherwise.

PL/I includes a particularly rich variety of data types 
and can specify even the number of digits for numeric data. 
A PICTURE clause similar to that in COBOL can be used to 
specify exact layout. However, the language takes a more 
pragmatic approach than Algol or Pascal; data need not 
be declared and will be given default characteristics based 
on context. Input/Output (I/O) is built into the language 
rather than provided in an external library, and the flexible 
options include character, streams of characters, blocks, 
and records with either sequential or random access.

In general, PL/I provides more control over the low-
level operation of the machine than Algol or even succes-
sors such as C. For example, there is an unusual amount of 
control over how variables are stored, ranging from STATIC 
(present throughout the life of the program) to AUTO-
MATIC (allocated and deallocated as the containing block 
is entered and exited) to CONTROLLED, where memory 
must be explicitly allocated and freed. Pointers allow mem-
ory locations to be manipulated directly. PL/I also provided 
more elaborate facilities for handling exceptions (errors) 
arising from hardware condition, arithmetic, file-handling, 
or other conditions.

Example Program
The following program executes a DO loop and counts from 
one to the number of items specified. It then outputs the 
total of the numbers and their average.

COUNTEM: PROCEDURE OPTIONS (MAIN);
DECLARE (ITEMS, COUNTER, SUM, AVG) FIXED;
ITEMS = 10;
SUM = 0;
DO COUNTER = 1 TO ITEMS;

SUM = SUM + COUNTER;
END;
AVG = SUM / ITEMS;
PUT SKIP LIST (“TOTAL OF ”);
PUT ITEMS;
PUT (“ITEMS IS ”);
PUT TOTAL;
PUT SKIP LIST (“THE AVERAGE IS: ”);
PUT AVG;
END COUNTEM;
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Impact of the Language
Because of its many practical features and its availability for 
the popular IBM 360 mainframes, PL/I enjoyed consider-
able success in the late 1960s and 1970s. The language was 
later ported to most major platforms and operating sys-
tems. When personal computers came along, PL/I became 
available for IBM’s OS/2 operating system as well as for 
Microsoft’s DOS and Windows, although the language never 
really caught on in those environments.

Computer scientists such as structured programming 
guru Edsger Dijkstra decried PL/I’s lack of a clear, well-
defined structure. In his Turing Award Lecture in 1972, 
Dijkstra opined that “I absolutely fail to see how we can 
keep our growing programs firmly within our intellectual 
grip when by its sheer baroqueness the programming lan-
guage—our basic tool, mind you!—already escapes our 
intellectual control.” (See Dijkstra, Edsger.)

On a practical level the sheer number of features in 
the language meant that truly mastering it was a lengthy 
process. A language like C, on the other hand, had a much 
simpler “core” to master even though it was less versatile. 
PL/I also tended to retain the mainframe associations from 
its birth at IBM, while C grew up in the world of minicom-
puters and the UNIX community and proved more suitable 
for PCs. Nevertheless, PL/I provided many examples that 
language designers could use in attempting to design better 
implementations.
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Plug and Play
In early MS-DOS systems installation of new hardware such 
as a printer often had to be performed manually by copying 
files (see device driver) to the hard drive from floppies 
and then making specified settings to the system configu-
ration files AUTOEXEC.BAT and CONFIG.SYS. These set-
tings often involved unfamiliar concepts such as interrupts 
(IRQs) and DMA (direct memory access) channels.

When Windows came along, device manufacturers gen-
erally provided an installation program that takes care of 
copying the files and making the necessary changes to the 
system registry. However, there was still the problem of 
ensuring that one had a driver compatible with the version 
of the operating system in use, and users were sometimes 
asked to make choices for which they were not prepared 
(such as choosing which port to use).

By the mid-1990s, Intel was promoting a standard for the 
automated detection and configuration of devices. Known 

as Plug and Play (PnP), this standard was incorporated in 
versions of Microsoft Windows starting with Windows 95 
(see Microsoft Windows). The required hardware support 
soon appeared on PC motherboards and expansion cards.

With Plug and Play the user simply connects a printer, 
scanner, or other device to the PC. Windows detects that 
a device has been connected and queries it for its official 
name and other information. If necessary, Windows can 
then prompt the user for a disk containing the appropriate 
driver or even search for a driver on a Web site.

The concept of Plug and Play extends beyond the Win-
dows world, however. In recent years there has been inter-
est in developing a Universal Plug and Play (UPnP) protocol 
by which a variety of devices could automatically config-
ure themselves with any of a variety of different networks. 
This would be particularly helpful for home users who are 
increasingly setting up small networks so they can share 
broadband Internet connections, as well as the growing 
number of users who want their desktop PC to work with 
handheld (palm) computers and other devices. Microsoft 
supports UPnP in versions of Windows starting with ME 
and XP.

Further Reading
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plug-in
A number of applications programs include the ability for 
third-party developers to write small programs that extend 
the main program’s functionality. For example, thousands 
of “filters” (algorithms for transforming images) have been 
written for Adobe Photoshop. These small programs are 
called plug-ins because they are designed to connect to 
the main program and provide their service whenever it is 
desired or required.

Perhaps the most commonly encountered plug-ins are 
those available for Web browsers such as Firefox, Netscape, 
or Internet Explorer. Plug-ins can enable the browser to dis-
play new types of files (such as multimedia). Many standard 
programs for particular kinds of files are now provided 
both as stand-alone applications and as browser plug-ins. 
Examples include Adobe (PDF document format), Apple 
QuickTime (graphics, video, and animation), RealPlayer 
(streaming video and audio), and Macromedia Flash (inter-
active animation and presentation). These and many other 
plug-ins are offered free for the downloading, in order to 
increase the number of potential users for the formats and 
thus the market for the development packages.

One of the most useful plug-ins found in most browsers 
is one that allows the browser to run Java applets (see Java). 
In turn, Java is often used to write other plug-ins.

Beyond such traditional workhorses, a number of inno-
vative browser plug-ins have appeared, particularly for the 
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increasingly popular Firefox browser. For example, there 
are plug-ins that enable the user to view and work with 
the HTML and other elements of the page being viewed. 
Another popular area is plug-ins that make it easier to 
capture and organize material from Web pages, going well 
beyond the standard favorites or bookmark facility.

Including plug-in support for an application enables vol-
unteer or commercial third-party developers to in effect 
increase the feature set of the main application, which in 
turn benefits the original developer. In the broader perspec-
tive, plug-ins are a way to harness the collaborative spirit 
found in open-source development, creating a community 
that is continually improving applications tools and making 
them more versatile. (The open-source Eclipse program-
ming environment is a good example.)
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podcasting
Podcasting (from iPod plus broadcasting) lets users sub-
scribe to and automatically download regularly distributed 
content (such as radio broadcasts) over the Internet. The 
media files can be stored on an Apple iPod or other media 
player (see music and video players, digital), personal 
computer, or other device (see smartphone). Podcasting 
became popular starting around 2004–05 and has become 
widely used by individuals and organizations.

Typically, files to be podcast are put on a Web server. The 
URLs for the files and other information (such as episode 
titles) is provided in files called feeds, using a format such 
as RSS or Atom (see RSS). The user installs client software 
(such as iPodder), browses the feeds (such as through an 
online directory), and decides what to subscribe to. The soft-
ware then periodically checks the feeds, obtains the URLs of 
the latest files, and downloads them automatically. The soft-
ware can, if desired, then transfer the downloaded files to a 
portable media player, such as over a USB connection.

Applications
There are many sources of podcasts. News organizations 
can provide regular audio or video podcasts as a supple-

ment to regular text material. Podcasting also offers a way 
for a small news organization or independent journalist to 
build an audience using equipment as simple as a micro-
phone and perhaps a video camera. Podcasts also provide 
a way for political organizations to keep in touch with sup-
porters (and perhaps supply them with talking points). Any 
source of periodically distributed audio or video can be a 
candidate for podcasting. These include class lectures, cor-
porate communications, and even religious services.
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pointers and indirection
The memory in a computer is accessed by numbering the suc-
cessive storage locations (see addressing). When a program-
mer declares a variable, the compiler associates its name with 
a location in available memory (see variable). If the variable 
is used in an expression, when the expression is evaluated, 
the variable’s name is replaced by its current value—that is, 
with the contents of the memory location associated with the 
variable. Thus, the expression Total + 10 is evaluated as “the 
contents in the address associated with Total” plus 10.

Sometimes, however, it is useful to have the general 
capability to access memory locations without assigning 
explicit variables. This is done through a special type of 
variable called a pointer. The only difference between point-
ers and regular variables is that the value stored in a pointer 
is not the data to be ultimately used by the program. Rather, 
it is the address of that data. Here are some examples from 
C, a language that famously provides support for pointers:

Int MyVar; 	 // Declare a regular variable
Int *MyPtr; 	 // Declare a pointer to an 

integer
	 // (int) variable

MyVar = 10; 	 // Set the value of MyVar  
to 10

MyPtr = &MyVar; // Store the address of 
MyVar in

	 // the pointer MyPtr

In C, an asterisk in front of a variable name indicates 
that the variable is a pointer to the type declared. In the 
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second line above, therefore, MyPtr is a pointer to an integer 
variable. This means that the address of any integer variable 
can be stored in MyPtr. The last line uses the & (ampersand) 
to represent the address of the variable MyVar. Therefore, it 
stores that address in MyPtr.

Examining the lines above, one sees that the variable 
MyVar has the value 10. The pointer variable MyPtr has the 
value of whatever machine address contains the contents 
of the variable MyVar. In an expression, putting an asterisk 
in front of a pointer name “dereferences” the pointer. This 
means that it returns not the address stored in the pointer, 
but the value stored at the address stored in the pointer (see 
the diagram). Therefore if one writes:

AnotherVar = * MyPtr;

What is the value of AnotherVar? The answer is the 
current value of MyVar (whose address had been stored in 
MyPtr)—that value, as assigned earlier, is 10.

The general concept of storing the address of another 
variable in a variable is called indirection, or indirect 
addressing. It was first used in assembly language to work 
with index registers—special memory locations in a pro-
cessor that store memory addresses.

Uses for Pointers
Although the concept may seem esoteric, pointers have a 
number of uses. For example, suppose one has a buffer 
(perhaps storing video graphics data) and one wants to 
copy it from one area to another. One could declare the buf-
fer to be an array (see array) and then reference each ele-
ment, or memory location and copy it. However, this would 
be rather awkward. Instead, one can declare a pointer, set it 
to the starting address of the buffer, and then simply use a 
loop to increment the pointer, pointing in turn to each loca-
tion in the buffer.

A similar approach applies to strings in C and related 
languages. A string of characters in C is declared as an 
array of char. In an array, the name of the array is actually 
a pointer to the first data location. It is therefore easy to 
manipulate strings by getting their starting address by ref-
erencing the name and then using one or more pointers to 
step through the data locations. For example, the following 
function copies the contents of one string into another:

strcpy(char *s1,char *s2)
{

while (*s2)
*s1++ = *s2++;

}

The function takes two strings, s1 and s2, declared as 
pointers to char. It then steps (increments) them (using 
the ++ operator) so that the value in each location in s2 is 
copied into the corresponding location in s1. The loop exits 
when the value at s2 is 0 (null), indicating that the end of 
string marker has been reached.

Another common use for pointers is in memory alloca-
tion. Typically, a program requests memory by giving the 
memory allocation function a pointer and the amount of 
memory requested. The function allocates the memory and 
then returns the starting address of the new memory in the 
pointer, so the program knows how to access that memory.

Pointers are also useful for passing a “bulky” variable 
such as a data record to a procedure or function. Suppose, 
for example, a program needs to pass a 65,000 byte record 
to a procedure for printing a report. If it passes the actual 
record, the system has to make a copy of the whole record, 
tying up memory. If, instead, a pointer to the record is used, 
only the address is passed. The procedure can then access 
the record at that address without having to make a copy.

In C and some other languages it is even possible to 
have a pointer that points to another pointer. A common 
case is an array of strings, such as

Char Form [80] [20];

representing a form that has 20 lines of 80 characters. Each 
line is an array of characters and the form as a whole is thus 
“an array of arrays of characters.” Therefore, to dereference 
(get the value of) a character one would first dereference 
the line, and then the column.

Problems with Pointers
Pointers may be useful, but they are also prone to caus-
ing programming problems. The simplest one is failing to 
distinguish between a pointer and its value. For example, 
suppose one writes:

Total = Total + MyPtr;

intending to add the value of the variable pointed to by 
MyPtr to Total. Unfortunately, the asterisk (dereferenc-
ing operator) has been inadvertently omitted, so what gets 
added to Total is the machine address stored in MyPtr!

Another problem comes when a pointer is used to allo-
cate memory, the memory is later deallocated, but the 
pointer is left pointing to it.

Because pointers can potentially access any location in 
memory (or at least attempt to), some computer scientists 
view them as more dangerous than useful. It’s true that 
most things one might want to do with a pointer can be 
accomplished by alternative means. One attempt to tame 
pointers is found in C++, which offers the “reference” data 
type. A reference is essentially a constant pointer that once 
assigned to a variable always dereferences that variable and 

A pointer is a variable whose value is an address location. Here 
MyPtr holds the address 101.
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cannot be pointed anywhere else. Java has gone even fur-
ther by not including traditional pointers at all.
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political activism and the Internet
Although newspapers and particularly television remain the 
most popular sources used by voters to obtain information 
about candidates and issues, reports by the Pew Internet & 
American Life Project found that online media was used 
by about a third of American voters in the 2006 midterm 
elections, and about 15 percent used it as their primary 
information source. (The latter rate was about 35 percent 
among young people who had access to broadband Inter-
net connections at home.) The researchers also found that 
about half of the online users had sought information not 
available elsewhere, while 41 percent believed that newspa-
pers and television did not provide them with all the infor-
mation they wanted.

It is true that much of the political information users 
find online is news that originated with mainstream print 
or broadcast news outlets. However, a growing role is also 
being played by blogs, issue-oriented Web sites, or sites 
created by candidates themselves, including profiles on the 
MySpace social networking site.

A surprising number of people who look to the Internet 
for political information participate actively, with about a 
quarter engaging in blogs or other online postings, whether 
expressing their own opinions or forwarding e-mail or 
reposting material. As users become more active (see user-
created content), they are even becoming part of “offi-
cial” debates, as in 2007 when primary candidates were 
asked questions submitted as 30-second YouTube videos.

Advantages and Pitfalls for Candidates
For political candidates and campaigns, the Internet is a 
mixed blessing. Advantages include:

• � can reach a large number of people at relatively low 
cost

• � can bypass a possibly indifferent mainstream media 
and reach people directly

• � provides ways to organize and motivate supporters 
(see blogs and blogging, podcasting, and social 
networking)

• � allows for easier fund-raising, including potentially 
millions of small donations

The first major candidate to put together a campaign 
based on these principles was Howard Dean, who for a 
time was frontrunner for the 2004 Democratic presidential 
nomination. In the run-up to the 2008 race, libertarian 
Republican Ron Paul, while barely registering in the polls, 
startled the mainstream media by raising more than $4 mil-
lion in one day from thousands of supporters organized on 
the Web.

However, there are pitfalls for politicians in the digital 
age as well. It is hard to control or coordinate self-organized 
activists, who may adopt positions that contradict the can-
didate’s stated platform or engage in intemperate attacks. 
(In 2007 a video “mashup” by a Barack Obama supporter 
portraying Hillary Clinton as “big brother” in the famous 
1984 Apple Macintosh commercial led to denials that the 
Obama campaign had anything to do with it.)

Further, the legions of independent bloggers virtually 
guarantee that “stumbles” that might have been missed or 
ignored by traditional media will be featured in blogs or 
displayed on YouTube for millions to ponder. (An example 
was Virginia senator George Allen, whose use of an obscure 
racial epithet macaca may have cost him reelection in 2006 
when it was captured by a video blogger.) It is unclear 
whether the intense 24-hour scrutiny will force candidates 
to become ever more tightly scripted in their public activi-
ties so as to avoid “macaca moments.”

Some critics also suggest that the Internet may actually 
weaken democracy in some ways. Because of the increas-
ing ability to personalize or customize what news one sees 
and whom one converses with, people could end up being 
simply confirmed in their beliefs and isolated from larger 
dialog. Extremist groups already use Web sites not only to 
recruit people, but to keep followers motivated and focused 
on their issues, while in effect filtering out opposing views. 
The creation of such isolated constituencies, able to choose 
to see only the kinds of things that make them comfortable, 
could be bad for democracy. (This could be called a form of 
self-censorship, as opposed to outwardly imposed censor-
ship, as in China—see censorship and the Internet.) On 
the other hand, the sheer amount and variety of informa-
tion available may make it hard for people to cut themselves 
off in this way.

Despite these misgivings, the importance of the Web 
for political activism and campaigns is clear. No campaign, 
whether political or issue advocacy, can afford not to have a 
quality Web site and staff who are adept at the new media and 
forms of communication, expression, and social networking.
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popular culture and computing
Computer technology first came to public consciousness 
with the wartime ENIAC and the first commercial machines 
such as Univac in the early 1950s. The war had shown the 
destructive side of new technologies (particularly atomic 
power), but corporate and government leaders were soon 
promoting their beneficial prospects. Just as atomic energy 
advocates promised to provide power that was abundant, 
cheap, and clean, the computer, or “giant brain” was touted 
for its ability to solve problems that had been beyond 
human capabilities.

Ominous Machines
However, the computer, too, had its shadow in the popu-
lar consciousness. With their mysterious flashing lights 
and white-coated programmer/priests, mainframe comput-
ers were often seen as modern embodiments of the “mad 
scientist” trope, as in the movie Colossus: The Forbin Proj-
ect (1970), where American and Soviet supercomputers 
joined forces to take over the world. Artificial intelligence 
also usurped humanity in the more mystical 2001: A Space 
Odyssey (1968).

On the domestic front, the mainframe computer also 
became a symbol of misgivings about the bureaucratic 
state and corporate conformity. The romantic comedy film 
Desk Set, featuring Katharine Hepburn as a beleaguered 
corporate librarian, at first seems to confirm these fears, 
only to reveal that the computer had been misunderstood 
and would bring about a happier future for all. (IBM, inci-
dentally, provided much of the technical support for the 
film.)

The counterculture of the 1960s seemed much less san-
guine about the digital future. To many of the generation of 
activists starting with the Free Speech Movement in 1964, 
computers were the tools of the military-industrial com-
plex, and computing facilities were sometimes picketed or 
even physically attacked.

However, a computer-savvy wing of the countercul-
ture was also rising (see hackers and hacking). Activists 
began to see the machines as a tool for community orga-
nization and communication, as in 1973 with Community 

Memory, the first computer bulletin board system, accessed 
by teletype terminals.

Getting Personal
By the late 1970s the personal computer had arrived. 
On the one hand, PCs would seem not to fit the main-
frame stereotype. After all, the desktop machines are 
small and designed to be accessible helpers in everyday 
life and work. Still, they could be connected to networks 
and perhaps used to take over the Pentagon’s doomsday 
weapons—as in the movie War Games (1983). As fear 
of what malicious or criminal hackers could do took a 
more practical turn in the 1990s, such movies as The Net 
and Sneakers created a higher-tech incarnation of the spy 
thriller. Finally, the series of movies beginning with The 
Matrix extrapolated from the ultrarealistic movie effects 
and games of the coming century to raise the question of 
whether consensus reality could actually be a huge com-
puter simulation.

Meanwhile, the figure of the computer “geek” or “nerd” 
has become a staple character in movies and TV shows—
clever, socially inept, but indispensable for keeping the 
modern world running. In some eyes, the entrepreneurial 
success of Silicon Valley and the dot-coms placed Bill Gates 
and his colleagues in the same mold as Thomas Edison and 
Henry Ford a century earlier.

Digitization of Culture
By the turn of the new century the network that had been 
portrayed as the domain of hackers and spies had become 
the all-pervasive World Wide Web. Today computers and 
the Internet are not only reflected in American popular cul-
ture—they are profoundly reshaping it. Computer games 
(particularly see online games) have become vast, persis-
tent social worlds, as are sites like MySpace and Facebook 
(see social networking).

With the blending of formerly distinct media (see dig-
ital convergence) and the fluid sharing and re-creation 
of images (see user-created content and mashups), 
the digital world now permeates mainstream culture—or, 
one might say, the culture itself has become digitized. 
Meanwhile the line between fact and fiction, creator and 
viewer, expert and amateur has become increasingly 
blurred.
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portal
The legion of new World Wide Web users who went online 
in the mid-1990s could easily navigate and “surf” the Web, 
using browsers such as Netscape and Internet Explorer (see 
Web browser). However, the lack of a reliable starting point 
and a systematic way to find information often led to frustra-
tion. Search engines such as AltaVista and Lycos (see search 
engine) provided some help, but there was no single guide 
that could present the most useful information at a glance.

Meanwhile, in 1994, two graduate students, Jerry Yang 
and David Filo, had begun to circulate an organized listing 
of their favorite Web sites by e-mail. When the list proved 
very popular, they decided they could make a business out 
of providing a Web site that could serve as a topical guide 
to the Web. The result was Yahoo!, the most successful of 
what would come to be called Web portals (see Yahoo).

Yahoo! and other portals such as MSN (Microsoft Net-
work), Excite, American Online (AOL), and Lycos gener-
ally provide a listing organized by topic and subtopic. For 
example, the general topic “Computers and Internet” in 
Yahoo! is divided into many subtopics such as communica-
tions and networking, hardware, software, and so on. Many 
topics are further subdivided until, at the bottom, there is a 
list of actual Web links that can be clicked upon to take the 
user directly to the relevant site.

The advantage of using a portal over using a search 
engine is that the links on a portal have generally been 
selected for quality, relevance, and usefulness. The disad-
vantage is the flip side of that selectivity: The links may 
reflect the tastes, agenda, or commercial interests of the 
portal developers and thus exclude important points of 
view. When seeking to learn more about a subject, many 
researchers therefore both work “inward” from a portal and 
“outward” via a search engine (see online research).

To gain a competitive edge and raise revenue, portals 
typically include a considerable amount of advertising. 
Some portals also charge companies for being included 
or featured in listings or displays. General-purpose por-
tals usually also contain such information as current news, 
stock prices, weather, and other timely information in an 
attempt to become their user’s default page. Portals (par-
ticularly Yahoo!) have also sought to become more attrac-
tive (and profitable) by including such services as travel, 
financial services, games, and auctions.

Some portals emphasize particular approaches to infor-
mation. For example, About.com goes beyond simply listing 
links to providing extensive guides to hundreds of sub-
jects in a sort of newsletter format. There are also portals 
designed to serve particular constituencies, such as pro-
fessional groups, industries, or hobby or interest groups. 
Companies can also create “enterprise portals” that can 
help employees keep in touch with developments and share 
information. Such portals often serve as the Web-based 
interface to the corporate local area network (LAN).

As with other information content providers, commer-
cial portal developers have struggled to obtain enough reve-
nue to keep up with the need to expand and compete in new 
areas. It is unclear whether the market will support more 
than a handful of large consumer portals in the long run, 
but both commercial and specialized portals have become 
an important part of the way most people access the Web.
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PostScript
Early computer printers were limited to one or a few 
built-in fonts, either stamped on typewriter style keys on 
daisy wheels, or stored as patterns in the printer’s soft-
ware (with dot matrix printers). In the mid-1970s, when 
Xerox researchers were developing the laser printer, they 
realized they needed an actual programming language that 
could describe fonts, graphics, and other elements that 
could be printed on the more versatile new printers. PARC 
researchers developed InterPress; meanwhile two of them, 
John Warnock and Chuck Geschke, founded their own 
company in 1982 (see Adobe Systems). They then created 
a more streamlined version of InterPress that they called 
PostScript. The first printer to include built-in PostScript 
capability was Apple’s LaserWriter, in 1985. PostScript soon 
became the standard for a burgeoning industry (see desk-
top publishing).

Because PostScript is an actual programming language 
(for a somewhat similar language, see Forth), software 
such as word processors can include functions that turn 
a text document into a PostScript document, ready for 
printing. A PostScript interpreter in the printer (or even in 
another application) interprets the PostScript commands 
to re-create the document. The commands specify rasters 
(combinations of straight lines and curves), which can 
be scaled and transformed to provide the specified out-
put, including fonts, which can be enhanced by including 
“hints” to help the system identify key features. This pro-
cessor is thus sometimes called a Raster Image Processor 
(RIP).
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Decline
By the late 1990s, however, PostScript was declining in 
use. In part this was because of the advent of cheaper ink-
jet printers, which used simpler (and cheaper) software. 
Further, PostScript’s role as a standard format for distrib-
uting documents has been largely replaced by one of Ado-
be’s other standards, the Portable Document Format (see 
PDF). However, PostScript-equipped laser printers are still 
favored for heavy-duty printing jobs, because the document 
processing can be done in the printer instead of adding to 
the burden of the main CPU.
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presentation software
Whether at a business meeting or a scientific conference, 
the use of slides or transparencies has been largely replaced 
by software that can create a graphic presentation. Gener-
ally, the user creates a series of virtual “slides,” which can 
consist of text (such as bullet points) and charts or other 
graphics. Often there are templates already structured for 
various types of presentations, so the user only needs to 
supply the appropriate text or graphics. There are a variety 
of options for the general visual style, as well as for transi-
tions (such as dissolves) between slides. Another useful fea-
ture is the ability to time the presentation and provide cues 
for the speaker. Finished presentations can be shown on a 
standard monitor screen (if the audience is small) or output 
to a screen projector.

Microsoft PowerPoint is an example of presentation software. Such software uses a “slideshow” metaphor in which screens corresponding to 
slides can be created and arranged on a timeline for playing. Many types of special effects are also available.
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Microsoft PowerPoint is the most widely used pre-
sentation program. It includes the ability to import Excel 
spreadsheets, Word documents, or other items created by 
Microsoft Office suite applications. The user can switch 
between outline view (which shows the overall structure of 
the presentation) to viewing individual slides or working 
with the slides as a collection.

There are a number of alternatives available including 
Apple’s Keynote and Open Office, which includes a presen-
tation program comparable to PowerPoint. Another alter-
native is to use HTML Web-authoring programs to create 
the presentation in the form of a set of linked Web pages. 
(PowerPoint and other presentation packages can also con-
vert their presentations to HTML.) Although creating pre-
sentations in HTML may be more difficult than using a 
proprietary package and the results may be somewhat less 
polished, the universality of HTML and the ability to run 
presentations from a Web site are strong advantages of that 
approach.

A number of observers have criticized the general same-
ness of most business presentations. Some presentation 
developers opt to use full-fledged animation, created with 
products such as Macromedia Director.
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printers
From the earliest days of computing, computer users needed 
some way to make a permanent record of the machine’s out-
put. Although results of a program could be punched onto 
cards or saved to magnetic tape or some other medium, at 
some point data has to be readable by human beings. This 
fact was recognized by the earliest computer and calcu-
lator designers: Charles Babbage (see Babbage, Charles) 
designed a printing mechanism for his never-finished com-
puting “engine,” and Williams Burroughs patented a print-
ing calculator in 1888.

Typewriter-Like Printers
The large computers that first became available in the 1950s 
(see mainframe) used “line printers.” These devices have 
one hammer for each column of the output. A rapidly mov-
ing band of type moves under the hammers. Each ham-
mer strikes the band when the correct character passes by. 
Printing is therefore done line by line, hence the name. Line 
printers were fast (600 lines per minute or more) but like the 
mainframes they served, they were bulky and expensive.

The typewriter offered another point of departure for 
designing printers. A few early computers such as the 

BINAC (an offshoot of ENIAC) used typewriters rigged 
with magnetically controlled switches (solenoids). How-
ever, a more natural fit was with the Teletype, invented 
early in the 20th century to print telegraph messages. Since 
the Teletype is already designed to print from electrically 
transmitted character codes, it was easy to rig up a circuit 
to translate the contents of computer data into appropriate 
codes for printing. (Since the Teletype could send as well as 
receive messages, it was often used as a control terminal for 
computer operators or for time-sharing computer users into 
the 1970s.)

The daisy-wheel printer was another typewriter-like 
device. It used a movable wheel with the letters embed-
ded in slim “petals” (hence the name). It was slow (about 
10 characters a second), noisy, and expensive, but it was 
the only affordable alternative for early personal computer 
users who required “letter-quality” output.

Dot-Matrix Printers
The dot-matrix printer, which came into common use 
in the 1980s, uses a different principle of operation than 
typewriter-style printers. Unlike the latter, the dot-matrix 
printer does not form solid characters. Instead, it uses an 

A dot-matrix printer uses an array of pins controlled by solenoids. 
Each character has a pattern of pins that are pushed against a type-
writer-like ribbon to form the character on the paper.
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array of magnetically controlled pins (9 pins at first, but 24 
on later models). Each character is formed by pressing the 
appropriate pins into a ribbon that pushes into the paper, 
leaving a pattern of tiny dots.

Besides being relatively inexpensive, dot-matrix print-
ers are versatile in that a great variety of character styles 
or fonts can be printed (see font), either by loading differ-
ent sets of bitmaps. Likewise, graphic images can also be 
printed. However, because the characters are made of tiny 
dots, they don’t have the crisp, solid look of printed type.

Laser and Ink-jet Printers
The majority of printers used today use laser or ink-jet tech-
nology. Both combine the versatility of dot-matrix with the 
letter quality of typewriter-style printers. Xerox introduced 
the first laser printer in the 1970s, although the technology 
was too expensive for most users at first.

The laser printer converts data from the computer into 
signals that direct the laser beam to hit precise, tiny areas 
of a revolving drum. The drum is covered with a charged 
(usually negative) film. The areas hit by the laser, however, 

gain the opposite charge. As the drum continues to revolve, 
toner (a black powder) is dispensed. Because the toner is 
given a charge opposite to the places where the laser hit, the 
toner sticks to those places. Meanwhile, the paper is drawn 
into the drum. Because the paper is given the same charge 
as that produced by the laser beam (but stronger), the toner 
is pulled from the dots on the drum to the corresponding 
parts of the paper, forming the characters or graphics. A 
heating system then fuses the toner to the paper to make 
the image permanent. Meanwhile, the drum is discharged 
and the printer is ready for the next sheet of paper.

Color laser printers are also available, although they are 
still relatively expensive. They work by using four revolu-
tions of the drum for each sheet of paper, depositing appro-
priate amounts of black, magenta, cyan, and yellow toner.

Laser printers fell in price throughout the 1990s (to 
$500 or so), but were soon rivaled by a different technology, 
the ink-jet printer.

The ink-jet printer has a print head that contains an ink 
cartridge for each primary printing color. Each cartridge 
has 50 nozzles, each thinner than a human hair. To print, 
the appropriate nozzles of the appropriate colors are sub-
jected to electric current, which goes through a tiny resistor 
in the nozzle. An intense heat results for a few microsec-
onds, long enough to create a tiny bubble that in turn forces 
a droplet of ink onto the page.

Ink-jet printers are generally slower than lasers, although 
fast enough for most purposes. Although the ink-jet is like 
the dot-matrix in producing tiny dots, the dots are much 
finer. With output at up to 2,880 dots per inch, the result-
ing characters are virtually indistinguishable from type-
printing. Using high resolution and special papers, ink-jet 
printers can now also produce photo prints comparable to 
those created by traditional processes.

An interesting offshoot of ink-jet printing technology 
can be found in the development by HP of skin patches that 
can deliver controlled doses of drugs using tiny, virtually 
painless needles. The tiny droplets of drugs are transported 
in much the same way as ink goes from cartridge reservoir 
to page.

Trends
By the end of the 1990s, the ink-jet printer was declin-
ing steeply in price, and today quite capable units can 
be purchased for as little as $30 or so. Because of their 
greater speed, however, lasers are still used for higher-vol-
ume printing operations. “Multifunction” units combining 
printer, scanner, copier, and fax functions are also popular 
and cost less than a printer alone did only a few years ago.

Advocates of office automation have long predicted the 
“paperless office,” but so far computers and their printers 
have churned out more paper, not less. However, there are 
some trends that might eventually reverse this course. Devel-
opment of practical “electronic books” (page-size displays 
that can hold thousands of pages of text) may reduce the 
need for printed output (see e-books and digital librar-
ies). Another possible replacement for printing is “electronic 
ink,” a sheet of paper with charged ink held in suspension. 
The text or graphics on the page can be changed electroni-

A laser printer uses a mirror-controlled laser beam to strike small 
spots on a rotating drum (called an OPC or Organic Photoconduct-
ing Cartridge) that had been given an electrical charge (usually 
positive) by a corona wire. The spots where the light beam hit are 
given an opposite charge (usually negative). The drum is then 
coated with a powdery toner that is charged opposite to the places 
where the light hit, so the toner clings to the drum to form the pat-
terns of the characters or graphics. A piece of paper is then given 
a strong negative charge so it can pull the toner off the drum as it 
passes under it. Finally, heated rollers called fusers bind the toner 
to the paper to form the final image.
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cally, so it can be reused indefinitely. Finally, the ability to 
access data anywhere on handheld or laptop computers may 
also reduce the need to make printouts.
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privacy in the digital age
Quoted in Fred H. Cate’s Privacy in the Information Age, 
legal scholar Alan F. Westin has defined privacy as “the 
claim of individuals, groups, or institutions to determine 
for themselves when, how, and to what extent information 
about themselves is communicated to others.”

Since the mid-19th century, advances in communica-
tions technology have raised new problems for people seek-
ing to protect privacy rights. During the Civil War telegraph 
lines were tapped by both sides. In 1928, the U.S. Supreme 
Court in Olmstead v. U.S. refused to extend Fourth Amend-
ment privacy protections to prevent federal agents from tap-
ping phone lines without a warrant. Almost 50 years later, 
the court would revisit the issue in Katz v. U.S. and rule 
that telephone users did have an “expectation of privacy.” 
The decision also acknowledged the need to adapt legal 
principles to the realities of new technology.

In the second half of the 20th century the growing use 
of computers would raise two basic kinds of privacy prob-
lems: surveillance and misuse of data.

Surveillance and Encryption
Since much sensitive personal and business information 
is now transmitted between or stored on computers, such 
information is subject to new forms of surveillance or inter-
ception. Keystrokes can be captured using surreptitiously 
installed software and e-mails can be intercepted from serv-
ers or a user’s hard drive. Many employers now routinely 
monitor employees’ computer activity at work, including 
their use of the World Wide Web. When this practice is 
challenged, courts have generally sided with the employer, 
accepting the argument that the computers at work exist for 
business purposes, not private communications, and thus 
do not carry much of an expectation of privacy. Employers, 
however, have been encouraged to spell out their employee 
monitoring or surveillance policies explicitly. Outside the 
workplace, some protection is offered by the Electronic 
Communications Privacy Act (ECPA), passed in 1986.

Shadowy accounts about a secret system called Echelon 
have suggested that the National Security Agency has in 
place a massive system that can intercept worldwide com-

munications ranging from e-mail to cell phone conversa-
tions. Apparently, rooms full of supercomputers can sift 
through this torrent of communication, looking for key 
words that might indicate a threat to the United States or its 
allies. (Much communication is in “clear” text; the ability of 
the government to crack strong encryption is unclear.)

Technology can be used to penetrate privacy, but it can 
also be used to safeguard it (see encryption). Public key 
encryption programs such as Pretty Good Privacy (PGP) 
can encode text so that it cannot be read without a very-
hard-to-crack key. The U.S. government, whose agencies 
enjoyed powerful surveillance capabilities, initially fought 
to suppress the use of encryption, but a combination of 
unfavorable court decisions and the ability to spread soft-
ware across the Internet has pretty much decided the battle 
in favor of encryption users.

In the aftermath of the terrorist attacks of September 
11, 2001, the federal government pressed for expanded sur-
veillance powers, some of which were granted in the USA 
PATRIOT Act of 2001. (The Foreign Intelligence Surveil-
lance Act [FISA] regulates wiretapping of U.S. persons to 
obtain foreign intelligence information, requiring that a 
warrant be obtained from a secret court. In 2008 after rev-
elations that the administration was engaging in warrant-
less domestic surveillance outside of FISA, Congress passed 
an amendment that required FISA permission to wiretap 
Americans living abroad.) Computerized surveillance and 
identification systems (see biometrics) are also likely to be 
expanded in airports in other public places as part of the 
“War on Terrorism.”

Information Privacy
Many privacy concerns arise not from the activities of spy 
or police agencies, but from the potential for the misuse of 
the many types of personal information now collected by 
businesses or government agencies. As far back as 1972, the 
Advisory Committee on Automated Personal Data Systems 
recommended the following standards to the secretary of 
the Department of Health, Education, and Welfare:

	 1. � There must be no personal data record-keeping sys-
tems whose very existence is secret.

	 2. � There must be a way for an individual to find out 
what information about him/her is on record and 
how it is used.

	 3. � There must be a way for an individual to correct or 
amend a record of identifiable information about 
him/her.

	 4. � There must be a way for an individual to prevent 
information about him/her that was obtained for 
one purpose from being used or made available for 
other purposes without his/her consent.

	 5. � Any organization creating, maintaining, using, or 
disseminating records of identifiable personal data 
must guarantee the reliability of the data for their 
intended use and must take precautions to prevent 
misuse of the data.

The Federal Privacy Act of 1974 generally implemented 
these principles with regard to data maintained by federal 
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agencies. Later, federal laws have attempted to address par-
ticular types of information, including school records, medi-
cal records, and video rentals.

However, much of the information collected from people 
results from commercial transactions or other interactions 
with businesses, particularly via the Internet. Although 
encrypted processing systems have reduced the chance that 
a credit card number submitted to a store will be stolen, so-
called identity thieves may be able to obtain credit reports 
under false pretenses or collect enough information about 
a person from various databases (including Social Security 
numbers). With that information, the thief can take out 
credit cards in the person’s name and run up huge bills (see 
identity theft and phishing and spoofing). While the 
direct financial liability from identity theft is capped, the 
psychological impact and the effort required for victims to 
rehabilitate their credit standing can be considerable. In a 
few cases the same techniques have been used by stalkers, 
sometimes with tragic consequences.

The ability of Web sites to track where a visitor clicks 
by means of small files called “cookies” has also disturbed 
many people (see cookies). As with the recording of 
purchase information by supermarkets and other stores, 
businesses justify the practice as allowing for targeted 
marketing that can provide consumers with information 
likely to be of interest to them. (Many e-mail addresses are 
also gathered to be sold for use for unsolicited e-mail—see 
spam.) An even more intrusive technique involves the sur-
reptitious installation of software on the user’s computer 
for purposes of displaying advertising content or gathering 
information. In turn, programmers have distributed free 
utilities for identifying and removing such “adware” or 
“spyware.”

While such consumer tracking is not as dangerous as 
identity theft, it feels like an invasion of privacy to many 
people as well as a source of insecurity, particularly because 
there are as yet few regulations governing such practices. 
However, in response to such concerns many businesses 
have put “privacy statements” on their Web sites, explain-
ing what information about visitors will be collected and 
how it may be used. Businesses that meet standards for dis-
closure of their privacy practices can also display the seal of 
approval of organizations such as TRUSTe.

Many privacy advocates, however, believe that self-reg-
ulation is not sufficient to truly protect consumer privacy. 
They support strong new regulations, including “opt-
in” provisions that would require businesses to receive 
explicit permission from the consumer before collecting 
information.

Privacy and Pervasive Computing
Beyond the Web and e-commerce, new challenges to pri-
vacy are emerging (see ubiquitous computing). In the 
movie Minority Report, stores instantly mine data about 
approaching consumers and project personalized holo-
graphic ads in front of their eyes. While that technology 
is happily not here yet, many of the component pieces 
are (see data mining and RFID). Add global positioning 
(GPS) tracking to the mix, and another important part 

of privacy is threatened: “locational privacy.” Certainly 
one can envisage situations where knowing not only who 
someone is but where they are can increase vulnerability 
to abuse.

In response to these pervasive threats to privacy, many 
advocates continue to push for regulation of data gathering 
and ways to hold people legally responsible for misuse of 
personal information. However, some writers such as sci-
ence fiction writer and futurist David Brin argue that the 
battle for privacy is already lost, but the battle for transpar-
ency and mutual accountability may still be won—if the 
watched can watch the watchers.
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procedures and functions
From the earliest days of programming, programmers and 
language designers realized that it would be very useful to 
organize programs so that each task to be performed by the 
program had its own discrete section of code. After all, a pro-
gram will often have to perform the same task, such as sorting 
or printing data, at several different points in its processing. 
Instead of writing out the necessary code instructions each 
time they are needed, why not write the instructions just once 
and have a mechanism by which they can be called upon as 
needed? Such callable program sections have been known as 
procedures, subroutines, or subprograms.

The simplest sort of subroutine is found in assembly lan-
guages and early versions of BASIC or FORTRAN. In BASIC, 
for example, a GOSUB statement contains a line number. 
When the statement is encountered, execution “jumps” to 
the statement with that line number, and continues from 
there until a statement such as RETURN is encountered. 
For example:

10 TOTAL = 10

20 GOSUB 40

30 END

40 PRINT “The total is: ”;

50 PRINT TOTAL

60 RETURN
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Here execution jumps from line 20 to line 40. After lines 
40–60 are executed, the program returns to line 30, where 
it ends.

Procedures with Parameters
The simple subroutine mechanism has some disadvantages, 
however. The subroutine gets the information it needs from 
the main part of the program implicitly through the global 
variables that have been defined (see variable). If it needs 
to return information, it does it by changing the value of one 
or more of these global variables. The problem is that many 
different subroutines may be relying upon the same vari-
ables and at the same time changing them, leading to unpre-
dictable results. Modern programming practice therefore 
generally avoids using global variables as much as possible.

Most high-level languages today (including Pascal, C/
C++, Java, and modern versions of BASIC) define subpro-
grams as procedures that pass information through speci-
fied parameters. For example, a procedure in Pascal might 
be defined as:

Procedure PrintChar (CharNum : integer);

This procedure has one parameter, an integer that speci-
fies the number of the character to be printed (see charac-
ters and strings).

The main program can call the procedure by giving its 
name and an appropriate character number. For example:

PrintChar (32);

The code within the procedure does not work with the 
parameter CharNum directly. Rather, it receives a copy that it 
can use. Thus, the procedure might include the statements:

Writeln (‘Character number: ’, CharNum );
Writeln (chr (CharNum));

The program will print the character number and then 
print the character itself on the next line (for character 
number 32 this will actually be a blank).

This typical way of using parameters is called passing by 
value. However, it is possible to pass a parameter to a proce-
dure and have the parameter itself used rather than working 
with a copy. This is called “passing by reference.” Pascal uses 
the var keyword for this purpose, while C passes a pointer to 
the variable (see pointers and indirection), and C++ and 
Java prefix the variable name with an ampersand (&). For 
example, suppose one has a C function defined as follows:

int ByTwo (int * Val)
{

Val = Val * 2;
}

In the following statements in the calling program:

Int Value, NewValue;
Value = 10;
NewValue = By Two (Value);

NewValue would be set to 20 because the actual variable 
Value has been multiplied by two inside the ByTwo function.

Functions
A function is a procedure that returns its results as a value 
in place of the function name in the calling statement. For 
example, a function in C to raise a specified number to a 
specified power might be defined like this:

int Power (int base, int exp)

(C and related languages don’t use a keyword like Pas-
cal’s procedure or function because in C all procedures are 
functions.)

This definition says that the Power function takes two 
integer parameters, base and exp, and returns an integer 
value.

Suppose somewhere in the program there are the fol-
lowing statements:

Int Base = 8;

Int Dimensions = 3;
Size = Power (Base, Dimensions);

The variable Size will receive the value of Power (8, 3) or 512.
Although the syntax for using procedures or functions 

varies by language, there are some principles that are gener-
ally applicable. The type of data expected by a procedure 
should be carefully defined (see data types). Modern com-
pilers generally catch mismatches between the type of data 
in the calling statement and what is defined in the proce-
dure declaration. Procedures should also be checked for 
unwanted “side effects,” which they can minimize by not 
using global variables.

Procedures and functions relating to a particular task 
are often grouped into separate files (sometimes called units 
or modules) where they can be compiled and linked into a 
program that needs to use them (see library, program).

Object-oriented languages such as C++ think of pro-
cedures in a somewhat different way from the examples 
shown here. While a traditional program sees procedures 
as blocks of code to be invoked for various purposes, an 
object-oriented program sees procedures as “methods” or 
capabilities of the program’s various objects (see object-
oriented programming).
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programming as a profession
All computer applications depend upon the ability to direct 
the machine to perform instructions such as fetching or 
storing data, making logical comparisons, or performing 
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calculations. Although practical electronic computers first 
began to be built in the 1940s, it took considerable time for 
programming to emerge as a distinct profession. The first 
programmers were the computer designers themselves, fol-
lowed by people (often women) recruited from clerical per-
sons who were good at mathematics. With machines like 
ENIAC, programming was more like setting up a compli-
cated piece of factory machinery than like writing. Switches 
or plugboards had to be set, and numeric instruction codes 
punched on cards to instruct the machine to move each 
piece of data from one location to another or to perform an 
arithmetic or logical operation.

Two factors led to greater recognition for the art or craft 
of programming. First, as more computers were built and 
put to work for various purposes, more programmers were 
needed, as well as more attention to their training and man-
agement. Second, as programs became larger and more com-
plex, a number of high-level languages such as COBOL and 
FORTRAN came into use (see programming languages). 
Besides making it easier to write programs, having just a 
few languages in widespread use made skills more readily 
transferable from one computer installation to another. And 
as with any profession, programming developed bodies of 
knowledge and practice.

At the same time, advances in language development 
would raise a recurrent question: Are professional program-
mers really necessary? Since FORTRAN looked a lot like 
ordinary mathematical notation, couldn’t scientists and 
engineers just write the programs they need without hir-
ing specialists for the job? Similarly, some enthusiasts led 
managers to think that with COBOL accountants (or even 
managers) could write their own business programs.

Sometimes part-time or “amateur” programming did 
prove to be practicable, particularly for scientists who found 
that writing a quick FORTRAN routine to solve a problem 
was easier than trying to explain the problem to a pro-
fessional programmer. However, the professional program-
mer’s job was never really in danger. Businesspeople were 
less inclined to try to learn COBOL and entrust something 
like the company’s payroll processing to ad hoc efforts. In 
addition, the programs that controlled the operation of the 
computer itself, which became known as operating systems, 
required both arcane knowledge and the ability to design, 
verify, test, and debug increasingly complex systems (see 
software engineering).

Development of Practice
In response to this growing complexity, computer scientists 
approached the improvement of programming practice on 
several levels. New languages developed in the 1960s and 
1970s featured well-defined control structures, data types, 
and procedure calls (see Algol, Pascal, C, data types, 
loop, and structured programming.) The management 
of programming teams and the factors affecting productiv-
ity were examined by pioneers such as Frederick Brooks, 
author of The Mythical Man-Month, and IBM sponsored 
workshops and study groups.

While many mainframe business programmers contin-
ued to write and maintain programs written in the older 

languages (such as COBOL), starting in the 1970s a new 
generation of systems and applications programmers used 
C and worked in a different environment—campus mini-
computers running UNIX. Unlike the hierarchical, system-
atic approach of the “mainframe culture,” the minicomputer 
programmers tended toward a decentralized but coopera-
tive approach (see open-source movement and hackers 
and hacking).

When the personal computer revolution began to arrive 
at the end of the 1970s, much of the evolution of program-
ming culture would be recapitulated. Since early micro-
computer systems had very limited memory, programmers 
who wanted to get useful work out of machines such as the 
Apple II had to work mainly in assembly language or write 
quick and dirty programs in a limited dialect of BASIC. The 
hobbyists and early adopters often knew little about the 
academic world of computer science and software engineer-
ing, but they were good at wringing the most out of each 
clock cycle and byte of memory.

As personal computers gained in power and capability 
through the 1980s, programmers were able to use higher-
level languages such as C. Applications such as word pro-
cessors, spreadsheets, and graphics programs became more 
complex, and programmers had to work in larger teams like 
their mainframe counterparts.

At the same time, the sharp demarcation between pro-
grammer and user became less distinct with the personal 
computer. Many users who were not professional program-
mers used applications software that included programma-
ble features, such as spreadsheets and simple data bases (see 
macro and scripting language). New languages such as 
Visual Basic let even relatively inexperienced programmers 
plug in user interfaces and other components and create 
useful programs (see programming environment).

Each sector of programming seems to go through a 
cycle of improvisation and innovation followed by stan-
dardization and professionalization. Just as the early 
ENIAC programmers evolved into the organized hierarchy 
of corporate programming departments, the individuals 
and small groups who wrote the first personal computer 
software evolved into large teams using sophisticated soft-
ware to track to the modules, versions, and development 
steps of major programming projects. Similarly, when the 
explosion of the World Wide Web starting in the mid-1990s 
brought a new demand for people who could code HTML, 
CGI, and Java, much of the most interesting work was done 
by individuals and small companies. But if history repeats 
itself, the Internet applications field will undergo the same 
process of professionalization, with increasingly elaborate 
standards and expectations (see certification of com-
puter professionals).

Throughout the history of programming, visionaries 
have announced that the time was coming when most if 
not all programming could be automated. All a person will 
have to do is give a reasonably coherent description of the 
desired results and the required program will be coded by 
some form of artificial intelligence (see expert systems, 
genetic algorithms, and neural network). But while 
users have now been given the ability to do many things 
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that formerly required programming, it seems there is still 
a demand for programmers who can move the bar another 
step higher. The profession continues to evolve without any 
signs of impending extinction.

Further Reading
Brooks, Frederick. The Mythical Man-Month, Anniversary Edition: 

Essays on Software Engineering. Reading, Mass.: Addison-Wes-
ley, 1995.

Ceruzzi, Paul. A History of Modern Computing. Cambridge, Mass.: 
MIT Press, 1998.

Henderson, Harry. Career Opportunities in Computers and Cyber-
space. 2nd ed. New York: Facts On File, 2004.

Kohanski, Daniel. Moths in the Machine: The Power and Perils of 
Programming. New York: St. Martin’s Press, 2000.

Ullmann, Ellen. Close to the Machine: Technophilia and its Discon-
tents. San Francisco: City Lights Books, 1997.

programming environment
The first programmers used pencil and paper to sketch out 
a series of commands, or punched them directly on cards 
for input into the machine. But as more computer resources 
became available, it was a natural thought that programs 
could be used to help programmers create other programs. 
The availability of Teletype or early CRT terminals on time-

sharing systems by the 1960s encouraged programmers to 
write simple text editing programs that could be used to 
create the computer language source code file, which in turn 
would be fed to the compiler to be turned into an executable 
program (see terminal and text editor). The assemblers 
and BASIC language implementations on the first personal 
computers also included simple editing facilities.

More powerful programming editors soon evolved, par-
ticularly in academic settings. One of the best known is 
EMACS, an editor that contains its own LISP-like language 
that can be used to write macros to automatically generate 
program elements (see LISP and macro). With the many 
other utilities available in the UNIX operating system, pro-
grammers could now be said to have a programming envi-
ronment—a set of tools that can be used to write, compile, 
run, debug, and analyze programs.

More tightly integrated programming environments 
also appeared. The UCSD “p-system” brought together a 
program editor, compiler, and other tools for developing 
Pascal programs. While this system was somewhat cumber-
some, in the mid-1980s Borland International released (and 
steadily improved) Turbo Pascal. This product offered what 
became known as an “integrated development interface” 
or IDE. Using a single system of menus and windows, the 

As the name suggests, Microsoft Visual Basic provides a visual programming environment in which the controls that make up a program’s user 
interface can be placed on a form. Various properties (characteristics) of the controls can then be set, and program code is then written and 
attached to govern how the objects will behave.
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programmer could edit, compile, run, and debug programs 
without leaving the main window.

The release of Visual Basic by Microsoft a few years 
later brought a full graphical user interface (GUI). Visual 
Basic not only ran in Windows, it also gave programmers 
the ability to design programs by arranging user interface 
elements (such as menus and dialog boxes) on the screen 
and then attaching code and setting properties to control 
the behavior of each interface object. This approach was 
soon extended by Microsoft to development environments 
for C and C++ (and later, Java) while Borland released 
Delphi, a visual Pascal development system. Today visual 
programming environments are available for most lan-
guages. Indeed, many programming environments can 
host many different languages and target environments. 
Examples include Microsoft’s Visual Studio .NET and the 
open-source Eclipse, which can be extended to new lan-
guages via plug-ins.

Modern programming environments help the program-
mer in a number of ways. While the program is being writ-
ten, the editor can highlight syntax errors as soon as they’re 
made. Whether arising during editing or after compilation, 
an error message can be clicked to bring up an explana-
tion, and an extensive online help system can provide infor-
mation about language keywords, built-in functions, data 
types, or other matters. The debugger lets the programmer 
trace the flow of execution or examine the value of variables 
at various points in the program.

Most large programs today actually consists of dozens 
or even hundreds of separate files, including header files, 
source code files for different modules, and resources such 
as icons or graphics. The process of tracking the connec-
tions (or dependencies) between all these files, which used 
to require a list called a makefile can now be handled auto-
matically, and relationships between classes in object-ori-
ented programs can be shown visually.

Researchers are working on a variety of imaginative 
approaches for future programming environments. For 
example, an interactive graphical display (see virtual 
reality) might be used to allow the programmer to in 
effect walk through and interact with various representa-
tions of the program.
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programming languages
There are many ways to represent instructions to be car-
ried out by a computer. With early machines like ENIAC, 
programs consisted of a series of detailed machine instruc-
tions. The exact movement of data between the processor’s 
internal storage (registers) and internal memory had to be 
specified, along with the appropriate arithmetic operations. 

This lowest level, least abstract form of programming lan-
guages is hardest for humans to understand and use.

The first step toward a more symbolic form of pro-
gramming is to use easy-to-remember names for instruc-
tions (such as ADD or CMP for “compare”) as well as 
to provide labels for storage locations (variables) and 
subroutines (see procedures and functions). The file 
of symbolic instructions (called source code) is read by 
a program called an assembler (see assembler), which 
generates the low-level instructions and actual memory 
addresses to be used by the program. Because of its abil-
ity to closely specify machine operations, assembly lan-
guage is still used for low-level hardware control or when 
efficiency is at a premium.

Most languages in use today are higher-level. The 
mainstream of programming languages consists of lan-
guages that are procedural in nature. That is, they specify 
a main set of instructions that are executed in sequence, 
although the program can branch off (see branching 
statements) or repeat a series of statements until a con-
dition is satisfied (see loop). A program can also call 
a set of instructions defined elsewhere in the program. 
Constant or variable data is declared to be of a certain 
type such as integer or character (see data types) before 
it is used. There are also rules that determine what parts 
of a program can access what data (see variable). For 
examples of procedural languages, see Algol, BASIC, C, 
COBOL, FORTRAN, and Pascal.

A variant of procedural languages is the object-oriented 
language (see object-oriented programming). Such lan-
guages (see C++, Java, and Smalltalk) still use sequential 
execution and procedures, but the procedures are “pack-
aged” together with relevant data into objects. In order to 
display a picture, for example, the program will call upon 
a particular object (created from a class of such objects) to 
execute its display function with certain parameters such as 
location and dimensions.

The evolution of a few major programming languages through five 
decades. There are actually hundreds of different programming lan-
guages that have seen at least some use in the past 50 years.
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Nonprocedural Languages
Although the bulk of today’s software is written using pro-
cedural languages, there are some important languages con-
structed using quite different paradigms. LISP, for example, 
is a powerful language used in artificial intelligence applica-
tions. LISP is written by putting together layers of functions 
that carry out the desired processing (see nonprocedural 
languages, LISP, and functional languages). There are 
also “logic programming” languages, of which Prolog is 
best known (see Prolog). Here a chain of logical steps is 
constructed such that the program can traverse it to find 
the solution of a problem.

Context and Change in  
Programming Languages
Because of the amount of effort it takes to truly mas-
ter a major programming language, most programmers 
are fluent in only a few languages and developers tend 
to standardize on one or two languages. The store of 
tried-and-true code and lore built up by the programming 
community tends to make it disadvantageous to radi-
cally change languages. Thus, FORTRAN and COBOL, 
although more than 40 years old, are still in considerable 
use today. C, which is about 30 years old, has been gradu-
ally supplanted by C++ and Java, but the latter languages 
represent an object-oriented evolution of C, intentionally 
designed to make it easy for programmers to make the 
transition. (Smalltalk, which was designed as a “pure” 
object-oriented language, never achieved widespread use 
in commercial development.)

Similarly, when programmers had to cope with parallel 
processing (programs that can have several threads of execu-
tion going at the same time), they have tended to favor “par-
allelized” versions of familiar languages rather than wholly 
new ones (see concurrent programming and parallel 
processing).

While the basic elements of computer languages tend 
to persist in the same recognizable forms, the way pro-
grammers experience their use of languages has changed 
considerably through the use of modern visual integrated 
development environments (see programming environ-
ment). A variety of languages have also been designed for 
tasks such as data management, interfacing Web pages, and 
system administration (see scripting languages, awk, 
Perl, PHP, and Python).
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project management software
Whether a project involves only a few people in the same 
department or thousands of people and several years, there 
is a variety of software to help managers plan and monitor 
the status of their projects.

At the simplest level, PIM software (see personal 
information manager) can be used by an individual to 
monitor simple personal projects. Such software generally 
includes the ability to record the description, priority, due 
date, and reminder date for a task.

Project management software is generally used to 
plan larger projects involving many persons or teams. A 
complex project must first be broken down into tasks. 
(Large projects often have subprojects as an intermediate 
entity.) Next, dependencies must be taken into account. 
For example, the user testing program for a software 
product can’t begin until a usable preliminary (“alpha” 
or “beta”) version of the program is available. The vari-
ous “resources” assigned to a subproject or task must 
also be tracked, including personnel and number of hours 
assigned and budget allocations. In tracking personnel 
assigned to a project, their availability (who is on vaca-
tion and who is assigned to what location) must also be 
considered.

Once the scheduling and priorities are arranged, the 
inevitable divergences between what was planned and what 
is actually happening must be monitored. Good project 
management software provides many tools for the purpose. 
Available charts and reports often include:

• �G antt charts that use bars to show the duration and 
percentage of completion of the various overlapping 
subprojects or tasks.

• � PERT (Program Evaluation and Review Technique) 
charts that show each subproject or task as a rectan-
gular “node” with information about the task. The 
connections between nodes show the relationships 
(dependencies) between the items. PERT charts are 
usually used at the beginning stages of planning.

• � Analysis tools that show critical paths and bottle-
necks (places where one or more tasks falling behind 
might threaten large portions of the project). Gener-
ally, the more preceding items a task is dependent on, 
the more likely that task is to fall behind.

• � Tools for estimating the probability for completion 
of a given task based on the probabilities of tasks it 
is dependent on, as well as other factors such as the 
likelihood of certain resources becoming available.

• � A system of alerts or “stoplights” that show slow-
downs, potential problems, or areas where work has 
stopped completely. These can be set to be triggered 
when various specified conditions occur.

• � Integration between project management and budget 
reporting so tasks and the project as a whole can be 
monitored in relation to budget constraints.

• � Integration between the project management software 
and individual schedules kept in PIM software such as 
Microsoft Outlook or in handheld computers (PDAs) 
such as the PalmPilot.

• � Integration between project management and soft-
ware for scheduling meetings.
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Given the scope and pace of today’s business, scientific, and 
other projects, project management software is often a vital 
tool. However, using too elaborate a project tracking system 
for a relatively small and well-defined project may divert 
time and energy away from the work itself. Fortunately, a 
wide variety of project management programs are avail-
able, ranging from full-fledged products such as Microsoft 
Project or Primavera Project Planner to simpler shareware 
or free products.
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Prolog
Since the 1950s, researchers have been intrigued by the 
possibility of automating reasoning behavior, such as logi-
cal inference (see artificial intelligence). A number of 
demonstration programs have been written to prove theo-
rems starting from axioms or assumptions. In 1972, French 
researcher Alain Colmerauer and Robert Kowalski at Edin-
burgh University created a logic programming language 
called Prolog (for Programmation en Logique) as a way of 
making automated reasoning and knowledge representation 
more generally available.

A conventional procedural program begins by defin-
ing various data items, followed by a set of procedures for 
manipulating the data to achieve the desired result. A Pro-
log program, on the other hand, begins with a set of facts 
(axioms) that are assumed to be true. (This is sometimes 
called declarative programming.)

For example, the fact that Joe is the father of Bill would 
be written:

Father (Joe, Bill).

The programmer then defines logical rules that apply to 
the facts. For example:

father (X, Y) :- parent (X, Y), is male (X)
grandfather (X, Y) :- father (X, Z), parent 
(Z, Y)

Here the first assertion says that a person X is the father 
of Y if he is the parent of Y and is male. The second asser-
tion says that X is Y’s grandfather if he is the father of a 
person Z who in turn is a parent of Y.

When a program runs, it processes queries, or asser-
tions whose truth is to be proven. Using a process called 
unification, the Prolog system looks for facts or rules that 
apply to the query and attempts to create a logical chain 
leading to proving the query is true. If the chain breaks 
(because no matching fact or rule can be found), the system 

“backtracks” by looking for another matching fact or rule 
from which to attempt another chain.

Prolog aroused considerable interest among artificial 
intelligence researchers who were hoping to create a power-
ful alternative to conventional programming languages for 
automating reasoning. This interest was further spurred 
by the Japanese Fifth Generation Computer Program of the 
1980s, which sought to create logical supercomputers and 
made Prolog its language of choice. Although some such 
machines were built, the idea never really caught on. How-
ever, Borland International (makers of the highly success-
ful Turbo Pascal) released a Turbo Prolog that made the 
language more accessible to students using PCs, although it 
used some nonstandard language extensions.

Despite its commercial success being limited, Prolog 
has been used in a number of areas of artificial intelli-
gence research. Its rules-based structure is naturally suited 
for expert systems, knowledge bases, and natural language 
processing (see expert systems and knowledge repre-
sentation). It can also be used as a prototyping language 
for designing systems that would then be recoded in con-
ventional languages for speed and efficiency.
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pseudocode
Because humans generally think on a higher (or more 
abstract) level than that provided by even relatively high-
level programming languages such as BASIC or Pascal, it 
is sometimes suggested that programmers use some form 
of pseudocode to express how the program is intended to 
work. Pseudocode can be described as a language that is 
more natural and readable than regular programming lan-
guages, but sufficiently structured to be unambiguous. For 
example, the following pseudocode describes how to calcu-
late the cost of wall-to-wall carpet for a room:

Get room length (in feet)
Get room width
Multiply length by width to get area (in 
square feet)
Get price of carpet per square foot
Multiply price/sq. foot by area to get total 
cost.

Pseudocode generally includes the basic control struc-
tures used in programming languages (see branching 
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statements and loop) but is not concerned with small 
details of syntax. For example, this pseudocode might 
determine whether to charge sales tax for an online pur-
chase:

Get customer’s state of residence
If state is “CA” then

Tax = Price * .085
Total = Price + Tax

End If

Once the pseudocode has been written and reviewed, 
the statements can be recoded in the programming lan-
guage of choice. For example, the preceding example might 
look like this in C:

If (state == “CA”) {
Tax = Price * .085;
Total = Price + Tax;

}

The term pseudocode can also be applied to “intermedi-
ate languages” that provide a generic, machine-independent 
representation of a program. For example, in the UCSD Pas-
cal system the language processor generates a “p-code” that 
is turned into actual machine language by an interpreter 
written for each of the different types of computer sup-
ported. Today Java takes a similar approach.
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psychology of computing
Computing is a complex, pervasive, and increasingly vital 
human activity. It is not surprising that human psychol-
ogy can play an important role in many aspects of com-
puter use.

Since the 1960s psychology (in particular see cognitive 
science) has contributed to the structuring of interaction 
between computer systems and users (see user interface). 
It is important to note the significant differences between 
how computers and humans perceive and process informa-
tion: computers are extremely fast in processing in a highly 
structured setting (e.g., a program). The human brain, on 
the other hand, while thousands of times slower, is thus 
far greatly superior in coping with loosely structured data 
through pattern recognition, the making of analogies, and 
generalization. A number of researchers (see, for example, 
Licklider, J. C. R.) have promoted the idea of creating a 
human-computer synergy where the structure of the sys-

tem takes advantage of both the machine’s computational 
and data-retrieval abilities and the human user’s ability to 
work with the larger picture. Such research is continuing as 
autonomous software (see software agent) and is begin-
ning to interact with Web users.

Psychology of Cyberspace
The Internet and its perception as a shared cyberspace adds 
new dimensions to the psychology of computing. In fact, 
the emphasis here is not on computation per se but on the 
representation of ideas and images, communication, social 
interaction, and identity. In particular, pioneering work 
(see Turkle, Sherry) has illuminated ways in which online 
interactions affect identity and sense of self—even encour-
aging the assumption of multiple identities (see identity 
in the online world and online games). Indeed, virtual 
worlds such as Second Life offer new ways to study the for-
mation of communities and social interactions.

On the positive side, it has been argued that cyberspace 
has encouraged people (particularly adolescents) to experi-
ment with new identities in a relatively safe environment, 
but lack of inhibition and experience can lead to risky 
behavior such as involvement with sexual predators. The 
very fact that many people (particularly the young) may 
spend several hours a day or more immersed in the online 
world has also led to concerns; some psychologists have 
even suggested that “Internet addiction disorder” (IAD) be 
included as an official mental disorder similar to compul-
sive gambling. However, as of 2007, the American Medical 
Association has not recommended that IAD be classified 
as a mental disorder, and the American Society of Addic-
tion Medicine has resisted such a status. Generally, exces-
sive or inappropriate use of the Internet has been seen as a 
symptom of more traditional diagnoses such as obsession 
or compulsion.
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punched cards and paper tape
In 1804, the French inventor Joseph-Marie Jacquard 
invented an automatic weaving loom that used a chain of 
punched cards to control the pattern in the fabric. A gen-
eration later, a British inventor (see Babbage, Charles) 
decided that punched cards would be a suitable medium for 
inputting data into his proposed mechanical computer, the 
Analytical Engine.

Although Babbage’s machine was never built, by 1890 
an American inventor was using an electromechanical tabu-
lating machine to process census data punched into cards 
(see Hollerith, Herman). Card tabulating machines were 
improved and marketed by International Business Machines 
(IBM) throughout the first part of the 20th century. IBM 
would also create the 80-column standard punched card 
that would become familiar to a generation of programmers.

Later machines included features such as mechanical 
sorting, enhanced arithmetic functions, and the ability to 
group cards by a particular criterion and print subtotals, 
counts, or other information about each group. Although 
these machines were not computers, they did introduce the 
idea of automated data processing.

During the 1930s, a number of companies introduced 
punch card tabulators that could work with alphanu-
meric data (that is, letters as well as numbers). With these 
expanded capabilities, punch card systems could be used 
to keep track of military recruits, taxpayers, or custom-
ers (such as insurance policy holders). IBM emphasized 
the new machines’ features by calling them “accounting 
machines” instead of tabulators.

While tabulators and calculators using punched cards 
gave a taste of the power of automated data processing, 
they had a very limited programming ability. For example, 
they could not make more than very simple comparisons or 
decisions, and could not repeat steps under program con-
trol (looping). The desire to create a general-purpose data 
processing system led in the 1940s to the development of 
the electronic computer.

When the first computers were developed, it was natural 
to turn to the existing punched cards and their machinery 
for a medium for inputting data and program instructions 
into the new machines. Because computers contained work-
ing memory, the program could be stored in its entirety 
during processing, enabling looping, subroutines, and other 
ways to control processing. Because the amount of avail-
able memory or “core” was severely limited, not much data 
could be stored inside the computer. However, complicated 
processing could be broken into a series of steps where a 
program was loaded and run, the input data cards read and 
processed, and the intermediate results punched onto a set 
of output cards. The card could then be input to another 
program to carry out the next phase.

By the 1970s, however, faster and easier to use media 
such as magnetic tape and disk drives were being employed 
for program and data storage. Instead of having to use a 
keypunch machine to create each program statement, pro-
grammers could type their commands at a terminal, using 
a text editor (see programming environment). Even the 
government began to phase out punched cards. Today some 

“legacy” punch card systems are maintained, and there 
is sometimes a need to read and convert archival data in 
punch card form.

Ironically, this workhorse of early data processing 
would surface again in the U.S. presidential election of 
2000, when problems with the interpretation of partly 
punched “chads” on ballot punch cards would lead to 
great controversy.
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Python
Created by Guido van Rossum and first released in 1990, 
Python is a relatively simple but powerful scripting lan-
guage (see scripting languages and Perl). The name 
comes from the well-known British comedy group Monty 
Python.

Python is particularly useful for system administrators, 
webmasters, and other people who have to link various 
files, data source, or programs to perform their daily tasks. 
The language currently has a small but growing (and quite 
enthusiastic) following.

Python dispenses with much of the traditional syntax 
used in the C family of languages. For example, the follow-
ing little program converts a Fahrenheit temperature to its 
Celsius equivalent:

temp = input(“Farenheit temperature:”)
print (temp-32.0) *5.0/9.0

Without the semicolons and braces found in C and 
related languages, Python looks rather like BASIC. Also 
note that the type of input data doesn’t have to be declared. 
The runtime mechanism will assume it’s numeric from the 
expression found in the print statement. Python programs 
thus tend to be shorter and simpler than C, Java, or even 
Perl programs. The simple syntax and lack of data typing 
does not mean that Python is not a “serious” language, 
however. Python contains full facilities for object-oriented 
programming, for example.

Python programs can be written quickly and easily by 
trying commands out interactively and then converted the 
script to bytecode, a machine-independent representation 
that can be run on an interpreter designed for each machine 
environment. Alternatively, there are translation programs 
that can convert a Python script to a C source file that can 
then be compiled for top speed.
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Perl is still a popular scripting language for UNIX and 
Web-related applications. Perl contains a powerful built-
in regular expression and pattern-matching mechanism, as 
well as many other built-in functions likely to be useful for 
practical scripting. Python, on the other hand, is a more 
generalized and more cleanly structured language that is 
likely to be suited for a wider variety of applications, and 
it is more readily extensible to larger and more complex 
applications.
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quality assurance, software
Modern software programs are large and complex, and con-
tain many interrelated modules. If a program is not thor-
oughly tested before it goes into service, it may contain 
errors that can result in serious consequences (see risks of 
computing).

In the early days of computing, programmers gener-
ally tested their code informally and nonsystematically. The 
assumption was that after the program was given to the users 
any problems that arose could be fixed through “patches” 
or replacement versions containing bug fixes. Today, how-
ever, it is increasingly recognized that assuring the quality 
and reliability of software requires a systematic, comprehen-
sive process that begins when software requirements are first 
specified and continues after the program has been released.

Any program is designed to meet the needs of a spe-
cific type of users for specific applications. Therefore, the 
first step must be to make sure that users are able to com-
municate their requirements and that the software engi-
neers understand the users’ needs and concerns. Detailed 
written specifications, flowcharts, and other depictions of 
the program can be reviewed by user representatives (see 
flowchart and case). The specifications can be further 
explored by creating a prototype or demonstration of the 
program’s features (see presentation software). Since a 
prototype can be dynamic and let users have simulated 
interactions with the program, it may reveal usability prob-
lems that would be hard to spot from charts or documenta-
tion. The result of this initial verification process should 
be that the users agree that the program will do what they 
need and that they will be comfortable using it.

In moving from design to implementation (writing the 
actual code), the developers must first choose an appro-
priate approach (see algorithm) and data representation. 
Choosing an algorithm that is known to be sound is prefer-
able, but if an algorithm must be modified (or a new one 
developed), developers may be able to take advantage of 
mathematical techniques that will suggest, if not totally 
prove, the algorithm’s accuracy and reliability.

As the programmers write the code, they should try to 
use best practices (see software engineering). Doing so 
ensures that the code will be readable and organized in 
such a way that the source of a problem area can be iden-
tified easily, and any “fix” that must be made will be less 
likely to have unforeseen side effects.

Developers can also include special code that will facilitate 
testing. This code can include assertions—statements that test 
specified conditions (such as variable values) at key points in 
the program, displaying appropriate messages if the values 
are not within the proper range. Large, complex programs 
can also include diagnostic modules that give the developers a 
sort of virtual console that they can use to monitor conditions 
while the program is running, or “drill into” particular areas 
for closer inspection (see bugs and debugging).

Although a certain amount of testing and debugging can 
and should be done while the code is being written, more 
extensive and systematic testing is usually performed after 
a preliminary version of the program has been completed. 
(This is sometimes called an alpha version.) There are two 
basic approaches to designing the tests. “White box” tests use 
the developer’s knowledge of the code to design test data that 
will test all of the program’s structural features (see proce-
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dures and functions, branching statements, and loop). 
The testers may be aided by mathematical analysis that iden-
tifies “partitions” or ranges within the data that should result 
in a particular execution path being taken through the pro-
gram. “Fault coverage” tests can also be designed to test 
for various specific types of errors (such as input/output, 
numeric overflow, loss of precision, and so on).

A shortcoming of white box tests is that because the 
tester knows how the program works, he or she may uncon-
sciously select mainly “reasonable” data or situations. (It 
has been observed that users are under no such compul-
sion!) One way to compensate for this bias is to also per-
form “black box” tests. These tests assume no knowledge of 
the inner workings of the program. They approach the pro-
gram from the outside, submitting data (or otherwise inter-
acting with the program) either through the user interface 
or using an automated process that simulates user input. 
The tester tries to generate as wide a variety of input data 
as possible, often by using randomization techniques. The 
result is that the ability of the program to deal with “unrea-
sonable” data will also be tested, and unforeseen situations 
may arise and have to be dealt with.

Once this cycle of testing and fixing problems is fin-
ished, the program will probably be given to a selected 
group of users who will operate it under field conditions—
that is, in the same sort of environment the program will be 
used once it is sold or deployed. This process is sometimes 
called beta testing. (Game companies have traditionally 
relied upon the willingness of gamers to test a new game in 
exchange for getting to play it sooner.)

The priority (and thus the resources) devoted to testing 
will vary according to many factors, including

• � the complexity of the program (and thus the likeli-
hood of problems)

• � the presence of strong competitors who could take 
advantage of significant problems with the program

• � the potential financial impact or legal exposure from 
bugs or problems

• � the ability to “amortize” the costs of developing test-
ing tools and procedures over a number of years as 
new versions of the program are developed

The Holy Grail for quality assurance would be to develop 
powerful artificially intelligent automatic testing programs 
that could analyze a program and develop and execute a 
variety of thorough tests. However, such a program would 
itself be very complex, difficult and expensive to develop, 
and subject to its own bugs. Nevertheless, a number of 
organizations (notably, IBM) have devoted considerable 
attention to the problem.
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quantum computing
The fundamental basis of electronic digital computing is the 
ability to store a binary value (1 or 0) using an electromag-
netic property such as electrical charge or magnetic field.

However, during the first half of the 20th century, 
physicists discovered the laws of quantum mechanics that 
apply to the behavior of subatomic particles. An electron 
or photon, for example, can be said to be in any one of sev-
eral “quantum states” depending on such characteristics as 
spin. In 1981, physicist Richard Feynman came up with the 
provocative idea that if quantum properties could be “read” 
and set, a computer could use an electron, photon, or other 
particle to store not just a single 1 or 0, but a number of val-
ues simultaneously. The simplest case, storing two values at 
once, is called a “qubit” (short for “quantum bit”). In 1985, 
David Deutsch at Oxford University fleshed out Feynman’s 
ideas by creating an actual design for a “quantum com-
puter,” including an algorithm to be run on it.

At the time of Feynman’s proposal, the techniques for 
manipulating individual atoms or even particles had not 
yet been developed (see nanotechnology), so a practi-
cal quantum computer could not be built. However, during 
the 1990s considerable progress was made, spurred in part 
by the suggestion of Bell Labs researcher Peter Shor, who 
outlined a quantum algorithm that might be used for rapid 
factoring of extremely large integers. Since the security of 
modern public key cryptography (see encryption) depends 
on the difficulty of such factoring, a working quantum com-
puter would be of great interest to spy agencies.

The reason for the tremendous potential power of quan-
tum computing is that if each qubit can store two values 
simultaneously, a register with three qubits could store 
eight values, and in general, for n qubits one can operate on 
2n values simultaneously. This means that a single quan-
tum processor might be the equivalent of a huge number of 
separate processors (see multiprocessing). Clearly many 
problems that have been considered not practical to solve 
(see computability and complexity) might be tackled 
with quantum computers.

However, the practical problems involved in designing 
and assembling a quantum computer are expected to be very 
formidable. Although scientists during the 1990s achieved 
the ability to arrange individual atoms, the precise place-
ment of atoms and even individual particles such as photons 
would be difficult. Furthermore, as more of these compo-
nents are assembled in very close proximity, it becomes 
more likely that they will interfere with one another, causing 
“decoherence,” where the superimposed values “break down” 
to a single 1 or 0, thus causing loss of information. However, 
some researchers are hopeful that standard mathematical 
techniques (see error correction) could be used to keep 
this problem in check. For example, redundant components 
could be used so that even if one decoheres, the others could 
be used to regenerate the information.

Another approach is to use a large number of quantum 
components to represent each qubit. In 1998, Neil Gersh-
enfeld and Isaac L. Chuang reported successful experi-
ments using a liquid with nuclear magnetic resonance 
(NMR) technology. Here each atom in a molecule (for 
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example, chloroform), would represent one qubit, and 
a large number of molecules would be used, for redun-
dancy. Since each “observation” (that is, setting or read-
ing data) affects only a few of the many molecules for 
each qubit, the stability of the information in the system 
is not compromised. However, this approach is limited by 
the number of atoms in the chosen molecule—perhaps to 
30 or 40 qubits.

There are many potential applications for quantum 
computing. While the technology could be used to crack 
conventional cryptographic keys, researchers have sug-
gested that it could also be used to generate unbreak-
able keys that depend on the “entanglement” of observers 
and what they observe. The sheer computational power 
of a quantum computer might make it possible to develop 
much better computer models of complex phenomena 
such as weather, climate, the economy—or of quantum 
behavior itself.
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queue
A queue is basically a “line” of items arranged according to 
priority, much like the customers waiting to check out in a 
supermarket. Many computer applications involve receiving, 
tracking, and processing requests. For example, an operating 
system running on a computer with a single processor must 
keep track of which application should next receive the pro-
cessor’s attention. A print spooler holds documents waiting to 
be printed. A web or file server must keep track of requests for 
Web pages, files, or other services. Queues provide an orderly 
way to process such requests. Queues can also be used to 
efficiently store data in memory until it can be processed by a 
relatively slow device such as a printer (see buffering).

As a data structure, a queue is a type of list (see list 
processing). New items are inserted at one end and 
removed (deleted) from the other end. This contrasts with 
a stack, where all insertions and deletions are made at the 
same end (see stack). Just as the next person served at the 
supermarket is the one at the head of the line, the end of a 
queue from which items are removed is called the head or 
front. And just as new people arriving at the supermarket 
line join the end of the line, the part of the queue where 
new items are added is called the tail or rear. Since the first 
item in line is the first to be removed, a queue is called a 
FIFO (first in, first out) structure.

To create a queue, a program first allocates a block of 
memory. It then sets up to pointers (see pointers and indi-
rection). One pointer stores the address of the item at the 
head of the queue; the other has the address of the item at 
the tail. When the queue starts out, it is empty. This means 
that both the head and tail pointer start out pointing to the 
same location.

In an empty queue, the head and tail pointers point to the first 
cell in memory. To add a value, it is placed at the cell pointed to 
by the head pointer, and the tail pointer is moved up one cell. If an 
item is removed, the head and tail pointers are moved down one 
place. (Note that items must be added at the tail and removed at 
the head.)

A circular queue works in the same way as a “straight” queue, 
except that when the last cell in the allotted memory block is 
reached, the pointer or data “wraps around” to the first cell.
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To add an item, the tail pointer is moved back one loca-
tion and the item is stored there. To remove an item, the 
head pointer is simply moved back one location. (The data 
that had been pointed to by the head pointer can be either 
retrieved or discarded, depending on the application.)

In actuality it’s not quite so simple. As items are added 
to the queue, the tail pointer keeps moving back in memory 
with the head pointer trailing behind as items are deleted. If 
the queue is sufficiently active (many items are being added 
and removed), the queue will end up “crawling” through 
memory somewhat like a worm until all the memory is 
consumed.

In a real line at the supermarket, as a customer leaves 
the checkout stand, each of the persons in line moves 
up one space. In a computer queue this could be accom-
plished by moving each item up one location whenever 
an item is removed at the head. However, having to move 

all the data items each time one is changed would be very 
inefficient. Instead, one could allow the head of the queue 
to move only up to some specified location. At that point, 
the head is moved back to the beginning of the memory 
block, and thus the space that had been vacated by the 
tail as it moved up is reutilized. In effect this wraps the 
memory around into a circle, so this is called a circular 
queue.
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RAID  (redundant array of inexpensive disks)
Computer storage is relatively cheap today (see hard disk), 
but having continued access to data in the event of hard-
ware failure is essential to any enterprise. RAID, or redun-
dant array of inexpensive disks, is a way to turn plentiful 
storage into higher reliability and/or speed of access. RAID 
works by turning a group of drives into a single logical 

unit; the operating system need not deal with this internal 
organization, but simply reads or writes data as usual.

To improve reliability, data can be mirrored, or copied to 
two or more disks. While the data obviously takes up more 
space, the advantage is that the data remains intact and 
recoverable if any one drive fails. Further reliability can be 
achieved by storing redundant data (such as parity bits or 
Hamming codes), to diagnose and fix some disk problems 
(see error correction and fault tolerance).

To achieve greater speed of data access, data can be 
“striped,” where a file is broken into pieces, with each piece 
stored on a sector on a different drive. Thus instead of the 
head of a single drive having to jump around to multiple 
sectors to read the data, the heads on all the drives can 
simultaneously read many parts of the file, which are then 
assembled into the proper order.

Levels and Compromises
By combining mirroring, error correction, and/or striping, 
different “levels” of RAID can be implemented to suit differ-
ent needs. There are various trade-offs: Striping can increase 
access speed, but uses more storage space and, by increasing 
the number of disks, also increases the chance that one will 
fail. Implementing error correction can make failure recov-
erable, but slows data access down because data has to be 
read from more than one location and compared.

The most commonly used RAID levels are:

• � RAID 0—striping data across disks, higher speed but 
no error correction; failure of any disk can make data 
unrecoverable

R

Striping spreads data across several disk drives so that a single 
head movement on each drive can fetch a large amount of data. 
Mirroring duplicates each sector of data on a second disk drive, 
ensuring that if one drive fails the data can still be retrieved. Com-
binations of both techniques are often used, trading space for reli-
ability (or vice versa).



• � RAID 1—mirroring (data stored on at least two disks), 
data intact as long as one disk is still operating

• � RAID 3 and 4—striping plus a dedicated disk for par-
ity (error checking)

• � RAID 5—striping with distributed parity; data can be 
restored automatically after a failed disk is replaced

• � RAID 6—like RAID 5 but with parity distributed so 
that data remains intact unless more than two drives 
fail

In actuality, RAID configurations can be very complex, 
where different levels can be “layered” above one another, 
with each treating the next as a virtual drive, until one 
gets down to the actual hardware. Although RAID is often 
implemented using a physical (hardware) controller, oper-
ating systems can also create a virtual RAID structure in 
software, interposed between the logical drive as seen by 
the read/write routines and the physical drives.

Although RAID is most commonly used with large 
shared storage units (see file server and networked 
storage), with the drastic decline in hard drive prices, 
simple RAID configurations (such as two mirrored drives) 
are also appearing in higher-end desktop PCs.
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random number generation
Computer applications such as simulations, games, and 
graphics applications often need the ability to generate one 
or more random numbers (see simulation and computer 
games). Random numbers can be defined as numbers that 
show no consistent pattern, with each number in the series 
neither affected in any way by the preceding number, nor 
predictable from it.

One way to get random digits is to simply start with an 
arbitrary number with a specified number of digits, perhaps 
10. This first number is called the seed. Multiply the seed by 
a constant number of the same length, and take that number 
of digits off the right end of the product. The result becomes 
the new seed. Multiply it by the original constant to generate 
a new product, and repeat as often as desired. The result is 
a series of digits that appear randomly distributed as though 
generated by throwing a die or spinning a wheel. This type 
of algorithm is called a congruential generator.

The quality of a random number generator is propor-
tional to its period, or the number of numbers it can pro-
duce before a repeating pattern sets in. The period for a 
congruential generator is approximately 232, quite adequate 
for many applications. However, for applications such as 
very large-scale simulations, different algorithms (called 
shift-register and lagged-Fibonacci) can be used, although 

these also have some drawbacks. Combining two different 
types of generators produces the best results. The widely 
used McGill Random Number Generator Super-Duper com-
bines a congruential and a shift-register algorithm.

Generating a random number series from a single seed 
will work fine with most simulations that rely upon gen-
erating random events under the control of probabilities 
(Monte Carlo simulations). However, although the sequence 
of numbers generated from a given seed is randomly distrib-
uted, it is always the same series of numbers for the same 
seed. Thus, a computer poker game that simply used a given 
seed would always generate the same hands for each player. 
What is needed is a large collection of potential seeds from 
which one can be more or less randomly chosen. If there 
are enough possible seeds, the odds of ever getting the same 
series of numbers become vanishingly small.

One way to do this is to read the time (and perhaps date) 
from the computer’s system clock and generate a seed based 
on that value. Since the clock value is in milliseconds, there 
are millions of possible values to choose from. Another 
common technique is to use the interval between the user’s 
keystrokes (in milliseconds). Although they are not perfect, 
these techniques are quite adequate for games.

So-called true random number generators extract ran-
dom numbers from physical phenomena such as a radioac-
tive source (the HotBits service at Fourmilab in Switzerland) 
or even atmospheric noise as detected by a radio receiver. 
For the ultimate in random numbers, researchers have 
looked to quantum processes that are inherently random. 
In 2007 researchers at an institute in Zagreb, Croatia, began 
to offer the Quantum Random Bit Generator Service, which 
is keyed to unpredictable emissions of photons in a semi-
conductor. The output of most random number services can 
be interfaced with MATLAB and other popular mathemati-
cal software packages.

Further Reading
Gentle, James E. Random Number Generation and Monte Carlo 

Methods. 2nd ed. New York: Springer, 2004.
HotBits: Genuine Random Numbers, Generated by Radioactive 

Decay. Available online. URL: http://www.fourmilab.ch/
hotbits/. Accessed August 18, 2007.

“Introduction to Randomness and Random Numbers.” Available 
online. URL: http://www.random.org. Accessed August 18, 
2007.

real-time processing
There are many computer applications (such as air traffic 
control or industrial process control) that require that the 
system respond almost immediately to its inputs.

In designing a real-time system there are always two 
questions to answer: Will it respond quickly enough most 
of the time? How much variation in response time can we 
tolerate? A system that responds to real-time environmental 
conditions (such as the amount of traction or torque acting 
on a car’s wheels) needs to have a sampling rate and a rate 
of processing the sampled data that’s fast enough so that 
the system can correct a dangerous condition in time. The 
responsiveness required of course varies with the situation 
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and with the potential consequences of failure. An air traffic 
control system may be able to take a few seconds between 
processing radar samples, but it better get it right in time. 
Systems like this where real-time response is absolutely 
crucial are sometimes called “hard real-time systems.”

Other systems are less critical. A streaming audio sys-
tem has to keep its buffer full so it can play in real time, 
but if it stutters once in a while, no one’s life is in danger. 
(And since download rates over the Internet can vary for 
many reasons it’s not realistic to expect too perfect a level 
of performance.) A slower “soft real-time system” like a 
bank’s ATM system should be able to respond in tens of sec-
onds, but if it doesn’t, the consequences are mainly poten-
tial loss of customers and revenue. A fairly wide variation in 
response time may be acceptable as long waits don’t occur 
often enough to drive away too many customers.

To put together the system, the engineer must look at 
the inherent speed of the sampling device (such as radar, 
camera, or simply the keyboard buffer). The speed of the 
processor(s) and the time it takes to move data to and from 
memory are also important. The structure, strengths, and 
weaknesses of the host operating system can also be a fac-
tor. Some operating systems (including some versions of 
UNIX) feature a guaranteed maximum response time for 
various operating system services. This can be used to help 
calculate the “worst case scenario”—that combination of 
inputs and the existing state of the system that should result 
in the slowest response.

Another approach available in most operating systems is 
to assign priority to parts of the processing so that the most 
critical situations are guaranteed to receive the attention of 
the system. However, things must be carefully tuned so that 
even lower priority tasks are accomplished in an acceptable 
length of time.

The design of the data structure or database used to 
hold information about the process being monitored is also 
important. In most databases the age of the data is not that 
important. For a payroll system, for example, it might be 
sufficient to run a program once in a while to weed out 
people who are no longer employees. For a nuclear power 
plant, if data is getting too old such that it’s not keep-
ing up with current condition, some sort of alarm or even 
automatic shutdown might be in order. With a system that 
has softer constraints (such as an automatic stock trading 
system), it may be enough to be able to get most trades done 
within a specified time and to gather data about the perfor-
mance of the system so the operators can decide whether it 
needs improvement.

Real-time systems are increasingly important because 
of the importance of the activities (such as air traffic con-
trol and power grids) entrusted to them, and because of 
their pervasive application in everything from cars to cell 
phones to medical monitors (see embedded system and 
medical applications of computers). The systems also 
tend to be increasingly complex because of the increasing 
interconnection of systems. For example, many real-time 
systems have to interact with the Internet, with communi-
cations services, and with ever more sophisticated multime-
dia display systems. Further, many real-time systems must 

use multiple processors (see multiprocessing), which can 
increase the robustness and reliability of the system but 
also the complexity of its architecture, and thus the diffi-
culty in determining and ensuring reliability.

Further Reading
Buttazzo, Giorgio C. Hard Real-Time Computing Systems: Predict-

able Scheduling Algorithms and Applications. 2nd ed. New 
York: Springer, 2005.

Cheng, Albert M. K. Real-Time Systems: Scheduling, Analysis, and 
Verification. Hoboken, N.J.: Wiley, 2002.

Resources for Real-Time Computing. TechRepublic. Available 
online. URL: http://search.techrepublic.com.com/search/ 
real-time+computing.html. Accessed August 19, 2007.

recursion
Even beginning programmers are familiar with the idea 
that a series of program statements can be executed repeat-
edly as long as (or until) some condition is met (see loop). 
For example, consider this simple function in Pascal. It 
calculates the factorial of an integer, which is equal to the 
product of all the integers from 1 to the number. Thus fac-
torial 5, or 5! = 1 * 2 * 3 * 4 * 5 = 120.

Function Factorial (n: integer) : integer
Begin

i: integer;
For i = 1 to n do

Factorial := Factorial * i;
End.

If the main program has the line:

Writelin (Factorial (5));

then the 5 is sent to the function, where the loop simply 
multiplies the numbers from 1 to 5 and returns 120.

However, it is also possible to have a function call itself 
repeatedly until a specified condition is met. This is called 

In recursion, a procedure calls itself until some defined condition 
is met. In this example of a Factorial procedure, F(1) is defined to 
return 1. Once it does, the returned value is plugged into its caller, 
which then returns the value of 1 * 2 to its caller, and so on.
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recursion, and it allows for some compact but powerful 
coding. A recursive version of the Factorial function in Pas-
cal might look like this:

function Factorial (n:integer) :integer
begin

if (n = 1) then
Factorial := 1

else
Factorial := Factorial (n - 1) * n;

end;

Why does this work? An alternative way to define a fac-
torial is to say that the factorial of a number is that number 
times the factorial of one less than the number. Thus, the 
factorial of 5 is equal to 5 * 4! or 5 * 4 * 3 * 2 * 1. But in turn 
the factorial of 4 would be equal to 4 * (3 * 2 * 1), and so on 
down to the factorial of 1, which is simply 1. Thus, in general 
terms the factorial of n is equal to n * factorial (n - 1).

What happens if this function is called by the program 
statement:

Writeln (“Factorial of 5 is ”); Factorial (5)

First, the Factorial function is called with the value 5 
assigned to n. The If statement checks and sees that n is 
not 1, so it calls factorial (i.e., itself) with the value of n - 1, 
or 4. This new instance of the factorial function gets the 
4, sees that it is not 1, and calls factorial again with n - 1, 
which is now 4 - 1 or 3. This continues until n is 2, at which 
point factorial 1 is called. But this time n is 1, so it returns 
the value of 1 rather than calling itself yet again.

Now the returned value of 1 replaces the call to Facto-
rial (n - 1) in the preceding instance of Factorial (where n 
had been 2). That 1 is therefore multiplied by 2, and 1 * 
2 = 2 is returned to the preceding instance, where n had 
been 3. Now that 2 gets multiplied by 3 and returned to the 
instance where n had been 4. This continues until we’re 
back at the first call to factorial 5, where the value of 4 * 3 * 
2 * 1 now gets multiplied by that 5, giving 120, or factorial 
5. (See the accompanying diagram for help in visualizing 
this process.)

A Recursive Sorting Algorithm
In the preceding example recursion does no more than a 
simple loop could, but many problems lend themselves more 
naturally to a recursive formulation. For example, suppose 
you have an algorithm to merge (combine) two lists of inte-
gers that have been sorted into ascending values. The proce-
dure simply takes the smaller of the two numbers at the front 
of the two lists until one list runs out of numbers (any num-
bers in the remaining list can then simply be included).

Using an English-like syntax, one can write a recursive 
procedure to sort a list of numbers by calling itself repeat-
edly, then using the Merge procedure:

Procedure Sort
Begin

If the list has only one item, return
Else

Sort the first half of the list

Sort the second half of the list
Merge the two sorted lists

End If
End (Sort)

Sort will call itself until one of the lists has only one 
item (which by definition is “sorted”), and the Merge proce-
dure will build the sorted list.

To implement recursion, the run-time system for the 
language must use an area of memory (see stack) to tem-
porarily store the values associated with each instance of a 
function as it calls itself. Depending on the implementation, 
there may be a limit on how many levels of recursion are 
allowed, or on the size of the stack. (However, the plentiful 
supply of available memory on most systems today makes 
this less of an issue.)

The first generation of high-level computer languages 
(such as FORTRAN and COBOL) did not allow recursion. 
However, the second generation of procedural languages 
starting around 1960 with Algol, as well as successors such 
as Pascal and C do allow recursion. The LISP language 
(see LISP and functional languages) uses recursive 
definitions extensively, and recursion turns out to be very 
useful for processing the grammars for artificial and natu-
ral languages (see parsing). Recursion can also be used 
to generate interesting forms of graphics (see fractals in 
computing).
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August 19, 2007.
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reduced instruction set computer  (RISC)
All things being equal, the trend in computer design is 
to continually add new features. There are several reasons 
why this is the case with computer processors:

• � to create a “family” of upwardly compatible computers 
(see compatability and portability)

• � to make a new machine more competitive with exist-
ing systems, or to give it a competitive advantage

• � to make it easier to write compilers for popular lan-
guages

• � to allow for more operations to be done with one 
(or a few) instructions rather than requiring many 
instructions

There are certainly exceptions to the trend toward com-
plexity. The minicomputer, for example, represented in 
some ways a simplification of the exiting mainframe design. 
It didn’t have as many ways of working with memory (see 
addressing) and lacked the multiple input/output “chan-
nels” and their separate processors. But once minicom-
puters were introduced and achieved success, the same 
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competitive and other pressures led their designers to start 
adding complexity.

One way processor designers coped with the demand 
for more complicated instructions was to give the main pro-
cessor a microprocessor with its own set of simple instruc-
tions. When the main processor received one of the complex 
instructions, it would be executed by being broken down 
into simpler instructions or “microcode” to be executed by 
the sub-processor.

This approach gave processor designers greater flex-
ibility. It also made things easier for compiler designers, 
because the compiler could translate higher-level language 
statements into fewer, more complex instructions, leaving 
it to the hardware with its micro engine to break them 
down into the ultimate machine operations. However, it 
also meant that the processor had to decode and execute 
more instructions in every processor cycle, making it less 
efficient and slower and losing some of the benefits of the 
faster processors that were becoming available.

In 1975, John Cocke and his colleagues at IBM decided 
to build a new minicomputer architecture from the ground 
up. Instead of using complex instructions and decoding 
them with a micro engine, they would use only simple 
instructions that could be executed one per cycle. The clock 
(and thus the cycle time) would be much faster than for 
existing machines, and the processor would use pipelining 
so it could decode the next instruction while still executing 
the previous one. Similarly, in many cases the next item 
of data needed could be fetched at the same time the data 
from the previous step was being written (stored). This 
approach became known as reduced instruction set com-
puting (RISC), because the number of instructions had been 
reduced compared to exiting systems, which then became 
known as complex instruction set computing (CISC).

Since the RISC system had only simple instructions, 
compilers could no longer use many complicated but handy 
instructions. The compiler would have to take over the job 
of the micro engine and break all statements down into 
the basic instructions. It became important that the com-
piler be able to generate the optimal set of instructions by 
analyzing how data would have to be moved around in 
the machine’s registers and memory. In other words, RISC 
hardware gained higher performance through simplification 
at the hardware level but at the cost of making compilers 
more complicated. Fortunately, both hardware and software 
designers were able to meet the challenge and in the process 
learn how to get the most out of new technology.

RISC would also play a part in the design of the micro-
processors that began to power personal computers. For 
example, the DEC Alpha, a “pure” RISC chip introduced 
in 1992, provided a level of power that made it suitable for 
high-performance workstations. Another successful RISC-
based development has been the SPARC (Scalable Processor 
ARChitecture) developed by Sun Microsystems for servers, 
computer clusters, and workstations.

Perhaps the most interesting development, however, has 
been the gradual application of RISC principles to main-
stream processors such as the Intel 80×86 series used in 
most personal computers today. Increasingly, the recent 

Pentium series chips, while supporting their legacy of CISC 
instructions, are processing them using an inner architec-
ture that uses RISC principles and takes advantage of pipe-
lining, as well as using more registers and a larger data 
cache. However, the sheer increase in clock cycle speed and 
performance in the newer chips has made the old tradeoff 
between complicated and simple instructions less relevant.

Further Reading
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regular expression
Many users of UNIX and the old MS-DOS are familiar with 
the ability to use “wildcards” to find filenames that match 
specified patterns. For example, suppose a user wants to list 
all of the TIF graphics files in a particular directory. Since 
these files have the extension .tif, a UNIX ls command or a 
DOS dir command, when given the pattern *.tif, will match 
and list all the TIF files. (One does have to be aware of 
whether the operating system in question is case-sensitive. 
UNIX is, while MS-DOS is not.)

The specification *.tif tells the command “match all files 
whose names consist of one or more characters and that end 
with a period followed by the letters tif.” It is one of many 
possible regular expressions. (See the accompanying table 
for more examples.) The asterisk here is a “metacharacter.” 
This means that it is not treated as a literal character, but as 
a pattern that will be matched in a specified way.

Most operating systems that have command processors 
(see shell) allow for some form of regular expressions, but 
don’t necessarily implement all of the metacharacters. UNIX 
provides the most extensive use for regular expressions (see 
UNIX). UNIX has an operating system facility called glob 
that expands regular expressions (that is, substitutes for 
them whatever matches) and passes them on to the many 
UNIX tools or utilities designed to work with regular expres-
sions. These tools include editors such as ex and vi, the 
character translation utility (tr), the “stream editor” (sed), 
and the string-searching tool grep. For example, sed can be 
used to remove all blank lines from a file by specifying

sed ‘s/^$/d’ list.txt

This command finds all lines with no characters (̂ $) in 
the file list.txt and deletes them from the output. Even more 
extensive use of pattern-matching with regular expressions 
is found in many scripting languages (see scripting lan-
guages, awk, and Perl).

It is true that most of today’s computer users don’t enter 
operating system commands in text form but instead use 
menus and manipulate icons (see user interface and 
Microsoft Windows). If such a user wants to change one 
word to another throughout a word processing document, 
he or she is likely to open the Edit menu, select Find, 
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and type the “before” and “after” words into a dialog box. 
However, even in such cases if the user has some familiar-
ity with regular expressions, more sophisticated substitu-
tions can be accomplished. In Microsoft Word, for example, 
a variety of wildcards (i.e., metacharacters) can be used 
for operations that would be hard to accomplish through 
mouse selections.

Further Reading
Friedl, Jeffrey. Mastering Regular Expressions. 3rd ed. Sebastapol, 

Calif.: O’Reilly, 2006.
Regular Expressions Tutorial, Tools & Languages, Examples, 
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Watt, Andrew. Beginning Regular Expressions. Indianapolis: Wiley, 
2005.

research laboratories in computing
The value of creating and maintaining environments for 
long-term research in computer science and engineering 
has long been recognized by academic institutions, indus-
try organizations, and corporations.

Academic Research Institutions
Artificial intelligence and robotics have been the focus of 
many academic computer science research facilities (see 
artificial intelligence and robotics). They are exam-
ples of areas that show great potential but that demand 
a substantial investment in long-term research. There are 
many research organizations in the AI field, but a few stand 
out as particularly important examples.

The Massachusetts Institute of Technology (MIT) Arti-
ficial Intelligence Lab has a wide-ranging program but has 
emphasized robotics and related fields such as computer 
vision and language processing.

The MIT Media Lab has become well known for work 
with new media technologies and the digital and graphi-
cal representation of data. However, in recent years it has 

expanded its focus to the broader area of human-machine 
interaction and the pervasive presence of intelligent devices 
in the home and larger environment.

The Stanford Artificial Intelligence Laboratory (SAIL) 
played an important role in the development of the LISP 
language (see LISP) and other AI research. Today Stanford’s 
important role in AI is continued by its Robotics Laboratory 
and the Knowledge Systems Laboratory. Carnegie Mellon 
University also has a number of influential AI labs and 
research projects.

On the international scene Japan has had strong research 
programs in academic and industrial AI, such as the Neural 
Computing Center at Keio University and the Knowledge-
Based Systems Laboratory at Shizuoka University. There are 
a number of important AI research groups in the United 
Kingdom, such as at Cambridge, Oxford, King’s College, 
and the University of Edinburgh (where the logic language 
Prolog was developed).

Some of the most interesting research sometimes 
emerges from outside the main concerns of an institution. 
The World Wide Web, for example, was developed by Tim 
Berners-Lee (see Berners-Lee, Tim) while he was working 
with the coordination of scientific computing at CERN, the 
giant European particle physics laboratory.

Corporate Research Institutions
The challenging nature of computer applications and the 
competitiveness of the industry have also led a number of 
major companies to underwrite permanent research institu-
tions. Much corporate-funded research has gone into devel-
oping the basic infrastructure of computing rather than to 
the more esoteric topics pursued by academic departments. 
However, corporations have also funded “pure” research 
that may have little short-term application but can ulti-
mately lead to new technologies.

The concept of the industrial laboratory is often attrib-
uted to Thomas Edison, whose famous Menlo Park, New 
Jersey, facility (founded in 1876) put experimentation and 
development of new inventions on a systematic, continuous 
basis. Instead of an invention forming the basis for a com-
pany, Edison saw invention itself as the core business.

METACHARACTERS IN REGULAR EXPRESSIONS

Metacharacter	 Meaning

. (period)	 Matches any single character in that position
?	 Matches zero or one of any character
*	 Matches zero or more of the preceding character (thus * matches any number of characters)
+	 Matches one or more of the preceding character (thus 9+ matches 9, 99, 999, etc.)
[ ]	 Matches any of the characters enclosed by the brackets
–	� Specifies a range of characters. Placing the range in brackets will match any character within the 

range. For example, [0–9] matches any digit, [A–Z] matches any uppercase character, and [A–Za–z] 
matches any alphabetic character.

\	� “Quotes” the following character. If it is a metacharacter, the following character will be treated as an 
ordinary character. Thus \? matches an actual question mark.

^	 Matches the beginning of a line
$	 Matches the end of a line
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A similar approach motivated the founding of Bell Labo-
ratories. Bell Labs would play a direct role in making mod-
ern digital electronics possible when three of its researchers, 
John Bardeen, Walter H. Brattain, and William B. Shockley 
invented the transistor in 1947.

On the software side, Bell supported the work of Claude 
Shannon, whose fundamental theorems of information 
transmission would become a key to the design of the com-
puter networks (see Shannon, Claude). The development 
of the UNIX operating system at Bell in the early 1970s (see 
Ritchie, Dennis and UNIX) would provide much of the 
infrastructure that would be used for computing at univer-
sities and other research institutions and ultimately in the 
development of the Internet. Similarly, Ritchie and Thomp-
son also developed C, the language that together with its 
offshoots C++ and Java would become the most widely used 
general-purpose programming languages for the rest of the 
century and beyond.

IBM built its first research lab in 1945, beginning a 
network that would eventually include facilities in Switzer-
land, Israel, Japan, China, and India. IBM research has gen-
erally focused on core hardware and software technologies, 
including the development of the first hard drive in 1956 
and the development of the FORTRAN language by John 
Backus in 1957 (see FORTRAN). Other IBM innovations 
have included online commerce (the SABRE airline reserva-
tion system), the relational database, and the first prototype 
RISC (reduced instruction set computer).

Xerox is best known for its photocopiers and printers, 
but in the late 1960s the company decided to try to diversify 
its products by recasting itself as developer of a comprehen-
sive “architecture of information” in the office. During the 
1970s, its Palo Alto Research Center (PARC) invented much 
of the technology (such as the mouse, graphical user inter-
face, and notebook computer) that would become familiar 
to consumers a decade later in the Macintosh and Microsoft 
Windows.

In 1991, Microsoft, then a medium-sized company, 
established its Microsoft Research division, which has 
since grown to include four laboratories in Redmond, 
Washington, the San Francisco Bay Area, Cambridge, 
England, and Beijing. The labs maintain close ties with 
universities, and their research areas have included data 
mining and analysis, geographic information systems 
(Terraserver), natural language processing, and computer 
conferencing and collaboration.

The role of government agencies in funding com-
puter-related research should not be overlooked (see 
government funding of computer research). The 
Internet evolved from a project funded by the Depart-
ment of Defense’s ARPA (Advanced Research Projects 
Agency) in 1968 (see Internet). The network architec-
ture and hardware in turn were developed by a contrac-
tor, Bolt, Beranek and Newman (BBN). In the late 1970s, 
the Defense Department would issue contracts for devel-
opment of the Ada computer language. Other projects 
funded by Defense and other government agencies can be 
found in areas such as robotics, autonomous vehicles, and 
mapping systems.

Coordinating Research
Two large professional organizations for computer scien-
tists and engineers, the Association for Computing Machin-
ery (ACM) and the Computer Society of the Institute of 
Electrical and Electronics Engineers (IEEE), serve as clear-
inghouses and disseminators of research. The Computing 
Research Association (CRA) brings together more than 200 
North American university computer science departments, 
government-funded research institutions, and corporate 
research laboratories. Its goal is to improve the opportuni-
ties for and quality of research and education in the com-
puter field. (For contact information for these and other 
selected computer-related organizations, see Appendix IV.)

Other Types of Research
The social impact of computing technology is also the sub-
ject of considerable ongoing research. Topics include con-
sumer behavior, the use of media, and sociological analysis 
of online communities. A particularly useful effort is the 
extensive surveys and overviews produced by the Pew Cen-
ter for the Internet and American Life project. The com-
puter hardware, software, and e-commerce sectors are of 
course also the subject of research by economists, experts 
in organizational behavior, investment analysts, and so on.
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reverse engineering
Back in the days of mechanical clocks, curious kids would 
sometimes take a clock apart to try to figure out how it 
worked. A few were even able to reassemble the clock cor-
rectly—these youngsters were likely to become engineers! 
With software, reverse engineering is the process of “taking 
apart” software and analyzing its operation without having 
access to the program code itself. Among other possibili-
ties, reverse engineering may allow one to:

• � provide equivalent functions without violating copy-
right laws

• � emulate one operating system within another (see 
emulation)

• � determine a file format so other programs can use it 
as well (interoperability)

• � document the operation of a program whose docu-
mentation is lost or no longer available

• � determine whether a competing product violates one’s 
patents or copyrights
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Techniques
Reverse engineering can be thought of as running the devel-
opment process backwards (see software development). 
Instead of starting with the specification of the system and 
writing code, one starts with the operating program and 
constructs a detailed description of its organization. Several 
general techniques can be used:

• � disassembly (turning the machine-level code into 
somewhat higher-level code with symbolic labels, etc.) 
(see assembler)

• � decompilation (which attempts to turn machine code 
into a higher-level language such as C) (see compiler)

• � systematically supplying data of various types and 
analyzing the program’s response (this is especially 
used when analyzing communications protocols)

Perhaps the most significant example of reverse engi-
neering occurred in the early 1980s when competitors 
reverse engineered the built-in code (see BIOS) that con-
trolled the low-level functions of the original IBM PC, thus 
enabling the manufacture of legal “clones” by such compa-
nies as Compaq. This was done by creating a “clean room” 
staffed with engineers who had no involvement with IBM 
and were not privy to any of the internal secrets of the BIOS.

Reverse engineering has been widely used to provide 
open-source implementations of formerly proprietary tech-
nologies. Examples include Samba (Windows SMB file 
sharing), Open Office (similar to Microsoft Office), Mono 
(Windows .NET API), and especially Windows emulators 
for Linux such as Wine.

Generally, under the Digital Millennium Copyright Act 
of 1998, courts have been sympathetic to reverse engineer-
ing that enables users to exercise what would be consid-
ered “fair use” under copyright laws or to provide more 
widespread compatibility with other products. However, 
reverse engineering may be illegal when the intent is to 
bypass software “locks” (see copy protection) in order to 
make illegal copies, or when the machine code is copied or 
manipulated (such as by decompiling).

There are a number of ways in which reverse engineer-
ing (or similar practices) can be applied to technology other 
than software. Perhaps the most unusual example was the 
successful reconstruction of an ancient Greek astronomical 
calculator called the Antikythera mechanism. In general, 
the process of reverse engineering, by spreading knowledge 
of how to access and interface systems and provide func-
tionality, ultimately contributes to the development of new 
technology and software.
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RFID  (radio frequency identification)
For some years now people have become used to swip-
ing credit or debit cards to buy things in stores, or have 
used magnetic cards to access transit systems. Increasingly, 
however, the information needed for identification, whether 
of goods in a warehouse or customers in a store, is being 
scanned wirelessly using radio frequency identification 
(RFID) systems.

An RFID system uses a tag or card (see smart card) 
that is able to store and modify information in memory, 
together with a tiny antenna and transmitter for communi-
cating the information.

Passive vs. Active
Passive RFID tags have no power supply; the power induced 
by the reading signal is used to transmit the response. 
Because this power is very small, passive tags can only be 
read at distances from about 4 inches (10 cm) to a few yards 
(meters), depending on the antenna size and type. The main 
advantage of passive tags is that the lack of a battery makes 
them small, lightweight, and inexpensive, making them 
ideal for attaching to merchandise (they have also been 
embedded under the skin of pets and, in a few cases, even 
people). Smart cards for use in transit systems and similar 
applications are also passive; the system is activated by 
“tagging” or bringing the card near the reader.

Active RFID tags have their own battery. Their advan-
tage is that they are able to initiate communication with 
the reader, and the signal they send is much stronger, more 
reliable, and with greater range (up to about 1,500 feet 
[500 m]). The stronger signal allows for communication in 
rougher environments (such as outdoors for tracking cattle 
or shipping containers).

There is also a sort of hybrid called a semipassive tag. This 
also has a battery, but only uses it for internal processing, not 
sending signals. The tag can gather information (such as log-
ging temperature) and send it when queried by a reader.

Current uses for RFID tags and cards of various types 
include:

• � automatic fare payments systems for transit systems

• � automatic toll payments for bridges and turnpikes

• � automatic book checkout systems for libraries, where 
it reduces repetitive strain injury (RSI) in staff and 
simplifies checking shelves

• � student ID cards

• � passports (RFID has been included in new U.S. pass-
ports since 2006)

• � tracking cattle, including determining the origin of 
unhealthy animals
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• � identification chips placed beneath the skin of pets

• � experimental human RFID implants (pioneered by 
British computer scientist Kevin Warwick) and now 
used by VIP customers in a few nightclubs

• � tracking goods from original shipment to inventory 
(Wal-Mart now requires its major suppliers to include 
RFID labels with shipments)

• � scientific sensors, such as seismographic instruments

Privacy and Security Issues
The benefits of RFID technology are numerous: better 
inventory control (see supply chain management); more 
secure passports and other forms of ID; faster, easier access 
to transportation systems; and potentially, the avoidance of 

mishaps in hospitals, such as the wrong patient receiving a 
drug or procedure.

However, there are privacy and security concerns that 
remain to be fully resolved. The primary threat is that 
unauthorized persons could illicitly obtain information or 
track people or goods, for purposes ranging from simple 
larceny to identity theft. Privacy rights organizations have 
also raised concerns that information about consumer pur-
chases could be used for unwanted marketing (or sold to 
third parties), while information about a library patron’s 
reading habits could trigger unwarranted government 
investigations in the name of fighting terrorism.

There is an incentive to produce RFID cards and tags 
that are resistant to unauthorized reading or tampering. A 
cryptographic protocol can be used such that no information 
will be sent or received unless the reader and tag “know” the 
correct keys. Another possibility is to create a device that 
can “jam” reading attempts in the device’s vicinity, perhaps 
protecting a customer’s grocery cart from being scanned. 
Finally, RFID cards can be put inside in a sleeve of material 
that blocks the signals. However, cryptographic and other 
security technologies raise the cost of RFID devices and may 
make them impracticable for some applications.

In September 2006 the National Science Foundation 
awarded a $1.1 million grant to the RFID Consortium for 
Security and Privacy to study potential risks and safeguards 
for the technology. That same year a group of major cor-
porations together with the National Consumers League 
released a draft set of standards and guidelines for best 
practices in using RFID, with broader scope than the exist-
ing EPC (electronic product code) standards.
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Parts of an RFID system. Depending on whether the chip is active or passive, the reader can be inches or yards away.

A Radio Frequency ID (RFID) “chip” from 3M. RFID is finding 
many applications, but has also raised privacy concerns.   
(3M Corporation) 
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Rheingold, Howard
(1947–  )
American
Writer

On his Web site, Howard Rheingold says that he “fell into 
the computer realm from the typewriter dimension, then 
plugged his computer into his telephone and got sucked 
into the net.” A prolific writer, explorer of the interaction 
of human consciousness and technology, and chronicler of 
virtual communities, Rheingold has helped people from stu-
dents to businesspersons to legislators understand the social 
significance of the Internet and communications revolution.

Born on July 17, 1947, in Phoenix, Arizona, he was later 
educated at Reed College in Portland, Oregon, but lived and 
worked for most of his life in the San Francisco Bay Area. 
A child of the counterculture, his interests included the 
exploration of consciousness and cognitive psychology. His 
books in this area would include Higher Creativity (written 
with Willis Harman, 1984), The Cognitive Connections (writ-
ten with Howard Levine, 1986), and Exploring the World 
of Lucid Dreaming (written with Stephen LaBerge, 1990). 
In 1994 he updated the Whole Earth Catalog, a remarkable 
resource book by Stewart Brand that had become a bible for 
the movement toward a more self-sufficient and human-
scale life in the 1970s.

Rheingold bought his first personal computer, mainly 
because he thought word processing would make his work 
as a writer easier. In 1983 he bought a modem and was soon 
intrigued by the thousands of PC bulletin board systems 
that were an important way to share files and ideas in the 
days before the World Wide Web (see bulletin board sys-
tems). Interacting with these often tiny cyberspace villages 
helped Rheingold explore his developing ideas about the 
nature and significance of virtual communities.

In 1985 Rheingold joined The WELL (Whole Earth ’Lec-
tronic Link), a unique and remarkably persistent commu-
nity that began as an unlikely meeting place of Deadheads 
(Grateful Dead fans) and computer hackers. Compared to 
most bulletin boards, the WELL was more like the virtual 
equivalent of the cosmopolitan San Francisco Bay Area.

The sum and evaluation of these experiences can be 
found in what is perhaps Rheingold’s most seminal book, 
The Virtual Community (1993; revised, 2000), which repre-
sents both a participant’s and an observer’s tour through the 
online meeting places that had begun to function as com-

munities (see virtual community). Rheingold chronicled 
the romances, feuds (“flame wars”), and growing pains that 
made The WELL seem much like a small town or perhaps 
an artist’s colony that just happened to be in cyberspace.

In addition to The WELL, Rheingold also explores 
MUDs (Multi-User Dungeons) and other elaborate online 
fantasy role-playing games, NetNews (also called Usenet) 
groups, chat rooms, and other forms of online interaction 
(see conferencing systems and netnews and news-
groups). Rheingold continues to manage the Brainstorms 
Community, a private Web-conferencing community that 
allows for thoughtful discussions about a variety of topics.

Rheingold saw the computer (and computer networks 
in particular) as a powerful tool for creating new forms 
of community. The original edition of his book Tools for 
Thought (1985 and revised 2000), with its description of 
the potential of computer-mediated communications, seems 
prescient today after a decade of the Web. Rheingold’s Vir-
tual Reality (1991) introduced that immersive technology.

Around 1999 Rheingold started noticing the emergence 
of a different kind of virtual community—a mobile, highly 
flexible, and adaptive one. In his book Smart Mobs, Rhein
gold gives examples of groups of teenagers coordinating 
their activities by sending each other text messages on their 
cell phones (see flash mobs). Rheingold believes that the 
combination of mobile and network technology may be cre-
ating a social revolution as important as that triggered by 
the PC in the 1980s and the Internet in the 1990s.

In 1996 Rheingold launched Electric Minds, an innova-
tive company that tried to offer virtual-community-build-
ing services while attracting enough revenue from contract 
work and advertising to become self-sustaining and profit-
able in about three years. He received financing from the 
venture capital firm Softbank. However, the company failed, 
and Rheingold came to believe that there was a fundamen-
tal mismatch between the profit objectives of most venture 
capitalists and the patience needed to cultivate and grow a 
new social enterprise. Rheingold then started a more mod-
est effort, Rheingold Associates.

According to Rheingold and coauthor Lisa Kimball, some 
of the benefits of creating such communities include the abil-
ity to get essential knowledge to the community in times 
of emergency, to connect people who might ordinarily be 
divided by geography or interests, to “amplify innovation,” 
and to “create a community memory” that prevents impor-
tant ideas from getting lost. Rheingold continues to both 
create and write about new virtual communities, working 
through such efforts as the Cooperation Commons (a collab-
oration with the Institute for the Future). He is also a nonres-
ident Fellow of the Annenberg School for Communication.

Rheingold’s writings have garnered a variety of awards. 
In 2003 Utne Reader magazine gave an Independent Press 
Award for a blog based on Smart Mobs. That year Rheingold 
also gave the keynote speech for the annual Webby Awards 
for Web-site design.
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risks of computing
Programmers and managers of software development are 
generally aware of the need for software to properly deal 
with erroneous data (see error handling). They know 
that any significant program will have bugs that must be 
rooted out (see bugs and debugging). Good software engi-
neering practices and a systematic approach to assuring the 
reliability and quality of software can minimize problems 
in the finished product (see software engineering and 
quality assurance, software). However, serious bugs are 
not always caught, and sometimes the consequences can be 
catastrophic. For example, in the Therac 25 computerized 
X-ray cancer treatment machine, poorly thought-out com-
mand entry routines plus a counter overflow resulted in 
three patients being killed by massive X-ray overdoses. The 
overdoses ultimately occurred because the designers had 
removed a physical interlock mechanism they believed was 
no longer necessary.

Any computer application is part of a much larger envi-
ronment of humans and machines, where unforeseen inter-
actions can cause problems ranging from inconvenience to 
loss of privacy to potential injury or death. Seeing these 
potential pitfalls requires thinking beyond the specifica-
tions and needs of a particular project. For many years the 
Usenet newsgroup comp.risks (and its collected form, Risks 
Digest) have chronicled what amounts to an ongoing sym-
posium where knowledgeable programmers, engineers, and 
others have pointed out potential risks in new technology 
and suggested ways to minimize them.

Unexpected Situations
A common source of risks arises from designers of con-
trol systems failing to anticipate extreme or unusual envi-
ronmental conditions (or interactions between conditions). 
This is a particular problem for mobile robots, which unlike 
their tethered industrial counterparts must share elevators, 
corridors, and other places with human beings. For exam-
ple, a hospital robot was not designed to recognize when it 

was blocking an elevator door—a situation that could have 
blocked a patient being rushed into surgery. A basic princi-
ple of coping with unexpected situations is to try to design 
a fail-safe mode that does not make the situation worse. For 
example, an automatic door should be designed so that if it 
fails it can be opened manually rather than trapping people 
in a fire or other disaster.

Unanticipated Interactions
The more systems there are that can respond to external 
inputs, the greater the risk that a spurious input might trig-
ger an unexpected and dangerous response. For example, 
the growing number of radio-controlled (wireless) devices 
have great potential for unexpected interactions between 
different devices. In one case reported to the Risks Forum, a 
Swedish policeman’s handheld radio inadvertently activated 
his car’s airbag, which slammed the radio into him. Several 
military helicopters have crashed because of radio interfer-
ence. Banning the use of electronic devices at certain times 
and places (for example, aboard an aircraft that is taking off 
or landing) can help minimize interference with the most 
safety-critical systems.

At the same time, regulations themselves introduce the 
risk that people will engage in other forms of risky behavior 
in an attempt to either follow or circumvent the rule. For 
example, the Japanese bullet train system imposed a stiff 
penalty for operators who failed to wear a hat. In one case 
an operator left the train cabin to retrieve his hat while the 
train kept running unsupervised. This minor incident actu-
ally conceals two additional sorts of risks—that of automat-
ing a system so much that humans no longer pay attention, 
and the inability of the system to sense the lack of human 
supervision.

Unanticipated Use of Data
The growing number of different databases that track even 
the intimate details of individual lives has raised many pri-
vacy issues (see privacy in the digital age). Designers and 
maintainers of such databases had some awareness of the 
threat of unauthorized persons breaking into systems and 
stealing such data (see computer crime and security). 
However, most people were surprised and alarmed by the 
new crime of identity theft, which began to surface in signifi-
cant numbers in the mid- to late-1990s (see identity theft).

It turned out that while a given database (such as cus-
tomer records, bank information, illicitly obtained DMV 
records, and so on) usually did not have enough informa-
tion to allow someone to successfully impersonate another’s 
identity, it was not difficult to use several of these sources 
together to obtain, for example, the information needed to 
apply for credit in another’s name. In particular, while most 
people guarded their credit card numbers, they tended not 
to worry as much about Social Security numbers (SSN). 
However, since many institutions use the SSN to index 
their records, the number has become a key for unlocking 
personal data.

Further, as more organizations put their records online 
and make them Web-accessible, the ability of hackers, pri-
vate investigators (legitimate or not), and “data brokerage” 
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services to quickly assemble a dossier of sensitive informa-
tion on any individual was greatly increased. Here we have 
a case where a powerful tool for productivity (the Internet) 
also becomes a facilitator for using the vulnerabilities in 
any one system to compromise others.

In an increasingly networked and technologically-depen-
dent world, the anticipation and prevention of computer 
risks has become very important. To the extent companies 
may be legally liable for the more direct forms of risk, there 
is more incentive for them to devote resources to risk ame-
lioration. However, many computer-related risks are at least 
as much social as technological in nature, and are beyond 
the scope of concern of any one company or organization. 
Social risks ultimately demand a broader social response.

Technology itself can be used to help ameliorate techno-
logical risks. Artificial intelligence techniques (see expert 
systems and neural network) might be used improve the 
ability of a system to adapt to unusual conditions. However, 
any such programming then becomes prone to bugs and 
risks itself.

So far, the most successful way to deal with the broad 
range of computer risks has been through human collabora-
tion as facilitated by the Internet. Through venues such as 
the Risks Forum computer-mediated communications and 
collaboration allows for the pooling of human intelligence in 
the face of the growing complexity of human inventiveness.
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Ritchie, Dennis
(1941–  )
American
Computer Scientist

Together with Ken Thompson, Dennis Ritchie developed 
the UNIX operating system and the C programming lan-
guage—two tools that have had a tremendous impact on 
the world of computing for three decades.

Ritchie was born on September 9, 1941, in Bronxville, 
New York. He was exposed to communications technology 
and electronics from an early age because his father was 
director of the Switching Systems Engineering Laboratory 
at Bell Laboratories. (Switching theory is closely akin 
to computer logic design.) Ritchie attended Harvard Uni-
versity and graduated with a B.S. in physics. However, by 
then his interests had shifted to applied mathematics and in 
particular, the mathematics of computation, which he later 
described as “the theory of what machines can possibly 
do” (see computability and complexity). For his doctoral 
thesis he wrote about recursive functions (see recursion). 

This topic was proving to be important for the definition of 
new computer languages in the 1960s (see Algol).

In 1967, however, Ritchie decided that he had had enough 
of the academic world. Without finishing the requirements 
for his doctorate, he started work at Bell Labs, his father’s 
employer. Bell Labs has made a number of key contributions 
to communications and information theory (see research 
laboratories in computing).

By the late 1960s, computer operating systems had 
become increasingly complex and unwieldy. As typified by 
the commercially successful IBM System/360, the operating 
system was proprietary, had many hardware-specific func-
tions and tradeoffs in order to support a family of upwardly 
compatible computer models, and was designed with a top-
down approach.

During his graduate studies, however, Ritchie had 
encountered a different approach to designing an operating 
system. A new system called Multics was being designed 
jointly by Bell Labs, MIT, and General Electric. Multics was 
quite different from the batch-processing world of main-
frames: It was intended to allow many users to share a 
computer. He had also done some work with MIT’s Project 

Together with Ken Thompson, Dennis Ritchie developed the UNIX 
operating system and the C programming language, two of the 
most important developments in the history of computing.  (Photo 
courtesy of Lucent Technologies’ Bell Labs)
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Mac. The MIT computer students, the original “hackers” (in 
the positive meaning of the term), emphasized a coopera-
tive approach to designing tools for writing programs. This, 
too, was quite different from IBM’s highly structured and 
centralized approach.

Unfortunately, the Multics project itself grew increas-
ingly unwieldy. Bell Labs withdrew from the Multics proj-
ect in 1969. Ritchie and his colleague Ken Thompson then 
decided to apply many of the same principles to creating 
their own operating system. Bell Labs wasn’t in a mood to 
support another operating system project, but they eventu-
ally let Ritchie and Thompson use a DEC PDP-7 minicom-
puter. Although small and already obsolete, the machine 
did have a graphics display and a Teletype terminal that 
made it suitable for the kind of interactive programming 
they preferred. They decided to call their system UNIX, 
punning on Multics by suggesting something that was sim-
pler and better integrated.

Instead of designing from the top down, Ritchie and 
Thompson worked from the bottom up. They designed a 
way to store data on the machine’s disk drive (see file), and 
gradually wrote the necessary utility programs for listing, 
copying, and otherwise working with the files. Thompson 
did the bulk of the work on writing the operating system, 
but Ritchie did make key contributions such as the idea that 
devices (such as the keyboard and printer) would be treated 
the same way as other files. Later, he reconceived data con-
nections as “streams” that could connect not only files and 
devices but applications and data being sent using different 
protocols. The ability to flexibly assign input and output, as 
well as to direct data from one program to another, would 
become hallmarks of UNIX.

When Ritchie and Thompson successfully demonstrated 
UNIX, Bell Labs adopted the system for its internal use. 
UNIX turned out to be ideal for exploiting the capabilities 
of the new PDP-11 minicomputer. As Bell licensed UNIX to 
outside users, a unique community of user-programmers 
began to contribute their own UNIX utilities (see open-
source movement).

In the early 1970s, Ritchie also collaborated with Thomp-
son in creating C, a streamlined version of the earlier BCPL 
and CPL languages. C would be a “small” language that 
was independent of any one machine but could be linked 
to many kinds of hardware thanks to its ability to directly 
manipulate the contents of memory. C became tremendously 
successful in the 1980s. Since then, C and its offshoots C++ 
and Java became the dominant languages used for most pro-
gramming today.

Ritchie still works at Bell Labs’s Computing Sciences 
Research Center. (When AT&T spun off many of its divi-
sions, Bell Labs became part of Lucent Technologies.) 
Ritchie developed an experimental operating system called 
Plan 9 (named for a cult sci-fi movie). Plan 9 attempts to 
take the UNIX philosophy of decentralization and flexibil-
ity even further, and is designed especially for networks 
where computing resources are distributed.

Ritchie has received numerous awards, often given 
jointly to Thompson. These include the ACM Turing Award 
(1985), the IEEE Hamming Medal (1990), the Tsutomu 

Kanai Award (1999), and the National Medal of Technology 
(also 1999).
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robotics
The idea of the automaton—the lifelike machine that per-
forms intricate tasks by itself—is very old. Simple automa-
tons were known to the ancient world. By the 18th century, 
royal courts were being entertained by intricate humanlike 
automatons that could play music, draw pictures, or dance. 
A little later came the “Turk,” a chess-playing automaton 
that could beat most human players.

However, things are not always what they seem. The 
true automatons, controlled by gears and cams, could play 
only whatever actions had been designed into them. They 
could not be reprogrammed and did not respond to changes 
in their environment. The chess-playing automaton held a 
concealed human player.

True robotics began in the mid-20th century and has 
continued to move between two poles: the pedestrian but 
useful industrial robots and the intriguing but tentative 
creations of the artificial intelligence laboratories.

Industrial Robots
In 1921, the Czech playwright Karel Capek wrote a play 
called R.U.R. or Rossum’s Universal Robots. Robot is a Czech 
word that has been translated as work(er), serf, or slave. In the 
play the robots, which are built by factories to work in other 
factories, eventually revolt against their human masters.

During the 1960s, real robots began to appear in factory 
settings (see also Engelberger, Joseph). They were an out-
growth of earlier machine tools that had been programmed 
by cams and other mechanisms. An industrial robot is basi-
cally a movable arm that ends in a “hand” called an end 
effector. The arm and hand can be moved by some com-
bination of hydraulic, pneumatic, electrical, or mechani-
cal means. Typical applications include assembling parts, 
welding, and painting. The robot is programmed for a task 
either by giving it a detailed set of commands to move to, 
grasp, and manipulate objects, or by “training” the robot by 
moving its arm, hand, and effectors through the required 
motions, which are then stored in the robot’s memory. By 
the early 1970s, Unimation, Inc. had created a profitable 
business from selling its Unimate robots to factories.

The early industrial robots had very little ability to 
respond to variations in the environment, such as the “work 
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piece” that the robot was supposed to grasp being slightly 
out of position. However, later models have more sophis-
ticated sensors to enable them to adjust to variations and 
still accomplish the task. The more sophisticated computer 
programs that control newer robots have internal represen-
tations or “frames of reference” to keep track of both the 
robot’s internal parameters (angles, pressures, and so on) 
and external locations in the work area.

Mobile Robots and Service Robots
Industrial robots work in an extremely restricted environ-
ment, so their world representation can be quite simple. 
However, robots that can move about in the environment 
have also been developed. Military programs have devel-
oped automatic guided vehicles (AGVs) with wheels or 
tracks, capable of navigating a battlefield and scouting 
or attacking the enemy (see military applications of 
computers). Space-going robots including the Sojourner 
Mars rover also have considerable onboard “intelligence,” 
although their overall tasks are programmed by remote 
commands.

Indeed, the extent to which mobile robots are truly 
autonomous varies considerably. At one end is the “robot” 
that is steered and otherwise controlled by its human 
operator, such as law enforcement robots that can be sent 
into dangerous hostage situations. (Another example is the 
robots that fight in arena combat in the popular Robot Wars 
shows.)

Moving toward greater autonomy, we have the “service 
robots” that have begun to show up in some institutions 
such as hospitals and laboratories. These mobile robots 
are often used to deliver supplies. For example, the Help-
Mate robot can travel around a hospital by itself, navigating 
using an internal map. It can even take an elevator to go to 
another floor.

Service robots have had only modest market penetra-
tion, however. They are relatively expensive and limited in 
function, and if relatively low-wage more versatile human 
labor is available, it is generally preferred. For now mobile 
robots and service robots are most likely to turn up in 
specialized applications in environments too dangerous for 

human workers, such as in the military, law enforcement, 
handling of hazardous materials, and so on.

Smart Robots
Robotics has always had great fascination for artificial intel-
ligence researchers (see artificial intelligence). After 
all, the ability to function convincingly in a real-world envi-
ronment would go a long way toward demonstrating the 
viability of true artificial intelligence.

Building a smart, more humanlike robot involves sev-
eral interrelated challenges, all quite difficult. These include 
developing a system for seeing and interpreting the environ-
ment (see computer vision) as well a way to represent the 
environment internally so as to be able to navigate around 
obstacles and perform tasks.

One of the earliest AI robots was “Shakey,” built at the 
Stanford Research Institute (SRI) in 1969. Shakey could 
navigate only in a rather simplified environment. However, 
the “Stanford Cart,” built by Hans Moravec in the late 1970s 
could navigate around the nearby campus without getting 
into too much trouble.

An innovative line of research began in the 1990s at MIT 
(see Brooks, Rodney and Breazeal, Cynthia). Instead of 
a “top down” approach of programming robots with explicit 
logical rules, so-called behavior-based robotics works from 
the bottom up, coupling systems of sensors and actuators 
that each have their own simple rules, from which can 
emerge surprisingly complex behavior. The MIT “sociable 
robots” Cog and Kismet were able to explore the world and 
learn to interact with people in somewhat the way a human 
toddler might.

Today it is possible to buy an AI robot for one’s home, in 
the form of toys such as Sony’s AIBO robot dog, which can 
emulate various doggy behaviors such as chasing things and 
communicating by body language. Some robot toys not only 
have an extensive repertoire of behavior and vocalizations, 
but also can learn to some extent (see neural network.)

It is also possible to experiment with robotics at home 
or school, thanks to kits such as the LEGO Logo, which 
combines a popular building set with a versatile educa-
tional programming language (see Logo).

Future Applications
A true humanoid robot with the kind of capabilities writ-
ten about by Isaac Asimov and other science fiction writ-
ers is not in sight yet. However, there are many interesting 
applications of robots that are being explored today. These 
include the use of remote robots for such tasks as per-
forming surgery (see telepresence) and the application of 
robotics principles to the design of better prosthetic arms 
and legs for humans (bionics). Farther afield is the possibil-
ity of creating artificial robotic “life” that can self-reproduce 
(see artificial life).
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RPG  (Report Program Generator)
Many business computer programs written for mainframe 
computers involved reading data from files, performing rel-
atively simple procedures, and outputting printed reports. 
During the 1960s, some people believed that COBOL, a 
general-purpose (but business-oriented) computer lan-
guage, would be easy enough for nonprogrammers to use 
(see COBOL). Although this turned out not to be the case, 
IBM did succeed in creating RPG (Report Program Genera-
tor), a language designed to make it easier for programmers 
(including beginners) to generate business reports.

Most COBOL programs read data, perform tests and cal-
culations, and print the results. RPG, first released in 1964 
for use with the new System/360 mainframe and the smaller 
System/3, simplifies this process and eliminates most writ-
ing of program code statements.

A “classic” RPG program is built around the “RPG 
cycle,” consisting of three stages. During the input stage, 
the input device(s), file type, access specifications, and data 
record structure are specified. (These specifications can be 
quite elaborate.) The heart of the program specifies calcula-
tions to be performed with the various data fields, while the 
output section specifies how the results will be laid out in 
report form, including such things as headers, footers, and 
sections.

Subsequent versions of RPG added more features. RPG-
IV, released in 1994, includes the ability to define subrou-
tines, for example. IBM has also released VisualAge RPG, 
which allows for the creation and running of RPG pro-
grams in the Microsoft Windows environment. There are 
also tools for interfacing RPG programs with various data-
base systems and to use RPG for writing Web-based (CGI) 
programs.
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RSS  (Really Simple Syndication)
Web sites such as news providers and blogs (see blogs 
and blogging) are constantly posting new material. While 
readers can periodically visit a site to look for new material, 
an increasingly popular option is to subscribe to a “Web 
feed” and receive the latest information automatically. The 
most commonly used tool for Web feeds is RSS, which can 
stand for Really Simple Syndication, Rich Site Summary, or 
RDF Site Summary, depending on the format used.

The data in an RSS feed can include article titles, sum-
maries, excerpts (such as the first paragraph), or the com-
plete article or posting. Feeds can also include multimedia 
such as graphics, video, or sound. The data (and any linked 
material) is formatted using standard markup elements (see 
HTML and XML). The following is an excerpt of a simple 
RSS feed provided by the RSS Advisory Board:

<?xml version=“1.0”?>
<rss version=“2.0”>

<channel>
<title>Liftoff News</title>
<link>http://liftoff.msfc.nasa.gov/</
link>
<description>Liftoff to Space Explora-
tion.</description>
<language>en-us</language>
<pubDate>Tue, 10 Jun 2003 04:00:00 GMT</
pubDate>
<lastBuildDate>Tue, 10 Jun 2003 09:41:01 
GMT</lastBuildDate>
<docs>http://blogs.law.harvard.edu/tech/
rss</docs>
<generator>Weblog Editor 2.0</generator>
<managingEditor>editor@example.com</man-
agingEditor>
<webMaster>webmaster@example.com</web-
Master>
<item>

<title>Star City</title>
<link>http://liftoff.msfc.nasa.gov/
news/2003/news-starcity.asp</link>
<description>How do Americans get 
ready to work with Russians aboard 
the International Space Station? They 
take a crash course in culture, lan-
guage and protocol at Russia’s &lt;a 
href=“http://howe.iki.rssi.ru/GCTC/
gctc_e.htm”&gt;Star City&lt;/a&gt;.</
description>
<pubDate>Tue, 03 Jun 2003 09:39:21 
GMT</pubDate>
<guid>http://liftoff.msfc.nasa.
gov/2003/06/03.html#item573</guid>

</item>
</channel>

</rss>

As part of the process of setting up a feed on the Web 
server, the feed is “published” so that it can be found and 
read using a client program called a reader or aggrega-
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tor (the latter can combine feeds or organize them in a 
newspaper-like format for convenience). RSS readers can 
be stand-alone applications or be included with many mod-
ern Web browsers and e-mail clients. Alternatively, Web-
based readers or aggregators such as NewsGator Online can 
allow feeds to be read using any Web browser. Readers of 
Web pages can find RSS feeds by looking for a “subscribe” 
icon or the words RSS or XML. Specialized search engines 
such as Bloglines can also help users find interesting feeds. 
Additionally, information on the server can also be used 
by software to automatically deliver the latest content (see 
podcasting).

History and Development
Forerunners of RSS go back to the mid-1990s, with RDF 
Site Summary first appearing in 1999 for use on Netscape’s 
portal. The adoption of RSS by the New York Times in 2002 
greatly aided the popularization of the format, as did the 
growing number of blogs that needed a way for contributors 
and readers to keep in touch. Today Web browsers such as 
Internet Explorer, Mozilla Firefox, and Safari support RSS. 
File-sharing services such as BitTorrent can be combined 
with RSS to deliver content automatically to users’ hard 
drives. An offshoot of RSS called Atom has been less widely 
adopted, but offers better compatibility with XML standards 
and better management of multimedia content.
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RTF  (Rich Text Format)
Rich Text Format was developed in the later 1980s by pro-
grammers at Microsoft. Its purpose is to allow for inter-
change of documents between Microsoft Word and other 
software, while preserving the original formatting.

An RTF file is itself a plain text file containing the docu-
ment text enclosed in control codes that determine the for-
matting. For example:

{\rtf1\ansi{\fonttbl{\f0\froman\fprq2\ 
fcharset0 Times New Roman;}\f0\pard
This is some {\b bold} text.\par
}

The backslash starts a control code, such as for specify-
ing a font or a style, such as Times New Roman and bold 
in the example. Curly brackets { } enclose the text to be 
affected by the control code. Thus the example above would 
be rendered in a word processor as:

This is some bold text.

Although RTF is an 8-bit format, special escape 
sequences can be used to specify 16-bit Unicode characters, 
such as for non-Roman alphabets.

Libraries and utilities are available for reading and 
writing RTF from most popular programming languages, 
including Perl, PHP, and Ruby.

In practice, RTF created by word processors tends to 
contain many control codes needed to ensure compatibility 
with older programs, making the files bulky and not prac-
ticable to edit directly. However, saving a file in RTF is a 
good way to ensure that a document can be used by recipi-
ents who may have, for example, older versions of Word. (It 
is quite typical for the latest default Word format to not be 
compatible with earlier versions.)
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Ruby
Ruby is a versatile yet consistent programming language 
that has become popular in recent years, particularly for 
Web development. Designed by Yukihiro Matsumoto and 
first released in 1995, Ruby has a compact syntax familiar 
to many users of Perl and other scripting languages (see 
Perl and Scripting language), avoiding, for example, 
the need to declare variable types. However, Ruby is also 
a thoroughgoing object-oriented language somewhat like 
Smalltalk (see Smalltalk). Matsumoto has stressed that 
the design of the language is intended to stress being natu-
ral and enjoyable for the programmer, rather than focusing 
on the needs of the machine.

Structure
In Ruby, every data type is an object (see class, data type, 
and object), even those defined as primitive types in other 
languages, such as integers and Booleans. Although one can 
use the traditional procedural method of defining variables 
and then working with them, they are still implicitly treated 
as part of the root object called “Self.”

Every function is a method that belongs to some class. 
Thus -5.abs invokes the absolute value method on the inte-
ger -5, returning 5. Similarly, “wireless wombat”.length 
would return the length of the string, 15. Ruby includes 
many built-in methods for working with data structures 
such as arrays and hashes, and there are many additional 
libraries and applications available.	

There are Ruby interpreters for all major operating sys-
tems. In addition to reading and executing a program from 
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a file, as with many scripting languages, Ruby can also be 
used interactively to test statements:

% ruby eval.rb
ruby> puts “Hello, world.”
Hello, world.

nil
ruby> exit

Here the Ruby interpreter is told to run eval.rb, a special 
program that interactively evaluates statements and expres-
sions. The puts command puts (outputs) the string Hello, 
world. The evaluator then reports that the puts method 
returned no value (nil).

Although Ruby is traditionally an interpreted language, 
a version that will produce byte code for a virtual machine 
(similar to Java) is in development, and a more direct com-
piler is certainly possible.

Ruby on Rails
The most popular programming environment for Ruby 
is Ruby on Rails, an open-source application framework 
aimed particularly at writing programs that connect Web 
sites to databases. The framework is based on the model-

view controller approach (separating data access and logic 
from the user interface) and includes “scaffolding” that can 
be quickly filled in to provide data-driven Web sites with 
basic functionality. Developers can also create plug-ins to 
extend the built-in packages.
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SAP
SAP (NYSE symbol: SAP) is a German acronym for Systeme, 
Anwendungen, und Produkete in der Datenverarbeitung (“Sys-
tems, Applications, and Products in Data Processing”). Five 
former IBM engineers in Germany founded the company in 
1972.

Although unfamiliar to the American public, unlike IBM 
and Microsoft, SAP is the world’s largest business software 
company, and fourth-largest software provider in general 
(behind Microsoft, IBM, and Oracle). The company oper-
ates worldwide through three geographical divisions.

Applications and Products
SAP specializes in Enterprise Resource Planning (ERP), 
enhancing a corporation’s ability to manage its key assets 
and needs and to plan for the future. This software consists 
of three tiers: the database, an application server, and the 
client. Early versions of this software were designed to run 
on mainframes. Other major products include:

• � SAP NetWeaver, which integrates all other SAP mod-
ules using modern open-standard Web technologies 
(see service-oriented architecture)

• � Customer Relationship Manager (see crm)

• � Supply Chain Management (see supply chain man-
agement)

• � Supplier Relationship Management

• � Human Resource Management System

• � Product Lifestyle Management

• � Exchange Infrastructure

• � Enterprise Portal

• � SAP Knowledge Warehouse

Challenges
SAP has recognized for some time that while its base of 
large Fortune 500 companies has given it steady income, 
changing trends in business have been limiting the soft-
ware giant’s growth. In particular, the trend has been 
toward smaller, simpler, more scalable applications that 
can be integrated with modern Web services. In September 
2007 SAP announced SAP Business ByDesign, a flexible set 
of enterprise management services that are delivered over 
the Web. However, it remains to be seen how well SAP will 
be able to compete with more agile companies such as Net-
Suite and Salesforce.com, and whether the company will be 
able to upgrade its existing large company user base with-
out disaffecting it.

SAP’s major competitor in the United States is Oracle 
(see Oracle), which has sued SAP in 2007 for unfairly 
downloading and using patches and support materials from 
Oracle and using them to support former Oracle customers. 
SAP and Oracle have generally had quite different growth 
strategies: SAP grows by expanding and extending its own 
products, while Oracle has grown mainly through acquiring 
other companies. However, in October 2007 SAP acquired 
Business Objects, a leader in “business intelligence” sys-
tems, for $6.8 billion. This may signal SAP’s willingness to 
engage in further strategic acquisitions.
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satellite Internet service
As with television, satellite Internet service can provide 
access to areas (such as remote locations, ships, or land 
vehicles) where wired service is not available (see broad-
band). Besides the satellite, the system includes a terrestrial 
facility that has two connections: routers and proxy servers 
that manage the flow of traffic to and from the Internet, and 
an “uplink” transmitter that communicates with the satel-
lite. In addition, there may be a connection to the public 
telephone network.

Each user has a satellite dish and associated equipment 
similar to those used for receiving satellite TV, though the 
dish is larger and existing TV dishes cannot be used. In the 
Northern Hemisphere, the user must have an unobstructed 
view of the southern sky (most satellites orbit over the 
equator). The equipment is also adapted for use on ships 
and recreational vehicles.

The user also has a modem (either external or on a card 
in the PC) to convert the satellite signals to data, and soft-
ware supplied by the satellite service.

There are two types of systems for sending data from the 
user back to the Internet. In a dial-return system, the user 
has a conventional telephone dial-up modem that connects 
by phone to a hub at the terrestrial facility. Download-
ing is at broadband speeds (comparable to low-end DSL or 
cable), but uploading is at dial-up speeds. (This is not usu-
ally a problem unless the user is uploading large files.) In a 
two-way system, the user has a transmitter that sends data 
directly back to the satellite. This is usually several times 
faster than dial-up, but is more expensive.

Because of the time it takes signals to travel between a 
satellite and the ground, all satellite Internet systems have a 
built-in delay, or latency. Satellites in geosynchronous orbit 
(about 22,000 miles [35,405.6 km] high) have wider cover-
age but higher latency, while using lower orbits reduces 
latency but requires more satellites to provide continuous 
coverage. Latency can be problematic for applications such 
as Internet telephony (see VOIP).

Although small compared with that for cable or DSL, 
the satellite user base is growing, particularly in areas and 
countries that lack wired infrastructure. Users who have 
cable or DSL available in their neighborhood would have 

little reason to obtain satellite Internet, since the initial and 
monthly costs are considerably higher and download speeds 
are somewhat slower. Also, the need to use encrypted vir-
tual private networks (VPN) to secure business data can 
lower effective speeds substantially. Finally, though the sat-
ellites themselves are very reliable, satellite service is sub-
ject to interruption during heavy rain or snow.
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scanner
In order for a computer to work with information, the 
information must be digitized—converted to data that 
application programs can recognize and manipulate (see 
characters and strings). Computer users have thus 
been confronted with the task of converting millions of 
pages of printed words or graphics into machine-readable 
form. Since it is expensive to re-key text (and impractical to 
redraw images), some way is needed to automatically con-
vert the varying shades or colors of the text or images into a 
digitized graphics image that can be stored in a file.

This is what a scanner does. The scanner head contains 
a charge-coupled device (CCD) like that used in digital cam-
eras (see photography, digital). The CCD contains thou-
sands or millions of tiny regions that can convert incoming 
light into a voltage level. Each of these voltage levels, when 
amplified, will correspond to one pixel of the scanned image. 
(A color scanner uses three different diodes for each pixel, 
each receiving light through a red, green, or blue filter.)

The operation of the head depends on the type of scan-
ner. In the most common type, the flatbed scanner, a motor 
moves the head back and forth across the paper, which lies 
facedown on a glass window. In a sheet-fed scanner, the 
head remains stationery and the paper is fed past it by a set 
of rollers. Finally, there are handheld scanners, where the 
job of moving the scanner head is performed by the user 
moving the scanner back and forth over the page.

The resolution of a scanner depends on the number of 
pixels into which it can break the image. The color depth 
depends on how many bits of information that it can store 
per pixel (more information means more gradations of color 
or gray). Resolutions of 2,400 dots per inch (dpi) or more 
are now common, with up to 36 bit color depth, allowing 
for about 68.7 billion colors or gradations (see color in 
computing).
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Besides considerations of resolution and color depth, the 
quality of a scanned image depends on the quality of the 
scanner’s optics as well as on how the page or other object 
reflects light. As anyone who has browsed eBay listings 
knows, the quality of scans can vary considerably. Most 
scanners come with software that allows for the scanner to 
be controlled and adjusted from the PC, and image-editing 
software can be used to further adjust the scanned image.

Even if the input is a sheet of text, the scanner’s output 
is simply a graphical image. Special software must be used 
to interpret scanned images of text and identify which char-
acters and other features are present (see optical charac-
ter recognition). Since such software is not 100 percent 
accurate, human proofreaders may have to inspect the 
resulting documents.

Like printers, scanners have become quite inexpensive 
in recent years. Quite serviceable units are available for 
around $100 or so. (Popular multifunction devices often 
include scanner, copier, fax, and printer capabilities. A 
scanner can be used as a copier or fax by sending its output 
to the appropriate mechanism.)

Many home users now use scanners to digitize images 
for use in personal Web pages, online auctions, and other 
venues. Since sheet-fed scanners can only process individual 
sheets (not books, magazines, or objects) they are now less 
popular. Handheld scanners are somewhat tedious to use 
and require a steady hand, so they are generally used only in 
special circumstances where a flatbed scanner is not avail-
able. For capturing images of three-dimensional objects it is 
often easier to use a digital camera than a scanner.

Specialized scanners are also available. For example, 
although many flatbed scanners have a holder for scanning 
film negatives, a dedicated film scanner (costing perhaps 
$500) is a better choice if one wants to scan and possibly 
retouch or restore photographs. There are also high-end 
drum-type scanners that can scan at resolutions of 10,000 
dpi or more.

Further Reading
Busch, David D. Mastering Digital Scanning with Slides, Film, and 

Transparencies. Boston: Muska & Lipman, 2004.
Chambers, Mark L. Scanners for Dummies. Hoboken, N.J.: Wiley, 

2004.
PC Tech. Guide: Scanners. Available online. URL: http://www.

pctechguide.com/55Scanners.htm. Accessed August 20, 2007.

scheduling and prioritization
Often in computing, a fixed resource must be parceled out 
among a number of competing users. The most obvious 
example is the operating system’s scheduling the running 
of programs. Most computers have a single central proces-
sor (CPU) to execute programs. However, today virtually 
all operating systems (except for certain dedicated applica-
tions—see embedded system) are expected to have many 
programs available simultaneously. For example, a Micro-
soft Windows user might have a word processor, spread-
sheet, e-mail program, and Web browser all open at the 
same time. Not only might all of these programs be carry-
ing out tasks or waiting for the user’s input, but dozens of 

“hidden” system programs are also running in the back-
ground, providing services such as network support, virus 
protection, and printing services (see multitasking).

In this environment each executing program (or “pro-
cess”) will be in one of three possible states. It may be 
actively executing (that is, its code is being run by the 
CPU). It may be ready to execute—that is, “wanting” to 
perform some activity but needing access to the CPU. Or, 
the program may be “blocked”—that is, not executing and 
unable to execute until some external condition is met. 
Blockage is usually caused by an input/output (I/O) opera-
tion. An example would be a program that’s waiting for data 
to finish loading from a file.

In this sort of single-processor multiple-program sys-
tem, the simplest arrangement is to have the operating 
system dole out fixed amounts of execution time to each 
program. Each program that indicates that it’s ready to run 
gets placed in a list (see queue) and given its turn. When 
the amount of time fixed for a turn has passed, the operat-
ing system saves the program’s “state” in the processor—the 
contents of the registers, address pointed to by the pointer 
to the next instruction to be executed, and so on. This 
stored information can be considered to be a “virtual pro-
cessor.” When the program’s turn comes around again, the 
processor is reloaded with the contents of the virtual pro-
cessor and execution continues where it had left off.

Use of Priority
The above scheme assumes that all programs should have 
equal priority. In other words, that the timely completion 
of one program is not more important than that of another, 
or that no program should be “bumped up” in the queue for 
some reason. In reality, however, most operating systems do 
give some programs preference over others.

For example, suppose the word processor has just 
received a user’s mouse click on a menu. The next program 
in the queue for execution, however, is an antivirus pro-
gram that’s checking all the files on the hard drive for pos-
sible viruses. The latter program is important, but since the 
user is not waiting for it to finish, a delay in its execution 
won’t cause a significant problem. The user, on the other 
hand, is expecting the menu just clicked on to open almost 
instantly, and will become irritated with even a short delay. 
Therefore, it makes sense for the operating system to give 
a program that’s responding to immediate user activity a 
higher priority than a program that’s carrying out tasks 
that don’t require user intervention.

There are other times when a program must (or should) 
be given a higher priority. A program may be required to 
complete a task within a guaranteed time frame (for exam-
ple, to dispatch emergency services personnel). The operat-
ing system must therefore provide a way that the program 
can request priority execution.

In general, an operating system that supports real-time 
applications or that requires great attention to efficiency in 
using valuable devices may need a much more sophisticated 
scheduling algorithm that factors in the availability of key 
devices or services and adjusts program priorities in order 
to minimize bottlenecks and guarantee that the system’s 
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response will be within required parameters. Indeed, the 
method used for assigning priorities may actually be changed 
in response to changes in the various “loads” on the system. 
Sophisticated systems may also include programs that can 
predict the likely future load on the system in order to adjust 
for it as quickly as possible.

Scheduling Multiprocessor Systems
These general principles also apply to systems where more 
than one processor is available (see multiprocessing), 
but there is the added complication of deciding where the 
scheduling program will be run. In a multiprocessing sys-
tem that has one “master” and many “slave” processors, 
the scheduling program runs on the master processor. This 
arrangement is simple, but it means that when a slave pro-
cessor wants to schedule a program it must wait until the 
scheduling program gets its next time-slice on the master 
processor.

One alternative is to allow any processor that has free 
time to run the scheduling algorithm. This is harder to 
set up because it requires a mechanism to make sure two 
processors do not try to run the scheduling program at the 
same time, but it smoothes out the bottleneck that would 
arise from relying on a single processor.

A variant of this approach is “distributed scheduling.” 
Here each processor runs its own scheduling program. 
All the schedulers share the same set of information about 
the status and queuing of processes on the system, and 
a locking mechanism is used to prevent two processors 
from changing the same information at the same time. This 
approach is easiest to “scale up” since added processors can 
come with their own scheduling programs.

Two trends in recent years have changed the empha-
sis in scheduling algorithms. One is the continuing drop 
in price per unit of processing power and memory. This 
means that maximum efficiency in using the hardware 
can often give way in favor of catering to the user’s conve-
nience and perceptions by giving more priority to interac-
tion with the user. The other development is the growing 
use of systems where much of the burden of graphics and 
interactivity is placed on the user’s desktop, thus simpli-
fying the complexity of scheduling for the server (see cli-
ent-server computing).

Principles of scheduling and priority can be applied 
in areas other than computer operating systems. Schedul-
ing human activities (such as factory work) adds further 
complications such as the dependence of one task upon 
the prior performance of one or more other tasks (see 
project management software) and the “just-in-time” 
scheduling for minimizing the investment in materials or 
inventory.
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science fiction and computing
The image of the mechanical brain or “knowledge engine” 
has a surprisingly long history in Western literature. As far 
back as Jonathan Swift’s Gulliver’s Travels (1726), we find 
a gigantic engine that can create books on every conceiv-
able subject. While this was a satirical jab at thinkers who 
were ushering in a rational, mechanistic cosmos, the idea 
that the cunning mechanical automatons being created for 
the amusement of princes might someday think did not 
seem so far-fetched. This belief would be strengthened in 
the coming two centuries by the triumph of the Industrial 
Revolution. In Jules Verne’s Paris in the Twentieth Century 
(written in 1863), giant calculating machines and facsimile 
transmissions were used to coordinate business activities.

As early as the beginning of the 20th century, writers 
had been exploring what might happen if some combination 
of artificial brains and robots offered the possibility of cater-
ing to all human needs. In E. M. Forster’s “The Machine 
Stops,” published in 1909, people no longer even have to 
leave their insectlike cells because even their social needs 
are provided through machine-mediated communication 
not unlike today’s Internet. In the 1930s and 1940s, other 
writers such as John W. Campbell and Jack Williamson 
wrote stories in which a worldwide artificial intelligence 
became the end point of evolution, with humans either 
becoming extinct or living static, pointless lives.

Science fiction writers had also been considering the 
ramifications of a related technology, robotics. The term 
robot came from Karel Čapek’s R.U.R. (Rossum’s Universal 
Robots). Although the robot had a human face, it could 
have inhuman motives and threaten to become Earth’s new 
master, displacing humans. Isaac Asimov offered a more 
benign vision, thanks to the “laws of robotics” embedded 
in his machines’ very circuitry. The first law states, “A robot 
shall not harm a human being or, through inaction, cause a 
human being to come to harm.” In the real world, of course, 
artificial intelligence had no such built-in restrictions (see 
artificial intelligence).

Science fiction of the “Golden Age” of the pulp magazines 
had only limited impact on popular culture as a whole. Once 
actual computers arrived on the scene, however, they became 
the subject for movies as well as novels. D. F. Jones’s novel 
Colossus: The Forbin Project (1966), which became a film in 
1970, combined cold war anxiety with fear of artificial intel-
ligence. Joining forces with its Soviet counterpart, Colossus 
fulfills its orders to prevent war by taking over and insti-
tuting a world government. Similarly, Hal in the film 2001: 
A Space Odyssey (based on the work of Arthur C. Clarke) 
puts its own instinct for self-preservation ahead of the frantic 
commands of the spaceship’s crew. However, the artificial 
can also strive to be human, as in the 2001 movie A.I.

During the 1940s and 1950s science fictional comput-
ers tended to be larger, more powerful versions of existing 
mainframes, sometimes aspiring to godlike status. How-
ever, in Murray Leinster’s book A Logic Named Joe (1946), 
a “Logic” is found in every home, complete with keyboard 
and television screen. All the Logics are connected to a 
huge relay circuit called the Tank, and the user can obtain 
everything from TV broadcasts to weather forecasts or even 
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the answers to history trivia questions. Although the Logic 
is essentially an electronic-mechanical system, its function-
ality is startlingly similar to that achieved by the Internet 
almost half a century later.

Writers such as William Gibson (Neuromancer) and Ver-
nor Vinge (True Names) later began to explore the world 
mutually experienced by computer users as a setting where 
humans could directly link their minds to computer-gener-
ated worlds (see virtual reality). A new elite of cyber-
space masters were portrayed in a futuristic adaptation 
of such archetypes as the cowboy gunslinger, samurai, or 
ninja. Unlike the morally unambiguous world of the old 
western movies, however, the novels and movies with the 
new “cyberpunk” sensibility are generally set in a jumbled, 
fragmented, chaotic world. That world is often dominated 
by giant corporations (reflecting concerns about economic 
globalism) and is generally dystopian.

Meanwhile as cyberspace continues to become reality, 
cyberpunk has lost its distinctiveness as a genre. Gibson’s 
latest work (and that of other writers such as Bruce Sterling 
and Vernor Vinge) is more apt to explore ways of commu-
nicating and networking that belong to just the day after 
tomorrow, if not already appearing (particularly among 
young people) today.

Cyberpunk and Beyond
As personal computers and networking began to burgeon 
in the 1980s, the focus began to shift from computers as 
“characters” to the ways in which people interact with, and 
are changed by, new technology.

Although the term cyberspace was introduced by writer 
William Gibson in his 1982 short story “Burning Chrome,” 
the word did not come into greater prominence until his 
1984 novel Neuromancer, where it was described as “a con-
sensual hallucination experienced daily by billions. . . .” (See 
cyberspace.) It became the arena for a new style of science 

fiction called cyberpunk, where outlaws and murderous cor-
porations duel on the virtual frontier. Beyond the high-tech 
chases, questions of the ultimate meaning of cyberspace and 
of reality itself emerge, as in the Matrix trilogy of movies, or 
in the ultimate transformation of consciousness in human 
and machine (see singularity, technological).
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scientific computing applications
From microbiology to plasma physics, modern science 
would be impossible without the computer. This is not 
because the computer has replaced the scientific method 
of observation, hypothesis, and experiment. Modern scien-
tists essentially follow the same intellectual procedures at 
did Galileo, Newton, Darwin, and Einstein. Rather, under-
standing of the layered systems that make up the universe 
has now reached so complex and detailed a level that there 
is too much data for an individual human mind to grasp. 
Further, the calculations necessary to process the data usu-
ally can’t be performed by unaided humans in any rea-
sonable length of time. This can be caused either by the 
inherent complexity of the calculation (see computability 
and complexity) or the sheer amount of data (as in DNA 
sequencing; see bioinformatics and data mining).

Instrumentation
Some apparatus such as particle accelerators are complicated 
enough to make it expedient to control the operation by 
computer. It is simply more convenient to have instruments 
such as spectrocopes process samples automatically under 
computer control and produce printed results.

Most instruments for gathering data use electronics 
to turn physical measurements into numeric representa-
tions (see analog and digital and data acquisition). 
The modern instrument’s built-in processor and software 
performs preliminary processing that used to have to be 
done later in the lab. This can include scaling the data to 
an appropriate range of values, eliminating “noise” data, 
and providing an appropriate time framework for interpret-
ing the data. Use of electronics also enables the data to be 

Perhaps the most famous science fiction movie of all is 2001: A 
Space Odyssey (1968). However, the millennial year passed with-
out either an AI like Hal or passenger space lines.  (©ArenaPal / 
Topham / The Image Works)
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transmitted from a remote location (telemetry). See space 
exploration and computers.

Data Analysis
The analysis of data to obtain theoretical understanding of 
the processes of nature also greatly benefits from the power 
of computers ranging from ordinary PCs to high-perfor-
mance scientific workstations to large supercomputers. The 
possible significance of variables can be determined by sta-
tistical techniques (see also statistics and computing).

The fundamental task in understanding any system 
is to isolate the significant variables and determine how 
they affect one another. In many cases this can be done by 
solving differential equations, where a dependent variable 
changes as a result of changes in one or more indepen-
dent variables. For example, the classical Maxwell theory 
of wave behavior is a system of differential equations that 
could be used to understand, for example, how radar waves 
will bounce off an object with a given shape and reflectiv-
ity. However, real-world objects have complicating factors: 
A given problem may include aspects of wave behavior, 
electromagnetic interaction, deformation of material, and 
so on. While the great scientists of the late 19th to mid-20th 
century could develop elegant formulas showing key rela-
tionships in nature, the interaction of many different phe-
nomena often requires much more formidable computation 
that must be applied to many individual components.

It might be considered fortunate that the computer came 
along at about the time that it was required for further 
scientific progress. However, another way to look at it is 
to note that much of the pressure that led to investment in 
the development of computers came from that very need 
for computational resources, albeit primarily for wartime 
projects.

Simulation and Visualization
Even if scientists have a basic understanding of a system, 
it may be hard to determine what the overall results of the 
interaction of the many particles (or other elements) in the 
system will be. This is true, for example, in the analysis of 
events taking place in nuclear reactors. Fortunately com-
puters can apply the laws of the system to each of many 
particles and determine the resulting actions from their 
aggregate behavior (see simulation). Simulation is particu-
larly important in fields where actual experiments are not 
possible because of distance or time. Thus, a hypothesis 
about the formation of the universe can be tested by apply-
ing it to a set of initial conditions believed to reflect those at 
or near the time of the big bang.

However, even the most skilled scientists have trouble 
relating numbers to the shape and interaction of real-world 
objects. Computers have greatly aided in making it possible 
to visualize structures and phenomena using high-resolu-
tion 3D color graphics (see computer graphics). Features 

Computer processing of photographic or scanned data can provide detailed information about our environment. In this NASA test project, 
aerial and satellite imagery is analyzed to yield information about the ripeness of grapes in a vineyard, as well as moisture, soil conditions, 
and plant disease.  (NASA photo)
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of interest can be enhanced, and arbitrary (“false”) colors 
can be used to visually show such things as temperature 
or blood flow. These techniques can also be used to cre-
ate interactive models where scientists can, for example, 
combine molecules in new ways and have the computer 
calculate the likely properties of the result. Finally, com-
puter visualization and modeling can be used both to teach 
science and to give the general public some visceral grasp of 
the meaning of scientific theories and discoveries.
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scripting languages
There are several different levels at which someone can 
give commands to a computer. At one end, an applications 
programmer writes program code that ultimately results in 
instructions to the machine to carry out specified process-
ing (see programming languages and compiler). The 
result is an application that users can control in order to get 
their work done.

At the other end, the ordinary user of the application 
uses menus, icons, keystrokes, or other means to select 
program features in order to format a document, calculate 
a spreadsheet, create a drawing, or perform some other 
task. Today most users also control the operating system by 
using a graphical user interface to, for example, copy files.

However, there is an intermediate realm where text com-
mands can be used to work with features of the operating 
system, to process data through various utility programs, 
and to create simple reports. For example, a system admin-
istrator may want to log the number of users on the system 
at various times, the amount of disk capacity being used, 
the number of hits on various pages on a Web server, and 
so on. (See system administrator.) It would be expen-
sive and time-consuming to write and compile full-fledged 
application programs for such tasks, particularly if chang-
ing needs will dictate frequent changes in the processing.

The use of the operating system shell and shell script-
ing (see shell) has traditionally been the way to deal with 
automating routine tasks, especially with systems running 
UNIX. However, the complexity of modern networks and 
in particular, the Internet, has driven administrators and 
programmers to seek languages that would combine the 
quick, interactive nature of shells, the structural features of 

full-fledged programming languages, and the convenience 
of built-in facilities for pattern-matching, text processing, 
data extraction, and other tasks. The result has been the 
development of a number of popular scripting languages 
(see awk, Perl, and Python).

Working with Scripting Languages
Although the various scripting languages differ in syntax 
and features, they are all intended to be used in a similar 
way. Unlike languages such as C++, scripting languages are 
interpreted, not compiled (see interpreter). Typically, a 
script consists of a number of lines of text in a file. When 
the file is invoked (such as by someone typing the name 
of the language followed by the name of the script file at 
the command prompt), the script language processor parses 
each statement (see parser). If the statement includes a ref-
erence to one of the language’s internal features (such as an 
arithmetic operator or a print command), the appropriate 
function is carried out. Most languages include the basic 
types of control structures (see branching statements 
and loop) to test various variables and direct execution 
accordingly.

The trend in higher-level languages has been to require 
that all variables be declared to be used for particular kinds 
of data such as integer, floating-point number, or charac-
ter string (see data types). Scripting languages, however, 
are designed to be easy to use and scripts are relatively 
simple and easy to debug. Since the consequences of errors 
involving data types are less likely to be severe, scripting 
languages don’t require that variables be declared before 
they are used. The language processor will make “common 
sense” assumptions about data. Thus if an integer such as 
23 and a floating-point number like 17.5 must be added 
together, the integer will be converted to floating point and 
the result will be expressed as the floating-point value 40.5.

Similarly, scripting languages take a relaxed view about 
scope, or the parts of a program from which a variable’s 
value can be accessed. Scripting languages do provide for 
some form of subroutine or procedure to be declared (see 
procedures and functions). Generally, variables used 
within a subroutine will be considered to be “local” to that 
subroutine, and variables declared outside of any subrou-
tine will be treated as global.

With compilers for regular programming languages, a 
great deal of attention must be paid to creating fast, efficient 
code. A scientific program may need to optimize calcula-
tions so that it can tackle cutting-edge problems in physics 
or engineering. A commercial application such as a word 
processor must implement many features to be competi-
tive, and yet be able to respond immediately to the user and 
complete tasks quickly.

Scripting languages, on the other hand, are typically 
used to perform housekeeping tasks that don’t place much 
demand on the processor, and that often don’t need to be 
finished quickly. Because of this, the relative inefficiency of 
on-the-fly interpretation instead of optimized compilation is 
not a problem. Indeed, by making it easy for users to write 
and test programs quickly, the interpreter makes it much 
easier for administrators and others to create simple but 
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useful tools for monitoring the system and extracting nec-
essary information. Scripting languages can also be used to 
quickly create a prototype version of a program that will be 
later recoded in a language such as C++ for efficiency.

Scripting languages were originally written for operat-
ing systems that process text commands. However, with the 
popularity of Microsoft Windows, Macintosh, and various 
UNIX-based graphical user interfaces, many users and even 
system administrators now prefer a visual scripting envi-
ronment. For example, Microsoft Visual Basic for Windows 
(and the related Visual Basic for Applications and VBScript) 
allow users to write simple programs that can harness 
the features of the Windows operating system and user 
interface and take advantage of prepackaged functionality 
available in ActiveX controls (see BASIC). In these visual 
environments the tasks that had been performed by script 
files can be automated by setting up and linking appropri-
ate objects and adding code as necessary.

Web Scripting
Aside from shell programming, the most common use of 
scripting languages today is to provide interactive features 
for Web pages and to tie forms and displays to data sources. 
On the Web server, such technologies as ASP (see active 
server pages) use scripts embedded in (or called from) the 
HTML code of the page. On the client side (i.e., the user’s 
Web browser) languages such as JavaScript and VBScript 
can be used to add features.

(For specific scripting languages, see awk, Javascript, 
Lua, VBScript, Perl, PHP, and TCL. For general-purpose 
languages that have some features in common with script-
ing languages, see Python and Ruby.)
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search engine
By the mid-1990s, many thousands of pages were being 
added to the World Wide Web each day (see World Wide 
Web). The availability of graphical browsing programs such 
as Mosaic, Netscape, and Microsoft Internet Explorer (see 
Web browser) made it easy for ordinary PC users to view 
Web pages and to navigate from one page to another. How-
ever, people who wanted to use the Web for any sort of sys-

tematic research found they needed better tools for finding 
the desired information.

There are basically three approaches to exploring the 
Web: casual “surfing,” portals, and search engines. A user 
might find (or hear about) an interesting Web page devoted 
to a business or other organization or perhaps a particular 
topic. The page includes a number of featured links to other 
pages. The user can follow any of those links to reach other 
pages that might be relevant. Those pages are likely to have 
other interesting links that can be followed, and so on. 
Most Web users have surfed in this way: It can be fun and 
it can certainly lead to “finds” that can be bookmarked for 
later reference. However, this approach is not systematic, 
comprehensive, or efficient.

Alternatively, the user can visit a site such as the famous 
Yahoo! started by Jerry Yang and David Filo (see portal 
and Yahoo!). These sites specialize in selecting what their 
editors believe to be the best and most useful sites for each 
topic, and organizing them into a multilevel topical index. 
The portal approach has several advantages: The work of 
sifting through the Web has already been done, the index 
is easy to use, and the sites featured are likely to be of good 
quality. However, even Yahoo!’s busy staff can examine only 
a tiny portion of the estimated 1 trillion or so Web pages 
being presented on about 175 million different Web sites 
(as of 2008). Also, the sites selected and featured by portals 
are subject both to editorial discretion (or bias) and in some 
cases to commercial interest.

Anatomy of a Search Engine
Search engines such as Lycos and AltaVista were intro-
duced at about the same time as portals. Although there 
is some variation, all search engines follow the same basic 
approach. On the host computer the search engine runs 
automatic Web searching programs (sometimes called “spi-
ders” or “Web crawlers”). These programs systematically 
visit Web sites and follow the links to other sites and so on 
through many layers. Usually, several such programs are 
run simultaneously, from different starting points or using 
different approaches in an attempt to cover as much of the 
Web as possible. When a Web crawler reaches a site, it 
records the address (URL) and compiles a list of significant 
words. The Web crawlers give the results of their searches 
to the search engine’s indexing program, which adds the 
URLs to the associated keywords, compiling a very large 
word index to the Web.

Search engines can also receive information directly 
from Web sites. It is possible for page designers to add a 
special HTML “metatag” that includes keywords for use by 
search engines. However, this facility can be misused by 
some commercial sites to add popular words that are not 
actually relevant to the site, in the hope of attracting more 
hits.

To use a search engine, the user simply navigates to the 
search engine’s home page with his or her Web browser. 
(Many browsers can also add selected search engines to a 
special “search pane” or menu item for easier access.) The 
user then types in a word or phrase. Most search engines 
accept logical specifiers (see Boolean operators) such as 
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AND, OR, or NOT. Thus, a search for “internet and sta-
tistics” will find only pages that have both words. Some 
engines also allow for phrases to be put in quote marks so 
they will be searched for as a whole. A search for “internet 
statistics” will match only pages that have these two words 
next to each other.

Because of the huge size of the Web, even seem-
ingly esoteric search words can yield thousands of “hits” 
(results). Therefore, most search engines rank the results 
by analyzing how relevant they are likely to be. This can 
be done in a simple way by comparing the frequency with 
which the search terms appear on the various pages. More 
sophisticated search engines such as Google can deter-
mine how relevant a word or phrase seems to be because 
of its placement or presence in a heading or how often a 
site is referred to from other sites (see Google). Some 
search engines also offer the ability to “refine” searches by 
adding further words and performing a new match against 
the set of results.

Limitations and Future of Search Engines
Search engines do provide many useful “hits” for both 
casual and professional researchers, but the current tech-
nology does have a number of limitations. Even the most 
comprehensive search engines now reach and index only a 
small fraction of the total available Web pages. One way to 
maximize the number of pages searched is to use a “metase-
arch” program such as Copernic, which submits a user’s 
search to many different search engines. It then collates the 
results, removing duplicates and attempting to rank them 
in relevance.

Even with “relevancy” algorithms, searches for broad, 
general topics are likely to retrieve many less-than-use-
ful hits. Also, current search engines have difficulty find-
ing image and sound (music) files, which are among the 
most sought-after Web content. This is because the search 
engine cannot recognize graphics or sound as such, only 
file names or extensions or text descriptions. Search 
engines also vary considerably in their ability to read and 
index files in proprietary text formats such as Microsoft 
Word or Adobe PDF.

Once mainly an auxiliary tool for Web portals, search 
engines have become a major business, and a variety of 
new types of search engines have proliferated. By combin-
ing search with paid advertising and delivery of a variety 
of services, Google in particular has become one of the 
Web’s biggest success stories. In turn, Web-site owners have 
attempted to use various techniques to “optimize” or raise 
the ranking of their pages in search results, while Google 
has quietly tweaked its “page rank” algorithm to keep such 
efforts in check.

Two major search trends that can be seen in Google 
are specialized searches and local search. Google offers a 
variety of search options to target images, video, news, even 
blogs. Local search (such as Google Maps) combines maps 
with lists of local businesses, making it easier for users to 
find, for example, hotels near a given airport (see mapping 
and navigation systems). Services such as Google Maps 
Street View even provide for a street-level closeup view of 

a neighborhood—almost a virtual tour, although this has 
raised privacy concerns. Google offers an extensive pro-
gramming interface that is available to Web developers, as 
well as an easier-to-use facility for creating custom map 
displays (see mashups).

In the future artificial intelligence techniques may make 
it possible for search engines to recognize types of images 
or sounds through pattern recognition. Search engines may 
be able to respond more appropriately to “natural language” 
queries such as “How many pages are there on the Web?” 
and find the answer, or at least Web pages that are likely to 
have the answer. (Current services of this type such as Ask.
com tend to give hit-and-miss results.)

For now, search engines remain a useful tool, but system-
atic researchers should complement their results with links 
from portals and recommendations from authoritative sites.
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semantic Web
The ever-growing World Wide Web consists of billions of 
linked HTML documents (and other resources), but most of 
the links contain no information about why the linkage has 
been made or what it might mean. Services such as Google 
can automatically trace the links and index each page (see 
search engine) with the aid of “metadata” such as key-
words that summarize page content. However, discovering 
the relationships between data items on pages, or between 
pages—and their meaning, or semantics—requires human 
scrutiny.

In his 1999 book Weaving the Web, World Wide Web cre-
ator Tim Berners-Lee (see Berners-Lee, Tim) described a new 
way in which Web pages might be organized in the future:

I have a dream for the Web [in which computers] become 
capable of analyzing all the data on the Web—the content, 
links, and transactions between people and computers. A 
“Semantic Web,” which should make this possible, has yet 
to emerge, but when it does, the day-to-day mechanisms of 
trade, bureaucracy and our daily lives will be handled by 
machines talking to machines. The “intelligent agents” peo-
ple have touted for ages will finally materialize.

In other words, by encoding definitions of objects and 
their relationships into the text of Web pages, programs 
(see software agent) can be written to use this infor-
mation to answer sophisticated questions such as “which 
devices from this vendor use open-source software?”

Approaches
The development of “machine understandable” Web resources 
requires that several layers of language be used. At bottom 
is the basic description of the structure of a document and 
its elements, such as titles or descriptions (see xml). Next 
comes RDF (Resource Description Format), which describes 
the relationship between data objects (“resources”). These 
relationships might include “a motherboard is a part of a 
computer” or “John owns this computer.” Programs are now 
available to automatically create RDF statements given a 
database and its defined characteristics.

For these relationships to be truly useful, they must be 
part of a larger structure that describes their meaning. This 
can be provided via an RDF scheme or through the use of a 
language such as the Web Ontology Language (OWL)—see 
ontologies and data models.

Programs can then query for these relationships using a 
language such as SPARQL.

Applications
The semantic Web is not something that can appear over-
night—after all, it will take considerable human effort to 
encode the information needed for machines to understand 
Web resources, and additional effort to code the applica-

tion programs that will take advantage of that information. 
However, the potential payoff is huge, allowing both human 
and automated searchers to tackle much more sophisticated 
tasks.

For example, the University of Maryland is developing 
a prototype semantic search engine called Swoogle. It can 
extract information and determine relationships between 
documents that include RDF or OWL elements. Swoogle 
can also help users find appropriate ontologies for explor-
ing a subject (see ontologies and data models).

Much research needs to be done. For example, there is 
the problem of deriving a measure of “reliability” or “trust” 
based on the data sources used to answer the query, which 
may be scattered all over the world and represent very dif-
ferent kinds of sources.
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senior citizens and computing
A growing number of people 50 and older have been 
learning how to use computer technology and especially 
applications such as e-mail and Web browsing. However, 
a substantial number of seniors have expressed reluc-
tance to join the digital world—as of January 2006, the 
Pew Internet & American Life Project found that only 34 
percent of persons 65 and over were online. Some reasons 
why seniors have avoided the technology include the fol-
lowing:

• � the belief that it would be too hard to learn to use it

• � uncertainty about what can be done online and 
whether it is worth the effort

• � fear of well-publicized dangers such as viruses and 
identity theft

• � the expense of a personal computer and Internet 
access

Fortunately a number of these factors are gradually 
being ameliorated. There are numerous books and courses 
(such as at adult education or senior centers) that introduce 
the essentials of computing to seniors. Properly installed 
security and filtering software, together with some user 
education, can minimize the chances of being victimized 
online. Finally, Internet-capable PCs are now available for 
around $300 or less, though the cost of broadband access 
has not fallen as rapidly as that of hardware.
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Seniors and the Internet
According to research by the Pew Internet & American 
Life Project, for seniors who do go online, e-mail is the 
most popular activity (and something shared with other 
age groups). While teens are most prolific at adopting new 
technologies such as instant messaging, content sharing, 
and social networking, older users are less likely to adopt 
emerging services, but more likely to bank or make travel 
reservations online—perhaps reflecting their having more 
money for leisure travel. Older people also tend to be more 
avid in pursuing health information. On the other hand, 
buying things online seems to be equally popular with all 
age groups.

Computer technology can also assist seniors with the 
activities of daily life. At the Quality of Life Technologies 
Center, researchers from Pitt and Carnegie Mellon Univer-
sities are developing technologies including:

• � robotic wheelchairs with arms that can manipulate 
objects and even assist in cooking meals

• � systems to help people get out of bed, dress, bathe, 
and so on

• � pervasive sensor networks that can monitor persons 
as they move around

• � monitoring systems that can detect growing confu-
sion or cognitive impairment and call for help

• � systems to supervise daily activities and make sure 
medications are taken on time

• � “coaching” software that can help maintain memory 
and cognitive skills, even in persons with Alzheimer’s 
disease

(See disabled persons and computing.)
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serial port
There are basically two ways to move data from a computer 
to or from a peripheral device such as a printer or modem. 

A byte (8 bits) of data can be moved all at once, with each 
bit traveling along its own wire (see parallel port). Alter-
natively, a single wire can be used to carry the data one bit 
at a time. Such a connection is called a serial port.

The serial port receives data a full byte at a time from 
the computer bus and uses a UART (Universal Asynchro-
nous Receiver-Transmitter) to extract the bits one at a time 
and send them through the port. A corresponding circuit 
at the other end accumulates the incoming bits and reas-
sembles them into data bytes.

The data bits for each byte are preceded by a start-bit to 
signal the beginning of the data and terminated by an stop-
bit. Depending on the application, an additional bit may be 
used for parity (see error correction). Devices connected 
by a serial port must “negotiate” by requesting a particular 
connection speed and parity setting. Failure to agree results 
in gibberish being received.

The official standard for serial transmission is called RS-
232C. It defines various additional pins to which wires are 
connected, such as for synchronization (specifying when 
the device is ready to send or receive data) and ground. 
Physically, the old-style connectors are called DB-25 
because they contain 25 pins (many of which are not used). 
Most newer PCs have DB-9 (i.e. nine pin) connectors. A 
“gender changer” can be used in cases where two devices 
both have male connectors (with pins) or female connectors 
(with corresponding sockets).

Because they use a single data transmission line and 
include error-correction, serial cables can be longer than 
parallel cables (25 feet or more, as opposed to 10–12 feet). 
Serial transmission is generally slower (at up to 115,200 
bits/second) than parallel transmission. Serial connec-
tions have generally been used for such devices as modems 
(whose speed is already limited by phone line characteris-
tics), keyboards, mice, and some older printers. Today the 
faster and more flexible USB (see universal series bus) 
is replacing serial connections for many devices including 
even keyboards.
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service-oriented architecture  (SOA)
The traditional model for organizing information process-
ing, particularly in large installations, is in terms of install-
ing and maintaining large applications that each provide 
many functions, and then devising ways for the applications 
to exchange data and otherwise coordinate with each other. 
As the information environment has become more com-
plex (particularly with regard to databases and Web-related 
services), this approach has become more cumbersome, less 
flexible, and harder to maintain.
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Service-oriented architecture is a new approach that 
focuses on services (basic functions, such as displaying 
and processing forms or formatting data) and provides 
standardized ways for them to be accessed by programs. 
Applications in turn are then built up by “plugging in” the 
required services and organizing them to meet the required 
logic and sequence of processing.

In order to be accessed, each service provides “meta-
data” (usually in XML files) that describes what data is 
used by a service and what it provides. The description 
itself can be provided using Web Services Description Lan-
guage (WSDL), including network addresses (ports) for 
connecting to the service, the operations supported, and 
the abstract format of the expected data. (For more on the 
message protocol, see soap.)

There are three basic roles that must be filled in design-
ing an SOA system: The service provider creates a service 
(often a Web service) and “exposes” aspects of the service 
and controls access to it (through security policies). The 
service broker provides a registry of available services and 
tells requesters how to connect to them. (For more on bro-
kers, see corba.) Finally, the requestor in an application 
finds and requests services as needed.

In general SOA can be seen as part of the trend toward 
decentralized, loosely coupled computing (see distributed 
computing). Because all services communicate through 
the network, it is easy to reallocate or scale up services as 
needed. It is also easier to upgrade software and reuse it for 
new applications. (For more on combining services pro-
vided by applications, see mashups.) However, SOA brings 
challenges of its own in terms of making services truly 
interoperable and conforming to standards that are still 
evolving.
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Shannon, Claude E.
(1916–2001)
American
Mathematician, Computer Scientist

The information age would not have been possible with-
out a fundamental understanding of how information could 
be encoded and transmitted electronically. Claude Elwood 
Shannon developed the theoretical underpinnings for mod-
ern information and communications technology and then 

went on to make important contributions to the young dis-
cipline of artificial intelligence (AI).

Shannon was born in Gaylord, Michigan, on April 30, 
1916. He received bachelor’s degrees in both mathematics 
and electrical engineering at the University of Michigan in 
1936. He went on to MIT, where he earned a master’s degree 
in electrical engineering and a Ph.D. in mathematics, both 
in 1940. Shannon’s background thus well equipped him 
to relate mathematical concepts to practical engineering 
issues.

While a graduate student at MIT, Shannon was in 
charge of programming an elaborate analog computer 
called the Differential Analyzer that had been built by 
Vannevar Bush (see analog computer and Bush, Van-
nevar). Actually “programming” is not quite the right 
word: To solve a differential equation with the Differential 
Analyzer, it had to be translated into a variety of physical 
settings and arrangements of the machine’s intricate elec-
tromechanical parts.

The Differential Analyzer was driven by electrical relay 
and switching circuits. Shannon became interested in the 
underlying mathematics of these control circuits. He real-
ized that their fundamental operations corresponded to the 
Boolean algebra he had studied in undergraduate mathemat-
ics classes (see Boolean operators). It turned out that the 
seemingly abstract Boolean AND, OR and NOT operations 
had a practical engineering use. Shannon used the results 
of his research in his 1938 M.S. thesis, titled “A Symbolic 
Analysis of Relay and Switching Circuits.” This work was 
honored with the Alfred Nobel prize of the combined engi-
neering societies (this is not the same as the more famous 
Nobel Prize).

Claude Shannon developed the fundamental theory underlying 
modern data communications, as well as making contributions to 
the development of artificial intelligence.  (Lucent Technolo-
gies Bell Labs)
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Along with the work of Alan Turing and John von Neu-
mann (see Turing, Alan and von Neumann John), Shan-
non’s logical analysis of switching circuits would become 
essential to the inventors who would build the first digital 
computers in just a few years. (Demonstrating the breadth of 
his interests, Shannon’s Ph.D. thesis would be in an entirely 
different application—the algebraic analysis of problems in 
genetics.)

In 1941, Shannon joined Bell Laboratories, perhaps 
America’s foremost industrial research organization. The 
world’s largest phone company had become increasingly 
concerned with how to “scale up” the burgeoning tele-
phone system and still ensure reliability. The coming of war 
also highlighted the importance of cryptography—secur-
ing one’s own transmissions while finding ways to break 
opponents’ codes. Shannon’s existing interests in both data 
transmission and cryptography neatly dovetailed with these 
needs.

Shannon’s paper titled “A Mathematical Theory of Cryp-
tography” would be published after the war. But Shannon’s 
most lasting contribution would be to the fundamental the-
ory of communication. His formulation would explain what 
happens when information is transmitted from a sender to 
a receiver—in particular, how the reliability of such trans-
mission could be analyzed (see information theory).

Shannon’s 1948 paper, “A Mathematical Theory of 
Communication” was published in The Bell System Tech-
nical Journal. Shannon identified the fundamental unit of 
information (the binary digit, or “bit” that would become 
familiar to computer users). He showed how to measure the 
redundancy (duplication) within a stream of data in rela-
tion to the transmitting channel’s capacity, or bandwidth. 
Finally, he showed methods that could be used to automati-
cally find and fix errors in the transmission. In essence, 
Shannon founded modern information theory, which would 
become vital for technologies as diverse as computer net-
works, broadcasting, data compression, and data storage on 
media such as disks and CDs.

One of the unique strengths of Bell Labs is that it did 
not limit its researchers to topics that were directly related 
to telephone systems or even data transmission in general. 
Like Alan Turing, Shannon became interested after the war 
in the question of whether computers could be taught to 
perform tasks that are believed to require true intelligence 
(see artificial intelligence). He developed algorithms 
to enable a computer to play chess and published an article 
on computer chess in Scientific American in 1950. He also 
became interested in other aspects of machine learning, and 
in 1952 he demonstrated a mechanical “mouse” that could 
solve mazes with the aid of a circuit of electrical relays.

The mid-1950s would prove to be a very fertile intel-
lectual period for AI research. In 1956, Shannon and AI 
pioneer John McCarthy (see McCarthy, John) put out a 
collection of papers titled “Automata Studies.” The volume 
included contributions by two other seminal thinkers, John 
von Neumann and Marvin Minsky (see Minsky, Marvin).

Although he continued to do research, by the late 1950s 
Shannon had changed his emphasis to teaching. As Don-
ner Professor of Science at MIT (1958–1978) his lectures 

inspired a new generation of AI researchers. During the 
same period Shannon also explored the social impact of 
automation and computer technology as a Fellow at the 
Center for the Study of Behavioral Sciences in Palo Alto, 
California.

Shannon received numerous prestigious awards, includ-
ing the IEEE Medal of Honor and the National Medal of 
Technology (both in 1966). Shannon died on February 26, 
2001, in Murray Hill, New Jersey.
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shareware and freeware
The early users of personal computers generally had con-
siderable technical skill and a desire to write their own 
programs. This was partly by necessity: If one wanted to 
get an Apple, Atari, Commodore, or Radio Shack machine 
to perform some particular task, chances were one would 
have to write the software oneself. Commercial software 
was scarce and relatively expensive. However, given enough 
time, it was possible for hobbyists to write programs using 
the machine’s built-in BASIC language or (with more effort) 
assembly language.

Programs such as utilities and games were often freely 
shared at gatherings of PC enthusiasts (see user groups). 
Many talented amateur programmers considered trying to 
turn their avocation into a business. However, a utility to 
provide better file listings or a colorful graphics program 
that creates kaleidoscopic images was unlikely to interest 
the commercial software companies who developed large 
programs in-house for marketing primarily to business.

In 1982, Andrew Fuegelman created a program called 
PC-Talk. This program provided a better way for users with 
modems to connect to the many bulletin board systems 
that were starting to spring up. Fluegelman was familiar 
with the common practice of public radio and TV broad-
casters of soliciting pledge payments to help support their 
“free” service. He decided to do something similar with his 
program. He distributed it to many bulletin boards, where 
users could download it for free. However, he asked users 
who liked the program and wanted to continue to use it to 
pay him $25.

Fluegelman dubbed his method of software distribution 
“freeware” (because it cost nothing to try out the program). 
Other programmers began to use the same method with 
their own software. This included Jim Knopf, author of the 
PC-File database program, and Bob Wallace, who offered 
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PC-Write as a full-featured alternative to expensive com-
mercial word processing program. Because Fluegelman had 
trademarked the term freeware, these other authors began 
to call their offerings shareware.

Today freeware means software that can be downloaded 
at no cost and for which there is no charge for continued 
use. The program may be redistributed by users as long as 
they don’t charge for it.

Shareware, on the other hand, follows Fluegelman’s 
original concept. The software can be downloaded for free. 
The user is allowed to try the program for a limited period 
(either a length of time such as 30 days, or a maximum 
number of times that the program can be run). After the 
trial period, the user is expected to pay the author the 
specified fee of continued use. (Today this is usually done 
through the author’s Web site or a service that can accept 
secure credit card payments online.) Once the user pays, 
he or she receives either an unrestricted version of the soft-
ware or frequently, an alphanumeric key that can be typed 
into the program to remove all restrictions. At this point 
the program is said to be “registered.”

Users can be encouraged (or forced) to pay in various 
ways. Some programs keep working after the trial period, 
but display continual “nag” messages or remove some func-
tionality, such as the ability to print or save one’s work. 
(“Demos” of commercial games or other programs also have 
limited functionality, but cannot be registered or upgraded. 
They are there simply to entice consumers to buy the com-
mercial product.)

Alternatively, some shareware authors prefer to entice 
their users to register by offering bonuses, such as addi-
tional features, free upgrades, or additional technical sup-
port. Sometimes (as with the RealPlayer streaming sound 
and video player and the Eudora e-mail program) a useful 
but limited “lite” version is offered as freeware, but users 
are encouraged to upgrade to a more full-featured “profes-
sional” version.

Shareware has been a moderately successful business 
for a number of program authors. For example, Phil Katz’s 
PKZip file compression and packaging program is so useful 
that it has found its way onto millions of PCs, and enough 
users paid for the program to keep Katz in business. (PKZip 
and its cousin WinZip are examples of shareware programs 
that became so popular that they spawned commercially 
packaged versions.)

Shareware and freeware should be distinguished from 
public domain and open source software (see open-source 
movement). Public domain software is not only free (as 
with freeware), but the author has given up all rights includ-
ing copyright, and users are free to alter the program’s code 
or to use it as part of a new program. Open-source software, 
on the other hand, allows users free access to the software 
and its source code, but with certain restrictions—notably, 
that it not be used in some other product for which access 
will be restricted.

Today tens of thousands of shareware and freeware pro-
grams are available on the Internet via ftp archives, author’s 
Web sites, and giant online libraries maintained by zdnet.
com, cnet.com, tucows.com, and others.
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shell
During the 1950s, using a computer generally meant that 
operators submitted batch-processing command cards (see 
job control language) that controlled how each pro-
gram would use the computer’s resources. One program 
ran at a time, and interaction with the user was minimal. 
However, when time-sharing computers began to appear 
in the 1960s, users gained the ability to control the com-
puter interactively from terminals. The operating system 
therefore needed to have a facility that would interpret and 
execute the commands being typed in by the users, such as 
a request to list the files in a directory or to send a file to the 
printer. This command interpreter is called a shell.

To see a simple shell in action, a Windows user need 
only bring up a command prompt, type the word dir, and 
press Enter. A shell called command.com provides the user 
interface for users of IBM PC-compatible systems running 
MS-DOS. The command processor displays a prompt on 
the screen. It then interprets (see parsing) the user’s com-
mands. If the command involves one of the shell’s internal 
operations (such as “dir” to list a file directory), it simply 
executes that routine. For example the command:

dir temp /p

would be interpreted as a call to execute the dir function, 
passing it the name “temp” (a directory) and the /p, which dir 
interprets as a “switch” or instruction telling it to pause the 
directory listing after each screenful of text. If the command 
is an external MS-DOS utility such as “xcopy” (a file copying 
program), the shell runs that program, passing it the infor-
mation (mainly file names) from the command line. Finally, 
the shell can run any other executable program on the sys-
tem. It is then that program’s responsibility to interpret and 
act upon any additional information that was provided.

MS-DOS also has the ability for the command.com shell to 
read a series of commands stored in a text file called a batch 
file, and having the *.bat (batch) extension. This allowed for 
rudimentary scripting of system housekeeping operations or 
other routine tasks (see scripting languages).

UNIX Shells
MS-DOS largely faded away in the 1990s as more users 
switched to Microsoft Windows and begun to use a graphi-
cal user interface to control their machines. However, shells 

428        shell



have achieved their greatest proliferation and elaboration 
with UNIX, the operating system developed by Ken Thomp-
son and Dennis Ritchie starting in 1969 and widely used for 
academic, scientific, engineering, and Web applications.

UNIX shells serve the same basic purposes as the MS-
DOS shell: interactive control of the operating system and 
the ability to run stored command scripts. However, the 
UNIX shells have considerably more complex syntax and 
capabilities.

Part of the design philosophy of the UNIX system was 
to place the core operating system functions in the kernel 
(see Kernel and UNIX). This modular design meant that 
UNIX, unlike most other operating systems, did not have to 
commit itself to a particular form of user interface or com-
mand processor. Accordingly, a number of such processors 
(shells) have been developed, reflecting the programming 
style preferences of their originators.

The first shell to be developed was the Bourne Shell, 
named for its creator, Steven R. Bourne, who developed it 
at Bell Labs, the original home of UNIX. The Bourne shell 
implemented some basic ideas that are characteristic of 
UNIX: the ability to redirect input and output to and from 
files, devices or other sources (using the < and > characters), 
and the ability to use “pipes” (the | character) to connect 
the output of one command to the input of another.

The next major development was the C shell (csh). The 
Bourne shell used a relatively simple and clean syntax 
devised by its creator. As the name suggests, the C shell 
(developed at the University of California, Berkeley) takes 
its syntax from the C programming language, which was 
by far the most commonly used language on UNIX systems. 
One logical reason for this choice was that C programmers 
could quickly learn to write scripts with the C shell. The 
C shell also added support for job control (that is, moving 
processes between foreground and background operation) 
and in general was easier to use for interactively controlling 
programs from the command line.

UNIX users sometimes used both shells, since the sim-
pler and more consistent syntax of the Bourne shell is gen-
erally thought to be better for writing scripts. (The two 
shells also reflected the split in the UNIX world between 
the version of the operating system provided by AT&T and 
the variant developed at UC Berkeley.)

David Korn at AT&T then decided to combine the best 
features of both shells. His Korn shell (Ksh) kept the better 
scripting language features from the Bourne shell but added 
job-control and other features from the C shell. He also 
added the programming language concept of functions (see 
procedures and functions), allowing for cleaner organi-
zation of code.

Another popular shell, BASH (Bourne Again Shell) was 
developed by the Free Software Foundation for GNU, an 
open-source version of UNIX. BASH and Ksh share most 
features and both are compatible with POSIX, a standard 
specification for connecting programs to the UNIX operat-
ing system.

The surge of interest in open-source UNIX in recent 
years (see Linux) has brought a new generation of shell 
users. Although modern Linux distributions provide a full 

graphical user interface (GUI)—indeed, a choice of them—
such tasks as software installation and configuration often 
involve entering shell commands. Experienced users can 
also find, copy, move, or otherwise manipulate batches of 
files more efficiently in the shell than in using windows and 
mouse movements.

Shell Scripts
Regardless of the version of the shell used, shell scripts 
work in the same basic way. A shell script is a text file 
containing commands to the shell. The commands can use 
control statements (see branching statements and loop) 
and invoke both the shell’s internal features and the many 
hundreds of utility programs that are available on UNIX 
systems (see scripting languages).

Once the script is written, there are two ways to execute 
it. One way is to type the name of the shell at the command 
prompt, followed by the name of the script file, as in:

$ sh MyScript

Alternatively, the chmod (change mode) command can be 
used to mark the script’s file type as executable, and the first 
line of the script then contains a statement that invokes the 
shell, which will parse the rest of the script. The script can 
now be executed simply by typing its name at the command 
prompt (or it can be included as a command in another 
script).

Here is a simple example of a shell script that prints out 
various items of information about the user and the current 
session on a UNIX system:

#! /sbin/sh

echo My username: `whoami`
echo My current directory: `pwd`
echo
echo My disk usage:
du -k
echo
echo System status:
uptime
if test -f log.txt; then

cat log.txt
else echo Log file not found
fi

The first line tells UNIX which shell to use to inter-
pret the script (in this case the Bourne shell, sh, will be 
executed). The echo command simply outputs the text that 
follows it to the screen. “whoami” is a UNIX command that 
prints the user’s name. The script takes advantage of an 
interesting UNIX feature: The whoami command is put in 
“backquotes” (` )̀. This inserts the output of the whoami 
command (the user name) in place of that command, and 
the resulting text is output by the echo command.

The du command gives the user’s disk usage, while the 
uptime command gives some statistics about how many 
users are on the system and how long the system has been 
running. Finally, the if statement at the end of the script 
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tests for the presence of the file log.txt. If the file exists, its 
contents are displayed by the “cat” command.

When “myinfo” is typed at the UNIX prompt, the output 
might look like the following:

$ myinfo
My username: hrh
My current directory: /home/h/r/hrh

My disk usage:
132 ./.nn
4 ./Mail
48 ./.elm
296 .

System status:
7:34pm up 56 day(s), 20:39, 73 users, load
average: 3.62, 3.45, 3.49

This is a test file.
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Simonyi, Charles
(1948–  )
Hungarian-American
Software Engineer, Entrepreneur

Born in Budapest, Hungary, on September 10, 1948, Charles 
Simonyi shaped the architecture of Microsoft’s dominant 
software applications for many years, devised a new pro-
gramming paradigm and established a company to promote 
it, and, along the way, became the fifth civilian “space tour-
ist” to visit the International Space Station.

Simonyi’s father was a professor of electrical engineer-
ing. In high school, Simonyi worked as a night watchman 
at a computer laboratory. When he expressed his interest, 
one of the engineers taught him how to program; he soon 
wrote a compiler and sold it to a government department. 
After working for a Danish company for a couple of years, 
Simonyi moved to the United States in 1968, attending the 
University of California, Berkeley, and earning a B.S. in 
engineering mathematics in 1972. Moving to Stanford Uni-
versity for graduate study, Simonyi was also hired by Xerox 
PARC, where he shared ideas with innovators in computer 
interfaces and networking. Simonyi received his Ph.D. in 

computer science from Stanford in 1977. In his disserta-
tion Simonyi showed his early interest in “metaprogram-
ming”—the development of ways to coordinate programs 
and provide them with a higher-level context.

In 1981 Simonyi applied directly to Bill Gates for a job 
(see Gates, Bill and Microsoft Corporation). At Micro-
soft Simonyi took charge of the development of the prod-
ucts that would dominate the office software market by 
the end of the 1980s, including Word and Excel. Simonyi 
also brought to Microsoft new program structure ideas that 
he had seen at Xerox PARC—see object-oriented pro-
gramming. At this time Simonyi also developed a standard 
system for naming variables that soon became known as 
Hungarian notation in honor of his ancestry.

The tremendous success of Simonyi as a software devel-
oper (and Microsoft’s gargantuan revenue) made Simonyi 
independently wealthy. However, in 2002 he decided to 
strike out on his own, founding a company called Inten-
tional Software with his business partner Gregor Kicza-
les. The company develops and promotes an approach to 
software design called intentional programming. (Simonyi 
had developed forerunners of this concept at Microsoft, but 
apparently the latter company lost interest in it, perhaps 
prompting Simonyi’s departure.)

To develop an application, software engineers using 
intentional programming begin by building a “toolbox” of 
specific functions needed for the area in which the pro-
gram is intended to operate (such as insurance or banking). 
Domain experts—people who have “real world” knowledge 
of that area—use a special editor to create a description of 
how the application must operate; thus the program is in a 
sense designed not by the programmers, but by the people 
who will guide its use. The program development system 
then connects the tools to the description to generate the 
final code, which can then be refined. An important feature 
of this process is that the specific intentions about what the 
program needs to do are preserved along with the code, 
with the result largely self-documenting. It is argued that 
this makes subsequent testing and modification of the soft-
ware much faster and easier. The first commercial version 
of this development system is expected in 2008.

Space Tourist and Philanthropist
In April 2007 Simonyi, an experienced pilot, fulfilled a life-
long interest in space by riding a Russian Soyuz spacecraft 
to the International Space Station; the 10-day “vacation” cost 
him about $20 million. Simonyi chronicled his preparations 
and the trip itself via his “Nerd in Space” Web site. (Simo-
nyi also sails in his sleek luxury yacht Skat.)

As a philanthropist, Simonyi established a professorship 
for the Public Understanding of Science at Oxford Univer-
sity, as well one for Innovation in Teaching at Stanford. He 
has given tens of millions of dollars to various programs 
in the arts and sciences. As of 2007 Simonyi was dating 
domestic arts entrepreneur and author Martha Stewart.

While it remains uncertain how successful and influ-
ential intentional programming will become, Simonyi has 
been hailed by Bill Gates as “one of the great programmers 
of all time.”
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Simula
One of the most interesting applications of computers is 
the simulation of systems in which many separate actions 
or events are happening simultaneously (see simulation). 
During the 1950s, Norwegian computer scientist Kristen 
Nygaard began to develop a more formal way of describing 
and designing simulations. A typical simulation consists 
of a number of “objects,” such as cars in a traffic flow or 
customers waiting in a bank line. In a bank simulation, 
for example, the objects (customers) would demand ser-
vice from particular serving objects (teller windows). They 
would move in a queue and their motion would be captured 
at various points of time.

Nygaard used his ideas to create symbols and flow dia-
grams to represent the events going on in a simulation. 
However, existing computer languages such as Algol 60 
were designed to carry out procedures sequentially and one 
at a time, not simultaneously. This made it difficult to write 
a program representing a situation in which many cars or 
customers were moving simultaneously.

In the early 1960s, Nygaard was joined by Ole-Johan 
Dahl, who had more experience with systems programming 
and computer language design. They worked together to 
create a new language that they called Simula, reflecting 
their emphasis on simulation programming. In designing 
Simula, the authors sought to create a data structure that 
was better suited to simultaneous actions or events. For 
example, in a simulation of automobile traffic, each car 
would be an “object” with data such as its location and 
speed as well as actions or capabilities such as changing 
speed or direction. The data for each object must be main-
tained separately and updated frequently.

The Algol 60 language already had a way to define code 
“blocks” (see procedures and functions) that could con-
tain their own local data as well as actions to be performed. 
Further, such blocks could be called repeatedly such that 
many copies could be “open” at the same time. However, 
these calls were still essentially sequential, not simultane-
ous. In their new Simula 1 language (introduced in 1965), 
Dahl and Nygaard created a way to simulate simultaneous 
processing. Even though the computer would (probably) 
only have a single processor such that only one copy of 
a block of code could be executing at a given time, Sim-
ula set up special variables for keeping track of simulated 

time. Control would “jump” from one instance of a block to 
another such that all blocks would, for example, have their 
actions for the time 20:15 executed, then actions for 20:16 
would be executed, and so on. A list kept track of processes 
in time order. Thus, Simula 1 kept all the features of Algol 
but made it more suitable for modeling simultaneous events 
(see multiprocessing).

Simula 1 was quite successful as a simulation language, 
but the authors soon realized that the ability to use separate 
invocations of a procedure to create individual “objects” 
had a more general application to representing data in 
applications other than simulations. In creating Simula 67 
(the version of the language still used today), they therefore 
introduced the formal concept of the class as a specifica-
tion that could be used to create objects of that type. They 
also introduced the key idea of inheritance (where one class 
can be derived from an earlier class), as well as a way that a 
derived class could redefine a procedure that it had inher-
ited from the original (base) class (see object-oriented 
programming and class).

Although Simula 67 would continue to be used primar-
ily for simulations rather than as a general-purpose pro-
gramming language, its object-oriented ideas would prove 
to be very influential. The designers of Smalltalk and Ada 
would look to Simula for structural ideas, and the popu-
lar C++ language began with an effort to create a “C with 
classes” language along the lines of Simula. (See Small-
talk, Ada, and C++.)
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simulation
A simulation is a simplified (but adequate) model that rep-
resents how a system works. The system can be an existing, 
real-world one, such as a stock market or a human heart, 
or a proposed design for a system, such as a new factory or 
even a space colony.

If a system is simple enough (a cannonball falling from 
a height, for example), it is possible to use formulas such 
as those provided by Newton to get an exact answer. How-
ever, many real-world systems involve many discrete enti-
ties with complex interactions that cannot be captured with 
a single equation. During the 1940s, scientists encountered 
just this problem in attempting to understand what would 
happen under various conditions in a nuclear reaction.
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Together with physicist Enrico Fermi, two mathemati-
cians, John von Neumann (see von Neumann, John) and 
Stanislaw Ulam, devised a new way to simulate complex 
systems. Instead of trying fruitlessly to come up with some 
huge formula to “solve” the whole system, they applied 
probability formulas to each of a number of particles—
in effect, “rolling the dice” for each one and then observ-
ing their resulting distribution and behavior. Because of 
its analogy to gambling, this became known as the Monte 
Carlo method. It turned out to be widely useful not only 
for simulating nuclear reactions and particle physics but for 
many other activities (such as bombing raids or the spread 
of disease) where many separate things behave according to 
probabilities.

A number of other models and techniques have made 
important contributions to simulation. For example, the 
attempt to simulate the operation of neurons in the brain 
has led to a powerful technique for performing tasks such 
as pattern recognition (see neural network). The applica-
tion of simple rules to many individual objects can result in 
beautiful and dynamic patterns (see cellular automata), 
as well as ways to model behavior (see artificial life). 
Here, instead of a system being simplified into a simulation, 
a simulation can be created in order to see what sort of sys-
tems might emerge.

Software Implementation
Because of the number of calculations (repeated for a single 
object and/or applied to many objects) required for an accu-
rate simulation, it is obviously useful for the simulation 
designer to have as much computer power as possible. Simi-
larly, having many processors or a network of separate com-
puters not only increases the available computing power, 
but may make it more natural to represent different objects 
or parts of a system by assigning each to its own processor. 
(This naturalness goes the other way, too: Simulation tech-
niques can be very important in modeling or predicting the 
performance of computer networks including the Internet.)

However, it is also important to have programming lan-
guages and techniques that are suited for representing the 
simultaneous changes to objects (see also multiprocess-
ing). Using object-oriented languages such as Simula or 
Smalltalk makes it easier to package and manage the data 
and operations for each object (see object-oriented pro-
gramming, Simula, and Smalltalk).

Applications
Simulations and simulation techniques are used for a tre-
mendous range of applications today. Besides helping with 
the understanding of natural systems in physics, chemis-
try, biology, or engineering, simulation techniques are also 
applied to human behavior. For example, the behavior of 
consumers or traders in a stock market can be explored 
with a simulation based on game theory concepts. Artifi-
cial intelligence techniques (such as expert systems) can 
be used to give the individual “actors” in a simulation more 
realistic behavior.

Simulations are often used in training. A modern flight 
simulator, for example, not only simulates the aerodynam-

ics of a plane and its response to the environment and 
to control inputs, but detailed graphics (and simulated 
physical motion) can make such training simulations feel 
very realistic, if not quite to Star Trek holodeck standards. 
Whether for flight, military exercises, or stock trading, sim-
ulations can provide a much wider range of experiences in 
a relatively short time than would be feasible (or safe) using 
the real-world activity. Simulations can also play an impor-
tant part in testing software or systems or in predicating 
the results of business decisions or strategies.

Simulations are also frequently sold as entertainment. 
Many commercial strategy and role-playing games as well 
as vehicle simulators contain surprisingly complex simula-
tions that make the games both absorbing and challenging 
(see computer games and online games). Such games can 
also have considerable educational value.
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singularity, technological
The idea that an incomprehensible future is rushing down 
on us goes back at least as far as Alan Toffler’s book Future 
Shock (1970). Toffler suggested that fundamental changes 
in society brought about by industrial and postindustrial 
developments were creating psychological stress and dis-
orientation.

Future shock can be thought of as a steep line on a graph 
that represents the complexity of technological society. But 
what if the line were asymptotic, approaching the vertical 
and then disappearing? This is what science fiction writer 
Vernor Vinge described in the 1980s as the “technologi-
cal singularity.” In physics, a singularity is a place where 
laws break down, such as at the center of a black hole. By 
analogy, Vinge suggested that the development of artificial 
intelligence and related technologies would reach a point 
where intelligent machines would drive their own further 
development, with their design and operation far outstrip-
ping human understanding. Once intelligent machines 
create even more intelligent machines (and so on), more 
technological progress might occur in a decade or two than 
in the preceding thousands of years.

An obvious question is whether the singularity is in fact 
coming, and if so, when. Inventor and futurist Ray Kurzweil 
argues that history (including the accuracy of Moore’s law 
of doubling computational power) shows that technological 
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progress is indeed exponential. In his book The Singular-
ity Is Near, Kurzweil predicts that the threshold will be 
reached in the 2040s, leading to “technological change so 
rapid and profound it represents a rupture in the fabric of 
human history.”

There are a number of contrary views. First, there are 
those who argue that there are fundamental reasons why 
computers will never achieve truly human-equivalent intel-
ligence, let alone surpass it (see, for example, Dreyfus, 
Hubert). Others argue that the present rate of accelera-
tion will not necessarily continue, and that human-level AI 
may still be achievable, but only in centuries rather than a 
decades.

Responding to the Singularity
What happens if there is a singularity is the stuff of much 
speculation and science fiction. “Super AI” might lead to 
the development of technologies such as the ability to store 
or transfer the contents of a human brain, making peo-
ple effectively immortal. On the other hand, superhuman 
intelligences might be indifferent to, or worse, hostile to, 
humanity. Super AI might also foster technologies such as 
genetic engineering or nanotechnology that have promises 
and dangers of their own.

There have been a number of responses to such dangers. 
Some critics (see, for example, Joy, Bill) urge that a limit-
ing framework be put in place to prevent certain areas of 
research from getting out of hand. Others, such as Eliezer 
Yudkowsky of the Singularity Institute for Artificial Intelli-
gence, want to ensure that “seed” AIs (intelligences capable 
of improving themselves) have safeguards and dispositions 
that would make them place a high regard on human inter-
ests, rather like Isaac Asimov’s “three laws of robotics.”

Another suggested approach is to use the growing 
knowledge of the detailed structure and function of the 
human brain to enhance or augment cognitive function. For 
example, a mathematician might think about a problem and 
seamlessly retrieve data from both personal memory and the 
World Wide Web, then carry out symbolic manipulations 
and calculations at electronic speed, all via brain implants.

A “Soft Singularity?”
While the likelihood of computer software exceeding 
human intelligence remains a subject for speculation and 
controversy, existing phenomena (and trends) in software 
design and computer-mediated communication (see social 
networking) suggest that a new level of complexity and 
sophistication is rapidly emerging. As information is being 
increasingly coded for meaning (see semantic Web) and 
programs are acting more autonomously (see artificial 
life and software agent), one might say the Web is start-
ing to understand itself, if not yet becoming conscious in 
the human sense. In turn, the augmentation of human 
cognition is already well underway. Thus many potential 
effects of the singularity are already significant issues.
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Smalltalk
Working during the 1970s at the Xerox Palo Alto Research 
Laboratory (PARC), computer scientist Alan Kay created 
many ideas and devices that have found their way into 
today’s personal computers. While designing a proposed 
notebook computer called the Dynabook, Kay decided to 
take a new approach to creating its operating system. The 
result would be a language (and system) called Smalltalk.

In developing Smalltalk, Kay built upon two important 
ideas. The first was that people could master the power 
of the computer most easily by being able to create, test, 
and revise programs interactively rather than having to go 
through the cumbersome process of traditional compila-
tion. Seymour Papert had already created Logo, an inter-
active, graphics-rich language that proved especially good 
for teaching children surprisingly sophisticated computer 
science concepts. The name Smalltalk reflects how the first 
implementation of this language was also designed to be a 
simple, child-friendly language.

The other key idea Kay used in Smalltalk was object-ori-
ented programming, which had first been developed in the 
language Simula 67 (see Simula and object-oriented pro-
gramming). However, instead of simply adding classes and 
objects to existing language features, Kay designed Small-
talk to be object-oriented from the ground up. Even the 
data types (such as integer and character) that are used to 
declare variables in traditional languages become objects in 
Smalltalk. Users can define new classes that are treated just 
like the “built-in” ones. There is no need to worry about 
having to declare variables to be of a certain type before 
they can be used; in Smalltalk variables can be associated 
with any object.

To get a program to perform an action, a “message” is 
sent to an object, which invokes one of the object’s defined 
capabilities (methods). For a very simple example, consider 
the BASIC assignment statement:

Total = Total + 1

In a traditional language like BASIC, this is conceptu-
alized as “add 1 to the value stored at the location labeled 
Total and store the result back in that location.” In the 
object-oriented Smalltalk language, however, the equivalent 
statement would be:

Total <- Total + 1
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This means “send the message + 1 to the object that 
is referenced by the variable called Total.” This message 
references the + method, one of the methods that numeric 
objects “understand.” The object therefore adds 1 to its 
value, and returns that value as a new object, which in turn 
is now referenced by the variable Total.

A “program” in Smalltalk is simply a collection of objects 
with the capabilities to carry out whatever processes are 
required. The objects and their associated variables make 
up the “workspace,” which can be saved to disk periodi-
cally.

For the Smalltalk programmer there is no distinc-
tion between Smalltalk and the host computer’s operat-
ing system. The operating system’s capabilities (such as 
file handling) are provided within the Smalltalk system as 
predefined objects. Kay envisaged Smalltalk as a complete 
environment that could be extended by users who were not 
necessarily experienced programmers, and he designed its 
pioneering graphical user interface as a way to make it easy 
for users to work with the system.

Smalltalk includes a “virtual machine,” whose instruc-
tions are then implemented in specific code for each major 
type of computer system. Because of Smalltalk’s consistent 
structure and ability to build everything up from objects, 
almost all of the Smalltalk system is written in Smalltalk 
itself, making it easy to transplant to a new computer once 
the machine-specific details are provided.

Because of its elegance and consistency and its avail-
ability on personal computers, by the 1980s Smalltalk had 
aroused considerable interest. The language has not been 
widely used for mainstream applications, in part because 
the mechanisms needed to kept track of classes and inheri-
tance of methods are hard to implement as efficiently as 
the simpler mechanisms used in traditional languages. The 
approach of building object-oriented features onto exist-
ing languages (as with developing C++ from C) had greater 
appeal to many because of efficiency and a less steep learn-
ing curve.

Nevertheless, the conceptual power of Smalltalk has 
made it attractive for certain AI and complex simulation 
projects, and it appeals to those who want a pure object-
oriented approach where an application can cleanly mirror 
a real-world situation. Smalltalk also remains a good choice 
for teaching programming to children (and others). A ver-
sion called Squeak provides a rich environment of graphics 
and other functions. Squeak and a number of other Small-
talk implementations are available for free download for a 
number of different computer systems.

Further Reading
Ducasse, Stéphane. Squeak: Learn Programming with Robots. Berke-

ley, Calif.: Apress, 2005.
Klimas, Edward J., Suzanne Skublics, and David A. Thomas. Small-

talk with Style. Englewood Cliffs, N.J.: Prentice Hall, 1996.
Lewis, Simon. The Art and Science of Smalltalk. Englewood Cliffs, 

N.J.: Prentice Hall, 1995.
Smalltalk. Available online. URL: http://smalltalk.org. Accessed 

August 21, 2007.
Squeak. Available online. URL: http://www.squeak.org/. Accessed 

August 21, 2007.

smart buildings and homes
A smart building, whether commercial space or a home, is 
one in which components ranging from HVAC (heating, 
ventilation, and air conditioning) to appliances, computers, 
communications, security, and entertainment systems are 
integrated into a network for easy control.

Some typical features of a smart building include the 
following:

• � lighting that is controlled by time of day, scheduling, 
and occupancy sensors

• � temperature and air-flow sensors to determine the 
amount of cooling, heating, or fresh air needed

• � controls for central heating, hot water, and air condi-
tioning systems, optimizing efficiency and minimiz-
ing energy use

• � alarms for intrusion, fire, carbon monoxide/dioxide, 
and other hazards

• � alarms indicating failure or unsafe operating condi-
tions for various devices

• � integration of alarm and status messages with 
communications systems, enabling users to receive 
them by e-mail, text message, phone, or other 
means

Using a secure link, the user can connect to the build-
ing via mobile phone or perhaps Internet connection and 
give it commands, such as to turn the heating or porch light 
on, close the drapes, and so on. The system can also let the 
remote user know who is at the door and allow for commu-
nication, or let them in.

Smart office or other buildings use many of the same 
technologies as smart homes, but the priorities and empha-
ses may be different. Smart buildings are more likely to 
be centrally controlled and fully automated rather than 
allowing individuals to interact with them. (Regulatory and 
safety requirements are also likely to be different and more 
complex.)

Applications and Questions
The integrated controls in a smart house are potentially 
very useful for disabled persons or seniors who have lim-
ited mobility. Lighting could automatically be turned on 
as a person gets up from bed and goes to the bathroom, for 
example. Appliances could be controlled remotely, and even 
cupboards or tables could be designed to raise or lower at 
the touch of a button. (See disabled persons and com-
puting and seniors and computing.) If such systems are 
effective, their cost may be well worth the psychological 
benefits of allowing people to remain in their homes, and in 
comparison to the cost of assisted living or residence facili-
ties. Smart homes could also help parents monitor toddlers 
or small children as well as restrict them from entering 
potentially hazardous parts of the house.

Critics of the smart-house concept point out that install-
ing and integrating all the required equipment for a full 
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implementation is quite expensive. Incorporating the nec-
essary features when building a new house would be easier, 
since infrastructure such as cabling can be incorporated 
in the building design. However, much of the technology 
is not fully mature. There are several standards for inter-
connection, including the venerable X10, Z-Wave, and 
Insteon—and they are incompatible with one another.

Further Reading
Briere, Danny, and Pat Hurley. Smart Homes for Dummies. 3rd ed. 

Hoboken, N.J.: Wiley, 2007.
Eisenpeter, Robert C., and Anthony Volte. Build Your Own Smart 

Home. Emeryville, Calif.: McGraw-Hill/Osborne, 2003.
“Home Automation for the Elderly and Disabled.” Wikipedia. 
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automation_for_the_elderly_and_disabled. Accessed Novem-
ber 15, 2007.

Lee, Jeanne. “Smart Homes: The Best of Today’s Intelligent, Net-
worked Home Appliances Aren’t Just Cool and High-Concept. 
Believe It or Not, They also Make Sense.” Money, Oct. 1, 
2002, p. 120 ff.

Mitchell, Robert. “The Rise of Smart Buildings.” Computer-
world, March 14, 2005. Available online. URL: http://www.
computerworld.com/networkingtopics/networking/story/ 
0,10801,100318,00.html. Accessed November 15, 2007.

smart card
The smart card is the next generation of transaction devices. 
Magnetically coded credit, debit, and ATM cards have been 
in use for many years. These cards contain a magnetic strip 
encoded with a small amount of fixed data to identify the 

account. All the actual data (such as account balances) is 
kept in a central server, which is why credit cards must 
be validated and transactions approved through a phone 
(modem) link. Some magnetic strip cards such as those 
used in rapid transit systems are rewritable, so that, for 
example, the fare for the current ride can be deducted. Tele-
phone cards work the same way. Nevertheless, these cards 
are essentially passive tokens containing a small amount of 
data. They have little flexibility.

However, since the mid-1970s it has been possible to 
put a microprocessor and rewritable memory into a card 
the size of a standard credit card. These smart cards can 

A smart house or building makes it easy to control essential functions such as heating, air conditioning, lighting, and security systems.

A smart card is “smart” because it does not just hold and update 
data, but has an embedded program and the ability to respond to a 
variety of requests.
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store a hundred or more times the data of a magnetic strip 
card. Further, because they have an onboard computer (see 
embedded system), they can interact with a computer at 
the point of service, exchanging and updating information.

Magnetic strip cards have no way to verify whether 
they’re being used by their legitimate owner, and it is rela-
tively easy for criminals to obtain the equipment for creat-
ing counterfeits. With a smart card, the user’s PIN can be 
stored on the card and the terminal can require that the user 
type in that number to authorize a transaction. Again, the 
PIN can be validated without reference to a remote server.

Hardware and Programming
Besides the microprocessor and associated circuitry, the 
smart card contains a small amount of RAM (random 
access memory) to hold “scratch” data during processing, 
as well as up to 64 kB of ROM (read-only memory) contain-
ing the card’s programming instructions. The program is 
created on a desktop computer and written to the ROM 
that is embedded in the card. Finally, the card includes up 
to 64 kB of EEPROM (Electrically Erasable Programmable 
Read Only Memory) for holding account balances and other 
data. This memory is nonvolatile (meaning that no power is 
needed to maintain it), and can be erased and rewritten by 
the card reader.

“Contact” cards must be swiped through the reader and 
are most commonly used in retail, phone, pay TV, or health 
care applications. “Contactless” cards need only be brought 
into the proximity of the reader, which communicates with 
it via radio signals or a low-powered laser beam. Contact-
less cards are more practical for applications such as col-
lecting bridge tolls (see also rfid).

The card reader (or terminal) at the point of sale con-
tains its own computer, which runs software that requests 
particular services from the card’s program, including pro-
viding identifying information and balances, updating bal-
ances, and so on.

Microsoft and some other companies have introduced 
the PC/SC standard for programming smart cards from 
Windows-based systems. Another standard, Open Card, 
promises to be compatible with a wide range of platforms 
and languages, including Java. (Java, after all, descended 
from a project to develop a language for programming 
embedded systems.) However, the first commercially avail-
able Java-based smart card programming system is based 
on another standard called JavaCard.

Applications
The same smart card might also be programmed to handle 
several different types of transactions, and could function 
as a combination phone card, ATM card, credit card, and 
even medical insurance card. Europe has been well ahead of 
the United States in adopting smart card technology, with 
both France and Germany beginning during the 1980s to 
use smart cards for their phone systems. During the 1990s, 
they began to develop infrastructure for universal use of 
smart cards for their national health care systems. In 2002, 
Ontario, Canada, began to replace citizenship papers with a 

smart card, as well as creating a health services card. Other 
innovative uses for smart cards include London’s city pass 
for tourists, which can be programmed to provide not only 
prepaid access but also various bonuses and promotions.

The packing of many services and the associated infor-
mation onto a smart card raises greater concern that the 
information might be illicitly captured and abused (see pri-
vacy in the digital age). Smart chips about the size of 
a grain of rice can be implanted beneath the skin. When 
scanned by hospital personnel, the patient’s entire medi-
cal record can be retrieved, which can be vital for deciding 
which drugs to administer in an emergency when the patient 
is unable to communicate. However, the chips might be sur-
reptitiously scanned by, for example, employers seeking to 
screen out workers with expensive medical conditions.

Smart cards (such as for digital TV access) have been 
counterfeited with the aid of sophisticated programs and 
intrusion equipment. Card makers try to design the card’s 
circuits so that it resists intrusion and tampering and rejects 
programming attempts from unauthorized equipment.

Another way to prevent unauthorized use is to have 
the card store identifying information that can be verified 
through fingerprint scanners or other means (see biomet-
rics). Smart ID and access cards are being deployed by 
more U.S. government agencies to control access to sensi-
tive areas in the wake of the September 11, 2001, terrorist 
attacks. The newest smart cards, such as one called the 
Ultra Card, can hold 20 MB of information, allowing the 
use of much more extensive biometric data. The contro-
versial “national ID card,” if implemented, is likely to be a 
smart card.

A service called GSM (Global System of Mobile Com-
munications) is gradually being adopted. Through the use 
of a smart card “subscriber identity module,” it allows wire-
less phone users in any participating country to make calls 
and have the appropriate fees deducted. Further, the GSM 
can route calls to a person’s number automatically to that 
person’s handset, regardless of the country of origin and 
destination.

There is a very large investment in the current credit 
card technology, but the flexibility and potential security of 
smart credit and debit cards is attractive. Already some issu-
ers have released credit cards with smart chip technology.

Further Reading
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smartphone
In biology, convergent evolution is when two very different 
types of creatures evolve similar structures or traits to cope 
with similar environments—for example, wings in insects, 
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birds, and bats. Something like this has happened with hand-
held mobile devices that are used to manage personal infor-
mation and for communication. Personal digital assistants 
(see PDA) can maintain lists of phone numbers and other 
contact information, as well as running a variety of useful or 
entertaining applications. However, the first models had no 
provision for actually making phone calls, while later models 
offered the ability to make calls through a wireless connec-
tion (see Bluetooth) to an appropriately equipped mobile 
phone. This meant, though, that the user had to carry two 
separate devices, the PDA and the phone, somewhat defeat-
ing the objectives of portability and convenience.

Meanwhile, of course, mobile phones were a booming 
industry—and a very competitive one, hence the pressure 
to add new features. Some of these features overlap typical 
PDA features, such as storing contact lists, appointments, 
and other personal information. Further, users want to be 
able to not only send text messages, but read and send e-
mail, and browse the Web. But providing all these applica-
tions really calls for a full-fledged (albeit compact) operating 
system and facilities for creating user interfaces. The result 
is the smartphone, which in effect is a phone that is grown 
into a PDA while maintaining its phone capabilities. Thus 
the smartphone aims to be the way to meet all communica-
tions, information management, Web, and entertainment 
needs in a single device. Typical features also include a 
camera and an audio-video media player (see music and 
video players, digital) and a small but increasingly sharp 
screen.

Some of the major smartphone manufacturers and their 
operating systems include the following:

• � Symbian (Symbian OS), used by Nokia, Motorola, 
Samsung, and others

• � Windows Mobile (enhanced Windows CE), popular 
in phones used in Asia

• � Blackberry (RIM), the popular PDA/smartphone

• � Linux, used as the base on which to build a variety 
of PDA/phone operating systems, including products 
from Motorola, Palm, and Nokia (Maemo)

• � OS X (Apple), used in Apple’s innovative and very 
popular iPhone

Convergence
As a practical matter, the PDA and smartphone categories 
now overlap so much that a device such as the Apple iPhone 
can be called either, and then some. Although Apple ini-
tially locked out full access to the iPhone operating sys-
tem for developing third-party applications (and locked the 
phone itself to only a few providers), the overall trend in the 
industry is to provide more flexibility and accessibility.

Although not yet accompanied by an actual device, the 
2007 announcement by Google of an open-source phone 
software platform called Android has been greeted by con-
siderable interest. The product will be developed further 
by the Open Handset Alliance, a consortium of Google and 
more than 30 other companies, including T-Mobile and 

Motorola. The use of open-source software should reduce 
costs to developers and consumers, in part by making it 
possible for a developer to create an application that can 
run on dozens of different smartphone models.
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Smartphone or PDA? Sometimes it is just a matter of semantics 
what to call a handheld device such as this Palm Treo 700w that 
can make phone calls and send e-mail or text messages as well as 
manage information.  (Palm, Inc.)
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SOAP
Originally standing for Simple Object Access Protocol, but 
now no longer an acronym, SOAP is a standard way to 
access Web services (see service-oriented architecture 
and Web services). In today’s Web, where what appears to 
users to be a single site or application is usually built from 
many services, such a facility is essential.

Prior to SOAP, Web applications usually communicated 
through remote procedure calls (RPC). However there were 
problems with compatibility of applications running under 
different operating systems (and perhaps using different 
programming languages), as well as security problems that 
often led to such facilities being blocked.

SOAP, on the other hand, uses the same HTTP recog-
nized by all Web servers and browsers (see Web browser, 
Web server, and World Wide Web)—indeed, it can also 
use secure HTTP (https).

A SOAP request (or message) is an ordinary XML file 
(see xml) that includes an “envelope” element specifying 
it to be a SOAP message, an optional header, a body ele-
ment containing the information pertaining to the func-
tion or transaction requested, and an optional fault element 
to specify error processing. After receiving the message, 
the destination server returns a message providing the 
requested information.

A very simple SOAP message might look like this:

<SOAP:Envelope
xmlns:SOAP=“http://schemas.xmlsoap.org/soap/
envelope/”>

<SOAP:Body>
<m:getPrice

xmlns:m=“http://www.soapware.org/”>
<itemnum>311</itemnum>

</m:getPrice>
</SOAP:Body>

</SOAP:Envelope>

The message asks for the price for item number 311.
Despite its advantages in terms of security, versatil-

ity, and readability, SOAP does have some disadvantages. 
The main one is that XML files can be quite lengthy, mak-
ing transactions slower than with the much more compact 
CORBA (see CORBA).

Further Reading
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social impact of computing
In 2001, the Computer Professionals for Social Respon-
sibility (CPSR) held a conference titled “Nurturing the 
Cybercommons, 1981–2021.” Speakers looked back at the 
amazing explosion in computing and computer-mediated 
communications in the last two decades of the 20th cen-
tury. They then turned to the next 20 years, discussing 
how computing technology offered both the potential for 
a more robust democracy and the threat that control of 
information by the few could disenfranchise the many. 
Their challenge was to create a “cybercommons”—a way 
in which the benefits of technology could be shared more 
equitably.

It is sobering to realize just how much happened in only 
two decades. The computer went from being an esoteric 
possession of large institutions to a ubiquitous companion 
of daily work and home life. At the same time, the Inter-
net, which in 1981 had been a tool for a small number of 
campus computing departments and government-funded 
researchers, has burgeoned to a medium that is fast chang-
ing the way people buy, learn, and socialize.

The use of computing for specific applications generally 
brings risks along with benefits (see risks of computing). 
Sometimes risks can go beyond a specific program into the 
interaction between that program and other systems. In the 
broadest sense, however, computer use as a human activity 
affects all other human activities. The ultimate infrastruc-
ture is not the computer, the software program, or even the 
entire Internet. Rather, it is society as a whole. There are a 
several dimensions along which both positive and negative 
possibilities can be seen.

One of the earliest hints that computers might have a broader 
impact on society came in 1952, when Univac’s prediction of 
an Eisenhower election victory was relayed by anchor Walter 
Kronkite.  (Al Fenn / Time Life Pictures/Getty Images)
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Stratification v. Opportunity
In the past 30 years, the computer has created millions of 
new jobs, ranging from webmaster to support technician 
to Internet café proprietor (see employment in the com-
puter field). Millions of other jobs have been redefined: 
The typist has become the word processor, for example. 
Many other jobs have disappeared or are in the process 
of disappearing—such as travel agents, who have found 
themselves under pressure both from do-it-yourself Inter-
net booking and the airlines deciding that they no longer 
needed to give agents incentives for booking.

In a rapidly changing technological and economic land-
scape, there are always emerging opportunities. The pri-
macy of computer skills in the job market has, however, 
exacerbated a trend that was seen throughout the 20th 
century. New, well-paid jobs increasingly require techni-
cal training and skills—expanding the definition of “func-
tional literacy.” Throughout the second half of the century, 
the traditional blue-collar factory jobs that could assure a 
comfortable living for persons with only a high school edu-
cation have become increasingly scarce. This has been the 
result both of increasingly competitive (and lower-priced) 
overseas labor and factory automation (see robotics) at 
home. Essentially, the well-paid tech sector and the low-
paid service sector have grown rapidly, while the ground in 
between has eroded.

Sometimes jobs don’t disappear, but are “dumbed down,” 
becoming low-skill and low-paid. Fifty years ago, a store 
clerk had to be able to count up from the cash register total 
to the amount of money presented by the customer. Today, 
computerized cash registers tell the clerk exactly how much 
change to give (and often dispense the coins automatically). 
Old-style clerks had to know about prices, discounts, and 
special offers. Today these are handled automatically by 
bar codes and smart cards. Although the supermarket clerk 
still is moderately well paid, the ultimate end of the process 
is seen in the fast food clerk, who often needs only push 
buttons with pictures of food on them. He or she is likely 
to be paid little more than minimum wage. The impact of 
technology on jobs can even go through several stages. For 
example, skilled photo technicians have been replaced by 
the use of automated photo processing equipment. In turn, 
however, the growing use of digital cameras is reducing the 
use of film-based photography in general.

The result of these trends may well be increased social 
stratification. The best jobs in the information age require 
skills such as programming, systems analysis, or the abil-
ity to create multimedia content. However, the opportunity 
to acquire such skills varies and is not evenly distributed 
through all groups in the population (see digital divide). 
Although minority groups are now catching up in terms of 
access to computers at home and in school, disparities in 
the quality of education will only be magnified as technical 
skills increasingly correlate with good pay and benefits.

At the same time the computer offers powerful new 
tools for education (see education and computers). 
Potentially, this could overcome much of the disadvantages 
of poverty because once the threshold of access is met, the 
poor person’s Internet is much the same as that available 

to the privileged. However, mastering the necessary skills 
requires both provision of adequate resources and that pre-
vailing cultural attitudes support intellectual achievement.

Dependency v. Empowerment
Computers have made people more dependent in some 
ways while empowering them in others. Society is increas-
ingly dependent on computers to operate the systems that 
provide transportation, power, and communications infra-
structure. The “y2k” scare at the end of the century proved 
to be unfounded, but it did give people a chance to consider 
what a major, prolonged failure in the information infra-
structure would mean for maintaining the physical neces-
sities of life, the viability of the economy, and the cohesion 
of society itself (see Y2K problem). The terrorist attacks of 
September 11, 2001, brought to greater public awareness 
the concerns about “cyberterrorism” that experts had been 
debating since the late 1990s. (See cyberterrorism.)

At the same time, computers—and particularly the 
Internet—have give individuals a greater feeling of empow-
erment in many respects. The savvy Web user now has 
numerous ways to shop for everything from airline tick-
ets to Viagra pills at prices that reflect disintermediation—
the elimination of the middleman. Many people are less 
inclined to take the word of traditional authority figures 
(such as doctors) and instead are tapping into the sort of 
information that had been previously been accessible only 
to professionals. However, access to information is not the 
same thing as having the necessary background and skills 
to evaluate that information. Whether falling victim to an 
outright scam or simply not fully understanding the conse-
quences of a decision, the Web user finds little in the way 
of a regulatory safety net. The tension between the high 
degree of regulation now existing in much of our society 
and the frontierlike qualities of cyberspace will no doubt be 
a major theme in the next few decades.

Centralization v. Democracy
With new forms of media technology (such as radio and 
television in the 20th century), early innovators and experi-
menters have considerable freedom to experiment and 
express themselves. This freedom is largely the result of 
lack of pressure from powerful economic interests while 
the new technology is largely still “under the radar.” How-
ever, as a technology matures, large corporate interests tend 
to consolidate the market, leaving fewer opportunities for 
smaller, independent operators.

By the late 1990s there was some concern that the 
Internet and World Wide Web were entering such a con-
solidation stage in the wake of such developments as the 
AOL/Time-Warner merger. However, while there are now 
large corporate presences online, the diversity of the means 
of expression has actually increased (see blogs and blog-
ging, user-created content, wikis and Wikipedia, and 
YouTube). Further, the influence of activist groups has 
increased to the point where any serious political campaign 
gives high priority to its Internet presence and the cultiva-
tion of influential bloggers (see political activism and 
the Internet).
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There continue to be centralizing or antidemocratic 
pressures in the online world (for example, see censorship 
and the Internet). There is also the conflict between the 
desire to protect intellectual property and the free sharing 
of images and other media (see distribution of music and 
video, online and intellectual property and comput-
ing). Loss of privacy can also inhibit untrammeled political 
discourse (see privacy in the digital age). At the same 
time, organizations such as the Electronic Frontier Founda-
tion, Electronic Privacy Information Center, and Center for 
Democracy and Technology work to protect and advocate 
democratic expression.

Isolation v. Community
There are many online facilities that allow individuals and 
groups to maintain an ongoing dialog (see chat, online 
and conferencing systems). Students at a school in Iowa 
can now collaborate with their counterparts in Kenya or 
Thailand on projects such as measuring global environmen-
tal conditions. Senior citizens who have become isolated 
from family members and lack access to transportation can 
find social outlets online.

However, critics such as Clifford Stoll believe that the 
growth of online communication (see also virtual com-
munity) may be leading to a further erosion of physical 
communities and a sense of neighborhood. For many years, 
it has been observed that people in suburbia often don’t 
know their neighbors: The car and the phone let them form 
relationships and “communities” without much regard to 
geography. It is possible that the growth in online commu-
nities will accelerate this effect. Further, with people being 
able to order an increasing array of goods and services 
online, might the market plaza and its modern counter-
part the mega mall become less of a meeting place? Even 
the proposal to allow people to vote online might promote 
democracy at the expense of the contact between citizens 
and the shared rituals that give people a stake in the larger 
community.

Thus, computer technology offers many opposing pros-
pects and visions. The social changes that are cascading 
from information and communications technology are 
likely to be at least as pervasive in the early 21st century as 
the those wrought by the telephone, automobile, and televi-
sion were in the 20th.
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social networking
Today, millions of people—middle, high school, and college 
students, but increasingly adults as well—have pages on 
popular Web sites such as MySpace and Facebook. These 
sites are significant examples of social networking: the use 
of Web sites and communications and collaboration tech-
nology to help people find, form, and maintain social rela-
tionships.

The origins of social networking can be traced to online 
venues that arose in the 1970s and 1980s, notably Usenet 
and, later, online chat boards (see bulletin board system, 
conferencing system, netnews, and virtual commu-
nity). In the late 1990s social networking Web sites began 
to appear, including Classmates.com (helping people find 
and communicate with former schoolmates) and SixDe-
grees.com, which emphasized “knows someone who knows 
someone who . . .” kinds of links.

By the mid-2000s the two biggest sites were Facebook 
and MySpace. Founded in 2006 by Mark Zuckerberg, Face-
book was originally restricted to Harvard students, but 
eventually became open to any college student, and then 
high schools and even places of employment. (The name 
comes from a book given to incoming students in some 
schools to familiarize them with their peers.) As of late 
2007 Facebook had more than 55 million active members 
and had become the seventh most visited of all Web sites.

Facebook users have profile pages that include a “wall” 
on which their designated circle of friends can post brief 
messages. (Longer or private messages similar to e-mail can 
also be sent.) Users can also send each other “gifts” repre-
sented by colorful icons. Finally, users in a given Facebook 
community can keep track of each other’s status (where 
they are and what they are doing).

Beverly Hills, California-based, MySpace is an even 
larger site, near the top of the Web site popularity statistics 
through much of 2007. Founded in 2003, the site was cre-
ated and marketed by a company called eUniverse (later 
Intermix), and its launch was greatly boosted by being able 
to tap many of eUniverse’s 20 million existing subscribers. 
User profiles are broadly similar to those in Facebook, but 
are less structured and more colorful, with uploaded graph-
ics and a blog for each user. Profiles can be elaborately 
customized using a variety of tools and utilities. The site 
has also expanded into other areas such as instant messag-
ing (MySpaceIM), video sharing (MySpactTV), and mobile 
phones (MySpace Mobile).

Social network applications are also expanding behind 
the linking of classmates or colleagues. Companies can use 
social networking software to set up user groups and pro-
vide support and incentives. Medical professionals are often 
forming social networks to share knowledge and news—
and not surprisingly, drug company representatives have 
moved in to make their pitch as well. Business executives 
and professionals can meet on LinkedIn, a site that links 
people only if they have an existing relationship or an “invi-
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tation” from an existing member. As further proof that the 
technology is maturing, about 20 percent of adult Internet 
users have reported visiting a social networking site in the 
past 30 days.

Commercialization
Indeed, because they are now bringing so many people 
together, social networking sites have become a very attrac-
tive platform for online products and businesses. Facebook, 
for example, is explicitly allowing selected businesses to 
use the site, in exchange for a portion of the revenue gener-
ated. (Even without formal relationships, many sites allow 
users to add code enabling third-party services.) Some utili-
ties (often sponsored by advertising) help users make their 
profiles more attractive, while one called MySpacelog serves 
users who are anxious to see who is viewing their sites. 
Looming on the horizon by 2007 was Google, which is 
releasing OpenSocial, a set of programming interfaces that 
is expected to enable developers to create applications that 
will run on a wide variety of social networking sites.

While social networking sites generally want to encour-
age products that can add revenue (and value to users), some 
add-on applications can be problematic. In 2006 a site called 
Stalkerati let users automatically search for a person’s profiles 
on popular social networking sites and consolidate them into 
a summary. However, the perhaps unfortunately named sited 
was soon blocked by MySpace and other sites, which cited 
privacy and security concerns. These concerns have become 
increasingly important as networks such as MySpace have 
proven attractive to spammers, identity thieves, and sexual 
predators. (A 2007 survey by the Pew Internet & American 
Life Project found that 23 percent of teens on social networks 
had felt “scared or uncomfortable” because of an online 
encounter with a stranger. However, that same report showed 
that many parents and teens themselves have become aware 
of potential risks and the need to more carefully manage 
where and how information is disclosed.)

Social networking is also attracting the attention of 
social scientists and academics: For example, the University 
of Michigan now has a graduate program in social comput-
ing. Meanwhile sociologist Michael Macy of Cornell Uni-
versity is directing a multiyear research project, funded by 
the National Science Foundation and Microsoft, titled “Get-
ting Connected: Social Science in the Age of Networks.”

Note: the term social network is also used to refer to a 
method of mathematical and sociological analysis of social 
links within organizations. Such methods can of course be 
applied to the online social networking sites.
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social sciences and computing
Broadly speaking, social scientists study the structure and 
dynamics of human societies as well as groups of all kinds. 
Depending on subject matter, the research can fall within 
one or more disciplines, for example, anthropology, psy-
chology, economics, geography, history, political science, 
or sociology. As with other scientific fields, computers have 
greatly enhanced and expanded the ability to carry out, 
analyze, and communicate research findings.

Applications
Social scientists can use a variety of software throughout 
the research process. For example, researchers might use 
the following:

• � Web and bibliographical search tools to find existing 
research on their topic

• � note-taking and concept-diagramming (“mind-map-
ping”) software

• � software to conduct polls or surveys and compile the 
results

• � social networking analysis to better understand a 
group’s structure and dynamics

• � statistical analysis tools to analyze the findings (see 
statistics and computing)

• � map-based systems for studying geographical aspects 
(see geographical information systems)

• � modeling software to simulate the mechanism being 
studied, using mathematical techniques such as the 
Monte Carlo and Markov-Chain methods

Games and virtual worlds in particular are being used 
in innovative ways. Games such as the classic SimCity or 
the “social simulator” The Sims can be used to help stu-
dents understand and experiment with economic and social 
dynamics. However, virtual worlds can also be studied in 
their own right—for example Tufts University research-
ers Nina Fefferman and Eric Lofgren have written a paper 
describing how the spread of a “virtual plague” in Second 
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Life could be studied to learn how people would be most 
likely to react to a real disease outbreak. And at Carnegie 
Mellon University, a National Science Foundation–funded 
project will be studying interactions in online venues as 
disparate as World of Warcraft and Wikipedia.
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software agent
Most software is operated by users giving it commands 
to perform specific, short-duration tasks. For example, a 
user might have a word processor change a word’s typ-
estyle to bold, or reformat a page with narrower margins. 
On the other hand, a person might give a human assistant 
higher-level instructions for an ongoing activity: for exam-
ple, “Start a clippings file on the new global trade treaty and 
how it affects our industry.”

In recent years, however, computer scientists and devel-
opers have created software that can follow instructions 
more like those given to the human assistant than those 
given to the word processor. These programs are variously 
called software agents, intelligent agents, or bots (short 
for “robots”). Some consumers have already used software 
agents to comb the Web for them, looking, for example, 
for the best online price for a certain model of digital cam-
era. Agent programs can also assist with online auctions, 
travel planning and booking, and filtering e-mail to remove 
unwanted “spam” or to direct inquiries to appropriate sales 
or technical support personnel. (See also Maes, Pattie.)

Practical agents or bots can be quite effective, but they 
are relatively inflexible and able to cope only with narrowly 
defined tasks. A travel planning agent may be able to inter-
face with online reservations systems and book airline tick-
ets, for example. However, the agent is unlikely to be able to 
recognize that a recent upsurge in civil strife suggests that 
travel to that particular country is not advisable.

Researchers have, however, been working on a variety 
of more open-ended agents that, while not demonstrably 
“intelligent,” do appear to behave intelligently. The first pro-
gram that was able to create a humanlike conversation was 
ELIZA. Written in the mid-1960s by Joseph Weizenbaum, 

ELIZA simulated a conversation with a “nondirective” psy-
chotherapist. More recently, Internet “chatterbots” such as 
one called Julia have been able to carry on apparently intel-
ligent conversations in IRC (Internet Relay Chat) rooms, 
complete with flirting. Other “social bots” have served as 
players in online games (see chatterbots).

Chatterbots are effective because they can mirror human 
social conventions and because much of casual human 
conversation contains stereotyped phrases or clichés that 
can be easily imitated. Ideally, however, one would want 
bots to be able to combine the ability to carry out practical 
tasks with a more general intelligence and a more “socia-
ble” interface. This requires that the bot have an extensive 
knowledge base (see knowledge representation) and a 
greater ability to understand human language (see linguis-
tics and computing). Small strides have been made in 
providing online help systems that can deal with natural 
language questions, as well as being able to interactively 
help users step through a particular tasks.

Agents or bots have also suggested a new paradigm for 
organizing programs. Currently, the most widely accepted 
paradigm treats a program as a collection of objects with 
defined capabilities that respond to “messages” asking for 
services (see object-oriented programming). A move to 
“agent-oriented programming” would carry this evolution a 
step further. Such a program would not simply have objects 
that wait passively for requests. Rather, it would have multi-
ple agents that are given ongoing tasks, priorities, or goals. 
One approach is to allow the agents to negotiate with one 
another or to put tasks “up for bid,” letting agents that 
have the appropriate ability contract to perform the task. 
With each task having a certain amount of “money” (ulti-
mately representing resources) available, the negotiation 
model would ideally result in the most efficient utilization 
of resources.

If Marvin Minsky’s (see Minsky, Marvin) “society of 
mind” theory is correct and the human brain actually con-
tains many cooperating “agents,” then it is possible that 
systems of competing and/or cooperating agents might 
eventually allow for the emergence of a true artificial intel-
ligence.

In the future, agents are likely to become more capa-
ble of understanding and carrying out high-level requests 
while enjoying a great deal of autonomy. Some possible 
application areas include data mining, marketing and sur-
vey research, intelligent Web searching, security, and intel-
ligence gathering. However, autonomy may cause problems 
if agents get out of control or exhibit viruslike behavior.
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software engineering
By the late 1960s, large computer programs (such as the 
operating systems for mainframe computers) consisted 
of thousands of lines of computer code. In what became 
known as “the software crisis,” managers of software devel-
opment were facing great uncertainty about both program 
development schedules and the reliability of the resulting 
programs.

Programming had started out in the 1940s as an off-
shoot of mathematics, just as the building of computers was 
an offshoot of electrical or electronic engineering. Increas-
ingly, however, programmers were searching for a new pro-
fessional identity. What paradigm was truly appropriate? 
Should programmers strive to be more like mathematicians, 
seeking to rigorously prove the correctness of their pro-
grams? On the other hand, many programmers thought of 
their work as a craft, performed using individual experi-
ence and intuition, and not easily subject to standardiza-
tion. Between the two poles of mathematics (or science) and 
craft came another possibility: engineering.

The concept of software engineering proved to be attrac-
tive. Mathematics (and science in general) are usually car-
ried on without being immediately and directly applied to 
creating a particular device or process. Outside of research 
programs, however, computer applications were written to 
perform real-world tasks (such as flight control) that have 
real-world consequences. Thus, although the notation of 
a computer program resembles that of mathematics, the 
operation of a program more nearly resembles that of com-
plex mechanical systems created by engineers. By attaching 
the label of engineering to what programmers do, advo-
cates of software engineering hoped to develop a body of 
practices and standards comparable in some way to those 
used in engineering. Some critics, however, believe that 

this paradigm is inappropriate, either because they believe 
one should strive for the greater rigor of science or out of a 
preference for individual craft over standardization.

Programming Practices
One of the most pervasive contributions to software engi-
neering has been in computer language design and coding 
practices. At about the same time that the concept of software 
engineering was being promulgated, computer scientists 
were advocating better facilities for defining and structuring 
programs (see structured programming). These included 
well-defined control structures (see branching statements 
and loop), use of built-in and user-defined kinds of data (see 
data types), and the breaking of programs into more man-
ageable modules (see procedures and functions).

The next paradigm came in the late 1970s and had 
taken hold by the late 1980s (see object-oriented pro-
gramming). The ability to “hide” details of function within 
objects that mirrored those in the real world provided a fur-
ther way to make complex programs easier to understand 
and maintain. The growing use of well-tested collections 
of procedures or objects (see library, program) has been 
essential for keeping up with the growing complexity of 
application programs.

Software engineers are also concerned with developing 
tools that will better manage the programming process and 
help ensure that standards are being followed (see pro-
gramming environment). The use of CASE (Computer-
Aided Software Engineering) tools such as sophisticated 
program editors, documentation generators, class dia-
grammers, and version control systems has also steadily 
increased. Today many of these tools are available even on 
modest desktop computing environments (see case).

The Program Development Process
Perhaps the most important task for software engineering 
has been seeking to define and improve the process by 
which programs are developed. In general, the overall steps 
in developing a program are:

The Waterfall, or Cascade, model sees software development as a more linear process going through the requirements, design, implementation, 
integration and testing, and maintenance phases. The results of each phase cascade down into the next.
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• � Detailed specification of what the program will be 
required to do. This can include developing a proto-
type and getting user’s reaction to it.

• � Creation of a suitable program architecture—
algorithm(s) and the data types, objects, or other struc-
tures needed to implement them (see algorithm).

• � Coding—writing the program language statements 
that implement the structure.

• � Verification and testing of the program using realis-
tic data and field testing (see quality assurance, 
software).

• �M aintenance, or the correction of errors and adding 
of requested minor features (short of creating a new 
version of the program).

There are a number of competing ways in which to view 
this software development cycle. The “iterative” or “evo-
lutionary” approach sees software development as a linear 
process of progress through the above steps.

The “spiral” approach, on the other hand, sees the steps 
of planning, risk analysis, development, and evaluation 
being applied repeatedly, until the risk analysis and evalua-
tion phases result in a go/no go to finish the project.

The most commonly used approach is called waterfall. 
In it the results (output) of each stage become the input 
of the next stage. This approach is easiest for scheduling 
(see project management software), since each stage is 
strictly dependent on its predecessor. However, some advo-
cates of this approach have included the ability for a given 
stage to feed back to the preceding stage if necessary. For 
example, a problem found in implementation (coding) may 
require revisiting the preceding design phase.

Developing Software Engineering Standards
Two organizations have become prominent in the effort to 
promote software engineering. The federally funded Soft-
ware Engineering Institute (SEI) at Carnegie Mellon Uni-
versity was established in 1984. Its mission statement is to:

	 1. � Accelerate the introduction and widespread use 
of high-payoff software engineering practices and 
technology by identifying, evaluating, and maturing 
promising or underused technology and practices.

	 2. �M aintain a long-term competency in software engi-
neering and technology transition.

	 3. � Enable industry and government organizations to 
make measured improvements in their software engi-
neering practices by working with them directly.

	 4. � Foster the adoption and sustained use of standards 
of excellence for software engineering practice.

Since 1993, the IEEE Computer Society and ACM Steer-
ing Committee for the Establishment of Software Engineer-
ing as a Profession has been pursuing a set of goals that are 
largely complementary to those of the SEI:

	 1. � Adopt Standard Definitions
	 2. � Define Required Body of Knowledge and Recom-

mended Practices (In electrical engineering, for 

example, electromagnetic theory is part of the body 
of knowledge while the National Electrical Safety 
Code is a recommended practice.)

	 3. � Define Ethical Standards
	 4. � Define Educational Curricula for (a) undergradu-

ate, (b) graduate (MS), and (c) continuing education 
(for retraining and migration).
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software piracy and counterfeiting
According to surveys by analysis firm IDC, software piracy 
accounted for $7.3 billion in losses to the U.S. software 
industry in 2006, while reducing its expansion and thus job 
creation. (This is part of a larger picture in which, according 
to a Gallup study, 22 percent of adults in the United States 
reported having bought some sort of counterfeit product.) A 
bit of Web searching (or even reading spam in one’s in-box) 
suggests that thousands of sites offer “cracked” software 

The Spiral Model visualizes software development as a process of 
planning, risk analysis, development, and evaluation. The cycle 
repeats until the project is developed to its full scope.
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that has been stripped of copy protection. The Business 
Software Alliance estimates that 35 percent of new software 
installed on PCs in 2006 was obtained illegally.

Although piracy can involve many forms of distribution 
including Web sites, file-sharing services (see file-sharing 
and P2P networks), and even software found on “bargain” 
PCs, the most visible form involves physical packages com-
plete with box, CDs, and even holograms. These counter-
feits, which range from crude to nearly indistinguishable, 
are often produced in full-scale factories. China has been 
a major source for many types of product counterfeiting, 
although the government has periodically cracked down 
on the practice. Counterfeiting has also flourished in such 
unlikely locales as Bangladesh and Serbia.

Industry groups also assert that the misuse of legiti-
mately purchased software (such as running more copies 
than have been licensed) is also a form of piracy. The poten-
tial legal liability is enormous, so companies make rigorous 
policies involving software use and install monitoring sys-
tems to detect or prevent licensing violations. (For their 
part, industry groups have offered large cash rewards to 
employees who reveal their company’s violations.)

Countermeasures
As perhaps the largest potential victim, Microsoft has been 
diligent in fighting software piracy. Recent versions of Win-
dows, Office, and other products require that users “val-
idate” the software, associating the license number with 
details of the system’s hardware configuration. When the 
user wants to download later updates or patches, the soft-
ware validation is checked. Failure of validation leads to 
warning messages and disabling of many features of the 
software.

Microsoft has also been active in suing alleged pirates, 
and educating consumers about the dangers of buying 
pirated software, which include the risk of exposure to 
viruses, spyware, and other harmful programs. An industry 
antipiracy group, the Business Software Alliance, has vigor-
ously investigated corporate software use (often with the 
aid of tipsters), finding violations and making companies 
pay fines and buy licenses in lieu of legal action.

Meanwhile, growing pressure from the software indus-
try has led in turn to U.S. pressure on China and other 
countries to go after software counterfeiting operations. In 
summer 2007, a joint operation by the FBI and Chinese 
officials led to the seizure of more than $500 million in 
counterfeit software.

Critics of antipiracy efforts, such as the Electronic Fron-
tier Foundation, argue that estimates of losses from piracy 
assume that every pirated copy of a program represents a 
lost sale, ignoring the possibility that people (such as stu-
dents) would not have the money to buy legitimate copies. 
They also point to what they consider to be heavy-handed 
enforcement of copyright laws and point to proposed leg-
islation such as the Inducing Infringement of Copyrights 
Act, which they argue would in effect outlaw all file-sharing 
networks and subject people to prison sentences for minor 
infractions.
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Sony
Sony Corporation (NYSE symbol: SNE) is the electronics 
business unit of Sony Group, a large Japanese multinational 
company that plays a leading role in worldwide electronics, 
games, and entertainment media (movies and music), intro-
ducing and shaping many now-familiar standards.

The company traces its origin to a radio repair shop 
started by Masaru Ibuka in a bombed-out building in 
Tokyo in 1945. He was soon joined by Akio Morita, and 
the men started an electronics company whose name trans-
lates in English to Tokyo Telecommunications Engineering 
Corporation. They started by building tape recorders, but 
in the early 1950s the two entrepreneurs were among the 
earliest to realize the potential of the transistor, marketing 
transistor radios starting in 1956. The devices essentially 
established the modern consumer electronics field, per-
fectly fitting with a new music fad among American teen-
agers—rock and roll.

With their marketing success, Ibuka and Morita realized 
that they needed a simple, catchy name that would appeal 
to Americans and other non-Japanese customers. In 1958 
they came up with Sony. Although the name did not exist in 
any language (and thus could be made proprietary), “Sony” 
evokes English words such as “sound” and “sonic.” (It also 
resembled a Japanese slang phrase “sony-sony,” for some-
thing like what we would call “geeks” or “nerds” today.)

Influence on Media and Computing
One of Sony’s most enduring impacts has been its establish-
ment of standards for media and storage technologies. The 
company was not always successful: A famous also-ran was 
its Betamax videotape format, which lost out to VHS. How-
ever, the company’s successful consumer products have 
included the following:

• � Trinitron tubes for televisions and computer monitors 
(no longer sold in the United States)

• � Walkman portable music player (1979)

• � 3.5″ floppy disk (1983), which flourished until the 
later 1990s
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• � Discman CD-based music player (1984)

• � Handycam camcorder and Video format (1985)

• � Digital audio tape, or DAT (1987)

• � Blu-ray optical disc

Sony would also become a major player in the console 
gaming market (see gaming console). In 1994 the com-
pany introduced the PlayStation, followed by later models 
in 2000 and 2006. Sony is also a significant seller of digital 
cameras, including the Mavica floppy disc (later CD), since 
discontinued. The company also introduced its proprietary 
“memory stick” for storage.

Stumbles and Successes
In 2005 a controversy erupted when it was revealed that 
Sony music CDs included as part of their copy protection 
(see also digital rights management) a “rootkit” that could 
allow PCs to be compromised. Sony eventually agreed with 
the Federal Trade Commission (FTC) to exchange the 
affected CDs and to reimburse damage to consumers’ com-
puters that might have occurred while attempting to remove 
the software. However, in 2007 a similar problem arose with 
third-party software packaged with Sony memory sticks.

Around the same time, Sony had to recall laptop batter-
ies that had serious flaws that could cause them to overheat 
and catch fire. In 2006 Sony and Dell agreed to replace over 
4.1 million laptop batteries—this was followed by 1.8 mil-
lion Sony batteries in Apple laptops and 526,000 in IBM 
and Lenovo laptops.

Despite these setbacks, Sony continues to be very success-
ful, with $70.3 billion in revenue and a net income of $1.07 
billion in 2007, and about 163,000 employees worldwide.
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sorting and searching
Because they are so fundamental to maintaining databases, 
the operations of sorting (putting data records in order) and 
searching (finding a desired record) have received extensive 
attention from computer scientists. A variety of different 
and quite interesting sorting methods have been devised 
(see algorithm).

Any application that involves keeping track of a signifi-
cant number of data records will have to keep them sorted 
in some way. After all, if records are simply inserted as they 
arrive without any attempt at order, the time it will take to 
find a given record will, on the average, be the time it would 
take to search through half the records in the database. 
While this might not matter for a few hundred records on 

a fast modern computer, it would be quite unacceptable for 
databases that might have millions of records.

Sorting Considerations
While some sorting algorithms are better than others in 
almost all cases, there are basic considerations for choos-
ing an approach to sorting. The most obvious is how fast 
the algorithm can sort the number of records the applica-
tion is likely to encounter. However, it is also necessary to 
consider whether the speed of the sort increases steadily 
(linearly) as the number of records increases, or it becomes 
proportionately worse. That is, if an algorithm can sort a 
thousand records in two seconds, will it take 20 seconds for 
10,000 records, or perhaps five minutes?

In most cases one assumes that the records to be sorted 
are in more or less random order, but what happens if the 
records to be sorted are already partly sorted . . . or almost 
completely sorted? Some algorithms can take advantage of 
the partial sorting and complete the job far more quickly 
than otherwise. Other algorithms may slow down drasti-
cally or even produce errors under those conditions.

The range or variation in the key (the data field by which 
records are being sorted) may also play a role. In some cases 
if the keys are close together, some algorithms may be able 
to take advantage of that fact.

Finally, the available computer resources must be con-
sidered. Today many desktop PCs have 1 GB (gigabyte) or 
more of main memory (RAM), while servers or mainframes 
may have several GBs. If the database is small enough that it 
can be entirely kept in main memory, sorting is fast because 
any record can be accessed in the same amount of time at 
electronic speeds. If, however, part of the database must be 
kept in secondary storage (such as hard drives), the sorting 
program will have to be designed so that it reads a number 
of records from the hard drive in a single reading opera-
tion, in order to avoid the overhead of repeated disk opera-
tions. Most likely the individual batches will be read from 
the disk, sorted in memory, written back to disk, and then 
merged to sort the whole database.

Sorting Algorithms
There are numerous sorting algorithms ranging from the 
easy-to-understand to the commonly used to the exotic and 
quirky. Only the highlights can be covered here; see Fur-
ther Reading for sources for more detailed discussions.

Selection Sort
The simplest and least efficient kind of sort is called the selec-
tion sort. Rather like a bridge player organizing a hand, the 
selection sort involves finding the record with the lowest key 
and swapping it with the first record, then scanning back 
through for the next lowest key and swapping it with the sec-
ond record, and so on until all the records are sorted. While 
this uses memory very efficiently (since the records are sorted 
in place), it is not only slow, but also gets worse fast. That is, 
the time taken to sort n records is proportional to n2.

The selection approach suffers because on each pass the 
sort determines not only the record with the lowest key but 
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the one with the next lowest key. However, that information 
is not retained. The heapsort, invented by John Williams in 
1964, uses a binary tree to store a heap of sorted records 
(see tree and heap). Once the heap is built, the tree nodes 
can be used to store record numbers in a corresponding 
array that will represent the sorted database. The heapsort 
is efficient because no records are physically moved, and 
the only memory needed is for the heap and array. The hea-
psort is generally considered the fastest and most reliable 
general-purpose sorting algorithm, with a maximum run-
ning time of log n.

Bubble Sort
The bubble sort is based on making comparisons and swaps. 
It makes the most convenient comparison possible: each 
record with its neighbor. The algorithm looks at the first 
two records. If the second has a lower key than the first, 
the records are swapped. The procedure continues with the 
second and third records, then the third and fourth, and 
so on through all the records, swapping pairs of adjacent 
records whenever they are out of order. After one pass the 
record with highest key will have “bubbled up to” the end 
of the list. The procedure is then repeated for all but the last 
record until the two highest records are at the end, and so 
on until all the records are sorted. Unfortunately, the num-
ber of comparisons and swaps that must be made makes the 
bubble sort as slow as the selection sort.

Quicksort
The quicksort improves on the basic bubble sort by first 
choosing a record with a key approximately midway between 
the lowest and highest. This key is called the pivot. The 
records are then moved to the left of the pivot if they are 
lower than it, and to the right if higher (that is, the records 
are divided into two partitions). The process is then repeated 

to split the left side with a new pivot, and then the right side 
likewise. This is continued until the partition size is one, 
and the records are now all sorted. (Because of this repeated 
partitioning, quicksort is usually implemented using a pro-
cedure that calls itself repeatedly—see recursion.)

Devised by C. A. R. Hoare in 1962, quicksort is much 
faster than the bubble sort because records are moved over 
greater distances in a single operation rather than simply 
being exchanged with their neighbors. Assuming an appro-
priate initial pivot value is chosen, running time is propor-
tional to the logarithm of n rather than to the square of n. 
The difference becomes dramatic as the size of the database 
increases.

Insertion Sort
The bubble sort and quicksort are designed to work with 
records that are in random order. However, in many appli-
cations a database grows slowly over time. At any given 
time the existing database is already sorted, so it hardly 
makes sense to have to resort the whole database each time 
a new record is added.

Instead, an insertion sort can be used. In its simplest 
form, the algorithm looks sequentially through the sorted 
records until it finds the first record whose key is higher 
than that of the new record. The new record can then be 
inserted just before that record, much like the way a bridge 
player might organize the cards in a hand. (Since insert-
ing a record and physically moving all the higher records 
up in memory can be time-consuming, a linked list of key 
values and associated record number is often used instead. 
(See list processing.) That way only the links need to be 
changed rather than any records being moved.

The insertion sort was improved by Donald L. Shell in 
1959. His “shellsort” takes a recursive approach (like that 
in the quicksort), and applies the insertion sort procedure 
to successively smaller partitions.

Another improvement on the insertion sort is the merge-
sort. As the name implies, this approach begins by creating 
two small lists of sorted records (using a simple comparison 
algorithm), then merging the lists into longer lists. Merging 
is accomplished by looking at the two keys on the top of 
two lists and taking whichever is lowest until the lists are 
exhausted. The merge sort also lends itself to a recursive 

In a bubble sort, pairs of adjacent numbers are compared and 
switched if they are out of order. Eventually the lowest values (such 
as 2 in this case) will “bubble up” to the front of the list.

The Quicksort uses a value called the pivot to partition the list into 
two smaller lists. This process is repeated until the list has been 
divided and “conquered” (sorted).
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approach, and it is comparable in speed and stability to the 
heapsort.

Hash Sorts
All of the sorting algorithms discussed so far rely upon 
some form of comparison. However, it also possible to sort 
records by calculating their relative positions or distribu-
tion (see hashing). In its simplest form, an array can be 
created whose range of indexes is equal to 1 to the maxi-
mum possible key value. Each key is then stored in the 
index position equal to its value (that is, a record with a key 
of 2314 would be stored in the array at position Array[2314]. 
This procedure works well, but only if the keys are all inte-
gers, the range is small enough to fit in memory, and there 
are no duplicate keys (since a duplicate would in effect 
overwrite the record already stored in that position).

A more practical approach is to use a formula (hash 
function) that should create a unique hash value for each 
key. The function must be chosen to minimize “collisions” 
where two keys end up with the same hash value, which 
creates the same problem as with duplicate keys. A hash 
sort is quite efficient within those constraints.

Searching
Once one has a database (sorted or not), the next question 
is how to search for records in it. As with sorting, there 
are a variety of approaches to searching. The simplest and 
least efficient is the linear search. Like the selection sort, 
the linear search simply goes through the database records 
sequentially until it finds a matching key or reaches the end 
without a “hit.” If there is indeed a matching record, on the 
average it will be found in half the time needed to process 
the whole database.

In most real applications the database will have been 
sorted using one of the methods discussed earlier. Here, the 
basic approach is to do a binary search. First the key in the 
middle record in the database is examined. The key is com-
pared with the search key. If the search key is smaller, then 
any matching key must be in the first half of the database. 
Otherwise, it must be in the second half (unless, of course, 
it happens to be the matching key). The process is then 
repeated. That is, if the key is somewhere in the first half, 
that portion of the list is in turn split in half and its middle 
value is examined, and the comparison to the search key is 
made. Thus, the area in which the matching key must be 
found is progressively cut in half until either the matching 
key is found or there are no more records to check. Because 
of the power of successive division, the binary search is 
very quick, and doubling the size of the database means 
adding only one more comparison on the average.

Sometimes knowledge about the distribution of keys 
in the database can be used to improve even the binary 
search. For example, if keys are alphabetical and the search 
key begins with S, it is likely to be faster to pick a starting 
point near the end of the list rather than from the middle. A 
binary tree (see tree) can be constructed from the keys in a 
database in order to analyze the most likely starting points 
for a search.

Finally, hashing (as previously discussed) can be used 
to quickly calculate the expected location of the desired 
record, provided there are no collisions.
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sound file formats
There are a number of ways that sound can be sampled, 
stored, or generated digitally (see music, computer). Here 
we will look at some of the most popular sound file formats.

WAV
The WAV (wave) file format is specific to Microsoft Win-
dows. It essentially stores the raw sample data that rep-
resents the digitized audio content, including information 
about the sampling rate (which in turns affects the sound 
quality). Since WAV files are not compressed, they can con-
sume considerable disk space.

AIFF
AIFF stands for Audio Interchange File Format, and is spe-
cific to the Apple Macintosh and to Silicon Graphics (SGI) 
platforms. Like WAV, it stores actual sound sample data. A 
variant, AIFF-C, can store compressed sound.

AU
The AU (audio) file format was developed by Sun Microsys-
tems and is used mainly on UNIX systems, and also in Java 
programming.

MIDI
MIDI stands for Musical Instrument Digital Interface. 
Unlike most other sound formats, MIDI files don’t represent 
sampled sound data. Rather, they represent virtual musical 
instruments that synthesize sound according to complex 
algorithms that attempt to mirror the acoustic character-
istics of real pianos, guitars, or other instruments. Since 
MIDI is like a “score” for the virtual instruments rather 
than storing the sounds, it is much more compact than 
sampled sound formats. MIDI is generally used for music 
composition rather than casual listening.

MP3
MP3 is actually a component of the MPEG (Moving Picture 
Expert Group) multimedia standard, and stands for MPEG-
1 Audio Layer 3. It is now the most popular sound format, 
using compression to provide a balance of sound quality 
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and compactness that is comparable to that of standard 
audio CDs and suitable for most listeners. The compres-
sion algorithm relies upon psychoacoustics (the study of 
how people perceive the components of sound) to identify 
frequencies that humans can’t hear, and thus may be safely 
discarded. The digitized sound on a CD is compressed up 
to 1/12 or less of its original size, so a 630 MB CD becomes 
about 50 MB in MP3 files.

Since most PC users now have hard drives rated in the 
hundreds of gigabytes (GB), it is easy to store an exten-
sive music library in MP3 form. Most PCs now come with 
software that can play MP3 files (such as Windows Media 
Player), and there are also free and shareware programs 
from a variety of sources, as well as plug-ins for playing 
sound files directly from the Web browser.

Since MP3 is much more compact than “raw” CD for-
mat, users with inexpensive CD-RW drives can “burn” 
large amounts of music in MP3 form onto a single CD. This 
is typically done using software that “rips” the raw tracks 
from an audio CD and converts them to an MP3 file, which 
can then be stored on the PC’s hard drive.

In recent years portable media players such as the iPod 
have become ubiquitous (see music and video players, 
digital). MP3 is the most popular format for music that is 
not digitally protected from copying (see digital rights 
management). However, because MP3 involves a number 
of patents, it is not included by default in Linux distribu-
tions, which instead provide Ogg, a “container” that can be 
used for a variety of formats (see codecs).

Further Reading
Audio File Types. Available online. URL: http://www.fileinfo.net/

filetypes/audio. Accessed August 22, 2007.
Johnson, Dave, and Rick Broida. How to Do Everything with MP3 

and Digital Music. New York: McGraw Hill Professional, 2001.
Young, Robert. The MIDI Files. 2nd ed. New York: Prentice Hall, 

2001.

space exploration and computers
It might have been barely possible to put a satellite (or per-
son) in orbit without the use of computers, but any more 
extensive exploration of space requires many types of com-
puter applications.

Human Space Exploration
Flying to the Moon required precisely calculated and con-
trolled “burns” to inject the Apollo spacecraft from orbit 
into its arcing trajectory to the Moon. The detachable 
Lunar Excursion Module (LEM) also had a computer on 
board (roughly comparable in power to something found 
in today’s programmable calculators). Although the pilot 
controlled the final landing manually, the computer inter-
preted radar data to fix the lander’s position, monitored fuel 
consumption, and provided other key data.

The Space Shuttle, the most complex vehicle ever built 
by human beings, has five onboard computer systems that 
control flight maneuvers (including rendezvous and dock-
ing operations), monitor and control environmental condi-
tions, keep track of fuel, batteries, life support, and other 

consumables, and provide many other functions to support 
the crew’s tasks and experiments.

Automated Space Exploration
Thus far, human explorers have flown no farther than the 
Moon. However, in the last 40 years an extensive survey of 
most of the solar system has been carried out by robot (that 
is to say, computerized) probes and landers. These probes 
have landed on Mars and visited every planet except Pluto, 
as well as making close approaches to asteroids and comets.

The control computer aboard a space probe has sev-
eral jobs. It must keep the probe oriented in such a way 
that its solar panels can receive energy from the Sun, as 
well as keeping an antenna pointed toward Earth so it can 
receive commands and return data from the probe’s scien-
tific instruments.

Starting with Voyager 2 (a probe that is still returning 
data from more than 7 billion miles from Earth), space probe 
computers have been more autonomous, able to make attitude 
corrections and course corrections as needed. The onboard 
computer can even be reprogrammed with new instruc-
tions sent from Earth. Space probes have returned incredibly 
detailed pictures of the surface of the Moon and planets, pre-
paring the way for human missions or robot landers.

Landers reach a fixed point on a planetary surface and 
transmit photographs, temperature, radiation, and other 
readings. Probes can survive only for minutes on the hos-
tile surface of Venus, but have functioned for many months 
on Mars. In a remarkably ambitious mission beginning in 
1976, the two Viking Mars landers were able to carry out 
experiments on soil samples in an unsuccessful attempt to 
find evidence of life while a third probe mapped the planet’s 
surface from orbit. Besides demonstrating remarkable reli-
ability (Viking 2 was still operating in 1982 when it was 
accidentally turned off by a remote command), the mis-
sion also demonstrated the ability to coordinate surface and 
orbital exploration.

In July 1997, the Mars Pathfinder probe landed on the red 
planet, rolling and bouncing to a stop inside a sort of giant 
airbag. After deflating, the Pathfinder base station deployed 
the Sojourner mobile robot. This vehicle (see robotics) 
was controlled by operators on Earth, but because of the 
10–15-minute time delay in signals arriving from Earth, 
the Sojourner had some autonomous ability to avoid colli-
sions or other hazards. The onboard computer also had to 
compress and transmit images and other data. The follow-
on Mars Exploration Rover (MER) program began in 2003 
with the launching of two larger surface rovers dubbed 
Spirit and Opportunity. Landing in January 2004, the rovers 
have shown remarkable durability, still functioning in early 
2008, far beyond their original three-month mission life.

The need to build compact computers and other electron-
ics for space exploration helped spur the development of tech-
niques now found in garden-variety consumer electronics. 
Space computers are also important for demonstrating the 
reliability and robustness that is necessary for applications 
on Earth (such as in the military). Space electronics must be 
shielded and “hardened” to withstand the intense solar radia-
tion, extreme changes in temperature, and electromagnetic 
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fluxes or surges. Redundancy can be used where possible, but 
weight is always at a high premium. With the exception of 
certain satellites and the Hubble Space Telescope, space com-
puters cannot receive on-site service visits.

Because of the high cost and risk of maintaining human 
life for long periods in space, it is likely that robotic probes 
and rovers will remain the main means for space explora-
tion in the early 21st century.
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Spafford, Eugene H.
(1956–  )
American 
Computer Scientist

Eugene (Gene) H. Spafford is a computer scientist and pioneer 
in network security. Spafford earned a B.A. in mathematics 

and computer science from the State University of New York 
at Brockport. He then earned M.S. (1981) and Ph.D. (1986) 
degrees at the Georgia Institute of Technology, with his grad-
uate work focused on distributed operating systems.

Usenet and Beyond
Spafford played a key role in the development of the Usenet 
(see netnews and newsgroups), including the backbones 
and connections that provided for the efficient distribution 
of a growing volume of news posts, as well as the system 
for naming newsgroups. He also created basic introductory 
documentation to help new users participate in the system 
responsibly.

On the night of November 2, 1988, sites throughout 
the Internet began to shut down. The culprit was a worm 
program (see computer virus) that Spafford analyzed in 
a technical paper. The worm would unfortunately only be 
the first of a legion of worms and viruses that would infect 
the network, and Spafford would apply considerable effort 
to helping cope with them. Since then Spafford has been 
a computer security consultant and adviser for numerous 
organizations including Microsoft, Intel, the U.S. Air Force, 
the National Security Agency, the FBI, and the National Sci-
ence Foundation.

Spafford has been on the faculty at Purdue University 
since 1987. In 2007, he was appointed an adjunct professor 
of computer science at the University of Texas at San Anto-
nio. He is also executive director of the university’s new 
Institute for Information Assurance.

Spafford has served on the boards of a number of pro-
fessional societies, including the Computer Research 
Association and the U.S. Public Policy Committee of the 
Association for Computing Machinery (ACM). He has writ-
ten several books and hundreds of papers on UNIX and 
Internet security and related ethical issues. Spafford became 
an ACM Fellow in 1997 and a Fellow of the American Asso-
ciation for the Advancement of Science in 1999. He was 
inducted as a Fellow of the Institute for Electrical and Elec-
tronics Engineers (IEEE) in 2000 and received its Technical 
Achievement Award in 2006. In 2007 Spafford received the 
ACM President’ Award.
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spam
In a well-known 1970 sketch by the British comedy troupe 
Monty Python, a customer is trying to order a breakfast item 

How do scientists look at images that are sent back from another 
planet and determine what is interesting and needs further inves-
tigation? Mars rover scientists do this very task during surface 
mission operations. Each day, rovers send to Earth new images 
that the science team must examine. These images allow the sci-
entists to think of hypotheses that relate to help the science team 
decide what to study and determine what experiments they will 
conduct.  (NASA photo)
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that does not include Spam (the popular luncheon meat). A 
group of Vikings then keeps interrupting the conversation 
by loudly singing “Spam, lovely Spam, wonderful Spam. . . .” 
Segue to the mid-1990s when people (including a legal firm) 
began automatically posting hundreds of identical messages 
on Usenet (see netnews and newsgroups) groups; the 
sketch came to mind and the postings were quickly dubbed 
“spam”—although the term may actually date back to the 
1980s. As news of the spam grew, some administrators and 
users used “cancelbots” to automatically delete the offend-
ing messages; others opposed this as censorship, and many 
newsgroups became effectively unreadable.

While spam can appear in any communications medium 
(including chat, instant messaging, and even blogs), the 
most prevalent type is e-mail spam, which costs U.S. busi-
nesses billions of dollars a year in processing expenditures, 
lost time, and damage caused by malicious software (mal-
ware) for which spam can be either a delivery vehicle or an 
inducement. In 2007 an estimated 90 billion spam messages 
were sent each day.

The fundamental driving force of spam is the fact that, 
given one has Internet access, sending e-mail costs essen-
tially nothing, no matter how many messages are sent. Thus 
even if only a tiny number of people respond to a spam 
solicitation (such as for sexual-enhancement products), the 
result is almost pure profit for the spammer.

Besides directly making fraudulent solicitations for 
products that are ineffective, counterfeit, or nonexistent, 
spam carries two other dangers: inducements to click to 
visit fake Web sites (see phishing and spoofing) and 
attachments containing viruses or other dangerous soft-
ware (see computer virus and spyware and adware).

Fighting Spam
Much spam is spread by first compromising thousands of 
systems (via viruses) and planting in them “bots,” or soft-
ware that can be programmed to mail spam. The control-
lers of “botnets” can then sell their service to spammers 
who want to get their message distributed widely. The 
spammers can also buy lists of e-mail addresses that have 
been “harvested” from postings, poorly secured Web sites, 
and so on.

Ways to stop the spread of spam include the following:

• � e-mail filtering software, using a combination of text 
analysis by keyword or statistical correlation (see 
Bayesian analysis) and lists of Internet locations 
(domains) associated with spamming; filtering can be 
done both by service providers and individual users, 
or collaboratively

• � tightening the technical requirements for messages to 
be accepted by mail servers (much spam has poorly 
formatted headers)

• � improving techniques for blocking the viruses used 
by spammers to set up their bots—see computer 
virus and firewall

• � attempting to shut down the infrastructure that sup-
ports spam operations, such as hosts who allow bulk 

e-mail, and sellers of spamming software and illicitly 
gathered address lists

Spam is illegal in a number of respects. Spamming is against 
the “acceptable use policy” of most Internet Service Provid-
ers (ISP), though willingness to enforce these rules var-
ies. In 2003 Congress passed the CAN-SPAM act, which 
bans bulk e-mail that contains misleading subject or header 
lines, but has been criticized for being weak and for pre-
empting more stringent state laws. (The law also requires 
that messages include an opt-out provision, but spammers 
simply use this to verify that the e-mail address is valid.)

Although filtering software and other measures can 
reduce the amount of spam seen by the average user, spam-
mers and spam-fighters continue their relentless battle with 
each countermeasure, leading to altering the spam to make 
it more likely to pass through. In the long run probably 
only a Net-wide authentication of all e-mail senders and/or 
a small per-message e-mail fee could effectively banish the 
scourge of spam.
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speech recognition and synthesis
The possibility that computers could use spoken language 
entered popular culture with Hal 2001, the self-aware talk-
ing computer in the film 2001: A Space Odyssey. On a practi-
cal level, the ability of users to communicate using speech 
rather than a keyboard would bring many advantages, such 
as mobile, hands-free computing and greater independence 
for disabled persons. Considerable progress has been made 
in this technology since Hal “talked” in 1968.
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Speech recognition begins with digitizing the speech 
sounds and converting them into a standard, compact repre-
sentation. The analysis can be based on matching the input 
sounds to one of about 200 “spectral equivalence classes” 
from which the representation can be created. Alternatively, 
algorithms can use data based on modeling how the human 
vocal tract produces speech sounds, and extract key fea-
tures that then become the speech representation. Neural 
networks can also be “trained” to recognize speech fea-
tures (see neural network). The latter two approaches 
are potentially more flexible but also considerably more dif-
ficult, and tend to be used in research rather than in com-
mercial voice recognition systems.

Whichever form of representation is used, it must then 
be matched to the characteristics of particular words or 
phonemes, usually with the aid of sophisticated statistical 
and time-fitting techniques. The simplest systems work on 
a word level, which may suffice if the system is restricted 
to a simple vocabulary and the user speaks slowly and dis-
tinctly enough. Such systems usually require that the user 
“train” the system by speaking selected words and phrases. 
The user can then control the system with a set of voice 
commands.

Creating a system that can handle the full range of lan-
guage is much more difficult. This kind of system breaks 
the language down into phonemes, its basic sound constitu-
ents (English has about 40 phonemes). The system includes 
a stored dictionary of phoneme sequences and the corre-
sponding words. However, “understanding” which words 
are being spoken is more than a matter of matching pho-
neme sequences to a dictionary. For one thing, the sound of 
the first or last phoneme in a word can change depending 
on the phoneme in an adjacent word.

Once the speech has been recognized, it can be con-
verted to character data (see characters and strings) 
and treated as though the text had been entered from the 
keyboard. This means, for example, that a user could dic-
tate text to be placed in a word processor document as well 
as using voice commands to perform tasks such as format-
ting text. (Special words can be used to introduce and end 
commands.)	

Voice control and dictation have been offered commer-
cially by such companies as Dragon Systems and Kurzweil. 
Microsoft now includes speech recognition and synthesis 
facilities in the latest version of its popular office suite, 
Office 2007.

Voice Synthesis
The other part of the speech equation is the ability to have 
the computer turn character codes into spoken words. The 
most primitive approach is to digitally record appropri-
ate spoken words or phrases, which can then be replayed 
when speech is desired. Naturally, what is spoken is limited 
to what is available in the recorded library, although the 
words and phrases can be combined in various ways. Since 
the combinations lack the natural transitions that speakers 
use, the result sounds “mechanical.” Common applications 
include automated announcements in train stations or in 
prompts for voicemail systems.

To produce a synthesizer that can “speak” any natural 
language text, the system must have a dictionary that gives 
the phonemes found in each word. The 40 or so different 
phonemes can then be digitally recorded and the system 
would then identify the phonemes in each word and play 
them to create speech. While this solves the limited vocab-
ulary problem, the synthesized speech is rather unnatural 
and hard to understand. This is because, as noted earlier, 
the way phonemes are sounded changes under the influ-
ence of adjacent phonemes, and these nuances are lacking 
in a simple phoneme playback.

More sophisticated voice synthesis systems record natu-
ral speech and identify all the possible combinations of half 
of a phoneme and half of an adjacent phoneme. That way the 
possible transition sounds are also recorded, and the result-
ing speech sounds considerably more natural. The drawback 
is that more memory and processing power are required, but 
these commodities are becoming increasingly cheaper.

Speech recognition and synthesis technology has made 
only slow inroads into the computing mainstream, such 
as office applications. Given the costs of hardware, soft-
ware, and training, the keyboard remains more produc-
tive and cost-effective for most applications. However, voice 
technology does have a growing number of specialty uses, 
including security and access systems, speech synthesis for 
disabled persons who cannot see or speak, and enabling 
service robots to interact with people in the environment. 
Speech technology has also been a long-standing topic in 
artificial intelligence and robotics research.
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spreadsheet
With the possible exception of word processing, no per-
sonal computer application caught the imagination of the 
business world as quickly as did the spreadsheet, which 
first appeared as Daniel Bricklin’s VisiCalc in 1979. Visi-
Calc quickly became the “killer app”—the application that 
could justify corporate purchases of Apple II computers. 
When the IBM PC began to dominate the office computing 
industry in the mid-1980s, it had a new spreadsheet, Lotus 
1-2-3. By the end of the decade, however, Microsoft’s Excel 
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spreadsheet had come to the forefront, running on Micro-
soft Windows. It remains the market leader today.

How Spreadsheets Work
A spreadsheet is basically a tabular arrangement of rows 
and columns that define many individual cells. Typically, 
the columns are lettered (A to Z, then AA, AB, and so on) 
while the rows are numbered. A particular cell is referenced 
using its column and row coordinates; thus A1 is the cell in 
the upper left corner of the spreadsheet.

Any cell can contain a numeric value, a formula, or a label 
(such as for giving a title to the spreadsheet or some section of 
it). Formulas reference the values in other cell locations. For 
example, if the formula =SUM (A1:B1) is inserted into cell C1, 
when the spreadsheet is calculated the sum of the contents of 
cells A1 and B1 will be inserted into C1. Modern spreadsheets 
let users select from a variety of functions (predefined formu-
las) for such things as interest or rates of return. Instead of 
having to type the individual coordinates of cells to be used 
in a formula, he or she can simply click on or drag across the 
cells to select them. Formulas can also include conditional 
evaluation (similar to the If statements found in program-
ming languages—see branching statements).

Spreadsheets provide a variety of “housekeeping” com-
mands that can be used for functions such as copying or 
moving a range of cells or “cloning” a cell’s value into a 
range of cells. Large spreadsheets can be broken down into 
multiple linked spreadsheets to make it easier to under-
stand and maintain.

Macros offer a powerful way to simplify and automate 
spreadsheet operations. A macro is essentially a set of pro-
grammed instructions to be carried out by the spreadsheet 
(see macro). One use of macros is to carry out compli-
cated procedures by taking advantage of features similar 
to those found in programming languages such as Visual 
Basic. Macros can also be used to automate data entry into 
the spreadsheet and validate the data. Depending on their 
complexity, macros can either be typed in as a series of 
statements or recorded as the user takes appropriate menu 
and mouse actions. “Solver” utilities can also simplify the 
process of tweaking input variables in order to achieve a 
defined goal. Although spreadsheets can certainly solve 
many types of algebraic equations, symbolic manipulation 
is better handled by programs such as Mathematica (see 
mathematics software).

Besides having extensive graphics and charting capa-
bilities, modern spreadsheets are often part of integrated 
office programs (see application suite). Thus, a Microsoft 
Excel spreadsheet could obtain data from an Access data-
base and create charts suitable for Web pages or PowerPoint 
presentations.
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spyware and adware
Spyware and adware are two pervasive threats to computer 
users. Both are programs that are installed more or less 
surreptitiously, often accompanying an attractive-looking 
“free” software package or media download. Depending on 
how widely it is defined, as many as eight out of 10 PCs 
may be infected by some sort of spyware. Signs of infection 
can include the system slowing down or periodically freez-
ing, Web browsers that fail to display the expected home 
page or search results, and the appearance of numerous 
unwanted pop-up windows (a sign of adware).

Ranging from least to most harmful, spyware and 
adware can do the following:

• � Display annoying advertising that can clog up the 
screen or cover up information (some adware can also 
be spyware that uses information about the user to tar-
get advertising)

• � Track Web browsing to provide information to sell to 
marketers (see cookies)

• � Obtain personal information for use in identity theft

• � Install keyloggers (programs that record keystrokes, 
such as passwords being entered) or other “back 
door” or “trojan” programs

Stopping Spyware
Growing concern about spyware has prompted the use of 
antispyware programs such as Ad-Aware and Spybot-Search 
& Destroy, as well as a free program from Microsoft. Anti-
spyware programs are also being included in popular secu-
rity suites from companies such as Symantec and McAfee. 
The programs work similarly to antivirus programs, watch-
ing for suspicious behavior or “signatures” matching known 
spyware or adware. Depending on the program, the spy-
ware can be blocked from executing at all or removed from 
the system.

The software varies considerably in effectiveness, so 
users may have to run several different programs to com-
pletely remove an “infestation.”

Spyware has been generally given a lower priority than 
viruses or even spam. When challenged, spyware makers 
generally claim that the user authorized its installation (at 
least implicitly) by installing the utility or other software 
that contains it. Although antispyware legislation has been 
introduced in Congress, it has not passed as of mid-2008. 
However, state officials such as former New York State 
Attorney General Eliot Spitzer successfully sued a spyware 
company, winning a $7.5 million settlement.
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SQL
Structured query language was originally developed in the 
early 1970s as a command interface for IBM mainframe 
databases. Today, however, SQL has become the lingua 

Modern spreadsheets have many sophisticated features. Microsoft Excel, for example, has a “Solver” module that can be used to solve for par-
ticular values or to maximize or minimize specified values.
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franca for relational database systems (see database man-
agement system).

A relational database (such as Oracle, Sybase, IBM DB2, 
and Microsoft Access) stores data in tables called relations. 
The columns in the table describe the characteristics of 
an entity (corresponding to data fields). For example, in a 
customer database the Customer table might include attri-
butes such as customer number, First_name, Last_Name, 
Street, City, Phone_number, and so on. The rows in the 
table (sometimes called tuples) represent the data records 
for the various customers.

Many database systems have more than one table. For 
example, a store’s database might contain a Customers table 
(for information identifying a customer), an Item table (giv-
ing characteristics of an item, such as price and number in 
stock), and a Transaction table (whose characteristics might 
be customer number, date, item bought, and so on). Notice 
that the Transaction record contains both a customer num-
ber and an item number. It thus serves as a sort of bridge or 
link between the Customer and Item tables.

SQL provides commands that can be used to specify and 
access components of a database. For example, the INSERT 
and DELETE commands can be used to add or remove rows 
(records) from tables.

To query a database means to give criteria for selecting 
certain records from a table. For example, the query

SELECT * FROM CUSTOMERS WHERE LAST_NAME = 
“Howard”

would return the complete records for all customers whose 
last name is Howard. If only selected fields are desired, they 
can be specified like this:

SELECT NUMBER, NAME, PRICE FROM ITEMS WHERE 
PRICE > = 50.00

This query will display the Number, Name, and Price fields 
for all items whose price is greater than or equal to $50.00.

SQL includes many commands to further refine data 
processing and reporting. There are built-in mathemati-

cal functions as well as a GROUP BY command for fur-
ther breaking down a report by a particular field name or 
value.

SQL can be used interactively by typing commands at 
a prompt, but database applications designed for less tech-
nical users often provide a user-friendly query form (and 
perhaps menus or buttons). After the user selects the appro-
priate fields and values, the program will then generate the 
necessary SQL statements and send them to the internal 
“database engine” for processing. The results will then be 
displayed for the user.

SQL procedures can be stored and managed as part of 
a database. SQL can also be “embedded” within a more 
complete programming language environment so that, for 
example, a Java program can perform SQL operations while 
using Java for processing that cannot be specified in SQL. 
In the mid-1990s an object-oriented version of SQL called 
OQL (object query language), allowing the use of that popu-
lar paradigm for database operations (see object-oriented 
programming).

One of the most popular implementations of SQL is 
MySQL, which is privately owned and developed but avail-
able for free license on many platforms, including Windows 
and Linux. A number of applications are designed to work 
with MySQL databases: see, for example, wikis and Wiki-
pedia and YouTube.
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Structured Query Language (SQL) is a standardized way to query and manipulate databases. Here the statement SELECT NUMBER, NAME, 
PRICE WHERE PRICE >= 50.00 extracts only the records meeting that criterion.
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stack
Often a temporary storage data area is needed during 
processing. For example, a program that calls a procedure 
(see procedures and functions) usually needs to pass 
one or more data items to the procedure. These items 
are specified as arguments that will be matched to the 
procedure’s defined parameters. For example, the proce-
dure call

Square (50, 50, 20)

could draw a square whose upper left corner is at the 
screen coordinates 50, 50 and whose length per side is 20 
pixels.

When the compiler generates the machine code for this 
statement, that code will probably instruct the processor 
to store the numbers 50, 50, and 20 onto a stack. A stack is 
simply a list that represents successive locations in mem-
ory into which data can be inserted. The operation of a 
stack can be visualized as being rather like the spring-
loaded platform onto which dishes are stacked for washing 
in some restaurants. As each dish (number) is added, the 
stack is “pushed.” Because only the item “on top” (the last 
one added) can be removed (“popped”) at any given time, 
a stack is described as a LIFO (last in, first out) structure. 
(Note that this is different from a queue, where items can 
be added or removed from either end [see queue].)

Stacks are useful whenever nested items must be 
tracked. For example, a procedure might call a procedure 
that in turn calls another procedure. The stack can keep 
track of the parameters (as well as the calling address) for 
each pending procedure.

Stacks can also be used to evaluate nested arithmetic 
expressions. For example, the expression that we write in 
conventional (prefix) notation as

7 * 5 + 2

can be represented internally in postfix form as:

* + 5 7 2

Here one stack can be used to hold the operators (* +) and 
one the operands (5 7 2). The evaluation then proceeds in 
the following steps:

Pop the * from the operator stack

Since * is a binary operator (one that needs 
two operands), pop the 5 and 7 from the 
operand stack

Multiply 5 and 7 to get 35.

Pop the + from the operator stack.

Pop the 35 (which is now on the top of the 
operand stack) and the 2

Add 35 and 2 to get 37.

An interesting programming language uses this stack 
mechanism for all processing (see forth). In working with 

stacks, it may be necessary to keep in mind any limitations 
on the amount of memory allocated to the stack, although a 
stack can also be implemented dynamically as a linked list 
(see list processing).
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Stallman, Richard
(1953–  )
American
Computer Scientist

Richard Stallman created superb software tools—the pro-
grams that help programmers with their work. He went 
on to spearhead the open source movement, a new way to 
develop software.

Stallman was born on March 16, 1953, in New York 
City. He quickly showed prodigious talent for mathematics 
and was exploring calculus by the age of eight. Not much 
later, his summer camp reading included a manual for the 
IBM 7094 mainframe belonging to one of the counselors. 
Fascinated with the idea of programming languages, young 
Richard began writing simple programs, even though he 
had no access to a computer.

Fortunately, a high school honors program let him 
obtain some time on a mainframe, and his programming 
talents led to a summer job with IBM. While studying 
for his B.A. in physics at Harvard (which he received in 
1970), Stallman found himself sneaking across town to 
the MIT Artificial Intelligence Lab. There he developed 
Emacs, a powerful text editor that could be programmed 
with a language modeled after LISP, the favorite language 
of AI researchers. While working on Emacs and other 
system software for the AI Lab, Stallman participated 
in the unique MIT “hacker culture.” (During the 1970s, 
“hacker” still meant a creative computing virtuoso, not a 
cyber-criminal.)

Stallman’s experience in the freewheeling, competi-
tive yet cooperative atmosphere at MIT led him to decide 
in 1984 to start the Free Software Foundation, which 
would become his life’s work. Stallman and his colleagues 
at the FSF worked through the 1980s to develop GNU. 
At the time, UNIX, the operating system of choice for 
most campuses and researchers, required an expensive 
license from Bell Laboratories. GNU (a recursive acronym 
for “GNU’s Not UNIX”) was intended to include all the 
functionality of UNIX but with code that owed nothing 
to Bell Labs. Stallman’s key contributions to the project 
included the GNU C compiler and debugger, as well as 
his management of a cooperative effort in which many 
talented programmers would coordinate their efforts over 
the Internet.

By the early 1990s, most of GNU was complete except 
for a key component: the kernel containing the essential 
functions of the operating system. A Finnish programmer 
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named Linus Torvalds decided to write the kernel and inte-
grate it with much of the existing GNU software. The result 
would become known as Linux, and today it is a popular 
operating system that runs on many servers and worksta-
tions. While acknowledging Torvalds’s efforts, Stallman 
insists that the operating system is more properly called 
GNU Linux, to reflect the large amount of GNU code it 
employs.

In recent years Stallman has best been known as a vig-
orous advocate for free software (see open-source move-
ment) and for creating alternative structures for controlling 
its distribution, such as the various forms of the General 
Public License (GPL). Stallman has been accused of being 
rigid and abrasive, such as in his urging that certain termi-
nology be used, or, in the case of the phrase “intellectual 
property,” not used.

Stallman has received a number of important awards, 
including the ACM Grace Hopper Award (1990), Electronic 
Frontier Foundation Pioneer Award (1998), and a MacAr-
thur Foundation fellowship (1990).
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standards in computing
One hallmark of the maturity of a technology is the devel-
opment of a variety of kinds of standards that are accepted 
by a majority of practitioners. There are several reasons 
why standards develop.

Marketplace Standards
In many cases, a particular product gains a prominent 
position in an emerging market, and would-be competi-
tors adopt its interface and specifications. For example, 
the parallel port printer interface (and plug) developed 
by Centronics for its printers was adopted by virtually all 
printer manufacturers. Since it would be impracticable for 
computer manufacturers to provide many different paral-
lel connectors on their machines, there was a clear market 
advantage in setting a standard. When a particular product 
(Centronics in this case) becomes that standard, it is mainly 
a matter of timing.

Once a marketplace standard is established, manufactur-
ers and consumers will generally not want products that are 
incompatible with it. When the IBM PC and its ISA expan-
sion card became the standard followed by many “clone” 
manufacturers, IBM discovered that even Big Blue flouted 
the standard at its peril. When IBM came out with its MCA 
(Microchannel Architecture) in the late 1980s, the new 
machines, although possessing some technical advances, 
did not sell as well as expected. Most people stayed with 
the existing IBM standard and built upwardly compatible 
machines upon it.

Official Standards
Some standards are developed by official bodies. For exam-
ple, the International Standards Organization (ISO) has an 
elaborate formal process where panels of experts develop 
standards for a huge variety of technologies, including many 
relating to computing. In an increasingly global economy, 
international standards allow equipment (or software) from 
one country to be used with that from another. For exam-
ple, credit cards, phone cards, and “smart cards” around the 
world have a common format established by ISO standards. 
(Standards specific to electrical and electronic engineering 
are developed by a similar body, the International Electro-
technical Commission, or IEC.) Standards that have become 
widely accepted but are not yet official ISO standards take 
the form of Publicly Available Specifications, or PAS. Gov-
ernment contracts often specify ISO standards as well as a 
variety of other standards developed by various government 
agencies. The ISO 9001 standards apply specifically to com-
puter systems, software, and its development.

Evolution of Standards
The extent of standardization within the broad information 
technology (IT) industry varies widely among applications. 
Generally, things that have been established for a long time 
(meaning, in computing terms, a couple decades or so) are 
likely to be well standardized. An example is the standards 
for character sets.

For areas in which new applications are emerging, practi-
tioners tend to have less interest (or patience) with the idea of 
standards. For example, the World Wide Web is still relatively 
new, and standards for the operation of Web sites are emerg-
ing only slowly. In this case, it is mainly concern about such 
matters as privacy protection that has encouraged the adop-
tion of standards for matters such as the secure transmission 
of credit card information on-line or privacy policies regard-
ing the use of information obtained from Web users. The 
potential threat of government regulation often encourages 
the development of marketplace standards as an alternative.

Technical societies such as the Institute for Electrical 
and Electronic Engineering (IEEE) and the World Wide 
Web Consortium are an important forum for the discussion 
and development of standards.
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statistics and computing
The application of computing technology to the collection 
and analysis of statistics is as old as computing itself. Indeed, 
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Charles Babbage was an early proponent of the collection of 
social and economic statistics in order to understand how 
society was being changed by the Industrial Revolution in 
the early 19th century. By the end of that century, Herman 
Hollerith had come to the rescue of the U.S. Census Bureau 
by providing his card tabulation machines for the 1890 Cen-
sus. (See Babbage, Charles and Hollerith, Herman.)

In the era of the mainframe, performing statistical 
analysis with a computer generally required writing a cus-
tomized program (although the development of FORTRAN 
around 1960 gradually led the accumulation of an extensive 
library of subroutines that could be employed to perform 
statistical functions). Programs generally run in a batch 
mode, with data supplied from punched cards or tape.

When the personal computer arrived, it wasn’t yet pow-
erful enough for much statistical work, although a program 
such as VisiCalc (see spreadsheet) could be used for sim-
ple operations. Gradually, spreadsheets grew more power-
ful, but statisticians truly rejoiced when software packages 
specifically designed for statistical work began to appear.

Today there are hundreds of statistical packages avail-
able, of which the best known one for personal computers 
is SPSS. Most packages can be used to perform the stan-
dard forms of statistical analysis, including analysis of vari-
ance, regression analysis, discrete data analysis, time series 
analysis, and cluster analysis. There are also packages for 
specialized applications. Moving in the direction of greater 
generality, mathematical software such as Mathematica and 
MATLAB can also be used for statistical applications (see 
mathematics software). This category of software expe-
riences steady growth because the ability to analyze data 
quickly and interactively is increasingly important given the 
growing pace of human activity, whether one is confronted 
with a rapidly spreading disease or a volatile economy.

Other areas related to statistical computing include the 
extraction of useful correlations from existing data bases 
(see data mining) and the development of dynamic models 
based on probability and statistics (see simulation).
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Stoll, Clifford
(1950–  )
American
Astrophysicist, Computer Critic

Until he became famous for tracking down a computer hacker, 
Clifford Stoll, born on June 4, 1950, in Buffalo, New York, was 

an astronomer who had received his Ph.D. from the University 
of Arizona in 1980. (In the 1960s and 1970s Stoll had worked 
as an engineer at a public radio station in Buffalo.)

In 1986, while working at the Lawrence Berkeley Labora-
tory as a system administrator, Stoll was asked to track down 
a 75-cent accounting discrepancy. As he delved into computer 
files, Stoll discovered that an unknown hacker had penetrated 
supposedly secure systems housing secret data relating to mil-
itary technology. Alarmed, Stoll and his colleagues decided 
against immediately shutting down the intruder’s accounts. 
Instead, they painstakingly traced him, and discovered an 
even more alarming possibility: that he was using the lab’s 
computers to reach other computers operated by the military 
and defense contractors. Despite being virtually ignored when 
reporting his findings to the FBI, Stoll and his impromptu 
team soldiered on, even planting false data to keep the intrud-
er’s interest while continuing to trace his movements. Finally 
Stoll was able to get the attention of federal authorities. The 
intrusion was traced to a West German hacker spy ring that 
was selling secrets to the Soviet KGB.

Stoll’s book Cuckoo’s Egg recounted this adventure in 
vivid, accessible terms, and made the New York Times best-
seller list for 16 weeks in 1990. For many readers, this was 
their first introduction to the vulnerabilities of computer 
systems.

Cyber-Critic
In writing and lectures, Stoll is engaging if sometimes a bit 
frenetic. He soon turned his iconoclastic attitude toward 
computers themselves, warning about the dangers of over-
reliance on them. Stoll’s books Silicon Snake Oil and High 
Tech Heretic particularly target the use of computers in edu-
cation. Stoll believes that the technology has been embraced 
as a panacea for the endemic problem of underperforming 
schools. However, Stoll notes that the technology is often 
used for superficial purposes, with little attention to read-
ing and writing skills, while the needs of teachers and stu-
dents and their vital relationship remain neglected. In turn, 
advocates of computers in education have criticized Stoll as 
being superficial and lacking understanding of what good 
software can really do (see computers and education).

In more recent years Stoll has devoted more time to his 
first love, astronomy. He also has an unusual hobby: mak-
ing one-sided Klein bottles.
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streaming
Web users increasingly have access to such content as news 
broadcasts, songs, and even full-length videos. The problem 
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is that the user must receive the content in real time at a 
steady pace, not in sputters or jerks. However, factors such 
as load on the Web server and network congestion between 
the server and user can cause delays in transmission. One 
way to reduce the problem would be to compress the data 
(see data compression). However, excessive compression 
would compromise audio or picture quality to an unac-
ceptable extent. Fortunately, a technology called stream-
ing offers a way to smooth out the transmission of large 
amounts audio or video content (see also multimedia).

When a user clicks on an audio or video link, the player 
software (or Web browser plug-in) is loaded and the trans-
mission begins. Typically, the player stores a few seconds 
of the transmission (see buffering), so any momentary 
delays in the transmission of data packets will not appear 
as the data starts to play. Assuming the rate of transmis-
sion remains sufficient, enough data remains in the buffer 
so that data can be “fed” to the playing software at a steady 
pace. If, however, there is too much delay due to network 
congestion, the playback will pause while the player refills 
its buffer.

The most popular media players for PCs (such as 
WinAmp, RealPlayer, and Windows Media Player) provide 
for streaming data. Despite streaming, connections of fewer 
than about 56 kbps are likely to result in occasional inter-
ruption of content. Together with the use of streaming, the 
move to faster cable or DSL connections (see broadband) 
is improving the multimedia experience for Web users. In 
turn, the ability to easily access video online has fueled 
video-sharing services (see user-created content and You-
Tube). Meanwhile, the growing use of fiber and other high-
speed connections into homes is beginning to make “on 
demand” streaming video services and IPTV (television 
programming delivered via the Internet) competitive with 
existing cable and satellite systems.
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Stroustrup, Bjarne
(1950–  )
Danish
Computer Scientist

Bjarne Stroustrup created C++, an object-oriented successor 
to the popular C language that has now largely supplanted 
the original language.

Stroustrup was born on December 30, 1950, in Aarhus, 
Denmark. As a student at the University of Aarhus his inter-

ests were far from limited to computing (indeed, he found 
programming classes to be rather dull). However, unlike lit-
erature and philosophy, programming did offer a practical 
job skill, and Stroustrup began to do contract programming 
for Burroughs, an American mainframe computer company. 
To do this work, Stroustrup had to pay attention to both the 
needs of application users and the limitations of the machine, 
on which programs had to be written in assembly language 
to take optimal advantage of the memory available.

By the time Stroustrup received his master’s degree in 
computer science from the University of Aarhus, he was an 
experienced programmer, but he soon turned toward the 
frontiers of computer science. He became interested in dis-
tributed computing (writing programs that run on multiple 
computers at the same time) and developed such programs 
at the Computing Laboratory at Cambridge University in 
England, where he earned his Ph.D. in 1979.

The 1970s was an important decade in computing. It 
saw the rise of a more methodical approach to program-
ming and programming languages (see structured pro-
gramming). It also saw the development of a powerful and 
versatile new computing environment: the UNIX operating 
system and C programming language developed by Dennis 
Ritchie (see Ritchie, Dennis) and Ken Thompson and Bell 
Laboratories. Soon after getting his doctorate, Stroustrup 
moved to Bell Labs, where he became part of that effort.

As Stroustrup continued to work on distributed com-
puting, he decided that he needed a language that was bet-
ter than C at working with the various modules running 
on the different computers. He studied an early object-ori-
ented language (see object-oriented programming and 
Simula). Simula had a number of key concepts including 
the organization of a program into classes, entities that 
combined data structures and associated capabilities (meth-
ods). Classes and the objects created from them offered a 
better way to organize large programs, and was particularly 

In the 1980s Bjarne Stroustrup created the object-oriented C++ lan-
guage that became the most popular language for general applica-
tions programming.  (Bjarne Stroustrup)
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suited for distributed computing and parallel programming 
where there were many separate entities running at the 
same time.

However, Simula was fairly obscure, and it was unlikely 
that the large community of systems programmers who 
were using C would switch to a totally different language. 
Instead, starting in the early 1980s, Stroustrup decided to 
add object-oriented features (such as classes with member 
functions, user-defined operators, and inheritance) to C. At 
first he gave the language the rather unwieldy name of “C 
with Classes.” However, in 1985 he changed the name to 
C++. (The ++ is a reference to an operator in C that adds one 
to its operand, thus C++ is “C with added features.”)

At first some critics criticized C++ for retaining most of 
the non-object oriented features of C (unlike pure object 
languages such as Smalltalk), while others complained 
that the overhead required in processing classes made C++ 
slower than C. During the 1990s, however, C++ became 
increasingly popular, aided by its relatively smooth learn-
ing curve for C programmers and the development or more 
efficient compilers. C++ is now the most widely used gen-
eral purpose computer language.

Stroustrup has been honored for his contributions to 
computer science. In 1993 he received the ACM Grace Hop-
per Award for his work on C++, and became an AT&T 
Fellow. After leaving AT&T Stroustrup became a professor 
holding the College of Engineering Chair in Computer Sci-
ence at Texas A&M University. In 2004 Stroustrup received 
the IEEE Computer Society Computer Entrepreneur 
Award, and in 2005 the William Procter Prize for Scientific 
Achievement.
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structured programming
As programs grew longer and more complex during the 
1960s, computer scientists began to pay more attention to 
the ways in which programs were organized. Most pro-
gramming languages had a statement called “GOTO” or its 
equivalent. This statement transfers control to some arbi-
trary other point in the program, as identified by a label or 
line number.

In 1968, computer scientist Edsger Dijkstra (see dijks-
tra, edsger) sent a letter to the editor of the Proceedings of 
the ACM with the title “GO TO Statement Considered Harm-

ful.” In it he pointed out that the more such jumps programs 
made from place to place, the harder it was for someone to 
understand the logic of the program’s operation.

The following year, Dijkstra introduced the term struc-
tured programming to refer to a set of principles for writing 
well-organized programs that could be more easily shown 
to be correct. One of these principles is statements such as 
If . . . Then . . . Else be used to organize a choice between 
two or more alternatives (see branching statements) and 
that statements such as While be used to control repetition 
or iteration of a statement (see loop).

Other computer scientists added further principles, such 
as modularization (breaking down a program into separate 
procedures, such as for data input, different stages of pro-
cessing, and output or printing). Modularization makes it 
easier to figure out which part of a program may be causing a 
problem, and to fix part of a problem without affecting other 
parts. A related principle, information hiding, keeps the data 
used by a procedure “hidden” in that procedure so that it 
can’t be changed from some other part of the program.

Structured programming also encourages stepwise 
refinement, a program design process described by Niklaus 
Wirth, creator of Pascal. This is a top-down approach in 
which the stages of processing are first described in high-
level terms (see also pseudocode), and then gradually 
fleshed out in their details, much like the writing of an 
outline for a book.

The principles of structured programming were soon 
embodied in a new generation of programming languages 
(see Algol, Pascal, and c). Although use of well-struc-
tured language didn’t guarantee good structured program-
ming practice, it at least made the tools available.

The ideas of structured programming form a solid basis 
for programming style today. They have been supplemented 
rather than replaced by a new paradigm developed in the 
1970s and 1980s (see object-oriented programming).
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Sun Microsystems
Founded in 1982, Sun Microsystems (NASDAQ symbol: 
JAVA) has played an important role in the development 
of computer workstations and servers, UNIX-based operat-
ing systems, and the Java programming language (see Java, 
unix, and workstation).

During the 1980s, Sun was known mainly for its work-
stations for programmers and graphics professionals, run-
ning on its own SPARC series microprocessors. However, 
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by the 1990s the growing power of regular desktop PCs was 
reducing the need for special-purpose workstations. As the 
Web grew starting in the 1990s, Sun’s line of multiprocess-
ing Web servers became quite successful, though the “dot-
bust” of the early 2000s cut revenues.

One of Sun’s founders was a key developer of UNIX 
software (see Joy, Bill). Sun developed its own version of 
UNIX (SunOS) for its workstations in the 1980s, and then 
joined with AT&T to develop the widely used UNIX System 
V Release 4, which in turn became the basis for Sun’s new 
operating system, Solaris. (Sun has also supported the use 
of Linux on its hardware.)

Sun’s biggest impact on software development, however, 
has been its development of the Java language and platform 
since the early 1990s. Although newer languages such as 
Python, PHP, and Ruby have come along to challenge it, 
Java, with its ability to run via “virtual machines” on all 
major platforms, is widely used and has a rich set of library 
routines and programming frameworks.

Scott McNealy, one of the company’s founders, remains 
its chairman. Sun had $13.87 billion revenue in 2007 ($473 
million net income), and employs about 36,400 people.
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supercomputer
The term supercomputer is not really an absolute term 
describing a unique type of computer. Rather, it has been 
used through successive generations of computer design 
to describe the fastest, most powerful computers available 
at a given time. However, what makes these machines the 
fastest is usually their adoption of a new technology or 
computer architecture that later finds its way into standard 
computers.

The first supercomputer is generally considered to be 
the Control Data CDC 6600, designed by Seymour Cray 
in 1964. The speed of this machine came from its use of 
the new, faster silicon (rather than germanium) transistors 
and its ability to run at a clock speed of 10 MHz (a speed 
that would be achieved by personal computers by the mid-
1980s). Even with transistors, these machines generated 
so much heat that they had to be cooled by a Freon-based 
refrigeration system.

Cray then left CDC to form Cray Research. He designed 
the Cray 1 in 1976, the first of a highly successful series 
of supercomputers. The Cray 1 took advantage of a new 
technology, integrated circuits, and new architecture: vec-
tor processing, in which a single instruction can be applied 

to an entire series (or array) of numbers simultaneously. 
This innovation marked the use of parallel processing as 
one of the distinguishing features of supercomputers. The 
machine’s monolithic appearance gave it a definite air of 
science fiction, and the first one built was installed at the 
secretive Los Alamos National Laboratory.

The next generation, the Cray X-MP, carried parallelism 
further by incorporating multiple processors (the successor, 
Cray Y-MP, had 8 processors, which together could perform 
a billion floating-point operations per second [1 gigaflop]).

Soon Cray no longer had the supercomputer field to 
itself, and other companies (particularly the Japanese man-
ufacturers NEC and Fujitsu) entered the market. The num-
ber of processors in supercomputers increased to as many 
as 1,024 (in the 1998 Cray SV1), which can exceed 1 trillion 
floating-point operations per second (1 teraflop).

Meanwhile, processors for desktop computers (such as 
the Intel Pentium) also continued to increase in power, and 
it became possible to build supercomputers by combining 
large numbers of these readily available (and relatively low-
cost) processors.

The ultimate in multiprocessing is the series of Con-
nection Machines built by Thinking Machines Inc. (TMI) 
and designed by Daniel Hillis. These machines have up 
to 65,000 very simple processors that run simultaneously, 
and can form connections dynamically, somewhat like 
the process in the human brain. These “massively paral-
lel” machines are thus attractive for artificial intelligence 
research. It is also possible to achieve supercomputerlike 
power by having many computers on a network divide the 
work of, for example, cracking a code or analyzing radio 
telescope data for signs of intelligent signals.

Programs for supercomputers must be written using 
special languages (or libraries for standard languages) that 
are designed to provide for many processes to run at the 
same time and that allow for communication and coordina-
tion between processing (see multiprocessing).

A Cray 190 A supercomputer. Seymour Cray’s leading-edge 
machines defined supercomputing for many years.  (NASA photo)
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Applications
Supercomputers are always more expensive and somewhat 
less reliable than standard computers, so they are used only 
when necessary. As the power of standard computers con-
tinues to grow, applications that formerly required a mul-
timillion-dollar supercomputer can now run on a desktop 
workstation (a good example is the creation of detailed 3D 
graphics).

On the other hand, there are always applications that will 
soak up whatever computing power can be brought to bear on 
them. These include analysis of new aircraft designs, weather 
and climate models, the study of nuclear reactions, and the 
creation of models for the synthesis of proteins. The never-
ending battle of organizations such as the National Security 
Agency (NSA) to monitor worldwide communications and 
crack ever-tougher encryption also demands the fastest avail-
able supercomputers (see quantum computing).

Architecture
The fastest “conventional” supercomputers as of 2007 were 
IBM’s Blue Gene series, expected to reach a speed of 3 pflop 
(peta, or quadrillion floating point operations per second). 
Machines of this magnitude are usually destined for institu-
tions such as the Los Alamos National Laboratory (see gov-
ernment funding of computer research).

However, for many applications it may be more cost-effec-
tive to build systems with numerous coordinated proces-
sors (a sort of successor to the 1980s Connection Machine). 
For example, the Beowulf architecture involves “clusters” of 
ordinary PCs coordinated by software running on UNIX or 
Linux. The use of free software and commodity PCs can 
make this approach attractive, though application software 
still has to be rewritten to run on the distributed processors.

Recently a new resource for parallel supercomputing 
came from an unlikely place: the new generation of cell 
processors found in game consoles such as the Sony Play-
station 3. This architecture features tight integration of a 
central “power processor element” with multiple “synergis-
tic processing elements.” IBM is currently developing a new 
supercomputer called Roadrunner that will include 16,000 
conventional (Opteron) and 16,000 cell processors, and is 
expected to reach a speed of 1 pflop.

Finally, an ad hoc “supercomputer” can be created 
almost for free, using software that parcels out calcula-
tion tasks to thousands of computers participating via the 
Internet, as with SETI@Home (searching for extraterres-
trial radio signals) and Folding@Home (for protein-folding 
analysis). (See cooperative processing.)
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supply chain management
Few consumers are aware of the complexity of the network 
of organizations, transportation and storage facilities, and 
information processing facilities that are needed to turn 
raw materials into finished products. The term supply chain 
management was developed in the 1980s to refer to the sys-
tematic efforts to improve the efficiency and reliability of 
this vital business activity. Although the details will vary 
with the industry, a supply chain can include the following 
activities:

• � obtaining the raw materials or components needed for 
the product

• � manufacturing finished products

• � marketing the product

• � distributing the product to retailers or other outlets

• � servicing the product and supporting customers

• � (increasingly) providing for the ultimate recycling or 
disposal of the product

At all stages of the chain, planners must take into con-
sideration what location for operations is most advanta-
geous and how materials will be transported, warehoused, 
and tracked. Potential suppliers must be evaluated for cost 
and reliability. Schedules must be monitored. Finally, every-
thing should be part of a comprehensive plan that spells out 
the objectives and how they will be measured.

Software
Of course such a complex process involving a great deal of 
information, monitoring, and decision making is ripe for 
software assistance. Some companies offer comprehensive 
solutions (see, for example, sap), but they must still be 
adapted to the needs of a particular industry and manu-
facturer. Software must be interfaced and integrated with 
existing databases, management information systems, and 
other software. Nevertheless, in a very competitive world 
market, enterprises have little choice but to develop an 
effective way to manage and optimize their supply chains.
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Sutherland, Ivan Edward
(1938–  )
American
Computer Scientist

Today it is hard to think about computers without interac-
tive graphics displays. Whether one is flying a simulated 
747 jet, retouching a photo, or just moving files from one 
folder to another, everything is shown on the screen in 
graphical form. For the first two decades of the computer’s 
history, however, computers lived in a text-only world, 
except for a few experimental military systems. During 
the 1960s and 1970s Ivan Sutherland would almost sin-
gle-handedly create the framework for modern computer 
graphics while designing Sketchpad, the first computer 
drawing program.

Sutherland was born on May 16, 1938, in Hastings, 
Nebraska, but the family later moved to Scarsdale, New 
York. His father was a civil engineer, and as a young boy 
Sutherland was fascinated by the drawing and survey-
ing instruments his father used. When he was about 12, 
Sutherland and his brother Bert got a job working for 
a pioneer computer scientist named Edmund Berkeley. 
Berkeley gave Sutherland the opportunity to play with 
“Simon,” a suitcase-sized electromechanical computer that 
could add numbers as long as the total did not exceed 30. 
Simon eventually rewired the machine so it could divide 
numbers as well.

Sutherland first attended Carnegie Mellon University, 
where he received a B.S. in electrical engineering in 1959. 
The following year he earned an M.A. from the California 
Institute of Technology (Cal Tech). He then went to MIT to 
do his doctoral work under Claude Shannon at the Lincoln 
Laboratory (see Shannon, Claude).

At MIT Sutherland was able to work with the TX-2, an 
advanced (and very large) transistorized computer that was 
a harbinger of the minicomputers that would become preva-
lent later in the decade. Unlike the older mainframes, the 
TX-2 had a graphics display and could accept input from a 
light pen as well as switches that could serve something like 
the functions that mouse buttons do today. The machine 
also had 70,000 36-bit words of memory, an amount that 
would not be achieved by personal computers until the 
1980s. Having this much memory made it possible to store 
the pixel information for detailed graphics objects.

Having access to this interactive machine gave Suther-
land the idea for his doctoral dissertation (submitted in 
1963). He developed a program called Sketchpad, which 
required that he develop algorithms for drawing realistic 
objects by plotting pixels and polygons as well as scal-
ing objects in relation to the viewer’s position. Sutherland’s 
Sketchpad could even automatically “snap” lines into place 

as the user drew on the screen with the light pen. Besides 
drawing, Sketchpad demonstrated the beginnings of the 
“graphical user interface” that would be further developed 
by researchers at Xerox PARC in the 1970s and would reach 
the consumer in the 1980s.

After demonstrating Sktechpad in 1963 and receiving 
his Ph.D. from MIT, Sutherland took on a quite different 
task. He became the director of the Information Process-
ing Techniques Office (IPTO) of the Defense Department’s 
Advanced Research Projects Agency (ARPA)—see Lick-
lider, J. C. R. While continuing his research on graphics 
Sutherland thus also oversaw the work on computer time-
sharing and the networking research that would eventually 
lead to the ARPANet and the Internet.

In 1968 Sutherland and David Evans went to the Uni-
versity of Utah, where they established an Information 
Processing Technology Office (IPTO)–funded computer 
graphics research program. There, Sutherland’s group 
brought computer graphics to a new level of realism. For 
example, they developed the ability to place objects in front 
of other objects, which required intensive calculations to 
determine what was obscured. They also developed an idea 
suggested by Evans called incremental computing. Instead of 
drawing each pixel in isolation, they used information from 
previously drawn pixels to calculate new ones, considerably 
speeding up the rendering of graphics. The results began to 
approach the realism of a photograph. (The two researchers 
also founded a commercial enterprise, Evans and Suther-
land, to exploit their graphics ideas. It became one of the 
leaders in the field.)

In 1976 Sutherland left the University of Utah to serve 
as the chairman of the computer science department at Cal 
Tech. Working with a colleague, Carver Mead, Sutherland 
developed a systematic concept and curriculum for inte-
grated circuit design, which became the main specialty of 
the department. He would later point out that it was the 
important role that geometry played in laying out compo-
nents and wires that had intrigued him the most.

Sutherland left Caltech in 1980 and started a consulting 
and venture capital firm with Bob Sproull, whom he had 
met years earlier at Harvard. In 1990 Sun Microsystems 
bought the company for its technical expertise, making it 
the core of Sun Labs, where Sutherland continues to work 
as a Sun Microsystems Fellow and vice president. Suther-
land received the prestigious ACM Turing Award in 1988.
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system administrator
A system administrator is the person responsible for man-
aging the operations of a computer facility to ensure that it 
runs properly, meets user needs, and protects the integrity 
of users’ data. Such facilities range from offices with just a 
few users to large campus or corporate facilities that may be 
served by a large staff of administrators.

The system administrator’s responsibilities often include:

• � setting up accounts for new users

• � allocating computing resources (such as server space) 
among users

• � configuring the file, database, or local area network 
(LAN) servers

• � installing new or upgraded software on users’ work-
stations

• � keeping up with new versions of the operating system 
and networking software

• � using various tools to monitor the performance of 
the system and to identify potential problems such as 
device “bottlenecks” or a shortage of disk space

• � ensuring that regular backups are made

• � configuring network services such as e-mail, Internet 
access, and the intranet (local TCP/IP network)

• � using tools such as firewalls and virus scanners to 
protect the system from viruses, hacker attacks, and 
other security threats (see also computer crime and 
security)

• � providing user orientation and training

• � creating and documenting policies and procedures

System administrators often write scripts to automate many 
of the above tasks (see scripting languages). Because of 
the complexity of modern computing environments, an 
administrator usually specializes in a particular operating 
system such as UNIX or Windows.

A good system administrator needs not only techni-
cal understanding of the many components of the system, 
but also the ability to communicate well with users—good 
“people skills.” Larger organizations are more likely to have 
separate network and database administrators, while the 
administrator of a small facility must be a jack (or jill) of all 
trades.
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systems analyst
The systems analyst serves as the bridge between the needs 
of the user and the capabilities of the computer system. The 
systems analyst goes into action when users request that 
some new application or function be provided (usually in a 
corporate computing environment).

The first step is to define the user’s requirements and to 
prepare precise specifications for the program. In doing so, 
the systems analyst is aided by methodologies developed 
by computer scientists over the last several decades (see 
structured programming and object-oriented pro-
gramming). Often flowcharts or other aids are used to help 
visualize the operation of the program (see also case).

After communicating with the user, the systems analyst 
must then communicate with the programmers, helping 
them understand what is needed and reviewing their work 
as they begin to design the program. Although the systems 
analyst may do little actual programming, he or she must be 
familiar with programming tools and practices. This may 
make it possible to suggest existing software or components 
that could be adapted instead of undertaking the cost and 
time involved with creating a new program. As a program 
is developed, systems analysts are often responsible for 
designing tests to ensure that the software works properly 
(see quality assurance, software).

Depending on the organizational structure, all or part of 
the analysis function may be included in the job description 
“programmer-analyst” or included as part of the duties of a 
senior software engineer or manager of program develop-
ment. Experienced systems analysts are likely to be called 
upon to participate in the evaluation of possible invest-
ments in new software or hardware, and other aspects of 
long-term planning for computing facilities.

Further Reading
Satzinger, John W., Robert B. Jackson, and Stephen D. Burd. Sys-

tems Analysis & Design in a Changing World. 4th ed. Boston: 
Course Technology, 2006.

Shelly, Gary B., Thomas J. Cashman, and Harry J. Rosenblatt. Sys-
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systems programming
Applications programmers write programs to help users 
work better, while systems programmers write programs 
to help the computer itself work better (see operating sys-
tem). Systems programmers generally work for companies 
in the computer industry that develop operating systems, 
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network facilities, program language compilers and other 
software development tools, utilities, and device drivers. 
However, systems programmers can also work for applica-
tions developers to help them interface their programs to 
the operating system or to devices (see device driver and 
applications programming interface).

Modern operating systems are highly complex, so sys-
tems programmers tend to specialize in particular areas. 
These might include device drivers, software development 
tools, program language libraries, applications program-
ming interfaces (APIs), and utilities for monitoring system 
conditions and resources. Systems programmers develop 
the infrastructure needed for networking, as well as mul-
tiple-processor computers and distributed computing sys-
tems. Systems programmers also play a key role when an 
application program must be “ported” to a different plat-
form or simply modified to run under a new version of the 
operating system.

Generally, an application programmer works at a fairly 
high level, using language functions and APIs to have the 
program ask the operating system for services such as load-
ing or saving files, printing, and so on. The systems pro-

grammer, on the other hand, must be concerned with the 
internal architecture of the system (such as the buffers allo-
cated to hold various kinds of temporary data) and with 
how commands are constructed for disks and other devices. 
Generally, the systems programmer must also have a more 
thorough knowledge of data structures and how they are 
physically represented in the machine as well as the com-
parative efficiency of various algorithms. Because it deter-
mines how efficiently the system’s resources can be used, 
systems programming must often be “tight” and optimized 
for peak performance. Thus, although lower-level assembly 
language is no longer used for much applications program-
ming, it can still be found in systems programming.

Further Reading
Beck, Leland L. System Software: An Introduction to Systems Pro-

gramming. 3rd ed. Reading, Mass.: Addison-Wesley, 1996.
Hart, Johnson M. Windows System Programming. 3rd ed. Upper 
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tablet PC
As the name suggests, a tablet PC is a small computer about 
the size of a notebook (not to be confused with a “notebook 
PC,” which is a small, light laptop). The user can write on 
the screen with a stylus to take notes (for similar function-
ality, see graphics tablet), draw, and make selections with 
stylus or fingertip.

If the user writes on the screen, software converts the 
writing to the appropriate characters and stores them in a 
file (see handwriting recognition). As with some PDAs, 
there may also be a system of shorthand “gestures” that can 
be used to write more quickly. Alternatively, the user can 
type with stylus or fingertips on a “virtual keyboard” dis-
played on the screen (see touchscreen).

A more versatile and natural interface is becoming avail-
able: “multitouch,” pioneered by the Apple iPhone and 
Microsoft Surface, can recognize multiple motions and 
pressure points simultaneously. This allows the user to, for 
example, flick the finger to “turn a page” or use a pinching 
motion to “pick up” an object.

Applications for tablet PCs include many PDA-type 
applications (see personal information management 
and pda), field note taking, inventory, and other tasks that 
require a device that is not encumbering. Because of its 
compactness, a tablet PC can also be a good reader for e-
books (see e-books and digital libraries).

Tablet PCs generally follow common specifications 
developed by Microsoft, and often use Windows XP Tab-
let PC Edition or, later, Windows Vista, which has built-in 
support for tablet PCs. These operating systems include 
support for sophisticated handwriting recognition that 

can be “trained” by the user and that can store handwrit-
ten input in special data formats. Voice recognition is 
also supported.

A “convertible” tablet PC is a hybrid in which the tablet 
is attached to a base containing a keyboard. The display can 
be used vertically (laptop style) or rotated and folded down 
over the keyboard for tablet use.

Internet Tablets
An interesting variant is the Internet tablet, best known in 
Nokia’s N-series. These are smaller and lighter than a tablet 
PC. The Nokia N810, for example, has a slide-out keyboard 
as well as a virtual screen keyboard. The most notable 
feature is the Internet browser and related applications, 
such as e-mail and instant messaging, and built-in wireless 
connections (see bluetooth and wireless computing). 
Although there is no phone, Internet-based services such as 
Skype can be used to place calls, or a Bluetooth-equipped 
mobile phone. The Nokia series uses a variant of Linux and 
can run a large variety of open-source applications.

Further Reading
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tape drives
Anyone who has seen computers in old movies is familiar 
with the row of large, freestanding tape cabinets with their 
spinning reels of tape. The visual cue that the computer 
was running consisted of the reels thrashing back and forth 
vigorously while rows of lights flashed on the computer 
console. Magnetic tape was indeed the mainstay for data 
storage in most large computers (see mainframe) in the 
1950s through the 1970s.

In early mainframes the main memory (corresponding 
to today’s RAM chips) consisted of “core”—thousands of 
tiny magnetized rings crisscrossed with wires by which 
they could be set or read. Because core memory was lim-
ited to a few thousand bytes (kB), it was used only to hold 
the program instructions (see punched cards and paper 
tape) and to store temporary working data while the pro-
gram was running.

The source data to be processed by the program was 
read from a reel of tape on the drive. If the program updated 
the data (rather than just reporting on it), it would generally 
write a new tape with the revised data. In large facilities a 
person called a tape librarian was in charge of keeping the 
reels of tape organized and providing them to the computer 
operators as needed.

Operation
A mainframe tape drive had two reels, the supply reel and 
the take-up reel. Because each reel had its own motor, they 
could be spun at different speeds. This allowed a specified 
length of tape to be suspended between the two reels, 
serving as sort of a buffer and allowing the take-up reel to 
accelerate at the start of a read or write operation without 
danger of breaking the tape. The “buffer” tape was actu-
ally suspended in a partial vacuum, which both kept the 
tape taut enough to prevent snarling and allowed for air 
pressure sensors to activate the appropriate motor when 
the amount of tape in the buffer went above or below pre-
set points.

Data was read or written by the read and write heads 
respectively, in units called frames. In addition to the 1 or 
0 data bits, each frame included parity bits (see error cor-
rection). The frames were combined into blocks, with each 
block having a header in front of the data frames and one or 
more frames of check (parity) bits following the data.

The two predominant tape formats were the IBM format, 
which used variable-length data blocks (and thus could not 
be rewritten) and the DEC format, which used fixed-length 
blocks, allowing data to be rewritten in place, albeit at some 
cost in speed and efficiency.

During the 1960s, magnetic disks (see hard disk) 
increasingly came into use, and more of the temporary data 
being used by programs began to be stored on disk rather 
than on tape. Eventually, tapes were relegated to storing 
very large data sets or archiving old data.

However, when the first desktop microcomputers (such 
as the Apple II and Radio Shack TRS-80) came along in 
the late 1970s and early 1980s, they, like the first main-
frames, had very limited main memory and disk drives 
were unavailable or expensive. As a result, programs (such 

as Bill Gates’s Microsoft Basic) often came on tape cas-
settes, and the computer included an interface allowing it to 
be connected to an ordinary audio cassette recorder. How-
ever, this use of tapes was quite short-lived, and was soon 
replaced by the floppy disk drive and later, hard drives and 
CD-ROM drives.

Tapes as Backup Devices
By the 1990s, PC users generally used tapes only for mak-
ing backups. A typical backup tape drive uses DAT (digital 
audio tape) cartridges that hold from hundreds of mega-
bytes to several gigabytes of data. Most drives use a rotating 
assembly of four heads (two read and two write) that verify 
data as it’s being written. As a backup medium, tape has a 
lower cost per gigabyte than disk devices. It is easy to use 
and can be set up to run unattended (except for periodically 
changing cartridges).

However, since tapes are written and read sequentially, 
they are not convenient for restoring selected files (see 
backup and archive systems). Many smaller installations 
now prefer using a second (“mirror”) hard drive as backup, 
using disk arrays (see raid) or using recordable CDs or 
optical drives for smaller amounts of data (see cd-rom and 
dvd-rom).

Many large companies and government agencies have 
thousands of reels of tape stored away in their vaults since 
the 1960s, including data returned from early NASA space 
missions. As time passes, it becomes increasingly difficult to 
guarantee that this archived data can be successfully read. 
This is due both to gradual deterioration of the medium and 
the older data formats becoming obsolete (see backup and 
archive systems).

Further Reading
Brain, Marshall. “How Tape Drives Work.” Available online. URL: 

http://electronics.howstuffworks.com/cassette.htm. Accessed 
August 22, 2007.

A NASA automated tape library. These facilities can store trillions 
of bytes of data.  (NASA Photo)
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Tcl
Developed by John Ousterhout in 1988, Tcl (Tool command 
language) is used for scripting, prototyping, testing inter-
faces, and embedding in applications (see scripting lan-
guages).

Tcl has an unusually simple and consistent syntax. A 
script is simply a series of commands (either built in or user 
defined) and their arguments (parameters). A command 
itself can be an argument to another command, creating the 
equivalent of a function call in other languages.

For example, setting the value of a variable uses the set 
command:

set total 0

The value of the variable can now be referenced as 
$total.

Control structures are simply commands that run other 
commands. A while loop, for example, consists of a com-
mand or expression that performs a comparison, followed 
by a series of commands to be executed each time it returns 
“true”:

while { MoreInFile } {
GetData
DisplayData

}
In practice, many of the commands used are utilities 

from the operating system, usually UNIX or Linux. Tcl 
also includes a number of useful data structures such as 
associative arrays, which consist of pairs of data items 
such as:

set abbr (California)	 CA

Extensions and Applications
Tcl includes a number of extensions that, for example, 
provide access to popular database formats such as MySQL 
and can interface with other programming languages such 
as C++ and Java. The most widely used extension is Tk, 
which provides a library for creating user interfaces for a 
variety of operating systems and languages such as Perl, 
Python, and Ruby.

Tcl has been described as a “glue” to connect existing 
applications. It is relatively easy to write and test a script 
interactively (often at the command line), and then insert it 
into the code of an application. When the application runs, 
the Tcl interpreter runs the script, whose output can then 
be used by the main application (see interpreter).

Further Reading
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TCP/IP
Contrary to popular perception, the Internet is not e-mail, 
chat rooms, or even the World Wide Web. It is a system by 
which computers connected to various kinds of networks 
and with different kinds of hardware can exchange data 
according to agreed rules, or protocols. All the applications 
mentioned (and many others) then use this infrastructure 
to communicate.

TCP/IP (Transmission Control Protocol/Internet Proto-
col) provides the rules for transmitting data on the Internet. 
It consists of two parts. The IP (Internet Protocol) routes 
packets of data. The header information also includes:

• � The total length of the packet. In theory packets can 
be as large as 65 kbytes; in practice they are limited to 
a smaller maximum.

• � An identification number that can be used if a packet 
is broken into smaller pieces for efficiency in trans-
mission. This allows the packet to be reassembled at 
the destination.

• � A “time to live” value that specifies how many hops 
(movements from one intermediate host to another) 
the packet will be allowed to take. This is reduced by 
1 for each hop. If it reaches 0, the packet is assumed 
to have gotten “lost” or stale, and is discarded.

• � A protocol number (the protocol is usually TCP, see 
below).

• � A checksum for checking the integrity of the header 
itself (not the data in the packet).

• � The source and destination addresses.

The source and destination are given as IP addresses, 
which are 32 bits long and typically written as four sets of 
up to three numbers each—for example, 208.162.106.17

A Network of Networks
As the name implies, the Internet is a network that con-
nects many local networks. The IP address includes an ID 
for each network (called a subnet) and each host computer 
on the network. The arrangement and meaning of these 
fields differs somewhat among five classes of IP addresses. 
The first three classes are designed for different sizes of 
networks, and the latter two are used for special purposes 
such as “multicasting” where the same data packet is sent 
to multiple hosts.

Many Internet users (at home as well as in offices) are 
part of a local network (see local area network). Typi-
cally, all users on the local network share a single Inter-
net connection, such as a DSL or cable line. This sharing 
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is enabled by having one computer (or a hardware device 
called a router) connected to the Internet, serving as the 
link between the local network and the rest of the world. A 
facility called Network Address Translation (NAT) assigns a 
private IP address to each computer on the network. When 
a computer wants to make an Internet connection, its out-
going packet is assigned a public IP address from a pool. 
When packets replying to that public address are received, 
they are converted back to the private address and thus 
routed to the appropriate user.

NAT has the benefit of providing some security against 
intrusion, since from the outside only the single public IP 
address is visible, not the private addresses of the various 

machines on the network. However, using NAT (and a simi-
lar scheme called PAT that allows difference hosts to use the 
same IP address by being assigned different port numbers) 
causes some slowdown because of the translation process.

Another facility, Dynamic Host Configuration Protocol 
(DHCP), is used to assign an arbitrary available public IP 
address to each host when it connects to the network. This 
system is now used by most DSL and cable systems, and it 
reduces the danger of running out of IP numbers (each net-
work is assigned a range of numbers, and is thus limited to 
that many IP addresses).

A more lasting and flexible solution to address deple-
tion is the new Internet Protocol version 6 (IPv6). The new 
addressing scheme allows for about 3 × 1038 addresses, 
more than enough to accommodate every star in the known 
universe if it were a networked computer! The scheme is 
being rolled out gradually but should be well established by 
the end of the 2000 decade.

Domain Name System
Internet users typically don’t have to worry about IP num-
bers, except perhaps when configuring their software. 
Instead they use alphabetic addresses, such as http://www.
factsonfile.com. The Domain Name System (DNS) sets up a 
correspondence between the names (which include domains 
such as .com for commercial or .edu for educational institu-
tions) and the IP numbers (see dns).

Transmission Control Protocol
The Transmission Control Protocol (the TCP part of TCP/
IP) controls the flow of packets that have been structured as 
described above. To use TCP, the sending computer opens 
a special file called a socket, which is identified by the 
computer’s IP number plus a port number. Standard port 
numbers are used for the various protocols such as www 
(Web) and ftp (File Transfer Protocol). The receiving com-
puter connects using a corresponding socket. TCP includes 
basic flow control and error-checking features similar to 
those used for most data transmissions. For some applica-
tions (such as connecting to the domain name server) error 
control is not needed, so a simpler protocol called the User 
Datagram Protocol is used.

The Big Picture
How does TCP/IP fit into the use of the Internet? When an 
application such as an e-mail program, Web browser, or ftp 
client makes a connection, IP packets using TCP flow con-
trol carry the requests from the client to the server and the 
server’s response back to the client. Each application has its 
own protocol to specify these requests (such as for a Web 
page). For e-mail the protocol is SMTP (Simple Mail Trans-
fer Protocol); Web servers and browsers use HTTP (Hyper-
text Transfer Protocol); and for file transfers it is FTP (File 
Transfer Protocol). (See also e-mail, html, hypertext and 
hypermedia, and file transfer protocols.)

Further Reading
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Network Address Translation (NAT) can protect computers on a 
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rect private address using a table. 
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technical support
Competition and user demand have led to modern software 
becoming increasingly complex and often stuffed with eso-
teric features. Despite improvement in programs’ own built-
in help systems (see help systems), users will often have 
questions about how to perform particular tasks. There will 
also be times when a program doesn’t perform as the user 
expects because the user misunderstands some feature of 
the program, the program has an internal flaw (see bugs and 
debugging), or there is a problem in interaction between the 
application program, the user’s operating system, or the user’s 
hardware (see device driver).

To get help when problems arise, users often turn to 
the technical support facility, often called a help desk. This 
facility can either be internal to an organization (help-
ing the organization’s computer users with a wide range 
of problems), or belong to the maker of the software (and 
available in varying degrees to all licensed users of that 
software).

Large help desks often have two or more levels or tiers 
of assistants. The first tier assistant can respond to the sim-
plest (and usually most common) situations. For example, a 
first-tier support person for a cable or DSL Internet Service 
Provider could tell a caller whether service has been inter-
rupted in their area and if not, take the caller through a set 
of steps to reset a “hung” modem. If the situation is more 
complex (or the basic steps do not resolve it), the call will be 
“escalated” to the next tier, where a more experienced tech-
nician can address detailed software configuration issues.

Advanced technical support representatives can use 
tools such as remote operation software that lets them take 
over control of the user’s PC in order to see exactly what is 
going on. They can also submit detailed problem reports to 
engineers in cases were a modification (patch) to the soft-
ware might be needed.

Support Alternatives
Users who are dissatisfied with the wait for phone support 
or dealing with poorly trained support personnel may be 
able to take advantage of alternative sources of information 
and support. Most software companies now have Web sites 
that include a support section that offers services such as

• � Frequently Asked Questions (FAQ) files with answers 
to common problems.

• � A searchable “knowledge base” of articles relating to 
various aspects of the software, including compat-

ibility with other products, operating system issues, 
and so on.

• � Forms or e-mail links that can be used to submit 
questions to the company. Typically questions are 
answered in one or two working days.

• � A bulletin board where users can share solutions and 
tips relating to the software.

Web sites for publications such as PC Magazine and ZDNet 
also offer articles and other resources for working with the 
various versions of Microsoft Windows and popular appli-
cations.

Technical Support Issues
As with many other aspects of the computer industry, the 
changing economic climate has had an impact on technical 
support practices. Many companies are hoping that pro-
viding more extensive Web-based technical support will 
reduce the need for help desk representatives. Companies 
that don’t want to create their own support Web sites can 
turn to consultants such as Expertcity.com or PCSupport.
com to create and manage such services for a fee.

Another way companies have sought to reduce help desk 
costs is to outsource their technical support operations. 
Most software companies are in areas with a relatively high 
cost of labor. With modern communications and network 
services, there is no need for the help desk personnel to be 
at the company headquarters. Workers in less expensive 
parts of the United States or even in countries such as India 
that have a large pool of technically trained, English-speak-
ing persons can often offer help services at a lower cost 
than running an in-house help desk, even when the cost of 
training and phone line charges are taken into account. On 
the other hand, there have been complaints by customers 
that some overseas support staff have language problems or 
are poorly trained, using only rote “scripts” to try to diag-
nose problems.

Poor technical support can lead customers to switch 
to competing products. While this may not be much of a 
concern in a rapidly expanding industry (where new cus-
tomers seem to be available in abundance), the situation 
is different in stagnant or contracting economic condi-
tions. Trying to reduce technical support costs may bring 
some short-term help to the bottom line, but in the longer 
run the result might be fewer customers and less revenue. 
An alternative approach is to consider technical support 
to be part of a broad effort to maintain customer loyalty; 
this is often called Customer Relationship Management 
(see customer relationship management). With regard 
to technical support, CRM is implemented by using soft-
ware to better track the resolution of customer’s problems 
as well as to use information obtained in the support pro-
cess to offer the customer additional products or services 
custom-tailored to individual situations. With such an 
approach the effort to provide better technical support is 
seen not simply as a necessary business expense but as an 
investment with an expected (though hard to measure) 
return.
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technical writing
Users of complex systems require a variety of instructional 
and reference materials, which are produced by technical 
writers and editors. (It should be noted that technical writ-
ing covers many areas other than computer software and 
systems. However, it is the latter that fall within the scope 
of this book.)

The traditional products produced by technical writers 
in the computer industry can be divided into three broad 
categories: software manuals, trade books, and in-house 
documentation for developers.

Software Manuals
Until the mid-1990s, just about every significant software 
product came with a manual (or a set of manuals). A typi-
cal manual might include an overview of the program, an 
introductory tutorial, and a complete, detailed reference 
guide to all commands or functions.

In theory, staff technical writers (or sometimes contrac-
tors) develop the manuals during the time the program is 
being written. They have access to the programmers for 
asking questions about the program’s operation, and they 
receive updates from the developers that describe changes 
or added features. In practice, however, writers may not 
be assigned to a project until the program is almost done. 
The programmers, who are under deadline pressure, may 
not be very communicative, and the writers may have to 
make their best guess about some matters. The result can 
be a manual that is no longer “in synch” with the program’s 
actual feature set.

Technical writers often work in a publications depart-
ment with other professionals including editors, desktop 
publishers, and graphics specialists. While manuals can be 
written using an ordinary word processing program, many 
departments use programs such as FrameMaker that are 
designed for the production and management of complex 
documents.

In recent years, many software manufacturers have 
stopped including printed user manuals with their pack-
ages, or include only slim “Getting Started” manuals. As 
a money-saving measure the traditional documentation is 
often replaced by a PDF (Adobe Portable Document For-
mat) document on the CD. There is also a greater reli-

ance on extensive on-line help, using either a Windows or 
Macintosh-specific format or the HTML format that is the 
lingua franca of the World Wide Web. (See documenta-
tion, user.)

Technical writers have thus had to learn how to con-
struct Help files in these various formats (see authoring 
systems, help systems, and html). Creation of interactive 
tutorials also requires knowledge of multimedia formats 
and even animation (such as Flash).

Trade Books
As millions of people became new computer users during 
the 1980s, a thriving computer book publishing industry 
offered users a more user-friendly approach than that usu-
ally provided in the manuals issued by the software com-
panies. The “Dummies” books, offering bite-sized servings 
of information written in a breezy style and accompanied 
by cartoons, eventually spread beyond computers into hun-
dreds of other fields and the format was then copied by 
other publishers. Publishers such as Sams, Coriolis, and par-
ticularly O’Reilly have aimed their offerings at more experi-
enced users, programmers, and multimedia developers.

Computer trade books are often written by experi-
enced developers and systems programmers who can offer 
advanced knowledge and “tips and tricks” to their less 
experienced colleagues. Since many technical “gurus” are 
not experienced writers, the best results often come from 
collaboration between the expert and an experienced tech-
nical writer and/or editor who can review the material for 
completeness, organization, and clarity.

In recent years there has been some contraction in 
the computer book industry. This has arisen from several 
sources: improved on-line help included in products; the 
dominance of many applications areas by a handful of prod-
ucts; and fewer people needing beginner-level instruction.

In-House Documentation
Many technical writers work within software companies or 
in the information systems departments of other corpora-
tions, universities, or government agencies. Their work is 
generally more highly structured than that of the manual 
or book writer. As part of a development team, a technical 
writer may be in charge of creating documentation describ-
ing the data structures, classes, and functions within the 
program. This task is aided by a variety of tools including 
facilities for extracting such information automatically from 
C++ or Java programs. The writer may also be responsible for 
maintaining logs that show each change or addition made to 
the program during each compiled version or “build.”

This type of technical writing requires detailed knowl-
edge of operating systems, programming languages, 
software development tools, and software engineering 
methodology. It also requires the ability to work well as 
part of a team, often under conditions of high pressure.

Technical Writing as a Profession
Until the 1980s, few institutions offered degrees in techni-
cal writing. Programmers with an interest in writing or 
writers with a technical bent entered the field informally. 
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During the 1980s, the number of degree offerings increased, 
and people began to specifically prepare for the field, often 
by earning a computer science degree with a specialization 
in technical writing. Organizations such as the Society for 
Technical Communication have offered technical writers 
and editors a forum for discussing their profession, includ-
ing issues relating to certification.
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technology policy
Policy makers have found themselves increasingly con-
fronted with difficult issues relating to the Internet, the 
information industry, and an economy increasingly depen-
dent on computing and communications technology. As 
with other complex issues such as health care, there has 
been difficulty reaching a consensus or formulating com-
prehensive or consistent policies.

Historically many of the early innovators in modern 
computing (even Microsoft) have tended to keep aloof from 
politics and lobbying. This may have been due in part to 
libertarian or laissez-faire beliefs that the best thing the 
government could do for the information highway was to 
stay out of its way.

Today, however, with vital economic interests and thou-
sands of jobs at stake, major computer companies have joined 
the political game with a vengeance. In turn, candidates in the 
run up to the 2008 presidential election have not neglected 
to court technology leaders. (For example, in 2008 leading 
Democratic candidates Hillary Rodham Clinton and Barack 
Obama both outlined extensive technology agendas.)

Major policy issues involving information technology 
industries include:

• � foreign trade and the protection of intellectual prop-
erty (see intellectual property and computing 
and software piracy and counterfeiting)

• � attempts to reform the patent system to prevent what 
is seen as dubious and expensive litigation

• � the need for an increasing number of trained workers 
and providing a sufficient number of visas for foreign 
workers (see globalization and the computer 
industry)

• � preserving equal access to the Internet (see net neu-
trality), which pits content providers against tele-
communications companies

• � promoting the development of a next-generation 
Internet infrastructure (“Internet 2”)

• � government support for computer research (such as 
through the National Science Foundation)—see gov-
ernment funding of computer research

• � favorable treatment of online businesses with regard 
to taxation (often objected to by traditional brick-
and-mortar businesses)—see e-commerce

• � laws against computer-related fraud and other crime 
(see computer crime and security and online 
frauds and scams)

• � Privacy regulations (see identity theft and privacy 
in the digital age)

The computer industry is also involved in issues that 
will affect its future over the longer term, such as the need 
to improve math and science education in elementary and 
high schools, energy and environmental policy, and issues 
such as health care and pensions that affect all sectors of 
the economy.

International Aspects
In a global industry, American information technology pol-
icy cannot be considered without looking at the policies 
of other nations (both industrialized and developing) and 
their potential impacts. For example, China’s success (or 
lack thereof) in protecting intellectual property has a direct 
impact on the revenue of major software companies. Simi-
larly, issues of censorship (see censorship and the Inter-
net) create dilemmas for companies that must balance 
concern for human rights with the opportunity to enter 
huge new markets. Other important aspects of comparative 
technology policy include research funding, subsidies, pat-
ent and copyright law, and labor standards.
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telecommunications
Since its birth in the mid-20th century, the digital computer 
and the telephone have had a close mutual relationship. 
Many of the first programmable calculators and comput-
ers built in the early 1940s used relays and other compo-
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nents that were being manufactured for the increasingly 
automated phone system (see Aiken, Howard). The phone 
industry contributed ideas as well as hardware. Scientists at 
the Bell Laboratories carried out fundamental research into 
information theory that would soon be applied to data com-
munications (see Shannon, Claude).

As computers became more capable in the 1950s and 
1960s, they began to return the favor, making possible 
increasing automation for the phone system. Meanwhile, 
computers were starting to be hooked up to telephone lines 
(see modem) so they could exchange data and allow their 
users to communicate (see network).

The development of a global network (see Internet) 
and its growth through the 1980s provided a universal plat-
form for data communications. At first, the Internet was 
used mostly by academics and engineers, but the advent 
of the World Wide Web and in particular, graphical Web 
browsers made Internet access ubiquitous among small 
businesses and home users by the late 1990s.

Institutional Internet users often had fast access through 
dedicated phone lines (designated T-1, and so on), while 
homes, small businesses, and schools were limited to much 
slower dial-up access. This began to change in the late 1990s 
as alternatives to POTS (“plain old telephone service”) 
emerged in the form of DSL (a much faster service running 
over regular phone lines) and cable modems that used the 
infrastructure that already brought TV to millions of homes.

Impact of Deregulation
Prior to the court-ordered breakup of AT&T in 1984, the 
phone industry functioned in a monolithic way and was 
not very responsive to the needs of the growing computer 
networking industry.

The breakup of AT&T led to growing competition, pro-
viding a wider variety of telecommunications equipment 
and lower phone rates just as PC users were starting to 
buy modems and sign up with online services and bul-
letin boards. The growing deregulation movement in the 
1990s (culminating in the Telecommunications Act of 
1996) furthered this process by opening cable and broad-
cast television, radio, and other wireless communication to 
competition.

With more than half of American Internet users on 
high-speed connections (see broadband), the delivery of 
communications and media over the Net can only grow. 
Wireless and mobile services (satellite, cell network, 
and 802.11—see wireless computing) have also been 
growing vigorously. The result is that the “information 
highway” now has many lanes, with some being express 
lanes.

Convergence and the Future
The ability of the Internet to transmit any sort of data virtu-
ally anywhere at relatively low cost has created new alter-
natives to traditional communications technologies. For 
example, sending digitized voice telephone calls as pack-
ets over the Internet can provide a lower-cost alternative 
to conventional long distance calling (see VoIP). At the 
same time, previously separate functions are converging 

into “smarter” devices. Thus, the handheld computer and 
the cell phone seem to be converging into a single device 
that can provide data management (see smartphone). Web 
browsing, and communications in a single package.

Computers and communications technology will continue 
to grow more intertwined. Today it is increasingly hard to dis-
tinguish information technology, media content, and commu-
nications technology as being distinctive sectors. After all, a 
consumer can watch a movie in the theater or later on broad-
cast, cable, or satellite TV, rent it on commercial videotape 
or DVD disk (playable on PCs as well as portable players), 
or even view it as a streaming file direct from the Internet. 
Although these technologies have differing technical con-
straints, their end products are the same for the consumer.

This multiplicity of function means that the competitive 
environment is increasingly hard to predict, since there are 
so many possible players. The companies offering content 
through this variety of technologies are also increasingly 
intertwined.

For analysts, studying any technology requires aware-
ness of the many possible alternatives, while studying any 
application means considering the many possible techno-
logical implementations. For policy makers and regulators, 
the challenge is to provide for such public goods as equal 
access, privacy, and protection of intellectual property in a 
communications infrastructure that is truly global in scope 
and evolving at a pace that frequently outdistances the 
political process.
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telecommuting
Telecommuting (also called telework) is the ability to work 
from home or from some location other than the main 
office. According to a report by the nonprofit organization 
WorldatWork, 28.7 million people worked from home at 
least one day a month in 2006. (Self-employed persons, of 
course, have a much higher rate of working from home.)

Telecommuting was made possible by the growing capa-
bilities of home computers and the availability of network 
connections that allow the worker at home to have access 
to most of the people and facilities that would be available 
if the worker were on site. Workers and companies that pro-
mote telecommuting often cite the following advantages:
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• � elimination of stressful, time-wasting commutes

• � workers may be more productive because they have 
fewer office distractions, unnecessary meetings, etc.

• � reduction of traffic, air pollution, and fuel costs

• � greater flexibility in working hours

• � the ability of working parents with small children to 
combine child care and work to some extent

• � reduction of costs associated with office facilities

However, telecommuting has its critics in management. 
Some of the problems or disadvantages cited include:

• � Worker productivity may decrease due to lack of suf-
ficient discipline and workers becoming distracted at 
home.

• �M anagers may have trouble keeping track of or evalu-
ating the activities of workers who are not physically 
present.

• � Telecommuters may miss critical information and go 
“out of the loop.”

• � Security can be compromised, particularly through 
theft of laptops containing sensitive personal data.

• � Possible legal liabilities and application of OSHA rules 
to home working situations.

It is true that telecommuting is suitable mainly for 
jobs that involve information processing rather than per-
son-to-person contact, such as service jobs. However, the 
use of videoconferencing or Web conferencing technology 
increasingly makes it possible for suitably equipped tele-
commuters to participate in meetings almost as directly 
as if they were physically present (see conferencing sys-
tems and telepresence).

In some cases involving videoconferencing or other 
activities that require high-powered computer systems and 
high bandwidth connections, telecommuters physically 
commute to a “satellite work center” near their home that 
has the appropriate equipment. This can provide some of 
the advantages of telecommuting such as flexibility and 
lower commute and office costs.

A number of issues must be worked out between workers 
and management for any telecommuting program, including:

• � Who will pay for the equipment used by the telecom-
muter

• � Procedures for monitoring the work

• � How telecommuters will participate in meetings 
(either remotely or in person)

• � The portion of the worker’s hours involving telecom-
muting, and the portion requiring attendance in-
house

Trends
Telecommuting was touted in the mid-1990s as the wave 
of the future. In reality, the statistics given earlier sug-
gest while it is a viable option for a significant minority of 

workers, telecommuting is not growing as rapidly as had 
been predicted. The growing power of desktop PCs and the 
availability of broadband (DSL or cable) network connec-
tions should help facilitate telecommuting. In the longer 
term new technologies may make the distinction between 
telecommuters and physically present workers much less 
important (see telepresence and virtual reality).
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telepresence
An old phone company slogan asserted that “long distance 
is the next best thing to being there.” Today technology 
has made the ability to “be there” a much more complete 
experience. It is now quite common for businesspersons 
to “attend” a meeting in a distant city using video cameras 
to see and be seen, with images and voice traveling over 
special leased lines or high speed Internet connections (see 
videoconferencing).

While videoconferencing and suitable software allows 
remote interaction and collaboration (such as being able 
to build a spreadsheet or diagram together), the remote 
participant has little ability to physically interact with the 
environment. He or she can’t walk freely around, perhaps 
joining other meeting participants in an adjacent room 
while they have pastries and coffee. The remote participant 
also cannot handle physical objects such as models.

There are two basic approaches to letting persons have 
an unconstrained experience in a remote environment. The 
first is to use technology to create a virtual presence where a 
person can experience a simulated environment from many 
different angles and move freely through it while grasping 
and manipulating objects (see virtual reality). In a vir-
tual environment each participant can be represented by an 
“avatar” body that can be programmed to move in response 
to head trackers, gloves, and other devices.

However, a virtual reality is an artificial representation 
of the world. A group of people having a meeting in a physi-
cal space can’t interact with someone who is in virtual space 
except in the most rudimentary ways. To be on an equal 
footing, all participants would have to be in either physical 
or virtual space.

Telerobotics
The alternative is to connect the remote participant to a 
mobile robot (this is sometimes called telerobotics). Such 
robots already exist, although their capabilities are limited 
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and they are not yet widely used for meetings. Rodney 
Brooks, director of the MIT Artificial Intelligence Labora-
tory, foresees a not very distant future in which such robots 
will be commonplace.

The robot will have considerable built-in capabili-
ties, so the person who has “roboted in” to it won’t need to 
worry about the mechanics of walking, avoiding obstacles, 
or focusing vision on particular objects. Seeing and acting 
through the robot, the person will be able to move around 
an environment as freely as persons who are physically pres-
ent. The operator can give general commands amounting to 
“walk over there” or “pick up this object” or perform more 
delicate manipulations by using his or her hands to manipu-
late gloves connected to a force-feedback mechanism.

Brooks sees numerous applications for robotic telepres-
ence. For example, someone at work could “robot in” to his 
or her household robot and do things such as checking to 
make sure appliances are on or off, respond to a burglar 
alarm, or even refill the cat’s food dish. Robotic telepres-
ence could also be used to bring expertise (such as that of a 
surgeon) to any site around the world without the time and 
expense of physical travel. Indeed, robots may be the only 
way (for the foreseeable future) that humans are likely to 
explore environments far beyond Earth (see space explo-
ration and computers).
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template
The term template is used in a several contexts in comput-
ing, but they all refer to a general pattern that can be cus-
tomized to create particular products such as documents.

In a word processing program such as Microsoft Word, a 
template (sometimes called a style sheet) is a document that 
comes with a particular set of styles for various elements 
such as titles, headings, first and subsequent paragraphs, 
lists, and so on. Each style in turn consists of various char-
acteristics such as type font, type style (such as bold), and 
spacing. The template also includes properties of the docu-
ment as a whole, such as margins, header, and footer.

To create a new document, the user can select one of 
several built-in templates for different types of documents 
such as letters, faxes, and reports, or design a custom tem-

plate by defining appropriate styles and properties. Special 
sequences of programmed actions can also be attached to a 
template (see macro).

Templates can be created and used for applications other 
than word processing. A spreadsheet template consists of 
appropriate macros and formulas in an otherwise blank 
spreadsheet. When it is run, the template prompts the user 
to enter the appropriate values and then the calculations 
are performed. A database program can have input forms 
that serve in effect as templates for creating new records by 
inputting the necessary data.

Class Templates
Some programming languages use the term template to refer 
to an abstract definition that can be used to create a variety 
of similar classes for handling different types of data, which 
in turn are used to create actual objects. For example, once 
the programmer defines the following template:

template<class ANY_TYPE>
ANY_TYPE maximum(ANY_TYPE a, ANY_TYPE b)
{

return (a > b) ? a : b;

This template provides any class with the maximum 
function, which can compare any two objects of that class 
and return the larger one. (See c++, class, and object-
oriented programming.)
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terminal
Throughout the 1950s, operators interacted with computers 
primarily by punching instructions onto cards that were 
then fed into the machine (see punched cards and paper 
tape). Although this noninteractive batch processing proce-
dure would continue to be used with mainframe computers 
during the next two decades, another way to use computers 
began to be seen in the 1960s.

With the beginning of time-sharing computer systems, 
several users could run programs on the computer at the 
same time. The users communicated with the machine by 
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typing commands into a Teletype or similar device. Such a 
device is called a terminal.

The simple early terminals did little more than accept 
lines of text commands from the user and print responses 
or lines of output coming from the computer. However, a 
newer type of terminal began to replace the Teletype. It 
consisted of a keyboard attached to a televisionlike cathode 
ray tube (CRT) display. User still typed commands, but the 
computer’s output could now be displayed on the screen.

Gradually, CRT terminals gained additional capabilities. 
The text being entered was now stored in a memory buf-
fer that corresponded to the screen and the user could use 
special control commands or keys to move the input cursor 
anywhere on the screen when creating a text file. This made 
it much easier for users to revise their input (see text edit-
ing). These “smart terminals” had their own small proces-
sor and ran software that provided these functions.

During the 1970s, the UNIX operating system devel-
oped a sophisticated way to support the growing variety of 
terminals. It provided a library of cursor-control routines 
(called curses) and a database of terminal characteristics 
(called termcap).

When the personal computer came along, it had a 
keyboard, a processor, the ability to run software, and a 
connection for a TV or monitor. The PC thus had all the 
ingredients to become a smart terminal. Indeed, a modern 
PC is a terminal, but users don’t usually have to think in 
those terms. The exception is when the user runs a commu-
nications program to connect to a remote computer (per-
haps a bulletin board) with a modem. These programs, such 
as the Hyperterminal program that comes with Windows, 
allow the PC to emulate (work like) one of the standard ter-
minal types such as VT-100. This ability to emulate a stan-
dard terminal means that any software that supports that 
physical terminal should also work remotely with a PC.

Today most interaction with remote programs is through 
a Web browser, although protocols such as telnet are still 
used to provide terminallike access to remote programs. 
Many commands previously entered as text lines in a ter-
minal are now given using the mouse with menus and icons 
(see user interface).

The relationship between a terminal and remote computer 
is analogous to that between a workstation (or desktop PC) 
and the network server in that the burden of processing is 
divided between the two devices in various ways (see client-
server computing). A “thin client” PC performs relatively 
little processing with the server doing most of the work.

Specialized terminals are still used for many applica-
tions. An ATM, for example, is a special-purpose banking 
terminal driven by a keypad and touchscreen.
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text editor
As noted in the previous article (see terminal), an alterna-
tive to batch-processing punch card driven computer opera-
tions emerged in the 1960s in the form of text commands 
typed at an interactive console or terminal. At first text 
could be typed only a line at a time and there was no way to 
correct a mistake in a previous line.

Soon, however, programmers began to create text edit-
ing programs. The first editors were still line-oriented, but 
they stored the lines for the current file in memory. To dis-
play a previous line, the user might simply type its number. 
To correct a word in the line the user might type something 
like

c/fot/for

to change the typo “fot” to the word “for” in the current line.
Starting in the early 1970s, the UNIX system provided 

both a line editor (ed or ex) and a “visual editor” (vi). The lat-
ter editor works with terminals that can display full screens 
of text and allow the cursor to be moved anywhere on the 
screen. This type of editor is also called a screen editor.

Most ordinary PC users use word processors rather than 
text editors to create documents. Unlike a text editor, a 
word processor’s features are designed to create output that 
looks as much like a printed document as possible. This 
includes the ability to specify text fonts and styles. How-
ever, most systems also include a simpler text editor that 
can be useful for making quick notes (in Windows this pro-
gram is indeed called Notepad).

The primary use of text editors today is to create pro-
grams and scripts. These must generally be created using 
only standard ASCII characters (see characters and 
strings), without all the embedded formatting commands 
and graphics found in word processing documents. Pro-
grammer’s text editors can be very sophisticated in their 
own right, providing features such as built in syntax check-
ing and formatting or (as with the Emacs editor) the ability 
to program the editor itself. Ultimately, however, program 
editors must create a source code file that can be processed 
by the compiler.

Text editors are also useful for writing quick, short 
scripts (see scripting languages) and can be handy for 
writing HTML code for the Web. However, many Web pages 
are now designed using word processor–like programs that 
convert the WYSIWYG (what you see is what you get) for-
matting into appropriate HTML codes automatically.
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texting and instant messaging
Although they use different devices and formats, text 
messaging on cell phones and PDAs and instant messag-
ing through online services have much in common. Both 
involve sending short messages to other users who can 
receive them and reply as soon as they are online. (This 
is an ad hoc connection that differs from a chat room [see 
chat, online] in that the latter is an established location 
where people go to converse with other members. It also 
differs from an online discussion group [see conferenc-
ing systems and netnews and newsgroups] where mes-
sages are posted and may be replied to later, but there is no 
real-time communication.)

Text messaging or texting uses a protocol called Short 
Message Service (SMS), which is available with most cell 
phones and service plans as well as PDAs that have wire-
less connections. When a user sends a message to a des-
ignated recipient, it goes to a service center where it is 
routed to the destination phone; if that phone is not con-
nected, the message is stored and retried later. Typically 
messages are limited to 160 characters, though up to six 
or so messages can be concatenated and treated as a lon-
ger message.

While texting did not become popular until the late 
1990s, instant messaging began in the 1970s as a way for 
multiple users on a shared computer or network (such as 
a UNIX system) to communicate in real time using com-
mands such as send and talk (the latter being more conver-
sational—see chat, online). In the late 1980s and early 
1990s, various dial-up services (see America Online and 
online services) provided for sending text messages (AOL 
was the first to use the term instant messages for its facility). 
By the mid-1990s instant messaging was well established on 
the Internet, often employing a graphical user interface, as 
with ICQ and AOL Instant Messenger (AOL later acquired 
ICQ as well).

There have been efforts to allow users of different instant 
messaging systems to communicate with one another, but 
resistance on the part of the proprietary networks (often 
citing security concerns) has hobbled this process thus far. 
Instant messaging has also been implemented as an applica-
tion for phones and other mobile devices (an effort headed 
by the Open Mobile Alliance). Generally this involves 
reworking the IM software to use the SMS text service to 
carry messages.

Cultural Impact
Between 2000 and 2004 the numbers of text messages sent 
worldwide soared from 17 billion to 500 billion. At about a 
dime a message, texting became a major source of revenue 
for phone companies. Since then, texting has continued 
to grow, particularly in parts of Europe, the Asia-Pacific 
region (particularly China), and Japan (where it has largely 
become an Internet-based service).

In the United States texting is most popular among 
teenagers (see young people and computing). It is not 
uncommon to see a bench full of teens talking excitedly to 
one another while carrying on simultaneous texting with 
unseen friends in what, to many adult onlookers, appears 

to be an incomprehensible code, their conversation perhaps 
ending with ttyl (talk to you later).

Loosely affiliated groups communicating by text (see 
flash mobs) have organized everything from “happenings” 
to serious protest campaigns (as in the anti-WTO [World 
Trade Organization] demonstrations in Seattle in 1999 and 
in the Philippines uprising in 2001.)

The popularity of texting has increasingly attracted the 
attention of fraudsters (see phishing and spoofing and 
spam) as well as more legitimate marketers.
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Torvalds, Linus
(1969–  )
Finnish
Software Developer

Linus Torvalds developed Linux, a free version of the UNIX 
operating system that has become the most popular alterna-
tive to proprietary operating systems.

Torvalds was born on December 28, 1969, in Helsinki, 
Finland. His childhood coincided with the microproces-
sor revolution and the beginnings of personal computing. 
At the age of 10, he received a Commodore PC from his 
grandfather, a mathematician. He learned to write his own 
software to make the most out of the relatively primitive 
machine.

In 1988, Torvalds enrolled in the University of Helsinki 
to study computer science. There he encountered UNIX, a 
powerful and flexible operating system that was a delight 
for programmers who liked to tinker with their computing 
environment. Having experienced UNIX, Torvalds could 
no longer be satisfied with the operating systems that ran 
on most PCs, such as MS-DOS, which lacked the powerful 
command shell and hundreds of utilities that UNIX users 
took for granted.

Torvalds’s problem was that the UNIX copyright was 
owned by AT&T, which charged $5,000 for a license to run 
UNIX. To make matters worse, most PCs weren’t powerful 
enough to run UNIX anyway.

At the time there was already a project called GNU 
underway (see open source and Stallman, Richard). The 
Free Software Foundation was attempting to replicate all the 
functions of UNIX without using any of AT&T’s proprietary 
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code. This would mean that the AT&T copyright would 
not apply, and the functional equivalent of UNIX could be 
given away for free. Stallman and the FSF had already pro-
vided key tools such as the C compiler and the Emacs pro-
gram editor. However, they had not yet created the heart of 
the operating system (see kernel). The kernel contains the 
essential functions needed for the operating system to con-
trol the computer’s hardware, such as creating and manag-
ing files on the hard drive.

In 1991, Torvalds wrote his own kernel and put it 
together with the various GNU utilities to create what soon 
became known as Linux. Torvalds adopted the open source 
license (GPL) pioneered by Stallman and the FSF, allowing 
Linux to be distributed freely. The software soon spread 
through ftp sites on the Internet, where hundreds of enthu-
siastic users (mainly at universities) helped to improve 
Linux, adding features and writing drivers to enable it to 
work with more kinds of hardware.

By the mid-1990s, the free and reliable Linux had 
become the operating system of choice for many Web site 
developers. Torvalds, who still worked at the University of 
Helsinki as a researcher, faced an ever-increasing burden 
of coordinating Linux development and deciding when to 
release successive versions. As companies sprang up to mar-
ket software for Linux, they offered Torvalds very attractive 
salaries, but he did not want to be locked into one particu-
lar Linux package (distribution).

Instead, in 1997 Torvalds moved to California’s Silicon 
Valley, where he became a key software engineer at Trans-
meta, a company that makes Crusoe, a processor designed 
for mobile computing.

In 2003 Torvalds left Transmeta. In 2004 he moved 
to Portland, Oregon, where the Linux Foundation, a non-
profit consortium dedicated to promoting the growth of 
Linux, supports his work. There he concentrates on guiding 
the continuing development of the Linux core, or kernel. 
Although he strongly supports open-source software, Tor-
valds has been criticized by some advocates for his prag-
matic approach of using proprietary software when it seems 
to be more suitable to a given task.
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touchscreen
As the name implies, a touchscreen is a screen display that 
can respond to various areas being touched or pressed. 
Invented in 1971, the first form of touchscreens to become 

part of daily life were found on automatic teller machines 
(ATMs) and point-of-sale credit card processors.

Touchscreens can detect the pressure of a finger or sty-
lus in several ways: A “resistive” touchscreen uses two lay-
ers of electrically conductive metallic material separated by 
a space. When an area is touched, the two layers are electri-
cally connected, and the change in electrical current is reg-
istered and converted to a code that identifies the location 
touched. Surface acoustic wave (SAW) touchscreens use 
an ultrasonic wave that is interrupted by a touch; capaci-
tive touchscreens respond to the change in electron storage 
(capacitance) caused by contact with a human body. Vari-
ous other acoustic, mechanical (strain-based), or optical 
systems can also be used, with the latter being particularly 
popular.

Touchscreens can have drawbacks ranging from prob-
lems with long fingernails to screen “keys” placed too close 
together for normal fingers. Responsiveness is also consid-
erably slower than with a keyboard. Depending on the tech-
nology used, dirt or grease can also become a problem.

Other Applications
In addition to dedicated uses such as banking and retail-
ing, touchscreens are a common form of input for mobile 
phones, PDAs, and similar devices (see pda and smart-
phone) where a “virtual” on-screen keyboard is often used 
for entering text. Particularly versatile systems such as 
Apple’s iPhone combine proximity sensors with touchscreen 
technology in order to be able to recognize gestures such 
as pinching and flicking. Another example is Microsoft’s 
“Surface” interface. (For related technologies, see graphics 
tablet and tablet pc.)
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transaction processing
Many computer applications involve the arrival of a set of 
data that must be processed in a specified way. For exam-
ple, a bank’s ATM system receives a customer’s request to 
deposit money together with identification of the account 
and the amount to be deposited. The system must accept the 
deposit, update the account balance, and return a receipt to 
the customer. This is an example of real-time transaction 
processing.
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Some applications process transactions in batches. For 
example, a company may run a program once a month that 
generates paychecks and withholding stubs from employee 
records that include hours worked, number of dependents 
claimed, and so on. Indeed, in the ATM example, the 
account balance is typically not updated during the on-line 
transaction, but instead a batch transaction is stored. Over-
night that transaction will be processed together with other 
transactions affecting that account (such as checks), and 
the balance will then be officially updated. (The program 
module that keeps track of the progress of transactions is 
called a transaction monitor.)

There are several considerations that are important in 
designing transaction systems. While some transactions 
may simply involve a request for information and do not 
update any files, many transactions may require that several 
files or database records be updated. For example, a transfer 
of funds from a saving account to a checking account will 
require that both accounts be updated: the first with a debit 
and the second with a credit. What happens if the computer 
performs the savings debit but then goes down before the 
checking account can be credited? The result would be an 
upset customer whose money seems to have disappeared.

The solution to this problem is to design a process where 
the various updates are done not to the actual databases 
but to associated temporary databases. Once these potential 
transactions are posted, the system issues a “commit” com-
mand to the databases. Each database must send a reply 
acknowledging that it’s ready to perform the actual update. 
Only if all databases reply affirmatively is the commit com-
mand given, which updates all the databases simultaneously.
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tree
The tree is a data structure that consists of individual inter-
sections called nodes. The tree normally starts with a single 
root node. (Unlike real trees, data trees have their root at 
the top and branch downward.) The root connects to one 
or more nodes, which in turn branch into additional nodes, 
often through a number of levels. (A node that branches 
downward from another node is called that node’s child 
node.) A node at the bottom that does not branch any fur-
ther is called a terminal node or sometimes a leaf.

Trees are useful for expressing many sorts of hierarchi-
cal structures such as file systems where the root of a disk 
holds folders that in turn can hold files or additional fold-
ers, and so on down many levels. (A corporate organization 
chart is a noncomputer example of a hierarchical tree.)

The most common type of tree used as a data struc-
ture is the binary tree. A binary tree is a tree in which no 
node has more than two child nodes. To move through data 

stored in a binary tree, a program can use two pointers, one 
to the current node’s left child and one to its right child 
(see pointers and indirection). The pointers can then be 
used to trace the paths through the nodes. If the tree repre-
sents a file that has been sorted (see sorting and search-
ing), comparing nodes to the desired value and branching 
accordingly quickly leads to the desired record.

Alternatively, the data can be stored directly in con-
tiguous memory locations corresponding to the successive 
numbers of the nodes. This method is faster than having 
to trace through successive pointers, and a binary search 
algorithm can be applied directly to the stored data. On the 
other hand it is easier to insert new items into a linked list 
(see list processing).

A common solution is to combine the two structures, 
storing the linked list in a contiguous range of memory by 
storing its root in the middle of the range, its left child at 
the beginning of the range, its right child at the end, and 
then repeatedly splitting each portion of the range to store 
each level of children. Intuitively, one can see that algo-
rithms for processing such stored trees will take a recursive 
approach (see recursion).

In a binary tree each node either has two branch (child) nodes or 
is a terminal node. Here a binary tree is shown with the equivalent 
representation in an array of memory locations. Notice that the 
numbers are stored level by level (50 in the top level, 25 and 75 in 
the second level, and so on.) Null would be a special value (such 
as -1) representing an empty node.
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For efficiency it’s important to keep all branches of a tree 
approximately the same length. A B-tree (balanced tree) is 
designed to automatically optimize itself in this way.

Trees lend themselves to game programs where a series 
of moves and their possible replies must be explored to 
varying levels. A chess program will typically create a tree 
from the current position, but use various criteria to deter-
mine which moves should be explored beyond just a few 
levels, thus “pruning” the game tree.
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trends and emerging technologies
Because of the complexity of computer systems, software, 
and business models, it is easy to “fail to see the forest for 
the trees.” Stepping back once in a while to see what is 
changing (or likely to change) is recommended. Such a per-
spective is particularly useful for professionals who need to 
periodically evaluate their skills against the market, inves-
tors, venture capitalists, journalists, and educators.

It is nearly a commonplace to say that the future is com-
ing at an accelerating rate (for the ultimate speculation, see 
singularity, technological). What adds to the challenge 
is the way each new technology (and social adaptation) 
has multiple consequences, whether it is social networking, 
“viral marketing,” or individually targeted, location-aware 
advertising. At the same time, attempting to distinguish 
short-term hype from genuine trends is always difficult—
anyone in the computing field can compile a glossary of 
now-obsolete buzzwords. Thus reading a variety of perspec-
tives from advocates to pundits to critics is essential.

Overall Trends
That said, the following table suggests some activities that 
are in transition from a traditional model to one that reflects 
emerging technological and social trends.

From	T o

desktop PC	 mobile and pervasive computing
wired networks	 wireless and mobile computing
separate handling of media	 integrated media servers
broadcasting	� user-driven, customizable chan-

nels of media
user as consumer	 user as contributor and sharer
individual consumers	 social networking
software as product	 software as service
proprietary code	 open source
interface-driven tasks	 search-driven interfaces
arbitrarily organized data	� semantically retrievable 

information.
e-commerce	� integration of online and tradi-

tional channels

For more information about emerging trends, see the 
following entries: digital convergence, open-source 
movement, service-oriented architecture, smart 
buildings and homes, social networking, ubiqui-
tous computing, user-created content, Web 2.0 and 
beyond, Web services.
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trust and reputation systems
Trust and reputation are inherently connected. Participants 
in any transaction (such as respondents to classified ads or 
participants in an online auction) want assurance that they 
will receive the promised value in exchange for what they 
are giving up. The default anonymity of online transactions 
(see anonymity and the Internet) presents a challenge: 
How does one obtain information about someone’s reputa-
tion (how he or she has behaved previously) and thus be 
assured of his or her reliability?

One solution is to collect and characterize the expe-
riences of participants in previous transactions with that 
person or entity. For an auction (see auctions, online and 
eBay), the system can solicit and tabulate ratings (“feed-
back”) by participants in each transaction. However, this 
kind of simple system must guard against being subverted 
by people who create false identities (fronts) and transac-
tions and use them to inflate the feedback score.

A more sophisticated reputation system can be used for 
ranking Web pages, contributions (such as blogs or product 
reviews), or other works. Instead of giving each participant 
the same single “vote,” the feedback is weighted accord-
ing to the responder’s own reputation. Thus if a number 
of people whose own product reviews have been highly 
recommended also recommend another review, that review 
will be much more highly rated. Examples of this sort of 
system include the PageRank algorithm used by Google, 
the consumer review site Epinions.com, and the “techie” 
favorite Slashdot.

Developing a trust and reputation system that is effec-
tive but unobtrusive is particularly important for the col-
laborative creation of content such as for search engines 
and wikis (see user-created content and wikis and 
Wikipedia).
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Online attacks on reputation (defamation) are also a 
growing problem for both businesses and individuals. Even 
if the perpetrator is legally prosecuted or otherwise forced 
to stop, removing the defamatory material (and links to it) 
can be difficult, since the material may have been exten-
sively cached, archived, or otherwise copied. Thus consul-
tants in “reputation management” have begun to offer their 
services to the victims of undeserved negative reputations. 
(This includes optimizing for search engines so that nega-
tive material will be pushed to the bottom of the results.)
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Turing, Alan Mathison
(1912–1954)
British
Mathematician, Computer Scientist

Alan Turing’s broad range of thought pioneered many 
branches of computer science, ranging from the fundamen-
tal theory of computability to the question of what might 
constitute true artificial intelligence.

Turing was born in London on June 23, 1912. His father 
worked in the Indian (colonial) Civil Service, while his 
mother came from a family that had produced a number of 
distinguished scientists. As a youth Turing showed great 
interest and aptitude in both physical science and math-
ematics. When he entered King’s College, Cambridge, in 
1931, his first great interest was in probability, where he 
wrote a well-regarded thesis on the Central Limit Theorem.

Turing’s interest then turned to the question of what 
problems could be solved through computation (see com-
putability and complexity). Instead of pursuing conven-
tional mathematical strategies, he re-imagined the problem 
by creating the Turing Machine, an abstract “computer” 
that performs only two kinds of operations: writing or 
not writing a symbol on its imaginary tape, and possibly 
moving one space on the tape to the left or right. Tur-
ing showed that from this simple set of states (see finite 
state machine) any possible type of calculation could be 
constructed. His 1936 paper “On Computable Numbers” 

together with another researcher’s different approach (see 
Church, Alonzo) defined the theory of computability. 
Turing then came to America, studied at Princeton Univer-
sity, and received his Ph.D. in 1938.

Turing did not remain in the abstract realm, however, 
but began to think about how actual machines could per-
form sequences of logical operations. When World War II 
erupted, Turing returned to Britain and went into service 
with the government’s Bletchley Park code-breaking facility. 
He was able to combine his previous work on probability 
and his new insights into computing devices to help analyze 
cryptosystems such as the German Enigma cipher machine 
and to design specialized code-breaking machines.

As the war drew to an end, Turing’s imagination brought 
together what he had seen of the possibilities of automatic 
computation, and particularly the faster machines that 
would be made possible by harnessing electronics rather 
than electromechanical relays. In 1946, he received a British 
government grant to build the ACE (Automatic Computing 
Engine). This machine’s design incorporated advanced pro-
gramming concepts such as the storing of all instructions 
in the form of programs in memory without the mechani-
cal setup steps required for machines such as the ENIAC. 
Another important idea of Turing was that programs could 
modify themselves by treating their own instructions just 
like other data in memory. However, the engineering of the 
advanced memory system led to delays, and Turing left the 
project in 1948 (it would be completed in 1950). Turing also 
continued his interest in pure mathematics and developed a 
new interest in a completely different field, biochemistry.

Turing’s last and perhaps greatest impact would come in 
the new field of artificial intelligence. Working at the Uni-
versity of Manchester, Turing devised a concept that became 
known as the Turing Test. In its best-known variation, the 
test involves a human being communicating via a Teletype 
with an unknown party that might be either another person 
or a computer. If a computer at the other end is sufficiently 
able to respond in a humanlike way, it may fool the human 
into thinking it is another person. This achievement could 
in turn be considered strong evidence that the computer is 
truly intelligent. Since Turing’s 1950 article computer pro-
grams such as ELIZA and Web “chatterbots” have been able 
to temporarily fool people they encounter, but no computer 
program has yet been able to pass the Turing Test when 
subjected to extensive probing questions by a knowledge-
able person.

Alan Turing had a secret that was very dangerous in that 
time and place: He was gay. In 1952, the socially awkward 
Turing stumbled into a set of circumstances that led to his 
being arrested for homosexual activity, which was illegal 
and heavily punished at the time. The effect of his trial and 
forced medical “treatment” suggested that his death from 
cyanide poisoning on June 7, 1954, was probably a suicide.

Alan Turing’s many contributions to computer science 
were honored by his being elected a Fellow of the British 
Royal Society in 1951 and by the creation of the prestigious 
Turing Award by the Association for Computing Machinery, 
given every year since 1966 for outstanding contributions 
to computer science.
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Turkle, Sherry
(1948–  )
American
Scientist, Writer

From the time cyberspace began to become a reality in the 
1980s, Sherry Turkle has been a pioneer in studying the 
psychological, social, and existential effects of computer 
use and online interaction.

Turkle was born Sherry Zimmerman on June 18, 1948, 
in Brooklyn, New York. After graduating from Abraham 
Lincoln High School as valedictorian in 1965, she enrolled 
in Radcliffe College (which later became part of Harvard 
University) in Cambridge, Massachusetts. However, when 
she was a junior her mother died, she quarreled with her 
stepfather, and dropped out of Radcliffe because she was no 
longer able to keep up with her studies.

Turkle then went to France, which by the late 1960s had 
become the scene of social and intellectual unrest. A new 
movement called poststructuralism was offering a radical 
critique of modern institutions. Turkle became fascinated 
by its ideas and attended seminars by such key figures as 
Michael Foucault and Roland Barthes. In particular, per-
sonal experience and intellectual interest joined in spurring 
her to investigate personal identity in the modern world.

Poststructuralism and postmodernism see identity as 
something constructed by society or by the individual, not 
something inherent. The new philosophers spoke of peo-
ple as having multiple identities between which they could 
move “fluidly.” In being able to try on a new identity for 
herself, Turkle could see the applicability of these ideas 
to her own life and began to explore how they may also 
explain the changes that were sweeping through society.

Turkle decided to return to the United States to resume 
her studies. In 1970 she received an A.B. degree in social 
studies, summa cum laude, from Radcliffe. After working 
for a year with the University of Chicago’s Committee on 
Social Thought, she enrolled in Harvard, receiving an M.A. 
in sociology in 1973. She went on to receive her doctorate 
in sociology and personality psychology in 1976, writing 

about the relationship between Freudian thought and the 
modern French revolutionary movements.

Psychology of Cyberspace
After getting her Harvard Ph.D. Turkle accepted a position 
as an assistant professor of sociology at nearby MIT. Here 
she found a culture as exotic as that of the French intel-
lectuals, but seemingly very different. In encountering the 
MIT hackers that would later be described in Steven Levy’s 
book Hackers, Turkle became intrigued by the way the stu-
dents were viewing all of reality (including their own emo-
tions) through the language of computers.

For many of the MIT computer students, the mind 
was just another computer, albeit a complicated one. An 
emotional overload required “clearing the buffer,” and 
troubling relationships should be “debugged.” Fascinated, 
Turkle began to function as an anthropologist, taking 
notes on the language and behavior of the computer stu-
dents. In her second book, The Second Self: Computers and 
the Human Spirit (1984), Turkle says that the computer for 
its users is not an inanimate lump of metal and plastic, but 
an “evocative object” that offers images and experiences 
and draws out emotions. She also explained that the com-
puter could satisfy deep psychological needs, particularly 
by offering a detailed but structured “world” (as in a video 
game) that could be mastered, leading to a sense of power 
and security.

Although the computer culture of the time was largely 
masculine, Turkle also observed that this evocative nature 
of technology could also allow for a “soft approach” based 
on relationship rather than rigorous logic. This “feminine” 
approach usually met with rejection. Turkle believed that 
this message had to be changed if girls were not to be left 
behind in the emerging computer culture.

Turkle had already observed how computer activities 
(especially games) often led users to assume new identities, 
but she had mainly studied stand-alone computer use. In 
the 1990s, however, online services and the Internet in par-
ticular increasingly meant that computer users were inter-
acting with other users over networks. In her 1995 book 
Life on the Screen, Turkle takes readers inside the fascinat-
ing world of the MUD, or multi-user dungeon (see online 
games). In this fantasy world created by descriptive text, 
users could assume any identity they wished. An insecure 
teenage boy could become a mighty warrior—or perhaps a 
seductive woman. A woman, by assuming a male identity, 
might find it easier to be assertive and would avoid the sex-
ism and harassment often directed at females.

The immersive world of cyberspace offers promises, per-
ils, and potential, according to Turkle. As with other media, 
the computer world can become a source of unhealthy 
escapism, but it can also give people practice in using social 
skills in a relatively safe environment, although there can 
be difficulty in transferring skills learned online to a face-
to-face environment.

Although the computer has provided a new medium 
for the play of human identity, Turkle has pointed out that 
the question of identity (and the reality of multiple identi-
ties) is inherent in the postmodern world. Looking to the 
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future, Turkle suggests that the boundary between cyber-
space and so-called real life is vanishing, forcing people to 
confront the question of what “reality” means. Meanwhile, 
she remains concerned about the paradox in which people 
may be becoming at once more connected and more alien-
ated than ever before.

Turkle married artificial intelligence pioneer and edu-
cator Seymour Papert; the marriage ended in divorce. She 
continues today at MIT as a professor of the sociology of 
science and as director of the MIT Initiative on Technology 
and Self. She has received a number of fellowships, includ-
ing a Rockefeller Foundation fellowship (1980), a Guggen-
heim fellowship (1981), Fellow of the American Association 
for the Advancement of Science (1992), and World Eco-
nomic Forum Fellow (2002).

In 1984 Turkle was selected Woman of the Year by Ms. 
magazine, and she has made a number of other lists of 
influential persons such as the “Top 50 Cyber Elite” of Time 
Digital (1997) and Time Magazine’s Innovators of the Inter-
net (2000).
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typography, computerized
The more than five-century-old art of typography (the 
design, arrangement, and setting of printing type) was 
transformed in the latter part of the 20th century by digital 
technology. With the exception of some traditional presses 
devoted to the fine book market, nearly all type used today 
is designed and set by computer.

Most users are familiar with the typefaces distributed 
with their operating system and software, such as the popu-
lar Adobe and TrueType (see Adobe systems and font). 
Many such font designs are based on (and sometimes named 
after) traditional typefaces, modified for readability using 
typical displays and printers.

For control of composition, there are three overlapping 
levels of software, ranging from easiest to use (but most 
limited) to most complex, versatile, and precise. Modern 
word processors such as Microsoft Word and Open Office 
provide enough control for many types of shorter docu-
ments (see word processing). Desktop publishing soft-
ware adds facilities suitable for layout of fliers, brochures, 
newsletters, and similar publications that often mix text 
and graphics (see desktop publishing).

More elaborate documents such as books, magazines, 
and newspapers require more sophisticated facilities 
to control the layout and flow of text. Some traditional 
choices include LaTex (for the Tex typesetting program), 
used particularly by scientists and other academics, and 
the older troff and its offshoots on UNIX systems. More 
recent programs include Quark, FrameMaker, PageMaker, 
and InDesign. Related utilities often used in digital typog-
raphy include font editors (for design and modification) and 
utilities to convert fonts from one format to another.
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ubiquitous computing
Traditionally people have thought of computers as discrete 
devices (such as a desktop or handheld device), used for 
specific purposes such as to send e-mail or browse the Web. 
However, many researchers and futurists are looking toward 
a new paradigm that many believe is rapidly emerging. Ubiq-
uitous (or pervasive) computing focuses not on individual 
computers and tasks but on a world where most objects 
(including furniture and appliances) have the ability to com-
municate information. (This has also been called “the Inter-
net of things.”) This can be viewed as the third phase in a 
process where the emphasis has gradually shifted from indi-
vidual desktops (1980s) to the network and Internet (1990s) 
to mobile presence and the ambient environment.

Some examples of ubiquitous computing might include:

• � picture frames that display pictures attuned to the 
user’s activities

• � “dashboard” devices that can be set to display chang-
ing information such as weather and stock quotes

• � parking meters that can provide verbal directions to 
nearby attractions

• � kiosks or other facilities to provide verbal cues to 
guide travelers, such as through airports

• � home monitoring systems that can sense and deal 
with accidents or health emergencies

Ubiquitous computing greatly increases the ability of 
people to seamlessly access information for their daily 
activities, but the fact that the user is in effect “embed-

ded” in the network can also raise issues of privacy and the 
receiving of unwanted advertising or other information (see 
privacy in the digital age).

An early center of research in ubiquitous computing was 
Xerox PARC, famous for its development of graphical user 
interfaces (particularly the work of Mark Weiser). Today a 
major force is MIT (see MIT Media Lab), especially its Proj-
ect Oxygen, which explores networks of embedded comput-
ers. This challenging research area brings together aspects 
of many other fields (see artificial intelligence, distributed 
computing, psychology of computing, smart buildings and 
homes, touchscreen, user interface, and wearable com-
puters). Note that while the user’s experience of ubiquitous 
computing might be similar in some ways to that of virtual 
reality, the latter puts the user into a computer-generated 
world, while the former uses computing power to enhance 
the user’s connections to the outside world (see virtual 
reality).
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UNIX
By the 1970s, time-sharing computer systems were in use at 
many universities and engineering and research organiza-
tions. Such systems, often running on computers such as 
the PDP series (see minicomputer), required a new kind 
of operating system that could manage the resources for 
each user as well as the running of multiple programs (see 
multitasking).

An elaborate project called Multics had been begun in 
the 1960s in an attempt to create such an operating system. 
However, as the project began to bog down, two of its par-
ticipants, Ken Thompson and Dennis Ritchie (see Ritchie, 
Dennis) decided to create a simple, more practical operat-
ing system for their PDP-7. The result would become UNIX, 
an operating system that today is a widely used alternative 
to proprietary operating systems such as those from IBM 
and Microsoft.

Architecture
The essential core of the UNIX system is the kernel, which 
provides facilities to organize and access files (see ker-
nel and file), move data to and from devices, and control 
the running of programs (processes). In designing UNIX, 
Thompson deliberately kept the kernel small, noting that he 
wanted maximum flexibility for users. Since the kernel was 
the only part of the system that could not be reconfigured or 
replaced by the user, he limited it to those functions that reli-
ability and efficiency dictated be handled at the system level.

Another way in which the UNIX kernel was kept simple 
was through device independence. This meant that instead 
of including specific instructions for operating particular 
models of terminal, printers, or plotters within the kernel, 
generic facilities were provided. These could then be inter-
faced with device drivers and configuration files to control 
the particular devices.

A UNIX system typically has many users, each of whom 
may be running a number of programs. The interface that 
processes user commands is called the shell. It is impor-
tant to note that in UNIX a shell is just another program, 
so there can be (and are) many different shells reflecting 
varying tastes and purposes (see shell). Traditional UNIX 
shells include the Bourne shell (sh), C shell (csh), and Korn 
shell (ksh). Modern UNIX systems can also have graphi-
cal user interfaces similar to those found on Windows and 
Macintosh personal computers (see user interface).

Working with Commands
UNIX systems come with hundreds of utility programs that 
have been developed over the years by researchers working 
at Bell Labs and campuses such as the University of Califor-
nia at Berkeley (UCB). These range from simple commands 
for working with files and directories (such as cd to set a 
current directory and ls to list the files in a directory) to 
language compilers, editors, and text-processing utilities.

Whatever shell is used, UNIX provides several key fea-
tures for constructing commands. A powerful system of 
patterns (see regular expression) can be used to find files 
that match various criteria. For a very simple example, the 
command

% ls *.doc

will list all files in the current directory that end in .doc. 
(The % represents the command prompt given by the shell.)

Most earlier operating systems used special syntax to 
refer to devices such as the user’s terminal and the printer. 
UNIX, however, treats devices just like other files. This 
means that a program can receive its input by opening a ter-
minal file and send its output to another file. For example:

% cat > note
This is a note.
^D

The cat (short for concatenate) command adds the user’s 
input to a file called note. The ^D stands for Control-D, the 
special character that marks end-of-file. Once the command 
finishes, there is a file called note on the disk, which can be 
listed by the ls command:

% ls –l note
-rw———- 1 hrh well 16 Mar 25 20:16 note

The contents of the file can be checked by issuing 
another cat command:

% cat note
This is a note.

Many commands default to taking keyboard input if no 
input file is specified. For example, one can type sort fol-
lowed by a list of words to sort:

% sort
apple
pear
orange
tangerine
lemon
^D

Once the input is finished, the sort command outputs 
the sorted list:

apple
lemon
orange
pear
tangerine

One of the things that makes UNIX attractive to its users 
is the ability to combine a set of commands in order to per-
form a task. For example, suppose a user on a timesharing 
system wants to know which other users are logged on. The 
who command provides this information, but it includes a 
lot of details that may not be of interest. Suppose one just 
wants the names of the current users. One way to do this is 
to connect the output of the who command to awk, a script-
ing language (see awk and scripting languages).
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% who | awk ' { print $1 }'

Here the vertical bar (called a pipe) connects the output 
of the first command to the input of the second. Thus, the 
awk command receives the output of the who command. 
The statement print $1 tells awk to output the first column 
from who’s output, which is just the names of the users. 
The first part of the list looks like this:

mnemonic
bernie
kryan
nanlev
goddessj
brady
demaris
techgirl

This is fine, but the output might be better if it were sorted. 
All that’s needed is to add one more pipe to connect the out-
put of the awk command to the sort command:

% who | awk ' {print $1}' | sort
aarong
aimee
almanac
amicus
autumn
biscuit
bradburn
brian

The ability to redirect input and output and to use pipes to 
connect commands makes it easy for UNIX users to create 
mini-programs called scripts to perform tasks that would 
require full-fledged compiled programs on other systems. 
For example, the preceding command could be put into a 
file called users, and the file could be set to be executable. 
Once this is done, all the user has to do to get the user list 
is to type users at a shell prompt. Today UNIX users have a 
wide choice of powerful scripting languages (see perl and 
python).

Unix Then and Now
The versatility of UNIX quickly made it the operating sys-
tem of choice for most campuses and laboratories, as well as 
for many software developers. When PCs came along in the 
late 1970s and 1980s, they generally lacked the resources to 
run UNIX, but developers of PC operating systems such as 
CP/M and MS-DOS were influenced by UNIX ideas includ-
ing the hierarchical file system with its levels of directories, 
the use of a command-processing shell, and wildcards for 
matching filenames.

Besides hardware requirements, another barrier to the 
use of UNIX by home and business users was that the 
operating system was copyrighted by Bell Labs and a UNIX 
license often cost more than the PC to run it on. However, 
a combination of the efforts of the Free Software Founda-
tion (see Stallman, Richard) and a single inspired pro-
grammer (see Torvalds, Linus) resulted in the release of 
Linux, an operating system that is fully functionally com-

patible with UNIX but uses no AT&T code and is thus free 
of licensing fees (see Linux).

Although UNIX has been somewhat overshadowed by 
its Linux progeny, a variety of open-source versions of tra-
ditional UNIX systems have become available. In 2005 Sun 
Microsystems released OpenSolaris (based on UNIX System 
V). There is also OpenBSD, derived from the UC Berkeley 
Software Distribution (but with stronger security features), 
and available for most major platforms. Finally, the con-
tinuing influence of UNIX can also be seen in the current 
generation of operating systems for the Apple Macintosh 
(see os x).
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USB
The traditional ways to connect a computer to peripheral 
devices such as printers are via parallel and serial connec-
tions (see parallel port and serial port). Both methods 
are standardized and reliable, but by the mid-1990s peo-
ple wanted to connect many more data-hungry devices to 
their PCs, including scanners, digital cameras, and exter-
nal storage drives. Besides wanting faster data transfers, 
system designers looked for a way to connect more devices 
without having to add more ports to the motherboard. 
It would also be convenient to be able to plug or unplug 
devices without having to reboot the PC. The Universal 
Serial Bus (USB) has all these features: It is relatively fast 
and quite flexible.

Introduced in 1996, USB uses a four-wire cable with 
small rectangular connectors. Devices can be connected 
directly to the host USB hub built into the computer. Alter-
natively, a second hub can be connected to the host hub, 
allowing for several devices to share the same connection. 
(Often for convenience, monitors and other devices now 
include built-in USB hubs for ease in connecting other 
devices on the desktop.)

Two of the four wires carry power from the PCs power 
supply (or from a secondary powered hub) to the connected 
devices. The other two wires carry data. The 1s and 0s in 
the data are signaled by the difference in voltage between 
the two wires. (This tends to reduce the effects of outside 
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electromagnetic interference, since if both wires are affected 
similarly, the difference between them won’t change.)

When a USB device is connected, it creates a voltage 
change that causes the USB system in the PC to query 
it for identifying information. If the information indicates 
that the device has not been installed, the operating system 
begins an installation procedure that can be carried out 
either automatically or with a little help from the user (see 
plug and play).

Once a device is installed, its identifying information 
tells the USB system what data rate it can handle. (Some 
devices, such as keyboards, don’t need to be very fast, while 
others, such as CD drives, place a premium on speed.) The 
USB system assigns each device an address. The system 
functions like a miniature token-ring network, sending que-
ries or commands with tokens identifying the appropriate 
device. The devices respond to requests that have their token 
and in turn send requests when they have data to transmit.

The USB system can assign priorities to devices accord-
ing to their need for an uninterrupted flow of data. A 
recordable CD (CD-RW) drive, for example, is sensitive to 
interruptions in the flow of data, so it is given a high prior-
ity. A keyboard sends only a tiny bit of data at a time, and it 
can get by with a low priority, requesting service as needed. 
Other devices such as scanners and printers may handle a 
large flow of data, but are not very sensitive to interruptions 
and can have a medium priority.

The original USB specification allowed for up to 12 MB/
sec data transfers. However, the current USB 2.0 specification 
allows speeds up to 480 MB/sec, enough to easily handle a 
digital camera, scanner, and CD-RW drive simultaneously.

Today USB connections are also often used to add exter-
nal hard drive storage as well as for handy “thumb drives” 
or “memory sticks” that make it easy to carry one’s docu-
ments and even software from one machine to the next (see 
flash drive). Finally, a USB-connected wireless adapter 
(see Bluetooth and wireless computing) can be the 
most convenient way to put an older desktop or laptop PC 
into communication with the rest of the world.
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user-created content
Traditional print and broadcast media divide the world 
into two groups: content producers and content consum-
ers. However, as noted by its creator Tim Berners-Lee at 
its very beginning, the World Wide Web had at least the 
potential for users to take an active role in linking existing 
content and contributing their own (see Berners-Lee, Tim 

and World Wide Web). Indeed, Berners-Lee wanted Web 
client software to include not only browsing functions but 
easy ways for users to create their own Web pages.

In reality, early users faced something of a learning 
curve, usually having to cope with HTML to some extent, 
for example. But by the mid-2000s a variety of new media 
of communication had become readily accessible using an 
ordinary Web browser at sites that host the required soft-
ware. The most prominent applications are blogs (see blogs 
and blogging) and wikis, particularly Wikipedia (see 
wikis and Wikipedia).

Meanwhile, inexpensive digital still and video cameras 
and easy-to-use editing software encouraged people to make 
their own media creations. Sites to enable users to upload, 
share, and comment on their creations have flourished (see 
YouTube).

The growth of sites such as Facebook and MySpace 
(see social networking) has also provided new ways for 
users from junior high school age on up to create and share 
content.

Applications and Issues
The effects of this ability to create as well as consume media 
are proving to be far-reaching. YouTube, for example, has 
featured elaborate documentaries and controversial polit-
ical pieces. Candidates in the 2008 presidential primary 
campaign had to deal with a new debate format where vot-
er’s questions, rather than being read by a moderator, are 
presented in videos created by the voters themselves.

User-created content is also becoming significant in 
media and journalism. Some newspapers are even begin-
ning to experiment with assigning stories to volunteer col-
laborators—possibly as a way of coping with diminishing 
revenues and budgets for professional journalists.

Forms of user-created content are also increasingly 
prevalent in the traditional broadcast media. While previ-
ously existing only in such forms as talk radio and game 
shows, more or less unscripted participation is now found 
in reality TV and the endless variants on American Idol.

Economists and social scientists are beginning to 
explore how a combination of open-source, user-created 
content, and mass collaboration are changing how infor-
mation is assembled and used and even how products are 
designed (see open-source movement).

However, user-created content also raises challenges: 
What kind of journalistic standards might be applied to non-
professional reporting and documentaries? (See journalism 
and computers.) What should be the responsibility of the 
owner of a venue such as YouTube for content that might vio-
late someone’s copyright or be defamatory? The creation of 
content that contains information about personal identity can 
also be problematic from a privacy and security standpoint. 
Finally, in venues such as online games where users may 
have spent hundreds of hours creating content, the question 
of who owns it and what they can do with it is significant.
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user groups
Computer users have always had an interest in finding and 
sharing information about the systems they are trying to 
use. As early as 1955, users of the IBM 701 mainframe 
banded together, in this case to try to influence IBM’s deci-
sions about new software. Later, users of minicomputers 
made by Digital Equipment Corporation formed DECUS.

By the mid-1970s, microcomputer experimenters had 
organized several groups, of which the most influential was 
probably the Homebrew Computer Club, meeting first in a 
garage in Menlo Park, California, 1975. The group soon was 
filling an auditorium at Stanford University. Members dem-
onstrated and explained their hand-built computer systems, 
argued the merits of kits such as the Altair, and later, wit-
nessed Steve Wozniak’s prototype Apple I computer.

At the other end of the scale, users of UNIX on univer-
sity computer systems had formed USENIX, the UNIX user’s 
group. A growing system of newsgroups called USENET 
(see netnews and newsgroups) would soon extend 
beyond UNIX concerns to hundreds of other topics.

Early PC users had great need for user groups. Tech-
nical support was primitive and the variety of computer 
books limited, so the best way to get quirky hardware or 
balky software to work was often to ask fellow users, read 
user group newsletters, or skim through the great variety 
of small publications that catered to users of particular sys-
tems. Users could also meet to swap public domain software 
disks. User groups could be formed around software as well 
as hardware. Thus, users could swap spreadsheet templates 
or discuss Photoshop techniques.

User groups have gradually become less important, or 
perhaps it is better to say that they have changed their 
mode of existence. Starting in the mid-1980s, the modem 
and bulletin board, on-line services such as CompuServe 
and later, Web sites offered more convenient access to infor-
mation and software without the need to attend meetings. 
At the same time, the quality and reliability of hardware 
and software has steadily improved, even though there is 
always a new crop of problems.

User groups played a key role in the adoption of new 
technology, much as they had in earlier movements such 
as amateur radio. Today it might be said that every user 
has the opportunity to join numerous virtual user groups, 
although the sense of fellowship and mutual exploration 
may be somewhat lacking.
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user interface
All computer designers are faced with the question of how 
users are going to communicate with the machine in order 
to get it to do what they want it to do. User interfaces have 
evolved considerably in 60 years of computing.

The user interface for ENIAC and other early computers 
consisted of switches or plugs for configuring the machine 
for a particular problem, followed by loading instructions 
from punch cards. The mainframes of the 1950s and 1960s 
had control consoles from which text commands could be 
entered (see job control language).

The time-sharing computers that became popular start-
ing in the 1960s still used only text commands, but they 
were more interactive. Users could type commands to 
examine directories and files, and run utilities and other 
programs. Starting in the 1970s, UNIX provided a powerful 
and flexible way to combine commands to carry out a vari-
ety of tasks interactively or through batch processing (see 
unix and shell).

The first graphical user interfaces (GUIs) resulted from 
experimental work at the Xerox Palo Alto Research Center 
(PARC) during the 1970s. Instead of typing commands at 
a prompt, GUI users can use a mouse to open menus and 
select commands, and click on icons to open programs and 
files. For operations that require detailed specifications, a 
standard dialog box can be presented, using controls such 
as check boxes, buttons, text boxes, and sliders.

GUIs entered the mainstream thanks to Apple’s Macin-
tosh and Microsoft Windows for IBM-compatible PCs. By 
the mid-1990s, the GUI had supplanted text-based oper-
ating systems such as MS-DOS for most PC users. The 
strength of the GUI is that it can visually model the way 
users work with objects in the real world. For example, a 
file can be deleted by dragging it to a trash can icon and 
dropping it in. Dragging a slider control to adjust the vol-
ume for a sound card is directly analogous to moving a 
slider on a home stereo system.
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Because a system like Windows or the Macintosh pro-
vides developers with standardized interface objects and 
conventions, users are able to learn the basics of operating 
a new application more quickly. Whereas in the old days 
different programs might use slightly different keystrokes 
or commands for saving a file, Windows users know that in 
virtually any application they can open the File menu and 
select Save, or press Ctrl-S.

With the growth of the World Wide Web, interface 
design has extended to Web pages. Generally, Web pages 
use similar elements to desktop GUIs, but there are some 
special considerations such as browser compatibility, 
response at differing connection speeds, and the integration 
of text and interactive elements.

GUIs do have some general drawbacks. An experienced 
user of a text-based operating system might be able to type 
a precise command that could find all files of a given type 
on the system and copy them to a backup directory. The 
GUI counterpart might involve opening the Search menu, 
typing a file specification, and making further selections 
and menu choices to perform the copy. Command-driven 
systems also provide for powerful scripting capabilities. 
GUI systems often allow for the recording of keystrokes or 
menu selections, but this is less powerful and versatile.

Another important consideration is the difficulty that 
people with certain disabilities may have in using GUI sys-
tems. There are a variety of possible solutions, many of 
which are incorporated in Microsoft Windows, Web brows-
ers, and other software. These include screen magnifier or 
reader utilities for the visually impaired and alternatives to 
the mouse such as head tracker/pointers (see disabled per-
sons and computing).

Designers of user interfaces have to consider whether the 
elements of the system are intuitively understandable and 
consistent and whether they can be manipulated in efficient 
yet natural ways (see also ergonomics of computing).

Alternative and Future Interfaces
The marketplace has spoken, and the desktop GUI is now 
the mainstream interface for most ordinary PC users. How-
ever, there are a variety of other interfaces that are used for 
particular circumstances or applications, such as:

• � touchscreens (as with ATMs) (see touchscreen)

• � handwriting or written “gesture” recognition, such as 
on handheld computers (see handwriting recogni-
tion) or for drawing tablets

• � voice-controlled systems (see speech recognition 
and synthesis)

• � trackballs, joysticks, and touchpads (used as mouse 
alternatives)

• � virtual reality interfaces using head-mounted systems, 
sensor gloves, and so on (see virtual reality)

Because much interaction with computers is now away from 
the desktop and taking place on laptops, handheld, or palm 
computers, and even in cars, there is likely to be continuing 
experimentation with user interface design.
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variable
Virtually all computer programs must keep track of a vari-
ety of items of information that can change as a result of 
processing. Such values might include totals or subtotals, 
screen coordinates, the current record in a database, or any 
number of other things. A variable is a name given to such 
a changeable quantity, and it actually represents the area of 
computer memory that holds the relevant data.

Consider the following statement in the C language:

int Total = 0;

Variables have several attributes. First, every variable 
has a name—Total in this case. Although this name actu-
ally refers to an address in memory, in most cases the pro-
grammer can use the much more readable name instead of 
the actual address.

It is possible to have more than one name for the same 
variable by having another variable point to the first vari-
able’s contents, or by declaring a “reference” variable (see 
pointers and indirection).

Each variable has a data type, which might be number, 
character, string, a collection (such as an array), a data 
record, or some special type defined by the programmer 
(see data types). With some exceptions (see scripting 
languages) most modern programming languages require 
that the programmer declare each variable before it is used. 
The declaration specifies the variable’s type—in the current 
example, the type is int (integer, or whole number).

A variable is usually given an initial value by using an 
assignment statement; in the example above the variable 
Total is given an initial value of 0, and the assignment is 

combined with the declaration. (Some languages automati-
cally assign a default value such as 0 for a number or a null 
character for a string, but with other languages failure to 
assign a value results in the variable having as its value 
whatever happens to be currently stored in the memory 
address associated with the variable. An explicit assign-
ment is thus always safer and more readable.)

When exactly do variables get set up, and when do they 
get their values? This varies with the programming lan-
guage (see binding). With C and similar languages, a vari-
able receives its data type when the program is compiled 
(compile time). The type in turn determines the range of 
values that the variable can hold (physically based on the 
number of bytes of memory allocated to it). The variable’s 
value is actually stored in that location when the program is 
executed (run time).

A few languages such as APL and LISP use dynamic 
binding, meaning that a data type is not associated with a 
variable until run time. This makes for flexibility in pro-
gramming, but at some cost in efficiency of storage and 
execution speed.

During processing, a variable’s value can change 
through the use of operators in expressions (see operators 
and expressions). Thus, the example value Total might be 
changed by a statement such as:

Total = Total + Subtotal;

When this statement is executed, the following happens:

The value of the memory location labeled “Subtotal” is 
obtained.

V



The value of the memory location labeled “Total” is 
obtained.

The two values are added together.

The result is stored in the location labeled “Total,” replacing 
its former value.

Scope of Variables
In early programming languages variables were generally 
global, meaning that they could be accessed and changed 
from any part of the program. While this practice is conve-
nient, it became riskier as programs became larger and more 
complex. One part of a program might be using a variable 
called Total or Subtotal to keep track of some quantity. Later, 
another part is written to deal with some other calculation, 
and uses the same names. The programmer may think of the 
second Total and Subtotal as being quite separate from the 
first, but in reality they refer to the same memory locations 
and any change affects both of them. Thus, it’s easy to create 
unwanted “side effects” when using global variables.

Starting in the 1960s and more systematically during 
the 1970s, there was great interest in designing computer 
languages that could better manage the structure and com-
plexity of large programs (see structured programming). 
One way to do this is to break programs up into more man-
ageable modules that each deal with some specific task (see 
procedures and functions). Unless explicitly declared to 
be global, variables within a procedure or function are local 
to that unit of code. This means that if two procedures both 
have a variable called Total, changes to one Total do not 
affect the other.

Generally, in block-structured languages such as Pascal 
a variable is by default local to the block of code in which 
it is defined. This means it can be accessed only within that 
block. (Its visibility is said to be limited to that block.) The 
variable will also be accessible to any block that is nested 
within the defining block, unless another variable with the 
same name is declared in the inner block. In that case the 
inner variable supersedes the outer one, which will not be 
visible in the inner block.

Some languages such as APL and early versions of LISP 
define scope differently. Since these languages are not block 
structured, scope is determined not by the relationship of 
blocks of code but by the sequence in which functions are 
called. At run time each variable’s definition is searched 
for first in the code where it is first invoked, then in what-
ever function called that code, then in the function that 
called that function, and so on. As with dynamic binding, 
dynamic scooping offers flexibility but at a considerable 
price. In this case, the price is that the program’s effects on 
variables will be hard to understand, and the search mecha-
nism slows down program execution. Dynamic scoping is 
thus not often used today, even in LISP.

Global variables were convenient because they allowed 
information generated by one part of a program to be 
accessed by any other. However, such accessibility can be 
provided in a safer, more controlled form by explicitly pass-
ing variables or their values to a procedure or function 
when it is called (see procedures and functions).

Object-oriented languages provide another way to con-
trol or encapsulate information. Variables describing data 
used within a class are generally declared to be private 
(accessible only within the functions used by the class). 
Public (i.e., global) variables are used sparingly. The idea 
is that if another part of the program wants data belonging 
to a class, it will call a member function of the class, which 
will provide the data without giving unnecessary access to 
the class’s internal variables.

A final concept that is important for understanding vari-
ables is that of lifetime, that is, how long the definition of a 
variable remains valid. For efficiency, the runtime environ-
ment must deallocate memory for variables when they can 
no longer be used by the program (that is go “out of scope”). 
Generally, a variable exists (and can be accessed) only while 
the block of code in which it was defined is being executed 
(including any procedures or functions called from that 
block). In the case of a variable declared in the main pro-
gram, this will be until the program as a whole reaches its 
end statement. For variables within procedures or functions, 
however, the lifetime lasts only until the procedure or func-
tion ends and control is returned to the calling statement. 
However, languages such as C allow the special keyword 
static to be used for a variable that is to remain in existence 
as long as the program is running. This can be useful when 
a procedure needs to “remember” some information between 
one call and the next, such as an accumulating total.
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VBScript
Dating back to the mid-1990s, VBScript is a scripting lan-
guage developed by Microsoft and based on its popular 
Visual Basic programming language (see basic and script-
ing language). It is also part of the evolution of what 
Microsoft called “active scripting,” based on components 
that allow outside access to the capabilities of applications. 
The host environment in which scripts run is provided 
through Windows (as with Windows Script Host) or within 
Microsoft’s Internet Explorer browser.

For client-side processing, VBScript can be used to write 
scripts embedded in HTML pages, which interact with the 
standard Document Object Model (see dom) in a way sim-
ilar to other Web scripting languages (in particular, see 
JavaScript). However, VBScript is not supported by popu-
lar non-Microsoft browsers such as Firefox and Opera, so 
developers generally must use the widely compatible Java
Script instead. VBScript can also be used for processing on 
the Web server, particularly in connection with Microsoft’s 
Web servers (see active server pages).

Because versions of Windows starting with Windows 
98 include Windows Script Host, VBScripts can also be 
written to run directly under Windows. One unfortunate 
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consequence was scripts containing worms (such as the I 
LOVE YOU worm) or other malware and mailed as attach-
ments to unwary users.

Examples
VBScript code will be very familiar to users of Visual Basic 
and generally follows syntax similar to that of other object-
oriented languages. The canonical “Hello World” program 
can be simply written as:

WScript.Echo “Hello World!”

Where WScript is the object representing the script host.
To get user input through a text box, the programmer 

can write code like this:

option explicit
dim userInput
userInput = InputBox(“What is your name?:”, 
“Greetings”)
if userInput = “ ” then

Msgbox “You did not write anything or you 
pressed cancel!”

else
MsgBox “Hello, “ & userInput & “.”,  
vbInformation

end if

Of course VBScript has libraries and interfaces to enable 
it to perform much more complicated tasks, such as query-
ing databases and configuring other aspects of Windows 
systems through Windows Management Instrumentation 
(WMI) and Active Directory Services Interface (ADSI).

Although the language (and code using it) will be in use 
for years to come, Microsoft is no longer actively developing 
VBScript, having moved on to a new programming frame-
work (see Microsoft .NET) and focusing on languages 
such as Visual Basic .NET.
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videoconferencing
The growth of the global economy has meant that many 
companies have operations in many locations around 
the world. The time and expense involved in travel have 
encouraged the search for alternatives to face-to-face meet-
ings (see telepresence). The added discomfort and uncer-

tainty related to current airline travel is likely to further 
spur this movement.

Basic videoconferencing is carried out by using video 
cameras and microphones to carry the image and voice of 
each person so that it can be seen by all participants. The 
video and sound data is digitized and transmitted between 
the participants’ locations, using some existing communi-
cations link. Although direct satellite technology can be 
used, it is very expensive. A more practicable alternative 
is the use of a proprietary system over special phone lines 
(such as ISDN or DSL). Increasingly, however, broadband 
connections to the general Internet are used (see also VoIP). 
This is relatively inexpensive and flexible, but sometimes 
less reliable because of the effects of network congestion.

The quality of imagery depends on the system. High-
end systems, which can cost tens of thousands of dollars, 
use large, high-definition screens or even special projec-
tion equipment that can give a 3D look to peoples’ faces. 
Although high-end videoconferencing software and hard-
ware can be expensive, there are now a variety of alterna-
tives for small businesses and individual users. (As of 2002 
the printing store chain Kinko’s is offering videoconferenc-
ing through some of its stores for $450/hr.)

For smaller, less formal meetings there are more afford-
able alternatives. Products such as Microsoft NetMeeting, 
CuSeeMe, and Yahoo Messenger set up user accounts and 
a directory that makes it easy for users to connect. Other 
than the Internet connection, the only hardware needed is a 
microphone and an inexpensive camera (see web cam).

Business videoconferencing systems often include the abil-
ity for participants to view and interact with software applica-
tions. This makes it possible not only to view slide shows or 
other presentations (see presentation software) but to col-
laborate on creating documents. An “electronic whiteboard” 
can be used to display not only computer text and graphics 
but also handwritten notes created by participants using elec-
tronic drawing pads. The system can also create a hardcopy 
record of documents developed during the meeting.

Besides business meetings and conferences and product 
roll-outs, videoconferencing can also be used for a variety 
of other applications including sales presentations and for 
conducting focus groups for market research.

Videoconferencing is also being used increasingly in 
education. For K-12 classes, a videoconferencing field trip 
can take children to a museum or science laboratory that 
would otherwise be too far to visit. Both docent and stu-
dents can see and hear one another, as well as being able to 
see exhibits or experiments close up. For college students 
and adults, it is possible to attend classes given by emi-
nent lecturers and participate fully just as though they were 
enrolled on campus (see also distance education and 
computers).
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video editing, digital
When videotape first became available in the 1950s, record-
ers cost thousands of dollars and could only be afforded 
by TV studios. Today the VCR is inexpensive and ubiqui-
tous. However, it is hard to edit videotape. Tape is a lin-
ear medium, meaning that to find a given piece of video 
the tape has to be moved to that spot. Removing or add-
ing something involves either physically splicing the tape 
(as is done with film) or more commonly, feeding in tape 
from two or more recorders onto a destination tape. Besides 
being tedious and limited in capabilities, “linear editing” by 
copying loses a bit of quality with each copying operation.

Today, however, it is easy to shoot video in digital form 
(see photography, digital) or to convert analog video into 
digital form. Digital video is a stream of data that represents 
sampling of the source signal, such as from the charge-
coupled device (CCD) that turns light photons into electron 
flow in a digital camera or digital camcorder. This pro-
cess involves either software or hardware compression for 
storage and decompression for viewing and editing (such 
a scheme is called a CODEC for “compression/decompres-
sion”). The most widely used formats include DV (Digital 
Video) and MPEG (Motion Picture Expert Group), which 
has versions that vary in the amount of compression and 
thus fidelity.

In a turnkey system, the input source is automatically 
digitized and stored. In desktop video using a PC, a video 
capture card must be installed. The card turns the ana-
log video signal into a digital stream. The most commonly 
used interface to bring video into a PC is IEE1394, better 
known as FireWire, which has the high bandwidth needed 
to transfer video data.

Once the video is captured, it can be stored in frame 
buffers in memory and edited in various ways using a vari-
ety of software. Expensive turnkey systems come with 
advanced software, while desktop video users can choose 
from products such as Media Studio Pro or Adobe Premiere. 
The editing interface usually has a timeline and thumbnails 
showing the location of key frames in the sequence. Indi-
vidual clips can be extracted and tweaked with motion and 
transition effects; a variety of filters (see plug-in) can be 
applied to the video. The accompanying sound track(s) can 
also be edited. Once things look right, the software is told 
to render (create) the finished video and save it to disk.

The ever-increasing processing power and disk capacity 
of today’s PC is likely to make real-time video editing more 
feasible. This means that video can be played back directly 

from the edited timeline without transitions or effects 
having to be rendered first. Digital video cameras are also 
likely to increase in picture quality. Already desktop video 
is proving to be an affordable, viable alternative to expen-
sive turnkey systems for many applications.

Meanwhile, like digital photography, digital video is rap-
idly becoming a creative medium for the masses, aided by 
easy-to-use basic software for Macintosh (such as iMovie) 
and numerous products for Windows. Another driver for 
the proliferation of this medium is the ease with which vid-
eos can be uploaded and shared (see user-created con-
tent and YouTube).
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virtual community
Back in the mid-19th century, a number of technical pro-
fessionals began to “chat” online without meeting physi-
cally—they were telegraph operators who relayed messages 
across the growing web that one author has called “The 
Victorian Internet.” When computer networking began to 
grow in the 1970s, its own pioneers used facilities such as 
newsgroups (see netnews and newsgroups) to discuss a 
variety of topics. By the early 1980s, users were interacting 
on-line in complex fantasy games called MUDs (Multi-User 
Dungeons, or Dimensions) or MOOs (Muds, Object-Ori-
ented). A little later, bulletin boards and especially systems 
such as the WELL (Whole Earth ’Lectronic Link) based in 
the San Francisco Bay Area (see bulletin board and con-
ferencing systems) provided long-term outlets for people 
to share information and interact on-line.

Looking at the WELL, a writer named Howard Rheingold 
introduced the term virtual community in a 1993 book. He 
explored the ways in which a sufficiently compelling and ver-
satile technology encouraged people to form long-term con-
tacts, form personal relationships, and carry out feuds. When 
on-line, participants experience such a venue as the WELL as 
a place that becomes almost as tangible (and often as “real”) 
as a physical place such as a small town or corner bar.

Virtual community members who live in the same geo-
graphical area sometimes do get together physically (the 
WELL has had picniclike “WELL Office Parties” for many 
years). Members can band together to support a colleague 
who faces a crisis such as the life-threatening illness of a 
son (on the WELL, blank postings called beams are often 
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used as an expression of sympathy). The virtual commu-
nity can also serve as a rallying point following a physical 
disaster such as the 1989 earthquake in the San Francisco 
Bay Area. On a daily basis, virtual communities can often 
provide help or advice from a remarkable variety of highly 
qualified experts.

Virtual communities have their share of human foibles 
and worse. A virtual world that is compelling enough to 
immerse participants for hours on end is also powerful 
enough to engage emotions and expose vulnerabilities. 
For example, in a MUD called LambdaMOO one partici-
pant used descriptive language to have his game character 
“rape” a female character created by another participant, 
inflicting genuine distress. Like physical communities, 
virtual communities must evolve rules of governance, and 
actions in a virtual community can have real-world legal 
consequences.

Critics such as Clifford Stoll have argued that virtual 
communities are not only not a substitute for “true” physi-
cal community, but also may be further fragmenting neigh-
borhoods and isolating people. (On the other hand, people 
who are already physically isolated, such as rural folk and 
the elderly or disabled, may find an outlet for their social 
needs in a virtual community.) Certainly the “bandwidth” 
in terms of human experience is less in a virtual com-
munity than in a physical community. Ideally, individuals 
should cultivate a mixture of virtual and physical commu-
nity relationships.

Like a number of “virtual” concepts, virtual community 
is gradually blending into everyday life and thus becoming 
less distinct as an idea. Millions of people now participate 
in a form of virtual community through games such as Sec-
ond Life (see online games). Young people keep constantly 
in touch through a web of text messages (see flash mobs 
and texting and instant messaging). Finally, the popu-
larity of sites such as MySpace and Facebook may be partly 
due to the seamless way they bring together conventional 
social ties and their virtual extensions (see social net-
working).
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virtualization
One of the most powerful tools for understanding and 
manipulating a complex system is creating models or rep-
resentations that simplify (while retaining the essentials) 
or that provide other useful ways of looking at the system. 
This ability to translate systems into representations is used 
in many fields, and probably dates back to the first cave 
paintings of our prehistoric ancestors.

In the computing field, virtualization involves the cre-
ation of a working model or representation of one system 
within a different system. This idea has been widely used 
in the field since the 1960s. Some applications of virtualiza-
tion include:

• � An appropriate model of a system (such as a pro-
gramming framework—see application program-
ming interface) that hides unneeded details can 
make it easier for programmers to understand and 
access its functions (see design patterns and mod-
eling languages).

• � A compiler for a language that compiles all programs 
to an intermediate representation (such as “byte-
code”). A virtual machine running on each kind of 
platform can then run the code, taking care of the 
details required by the host hardware (see compiler 
and Java).

• � A virtual machine created in software can be designed 
to perform all the functions available on a particular 
hardware platform or operating system, allowing soft-
ware to be run on a system different from the one 
for which it was originally written (see emulation). 
For example, there are a number of virtualization 
programs (such as VMWare for PCs) that can create 
separate areas in memory, each running a different 
operating system, such as a version of Windows or 
Linux.

• �M ultiple processors or entire computers can be 
treated as a single entity for processing a program, 
with software designed to assign threads of execution 
to physical processors and to coordinate the use of 
shared data (see grid computing).

• � A physical device such as a disk drive can be made 
to appear as several separate devices to the operat-
ing system (for better organization of data). Similarly, 
many servers can run on the same physical machine. 
Conversely, multiple drives can appear to be a single 
logical device while providing redundancy and error 
recovery (see raid).

• � A secure “virtual private network” can be created 
within the larger public Internet. The virtual sys-
tem takes care of encrypting and transmitting data 
through the physical network.

Social Virtualization
The concept of virtualization can also be applied to how 
work involving computers is being conceptualized and 
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organized in the modern world (see globalization and 
the computer industry and ubiquitous computing). A 
“virtual office” or even “virtual corporation” is a business 
entity that is not tied to a physical location, but uses net-
works, communications technology, and facilities such as 
video conferencing to keep workers in touch. Alternatively, 
several organizations can share the same physical space 
(such as for mail or shipping) while maintaining their sepa-
rate identities.

Similarly, people can form long-lasting social networks 
while meeting physically seldom (if at all)—see social 
networking and virtual community.
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virtual reality
As the graphics and processing capabilities of computers grew 
increasingly powerful starting in the 1980s, it became possi-
ble to think in terms of creating a 3D environment that would 
not only appear to be highly realistic to the user, but also 
would respond to the user’s natural motions in realistic ways.

This idea is not that new in itself. Starting as early as the 
1930s, the military built mechanical flight trainers or simu-
lators that could create a somewhat realistic experience of 
what a pilot would see and feel during flight. More sophis-
ticated versions of these mechanical simulators helped the 
United States train the tens of thousands of pilots it needed 
during World War II while reducing the resources needed 
for actual flight hours. Today the military continues to pio-
neer the use of realistic computerized simulators to train 

A NASA researcher wearing an early virtual reality (VR) outfit, including head-mounted display and gloves whose position can be 
tracked.  (NASA photo)
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tank crews and even individual soldiers in the field (see 
military applications of computers).

Early simulators used “canned” graphics and could not 
respond very smoothly to control inputs (such as a pilot 
moving stick or rudder). Modern virtual reality, however, 
depends on the ability to smoothly and quickly generate 
realistic 3D graphics. At first such graphics could only be 
generated on powerful workstations such as those made 
by Sun or Silicon Graphics. However, as anyone who has 
recently played a computer game or simulation knows, 
there has been great improvement in the graphics available 
on ordinary desktop PCs since the mid-1990s.

A variety of software and programming tools can be 
used to generate 3D worlds on a PC (see computer graph-
ics). First released in 1995, a facility called VRML (Vir-
tual Reality Modeling Language) is now supported by many 
Web browsers. There are also programming extensions for 
Java (Java 3D).

Modern computer games thus embody aspects of virtual 
reality in terms of graphics and responsiveness. But true 
VR is generally considered to involve a near total immer-
sion. Instead of a screen, a head-mounted display (HMD) is 
generally used to display the virtual world to the user while 
shutting out environmental distractions. Typically, slightly 
different images are presented to the left and right eyes to 
create a 3D stereo effect.

The other half of the VR equation is the way in which 
the user interacts with the virtual objects. Head-tracking 
sensors are used to tell the system where the user is looking 
so the graphics can be adjusted accordingly. Other sensors 
can be placed in gloves worn by the user. The system can 
thus tell where the user’s hand is within the virtual world, 
and if the user “grasps” with the glove, the user’s hand in 
the virtual world will grasp or otherwise interact with the 
virtual object. More elaborate systems involve a full-body 
suit studded with sensors.

To make interaction realistic, VR researchers have had 
to study both the operation of human senses and that of the 
skeleton and muscles. For a truly realistic experience, the 
user must be able to feel the resistance of objects (which 
can be implemented by a force-feedback system). Sound 
can be handled easily, but as of yet not much has been done 
with the senses of smell and taste.

In designing a VR system, there are a number of impor-
tant considerations. Will the user be physically immersed 
(such as with an HMD), or, as in some military applica-
tions, will the user be seeing both a virtual and the actual 
physical world? How important is graphic realism vs. real-
time responsiveness? (Opting too much for computationally 
intensive realism might cause unacceptable latency, or delay 
between a user action and the environment’s response.)

Applications
Besides military training, currently the most viable appli-
cation for VR seems to be entertainment. VR techniques 
have been used to create immersive experiences in elabo-
rate facilities at venues such as Disneyland and Universal 
Studios, and to some extent even in local arcades. VR that is 
accompanied by convincing physical sensations has allowed 

for the creation of a new generation of roller coasters that if 
built physically would be too expensive, too dangerous, or 
even physically impossible.

However, there are other significant emerging applica-
tions for VR. When combined with telerobotic technology 
(see telepresence), VR techniques are already being used 
to allow surgeons to perform operations in new ways. VR 
technology can also be used to make remote conferencing 
more realistic and satisfactory for participants. Clearly the 
potential uses for VR for education and training in many 
different fields are endless. VR technology combined with 
robotics could also be used to give disabled persons much 
greater ability to carry out the tasks of daily life.

In the ultimate VR system, users will be networked and 
able to simultaneously experience the environment, inter-
acting both with it and one another. The technical resources 
and programming challenges are also much greater for such 
applications. The result, however, might well be the sort 
of environment depicted by science fiction writers such as 
William Gibson (see cyberspace and cyber culture).
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VoIP  (voiceover Internet protocol)
The basic idea of VoIP is simple: the Internet can carry 
packets of any sort of data (see tcp/ip), which means it can 
carry the digitized human voice as well, carrying ordinary 
phone calls. There are several ways to do this:

• � a regular phone plus an adapter that connects to the 
computer and compresses and converts between regu-
lar analog phone signals and the digital equivalent

• � a complete “IP phone” unit that includes all needed 
hardware and software—no computer needed, just a 
network connection, such as to a router

• � use of the computer’s own sound card and speakers 
with a microphone, plus software (often free)

Using that last option, VoIP service can be essentially 
free, regardless of distance. However, one can only call 
someone who is currently connected to the Internet and 
also has VoIP software.

Alternatively, one can subscribe to a VoIP provider such 
as Skype who also provides connectivity to the “plain old 
telephone service” (POTS). This allows calling anyone who 
has an ordinary phone: The VoIP provider sends the call 
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over the Internet to the nearest connection point, where 
it is placed as a regular phone call. The charges are much 
lower than typical long-distance plans. (For example, as of 
2007 Skype charged a flat rate of $3.00 a month for unlim-
ited calls to the United States and Canada and only a few 
cents per minute to most developed countries.)

Since video can also be sent over the Internet, video 
over IP for calling and conferencing is also becoming more 
common. Video does require a higher bandwidth connec-
tion than does voice.

Advantages and Drawbacks
VoIP has several advantages over regular phone service. 
Because it uses the Internet’s flexible packet-switching sys-
tem, it uses bandwidth more efficiently (indeed, much con-
ventional phone service is now carried as digital packets 
as well). If done through a direct computer-to-computer 
connection with free software, VoIP can be essentially free 
to the user, since the Internet connection is presumably 
already paid for. (It also follows that VoIP is most advanta-
geous for long-distance calling.) Finally, VoIP can be used 
with wireless mobile devices, sometimes with lower cost 
than cell service.

At least as currently implemented, VoIP does have some 
disadvantages:

• � Like cordless phones (but unlike traditional phones), 
VoIP requires that the user be connected to power. This 
may make the system unavailable in an emergency.

• � Also, in an emergency, a 911 operator has no way to 
know where the caller is located geographically. This 
could be a problem if the caller is unable to provide 
this information.

• � While a regular phone is a pretty simple device, VoIP 
requires special hardware or a PC, which might fail.

• � VoIP requires a working Internet connection—in 
practice, a high-speed connection (see broadband). 
Load or instability in the network could cause inter-
ruptions in calls or a lowering of voice quality.

• � As with other data sent over the Internet, there are 
potential security concerns. Encryption can be used 
to secure VoIP calls, but this in turn leads to concerns 

by law enforcement agencies seeking to implement 
eavesdropping warrants.

Despite these disadvantages, VoIP is likely to continue 
to become more prevalent and reliable due to the advan-
tages of integrating with the global Internet and a wide 
variety of devices.
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von Neumann, John
(1903–1957)
Hungarian–American
Mathematician, Computer Scientist

John von Neumann made wide-ranging contributions in 
fields as diverse as pure logic, simulation, game theory, and 
quantum physics. He also developed many of the key con-
cepts for the architecture of the modern digital computer 
and helped design some of the first successful machines.

Von Neumann was born on December 28, 1903, in Buda-
pest, Hungary, to a family with banking interests. As a youth 
he showed a prodigious talent for calculation and interest in 
mathematics, but his father opposed his pursuing a career in 
pure mathematics. Therefore, when von Neumann entered 
the University of Berlin in 1921 and the Technische Hoch-
schule in 1923, he earned his Ph.D. in chemical engineering. 
However, in 1926 he went back to Budapest and earned a 
Ph.D. in mathematics with a dissertation on set theory. He 

A regular telephone carries the voice as an analog signal over the phone line. For Internet (IP) telephony, however, the user’s voice from the 
microphone is converted to a digital signal that is carried by standard Internet packets. At the destination, the packets are reassembled into a 
stream of digital data that is then sent to the sound card to be turned back into voice sounds to be played through the system speaker.
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would then serve as privatdozcent, or lecturer, at Berlin and 
the University of Hamburg.

During the mid-1920s, two competing mathematical 
descriptions of the behavior of atomic particles were being 
offered by Erwin Schrödinger’s wave equations and Werner 
Heisneberg’s matrix approach. Von Neumann showed that 
the two theories were mathematically equivalent. His 1932 
book, The Mathematical Foundations of Quantum Mechanics, 
remains a standard textbook to this day. Von Neumann also 
developed a new form of algebra where “rings of operators” 
could be used to describe the kind of dimensional space 
encountered in quantum mechanics.

Meanwhile, von Neumann had become interested in the 
mathematics of games, and developed the discipline that 
would later be called game theory. His “minimax theorem” 
described a class of two-person games in which both play-
ers could minimize their maximum risk by following a 
specific strategy.

Computation and Computer Architecture
In 1930, von Neumann immigrated to the United States, 
where he would become a naturalized citizen and spend the 
rest of his career. He was made a Fellow at the new Institute 

for Advanced Study at Princeton at its founding in 1933, 
and would serve in various capacities there and as a consul-
tant for the U.S. government.

In the late 1930s, interest had begun to turn to the con-
struction of programmable calculators or computers (see 
Church, Alonzo and Turing, Alan). Just before and dur-
ing World War II, von Neumann worked on a variety of 
problems in ballistics, aerodynamics, and later, the design 
of nuclear weapons. All of these problems cried out for 
machine assistance, and von Neumann became acquainted 
both with British research in calculators and the mas-
sive Harvard Mark I programmable calculator (see Aiken, 
Howard).

A little later, von Neumann learned that two engineers 
were working on a new kind of machine: an electronic digi-
tal computer called ENIAC that used vacuum tubes for its 
switching and memory, making it about a thousand times 
faster than the Mark I. Although the first version of ENIAC 
had already been built by the time von Neumann came on 
board, he served as a consultant to the project at the Uni-
versity of Pennsylvania’s Moore School.

The earliest computers (such as the Mark I) read instruc-
tions from cards or tape, discarding each instruction as it 
was performed. This meant, for example, that to program a 
loop, an actual loop of tape would have to be mounted and 
controlled so that instructions could be repeated. The elec-
tronic ENIAC was too fast for tape readers to keep up, so it 
had to be programmed by setting thousands of switches to 
store instructions and constant values. This tedious proce-
dure meant that it wasn’t practicable to use the machine for 
anything other than massive problems that would run for 
many days.

In his 1945 “First Draft of a Report on the EDVAC” and 
his more comprehensive 1946 “Preliminary Discussion of 
the Logical Design of an Electronic Computing Instrument,” 
von Neumann established the basic architecture and design 
principles of the modern electronic digital computer.

Von Neumann declared that in future computers the 
machine’s internal memory would be used to store constant 
data and all instructions. With programs in memory, loop-
ing or other decision making can be accomplished simply 
by “jumping” from one memory location to another. Com-
puters would have two forms of memory: relatively fast 
memory for holding instructions, and a slower form of stor-
age that could hold large amounts of data and the results of 
processing. (In today’s PCs these functions are provided by 
the random access memory [RAM] and hard drive respec-
tively.) The storage of programs in memory also meant that 
a program could treat its own instructions like data and 
change them in response to changing conditions.

In general, von Neumann took the hybrid design of 
ENIAC and conceived of a design that would be all-elec-
tronic in its internal operations and store data in the most 
natural form possible for an electronic machine—binary, 
with 1 and 0 representing the on and off switching states 
and, in memory, two possible “marks” indicated by magne-
tism, voltage levels, or some other phenomenon. The logical 
design would be consistent and largely independent of the 
vagaries of hardware.

John von Neumann developed automata theory as well as funda-
mental concepts of computer architecture such as storing programs 
in memory along with the data. He also did seminal work in logic, 
quantum physics, simulation, and game theory.  (SPL / Photo 
Researchers, Inc.)
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Eckert and Mauchly (see Eckert, J. Presper and 
Mauchly, John William) and some of their supporters 
would later claim that they had already conceived of the 
idea of storing programs in memory, and in fact they had 
already designed a form of internal memory called a mer-
cury delay line. Whatever the truth in this assertion, it 
remains that von Neumann provided the comprehensive 
theoretical architecture for the modern computer, which 
would become known as the von Neumann architecture. 
Von Neumann’s reports would be distributed widely and 
would guide the beginnings of computer science research 
in many parts of the world.

Looking beyond EDVAC, von Neumann, together with 
Herman Goldstine and Arthur Burks, designed a new 
computer for the Institute for Advanced Study that would 
embody the von Neumann principles. The IAS machine’s 
design would in turn lead to the development of research 
computers for RAND Corporation, the Los Alamos National 
Laboratory, and in several countries including Australia, 
Israel, and even the Soviet Union. The design would eventu-
ally be commercialized by IBM in the form of the IBM 701.

In his later years, von Neumann continued to explore 
the theory of computing. He studied ways to make comput-
ers that could automatically maintain reliability despite the 

loss of certain components, and he conceived of an abstract 
self-reproducing automaton (see cellular automata).

Von Neumann’s career was crowned with many awards 
reflecting his diverse contributions to American science 
technology. These include the Distinguished Civilian Ser-
vice Award (1947), Presidential Medal of Freedom (1956), 
and the Enrico Fermi Award (1956). Von Neumann died on 
February 8, 1957, in Washington, D.C.
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Wales, Jimmy
(1966–  )
American
Internet Entrepreneur

Jimmy Wales is a key force behind Wikipedia, the commu-
nity-edited online encyclopedia that has become a popular 
stop for Web users seeking information about any of mil-
lions of topics.

Wales was born on August 7, 1966, in Huntsville, Ala-
bama, and received his early education in a tiny private 
school run by his mother and grandmother. However, Wales 
then went to an advanced college preparatory school in 
Huntsville, where he was extensively exposed to computer 
technology. Wales went on to earn a bachelor’s degree in 
finance from Auburn University and a master’s in finance at 
the University of Alabama. He entered but did not complete 
the doctoral program, later attributing his dropping out to 
boredom. During the 1990s Wales became research director 
at Chicago Options Associates, trading so successfully in 
currency and interest rate options that he achieved lifetime 
financial security.

By that time Wales had become involved with the grow-
ing e-commerce boom. However, his first project, an “erotic 
search engine” called Bomis, would be controversial. Using 
the Bomis site, Wales and Larry Sanger then launched 
their first online encyclopedia, Nupedia. In 2001, how-
ever, Sanger suggested the use of wiki software (see wikis 
and Wikipedia). Wales and Sanger set up the parameters 
for how users would contribute, collaborate, and review 
articles. Wikipedia soon far outstripped Nupedia. Sanger 

and Wales found themselves in frequent disagreement, and 
Sanger left Wikipedia in 2002.

Wikipedia and Beyond
In 2003 Wales established the Wikimedia Foundation, a 
nonprofit organization to support Wikipedia and a vari-
ety of new projects based on online communities. In 2004 
Wales and Angela Beesley founded a for-profit company, 
Wikia, Inc. Besides making it easy for individuals and 
communities to organize and manage their own wikis and 
blogs, Wikia also intends to apply the wiki collaborative 
principle to creating a search engine that would draw upon 
users’ own expertise and interests and operate “transpar-
ently.” Wales believes this model will prove to be superior 
to proprietary operations such as Google.

Wales was criticized in 2005 for editing his own biog-
raphy in Wikipedia, downplaying the pornographic nature 
of Bomis and minimizing Sanger’s role as a cofounder of 
Wikipedia. Wales later expressed regrets about his edit-
ing, while continuing to insist that Sanger’s role was that of 
an employee rather than a cofounder. (Sanger later created 
Citizendium, an online encyclopedia that requires stricter 
credentials for editors.)

Politically, Wales describes himself as a passionate 
objectivist (follower of Ayn Rand’s philosophy) and a lib-
ertarian who admires philosopher-economist F. A. Hayek 
(though distancing himself from the Libertarian Party). 
Wales’s interest in decentralized, emergent organizations 
(such as Wikipedia and Wikia) can be seen as flowing out 
of his political philosophy. At the same time, the scope and 

W



powers Wales continues to exercise over Wikipedia can be 
unclear and subject to controversy.

In 2005 Wales became a member of the board of direc-
tors of Socialtext, a developer of wiki technology. In 2006 
he also joined the board of Creative Commons, developer 
of new ways to share intellectual property. That same year 
Time listed Wales among 100 of the year’s most influential 
people, and Wales received a Pioneer Award from the Elec-
tronic Frontier Foundation. Wales lives near St. Petersburg, 
Florida.
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wearable computers
For some time, technology pundits have talked about com-
puters being literally woven into daily life, embedded in 
clothing and personal accessories. However, implementa-
tions have thus far seen only limited use. For example, 
watches with limited computer functions (see pda) have 
not proven popular—a watch large enough for input and 
display of information would likely be too bulky for com-
fort. (People have also walked about with attached web-
cams, although the novelty seems to have quickly worn 
off.)

Emerging Possibilities
There are, however, a number of more limited wearable 
computers that are likely to be practical. Small cards (see 
rfid and smart card) could provide tracking for children 
or others needing monitoring. Embedded sensors could be 
designed to detect whether an elderly person has fallen or 
perhaps has suffered a heart attack.

Head-mounted displays that fit into eyeglasses or gog-
gles are already in use and can offer applications ranging 
from gaming (see virtual reality) to providing informa-
tional overlays to aid in military reconnaissance, police 
patrol, or firefighting. (This could also be combined with 
tracking and communications.) Other embedded comput-
ers might provide hands-free voice recognition or language 
translation.

More whimsical wearable computers could control the 
colors and patterns displayed by garments, perhaps varying 
them with the mood of the wearer.

Whimsy aside, some serious effort is now going into 
developing a wide range of wearable computer applications. 
The most prominent effort is wearIT@work, funded by the 

European Union. It is developing an Open Wearable Com-
puting Framework and standard hardware.
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Web 2.0 and beyond
Somewhere between a buzzword and a genuine new para-
digm, Web 2.0 refers to a number of developments that are 

A fashion model wears a “Skooltool” outfit that allows information 
to be played through earphones or projected onto the lenses. The 
outfit was a collaboration between MIT researchers and fashion 
designers.  (Sam Ogden / Photo Researchers, Inc.)
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changing the way content is created and presented on the 
Web, as well as ways in which Web users are using technol-
ogy to create new communities and institutions. (The term 
is somewhat misleading because it seems to imply a new 
version of the fundamental Web software itself. It is more a 
change in the way the Web is perceived and used.)

The term emerged into prominence following a 2004 
conference that emphasized the Web as being not just 
a place to offer services, but a platform upon which to 
build them, offering applications that are not dependent 
on any particular operating system. As services were built 
and users participated in new ways, the emerging com-
munities would then extend the power of the Web platform 
even further (see social networking and user-created 
content). For some often-cited examples, see Craigslist, 
eBay, Wikipedia, and YouTube.

Web 2.0 Tools
Although the most important part of Web 2.0 is its busi-
ness and social models, a number of Web technologies are 
needed to provide the flexibility and rich interaction needed 
to offer a new Web experience. These include:

• � dynamic, efficient generation of content (see Ajax)

• � programming interfaces (see api) using structured 
text files (see xml)

• � platforms for running applications in the browser, 
such as Google apps

• � merging and customizing content from different 
sources (see mashups)

• � user subscription to content (see podcasting and rss)

“Web 2.0” is a somewhat nebulous term, but its core technologies are changing both how information is presented on the Web and how users 
can create and share their own content.
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• � platforms for user-created content and collaboration 
(see blogs and blogging, social networking, and 
wikis and Wikipedia)

In some quarters the term Web 2.0 is already obsolete 
or relegated to a marketing buzzword, while the search is 
on for new ways to describe the latest developments such 
as, inevitably, “Web 3.0.” One possible emphasis moving 
beyond Web 2.0 is the leveraging of the actual knowledge 
contained in Web pages, properly encoded and interpreted 
by applications (see semantic web and software agent).

Whatever terminology might be used, the important 
thing is that people are using the Web in the late 2000 
decade in substantially new ways, and that the conse-
quences are likely to spread beyond the online world to 
society as a whole.
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Web browser
The World Wide Web consists of millions of sites (see 
World Wide Web and Web server) that provide hyper-
text documents (see html and Web page design) that can 
include not only text but still images, video, and sound. To 
access these pages, the user runs a Web-browsing program.

The basic function of a Web browser is to request a 
page by specifying its address (URL, uniform [or universal] 
resource locator). This request resolves to a request (HTTP, 
HyperText Transport Protocol) that is processed by the rel-
evant Web server. The server sends the HTML document to 
the browser, which then displays it for the user. Typically, 
the browser stores recently requested documents and files 
in a local cache on the user’s PCs. Use of the cache reduces 
the amount of data that must be resent over the Inter-
net. However, sufficiently skilled snoopers can examine the 
cache to find details of a user’s recent Web surfing. (Cach-
ing is also used by Internet Service Providers so they can 
provide frequently requested pages from their own server 
rather than having to fetch them from the hosting sites.)

When the Web was first created in the early 1990s (see 
Berners-Lee, Tim) it consisted only of text pages, although 
there were a few experimental graphical Web extensions 
developed by various researchers. The first graphical Web 
browser to achieve widespread use was Mosaic created by 
Marc Andreessen, developed at the National Center for 
Supercomputing Applications (NCSA). (See Andreessen, 
Marc.) By 1993, Mosaic was available for free download 
and had become the browser of choice for PC users.

Andreessen left NCSA in 1994 to found Netscape Cor-
poration. The Netscape Navigator browser improved Mosaic 
in several ways, making the graphics faster and more attrac-
tive. Netscape included a facility called Secure Sockets 
Layer (SSL) for carrying out encrypted commercial transac-
tions on-line (see e-commerce).

Microsoft, which had been a latecomer to the Internet 
boom, entered the fray with its Microsoft Internet Explorer. 
At first the program was inferior to Netscape, but it was 
steadily improved. Aided by Microsoft’s controversial tactic of 
bundling the free browser starting with Windows 95, Internet 
Explorer has taken over the leading browser position with 

A Web browser such as Microsoft Internet Explorer or Firefox 
makes it easy to find and move between linked Web pages. Browser 
users can record or “bookmark” favorite pages. Browser plug-ins 
provide support for services such as streaming video and audio. 
Here, part of the photo library of the National Oceanic and Atmo-
spheric Administration is shown.  (NOAA image)
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about a 75 percent market share by 2001. However, a rather 
strong competitor later emerged in Firefox, and other brows-
ers such as Opera and Safari also have their supporters, who 
feel those products are more agile, versatile, and perhaps more 
secure than Internet Explorer.

Some typical features of a modern Web browser include

• � navigation buttons to move forward and back through 
recently visited pages

• � tabs to switch between Web pages

• � a “history” panel allowing return to pages visited in 
recent days

• � a search button that brings up the default search 
engine (which can be chosen by the user)

• � the ability to save page as “favorites” or “bookmarks” 
for easy retrieval

The Browser as Platform
Today a Web user can view a live news broadcast, listen to 
music from a radio station, or view a document formatted to 
near-print quality. All these activities are made possible by 
“helper” software (see plug-in) that gives the Web browser 
the capability to load and display or play files in special for-
mats. Examples include the Adobe PDF (Portable Document 
Format) reader, the Windows Media Player, and RealPlayer 
for playing video and audio content (see streaming).

What makes the browser even more versatile is the abil-
ity to load and run programs from Web sites (see Java). 
Java was highly touted starting in the mid-1990s, and some 
observers believed that by making Web browsers into plat-
forms capable of running any sort of software, there would 
be less need for proprietary operating systems such as 
Microsoft Windows. Microsoft has responded by trying to 
shift developers’ emphasis from Java to its proprietary tech-
nology called .NET. Meanwhile, the tools for making Web 
pages more versatile and interactive continue to proliferate, 
including later versions of HTML and XML (see Web page 
design). This proliferation, as well as use of proprietary 
extensions can cause problems in accessing Web sites from 
older or less-known browsers.

The growing numbers of handheld or palm computers 
(see portable computers) are accompanied by scaled-
down Web browsers. These are generally controlled by 
touch and have a limited display size, but can provide 
information useful to travelers such as driving directions, 
weather forecasts, and capsule news or stock summaries.
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webcam
Thousands of real-time views of the world are available on 
the Web. These include everything from the prosaic (a cof-
fee machine at MIT) to the international (a view of down-
town Paris or Tokyo) to the sublime (a Rocky Mountain 
sunset). All of these views are made possible thanks to the 
availability of inexpensive digital cameras (see photogra-
phy, digital).

To create a basic webcam, the user connects a digital 
camera to a PC, usually via a USB cable. A program controls 
the camera, taking a picture at frequent intervals (perhaps 
every 30 seconds or minute). The picture is received from 
the camera as a JPG (JPEG) file. The program then uploads 
the picture to the user’s Web page (usually using file trans-
fer protocol, or ftp), replacing the previous picture. Users 
connected to the Web site can click to see the latest picture. 
Alternatively, a script running on the server can update the 
picture automatically.

History and Applications
One of the earliest and most famous webcams was created 
by Quentin Stafford-Fraser in 1991. He later recalled that he 
and his fellow “coffee club” members were tired of making 
the long trek to the coffee room at the Cambridge Univer-
sity computer laboratory. It seemed that more often than 
not the life-giving brew so necessary to computer science 
had already been consumed. So they rigged a video cam-
era, connected it to a video capture card, and fed the image 
into the building’s local network. Now researchers working 
anywhere in the building could get an updated image of the 
coffee machine three times a minute. This wasn’t techni-
cally a webcam. At the time the Web was just being devel-
oped by Tim Berners-Lee (see Berners-Lee, Tim). However, 
the camera was put on the Web in 1993, where it resided 
until 2001 when the laboratory housing the now-famous 
coffee machine was moved.

The webcam became a social phenomenon in 1996 when 
a college student named Jennifer Ringley started Jennicam, 
a webcam set up to make a continuing record of her daily 
life available on the Web. There were soon many imitators. 
Apparently this use of Webcams taps into humans’ intense 
curiosity about the details of each other’s lives—a curiosity 
that to some critics tips over into voyeurism and obsession. 
The popularity of such social webcams may have contrib-
uted to the “reality TV” phenomenon at the turn of the new 
century.

Webcams have many practical applications, however. 
People on the road can log into the Web and check to make 
sure everything is okay at home. A webcam also makes an 
inexpensive monitor for checking on infants or toddlers in 
another room, or checking on the behavior of a babysitter 
(“Nannycam”).

Webcams can also serve an educational purpose. They 
can take viewers to remote volcanoes or the interior of an 
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Amazon rain forest. In a sense, viewers who saw the pic-
tures of the Martian surface and the explorations of the 
Sojourner rover were using the farthest-reaching webcam 
of all.
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Web filter
Listings of the most frequent requests typed into Web search 
engines usually begin with the word sex. Although sensa-
tional journalism of the mid-1990s sometimes unfairly 
portrayed the World Wide Web as nothing more than an 
electronic red light district, it is indisputable that there are 
many Web sites that feature material that most people would 
agree is not suitable for young people. Many parents as well 
as some schools, libraries, and workplaces have installed Web 
filter programs, marketed under names such as SurfWatch or 
NetNanny. Popular Internet security programs (such as those 
from Norton/Symantec) also include Web filter modules.

The Web filter examines requests made by a Web user 
(see World Wide Web and Web browser) and blocks 
those associated with sites deemed by the filter user to be 
objectionable. There are two basic mechanisms for deter-
mining whether a site is unsuitable. The first is to check the 
site’s address (URL) against a list and reject a request for 
any site on the list. (Most filter programs come with default 
lists; the filter user can add other sites as desired. Generally, 
the filter is installed with a password so only the authorized 
user [such as a parent] can change the filter’s behavior.)

The other filtering method relies on a list of keywords 
associated with objectionable activities (such as pornogra-
phy). When the user requests a site, the filter checks the page 
for words on the keyword list. If a matching word or phrase 
is found, the site is blocked and not shown to the user.

Each method has its drawbacks: Using a site list will 
miss new sites that appear between list updates, while using 
keywords can result in appropriate sites also being blocked. 
For example, a keyword filter that blocks sites with the 
word breast will probably also block a site devoted to breast 
cancer research, a fact often pointed out by opponents of 
laws requiring the use of Web filters. The list and keyword 
methods can be combined.

Filtering and parental control often involves more than 
simply blocking Web sites. Many filtering products attempt 
to scan and block problematic chat and e-mail messages. 
Another type of filtering tries to stop users (particularly 
children) from providing sensitive information such as 
their name and address online. Another common parental 
control feature is the ability to limit the times of day and 
total amount of time a child can go online.

Besides protecting children from inappropriate material 
at home or in a school or library, Web filters are also used in 
workplaces. Besides wanting to keep workers from becom-
ing distracted, employers are concerned that allowing Inter-
net pornography in the workplace may make them liable for 
creating a “hostile work environment” under sexual harass-
ment laws.

However, civil liberties groups such as the ACLU object 
to the use of Web filters in public libraries on First Amend-
ment grounds and have vigorously fought such legislation 
in the courts. The 1996 Communications Decency Act was 
declared unconstitutional by the U.S. Supreme Court, and 
a later law, the 1998 Child On-line Protection Act (which 
requires that users of adult Web sites provide proof of age) 
was overturned by the U.S. Supreme Court in 2004.

The next attempt at protecting children online was the 
2002 Children’s Internet Protection Act. This law was even-
tually upheld by the courts subject to the requirement that 
adult library users be given prompt unfiltered access to the 
Internet upon request.

Critics of Web filters suggest that rather using technical 
tools to block access to the Internet, parents and teachers 
should talk to children about their use of the Internet and 
supervise it if necessary. Another approach is to focus on 
Web sites that are designed especially for kids.
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webmaster
There are many online services (including some free ones) 
that will provide users with personal Web pages. There 
are also programs such as Microsoft FrontPage that allow 
users to design Web pages by arranging objects visually on 
the screen and setting their properties. However, creating 
and maintaining a complete Web site with its many linked 
pages, interactive forms and interfaces to databases and 
other services is a complicated affair. For most moderate 
to large-size organizations, it requires the services of a new 
category of IT professional: the webmaster.

Although the mixture of tasks and responsibilities will 
vary with the extent and purpose of the Web site, the skill 
set for a webmaster can include the following:

Developing and Extending the Web site
• � understanding how the Web site responds to and 

manages requests (see Web server)
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• � fluency in the basic formatting of text and other page 
content and the use of frames and other tools for 
organizing and presenting text (see html)

• � extended formatting and content organization facili-
ties such as Cascading Style Sheets (CSS), Dynamic 
HTML (DHTML), and Extensible Markup Language 
(see xml)

• � use of graphics formats and graphics and animation 
programs (such as Photoshop, Flash, and Dream-
Weaver)

• � extending the interactivity of Web pages through 
writing scripts using tools such as JavaScript and PHP 
(see cgi, JavaScript, and Python)

• � dealing with platform and compatibility issues, 
including browser compatibility

It is hard to draw a bright line between advanced tasks 
for webmasters and full-blown applications designed to 
run on servers or Web browsers. Some additional tools for 
extending Web capabilities include:

• � languages for Web application development (see c#, 
Java, Ruby, and Visual Basic)

• � Web server and browser plug-ins

• � Active X controls and the Microsoft .NET framework 
(for Windows-based systems)

• � techniques for the efficient updating of dynamic Web 
pages (see Ajax)

Administrative Tasks
• � Obtaining, organizing, and updating the content for 

Web pages (this may be delegated to writers, editors, 
or graphics specialists)

• � monitoring the performance of the Web server

• � ensuring site availability and response time

• � recommending acquisition of new hardware or soft-
ware as necessary

• � using tools to gather information about how the site is 
being used, what parts are being visited, the effective-
ness of advertising, and so on (This is particularly rele-
vant to commercial sites, and can raise privacy issues.)

• � setting up and managing facilities for online shopping 
(see e-commerce)

• � installing and using security tools (particularly impor-
tant for commercial and sensitive government sites)

• � developing policies and deploying tools to help pro-
tect users’ privacy and to control the use of informa-
tion they submit online

• � working with major search engine providers to ensure 
that the site is presented to relevant searches

• � fielding queries from users about the operation of the 
site

• � relating the Web site operation to other concerns such 
as marketing, technical support, or the legal depart-
ment

• � developing policies for Web site use

• � integrating the Web site operations into the overall 
corporate planning and budgeting process

The mixture of technical professional and administrator 
that is the webmaster makes for an always interesting and 
challenging career. In larger organizations there may be 
further differentiation of roles, with the webmaster mainly 
charged with operation and maintenance of the site, with 
the development and extension of the site handled by con-
tent providers and programmers. However, even in such 
cases the webmaster will need to have a general understand-
ing of how the various features of the Web site interact and 
of the tools used to create and maintain them. People with 
webmaster skills can also work as independent consultants 
to set up and run Web sites for smaller businesses, schools, 
and nonprofit organizations.

Webmaster skills are now taught in high school, com-
munity college, vocational school, and as part of university 
information technology programs. However the situation 
with regard to certification remains somewhat chaotic, with 
a variety of proprietary and multivendor certifications com-
peting for attention.

The long-term outlook for qualified webmasters remains 
good. Many organizations have made a fundamental com-
mitment to use of the Web for business functions, and web-
masters are needed to manage this effort.
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Web page design
The World Wide Web has existed for fewer than two 
decades, so it is not surprising that the principles and prac-
tices for the design of attractive and effective Web pages are 
still emerging. As seen in the preceding entry (see webmas-
ter), creating Web pages involves many skills. In addition 
to the basic art of writing, many skills that had belonged to 
separate professions in the print world now often must be 
exercised by the same individual. These include typography 
(the selection and use of type and type styles), composition 
(the arrangement of text on the page), and graphics. To this 
mix must be added nontraditional skills such as designing 
interactive features and forms, interfacing with other facili-
ties (such as databases), and perhaps the incorporation of 
features such as animation or streaming audio or video.

However new the technology, the design process still 
begins with the traditional questions any writer must ask: 
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What is the purpose of this work? Who am I writing for? 
What are the needs of this audience? A Web site that is 
designed to provide background information and contact 
for a university department is likely to have a printlike 
format and a restrained style. Nevertheless, the designer of 
such a site may be able to imaginatively extend it beyond 
the traditional bounds—for example, by including stream-
ing video interviews that introduce faculty members.

A site for an online store is likely to have more graph-
ics and other attention-getting features than an academic 
or government site. However, despite the pressure to “grab 
eyeballs,” the designer must resist making the site so clut-
tered with animations, pop-up windows, and other features 
that it becomes hard for readers to search for and read about 
the products they want.

A site intended for an organization’s own use should not 
be visually unattractive, but the emphasis is not on grab-
bing users’ attention, since the users are already committed 
to using the system. Rather, the emphasis will be on provid-
ing speedy access to the information people need to do their 
job, and in keeping information accurate and up to date.

Once the general approach is settled on, the design must 
be implemented. The most basic tool is HTML, which has 
undergone periodic revisions and expansions (see html). 
Even on today’s large, high-resolution monitors a screen 
of text is not the same as a page in a printed book or 
magazine. There are many ways text can be organized (see 
hypertext and hypermedia). A page that is presenting 
a manual or other lengthy document can mimic a printed 
book by having a table of contents. Clicking on a chapter 
takes the reader there. Shorter presentations (such as prod-
uct descriptions) might be shown in a frame with buttons 
for the reader to select different aspects such as features 
and pricing. Frames (independently scrollable regions on 
a page) can turn a page into a “window” into many kinds 
of information without the user having to navigate from 
page to page, but there can be browser compatibility issues. 
Tables are another important tool for page designers. Set-
ting up a table and inserting text into it allows pages to be 
formatted automatically.

Many sites include several different navigation systems 
including buttons, links, and perhaps menus. This can be 
good if it provides different types of access to serve differ-
ent needs, but the most common failing in Web design is 
probably the tendency to clutter pages with features to the 
point that they are confusing and actually harder to use.

Although the Web is a new medium, much of the tradi-
tional typographic wisdom still applies. Just as many people 
who first encountered the variety of Windows or Macintosh 
fonts in the 1980s filled their documents with a variety 
of often bizarre typefaces, beginning Web page designers 
sometimes choose fonts that they think are “edgy” or cool, 
but may be hard to read—especially when shown against a 
purple background!

Today it is quite possible to create attractive Web pages 
without extensive knowledge of HTML. Programs such 
as FrontPage and DreamWeaver mimic the operation of a 
word processor and take a WYSIWYG (what you see is 
what you get) approach. Users can build pages by selecting 

and arranging structural elements, while choosing styles 
for headers and other text as in a word processor. These 
programs also provide “themes” that help keep the visual 
and textual elements of the page consistent. Of course, 
designing pages in this way can be criticized as leading to a 
“canned” product. People who want more distinctive pages 
may choose instead to learn the necessary skills or hire a 
professional Web page designer. A feature called Cascading 
Style Sheets (CSS) allows designers to precisely control the 
appearance of Web pages while defining consistent styles 
for elements such as headings and different types of text 
(see cascading style sheets).

Most Web pages include graphics, and this raises an 
additional set of issues. Most users now have fast Internet 
connections (see broadband), but others are still limited to 
slower dial-up speeds. One way to deal with this situation is 
to display relatively small, lower-resolution graphics (usu-
ally 72 pixels per inch), but to allow the user to click on or 
near the picture to view a higher-resolution version. Another 
consideration in today’s wireless world is ensuring that Web 
pages likely to be useful to users on the go, such as a res-
taurant guide, display well in the small browsers found in 
mobile devices (see pda and smartphone). Page designers 
must also make sure that the graphics they are using are cre-
ated in-house, are public domain, or are used by permission.

Animated graphics (animated GIFs or more elaborate 
presentations created with software) can raise performance 
and compatibility issues. Generally, if a site offers, for exam-
ple, Flash animations, it also offers users an alternative pre-
sentation to accommodate those with slower connections or 
without the necessary browser plug-ins.

The line between Web page design and other Web ser-
vices continues to blur as more forms of media are car-
ried online (see digital convergence). Web designers need to 
learn about such media technologies (see for example pod-
casting, rss, and streaming) and find appropriate ways to 
integrate them into their pages. Web pages may also need 
to provide or link to new types of forums (see blogs and 
blogging and wikis and Wikipedia).
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Web server
Most Web users are not aware of exactly how the informa-
tion they click for is delivered, but the providers of infor-
mation on the Web must be able to understand and use 
the Web server. In simple terms, a Web server is a program 
running on a networked computer (see Internet). The 
server’s job is to deliver the information and services that 
are requested by Web users.
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When a user types in (or clicks on) a link in the browser 
window, the browser sends a HTTP request (see http and 
web browser). To construct the request, the browser first 
looks at the address (URL) in the user request. An address 
such as http://www.well.com/conferencing.html consists of 
three parts:

• � The protocol, specifying the type of request. For Web 
pages this is normally http. In many cases this part 
can be omitted and the browser will assume that it is 
meant.

• � The name of the server—in this case, www.well.
com. The www indicates that it is a World Wide Web 
server. The rest of the server name gives the organiza-
tion and the domain (.com, or commercial).

• � The specific page being requested. A Web page is sim-
ply a file stored on the server, and has the extension 
htm or html to indicate that it is an HTML-formatted 
page. If no page is specified, the server will normally 
provide a default page such as index.html.

In order to direct the browser’s request to the appropri-
ate host and server, the browser sends the URL to a name 
server (see domain name system). The name server pro-
vides the appropriate numeric IP address (see tcp/ip). The 
browser then sends an HTTP “get” request to the server’s IP 
address.

Assuming the page requested is valid, the server sends 
the HTML file to the browser. The browser in turn inter-
prets the formatting and display instructions in the HTML 
file and “renders” the text and graphics appropriately. It is 
remarkable that this whole process from user click to dis-
played page usually takes only a few seconds, even if the 
Web site is thousands of miles away and requests must be 
relayed through many intervening computers.

Web Server Features
Web servers would be simple if Web pages consisted only 
of static text and graphics. However, Web pages today are 
dynamic: They can display animations, sound, and video. 
They also interact with the user, responding to menus 
and other controls, presenting and processing forms, and 
retrieving data from linked databases. To do these things, 
the server cannot simply serve up a preformatted page, it 
must dynamically generate a unique page that responds to 
the user’s actions.

This interactivity requires that the server be able to 
run programs (scripts) embedded in Web pages. The Com-
mon Gateway Interface (CGI) is the basic mechanism for 
this, though many Web page developers can now work at a 
higher level to create their page’s interaction through scripts 
in languages such JavaScript. (See cgi and scripting lan-
guages.) The task of interfacing Web pages with database 
facilities is often accomplished using powerful data-man-
agement languages (see Perl and Python).

Windows-based servers use ASP (Active Server Pages), a 
facility that links the Web server to Windows ActiveX con-
trols to access databases. The interaction is usually scripted 
in VB Script or JScript.

Modern Web server software also contains modules for 
monitoring and security—an increasingly important con-
sideration as Web sites become essential to business and 
the delivery of goods and services.

One of the most popular and reliable Web servers in 
use today is Apache, developed in 1995 and freely distrib-
uted with Linux and other UNIX systems (there is also a 
Windows version). The name is a pun on “a patchy server,” 
meaning that it was developed by adding a series of “soft-
ware patches” to existing NCSA server code. Microsoft also 
provides its own line of Web server software that is specific 
to Windows.

The future should see an increasingly seamless inte-
gration between Web servers, browsers, and other applica-
tions. Microsoft has been promoting .NET, an initiative that 
is designed to build Internet access and interoperability 
into all applications, providing operating system extensions 
and programming frameworks (see Ajax and Microsoft 
.NET).

Beyond Microsoft’s mainly proprietary efforts, another 
source of integration is the growing use of the Extensible 
Markup Language (see xml) and its offshoot SOAP (Simple 
Object Access Protocol) (see soap). The goal is to give Web 
documents and other objects the ability to “communicate” 
their content and structure to other programs, and to allow 
programs to freely request and provide services to one 
another regardless of vendor, platform, or location. As this 
trend progresses, the Web server starts to “disappear” as a 
separate entity and the provision of Web services becomes a 
distributed, cooperative effort (see also Web services).
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Web services
A characteristic of the modern Web and its development is 
that much of the software is designed to offer services or 
capabilities that can be called upon by applications. This 
creation of powerful, versatile building blocks has greatly 
sped the evolution of Web applications (see Web 2.0 and 
beyond).

In order to be useful, a service must be able to under-
stand “messages” (requests) and provide appropriate 
responses. The medium of exchange is a structured text 
file (see xml) and a standard format. Three commonly used 
specifications (defined by the World Wide Web Consor-
tium, or W3C) are what was originally called Simple Object 
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Access Protocol (see soap), the Web Services Description 
Language (WSDL), and the Universal Description Discov-
ery and Integration (UDDI), which can coordinate and 
“broker” the services. To keep requester and responder on 
the same page (so to speak), the W3C also provides a set of 
“profiles” that specify which versions of which specifica-
tions are being used. Additionally, a number of specialized 
specifications are under development, such as for handling 
considerations for security and transactions.

There are several ways in which Web services can be 
accessed:

• � Remote Procedure Call (RPC), which generally uses 
WSDL and follows a format similar to the traditional 
way programs call upon library functions

• � An organization based on the available messages 
rather than calls or operations (see service-oriented 
architecture)

• � Representational State Transfer (REST), which views 
applications or services as collections of “resources” 
with specific addresses (URLs) and specific requests 
using HTTP

A variety of other specifications and approaches can be 
used; this area is a very fluid one. Fortunately, program-
mers and even users (see mashups) can build new Web 
applications without having to know the details of how the 
underlying services work.
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Weizenbaum, Joseph
(1923–  )
German-American
Computer Scientist

Joseph Weizenbaum, after writing one of the most famous 
programs in the history of artificial intelligence research, 
eventually became one of the most persistent and cogent 
critics of the AI project itself.

Weizenbaum was born on January 8, 1923, in Berlin 
to Jewish parents. Having fled Nazi Germany with his 
parents, in 1941 Weizenbaum enrolled in Wayne Univer-
sity in Detroit, Michigan. However, the following year he 
enlisted in the United States Army Air Corps. After the 
war he resumed his study of mathematics. While working 
as a research assistant, Weizenbaum had the opportunity 
to help design and build an early digital computer, and 
although he received his master’s degree in mathematics in 
1950, he would spend his career in the computer field.

From 1955 to 1963 Weizenbaum worked for General 
Electric’s Computer Development Laboratory as a systems 
engineer. During this time he would oversee the design and 
implementation of the first integrated computerized bank-
ing system, for Bank of America.

In 1963 Weizenbaum returned to academia, joining the 
faculty at MIT, which had one of the nation’s foremost pro-
grams in artificial intelligence research. He contributed to 
the development of the time-sharing computer system at 
MIT and early computer networks, but the work for which 
he would be most remembered started with his interest 
in getting machines to “understand” human language (see 
natural language processing).

In 1966 Weizenbaum and a collaborator, psychiatrist 
Kenneth Colby, created a remarkable program called Eliza 
(named for the character in Bernard Shaw’s play who is 
taught “proper English” by Professor Henry Higgins). Eliza 
was remarkable not for its complexity or for innovative use 
of AI techniques, but for the way it used a few simple pro-
cedures to convey the impression that it was a true artificial 
intelligence—or indeed, a real person.

Eliza worked basically by identifying key words and 
basic sentence structure and then “mirroring” the user’s 
statements back. A sample snippet of human-Eliza dialog 
might look like this (Eliza’s words are in caps).

Men are all alike.

IN WHAT WAY?

They’re always bugging us about something or other.

CAN YOU THINK OF A SPECIFIC EXAMPLE?

Well, my boyfriend made me come here.

YOUR BOYFRIEND MADE YOU COME HERE?

He says I’m depressed much of the time.

I AM SORRY TO HEAR YOU ARE DEPRESSED.

It’s true. I am unhappy.

DO YOU THINK COMING HERE WILL HELP YOU NOT TO 
BE UNHAPPY?

I need some help, that much seems certain.

WHAT WOULD IT MEAN TO YOU IF YOU GOT SOME HELP?

Perhaps I could learn to get along with my mother.

TELL ME MORE ABOUT YOUR FAMILY.

Although the program seemed to have at best a superfi-
cial understanding of human language, Weizenbaum soon 
became dismayed at how readily people treated it as though 
it were a human being. (Indeed, Colby wanted to use a pro-
gram like Eliza to automate psychotherapy.)

The result of these concerns was Weizenbaum’s book 
Computer Power and Human Reason, a collection of essays 
that both explain the achievements of AI pioneers and 
points out their limitations. If, as Weizenbaum observes, 
“the computer programmer is creator of universes for which 
he alone is responsible . . . universes of almost unlimited 
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complexity . . .,” then indeed the computer scientist must 
take responsibility for his or her creations. This is the chal-
lenge that Weizenbaum believes has not been taken seri-
ously enough.

As the 1960s progressed, the United States plunged into 
the Vietnam War, and racial tension crackled in the streets 
of major cities. Weizenbaum became increasingly concerned 
that technology was being used for warlike and oppressive 
purposes. As an activist, Weizenbaum campaigned against 
what he saw as the misuse of technology for military pur-
poses such as missiles and missile defense systems. He was 
founder of a group called Computer Professionals against 
the ABM (anti-ballistic missile).

Weizenbaum does not consider himself to be a Lud-
dite, however, and he is not without recognition of the 
potential good that can come from computer technology, 
though he believes that this potential can only be realized 
if humans change their attitudes toward nature and their 
fellow humanity.

During the 1970s and 1980s Weizenbaum not only 
taught at MIT, but also lectured or served as a visiting pro-
fessor at a number of institutions, including the Center for 
Advanced Studies in the Behavioral Sciences at Stanford 
University (1972–73), Harvard University (1973–74), and 
coming full circle, the Technical University of Berlin and 
the University of Hamburg.

In 1988 Weizenbaum retired from MIT. That same year 
he received the Norbert Wiener Award for Professional 
and Social Responsibility from Computer Professionals 
for Social Responsibility (CPSR). In 1991 he was given the 
Namur Award of the International Federation for Informa-
tion Processing. He also received European honors such 
as the Humboldt Prize from the Alexander von Humboldt 
Foundation in Germany.
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Wiener, Norbert
(1894–1964)
American
Mathematician, Philosopher

Norbert Wiener developed the theory of cybernetics, or the 
process of communication and control in both machines 

and living things. His work has had an important impact 
both on philosophy and on design principles.

Wiener was born on November 26, 1894, in Columbia, 
Missouri. His father was a linguist at Harvard University, 
and spurred an interest in communication which the boy 
combined with an avid pursuit of mathematics and sci-
ence (particularly biology). A child prodigy, Wiener started 
reading at age three, entered Tufts University at age 11, 
and earned his B.A. in 1909 at the age of 14, after conclud-
ing that his lack of manual dexterity made biological work 
too frustrating. He earned his M.A. in mathematics from 
Harvard only three years later, and his Harvard Ph.D. in 
mathematical logic just a year later in 1913. He then trav-
eled to Europe, where he met leading mathematicians such 
as Bertrand Russell, G. H. Hardy, Alfred North Whitehead, 
and David Hilbert. When the United States entered World 
War I, Wiener served at Aberdeen Proving Ground, where 
he designed artillery firing tables.

After the war, Wiener was appointed as an instructor 
at MIT, where he would serve until his retirement in 1960. 
However, he continued to travel widely, serving as a Gug-
genheim Fellow at Copenhagen and Göttingen in 1926, and 
a visiting lecturer at Cambridge (1931–32) and Tsing-Hua 
University in Beijing (1935–36). Wiener’s scientific interests 
proved to be as wide as his travels, including research into 
stochastic and random processes (such as the Brownian 
motion of microscopic particles) where he sought more gen-
eral mathematical tools for the analysis of irregularity.

During the 1930s, Wiener began to work more closely 
with MIT electrical engineers who were building mechanical 
computers (see Bush, Vannevar and analog computer). He 
learned about feedback controls and servomechanisms that 
enabled machines to respond to forces in the environment.

During World War II, he did secret military research 
with an engineer, Julian Bigelow, on antiaircraft gun con-
trol mechanisms, including methods for predicting the 
future position of an aircraft based upon limited and pos-
sibly erroneous information.

Wiener became particularly interested in the feedback 
loop—the process by which an adjustment is made on the 
basis of information (such as from radar) to a predicted 
new position, a new reading is taken and a new adjustment 
made, and so on. (He had first encountered these concepts 
at MIT with his friend and colleague Harold Hazen.) The 
use of “negative feedback” made it possible to design sys-
tems that would progressively adjust themselves such as by 
intercepting a target. More generally, it suggested mecha-
nisms by which a machine (perhaps a robot) could progres-
sively work toward a goal.

Wiener’s continuing interest in biology led him always 
to relate what he was learning about control and feedback 
mechanisms to the behavior of living organisms. He had fol-
lowed the work of Arturo Rosenbleuth, a Mexican physiolo-
gist who was studying neurological conditions that appeared 
to result from excessive or inaccurate feedback. (Unlike the 
helpful negative feedback, positive feedback in effect ampli-
fies errors and sends a system swinging out of control.)

By the end of World War II, Wiener, Rosenbleuth, the 
neuropsychiatrist Warren McCulloch, and the logician 
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Walter Pitts were working together toward a mathemati-
cal description of neurological processes such as the fir-
ing of neurons in the brain. This research, which started 
out with the relatively simple analogy of electromechanical 
relays (as in the telephone system) would eventually result 
in the development of neural network theory (see neural 
network and Minsky, Marvin). More generally, these sci-
entists and others (see von Neumann, John) had begun to 
develop a new discipline for which Wiener in 1947 gave the 
name cybernetics. This word is from a Greek word referring 
to the steersman of a ship, suggesting the control of a sys-
tem in response to its environment.

The field of cybernetics attempted to draw from many 
sources, including biology, neurology, logic, and what 
would later become robotics and computer science. Wie-
ner’s 1948 book, Cybernetics or Control and Communication 
in the Animal and the Machine, was as much philosophical 
as scientific, suggesting that cybernetic principles could be 
applied not only to scientific research and engineering but 
also to the better governance of society. (On a more prac-
tical level Wiener also worked with Jerome Wiesner on 
designing prosthetics to replace missing limbs.)

Although Wiener did not work much directly with com-
puters, the ideas of cybernetics would indirectly influence 
the new disciplines of artificial intelligence (AI) and robot-
ics. However, in his 1950 book, The Human Use of Human 
Beings, Wiener warned against the possible misuse of com-
puters to rigidly control or regiment people, as was the 
experience in Stalin’s Soviet Union. Wiener became increas-
ingly involved in writing these and other popular works to 
bring his ideas to a general audience.

Wiener received the National Medal of Technology from 
President Johnson in 1964. The accompanying citation 
praised his “marvelously versatile contributions, profoundly 
original, ranging within pure and applied mathematics, and 
penetrating boldly into the engineering and biological sci-
ences.” He died on March 18, 1964, in Stockholm, Sweden.
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wikis and Wikipedia
A wiki (from the Hawaiian word for “quick”) is a generally 
Web-based software application that allows users to col-
laboratively contribute and edit articles on various topics. 
Developed by Howard G. “Ward” Cunningham in the mid-
1990s, the best-known example today is Wikipedia.

Structure and Software
Wiki software varies in details such as use of markup lan-
guages, programming interface, and platform. However, 
most wikis include the following features:

• � Users can create new pages (articles) or edit existing 
ones.

• �  Pages contain links to related pages, sometimes using 
“wiki words” where WordsAreScrunchedTogether-
WithIntialCaps.

• � Simple markup can be used to create such effects as 
boldface, headings, or lists. The wiki software usually 
translates this to HTML for rendering.

• � A record is kept of each contribution or edit, often 
displayed on a “Recent Changes” page.

• �M any wikis use a database (such as MySQL) to store 
and retrieve pages. Some wikis simply store each page 
as a file, and a few (such as TiddlyWiki) store all 
pages together as a single document.

• � Wikis can be public (open to anyone) or restricted, 
such as to members of an organization.

• � The administrator of the wiki establishes guidelines 
or standards (such as for citing sources for facts) and 
procedures for dealing with disputes and controver-
sial topics.

There is now a great variety of wiki software for just 
about every computing platform. At one end there is Medi-
aWiki, the software used to implement Wikipedia, and 
“enterprise wikis” such as BrainKeeper and Twiki, provid-
ing complex features for large-scale knowledge bases. So-
called personal Wikis such as DidiWiki and TiddlyWiki 
can be used by individuals for note-taking, research, or 
managing personal information.

Wikipedia and Its Critics
Founded in 2001 (see Wales, Jimmy), Wikipedia is the 
world’s largest and best-known wiki. As of mid-2008 Wiki-
pedia had more than 2,500,000 articles in English and 
7,500,000 in more than 250 other languages. At any given 
time there are about 75,000 people from all backgrounds 
and walks of life contributing or editing articles.

Wikipedia has a number of strengths. Its ubiquity and 
diversity enable it to cover tens of thousands of topics 
(including the obscure or the simply local) that would be 
deemed unsuitable or impracticable for traditional encyclo-
pedias. Emerging topics, including recent news events, can 
be covered quickly and comprehensively (though perhaps 
blurring the lines between reference and journalism).

The principal problem raised by critics stems from issues 
of “quality control.” Unlike the case with traditional ency-
clopedias, there are no requirements that contributors have 
academic training or otherwise demonstrate their expertise 
in their chosen area. Further, the ability of anyone to edit 
an article has led to “edit wars” as people on different sides 
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of a controversial topic (or even politicians) would change 
articles back and forth to reflect their views.

Defenders of Wikipedia believe that the same “bottom 
up” writing and editing process cited by critics can also 
be one of the project’s strengths. Each article has a record 
of changes, and many articles have attached discussion 
pages where writers can critique the page or discuss their 
rationales for edits. Finally, they cite a study by the jour-
nal Nature that found that in the science articles analyzed, 
Wikipedia averaged four errors while the Encyclopaedia Bri-
tannica was only slightly more accurate, averaging three.

Defenders of Britannica, however, point out that their 
publication has the kind of consistency that can only come 
through rigorous application of editorial standards. Wiki-
pedia does have standards that writers and editors are 
urged to apply, such as providing a citation for every signifi-
cant statement, maintaining a “neutral point of view,” and 
refraining from including original research. Nevertheless, 
the quality of organization and writing does vary consider-
ably from one article to the next.

Meanwhile innovators in Wikipedia and its community 
are developing new tools that may improve the reliability of 

Wiki software such as the extensive and ever-growing Wikipedia, allows users to collaborate to create and update knowledge bases. Entries 
can include images such as the astronomical photo shown here. There is also a place for ongoing discussion of changes to the page.
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the encyclopedia. One tool, WikiScanner, searches for and 
compiles information (such as affiliations) about wiki con-
tributors, allowing readers to better judge their competence 
and motivations. Wikipedia’s parent Wikimedia Foun-
dation is also introducing a system by which previously 
unknown contributors will undergo a sort of probationary 
period while their material is scrutinized. (Eventually they 
would become “trusted” and their material would appear 
instantly, as it does now for most articles.)

Wikis have, like blogs, become a pervasive form of 
online communication and information sharing, and have 
gained considerable attention as an application for the 
“new” Web (see user-created content, Web 2.0 and 
beyond, and social networking). Wikis are currently 
being used to create rapidly expanding knowledge bases 
(such as for technical support), to share emerging scholar-
ship, and to promulgate documentation within an organiza-
tion. Hosting services (called “wiki farms”) such as Wikia 
offer communities wiki software and Web space, sometimes 
free of charge. Wiki principles are also finding their way 
into software such as personal information managers (see 
content management).
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wireless computing
Using suitable radio frequencies to carry data among com-
puters on a local network has several advantages. The trou-
ble and expense of running cables (such as for Ethernet) in 
older buildings and homes can be avoided. With a wireless 
LAN (WLAN) a user could work with a laptop on the deck 
or patio while still having access to a high-speed Internet 
connection.

Typically, a wireless LAN uses a frequency band with 
each unit on a slightly different frequency, thus allowing 
all units to communicate without interference. (Although 
radio frequency is now most popular, wireless LANs can 

also use microwave links, which are sometimes used as an 
alternative to Ethernet cable in large facilities.)

Usually there is a network access point, a PC that con-
tains a transceiver and serves as the network hub (it may 
also serve as a bridge between the wireless network and a 
wired LAN). The hub computer can also be connected to 
a high-speed Internet service via DSL or cable. It has an 
antenna allowing it to communicate with wireless PCs up 
to several hundred feet away, depending on building con-
figuration.

Each computer on the wireless network has an adapter 
with a transceiver so it can communicate with the access 
point. The adapter can be built-in (as is the case with some 
handheld computers), or mounted on a PC card (for lap-
tops) or an ISA card (for desktop PCs) or connected to a 
USB port.

Simple home wireless LANs can be set up as a “peer net-
work” where any two units can communicate directly with 
each other without going through an access point or hub. 
Applications needing Internet access (such as e-mail and 
Web browsers) can connect to the PC that has the Internet 
cable or DSL connection.

A wireless LAN can make it easier for workers who have 
to move around within the building to do their jobs. Exam-
ples might include physicians or nurses entering patient 
data in a hospital or store workers checking shelf inventory.

Protocols
Several protocols or standards have been developed for 
wireless LANs. The most common today is IEEE 802.11b, 
also called WiFi with speeds up to 11 mbps (megabits 
per second) transmitting on 2.4 GHz (gigahertz) band. 
Although that would seem to be fast enough for most 
applications, a new alternative, 802.11n, can offer speeds 
up to 54 mbps. Because it uses the unlicensed 5 GHz 
frequency range it is not susceptible to interference from 
other devices.

The question of security for 802.11 wireless networks 
has been somewhat controversial. Obviously, wireless 
data can be intercepted in the same way that cell phone or 
other radio transmissions can. The networks come with a 
security feature, WEP or the newer WPA, but many users 
neglect to enable it, and it is vulnerable to certain types of 
attack. Users can obtain greater security by reducing emis-
sions outside the building, changing default passwords 
and device IDs, and disabling DHCP to make it harder 
for snoopers to obtain a valid IP address for the network. 
Users can also add another layer of encryption and pos-
sibly isolate the wireless network from the wired network 
by using a more secure Virtual Private Network (VPN). 
Many of these measures do involve a tradeoff between the 
cost of software and administration on the one hand and 
greater security on the other. However, the growing popu-
larity of wireless access should spur the development of 
improved built-in security.

Another wireless protocol called Bluetooth has been 
embedded in a variety of handheld computers, appliances, 
and other devices. It provides a wireless connection at 
speeds up to 1 MB/second (see Bluetooth).
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Mobile Wireless Networking
Wireless connections can also keep computer users in 
touch with the Internet and their home office while they 
travel. Increasingly, more devices are becoming wireless 
capable while at the same time the functions of handheld 
computers, cell phones, and other devices are being merged 
(see also portable computers). A new initiative called 3G 
(third generation) involves the establishment of ubiquitous 
wireless services that can connect users to the Internet (and 
thus to one another) from a growing number of locations.

Currently, the 3G agenda is further advanced in Europe 
than in the United States. One problem is that a standard 
protocol has not yet emerged. The leading candidates 
appear to be GSM (Global System for Mobile Communica-
tions), which is used by European cell phone networks, and 
CDMA (Code Division Multiplexing Access).

3G has different speeds ranging from 144 bps for vehic-
ular connections to 384 kbps for personal handheld devices 
to 2 bps for indoor installations. All providers, ranging 
from cell phones to packet (IP) telephony would using a 
standard billing format and database so that users could 
operate across many sorts of services seamlessly. Another 
alternative is WIMAX, which can be thought of as a wider-
area version of Wifi in which each base station can trans-
mit over up to 50 kilometers. As of 2008 deployment has 
been slower than anticipated, with widespread coverage in 
U.S. cities not likely to be available for at least several years.

Ultimately, these technologies may bring a Star Trek–
like world, with handheld devices that include not only 
e-mail and Web browsing capability but a “smart phone,” 
MP3 music player, and even a digital camera.
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Wirth, Niklaus
(1934–  )
Swiss
Computer Scientist

Niklaus Wirth created new programming languages such 
as Pascal that helped change the way computer scientists 
and programmers thought about their work. His work 
influenced later languages and ways of organizing program 
resources.

Wirth was born on February 15, 1934, in Winterhur, 
Switzerland. He received a degree in electrical engineering 
at the Swiss Federal Institute of Technology (ETH) in 1959, 

then earned his M.S. at Canada’s Laval University. He went 
to the University of California, Berkeley, where he received 
his Ph.D. in 1963 and taught in the newly founded Com-
puter Science Department at nearby Stanford University. By 
then he had become involved with computer science and 
the design of programming languages.

Wirth returned to the ETH in Zurich in 1968, where 
he was appointed a full professor of computer science. He 
had been part of an effort to improve Algol. Although Algol 
offered better program structures than earlier languages 
such as FORTRAN, the committee revising the language 
had become bogged down in adding many new features to 
the language that would become Algol-68 (see Algol).

Wirth believed that adding several ways to do the same 
thing did not improve a language but simply made it harder 
to understand and less reliable. Between 1968 and 1970, 
Wirth therefore crafted a new language, Pascal, named after 
the 17th-century mathematician who had built an early cal-
culating machine.

Pascal required that data be properly defined (see data 
types) and allowed users to define new types of data such 
as records (similar to those used in databases). It provided 
all the necessary control structures (see loop and branch-
ing statements). Following the new thinking about struc-
tured programming (see Dijkstra, Edsger) Pascal retained 
the “unsafe” GOTO statement but discouraged its use.

Pascal became the most popular language for teach-
ing programming. By the 1980s, versions such as UCSD 
Pascal and later, Borland’s Turbo Pascal were bringing 
the benefits of structured programming to desktop com-
puter users. Meanwhile, Wirth was working on a new 
language, Modula-2. As the name suggested, the language 
featured the use of modules, packages of program code 
that could be linked to programs to extend their data 
types and functions. Wirth also designed a computer 
workstation called Lilith. This powerful machine not only 
ran Modula-2; its operating system, device drivers and all 
other facilities were also implemented in Modula-2 and 
could be seamlessly integrated, essentially removing the 
distinction between operating system and application pro-
grams. Wirth also helped design Modula-3, an object-ori-
ented extension of Modula-2, as well as another language, 
Oberon, which was originally intended to run in built-in 
computers (see embedded systems).

Looking back at the development of object-oriented 
programming (OOP), the next paradigm that captured the 
attention of computer scientists and developers after struc-
tured programming, Wirth has noted that OOP isn’t all that 
new. Its ideas (such as encapsulation of data) are largely 
implicit in structured procedural programming, even if it 
shifted the emphasis to binding functions into objects and 
allowing new objects to extend (inherit from) earlier ones. 
But he believes the fundamentals of good programming 
haven’t really changed in 30 years. In a 1997 interview 
Wirth noted that “the woes of Software Engineering are not 
due to lack of tools, or proper management, but largely due 
to lack of sufficient technical competence. A good designer 
must rely on experience, on precise, logical thinking; and 
on pedantic exactness. No magic will do.”
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Wirth has received numerous honors, including the 
ACM Turing Award (1984) and the IEEE Computer Pioneer 
Award (1987).
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women and minorities in computing
Although the development of computer science and technol-
ogy has been an international effort, there is no doubt that 
the majority of contributors (particularly in the early years) 
were men—specifically white men. The interesting excep-
tions include Charles Babbage’s collaborator Ada Lovelace, 
ENIAC’s first trained programmers—all women—and of 
course Grace Hopper, whose COBOL revolutionized busi-
ness computing. Finally, the 2007 winner of one of the 
field’s most prestigious honors, the ACM Turing Award, is a 
woman, compiler developer Frances E. Allen.

Today women have gained prominent roles in all aspects 
of computer science as well as some high-profile posts in 
business (such as Carly Fiorina, former CEO of Hewlett-
Packard, and Meg Whitman of eBay). However, the overall 
involvement of women in the higher echelons of computing 
remains relatively small.

Educational surveys suggest that boys and girls start out 
with roughly equal interest and involvement with comput-
ers, including basic courses in computer literacy and appli-
cations. However, a 2006 report from the College Board 
found that 59 percent of boys reported taking courses in 
programming, compared with 41 percent of girls. Further, 
the great majority of students taking advanced placement 
computer science exams are male.

At the college level, women made gains in the percent-
age of bachelor’s degrees in the computer field, reaching 37 
percent by the mid-1980s. However, by 2005 that percent-
age had declined to 22 percent. (However, women were 
earning 34 percent of master’s degrees by 2001.) Further, 
the number of women working in information technology 
declined from 984,000 (28.9 percent) in 2000 to 908,000 
(26.2 percent) in 2006.

The reasons for this decline are unclear, though some 
possible causes that have been suggested include the effects 
of the “dot-bust” and the perception that IT jobs were no 
longer secure, the “geek” stereotype not appealing to young 
women, and the availability of more attractive career paths.

In terms of race or ethnicity, whites and Asians earn a 
disproportionate number of degrees in computing, although 
interestingly, minority women tend to earn a higher per-
centage than white women. Although minorities have been 
gradually increasing their participation in the computing 
field, economic disadvantage (see digital divide) and poor 
educational preparation continue to be obstacles for some.

Efforts at Change
A variety of programs have sought to interest women and 
minority students in computer programming and other 
digital careers. These can include the creation of nontra-
ditional programming environments such as Alice, which 
allows students to create animated stories using scripting 
and 3D graphics tools. (The theory behind this is that girls 
are more interested in storytelling and character interac-
tion, while traditional programming classes focused more 
on “shoot ’em up” games and other things of more interest 
to boys.) There has also been a move away from emphasis 
on “hard core” programming skills to a more broad-based 
ability to think about technology and its possible uses. (As 
a result of this and a certain amount of affirmative action, 
Carnegie Mellon raised its percentage of women computer 
science students from 8 percent to 40 percent.)

African Americans and other minorities have also devel-
oped a number of organizations and programs designed 

Jean Bartik (standing) and Betty Holberton answered a call 
for “computers” during World War II. At the time, that was the 
name for a clerical person who performed calculations. But these 
two computer pioneers, shown here at a reunion, would go on to 
develop important programming techniques for the ENIAC and 
later machines.  (Courtesy of the Association for Women 
in Computing)
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to promote networking among minority professionals, link 
applicants to job openings, and encourage professional 
development.
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word processing
Although computers are most often associated with num-
bers and calculation, creating text documents is probably 
the most ubiquitous application for desktop PCs.

The term word processor was actually coined by IBM 
in the 1960s to refer to a system consisting of a Selectric 
typewriter with magnetic tape storage. This allowed the 
typist to record keystrokes (and some data such as margin 
settings) on tape. Material could be corrected by being re-
recorded. The tape could then be used to print as many 
perfect copies of the document as required. A version using 
magnetic cards instead of tape appeared in 1969.

The first modern-style word processor was marketed by 
Lexitron and Linolex. It also used magnetic tape, but it 
added a video display screen. Now the writer could see 
and correct text without having to print it first. A few years 
later, a new invention, the floppy disk, became the standard 
storage medium for dedicated word processing systems.

The word-processing systems developed by Wang, 
Digital Equipment Corporation, Data General, and others 
became a feature in large offices in the late 1970s. These 
systems were essentially minicomputers with screens, key-
boards, and printers and running a specialized software 
program. Because these systems were expensive (rang-
ing from about $8,000 to $20,000 or more), they were not 
affordable by smaller businesses. Typically, they were oper-
ated by specially trained personnel (who became known 
also as “word processors”) to whom documents were fun-
neled for processing, as with the old “typing pool.”

PC Word Processing
The first microcomputer systems had very limited memory 
and storage capacity. However, by the late 1970s various 
systems using the S-100 bus and running CP/M had word-
processing programs, as did the Apple II and other first-
generation PCs. However, it took the entry of the IBM PC 
into the market in 1981 to make the PC a word-processing 
alternative for mainstream businesses. The machine had 
more memory and storage than earlier machines, and the 
IBM name provided reassurance to business.

A number of word-processing programs were written for 
the IBM PC running MS-DOS, but the market leaders were 
WordStar and WordPerfect. Both programs offered basic 
text editing and formatting, including the ability to embed 
commands to mark text for boldface, italic, and so on. The 
programs came with drivers for the more popular printers.

In 1984, the Macintosh offered a new face for word pro-
cessing and other applications. Using bitmapped fonts, the 
Mac could show a good representation of the fonts and typ-
estyles that would be in the printed document. This “what 
you see is what you get” (WYSIWYG) approach, together 
with the graphical user interface with mouse-driven menus 
meant that users did not have to learn the often obscure 
command key sequences used in WordStar or WordPerfect.

Microsoft then developed Windows as a graphical user 
interface alternative to MS-DOS for IBM-compatible PCs. 
By 1990, Windows was rapidly replacing DOS as the operat-
ing system of choice, and Microsoft Word was winning the 
battle against WordPerfect, whose Windows version was 
rather flawed at first.

In addition to being able to visually show fonts and 
formatting, Word and other modern word processors are 
packed with features. Some typical features today include:

• � different views of the document, including an outline 
showing headings down to a user-specified level

• � automatic table of contents and index generation

• � tables and multicolumn text

• � automatic formatting of bulleted and numbered lists

• � built-in and user-defined styles for headings, para-
graphs, and so on.

• � the ability to use built-in or user-defined templates 
to provide starting settings for new documents (see 
template)

• � the ability to record or otherwise specify a series 
of commands to be performed automatically (see 
macro)

• � spelling and grammar checkers

• � the ability to incorporate a variety of graphics image 
formats in the document

• � automatic formatting and linking of Web hyperlinks 
within documents

• � the ability to import and export documents in a vari-
ety of formats, including Web documents (see html)
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• � an extensive online help system including “wizards” 
to guide the user step-by-step through various tasks

As word processors become more extensive in their 
capabilities, it has become harder to distinguish them from 
programs designed to create precise copy for publication 
(see desktop publishing). However, copy prepared by 
writers with a word processor must generally be further 
processed through a desktop publishing or in-house com-
puterized typography system.

At the other end of the spectrum many users find that 
word processors are “overkill” for making simple notes. A 
variety of programs for entering simple text are available, 
including the Notepad program that comes with Windows. 
There are also applications for which plain text must be 
produced, without the formatting codes added by word pro-
cessors. In particular, programmers often use specialized 
editing programs to create source code (see text editor).

Trends
Today word processing programs are generally part of an 
office software suite such as Microsoft Office, Corel Office, 
or Open Office. Documents created by other components of 
the suite can be embedded in word processing documents. 
(In Windows, object linking and embedding [OLE] is a sys-
tem that allows for embedded documents to be automati-
cally updated and to be edited using the functions of the 
host program. Thus, an Excel spreadsheet embedded in a 
Word document can be worked in place using the standard 
Excel interface.)

There are also features that can facilitate collaboration 
between workers in a networked office, such as by keeping 
track of revisions made by various people working on the 
same document.

A new alternative is the free (or low-cost) online word 
processor such as Google Docs & Spreadsheets and Zoho 
Writer. These products can be used from any Web browser 
and facilitate the central storage of documents for mobile 
users (see application service provider).

As with other applications, word processors are increas-
ingly being integrated with the Web, and include the ability 
to create HTML documents. In turn, the programs spe-
cifically designed for creating HTML documents now have 
many word-processor features including templates, styles, 
and the visual representation of the page.
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workstation
Like minicomputer, workstation is a rather slippery term 
whose meaning and significance has changed somewhat 
with the growing power of desktop PCs.

In the late 1960s and 1970s, most “personal” computing 
was done by individuals connected to time-sharing main-
frames or minicomputers by terminals. Generally, the ter-
minals could only display text, not graphics.

However, researchers at the Xerox Palo Alto Research 
Center (PARC) began to develop a more powerful computer 
for individual use (see Englebart, Douglas and Kay, 
Alan). The Xerox Alto had a high-resolution bitmapped 
graphics display and a mouse-controlled graphical user 
interface. While it was expensive and not very successful 
commercially, the Alto set the stage for the Macintosh in 
1984 and for Microsoft Windows.

Although the desktop PCs of the 1980s such as the IBM 
PC had some graphics capabilities, the machines lacked the 
capacity for graphics-intensive applications such as engi-
neering design and the generation of movie effects. Led 
by Sun and Silicon Graphics (SGI), the high-performance 
graphics workstation emerged as a distinctive product cate-
gory. These machines used relatively powerful microproces-
sors (such as the Sun SPARC and the MIPS) with instruction 
sets optimized for speed (see risc). These systems generally 
ran UNIX as their operating system.

However, by the late 1990s, ordinary desktop PCs were 
catching up to dedicated workstations in terms of process-
ing power and graphics features. By 2002, a desktop PC 
costing about $2,000 offered a 2-GB processor, 256 MB of 
RAM, 120 GB hard drive, and an optimized 3D graphics 
card that can drive displays up to 1600 by 1200 pixels or 
more. These systems can run Windows NT or XP, or, for 
users preferring UNIX, Linux offers a robust and inexpen-
sive operating system. This sort of system rivals the capa-
bilities of a dedicated workstation while offering all of the 
versatility of a general-purpose PC. As a result, the term 
workstation today refers more to a way of using a computer 
than to a specific class of hardware. Machines are thought 
of as workstations if they emphasize graphics performance 
and are dedicated to particular activities such as science, 
imaging, engineering, design (see also computer-aided 
design and manufacturing), or video editing.
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World Wide Web
In little more than a decade the World Wide Web has 
become nearly as ubiquitous as the telephone and has 
become for many a preferred medium for shopping, news, 
entertainment, and education. Some cultural observers 
believe that this vast system of linked information may be 
having an impact on society as great as that of the invention 
of the printing press more than five centuries earlier.
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By the beginning of the 1990s, the Internet had become 
well established as a means of communication between 
relatively advanced computer users, particularly scientists, 
engineers, and computer science students—primarily using 
UNIX-based systems (see unix). A number of services used 
the Internet protocol (see tcp/ip) to carry messages or data. 
These included e-mail, file transfer protocol (see ftp) and 
newsgroups (see netnews and newsgroups). A Wide Area 
Information Service (WAIS) even provided a protocol for 
users to retrieve information from databases on remote 
hosts. Another interesting service, Gopher, was developed 
at the University of Minnesota in 1991. It used a system of 
nested menus to organize documents at host sites so they 
could be browsed and retrieved by remote users.

Gopher was quite popular for a few years, but it would 
soon be overshadowed by a rather different kind of net-
worked information service. A physicist/programmer (see 
Berners-Lee, Tim) working at CERN, the European par-
ticle physics laboratory in Switzerland had devised in 1989 
a system that he eventually called the World Wide Web 
(sometimes called WWW or W3). By 1990, he was run-
ning a prototype system and demonstrating it for CERN 
researchers and a few outside participants.

Using the Web
The Web consists essentially of three parts. Berners-Lee 
devised a markup language: that is, a system for indicat-
ing document elements (such as headers), text characteris-
tics, and so on (see html). Any document could be linked 
to another (see hypertext and hypermedia) by speci-
fying that document’s unique address (called a Uniform 
Resource Locator or URL) in a request. Berners-Lee defined 
the HyperText Transport Protocol, or HTTP, to handle the 
details needed to retrieve documents. (Although HTTP is 
most often used to retrieve HTML-formatted Web docu-
ments, it can also be used to specify documents using other 
protocols, such as ftp, news, or Gopher.)

A program (see Web server) responds to requests for 
documents sent over the network (usually the Internet, that 
is, TCP/IP). The requests are issued by a client program as 
a result of the user clicking on highlighted links or buttons 
or specifying addresses (see Web browser). The browser 
in turn interprets the HTML codes on the page to display it 
correctly on the user’s screen.

At first the Web had only text documents. However, 
thanks to Berners-Lee’s flexible design (see client-server 
computing) new, improved Web browsers could be cre-
ated and used with the Web as long as they followed the 
rules for HTTP. The most successful of these new browsers 
was Mosaic, created by Marc Andreesen at the National 
Center for Supercomputing Applications. NCSA Mosaic was 
available for free download and could run on Windows, 
Macintosh, and UNIX-based systems. Mosaic not only dis-
pensed with the text commands used by most of the first 
browsers, it also had the ability to display graphics and 
play sound files. With Mosaic the text-only hypertext of the 
early Web rapidly became a richer hypermedia experience. 
And thanks to the ability of browsers to accept modules to 
handle new kinds of files (see plug-in), the Web could also 

accommodate real-time sound and video transmissions (see 
streaming).

In 1994, Andreessen left NCSA and co-founded a com-
pany called Netscape Communications, which improved 
and commercialized Mosaic. Microsoft soon entered with 
a competitor, Internet Explorer; today these two brows-
ers dominate the market with Microsoft having taken the 
lead. Together with relatively low-cost Internet access 
(see modem and internet service provider) these user-
friendly Web browsers brought the Web (and thus the 
underlying Internet) to the masses. Schools and libraries 
began to offer Web access while workplaces began to use 
internal webs to organize information and organize opera-
tions. Meanwhile, companies such as the on-line bookseller 
Amazon.com demonstrated new ways to deliver traditional 
products, while the on-line auction site eBay took advan-
tage of the unique characteristics of the on-line medium to 
redefine the auction.

The burgeoning Web was soon offering millions of 
pages, especially as entrepreneurs began to find additional 
business opportunities in the new medium (see e-com-
merce). Two services emerged to help Web users make 
sense of the flood of information. Today users can search 
for words or phrases (see search engine) or browse 
through structured topical listings (see portal). Estimates 
from various sources suggest that as of 2007 approximately 
1.2 billion people worldwide access the Web, with usage 
increasing most rapidly in the emerging industrial super-
powers of India and China.

Impact and Trends
The Web is rapidly emerging as an important news medium 
(see journalism and the computer industry). The 
medium combines the ability of broadcasting to reach many 
people from one point with the ability to customize con-
tent to each person’s preferences. Traditional broadcasting 
and publishing are constrained by limited resources and 
the need for profitability, and thus the range and diversity 
of views made available tend to be limited. With the Web, 
anyone with a PC and a connection to a service provider 
can put up a Web site and say just about anything. Millions 
of people now display aspects of their lives and interests on 
their personal Web pages (see blogs and blogging). The 
Web has also provided a fertile medium for the creation of 
online communities (see social networking and virtual 
community) while contributing to significant issues (see 
privacy in the digital age).

As the new century continues, the Web is proving itself 
to be truly worldwide, resilient, and adaptable to many new 
communications and media technologies (see digital con-
vergence). Nevertheless, the Web faces legal and political 
challenges (see censorship and the Internet, and intel-
lectual property and computing) as well as technical 
challenges (see semantic Web and Web 2.0).
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Wozniak, Steven
(1950–  )
American
Computer Inventor and Engineer

Steve Wozniak, often known as “Woz,” cofounded Apple 
computer and designed the Apple II, one of the first popular 
personal computers.

Born on August 11, 1950, in San Jose, California, Woz-
niak grew up to be a classic “electronics whiz.” He built a 
working electronic calculator when he was 13, winning the 
local science fair. After graduating from Homestead High 
School, Wozniak tried community college but quit to work 
with a local computer company. Although he then enrolled 
in the University of California, Berkeley, to study electronic 
engineering and computer science, he dropped out in 1971 
to go to work again, this time as an engineer at Hewlett-
Packard, at that time one of the most successful companies 
in the young Silicon Valley.

By the mid-1970s, Wozniak was in the midst of a techni-
cal revolution in which hobbyists explored the possibili-
ties of the newly available microprocessor or “computer 
on a chip.” A regular attendee at meetings of the Home-
brew Computer Club, Wozniak and other enthusiasts were 
excited when the MITS Altair, the first complete microcom-
puter kit, came on the market in 1975. The Altair, however, 
had a tiny amount of memory, had to be programmed by 
toggling switches to input hexadecimal codes (rather like 
the ENIAC), and had very primitive input/output capabili-
ties. Wozniak decided to build a computer that would be 
much easier to use—and more useful.

Wozniak’s prototype machine, the Apple I, had a key-
board and could be connected to a TV screen to provide a 
video display. He demonstrated it at the Homebrew Com-
puter Club and among the interested spectators was his 
friend Steve Jobs. Jobs had a more entrepreneurial interest 
than Wozniak, and spurred him to set up a business to 

manufacture and sell the machines. Together they founded 
Apple Computer in June 1976. Their “factory” was Jobs’s 
parents’ garage, and the first machines were assembled by 
hand.

Wozniak designed most of the key parts of the Apple, 
including its video display and later, its floppy disk inter-
face, which is considered a model of elegant engineering to 
this day. He also created the built-in operating system and 
BASIC interpreter, which were stored in read-only memory 
(ROM) chips so the computer could function as soon as it 
was turned on.

In 1981, just as the Apple II was reaching the peak of 
its success, Wozniak was almost killed in a plane crash. He 
took a sabbatical from Apple to recover, get married, and 
return to UC Berkeley (under an assumed name!) to finish 
his B.S. in electrical engineering and computer science.

Wozniak’s life changes affected him in other ways. As 
Apple grew and became embroiled in the problems of large 
companies, “Woz” sold large amounts of his Apple stock and 
gave the money to Apple employees that he thought had not 
been properly rewarded for their work. Later in the 1980s, 
he produced two rock festivals that lost $25 million, which 
he paid out of his own money. He was quoted as saying, “I’d 
rather be liked than rich.” He left Apple for good in 1985 
and founded Cloud Nine, an unsuccessful company that 
designed remote control and “smart appliance” hardware.

During the 1990s, Wozniak organized a number of 
charitable and educational programs, including cooperative 
activities with people in the former Soviet Union. He partic-
ularly enjoyed classroom teaching, bringing the excitement 
of technology to young people. In 1985, Wozniak received 
the National Medal of Technology.
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XML
Several markup languages have been devised for specifying 
the organization or format of documents. Today the most 
commonly known markup language is the Hypertext Markup 
Language (see html, dhtml, and xhtml), which is the orga-
nizational “glue” of the Web (see World Wide Web).

HTML is primarily concerned with rendering (display-
ing) documents. It describes structural features of docu-
ments (such as headers, sections, tables, and frames), but 
it does not really convey the structure of the information 
within the document. Further, HTML is not extensible—
that is, one can’t define one’s own tags and use them as part 
of the language. XML, or Extensible Markup Language, is 
designed to meet both of these needs. In effect, while HTML 
is a descriptive coding scheme, XML is a scheme for creating 
data definitions and manipulating data within documents. 
(XML can be viewed as a subset of the powerful and general-
ized SGML, or Standard Generalized Markup Language.)

The basic building block of XML is the element, which 
can be used to define an entity (rather like a database 
record). For example, the following statement:

<team name=“New York Yankees”>
<players>

<player name=“1”>Babe Ruth</player>
<player name=“2”>Lou Gehrig</player>

</players>
</team>

XML text is bracketed by tags as with HTML. The 
“team” element has an attribute called “name” that is 

assigned the value “New York Yankees.” (Attribute values 
must be enclosed in quote marks.) It also contains a nested 
element called players, which in turn defines player names, 
Babe Ruth and Lou Gehrig. The elements are defined at 
the beginning of the XML document by a DTD (Document 
Type Definition), or such a definition can be “included” 
from another file.

XML is currently supported by the leading Web brows-
ers. In effect, it includes HTML as a subset, or more accu-
rately XHTML (HTML conformed to XML 1.0 standards) 
(see html, dhtml, and xhtml). Thus, XML documents 
can be properly rendered by browsers, while applications 
that are XML-enabled (or that use XML-aware ActiveX con-
trols or similar Java facilities, for example) can parse the 
XML and identify the data structures and elements in the 
document. Together with programming languages such as 
Java and facilities such as SOAP (Simple Object Access Pro-
tocol), XML can be used to create applications that connect 
servers and documents across the Internet—it is rapidly 
becoming the data “glue” that holds Web sites together.

XML can be viewed as part of a trend to make data “self-
describing.” The ability to encode not just the structure but 
the logical content of documents promises a growing abil-
ity for automated agents or “bots” to take over much of the 
work of sifting through the Web for desired information, 
bringing the Web closer to the intentions of its inventor, 
Tim Berners-Lee (see Berners-Lee, Tim; semantic web).
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Y2K problem
Sherlock Holmes once referred to a dog barking in the 
night. Watson, puzzled as usual, replied that no dog had 
barked. Holmes replied that it was the nonbarking that was 
significant. The same can be said about the growing con-
cern toward the end of the 1990s that the year 2000 might 
bring massive, disastrous failures to many of the computer 
systems on which society now depended for its well-being.

Most programs written in the 1960s and 1970s (see 
mainframe and cobol) saved expensive memory space by 
storing only the second two digits of year dates. After all, 
dates could be understood to begin with “19” for many 
years to come (although some farsighted computer scien-
tists did warn of future trouble). Eventually the century 
began to draw to an end.

Although much computing activity had moved onto 
newer systems by the 1990s, many large government and 
corporate computer systems were still running the original 
applications or their descendents. If such a program were 
run in the year 2000, it would have no way to distinguish 
a date in that year from a date in 1900. While the prospect 
of a centenarian being suddenly treated as a newborn was 
likely to be more amusing than significant, what would 
happen to a 30-year mortgage that was written in 1975 
and intended to come due in 2005? Would people be billed 
based on a 70-year term? Many observers feared that some 
systems would actually crash because they would begin to 
generate nonsensical data. What, for example, might hap-
pen to an air traffic control system or automated power grid 
system that used dates and times to track events?

No one really knew. One problem was that there were 
millions of lines of code, often written by programmers 
who had long since retired. Nor was it simply a matter of 
looking for references to date fields (such as in decision 
statements), because of the many ways programmers could 
express such statements. In addition to mainframe applica-
tions, there were also the computers hardwired into devices 
of all kinds including cars and airplanes (see embedded 
system). As with the early mainframes, these systems were 
often designed with limited available memory, and thus 
their programmers, too, may have been tempted to save 
bytes by lopping off the century years.

As the fateful date approached, government agencies 
and businesses began to invest billions of dollars and hire 
expensive consultants to check code for “Y2K compat-
ibility.” In the end, Y2K problems were found and fixed 
in the most critical systems, and the year 2000 dawned 
without significant mishaps. (It turned out that virtually all 
the embedded systems did not in fact have Y2K problems, 
mostly because they didn’t even track year dates.)

But although the “dog didn’t bark” and in retrospect 
some of the hype about Y2K seems excessive, it did lead 
to improvement in a great deal of software. Further, it 
increased awareness of dependence on computers for so 
many aspects of life—a dependence that has been cast in 
a harsh new light by the terrorist events of September 11, 
2001 (see risks of computing).
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Yahoo! Inc.
Yahoo! (NASDAQ symbol: YHOO) has played an important 
role in the development of Web services. In 1994 Stan-
ford students Jerry Yang and David Filo developed the first 
popular directory of Web sites (see portal). Realizing that 
the millions of Web users flocking to their site provided an 
opportunity for advertising and services, the two partners 
incorporated Yahoo! in 1995. (In 1996 the company went 
public and raised $33.8 million, a significant amount at 
a time when the business potential of the Web was only 
beginning to be appreciated.)

Yahoo! continued to grow, and the company acquired 
a number of other online services, which they used to pro-
vide Web-based e-mail, Web hosting, and news. But having 
flown so high, Yahoo! had far to fall when the dot-com mar-
ket bubble burst in 2001: A stock that had traded at around 
$130.00 per share fell as low as $4.06.

However, Yahoo! proved its resilience as one of the few 
early dot-coms to survive and has continued to thrive in 
the post-bubble era since 2002. The company made strate-
gic partnerships with telecommunications companies such 
as BT and Verizon. Yahoo! entered a continuing struggle 
with another Web services powerhouse (see Google) while 
acquiring new media sites (such as the photo-sharing ser-
vice Flickr and the social “bookmarking” service del.icio.
us), and creating new services (see blogs and blogging 
and social networking). Yahoo! also provides online 
storefronts, competing in that venue mainly with eBay.

Yahoo! has a strong international presence, which, how-
ever, led to a controversial case where the company pro-
vided user information to Chinese authorities that led to 
imprisonment of two dissidents on charges of passing state 
secrets. (A lawsuit by the families of the dissidents was 
settled by Yahoo.)

Yahoo!’s main source of revenue remains search-related 
advertising. The company may have received a competitive 
boost in 2007 with a new online advertising system called 
“Panama,” catching up to similar technology previously 
deployed by Google. In fiscal 2007 Yahoo! had revenue of 
$6.7 billion and earned about $730 million. At the time 
Yahoo! had about 13,600 employees.

In 2008 Yahoo! became the target of a takeover bid by 
Microsoft. Although this has met with at least initial rejec-
tion, rumors continued, including the possibility that Time 
Warner might acquire the company and merge it with its 
AOL division.
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young people and computing
Computers and technology play a role in the lives of most 
young people that many adults have difficulty compre-
hending. Children in industrialized countries are liable to 
encounter video games even before they arrive at school. 
Once there, they will be exposed to a considerable amount 
of educational software, depending on their school’s afflu-
ence (see education and computers). Upon returning 
from school, there are more sophisticated games, MySpace 
pages to keep updated (see social networking), sophisti-
cated tools for creating music and video, and, of course, the 
Internet in all its vast diversity. Meanwhile, a web of inces-
sant messages (see texting and instant messaging) is 
likely to keep the youngster in touch with friends.

Challenges
A major positive aspect of young peoples’ involvement with 
computer technology is that, as with learning a second lan-
guage, learning the “language” of the digital world is easiest 
for the young. The capabilities and opportunities for creativ-
ity offered to today’s teens are astonishing—as are many 
of the impressive results that can be seen in young peo-
ples’ blogs, Web sites, and YouTube videos. It is also widely 
believed that children will need to master current and 
emerging technology in order to be competitive as adults.

At the same time, adults and parents in particular 
remain concerned about the dangers and drawbacks of 
teens’ pervasively digital life. A 2007 survey by the Pew 
Internet & American Life Project found that a majority of 
parents whose children were online had rules about what 
their kids could see or play—and for how long each day. In 
general parents seem to be becoming somewhat less enthu-
siastic about their children’s online activities even as the 
latter’s positive attitude toward the technology continues 
to increase. Use of protective software (see Web filter) is 
common, although tech-savvy teens have a way of staying 
ahead of the curve of parental restrictions.

Common parental concerns include:

• � potential exposure to online sexual predators or bully-
ing (see cyberstalking and harassment)

• � viewing of inappropriate material such as pornogra-
phy and highly violent games
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• � excessive time spent online to the detriment of study, 
physical activity, or sleep

While some of this concern echoes an earlier genera-
tion’s misgivings about television, the online world is far 
more deeply embedded in daily life, and both opportunities 
and concerns are thus more complex (see identity in the 
online world). While parents can learn more about the 
relevant issues, and schools can help students develop a 
savvy, critical attitude toward technology, communication 
between generations will need to be an important strategy 
for coping with such rapid technological change.
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YouTube
Since the late 1990s, Web users (particularly younger ones) 
have been adept at sharing media content online (see file-
sharing and p2p networks). In the 2000 decade, however, 
the emphasis has shifted to users not merely sharing other 
peoples’ content, but creating their own (see user-created 
content). The first part of the recipe was the availability of 
ubiquitous digital cameras and camcorders; the second part 
was easy-to-use video-editing software; and the third part 
was a Web site that could host the results.

Created in 2005 by three former PayPal employees, the 
video-sharing site YouTube has been the leading venue for 
amateur video. Although available content includes clips 
from movies and TV shows (some unauthorized), much of 
the most interesting content is original videos created and 

uploaded by users. Beyond just sharing or accessing con-
tent, users are encouraged to rate and comment on the vid-
eos they see, and users can also subscribe to “feeds” of new 
material that is likely to be of interest to them.

By 2008 more than 83 million videos were available on 
YouTube—and hundreds of thousands added each day. 

Political Influence
Just as political pundits were beginning to notice that 
bloggers were creating parallel structures that rivaled the 
influence of the mainstream media (see journalism and 
computers), YouTube broke into the highly visual field of 
political advertising. Most candidates in the 2008 presiden-
tial primaries have put their statements and other videos on 
YouTube. However, other supporters soon got into the act, 
including the creator of a pro–Barack Obama ad that cast 
rival Hillary Rodham Clinton in the role of Big Brother in 
the classic “1984” Apple Macintosh commercial (see mash-
ups). Political commentators and journalists have also been 
active in putting their opinions on YouTube (or comment-
ing on those of others). Perhaps the political establishment’s 
biggest nod to YouTube is the series of debates cosponsored 
by CNN and YouTube, bringing together the Republican 
and Democratic primary fields.

YouTube has had its share of criticism: Critics have 
charged the service with not sufficiently policing copyright 
violations and violent content (including videos of fights 
or bullying in schools), as well as neo-Nazi propaganda, 
scenes of animal abuse, and videos by anti-American insur-
gent groups, as well as generally tasteless exhibitionism. A 
few countries and some schools have responded by block-
ing access to the service.

If YouTube’s main resource is the creativity and enthusi-
asm of its users, its main revenue is advertising—about $15 
million per month by 2006. Don Tapscott and Anthony D. 
Williams, authors of the book Wikinomics, cite YouTube as 
a classic example of the new economics of mass collabora-
tion on the Web. Google signaled its appreciation for the 
economic potential of YouTube by buying it for $1.65 billion 
in late 2006.

Further Reading
Fah, Chad. How to Do Everything with YouTube. Emeryville, Calif.: 

McGraw-Hill Osborne, 2007.
Miller, Michael. YouTube 4 You. Indianapolis: Que, 2007.
Sahlin, Doug. YouTube for Dummies. Indianapolis: Wiley, 2007.
YouTube. Available online. URL: http://www.youtube.com. Accessed 

December 4, 2007.
Weber, Steve. Plug Your Business! Marketing on MySpace, YouTube, 

Blogs and Podcasts, and Other Web 2.0 Social Networks. Falls 
Church, Va.: Weber Books, 2007.

Winograd, Morley, and Michael D. Hais. Millennial Makeover: 
MySpace, YouTube, and the Future of American Politics. Pisca-
taway, N.J.: Rutgers University Press, 2008.

524       YouTube



525

Zuse, Konrad
(1910–1995)
German
Engineer, Inventor

Great inventions seldom have a single parent. Although 
popular history credits Alexander Graham Bell with the 
telephone, the almost forgotten Elisha Gray invented the 
device at almost the same time. And although the ENIAC 
is widely considered to be the first practical electronic digi-
tal computer (see Eckert, J. Presper and Mauchly, John) 
another American inventor built a smaller machine on 
somewhat different principles that also has a claim to being 
“first” (see Atanasoff, John). Least known of all is Konrad 
Zuse, perhaps because he did most of his work in a nation 
that was plunging the world into war.

Zuse was born on June 22, 1910, in Berlin. He stud-
ied civil engineering at the Technische Hochschule Berlin-
Charlottenburg, receiving his degree in 1935. One of his 
tasks in engineering was performing calculations of the 
stress on structures such as bridges. At the time these cal-
culations were carried out by going through a series of steps 
on a form over and over again, plugging in the data and 
calculating by hand or using an electromechanical calcula-
tor. Like other inventors before him, Zuse began to wonder 
whether he could build a machine that could carry out 
these repetitive steps automatically.

Zuse was unaware of the nearly forgotten work of 
Charles Babbage and that of other inventors in America 
and Britain who were beginning to think along the same 
lines (see Babbage, Charles). With financial help from his 

parents (and the loan of their living room), Zuse began to 
assemble his first machine from scrounged parts. His first 
machine, the Z1, was completed in 1938. The machine used 
slotted metal plates with holes and pins that could slide to 
carry out binary addition and other operations (in using 
the simpler binary system rather than decimal, Zuse was 
departing from other calculator designers).

The Z1 had trouble storing and retrieving numbers and 
never worked well. Undeterred, Zuse began to develop a 
new machine that used electromechanical telephone relays 
(a ubiquitous component that was also favored by Howard 
Aiken [see Aiken, Howard]). The new machine worked 
much better, and Zuse successfully demonstrated it at the 
German Aerodynamics Research Institute in 1939.

With World War II under way, Zuse was able to obtain 
funding for his Z3, which was able to carry out automatic 
sequences from instructions (Zuse used discarded movie 
film instead of punched tape). The machine used 22-bit 
words and had 600 relays in the calculating unit and 
1,800 for the memory. However, the machine could not do 
branching or looping the way modern computers can. It 
was destroyed in a bombing raid in 1944. Meanwhile, Zuse 
used spare time from his military duties at the Henschel 
aircraft company to work on the Z4, which was completed 
in 1949. This machine was more fully programmable and 
was comparable to Howard Aiken’s Mark I.

By that time, however, Zuse’s electromechanical technol-
ogy had been surpassed by the fully electronic vacuum tube 
computers such as the ENIAC and its successors. (Zuse had 
considered vacuum tubes but had rejected them, believ-
ing that their inherent unreliability and the large numbers 
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needed would make them impracticable for a large-scale 
machine.) During the 1950s and 1960s, Zuse ran a com-
puter company, ZUSE KG, which eventually produced elec-
tronic vacuum tube computers.

Zuse’s most interesting contribution to computer science 
would not be his hardware but a programming language 
called Plankalkül or “programming calculus.” Although the 
language was never implemented, it was far in advance of 
its time in many ways. It started with the radically simple 
concept of grouping individual bits to form whatever data 
structures were desired. It also included program modules 
that could operate on input variables and store their results 
in output variables (see procedures and functions). Pro-
grams were written using a notation similar to mathemati-
cal matrices.

Zuse labored in obscurity even within the computer sci-
ence fraternity. However, toward the end of his life his work 
began to be publicized. He received numerous honorary 
degrees from European universities as well as awards and 
memberships in scientific and engineering academies. Zuse 
also took up abstract painting in his later years. He died on 
December 18, 1995.
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The following selections provide reference material and 
resources to supplement the Further Reading selections at 
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The following chronology lists some significant events in the 
history of computing. Although the first calculators (i.e., 
the abacus) were known in ancient times, the chronology 
begins with the development of modern mathematics and the 
first calculators in the 17th century.

1617

John Napier published an explanation of “Napier’s bones,” 
a manual aid to calculation based on logarithms, and the 
ancestor to the slide rule.

1624

William Schickard invented a mechanical calculator that 
can perform automatic carrying during addition and sub-
traction. It can also multiply and divide by repeated addi-
tions or subtractions.

1642

Blaise Pascal invented a calculator that he calls the Pas-
caline. Its improved carry mechanism used a weight to allow 
it to carry several places. A small batch of the machines was 
made, but it did not see widespread use.

1673

Gottfried Wilhelm Leibniz (co-inventor with Isaac Newton 
of the calculus) invented a calculator called the Leibniz 
Wheel. He also wrote about the binary number system that 
eventually became the basis for modern computation.

1786

J. H. Muller invented a “difference engine,” a machine that 
can solve polynomials by repeated addition or subtraction.

1822

Charles Babbage designed and partially built a much more 
elaborate difference engine.

1832

Babbage sketched out a detailed design for the Analytical 
Machine. This machine was to have been programmed by 
punched cards, storing data in a mechanical memory, and 

•

•

•

•

•

•

•

even including a printer. Although it was not built during 
his lifetime, Babbage’s machine embodied most of the con-
cepts used in modern computers.

1843

Ada Lovelace provided extensive commentary on a book by 
Babbage’s Italian supporter Menabrea. Besides being the 
first technical writer, Lovelace also wrote what might be 
considered the world’s first computer program.

1844

Samuel Morse demonstrated the electromagnetic telegraph 
by sending a message from Washington to Baltimore. The 
telegraph inaugurated both electric data transmission and 
the use of a binary character code (dots and dashes).

1850

Amedee Mannheim created the first modern slide rule. It 
will become an essential accessory for engineers and scien-
tists until the inexpensive electronic calculator arrived in 
the 1970s.

1854

George Boole’s book The Laws of Thought described what is 
now called Boolean algebra. Boolean operators are essen-
tial for the branching statements and loops that control 
the operation of computer programs.

1884

W. S. Burroughs marketed his first adding machine, begin-
ning what will become an important calculator (and later, 
computer) business.

1890

Herman Hollerith’s punched card tabulator enabled 
the U.S. government to complete the 1890 census in record 
time.

1896

Hollerith founded the Tabulating Machine Company, 
which will become the Computing, Tabulating, and Record-

•

•

•

•

•

•

•
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ing company (CTR) in 1911. In 1924, it will become Interna-
tional Business Machines (IBM).

1904

J. A. Fleming invented the diode vacuum tube. Together with 
Lee de Forest’s invention of the triode two years later, this 
development defined the beginnings of electronics, offering a 
switching mechanism much faster than mechanical relays.

1919

The “flip-flop” circuit was invented by two American physi-
cists, W. H. Eccles and R. W. Jordan. The ability of the cir-
cuit to switch smoothly between two (binary) states would 
form the basis for computer arithmetic logic units.

1921

Karl Capek’s play R.U.R. introduced the term robot. Robots 
will become a staple of science fiction “pulps” starting in the 
1930s.

1930

Vannevar Bush’s elaborate analog computer, the Differen-
tial Analyzer, went into service.

1936

Alonzo Church developed the lambda calculus, which can 
be used to demonstrate the computability of mathematical 
problems.

Konrad Zuse built his first computer, a mechanical machine 
based on the binary system.

1937

Alan Turing provided an alternative (an equivalent) demon-
stration of computability through his Turing Machine, an 
imaginary computer that can reduce any computable prob-
lem to a series of simple operations performed on an endless 
tape.

Bell Laboratories mathematician George Stibitz created 
the first circuit that could perform addition by combining 
Boolean operators.

1938

In a key development in robotics, Doug T. Ross, an Ameri-
can engineer, created a robot that can store its experience in 
memory and “learn” to navigate a maze.

G. A. Philbrick developed an electronic version of the ana-
log computer.

Working in a garage near Stanford University, William 
Hewlett and David Packard began to build audio oscillators. 
They called their business the Hewlett-Packard Company. 
Fifty years later, the garage would be preserved as a histori-
cal landmark.

1939

John Atanasoff and Clifford Berry built a small electronic 
binary computer called the Atanasoff-Berry Computer 
(ABC). A 1973, court decision would give this machine pre-
cedence over ENIAC as the first electronic digital computer.
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George Stibitz built the Complex Number Calculator, which 
is controlled by a keyboard and uses relays.

1940

Claude Shannon introduced the fundamental concepts of 
data communications theory.

George Stibitz demonstrated remote computing by control-
ling his Complex Number Calculator in New York from a 
Teletype terminal at Dartmouth College in New Hamp-
shire.

1941

Working in isolation in wartime Germany, Konrad Zuse 
completed the Z3. Although still mechanical rather than 
electronic, the machine used sophisticated floating-point 
numeric data.

1943

The British-built Colossus, an electronic (vacuum tube) spe-
cial-purpose computer that can rapidly analyze permuta-
tions to crack the German Enigma cipher.

1944

Howard Aiken completed the Harvard Mark I, a large pro-
grammable calculator (or computer) using electromechani-
cal relays.

John von Neumann and Stanislaw Ulam developed the 
Monte Carlo method of probabilistic simulation, a tool 
that would find widespread use as computer power becomes 
available.

1945

Zuse continued computer development and created a 
sophisticated matrix-based programming language called 
Plankalkül.

Vannevar Bush envisioned hypertext and knowledge link-
ing and retrieval in his article “As We May Think.”

Alan Turing developed the concept of using procedures 
and functions (subroutines) called with parameters. His 
team also developed the Pilot ACE (Automatic Comput-
ing Engine), which would help the development of a British 
computer industry.

1946

ENIAC went into service. Developed by J. Presper Eckert 
and John Mauchly, the machine is widely considered to 
be the first large-scale electronic digital computer. It used 
18,000 vacuum tubes.

In the “Princeton Reports” based upon the ENIAC work, John 
von Neumann, together with Arthur W. Burks and Herman 
Goldstine described the fundamental operations of modern 
computers including the stored program concept—the hold-
ing of all program instructions in memory, where they can be 
referred to repeatedly and even manipulated like other data.

1947

The Association for Computing Machinery (ACM) was 
founded.
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Eckert and Mauchly formed the Eckert-Mauchly Corpo-
ration for commercial marketing of computers based on the 
ENIAC design.

John von Neumann began development of the EDVAC 
(Electronic Discrete Variable Automatic Calculator) for 
the U.S. government’s Ballistic Research Laboratory. This 
machine, completed in 1952, would be the first to use pro-
grams completely stored in memory and able to be changed 
without physically changing the hardware.

Richard Hamming developed error correction algorithms.

Alan Turing’s paper on “Intelligent Machinery” began lay-
ing the groundwork for artificial intelligence research.

In Britain, Manchester University built the first electronic 
computer that can store a full program in memory. It was 
called “baby” because it was a small test version of a planned 
larger machine. For its main memory it used a CRT-like tube 
invented by F. C. Williams.

IBM under Thomas J. Watson, Sr. decided to enter the new 
computer field in a big way by beginning to develop the 
Selective Sequence Electronic Calculator (SSEC) as a com-
petitor to ENIAC and the Harvard Mark I. The huge machine 
used thousands of both vacuum tubes and relays.

Tom Kilburn and M. H. A. Newman invented the index reg-
ister, which would be used to keep track of the current loca-
tion in memory of instructions or data.

The transistor was invented at Bell Labs by John Bard-
een, Walter Brattain, and William Shockley. The solid-state 
device could potentially replicate all the functionality of the 
vacuum tube with much less size and power consumption. 
It would be some time before it was inexpensive enough to 
be used in computers, however.

Norbert Wiener coined the term cybernetics to refer to con-
trol and feedback systems.

Claude Shannon formally introduced statistical informa-
tion theory.

1949

The Cambridge EDSAC demonstrated versatile stored-pro-
gram computing. Meanwhile, Eckert and Mauchly work 
on BINAC, a successor/spinoff of ENIAC for Northrop Air-
craft Corporation.

Frank Rosenblatt developed the perceptron, the first form of 
neural network, for solving pattern-matching problems.

An Wang patented “core memory,” using an array of magne-
tized rings and wires, which would become the main mem-
ory (RAM) for many mainframes in the 1950s.

1950

Alan Turing proposed the Turing Test as a way to demon-
strate artificial intelligence.

Development began of the high-speed computers Whirlwind 
and SAGE for the U.S. military. The military also began to 
use computers to run war games or simulations.

Claude Shannon outlined the algorithms for a chess-play-
ing program that could evaluate positions and perform heu-
ristic calculations. He would build a chess-playing computer 
called Caissac.
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Japan began development of electronic computers under the 
leadership of Hideo Yamashita, who would build the Tokyo 
Automatic Calculator.

Approximately 60 electronic or electromechanical comput-
ers were in operation worldwide. Each was built “by hand” 
as there were no production models yet.

1951

Eckert and Mauchly marketed Univac I, generally consid-
ered the first commercial computer (although the Ferranti 
Mark I is sometimes given co-honors).

An Wang founded Wang Laboratories, which would become 
a major computer manufacturer through the 1970s.

Grace Hopper at Remington Rand coined the word com-
piler and began developing automatic systems for creating 
machine codes from higher-level instructions.

1952

Alick Glennie developed autocode, generally considered to 
be the first true high-level programming language.

Magnetic core memory began to come into use.

election night a Univac I predicted that Dwight D. Eisen-
hower would win the 1952 U.S. presidential election. It 
made its prediction an hour after the polls closed, but its 
findings were not released at first because news analysts 
insisted the race was closer.

MANIAC was On developed to do secret nuclear research in 
Los Alamos.

The IBM 701 went into production. It was one of the first 
computers to use magnetic tape drives as primary means 
of data storage.

IBM was accused of violating the Sherman Antitrust Act 
in its computer business. Litigation in one form or another 
would drag on until 1982.

John von Neumann described self-reproducing automata.

The symbolic assembler was introduced by Nathaniel 
Rochester.

IBM and Remington Rand (Univac) dominated the young 
computer industry.

1954

The ibm 650 was marketed. It was the first truly mass-pro-
duced computer, and relatively affordable by businesses and 
industries. It used a magnetic drum memory.

In Britain, the Lyons Electronic Office (LEO) became the 
first integrated computer system for use for business appli-
cations, primarily accounting and payroll.

1955

Grace Hopper created Flow-matic, the first high-level lan-
guage designed for business applications of computers.

The Computer Usage Company (CUC) was founded by John 
W. Sheldon and Elmer C. Kubie. It is considered to be the 
first company devoted entirely to developing computer soft-
ware rather than hardware.

Bendix marketed the G-15, its competitor to the IBM 650 in 
the “small” business computer market.
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Users of the new IBM 704 mainframe, frustrated at the 
lack of technical supported, formed the first computer user 
group, called SHARE.
The large ibm 705 mainframe is marketed by IBM. It uses 
magnetic core memory.

1956

The IBM 704 and Univac 1103 introduced a new generation 
of commercial mainframes with magnetic core storage.
John McCarthy coined the term artificial intelligence, 
or AI.
The Dartmouth AI conference brought together leading 
researchers such as McCarthy, Marvin Minsky, Herbert 
Simon, and Allen Newell. It would set the agenda for the field.
Newell, Shaw, and Simon developed Logic Theorist, the first 
program that can prove theorems.
A. I. Dumey described hashing, a procedure for quickly 
sorting or retrieving data by assigning calculated values.
The infant transistor industry began to grow as companies 
such as IBM began to build transistorized calculators.
IBM signed a consent decree ending the 1952 antitrust com-
plaint by restricting some of its business practices in selling 
mainframe computers.

1957

John Backus and his team released fortran, which would 
become the most widely used language for scientific com-
puting applications.
Digital Equipment Corporation (DEC) was founded by Ken 
Olsen and Harlan Anderson. The company’s agenda involved 
the development of a new class of smaller computer, the 
minicomputer.
Minicomputer development would be inspired by the MIT 
TX-0 computer. While not yet a “mini,” the machine was the 
first fully transistorized computer.
The hard drive came into service in ibm’s 305 RAMAC.
IBM developed the first dot matrix printer.

1958

The I/O interrupt used by devices to signal their needs to 
the CPU was developed by ibm. It would be used later in 
personal computers.
China began to build computers based on Soviet designs, 
which in turn had been based upon American and British 
machines.
Sperry Rand introduced the Univac II, a huge, powerful, 
and surprisingly reliable computer that used 5,200 vacuum 
tubes, 18,000 crystal diodes, and 184,000 magnetic cores.
Jack Kilby of Texas Instruments built the first integrated 
circuit, fitting five components onto a half-inch piece of ger-
manium.
As the cold war continued, the U.S. Air Force brought SAGE 
on-line. This integrated air defense system featured real-
time processing and graphics displays.

1959

John McCarthy developed Lisp, a language based on 
Alonzo Church’s lambda calculus and including extensive 
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facilities for list processing. It would become the favorite 
language for artificial intelligence research.

cobol was introduced, with much of the key work and 
inspiration coming from Grace Hopper.

ibm marketed the 7090 mainframe, a large transistorized 
machine that could perform 229,000 additions a second. The 
smaller IBM 1401 would prove to be even more popular. IBM 
also introduced a high-speed printer using type chains.

Robert Noyce of Fairchild Semiconductor built a different 
type of integrated circuit, using aluminum traces and layers 
deposited on a silicon substrate.

1960

Digital Equipment Corporation (DEC) marketed the PDP-1, 
generally considered the first commercial minicomputer.

Control Data Corporation (CDC) impressed the industry 
with its CDC 1604, designed by Seymour Cray. It offered 
high speed at considerably lower prices than ibm and the 
other major companies.

The Algol language demonstrated block structure for better 
organization of programs. The report on the language intro-
duced BNF (Backus-Naur form) as a systematic descrip-
tion of computer language grammar.

Donald Blitzer introduced PLATO, the first large-scale 
interactive computer-aided instruction system. It would 
later be marketed extensively by Control Data Corporation 
(CDC).

Paul Baran of RAND developed the idea of packet-switching to 
allow for decentralized information networks; the idea would 
soon attract the attention of the U.S. Defense Department.

In an advance in practical robotics, the remote-operated 
“Handyman” robot arm and hand was put to work in a 
nuclear power plant.

The U.S. Navy began to develop the Naval Tactical Data 
System (NTDS) to track targets and the status of ships in a 
combat zone.

1961

Time-sharing computer systems came into use at MIT and 
other facilities. Among other things, they encouraged the 
efforts of the first hackers to find clever things to do with 
the computers.

Leonard Kleinrock’s paper “Information Flow in Large Com-
munication Nets” was the first description of the packet-
switching message transfer system that would underlie the 
Internet.

Arthur Samuel’s ongoing research into computer games 
design culminated in his checkers program reaching mas-
ter level. The program includes learning algorithms that can 
improve its play.

The ibm STRETCH (IBM 7030) is installed at Los Alamos 
National Laboratory. Its advanced “pipeline” architecture 
allowed new instructions to begin to be processed while 
preceding ones were being finished. It and Univac’s LARC 
are sometimes considered to be the first supercomputers.

IBM made a major move into scientific computing with 
its modular 7040 and 7044 computers, which can be used 
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together with the 1401 to build a “scalable” installation for 
tackling complex problems.

Unimation introduced the industrial robot (the Unimate).

Fairchild Semiconductor marketed the first commercial 
integrated circuit.

1962

The discipline of computer science began to emerge 
with the first departments established at Purdue and Stan-
ford.

MIT students created Spacewar, the first video computer 
game, on the PDP-1.

On a more practical level, MIT programmers Richard Green-
blatt and D. Murphy develop TECO, one of the first text 
editors.

J. C. R. Licklider described the “Intergalactic Network,” 
a universal information exchange system that would help 
inspire the development of the Internet.

Douglas Engelbart invented the computer mouse at SRI.

IBM developed the SABRE online ticket reservation system 
for American Airlines. The system will soon be adopted 
by other carriers and demonstrate the use of networked 
computer systems to facilitate commerce. Meanwhile, ibm 
earned $1 billion from its computer business, which by then 
had overtaken its traditional office machines as the compa-
ny’s leading source of revenue.

1963

Joseph Weizenbaum’s Eliza program carried on natural-
sounding conversations in the manner of a psychotherapist.

Ivan Sutherland developed Sketchpad, the first computer 
drawing system.

Reliable Metal Oxide Semiconductor (MOS) integrated cir-
cuits were perfected, and would become the basis for many 
electronic devices in years to come, including computers for 
space exploration.

1964

The ibm System/360 was announced. It would become the 
most successful mainframe in history, with its successors 
dominating business computing for the next two decades.

IBM introduced the MT/ST (Magnetic Tape/Selectric Type-
writer), considered to be the first dedicated word pro-
cessing system. While rudimentary, it allowed text to be 
corrected before printing.

Seymour Cray’s Control Data CDC 6600 is announced. 
When completed, it ran about three times faster than IBM’s 
STRETCH, irritating Thomas Watson, head of the far larger 
IBM.

J. Kemeny and T. Kurtz developed basic to allow students to 
program on the Dartmouth time-sharing system.

At the other end of the scale, IBM introduced the complex, 
feature-filled PL/1 (Programming Language 1) for use with 
its System/360.

The American National Standards Institute (ANSI) officially 
adopted the ASCII (American Standard Code for Informa-
tion Interchange) character code.
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Paul Baran of SRI wrote a paper, “On Distributed Commu-
nication Networks,” further describing the implementation 
of packet-switched network that could route around disrup-
tions. The work began to attract the attention of military 
planners concerned with air defense and missile control sys-
tems surviving nuclear attack.

Jean Sammet and her colleagues developed the first com-
puter program that can do algebra.

Gordon Moore (a founder of Fairchild Semiconductor and 
later, of Intel Corporation) stated that the power of CPUs 
would continue to double every 18 to 24 months. “Moore’s 
law” proved to be remarkably accurate.

1965

ibm introduced the floppy disk (or diskette) for use with its 
mainframes.

Edsgar Dijkstra devised the semaphore, a variable that two 
processes can use to synchronize their operations and aid-
ing the development of concurrent programming.

The APL language developed by Kenneth Iverson provided 
a powerful, compact, but perhaps cryptic way to formulate 
calculations.

The Simula language introduced what will become known 
as object-oriented programming.

The DEC PDP-8 became the first mass-produced minicom-
puter, with over 50,000 systems being sold. The machine 
brings computing power to thousands of universities, 
research labs, and businesses that could not afford main-
frames. Designed by Edson deCastro and engineered by Gor-
don Bell, the PDP-8 design marked an important milestone 
on the road to the desktop PC.

NASA uses an IBM onboard computer to guide Gemini 
astronauts in their first rendezvous in space.

The potential of the expert system was demonstrated by 
Dendral, a specialized medical diagnostic program that 
began development by Edward Feigenbaum, Joshua Leder-
berg, and Bruce Buchanan.

The U.S. Defense Department’s ARPA (Advanced Research 
Projects Agency) sponsored a study of a “co-operative net-
work of time-sharing computers.” A testbed network was 
begun by connecting a TX-2 minicomputer at MIT via phone 
line to a computer at System Development Corporation in 
Santa Monica, California.

Ted Nelson’s influential vision of universal knowledge shar-
ing through computers introduced the term hypertext.

1966

In the first federal case involving computer crime (U.S. v. 
Bennett), a bank programmer is convicted of altering a bank 
program to allow him to overdraw his account.

The first ACM Turing Award is given to Alan Perlis.

The New York Stock Exchange automated much of its trad-
ing operations.

1967

The memory cache (a small amount of fast memory used 
for instructions or data that are likely to be needed) was 
introduced in the IBM 360/85 series.
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ibm developed the first floppy disk drive.

Seymour Papert introduced Logo, a Lisp-like language that 
would be used to teach children programming concepts 
intuitively.

A chess program written by Richard Greenblatt of MIT, 
Mac Hack IV, achieved the playing skill of a strong amateur 
human player.

Fred Brooks did early experiments in computer-mediated 
sense perception, laying groundwork for virtual reality.

1968

Edsger Dijkstra’s little letter entitled “GO TO Considered 
Harmful” argued that the GOTO or “jump” statement made 
programs hard to read and more prone to error. The result-
ing discussion gave impetus to the structured program-
ming movement. Another aspect of this movement was the 
introduction of the term software engineering.
Robert Noyce, Andrew Grove, and Gordon Moore founded 
Intel, the company that would come to dominate the 
microprocessor industry by the early 1980s.

ibm introduced the System/3, a lower-cost computer system 
designed for small businesses.

Bolt, Beranek and Newman (BBN) was awarded a govern-
ment contract to build “interface message processors” or 
IMPs to translate data between computers linked over 
packet-switched networks.

Alan Kay prototyped the Dynabook, a concept that led 
toward both the portable computer and the graphical 
user interface.

Stanley Kubrick’s movie 2001 introduced Hal 9000, the 
self-aware (but paranoid) computer that kills members of a 
deep-space exploration crew.

1969

Ken Thompson and Dennis Ritchie began work on the 
unix operating system. It will feature a small kernel that 
can be used with many different command shells, and will 
eventually incorporate hundreds of utility programs that 
can be linked to perform tasks.

Edgar F. Codd introduced the concept of the relational sys-
tem that would form the foundation for most modern data-
base management system.

ibm was sued by the U.S. Department of Justice for antitrust 
violations. The voluminous case would finally be dropped in 
1982. However, government pressure may have led the com-
puter giant to finally allow its users to buy software from 
third parties, giving a major boost to the software industry.

ARPANET is officially launched. The first four nodes of the 
ARPANET came online, prototyping what would eventually 
become the Internet.

SRI researchers developed Shakey, the first mobile robot 
that could “see” and respond to its environment. The actual 
control computer was separate, however, and controlled the 
robot through a radio link.

Neil Armstrong and Edwin Aldrin successfully made the 
first human landing on the Moon, despite problems with the 
onboard Apollo Guidance Computer.

The first automatic teller machine (ATM) was put in service.
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1970

Gene Amdahl left ibm to found Amdahl Corporation, which 
would compete with IBM in the mainframe “clone” market.

An Intel Corporation team led by Marcian E. Hoff began to 
develop the Intel 4004 microprocessor.

Digital Equipment Corporation announced the PDP-11, the 
beginning of a series of 16-bit minicomputers that will sup-
port time-sharing computing in many universities.

John Conway’s “Game of Life” popularized cellular 
automata.

The ACM held its first all-computer chess tournament in 
New York City. Northeastern University’s Chess 3.0 topped 
the field of six programs competing.

Charles Moore began writing programs to demonstrate the 
versatility of his programming language Forth.

Xerox Corporation established the Palo Alto Research Cen-
ter (PARC). This laboratory will create many innovations in 
interactive computing and the graphical user interface.

1971

Niklaus Wirth formally announced Pascal, a small, well-
structured language that will become the most popular 
language for teaching computer science for the next two 
decades.

The IEEE Computer Society was founded.

The ibm System/370 series ushered in a new generation of 
mainframes using densely packed integrated circuits for 
both cpu and memory.

1972

Dennis Ritchie and Brian Kernighan developed c, a com-
pact language that would become a favorite for systems pro-
gramming, particularly in unix.

The creation of an e-mail program for the ARPANET 
included the decision to use the at (@) key as part of e-mail 
addresses.

Alan Kay developed Smalltalk, building upon SIMULA 
to create a powerful, seamless object-oriented program-
ming language and operating system. The language would 
eventually be influential although not widely used. Kay also 
prototyped the Dynabook, a notebook computer, but Xerox 
officials showed little interest.

Seymour Cray left CDC and founded Cray Research to 
develop new supercomputer.

Intel introduced the 8008, the first commercially available 
8-bit microprocessor.

The 5.25-inch diskette first appeared. It would become a 
mainstay of personal computing until it was replaced by the 
more compact 3.5-inch diskette in the 1990s.

Nolan Bushnell’s Atari Corp. had the first commercial com-
puter game hit, Pong. It and its beeping cousins would soon 
become an inescapable part of every parent’s experience.

1973

Alain Colmerauer and Philippe Roussel at the University of 
Marseilles developed Prolog (Programming in Logic), a 
language that could be used to reason based upon a stored 
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base of knowledge. The language would become popular for 
expert systems development.

Bell Laboratories established a group to support and pro-
mulgate the unix operating system.

The Ethernet protocol for LANs (local area networks) 
was developed by Robert Metcalfe.

In a San Francisco hotel lobby Vinton Cerf sketched the 
architecture for an Internet gateway on a napkin.

Don Lancaster published his “TV Typewriter” design in 
Radio Electronics. It would enable hobbyists to build displays 
for the soon-to-be available microcomputer.

The Boston Computer Society (BCS) was founded. It became 
one of the premier computer user groups.

Gary Kildall founded Digital Research, whose CP/M oper-
ating system would be an early leader in the microcom-
puter field.

A federal court declared that the Eckert-Mauchly ENIAC 
patents were invalid because John Atanasoff had the same 
ideas earlier in his ABC computer.

1974

The Alto graphical workstation was developed by Alan 
Kay and others at Xerox PARC. It did not achieve commer-
cial success, but a decade later something very much like it 
would appear in the form of the Apple Macintosh.

An international computer chess tournament is won by the 
Russian KAISSA program, which crushed the American 
favorite Chess 4.0.

Computerized product scanners were introduced in an Ohio 
supermarket.

Intel released the 8080, a microprocessor that had 6,000 
transistors, could execute 640,000 instructions per second, 
was able to access 64 kB of memory, and ran at a clock rate 
of 2 MHz.

David Ahl’s Creative Computing magazine began to offer an 
emphasis on using small computers for education and other 
human-centered tasks.

Vinton Cerf and Robert Kahn began to publicize their tcp/
ip internet protocol.

A group at the University of California, Berkeley, began to 
develop their own version of the unix operating system.

The 1974 Privacy Act began the process of trying to protect 
individual privacy in the digital age.

1975

Fred Brooks published the influential book The Mythical 
Man-Month. It explained the factors that bog down soft-
ware development and focused more attention on software 
engineering and its management.

Electronics hobbyists were intrigued by the announcement 
of the MITS Altair, the first complete microcomputer sys-
tem available in the form of a kit. While the basic kit cost 
only $395, the keyboard, display, and other peripherals were 
extra.

MITS founder Ed Roberts also coined the term personal 
computer. Hundreds of hobbyists built the kits and yearned 
for more capable machines. Many hobbyists flocked to 
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meetings of the Homebrew Computer Club in Menlo Park, 
California.

ibm introduced the first commercially available laser 
printer. The very fast, heavy-duty machine was suitable 
only for very large businesses.

The first ARPANET discussion mail list was created. The 
most popular topic for early mail lists was science fiction.

In Los Angeles, Dick Heiser opened what is believed to be 
the first retail store to sell computers to “ordinary people.”

1976

Seymour Cray’s sleek, monolithlike Cray 1 set a new stan-
dard for supercomputers.

Whitfield Diffie and Martin Hellman announced a public-
key encryption system that allowed users to securely send 
information without previously exchanging keys.

ibm developed the first (relatively crude) inkjet printer for 
printing address labels.

Shugart Associates offered a floppy disk drive to microcom-
puter builders. It cost $390.

Steve Wozniak proposed that Hewlett-Packard fund the cre-
ation of a personal computer, while his friend Steve Jobs 
made a similar proposal to Atari Corp. Both proposals were 
rejected, so the two friends started Apple Computer Com-
pany.

Chuck Peddle of MOS Technology developed the 6502 
microprocessor, which would be used in the Apple, Atari, 
and some other early personal computers.

Bill Gates complained about software piracy in his “Open 
Letter to Hobbyists.” People were illicitly copying his BASIC 
language tapes. copy protection would soon be used in an 
attempt to prevent copying of commercial programs for per-
sonal computers.

Computer enthusiasts found an erudite forum in the 
magazine Dr. Dobb’s Journal of Computer Calisthenics and 
Orthodontia: Running Light without Overbyte. The more main-
stream Byte magazine also became a widely known forum 
for describing new projects and selling components.

William Crowther and Don Woods at Stanford University 
developed the first interactive computer game involving 
an adventure with monsters and other obstacles. Univer-
sity administrators would soon complain that the game was 
wasting too much computer time.

1977

Benoit Mandelbrot’s book on fractals in computing pop-
ularized a mathematical phenomenon that would find uses 
in computer graphics, data compression, and other areas.

The Data encryption Standard (DES) was announced. Crit-
ics charged that it was too weak and probably already com-
promised by spy agencies.

Vinton Cerf demonstrated the versatility and extent of 
the Internet Protocol (IP) by sending a message around the 
world via radio, land line, and satellite links.

The Charles Babbage Institute was founded. It would 
become an important resource for the study of computing 
history.
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Bill Gates and Paul Allen found a tiny company called 
Microsoft. Its first product was a basic interpreter for 
the newly emerging personal computer systems.

Radio Shack began selling its TRS-80 Model 1 personal 
computer.

The Apple II was released. It will become the most success-
ful of the early (pre-IBM) personal computers.

1978

Diablo Systems marketed the first daisy-wheel printer.

Atari announced its Atari 400 and Atari 800 personal com-
puters. They offered superior graphics (for the time).

Daniel Bricklin’s VisiCalc spreadsheet is announced. It will 
become the first software “hit” for the Apple II, leading busi-
nesses to consider using personal computers.

Ward Christiansen and Randy Suess developed the first soft-
ware for bulletin board systems (BBS).

The first West Coast Computer Faire was organized in San 
Francisco. The annual event became a showcase for inno-
vation and a meeting forum for the first decade of personal 
computing.

The BSD (Berkeley Software Distribution) version of UNIX 
was released by the group at the University of California, 
Berkeley, under the leadership of Bill Joy.

The awk (named for Aho, Weinberger, and Kernighan) 
scripting language appeared.

1979

medical applications of computing were highlighted 
when Allan M. Cormack and Godfrey N. Hounsfield 
received the Nobel Prize in medicine for the development of 
computerized tomography (CAT), creating a revolutionary 
way to examine the structure of the human body.

The Ashton-Tate company began to market dBase II, a data-
base management system that became the leader in per-
sonal computer databases during the coming decade.

Intel’s new 16-bit processors, the 8086 and 8088, began to 
dominate the market.

Hayes marketed the first modem, and the CompuServe on-
line service and early bulletin boards gave a growing num-
ber of users something to connect to.

unix users Tom Truscott, Jim Ellis, and Steve Bellovin devel-
oped a program to exchange news in the form of files copied 
between the Duke University and University of North Caro-
lina computer systems. This gradually grew into USENET 
(or netnews), providing thousands of topical newsgroups.

The first networked computer fantasy game, MUD (Multi-
User Dungeon), was developed.

The first COMDEX was held in Las Vegas. It would become 
the PC industry’s premier trade show.

Boston’s Computer Museum was founded. This perhaps sig-
naled the computing field’s consciousness of coming of age.

1980

Ada, a modular descendent of Pascal, was announced. The 
language was part of efforts by the U.S. Defense Department 
to modernize its software development process.
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RISC (reduced instruction set computer) microproces-
sor architecture was introduced.

Apple’s initial public offering of 4.6 million shares at $22 
per share sold out immediately. It was the largest IPO since 
that of Ford Motor Company in 1956. Apple founders, Steve 
Jobs and Steve Wozniak, became the first multimillionaires 
of the microcomputer generation.

XENIX, a version of unix for personal computers, was 
offered. It met with limited success.

Shugart Associates announced a hard disk drive for per-
sonal computers. The disk stored a whopping 5 megabytes.

1981

The ibm PC was announced. Apple “welcomed” its competi-
tor in ads, but the IBM machine would soon surpass its com-
petitors as the personal computer of choice for business. Its 
success is aided by a version of the VisiCalc spreadsheet 
that sells more than 200,000 copies.

Osborne introduced the portable (sort of) computer, a 
machine with the size and weight of a heavy suitcase.

Apple tried to market the Apple III as a more powerful desk-
top computer for business, but the machine was plagued 
with technical problems and did not sell well.

Digital Equipment Corporation introduced its DECmate 
dedicated word-processing system.

Xerox PARC displayed the Star, a successor to the Alto with 
512 kB of RAM. It was intended for use in an Ethernet net-
work.

A network called BITNET (“Because It’s Time Network”) 
began to link academic institutions worldwide.

Tracy Kidder’s best-selling The Soul of a New Machine 
recounted the intense Silicon Valley working culture as seen 
in the development of Data General’s latest workstation, 
the Eclipse.

Japan announced a 10-year effort to create “Fifth Generation” 
computing based on application of artificial intelligence.

1982

Sun Microsystems was founded. It would specialize in 
high-performance workstations.

AT&T began marketing unix (System III) as a commercial 
product.

Compaq became one of the most successful makers of 
“clones” or ibm PC-compatible computers, introducing a 
portable (luggable) machine.

The AutoCad program brought CAD (computer-aided 
design and manufacturing) to the desktop.

The Time magazine “man of the year” was not a person at 
all—it was the personal computer!

1983

Business use of personal computers continued to grow. 
word processing leaders WordStar and WordPerfect were 
joined by the first version of Microsoft Word. Lotus 1-2-3 
became the new spreadsheet leader.

Borland International introduced Turbo Pascal, a speedy, easy 
to use programming environment for personal computers.
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An industry pundit introduced the term vaporware to refer 
to much-hyped but never-released software, such as a prod-
uct called Ovation for ibm PCs.

IBM tried to market the PC Jr., a less-expensive PC for home 
and school users. It failed to gain a foothold in the market.

More successfully, IBM offered the PC XT, the first per-
sonal computer that had a built-in hard drive.

Radio Shack introduced the Model 100, the first practical 
notebook computer.

Apple introduced the Lisa, a $10,000 computer with a 
graphical user interface. Its high price and slow perfor-
mance made it a flop, but its ideas would be more success-
fully implemented the following year in the Macintosh.

John Sculley became president of Apple Computer, begin-
ning a bitter struggle with Apple cofounder Steve Jobs.

Richard Stallman began the GNU (GNU’s not UNIX) proj-
ect to create a version of UNIX that would not be subject to 
AT&T licensing.

The movie War Games portrayed teenage hackers taking 
control of nuclear missile facilities.

1984

A classic Super Bowl commercial introduced the Apple 
Macintosh, the computer “for the rest of us.” Based largely 
on Alan Kay’s earlier work at Xerox PARC, the “Mac” used 
menus, icons, and a mouse instead of the cryptic text com-
mands required by MS-DOS.

Meanwhile, IBM introduced a more powerful personal com-
puter, the PC/AT with the Intel 80286 chip.

Steve Jobs leaves Apple Computer to found a company called 
NeXT.

Microsoft CEO Bill Gates was featured on a Time maga-
zine cover.

The domain name system began. It allows Internet users 
to connect to remote machines by name without having to 
specify an exact network path.

British institutions develop JANET, the Joint Academic 
Network.

Science fiction writer William Gibson coined the word 
cyberspace in his novel Neuromancer. It began a new SF 
genre called cyberpunk, featuring a harsh, violent, immer-
sive high-tech world.

1985

Desktop publishing was fueled by several developments 
including John Warnock’s PostScript page description lan-
guage and the Aldus PageMaker page layout program. The 
Macintosh’s graphical interface gave it the early lead in this 
application.

Microsoft Windows 1.0 was released, using many of the 
same features as the Macintosh, although not nearly as 
well.

There was increasing effort to unify the two versions of 
unix (AT&T and BSD), with guidelines including the Sys-
tem V Interface Standard and POSIX.

Commodore introduces the Amiga, a machine with a sophis-
ticated operating system and powerful color graphics. The 
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machine had many die-hard fans but ultimately could not 
survive in the marketplace.

ibm marketed the IBM 3090, a large, powerful mainframe 
that cost $9.3 million.

The Cray 2 supercomputer broke the 1-billion-instruc-
tions-a-second barrier.

A conferencing system called the Whole Earth ‘Lectronic 
Link (WELL) was founded. Its earliest users are largely 
drawn from Grateful Dead fans and assorted techies.

1986

The National Science Foundation funded NSFNET, which 
provides high-speed Internet connections to link universi-
ties and research institutions.

Borland released a PROLOG compiler, making the artifi-
cial intelligence language accessible to PC users. A PC 
version of Smalltalk also appeared from another company.

Apple beefed up the relatively anemic Macintosh with the 
Macintosh Plus, which has more memory.

1987

Bjarne Stroustrup’s C++ language offered object-oriented 
programming in a form that was palatable to the legions of 
C programmers. The language would surpass its predecessor 
in the coming decade.

Sun marked its first workstation based on RISC (reduced 
instruction set computing) technology.

Apple sold its one millionth Macintosh. Apple also brought 
out a new line of Macs (the Macintosh SE and Macintosh II) 
that, unlike the original Macs, were expandable by plugging 
in cards.

Apple also introduced Hypercard, a simple hypertext 
authoring system that became popular with educators.

ibm introduced a new line of personal computers called the 
PS/2. It featured a more efficient BUS called the Microchan-
nel and some other innovations, but it sold only modestly. 
Most of the industry continued to further develop standards 
based upon the IBM PC AT.

The Thinking Machines Corporation’s Connection Machine 
introduced massive parallel processing. It contained 64,000 
microprocessors that could collectively perform 2 billion 
instructions per second.

1988

Robert Morris Jr.’s “worm” accidentally ran out of control on 
the Internet, bringing concerns about computer crime 
and security to public attention. The Computer Emergency 
Response Team (CERT) was formed in response.

Wolfram’s Mathematica program was a milestone in math-
ematical computing, allowing users to not merely calculate 
but also to solve symbolic equations automatically.

Cray introduced the Cray Y-MP supercomputer. It could 
process 2 billion operations per second.

ibm announced a new midrange mainframe, the AS/400.

Sandia National Laboratory began to build a massively par-
allel “hypercomputer” that would have 1,024 processors 
working in tandem.
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A consortium called the Open Software Foundation was 
established to promote open source shared software devel-
opment.

1989

The Internet now had more than 100,000 host computers.

Deep Thought defeated Danish chess grandmaster Bent 
Larsen, marking the first time a grandmaster had been 
defeated by a computer.

Intel announced the 80486 CPU, a chip with over a million 
transistors.

Astronomer Clifford Stoll’s book The Cuckoo’s Egg 
recounted his pursuit of German hackers who were seeking 
military secrets. Stoll soon became a well-known critic of 
computer technology and the Internet.

The ARPANET officially ends, having been succeeded by the 
NSFNET.

1990

Microsoft Windows became truly successful with version 
3.0, diminishing the user interface advantages of the Macin-
tosh.

At Sun Microsystems, James Gosling developed the Oak lan-
guage to control embedded systems. After the original proj-
ect was canceled, Gosling redesigned the language as Java.

ibm announced the System/390 mainframe.

ibm and Microsoft developed OS/2, an operating system 
intended to replace MS-DOS. Microsoft withdrew in favor of 
Windows, and despite considerable technical merits, OS/2 
never really takes hold.

Secret Service agents raided computer systems and bulletin 
boards, seeking evidence of illegal copying of a BellSouth 
manual, disrupting an innocent game company. In response, 
Mitch Kapor founded the Electronic Frontier Foundation 
to advocate for civil liberties of computer users. Another 
group, the Computer Professionals for Social Responsibility, 
filed a Freedom of Information Act (FOIA) request for FBI 
records involving alleged government surveillance of bulle-
tin board systems.

1991

The Science Museum in London exhibited a reconstruction 
of Charles Babbage’s never-built difference engine.

A Finnish student named Linus Torvalds found that he 
couldn’t afford a unix license, so he wrote his own unix 
kernel and combined it with GNU utilities. The result 
would eventually become the popular Linux operating 
system.

Developers at the University of Minnesota created Gopher, 
a system for providing documents over the Internet using 
linked menus. However, it was soon to be surpassed by the 
World Wide Web, created by Tim Berners-Lee at the 
CERN physics laboratory in Geneva, Switzerland.

Advanced Micro Devices began to compete with Intel by 
making IBM PC-compatible CPU chips.

Apple and ibm signed a joint agreement to develop technol-
ogy in areas that include object-oriented operating sys-
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tems, multimedia, and interoperability between Macintosh 
and IBM networks.

1992

Reports of the Michelangelo computer virus frightened 
computer users. Although the virus did little damage, it 
spurred more users to practice “safe computing” and install 
antivirus software.

Motorola announced the Power PC, a 32-bit RISC micro-
processor that contains 28 million transistors.

An estimated 1 million host computers were on the Inter-
net. The Internet Society is founded to serve as a coordina-
tor of future development of the network.

1993

Apple’s Newton handheld computer created a new cat-
egory of machine called the pda, or personal digital assis-
tant.

Microsoft Windows NT was announced. It is a version of 
the operating system designed especially for network serv-
ers.

Steve Jobs announced that his NeXT company would 
abandon its hardware efforts and concentrate on market-
ing its innovative operating system and development 
software.

Leonard Adleman demonstrated molecular computing by 
using DNA molecules to solve the Traveling Salesman prob-
lem.

The Cray 3 supercomputer continued the evolution of that 
line. It could be scaled up to a 16-processor system.

The Mosaic graphical Web browser popularized the World 
Wide Web.

The Clinton administration announced plans to develop a 
national “Information Superhighway” based on the Inter-
net. Volunteer “Net Day” programs would begin to connect 
schools to the network.

The White House established its Web site, www.whitehouse.
gov.

1994

Mosaic’s developer, Marc Andreessen, left NCSA and joined 
Jim Clark to found Netscape. Netscape soon released an 
improved browser called Netscape Navigator.

Apple announced that it would license the Mac operating 
system to other companies to make Macintosh “clones.” 
Few companies would take them up on it, and Apple would 
soon withdraw the licensing offer.

Intel Corporation was forced to recall millions of dollars 
worth of its new Pentium chips when a mathematical flaw 
was discovered in the floating-point routines.

Marc Andreessen and Jim Clark founded Netscape and 
developed a new Web browser, Netscape Navigator. It 
would become the leading Web browser for several years.

Red Hat released a commercial distribution of Linux 1.0.

Search engines such as Lycos and Alta Vista started help-
ing users find Web pages. Meanwhile, a graduate student 
named Jerry Yang started compiling an online list of his 
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favorite Web sites. That list would eventually become 
Yahoo!

Advertising in the form of banner ads began to appear on 
Web sites.

1995

Microsoft Windows 95 gave a new look to the operating 
system and provided better support for devices, including 
plug and play device configuration.

Microsoft began its own on-line service, the Microsoft 
Network (MSN). Despite its startup icon being placed on 
the Windows 95 desktop, the network would trail industry 
leader America Online, which had overtaken CompuServe 
and Prodigy.

Jeff Bezos’s online bookstore, Amazon.com, opened for busi-
ness. It would become the largest e-commerce retailer.

The major online services began major promotion of access 
to the World Wide Web.

NSFNET retired from direct operation of the Internet, 
which had now been fully privatized. The agency then 
focused on providing new broadband connections between 
supercomputer sites.

Sun announced the Java language. It would become one of 
the most popular languages for developing applications for 
the World Wide Web.

Motorola announced the Power PC-602, a 64-bit cpu chip.

Compaq ranked first in personal computer sales in the 
United States, followed by Apple.

Physicists Peter Fromherz and Alfred Stett of the Max 
Planck Institute of Biochemistry in Munich, Germany, dem-
onstrated the direct stimulation of a specific nerve cell in 
a leech by a computer probe. This conjured visions of the 
“jacked-in” neural implants foreseen by science fiction writ-
ers such as William Gibson.

The next generation of Cray supercomputers, the T90 
series, could be scaled up to a rate of 60 billion instructions 
per second.

streaming (real-time video and audio) began to become 
popular on the Web.

Computer-generated imagery (CGI) was featured by Holly-
wood in the movie Toy Story.

1996

A product called Web TV attempted to bring the World 
Wide Web to home consumers without the complexity of 
full-fledged computers. The product achieved only modest 
success as the price of personal computers continued to 
decline.

The U.S. Postal Service issued a stamp honoring the 50th 
anniversary of ENIAC.

The Boston Computer Society, one of the oldest computer 
user groups, disbanded.

World chess champion Garry Kasparov won his first match 
against IBM’s Deep Blue chess computer, but said the match 
had been unexpectedly tough.

Yahoo! offered its stock to the public, running up the sec-
ond-highest first-day gain in NASDAQ history.
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Seymour Cray’s Cray Research (a developer of supercom-
puters) was acquired by Silicon Graphics.

Pierre Omidyar turned a small hobby auction site into eBay 
and was soon attracting thousands of eager sellers and buy-
ers to the site.

In one of its infrequent ventures into hardware, Microsoft 
announced the NetPC, a stripped-down diskless PC that 
would run software from a network. Such “network com-
puters” never really caught on, being overtaken by the ever-
declining price for complete PCs.

1997

The chess world was shocked when world champion Garry 
Kasparov was defeated in a rematch with Deep Blue.

A single Internet domain name, business.com, was sold for 
$150,000.

Amazon.com had a successful initial public offering (IPO).

A technology called “push” began to be hyped. It involved 
Web sites continually feeding “channels” of news or enter-
tainment to user’s desktops. However, the idea would fail to 
make much headway.

Internet users banded together to demonstrate distrib-
uted computing by cracking a 56-bit DES cipher in 140 
days.

The Association for Computing Machinery (ACM) cele-
brated its 50th anniversary.

1998

Microsoft Windows 98 provided an incremental improve-
ment in the operating system.

Apple announced the iMac, a stylish machine that rejuve-
nated the Macintosh line.

eBay’s IPO was wildly successful, making Pierre Omidyar, 
Meg Whitman, and other eBay executives instant million-
aires.

Merger-mania hit the online service industry, with America 
Online buying CompuServe’s online service (spinning off 
the network facilities to WorldCom). AOL then acquired 
Netscape and its Web hosting technology.

In another significant merger, Compaq acquired Digital 
Equipment Corporation (DEC).

1999

Federal Judge Thomas Penfield Jackson found that Micro-
soft violated antitrust laws. The case dragged on with 
appeals, with the process of crafting a remedy (such as 
possibly the split-up of the company) still unresolved in 
2002.

Another virus, Melissa, panicked computer users.

Some companies began to offer “free” computers to people 
who agreed to sign up for long-term, relatively expensive 
Internet service.

Computer scientists and industry pundits debated the possi-
bility of widespread computer disasters due to the y2k prob-
lem. Companies spent millions of dollars trying to find and 
fix old computer code that used only two digits to store year 
dates.
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Apple released os x, a new unix-based operating system 
for the Macintosh.

2000

New Year’s Day found the world to be continuing much as 
before, with only a few scattered y2k problems.

Unknown hackers, however, brought down some commer-
cial Web sites with denial-of-service (DOS) attacks.

AOL merged with Time-Warner, creating the world’s larg-
est media company. Critics worried about the affects of 
growing corporate concentration on the diversity of the 
Internet.

Microsoft Windows 2000 began the process of merging 
the consumer Windows and Windows NT lines into a single 
family of operating systems that would no longer use any of 
the underlying ms-dos code.

The World Wide Web was estimated to have about 1 bil-
lion pages online.

Tech stocks (and particularly e-commerce companies) 
began to sharply decline as investors became increasingly 
skeptical about profitability.

A growing number of Web users were beginning to switch 
to much faster broadband connections using dsl or cable 
modems.

2001

The decline in e-commerce stocks continued, with tens of 
thousands of jobs lost. One of the many failures was Web-
van, the Internet grocery service. Amazon.com suffered 
losses but continued trying to expand into profitable niches. 
Only eBay among the major e-commerce companies contin-
ued to be profitable.

Microsoft Windows XP offered consumer and “profes-
sional” versions of Windows on the same code base.

ibm researchers created a seven “qubit” quantum computer 
to execute Shor’s algorithm, a radical approach to factoring 
that could potentially revolutionize cryptography.

Among the specters raised in the wake of the September 11 
terrorist attacks was cyberterrorism having the potential 
to disrupt vital infrastructure, services, and the economy. 
biometrics and more sophisticated database techniques 
were enlisted in the war on terrorism while civil liberties 
groups voiced concerns.

2002

Wireless networking using the faster 802.11 standard 
became increasingly popular as an alternative to cabled or 
phone line networks for homes and small offices.

Consumer digital cameras began to approach “professional” 
quality.

The U.S. Supreme Court ruled that “virtual” child pornogra-
phy (in which no actual children were used) was protected 
by the First Amendment.

Continuing stock market declines threaten growth in the 
computer and Internet sectors.

The music-sharing service Napster goes out of business, 
when it is forced to stop distributing copyrighted music.
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2003

The U.S. economy begins to recover, including the tech-
nology sector. However, there is a growing concern about 
jobs being “outsourced” to countries such as India and 
China.

Weblogs, or blogs, are an increasingly popular form of 
online expression. Some journalists even use them to 
“break” major stories.

The Recording Industry Association of America (RIAA) files 
hundreds of lawsuits against individual users of music file-
sharing systems.

Apple and AMD introduce the first 64-bit microprocessors 
in the personal computer market.

2004

Security remains an urgent concern as viruses and worms 
flood the Internet in vast numbers.

spam also floods users’ e-mail boxes. phishing messages 
trick users into revealing credit card numbers and other 
sensitive information.

Apple’s iPod dominates the portable media player market, 
while its iTunes store sells over 100 million songs.

Bloggers become a political force, winning access to major 
party conventions.

Enthusiastic response to Google’s initial public stock offer-
ing signals that investors may have regained confidence in 
the strength of the Internet sector.

2005

“Web 2.0” becomes a buzzword with Web services being 
designed to be leveraged into new applications to be deliv-
ered to users’ browsers.

Sony’s flawed CD copy protection leaves users vulnerable to 
hackers; consumers increasingly demand an end to restric-
tions on use of media they buy.

Concerns about the security of new electronic voting 
systems grow.

2006

Apple begins selling Intel-based Macs; meanwhile most 
PCs now have dual processors.

Google buys the phenomenally successful video site You-
Tube for $1.65 billion.

Microsoft releases its delayed Windows Vista operating 
system, but response is lukewarm.

New versions of Linux such as Ubuntu attract enthusiasts, 
but are slow in making inroads on the desktop.

2007

social networking sites such as MySpace and FaceBook 
are used by millions of students, but raise concerns about 
privacy and bullying.

Wikipedia now has more than 9 million articles in 252 lan-
guages.

CNN and YouTube join to sponsor presidential political 
debates, and candidates respond to questions posed in vid-
eos submitted by the public.
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Google and other free Web-based applications offer new 
alternatives for office software.

Apple introduces the iPhone and new iPods with innovative 
user interfaces.

Albert Fert and Peter Grunberg receive the Nobel Prize in 
physics for their development of “giant magnetoresistance,” 
a phenomenon that enables disk drives to read fainter, more 
densely packed magnetic signals. The result is shrinking 
disks and/or greater storage capacity.

•

•

•

2008

A record amount of money is raised online during the presi-
dential election campaign.

Microsoft engages in a protracted campaign to acquire 
online rival Yahoo!

Providers and advocacy groups struggle over net neutrality 
(equal treatment of online applications and content).
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This appendix describes some of the major awards in com-
puter science and technology and lists recipients as of 2001. 
The last names of persons with entries in this book are 
given in small capital letters.

Association for Computing  
Machinery (ACM)

ACM Turing Award

The ACM Turing Award “is given to an individual selected 
for contributions of a technical nature made to the comput-
ing community. The contributions should be of lasting and 
major technical importance to the computer field.”

Annual Recipients
(A few years have joint recipients.)

1966  A. J. Perlis: “For his influence in the area of advanced 
programming techniques and compiler construction.”

1967  Maurice V. Wilkes: “Professor Wilkes is best known as 
the builder and designer of the EDSAC, the first computer with 
an internally stored program. Built in 1949, the EDSAC used 
a mercury delay line memory. He is also known as the author, 
with Wheeler and Gill, of a volume on ‘Preparation of Programs 
for Electronic Digital Computers’ in 1951, in which program 
libraries were effectively introduced.”

1968  Richard Hamming: “For his work on numerical meth-
ods, automatic coding systems, and error-detecting and error-
correcting codes.”

1969  Marvin Minsky [Citation not listed by ACM. However, 
Minsky was a key pioneer in artificial intelligence research, 
including neural networks, robotics, and cognitive psychology.]

1970  J. H. Wilkinson: “For his research in numerical analysis 
to facilitate the use of the high-speed digital computer, having 
received special recognition for his work in computations in lin-
ear algebra and ‘backward’ error analysis.”

1971  John McCarthy: “Dr. McCarthy’s lecture ‘The Present 
State of Research on Artificial Intelligence’ is a topic that covers 
the area in which he has achieved considerable recognition for 
his work.”

1972  E. W. Dijkstra.: “Edsger Dijkstra was a principal con-
tributor in the late 1950s to the development of the ALGOL, a 
high-level programming language which has become a model of 
clarity and mathematical rigor. He is one of the principal expo-
nents of the science and art of programming languages in gen-
eral, and has greatly contributed to our understanding of their 
structure, representation, and implementation. His fifteen years 
of publications extend from theoretical articles on graph theory 
to basic manuals, expository texts, and philosophical contem-
plations in the field of programming languages.”

1973  Charles W. Bachman: “For his outstanding contributions 
to database technology.”

1974  Donald E. Knuth: “For his major contributions to the 
analysis of algorithms and the design of programming lan-
guages, and in particular for his contributions to the ‘art of 
computer programming’ through his well-known books in a 
continuous series by this title.”

1975  Alan Newell and Herbert A. Simon: “In joint scientific 
efforts extending over twenty years, initially in collaboration 
with J. C. Shaw at the RAND Corporation, and subsequentially 
with numerous faculty and student colleagues at Carnegie-Mel-
lon University, they have made basic contributions to artificial 
intelligence, the psychology of human cognition, and list pro-
cessing.”

1976  Michael O. Rabin and Dana S. Scott: “For their joint 
paper ‘Finite Automata and Their Decision Problem,’ which 
introduced the idea of nondeterministic machines, which has 
proved to be an enormously valuable concept. Their [Scott & 
Rabin] classic paper has been a continuous source of inspiration 
for subsequent work in this field.”

Appendix III
Some Significant Awards
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1977  John Backus: “For profound, influential, and lasting 
contributions to the design of practical high-level programming 
systems, notably through his work on FORTRAN, and for semi-
nal publication of formal procedures for the specification of pro-
gramming languages.”

1978  Robert W. Floyd: “For having a clear influence on meth-
odologies for the creation of efficient and reliable software, 
and for helping to found the following important subfields of 
computer science: the theory of parsing, the semantics of pro-
gramming languages, automatic program verification, automatic 
program synthesis, and analysis of algorithms.”

1979  Kenneth E. Iverson: “For his pioneering effort in pro-
gramming languages and mathematical notation resulting in what 
the computing field now knows as APL, for his contributions to 
the implementation of interactive systems, to educational uses of 
APL, and to programming language theory and practice.”

1980  C. Anthony R. Hoare: “For his fundamental contribu-
tions to the definition and design of programming languages.”

1981  Edgar F. Codd: “For his fundamental and continuing 
contributions to the theory and practice of database manage-
ment systems. He originated the relational approach to database 
management in a series of research papers published com-
mencing in 1970. His paper ‘A Relational Model of Data for 
Large Shared Data Banks’ was a seminal paper, in a continuing 
and carefully developed series of papers. Dr. Codd built upon 
this space and in doing so has provided the impetus for wide-
spread research into numerous related areas, including database 
languages, query subsystems, database semantics, locking and 
recovery, and inferential subsystems.”

1982  Stephen A. Cook: “For his advancement of our under-
standing of the complexity of computation in a significant and 
profound way. His seminal paper, ‘The Complexity of Theorem 
Proving Procedures,’ presented at the 1971 ACM SIGACT Sym-
posium on the Theory of Computing, laid the foundations for 
the theory of NP-Completeness. The ensuing exploration of the 
boundaries and nature of NP-complete class of problems has 
been one of the most active and important research activities in 
computer science for the last decade.”

1983  Ken Thompson and Dennis Ritchie: “For their devel-
opment of generic operating systems theory and specifically for 
the implementation of the UNIX operating system.”

1984  Niklaus Wirth: “For developing a sequence of innova-
tive computer languages, EULER, ALGOL-W, MODULA and 
PASCAL. PASCAL has become pedagogically significant and has 
provided a foundation for future computer language, systems, 
and architectural research.”

1985  Richard M. Karp: “For his continuing contributions to 
the theory of algorithms including the development of efficient 
algorithms for network flow and other combinatorial optimiza-
tion problems, the identification of polynomial-time comput-
ability with the intuitive notion of algorithmic efficiency, and, 

most notably, contributions to the theory of NP-completeness. 
Karp introduced the now standard methodology for proving 
problems to be NP-complete which has led to the identification 
of many theoretical and practical problems as being computa-
tionally difficult.”

1986  John Hopcroft and Robert Tarjan: “For fundamental 
achievements in the design and analysis of algorithms and data 
structures.”

1987  John Cocke: “For significant contributions in the design 
and theory of compilers, the architecture of large systems and 
the development of reduced instruction set computers (RISC); 
for discovering and systematizing many fundamental transfor-
mations now used in optimizing compilers including reduction 
of operator strength, elimination of common subexpressions, 
register allocation, constant propagation, and dead code elimi-
nation.”

1988  Ivan Sutherland: “For his pioneering and visionary con-
tributions to computer graphics, starting with Sketchpad, and 
continuing after. Sketchpad, though written twenty-five years 
ago, introduced many techniques still important today. These 
include a display file for screen refresh, a recursively traversed 
hierarchical structure for modeling graphical objects, recursive 
methods for geometric transformations, and an object oriented 
programming style. Later innovations include a ‘Lorgnette’ for 
viewing stereo or colored images, and elegant algorithms for 
registering digitized views, clipping polygons, and representing 
surfaces with hidden lines.”

1989  William (Velvel) Kahan: “For his fundamental contri-
butions to numerical analysis. One of the foremost experts on 
floating-point computations. Kahan has dedicated himself to 
‘making the world safe for numerical computations.’ ”

1990  Fernando J. Corbato: “For his pioneering work orga-
nizing the concepts and leading the development of the gen-
eral-purpose, large-scale, time-sharing and resource-sharing 
computer systems, CTSS and Multics.”

1991  Robin Milner: “For three distinct and complete achieve-
ments: 1) LCF, the mechanization of Scott’s Logic of Computable 
Functions, probably the first theoretically based yet practical 
tool for machine assisted proof construction; 2) ML, the first 
language to include polymorphic type inference together with 
a type-safe exception-handling mechanism; 3) CCS, a general 
theory of concurrency. In addition, he formulated and strongly 
advanced full abstraction, the study of the relationship between 
operational and denotational semantics.”

1992  Butler W. Lampson: “For contributions to the develop-
ment of distributed, personal computing environments and the 
technology for their implementation: workstations, networks, 
operating systems, programming systems, displays, security and 
document publishing.”
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1993  Juris Harmanis and Richard E. Stearns: “In recognition 
of their seminal paper which established the foundations for the 
field of computational complexity theory.”

1994  Edward Feigenbaum and Raj Reddy: “For pioneering 
the design and construction of large-scale artificial intelligence 
systems, demonstrating the practical importance and potential 
commercial impact of artificial intelligence technology.”

1995  Manuel Blum: “In recognition of his contributions to the 
foundations of computational complexity theory and its appli-
cation to cryptography and program checking.”

1996  Amir Pneueli: “For seminal work introducing temporal 
logic into computing science and for outstanding contributions 
to program and systems verification.”

1997  Douglas Engelbart: “For an inspiring vision of the 
future of interactive computing and the invention of key tech-
nologies to help realize this vision.”

1998  James Gray: “For seminal contributions to database and 
transaction processing research and technical leadership in sys-
tem implementation.”

1999  Frederick P. Brooks, Jr.: “For landmark contributions 
to computer architecture, operating systems, and software 
engineering.”

2000  Andrew Chi-Chih Yao: “In recognition of his fundamen-
tal contributions to the theory of computation, including the 
complexity-based theory of pseudorandom number generation, 
cryptography, and communication complexity.”

2001  Ole-Johan Dahl and Kristen Nygaard: “For ideas fun-
damental to the emergence of object oriented programming, 
through their design of the programming languages Simula I 
and Simula 67.”

2002  Ronald L. Rivest, Adi Shamir, and Leonard M. Adelman: 
“For their ingenious contribution for making public-key cryp-
tography useful in practice.”

2003  Alan Kay: “pioneering many of the ideas at the root of 
contemporary object-oriented programming languages, leading 
the team that developed Smalltalk, and for fundamental contri-
butions to personal computing.”

2004  Vinton G. Cerf and Robert E. Kahn: “For pioneering 
work on internetworking, including the design and implemen-
tation of the Internet’s basic communications protocols, TCP/IP, 
and for inspired leadership in networking.”

2005  Peter Naur: “For fundamental contributions to program-
ming language design and the definition of Algol 60, to compiler 
design, and to the art and practice of computer programming.”

2006  Frances E. Allen: “For contributions that fundamentally 
improved the performance of computer programs in solving prob-
lems, and accelerated the use of high-performance computing.”

2007  Edmund M. Clarke, E. Allen Emerson, and Joseph Sifa-
kis: “For . . . developing ModelChecking into a highly effective 
verification technology, widely adopted in the hardware and 
software industries.”

Eckert-Mauchly Award

Administered jointly by ACM and IEEE Computer Society 
and “given for contributions to computer and digital sys-
tems architecture where the field of computer architecture 
is considered at present to encompass the combined hard-
ware-software design and analysis of computing and digital 
systems.”

Annual Recipients
1979  Robert S. Barton: “For his outstanding contributions 
in basing the design of computing systems on the hierarchical 
nature of programs and their data.”

1980  Maurice V. Wilkes: “For major contributions to com-
puter architecture over three decades including notable achieve-
ments in developing a working stored-program computer, 
formulation of the basic principles of microprogramming, early 
research on cache memories, and recent studies in distributed 
computation.”

1981  Wesley A. Clark: “For contributions to the early devel-
opment of the minicomputer and the multiprocessor, and for 
continued contributions over 25 years that have found their 
way into computer networks, modular computers, and personal 
computers.”

1982  C. Gordon Bell: “For his contributions to designing and 
understanding computer systems: for his contributions in the 
formation of the minicomputer; for the creation of the first com-
mercial, interactive timesharing computer; for pioneering work 
in the field of hardware description languages; for co-authoring 
classic computer books and co-founding a computer museum.”

1983  Tom Kilburn: “For major seminal contributions to 
computer architecture spanning a period of three decades. For 
establishing a tradition of collaboration between university and 
industry which demands the mutual understanding of electron-
ics technology and abstract programming concepts.”

1984  Jack B. Dennis: “For contributions to the advancement 
of combined hardware and software design through innovations 
in data flow architectures.”

1985  John Cocke: “For contributions to high performance 
computer architecture through lookahead, parallelism and pipe-
line utilization, and to reduced instruction set computer archi-
tecture through the exploitation of hardware-software tradeoffs 
and compiler optimization.”

1986  Harvey G. Cragon: “For major contributions to computer 
architecture and for pioneering the application of integrated cir-
cuits for computer purposes. For serving as architect of the Texas 
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Instruments scientific computer and for playing a leading role in 
many other computing developments in that company.”

1987  Gene M. Amdahl: “For outstanding innovations in com-
puter architecture, including pipelining, instruction look-ahead, 
and cache memory.”

1988  Daniel P. Siewiorek: “For outstanding contributions in 
parallel computer architecture, reliability, and computer archi-
tecture education.”

1989  Seymour Cray: “For a career of achievements that have 
advanced supercomputing design.”

1990  Kenneth E. Batcher: “For contributions to parallel com-
puter architecture, both for pioneering theories in intercon-
nection networks and for the pioneering implementations of 
parallel computers.”

1991  Burton J. Smith: “For pioneering work in the design and 
implementation of scalable shared memory multiprocessors.”

1992  Michael J. Flynn: “For his important and seminal contri-
butions to processor organization and classification, computer 
arithmetic and performance evaluation.”

1993  David Kuck: “For his impact on the field of supercom-
puting, including his work in shared memory multiprocessing, 
clustered memory hierarchies, compiler technology, and appli-
cation/library tuning.”

1994  James E. Thornton: “For his pioneering work on high-
performance processors; for inventing the ‘scoreboard’ for 
instruction issue; and for fundamental contributions to vector 
supercomputing.”

1995  John Crawford: “In recognition of your impact on the 
computer industry through your development of microproces-
sor technology.”

1996  Yale N. Patt: “For important contributions to instruction 
level parallelism and superscalar processor design.”

1997  Robert Tomasulo: “For the ingenious Tomasulo’s algo-
rithm, which enabled out-of-order execution processors to be 
implemented.”

1998  T. Watanabe: [Citation not available, but NEC notes that 
Watanabe “was a chief architect for NEC’s first supercomputer, 
the SX-2, and is recognized for his significant contributions to 
the architectural design of supercomputers having multiple, par-
allel vector pipelines and programmable vector caches.”]

1999  James E. Smith: “For fundamental contributions to high-
performance microarchitecture, including saturating counters 
for branch prediction, reorder buffers for precise exceptions, 
decoupled access/execute architectures, and vector supercom-
puter organization, memory, and interconnects.”

2000  Edward Davidson: “For his seminal contributions to the 
design, implementation, and performance evaluation of high-
performance pipelines and multiprocessor systems.”

2001  John Hennessy: “For being the founder and chief archi-
tect of the MIPS Computer Systems and contributing to the 
development of the landmark MIPS R2000 microprocessor.”

2002  B. Ramakrishna (Bob) Rau: “For pioneering contribu-
tions to statistically scheduled instruction-level parallel proces-
sors and their compilers.”

2003  Joseph A. (Josh) Fisher: “In recognition of 25 years of 
seminal contributions to instruction-level parallelism, pioneer-
ing work on VLIW architectures, and the formulation of the 
Trace Scheduling compilation technique.”

2004  Frederick P. Brooks: “For the definition of computer 
architecture and contributions to the concept of computer fami-
lies and to the principles of instruction set design; for seminal 
contributions in instruction sequencing, including interrupt 
systems and execute instructions; and for contributions to the 
IBM 360 instruction set architecture.”

2005  Robert P. Colwell: “For outstanding achievements in the 
design and implementation of industry-changing microarchitec-
tures, and for significant contributions to the RISC/CISC archi-
tecture debate.”

2006  James H. Pomerene: “For pioneering innovations in com-
puter architecture, including early concepts in cache, reliable 
memories, pipelining and branch prediction, for the design of the 
IAS computer and for the design of the Harvest supercomputer.”

2007  Mateo Valero: “For extraordinary leadership in building 
a world class computer architecture research center, for seminal 
contributions in the areas of vector computing and multithread-
ing, and for pioneering basic new approaches to instruction-
level parallelism.”

2008  David Patterson: “For seminal contributions to RISC 
microprocessor architectures, RAID storage systems design, and 
reliable computing, and for leadership in education and in dis-
seminating academic research results into successful industrial 
products.”

Grace Murray Hopper Award

The ACM gives this award for “the outstanding young com-
puter professional of the year . . . selected on the basis of a 
single recent major technical or service contribution.”

Annual Recipients

Note: this award has not been given every year.

1971  Donald E. Knuth: “For the publication in 1968 (at age 
30) of Volume I of his monumental treatise ‘The Art of Com-
puter Programming.’ ”
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1972  Paul E. Dirksen and Paul H. Kress: “For the creation of 
WATFOR Compiler, the first member of a powerful new family 
of diagnostic and educational programming tools.”

1973  Lawrence M. Breed, Richard Lathwell, and Roger Moore: 
“For their work in the design and implementation of APL/360, 
setting new standards in simplicity, efficiency, reliability and 
response time for interactive systems.”

1974  George N. Baird: “For his successful development and 
implementation of the Navy’s COBOL Compiler Validation 
System.”

1975  Allen L. Scherr: “For his pioneering study in quantita-
tive computer performance analysis.”

1976  Edward H. Shortliffe: “For his pioneering research which 
is embodied in the MYCIN program. MYCIN is a program which 
consults with physicians about the diagnosis and treatment of 
infections. In creating MYCIN, Shortliffe employed his back-
ground of medicine, together with his research in knowledge-
based systems design, to produce an integrated package which 
is easy for expert physicians to use and extend. Shortliffe’s work 
formed the basis for a research program supported by NIH, and 
has been widely studied and drawn upon by others in the field 
of knowledge-based systems.”

1978  Raymond C. Kurzweil: “For his development of a 
unique reading machine for the blind, a computer-based device 
that reads printed pages aloud. The Kurzweil machine is an 80-
pound device that shoots a beam of light across each printed 
page, converts the reflected light across each printed page, con-
verts the reflected light into digital data that is analyzed by its 
built-in computer, and then transformed into synthetic speech. 
It is expected to make reading of all printed material possible 
for blind people, whose reading was previously limited to mate-
rial translated into Braille. The machine would not have been 
possible without another achievement by Kurzweil, that is, a 
set of rules embodied in the mini-computer program by which 
printed characters of a wide variety of sizes and shapes are reli-
ably and automatically recognized.”

1979  Steven Wozniak: “For his many contributions to the 
rapidly growing field of personal computing and, in particular, 
to the hardware and software for the Apple Computer.”

1980  Robert M. Metcalfe: “For his work in the development 
of local networks, specifically the Ethernet.”

1981  Daniel S. Bricklin: “For his contributions to personal 
computing and, in particular, to the design of VisCalc. Bricklin’s 
efforts in the development of the ‘Visual Calculator’ provide the 
excellence and elegance that ACM seeks to sustain through such 
activities as the Awards program.”

1982  Brian K. Reid: “For his contributions in the area of com-
puterized text-production and typesetting systems, specifically 
Scribe which represents a major advance in this area. It embod-
ies several innovations based on computer science research in 

programming language design, knowledge-based systems, com-
puter document processing, and typography. The impact of 
Scribe has been substantial due to the excellent documentation 
and Reid’s efforts to spread the system.”

1984  Daniel H. H. Ingalls, Jr.: “For his work at the Xerox Palo 
Alto Research Center, where he was a major force, both tech-
nical and inspirational, in the development of the SMALLTALK 
language and its graphics facilities. He is the designer of the 
BITBLT primitive that is now widely used for generating images 
on raster-scan displays. The combination of a good idea, a good 
design, and very effective and careful implementation has led 
to BITBLT’s wide acceptance in the computing community. Mr. 
Ingalls’ research has also directly and dramatically affected the 
computing industry’s view of what people should have in the 
way of accessible computing.”

1985  Cordell Green: “For establishing several key aspects of 
the theoretical basis for logic programming and providing a res-
olution theorem prover to carry out a programming task by con-
structing the result which the computer program is to compute. 
For proving the constructive technique correct and for present-
ing an effective method for constructing the answer; these con-
tributions providing an early theoretical basis for Prolog and 
logic programming.”

1986  William N. Joy: “For his work on the Berkeley UNIX 
Operating System as a designer, integrator, and implementor of 
many of its advanced features including Virtual Memory, the C-
shell, the vi Screen editor, and Networking.”

1987  John K. Ousterhout: “For his contribution to very large 
scale integrated circuit computer aided design. His systems, 
Caesar and Magic, have demonstrated that effective CAD sys-
tems need not be expensive, hard to learn, or slow.”

1988  Guy L. Steele: “For his general contributions to the 
development of Higher Order Symbolic Programming, princi-
pally for his advancement of lexical scoping in LISP.”

1989  W. Daniel Hillis: “For his basic research on data parallel 
algorithms and for the conception, design, implementation and 
commercialization of the Connection Machine.”

1990  Richard Stallman: “For pioneering work in the devel-
opment of the extensible editor EMACS (Editing Macros).”

1991  Feng-hsuing Hsu: “For contributions in architecture and 
algorithms for chess machines. His work led to the creation of 
the Deep Thought Chess Machine, which led to the first chess 
playing computer to defeat Grandmasters in tournament play 
and the first to achieve a certified Grandmaster level rating.”

1993  Bjarne Stroustrup: “For his early work laying the foun-
dations for the C++ programming language. Based on the foun-
dations and Dr. Stroustrup’s continuing efforts, C++ has become 
one of the most influential programming languages in the his-
tory of computing.”
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1996  Shafrira Goldwasser: “For her early work relating com-
putation, randomness, knowledge committee and proofs, which 
has shaped the foundations of probabilistic computation theory, 
computational number theory, and cryptography. This work is a 
continuing influence in design and certification of secure com-
munications protocols, with practical applications to develop-
ment of secure networks and computer systems.”

1999  Wen-mei Hwu: “For the design and implementation 
of the IMPACT compiler infrastructure which has been used 
extensively both by the microprocessor industry as a base-
line for product development and by academia as a basis for 
advanced research and development in computer architecture 
and compiler design.”

2000  Lydia Kavraki: “For her seminal work on the proba-
bilistic roadmap approach which has caused a paradigm shift 
in the area of path planning, and has many applications in 
robotics, manufacturing, nanotechnology and computational 
biology.”

2001  George Necula: “For his seminal work on the concept 
and implementation of Proof Carrying Code, which has had a 
great impact on the field of programming languages and com-
pilers and has given a new direction to applications of theorem 
proving to program correctness, such as safety of mobile code 
and component-based software.”

2002  Ramakrishnan Srikant: “For his seminal work on mining 
association rules, which has led to association rules becoming a 
key data mining tool as well as part of the core syllabus in data-
base and data mining courses.”

2003  Stephen W. Keckler: “For ground-breaking analysis of 
technology scaling for high-performance processors that sheds 
new light on the methods required to maintain performance 
improvement trends in computer architecture, and on the design 
implications for future high-performance processors and systems.”

2004  Jennifer Rexford: “For models, algorithms, and deployed 
systems that assure stable and efficient Internet routing without 
global coordination.”

2005  Omer Reingolf: “For his work in finding a deterministic 
logarithmic-space algorithm for ST-connectivity in undirected 
graphs.”

2006  Daniel Klein: “For the design of a system capable of 
learning a high-quality grammar for English directly from text.”

2007  Vern Paxson: “For his work in measuring and character-
izing the Internet.”

Electronic Frontier  
Foundation (EFF)

Pioneer Awards

The EFF gives annual “Pioneer Awards” to leaders in 
“expanding knowledge, freedom, efficiency, and utility.”

1992  Douglas C. Engelbart, Robert Kahn, Jim Warren, Tom 
Jennings, and Andrzej Smereczynski.

1993  Paul Baran, Vinton Cerf, Ward Christensen, Dave 
Hughes, and the USENET software developers, represented by 
the software’s originators Tom Truscott and Jim Ellis.

1994  Ivan Sutherland, Whitfield Diffie and Martin Hellman, 
Murray Turoff and Starr Roxanne Hiltz, Lee Felsenstein, Bill 
Atkinson, and the Well.

1995  Philip Zimmermann, Anita Borg, and Willis Ware.

1996  Robert Metcalfe, Peter Neumann, Shabbir Safdar, and 
Matthew Blaze.

1997  Marc Rotenberg, Johan “Julf” Helsingius, and (special 
honorees) Hedy Lamarr and George Antheil.

1998  Richard Stallman, Linus Torvalds, and Barbara 
Simons.

1999  Jon Postel, Drazen Panic, and Simon Davies.

2000  Tim Berners-Lee, Phil Agre, and “Librarians Every-
where.”

2001  Seth Finkelstein, Stephanie Perrin, and Bruce Ennis.

2002  Dan Gillmour, Beth Givens, Jon Johansen, and “writers 
of DeCSS.”

2003  Amy Goodman, Eben Moglen, and David Sobel.

2004  Kim Alexander, David Dill, and Arviel Rubin.

2005  Patrick Ball, Edward Felten, and Mitch Kapor.

2006  Craigslist, Gigi Sohn, and Jimmy Wales.

2007  Yochai Benkler, Cory Doctorow, and Bruce Scheier.

2008  Mozilla Foundation, Mitchell Baker, Michael Geist, and 
Mark Klein.

IEEE Computer Society

Computer Pioneer Award

The IEEE Computer Society presents the Computer Pioneer 
Award “for significant contributions to concepts and devel-
opments in the electronic computer field which have clearly 
advanced the state of the art in computing.” The award is 
given a minimum of 15 years after the achievement being 
awarded.

Charter Recipients
Howard H. Aiken

Samuel N. Alexander
Gene M. Amdahl



548        Appendix III

John W. Backus
Robert S. Barton
C. Gordon Bell
Frederick P. Brooks, Jr.
Wesley A. Clark
Fernando J. Corbato
Seymour R. Cray

Edsgar W. Dijkstra

J. Presper Eckert

Jay W. Forrester
Herman H. Goldstine
Richard W. Hamming
Grace M. Hopper

Alston S. Householder
David A. Huffman
Kenneth E. Iverson
Tom Kilburn
Donald E. Knuth

Herman Lukoff
John W. Mauchly

Gordon E. Moore
Allen Newell
Robert N. Noyce
Lawrence G. Roberts
George R. Stibitz
Shmuel Winograd
Maurice V. Wilkes
Konrad Zuse

Annual Recipients
(With year and achievement as cited by the Computer 
Society.)

1981  Jeffrey Chuan Chu: “For his early work in electronic 
computer logic design”

1982  Harry D. Huskey: “For the first parallel computer 
SWAC”

1982  Arthur Burks: “For his early work in electronic com-
puter logic design”

1984  John Vincent Atanasoff: “For the first electronic com-
puter with serial memory”

1984  Jerrier A. Haddad: “For his part in the lead IBM 701 
design team”

1984  Nicholas C. Metropolis: “For the first solved atomic 
energy problems on ENIAC”

1984  Nathaniel Rochester: “For the architecture of IBM 702 
electronic data processing machines”

1984  Willem L. van der Poel: “For the serial computer 
ZEBRA”

1985  John G. Kemeny: “For BASIC”

1985  John McCarthy: “For LISP and artificial intelligence”

1985  Alan Perlis: “For computer language translation”

1985  Ivan Sutherland: “For the graphics SKETCHPAD”

1985  David J. Wheeler: “For assembly language programming”

1985  Heniz Zemanek: “For computer and computer lan-
guages—MAILUEFTERL”

1986  Cuthbert C. Hurd: “For contributions to early comput-
ing”

1986  Peter Naur: “For computer language development”

1986  James H. Pomerene: “For IAS and Harvest computers”

1986  Adriann van Wijngaarden: “For ALGOL 68”

1987  Robert E. Everett: “For Whirlwind”

1987  Reynold B. Johnson: “For RAMAC”

1987  Arthur L. Samuel: “For Adaptive non-numeric processing”

1987  Nicklaus E. Wirth: “For PASCAL”

1988  Freidrich L. Bauer: “For computer stacks”

1988  Marcian E. Hoff, Jr.: “For microprocessor on a chip”

1989  John Cocke: “For instruction pipelining and RISC con-
cepts”

1989  James A. Weidenhammer: “For high speed I/O mecha-
nisms”

1989  Ralph L. Palmer: “For the IBM 604 electronic calculator”

1989  Mina S. Rees: “For the ONR Computer R&D develop-
ment beginning in 1946”

1989  Marshall C. Yovits: “For the ONR Computer R&D devel-
opment beginning in 1946”

1989  F. Joachim Weyl: “For the ONR Computer R&D devel-
opment beginning in 1946”

1989  Gordon D. Goldstein: “For his work with the Office of 
Naval Research and computer R&R beginning in 1946”

1990  Werner Buchholz: “For computer architecture”

1990  C. A. R. Hoare: “For programming languages defini-
tions”

1991  Bob O. Evans: “For compatable computers”
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1991  Robert W. Floyd: “For early compilers”

1991  Thomas E. Kurtz: “For BASIC”

1992  Stephen W. Dunwell: “For project stretch”

1992  Douglas C. Engelbart: “For human computer interac-
tion”

1993  Erich Bloch: “For high speed computing”

1993  Jack S. Kilby: “For co-inventing the integrated circuit”

1993  Willis H. Ware: “For the design of IAS and Johnniac 
computers”

1994  Gerrit A. Blaauw: “In recognition of your contributions 
to the IBM System/360 Series of computers”

1994  Harlan B. Mills: “In recognition of contributions to 
Structured Programming”

1994  Dennis M. Ritchie: “In recognition of contributions to 
the development of UNIX”

1994  Ken L. Thompson: “For his work with UNIX”

1995  Gerald Estrin: “For significant developments on early 
computers”

1995  David Evans: “For seminal work on computer graphics”

1995  Butler Lampson: “For early concepts and developments 
of the PC”

1995  Marvin Minsky: “For conceptual development of artifi-
cial intelligence”

1995  Kenneth Olsen: “For concepts and development of mini-
computers”

1996  Angel Angelov: “For computer science technologies in 
Bulgaria”

1996  Richard F. Clippinger: “For computing laboratory staff 
member, Aberdeen Proving Ground, who converted the ENIAC 
to a stored program”

1996  Edgar Frank Codd: “For the invention of the first 
abstract model for database management”

1996  Norber Fristacky: “For pioneering digital devices”

1996  Victor M. Glushkov: “For digital automation of com-
puter architecture”

1996  Jozef Gruska: “For the development of computer science 
in former Czechoslovakia with fundamental contributions to the 
theory of computing and extraordinary organizational activities”

1996  Jiri Horejs: “For informatics and computer science”

1996  Lubomir Georgiev Iliev: “A founder and influential 
leader of computing in Bulgaria; leader of the team that devel-
oped the first Bulgarian computer; made fundamental and con-
tinuing contributions to abstract mathematics and software”

1996  Robert E. Kahn: “For the co-invention of the TCP/IP 
protocols and for originating the Internet program”

1996  Laszlo Kalmar: “For recognition as the developer of a 
1956 logical machine and the design of the MIR computer in 
Hungary”

1996  Antoni Kilinski: “For pioneering work in the construc-
tion of the first commercial computers in Poland, and for the 
development of university curriculum in computer science”

1996  Laszlo Kozma: “For development of the 1930 relay 
machines, and going on to build early computers in post-war 
Hungary”

1996  Sergey A. Lebedev: “For the first computer in the Soviet 
Union”

1996  Alexej A. Lyuponov: “For Soviet cybernetics and pro-
gramming”

1996  Romuald W. Marczynski: “For pioneering work in the 
construction of the first Polish digital computers and contribu-
tions to fundamental research in computer architecture”

1996  Grigore C. Moisil: “For polyvalent logic switching circuits”

1996  Ivan Plander: “For the introduction of computer hard-
ware technology into Slovakia and the development of the first 
control computer”

1996  Arnols Reitsakas: “For contributions to Estonia’s com-
puter age”

1996  Antonin Svoboda: “For the pioneering work leading to 
the development of computer research in Czechoslovakia and 
the design and construction of the SAPO and EPOS computers”

1997  Homer (Barney) Oldfield: “For pioneering work in the 
development of banking applications through the implementa-
tion of ERMA, and the introduction of computer manufacturing 
to GE”

1997  Francis Elizabeth (Betty) Snyder-Holberton: “For the 
development of the first sort-merge generator for the Univac 
which inspired the first ideas about compilation”

1998  Irving John (Jack) Good: “For significant contribu-
tions to the field of computing as a cryptologist and statistician 
during World War II at Bletchley Park, as an early worker and 
developer of the Colossus at Bletchley Park and on the Univer-
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sity of Manchester Mark I, the world’s first stored program com-
puter”

1999  Herbert Freeman: “For pioneering work on the first 
computer built by the Sperry Corporation, the SPEEDAC, and 
for subsequent contributions to the areas of computer graphics 
and image processing”

2000  Harold W. Lawson: “For inventing the pointer variable 
and introducing this concept into PL/I, thus providing for the 
first time, the capability to flexibly treat linked lists in a general-
purpose high level language”

2000  Gennady Stolyarov: “For pioneering development in 
‘Minsk’ series computers’ software, of the information systems’ 
software and applications and for data processing and data base 
management systems concepts dissemination and promotion”

2000  Georgy Lopato: “For pioneering development in Belarus 
of the ‘Minsk’ series computers’ hardware, of the multicomputer 
complexes and of the ‘RV’ family of mobile computers for heavy 
field conditions”

2001  Vernon Schatz: “For the development of Electronics 
Funds Transfer which made possible computer to computer 
commercial transactions via the banking system”

2001  William H. Bridge: “For the marrying of computer and 
communications technology in the GE DATANET 30, putting 
terminals on peoples’ desks to communicate with and timeshare 
a computer, leading directly to the development of the personal 
computer, computer networking and the internet”

2002  Per Brinch Hansen: “For pioneering development in 
operating systems and concurrent programming, exemplified by 
work on the RC4000 multiprogramming system, monitors, and 
Concurrent Pascal”

2002  Robert W. Bemer: “For meeting the world’s needs for 
variant character sets and other symbols via ASCII, ASCII-alter-
nate sets, and escape sequences”

2003  Martin Richards: “For pioneering system software 
portability through the programming language BCPL widely 
influential and used in academia and industry for a variety of 
prominent system software”

2004  Frances (Fran) E. Allen: “For pioneering work establish-
ing the theory and practice of compiler optimization”

2005  [No award given]

2006  Arnold M. Spielberg: ”For recognition of contribution 
to real-time data acquisition and recording that significantly 
contributed to the definition of modern feedback and control 
processes”

2006  Mamoru Hosaka: “For recognition of pioneering activi-
ties within computing in Japan”

National Medal of Technology  
and innovation

Given by the President of the United States, the National 
Medal of Technology and Innovation is “the highest honor 
bestowed by the President of the United States to America’s 
leading innovators.”

Computer-Related Recipients

1985
AT&T Bell Laboratories: “For contribution over decades to 
modern communication systems.”

Frederick P. Brooks, Jr., Erich Bloch, and Bob O. Evans, Interna-
tional Business Machines Corp.: “For their contributions to the 
development of the hardware, architecture and systems engi-
neering associated with the IBM System/360, a computer sys-
tem and technologies which revolutionized the data processing 
industry and which helped to make the United States dominant 
in computer technology for many years.”

Steven P. Jobs and Steven Wozniak, Apple Computer, Inc.: “For 
their development and introduction of the personal computer 
which has sparked the birth of a new industry extending the 
power of the computer to individual users.”

John T. Parsons and Frank L. Stulen, John T. Parsons Com-
pany: “For their development and successful demonstration of 
the numerically-controlled machine tool for the production of 
three-dimensional shapes, which has been essential for the pro-
duction of commercial airliners and which is seminal for the 
growth of the robotics, CAD-CAM, and automated manufactur-
ing industries.”

1986
Bernard Gordon, Analogic Corp.: “Father of high-speed analog-
to-digital conversion which has been applied to medical, ana-
lytical, computer and communications products; founder of two 
companies with over 2,000 employees and over $100 million in 
annual sales and creator of a new master’s level institute located 
in Massachusetts to teach engineering leadership and project 
engineering to engineers.”

Reynold B. Johnson, International Business Machines Corp.: 
“Introduction and development of magnetic disk storage for 
computers that provided access to virtually unlimited amounts 
of information in fractions of a second and is the basis for time 
sharing systems and storage of millions of records. Over $10 bil-
lion in annual sales and over 100,000 jobs arose from this devel-
opment.”

William C. Norris, Control Data Corp.: “Advancement of micro 
electronics and computer technology and creation of one of the 
Fortune 500—Control Data Corporation—which has over $5 
billion in annual sales and over 50,000 employees.”

1987
Robert N. Noyce, Intel Corp.: “For his inventions in the field 
of semiconductor integrated circuits, for his leading role in the 
establishment of the microprocessor which has led to much 
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wider use of more powerful computers, and for his leadership of 
research and development in these areas, all of which have had 
profound consequences both in the United States and through-
out the world.”

1988
Robert H. Dennard, IBM T.J. Watson Research Center: “For 
invention of the basic one-transistor dynamic memory cell used 
worldwide in virtually all modern computers.”

David Packard, Hewlett-Packard Company: “For extraordinary 
and unselfish leadership in both industry and government, 
particularly in widely diversified technological fields which 
strengthened the competitiveness and defense capabilities of the 
United States.”

1989
Jay W. Forrester, Massachusetts Institute of Technology and 
Robert R. Everett, The MITRE Corp.: “For their creative work 
in developing the technologies and applying computers to real-
time applications. Their important contributions proved vital to 
national and free world defense and opened a new era of world 
business.”

1990
John V. Atanasoff, Iowa State University (Ret.): “For his 
invention of the electronic digital computer and for contribu-
tions toward the development of a technically trained U.S. work 
force.”

Jack St. Clair Kilby, Jack Kilby Co.: “For his invention and con-
tributions to the commercialization of the integrated circuit 
and the silicon thermal print-head; for his contributions to the 
development of the first computer using integrated circuits; and 
for the invention of the hand-held calculator, and gate array.”

John S. Mayo, AT&T Bell Laboratories: “For providing the tech-
nological foundation for information-age communications, and 
for overseeing the conversion of the national switched tele-
phone network from analog to a digital-based technology for 
virtually all long-distance calls both nationwide and between 
continents.”

Gordon E. Moore, Intel Corp.: “For his seminal leadership in 
bringing American industry the two major postwar innovations 
in microelectronics—large-scale integrated memory and the 
microprocessor—that have fueled the information revolution.”

1991
C. Gordon Bell, Stardent Computers: “For his continuing intel-
lectual and industrial achievements in the field of computer 
design; and for his leading role in establishing cost-effective, 
powerful computers which serve as a significant tool for engi-
neering, science and industry.”

John Cocke, International Business Machines Corp.: “For his 
development and implementation of Reduced Instruction Set 
Computer (RISC) architecture that significantly increased the 

speed and efficiency of computers, thereby enhancing U.S. tech-
nological competitiveness.”

Grace Murray Hopper, U.S. Navy (Ret.)/Digital Equipment 
Corp.: “For her pioneering accomplishments in the develop-
ment of computer programming languages that simplified com-
puter technology and opened the door to a significantly larger 
universe of users.”

1992
William H. Gates III, Microsoft Corp.: “For his early vision of 
universal computing at home and in the office; for his technical 
and business management skills in creating a world-wide tech-
nology company; and for his contribution to the development 
of the personal computer industry.”

1993
Kenneth H. Olsen, Digital Equipment Corp.: “For his contribu-
tions to the development and use of computer technology; and 
for his entrepreneurial contribution to American business.”

1994
[No computer-related recipients]

1995
Edward R. McCracken, Silicon Graphics, Inc.: “For his ground-
breaking work in the areas of affordable 3D visual computing 
and super computing technologies; and for his technical and 
leadership skills in building Silicon Graphics, Inc., into a global 
advanced technology company.”

IBM Team: Praveen Chaudhari, IBM TJ Watson Research Cen-
ter; Jerome J. Cuomo, North Carolina State University (formerly 
with IBM); and Richard J. Gambino, State University of New 
York at Stony Brook (formerly with IBM): “For the discovery 
and development of a new class of materials—the amorphous 
magnetic materials—that are the basis of erasable, read-write, 
optical storage technology, now the foundation of the world-
wide magnetic-optic disk industry.”

1996
James C. Morgan, Applied Materials, Inc.: “For his leadership 
of 20 years developing the U.S. semiconductor manufacturing 
equipment industry, and for his vision in building Applied Mate-
rials, Inc. into the leading equipment company in the world, 
a major exporter and a global technology pioneer which helps 
enable Information Age technologies for the benefit of society.”

1997
Vinton Gray Cerf, MCI, and Robert E. Kahn, Corporation 
for National Research Initiatives: “For creating and sustaining 
development of Internet Protocols and continuing to provide 
leadership in the emerging industry of internetworking.”

1998
Kenneth L. Thompson, Bell Laboratories, and Dennis M. 
Ritchie, Lucent Technologies: “For their invention of UNIX® 
operating system and the C programming language, which 
together have led to enormous growth of an entire industry, 
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thereby enhancing American leadership in the Information 
Age.”

1999
Raymond Kurzweil, founder, chairman, and chief executive 
officer, Kurzweil Technologies, Inc.: “For pioneering and inno-
vative achievements in computer science such as voice recogni-
tion, which have overcome many barriers and enriched the lives 
of disabled persons and all Americans.”

Robert Taylor (Ret.): “For visionary leadership in the development 
of modern computing technology, including computer networks, 
the personal computer and the graphical user interface.”

2000
Douglas C. Engelbart, director, Bootstrap Institute: “For creat-
ing the foundations of personal computing including continu-
ous, real-time interaction based on cathode-ray tube displays 
and the mouse, hypertext linking, text editing, on-line journals, 
shared-screen teleconferencing, and remote collaborative work. 
More than any other person, he created the personal computing 
component of the computer revolution.”

The IBM Corporation: “For 40 years of innovations in the 
technology of hard disk drives and information storage prod-
ucts. IBM is widely recognized as the world’s leader in basic data 
storage technologies, and holds over 2,000 U.S. patents. IBM 
is a top innovator of component technologies—such as flying 
magnetic heads (thin film heads, and magneto resistive heads), 
film disks, head accessing systems, digital signal processing and 
coding, as well as innovative hard disk drive systems. Some spe-
cific IBM inventions are used in every modern hard drive today: 
thin film inductive heads, MR and GMR heads, rotary actuators, 
sector servos and advanced disk designs. These advances outran 
foreign hard disk technology and enabled the U.S. industry to 
maintain the lead it holds today.”

2001
Arun N. Netravali, Chief Scientist, Lucent Technologies and 
Past President of Bell Labs: “For his leadership in the field of 
communication systems; for pioneering contributions that 
transformed TV from analog to digital, enabling numerous inte-
grated circuits, systems and services in broadcast TV, CATV, 
DBS, HDTV, and multimedia over the Internet; and for technical 
expertise and leadership, which have kept Bell Labs at the fore-
front in communications technology.”

Jerry M. Woodall, Yale University: “For his pioneering role in 
the research and development of compound semiconductor 
materials and devices; for the invention and development of 
technologically and commercially important compound semi-
conductor heterojunction materials, processes, and related 
devices, such as light-emitting diodes, lasers, ultra-fast transis-
tors, and solar cells.”

2002
Calvin H. Carter, Cree, Inc.: “For his exceptional contribu-
tions to the development of silicon carbide wafers, leading to 

new industries in wide bandgap semiconductors and enabling 
other new industries in efficient blue, green, and white light, 
full-color displays, high-power solid-state microwave amplifiers, 
more efficient/compact power supplies, higher efficiency power 
distribution/transmission systems, and gemstones.”

Carver A. Mead, California Institute of Technology: “For his 
pioneering contributions to microelectronics that include spear-
heading the development of tools and techniques for modern 
integrated-circuit design, laying the foundation for fabless semi-
conductor companies, catalyzing the electronic-design automa-
tion field, training generations of engineers that have made the 
United States the world leader in microelectronics technology, 
and founding more than twenty companies.”

Team of Nick Holonyak, Jr. (University of Illinois at Urbana-
Champaign), M. George Craford (Lumileds Lighting Corp.) 
and Russell Dean Dupuis (Georgia Institute of Technology): 
“For contributions to the development and commercialization 
of light-emitting diode (LED) technology, with applications to 
digital displays, consumer electronics, automotive lighting, traf-
fic signals, and general illumination.”

2003
Robert M. Metcalfe: “For leadership in the invention, standard-
ization, and commercialization of the Ethernet.”

Watts S. Humphrey: “For his vision of a discipline for software 
engineering, for his work toward meeting that vision, and for 
the resultant impact on the U.S. Government, industry, and aca-
demic communities.”

2004
Ralph H. Baer: “For his groundbreaking and pioneering cre-
ation, development and commercialization of interactive video 
games, which spawned related uses, applications, and mega-
industries in both the entertainment and education realms.”

2005
Semiconductor Research Corporation: “For building the world’s 
largest and most successful university research force to support 
the rapid growth and advance of the semiconductor industry; 
for proving the concept of collaborative research as the first 
high-tech research consortium; and for creating the concept and 
methodology that evolved into the International Technology 
Roadmap for Semiconductors.”

Xerox Corporation: “For over 50 years of innovation in mark-
ing, materials, electronics communications, and software that 
created the modern reprographics, digital printing, and print-
on-demand industries.”

2006–2007
[No computer-related recipients]



553

The following is a list of some important computer-related 
organizations, including contact information.

General Computer Science  
Organizations

American Society for Information Science (http:www.asis.org/) 
1320 Fenwick Lane, Suite 510, Silver Spring, MD 20910. 
Telephone: (301) 495-0900 e-mail: asis@asis.org

Association for Computing Machinery (http://www.acm.org/) 
2 Penn Plaza, Suite 701, New York, NY 10121-0701. Tele-
phone: (800) 342-6626 e-mail: acmhelp@acm.org

Computing Research Association (http://www.cra.org) 1100 
Seventeenth Street, NW, Suite 507, Washington, DC 20036-
4632. Telephone: (202) 234-2111 e-mail: webmaster@cra.
org

IEEE Computer Society (http:www.computer.org) 1730 Mas-
sachusetts Ave. NW, Washington, DC 20036-1992. Tele-
phone: (202) 371-0101 e-mail: membership@computer.org

Software Engineering Institute (http://sei.cmu.edu) 4500 Fifth 
Ave., Pittsburgh, PA 15213-2612. Telephone: (888) 201-
4479 e-mail: customer-relations@sei.cmu.edu

Application and Industry-Specific 
Groups

AeA (formerly American Electronics Association) (http://www.
aeanet.org/) 601 Pennsylvania Avenue NW, Suite 600, 
North Building, Washington, DC 20004. Telephone: (202) 
682-9110 e-mail: Web forms

American Association for Artificial Intelligence (http://www.
aaai.org/) 445 Burgess Drive, Suite 100, Menlo Park, CA 
94025-3442. Telephone: 650-328-3123 e-mail: info7con-
tact@aaai.org

American Design Drafting Association (http://www.adda.org) 
105 East Main St., Newham, TN 38059. Telephone: (731) 
627-0802 e-mail: Web form

American Society for Photogrammetry and Remote Sensing 
(http://www.asprs.org) 5410 Grosvenor Lane, Suite 210, 
Bethesda, MD 20814-2160. Telephone: (301) 493-0290 e-
mail: asprs@.org

American Statistical Association (http://www.amstat.org) 732 
North Washington St., Alexandria, VA 22314-1943. Tele-
phone: (703) 684-1221 e-mail: asainfo@amstat.org

Association for Library and Information Science Education 
(http:www.alise.org) 68 E. Wacker Place, Suite 1900, Chi-
cago, IL 60601-7246. Telephone: (312) 795-0996 e-mail: 
contact@alise.org

Association for Multimedia Communication (http://www.
amcomm.org) P.O. Box 10645, Chicago, IL 60610. Tele-
phone: (773) 276-9320 e-mail: Web form

Association of American Geographers (http://www.aag.org) 
1710 16th St. NW, Washington, DC 20009-3198. Tele-
phone: (202) 234-1450 e-mail: gaia@aag.org

Association of Information Technology Professionals (http://www.
aitp.org) 401 North Michigan Avenue, Suite 2400, Chicago, 
IL 60611-4267. Telephone: (312) 673-4793 e-mail: Web form

CAM-I (Computer-Aided Manufacturing International) (http://
cami.affiniscape.com) 6836 Bee Cave, Suite 256, Austin, 
TX 78746. Telephone: (512) 617-6428 e-mail: Web form

Computing Technology Industry Association (CompTIA) 
(http://www.comptia.org) 1815 S. Meyers Road, Suite 300 
Oakbrook Terrace, IL 60181-5228. Telephone: (630) 678-
8300 e-mail: Web form

Digital Library Federation (http://www.digilib.org) 1755 Massa-
chusetts Ave. NW, Suite 500, Washington, DC 20036-2124. 
Telephone: (202) 939-4761 e-mail: dlfinfo@clir.org

Electronics Industries Alliance (http://www.eia.org/) 2500 Wil-
son Blvd., Arlington, VA 22201. Telephone: (703) 907-
7500 e-mail: Web form

Information Technology Association of America (http://www.
itaa.org) 1401 Wilson Blvd., Suite 1100, Arlington, VA 
22209. Telephone: (703) 522-5005 e-mail: Web directory

International Game Developer’s Association (http://www.igda.
org) 19 Mantua Road, Mt. Royal, NJ 08061. Telephone: 
(856) 423-2990 e-mail: contact@igda.org

International Society for Technology in Education (http://www.
iste.org) 1710 Rhode Island Ave. NW, Suite 900, Washing-
ton, DC 20036. Telephone: (800) 336-5191 e-mail: iste@org

International Technology Law Association (http://www.itechlaw.
org) 401 Edgewater Place, Suite 600, Wakefield, MA 01800. 
Telephone: (781) 876-8877 e-mail: office@itechlaw.org

Appendix IV
Computer-Related Organizations
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International Webmasters Association (http://www.irwa.org/) 
119 E. Union St., Suite F, Pasadena, CA 91103. Telephone: 
(626) 449-3709 e-mail: via Web links

Libraries for the Future (http://www.lff.org) 27 Union Square 
West, Suite 204, New York, NY 10003. Telephone: (646) 
336-6236 e-mail: info@lff.org

Library and Information Technology Association (http://www.
lita.org) American Library Association, 50 East Huron St., 
Chicago, IL 60611-2795. Telephone: (800) 545-2433 e-
mail: library@ala.org

Office Automation Society International (http://www.pstcc.cc.tn.
us/ost/oasi.html) 5170 Meadow Wood Blvd., Lyndhurst, 
OH 44124. Telephone: (216) 461-4803 e-mail: jbdyke@aol.
com

Robotics Industries Association (http://www.robotics.org) 900 
Victors Way, Suite 140, P.O. Box 3724, Ann Arbor, MI 
48106. Telephone: (734) 994-6088 e-mail: webmaster@
robotics.org

SIGGRAPH [Graphics special interest group of the Association 
for Computing Machinery] (http://www.siggraph.org). e-
mail: Web links

Society for Information Management (http://www.simnet.org/) 
401 N. Michigan Ave., Chicago, IL 60611-4267. Telephone: 
312 644-6610 e-mail: info@simnet.org

Society for Modeling and Simulation International (http://www.
scs.org) P.O. Box 17900 San Diego, CA 92177-7900. Tele-
phone: (858) 277-3888 e-mail: info@scs.org

Society for Technical Communication (http://www.stc.org/) 901 
N. Stuart St., Suite 904, Arlington, VA 22203-1854. Tele-
phone: (703) 522-4114 e-mail: stc@stc.org

Software & Information Industry Association (http://www.siia.
org/) 1090 Vermont Ave. NW, Sixth Floor, Washington, DC 
20005-4095. Telephone: (202) 289-7442 e-mail: Web form

Telecommunications Industry Association (http://www.tiaonline.
org) 2500 Wilson Blvd., Suite 300, Arlington, VA 22201-
3834. Telephone: (703) 907-7700 e-mail: tia@tiaonline.org

Government, Standards and  
Security Organizations

American National Standards Institute (ANSI) (http://ansi.org) 
1819 L Street NW, 6th Floor, Washington, DC 20036. Tele-
phone: (202) 293-8020 e-mail: info@ansi.org

Computer Emergency Response Team (CERT) (http://www.
cert.org) CERT Coordination Center, Software Engineer-
ing Institute, Carnegie Mellon University, Pittsburgh, PA 
15213-3890. Telephone: (412) 268-7090 e-mail: cert@cert.
org

Computer Security Institute (http://www.gocsi.com/) 600 Har-
rison St., San Francisco, CA 94107. Telephone: (415) 947-
6320 e-mail: csi@cmp.com

Defense Advanced Research Projects Agency (DARPA) (http://
www.darpa.gov). 3701 North Fairfax Drive, Arlington, 
VA 22203-1714. Telephone: (571) 218-4219 e-mail: Web 
forms

Information Systems Security Association (http://www.issa.org) 
9200 SW Barbour Blvd. #119-333 Portland, OR 97219. 
Telephone: (866) 349-5818 e-mail: Web forms

Institute for the Certification of Computing Professionals 
(http://www.iccp.org) 2350 East Devon Ave., Suite 115, Des 
Plaines, IL 60018-4610. Telephone: (847) 299-4227 e-mail: 
office@iccp.org

International Organization for Standardization (ISO) (http://
www.iso.org) 1, ch de la Voie-Creuse, Case postale 56, CH-
1211 Geneva 20, Switzerland. Telephone: +41 22 749 01 11 
e-mail: Web forms

Internet Society (http://www.isoc.org/) 1775 Wiehle Ave., Suite 
102, Reston, VA 20190-5108. Telephone: (703) 326-9880 
e-mail: info@isoc.org

National Center for Supercomputing Applications (NCSA) 
(http://www.ncsa.uiuc.edu) University of Illinois at Urbana-
Champaign, 1205 W. Clark St., Room 1008, Urbana, IL 
61801. Telephone: (217) 244-0710 e-mail: tlbarker@ncsa.
uiue.edu

National Telecommunications and Information Administration 
(http://www.ntia.doc.gov/) U.S. Dept. of Commerce, 1401 
Constitution Ave. NW, Washington, DC 20230. Telephone: 
(202) 482-1840 e-mail: Web directory

Quality Assurance Institute Worldwide (http://www.qaiworld-
wide.com.qai.html) 2101 Park Center Drive, Suite 200, 
Orlando, FL 32835-7614. Telephone: (407) 363-1111 e-
mail: Web directory

Urban and Regional Information Systems Association (http://
www.urisa.org) 1460 Renaissance Drive, Suite 305, Park 
Ridge, IL 60068. Telephone: (847) 824-6300 e-mail: Web 
directory

World Wide Web Consortium (www.w3c.org) Massachusetts 
Institute of Technology, 32 Vassar St., Room 32-G515, 
Cambridge, MA 02139. Telephone: (617) 253-2613 e-mail: 
Web links

Advocacy Groups

Association for Women in Computing (http://www.awc-hq.org) 
41 Sutter St., Suite 1006, San Francisco, CA 94104. Tele-
phone: (415) 905-4663 e-mail: info@awc-hq.org

Black Data Processing Associates (http://www.bdpa.org) 6301 
Ivy Lane, Suite 700, Greenbelt, MD 20770. Telephone: 
(800) 727-BDPA e-mail: Web forms

Center for Democracy and Technology (http://www.cdt.org) 
1634 Eye St., NW, #100, Washington, DC 20006. Tele-
phone: (202) 637-9800 e-mail: Web form

Computer Professionals for Social Responsibility (http://www.
cpsr.org) 1370 Mission St., 4th Floor, San Francisco, CA 
94103-2654. Telephone: (415) 839-9355 e-mail: cpsr@cpsr.
org

Electronic Frontier Foundation (http://www.eff.org) 454 Shot-
well St., San Francisco, CA 94110-1914. Telephone: (415) 
436-9333 e-mail: information@eff.org

Electronic Privacy Information Center (http://www.epic.org) 
1718 Connecticut Ave. NW, Suite 200, Washington, DC 
20009. Telephone: (202) 483-1140 e-mail: Web form

Women in Technology (http://www.womenintechnology.com) 
717 Princess St., Alexandria, VA 22314. Telephone: (703) 
683-4033 e-mail: staff@womenintechnology.org
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Inde x

Boldface page numbers denote 
main entries; italic page numbers 
indicate illustrations.

A
A-0  231
AACS (Advanced Access Content 

System)  149
Aaron (program)  25
abacus  70, 226
ABC (Atanasoff-Berry computer)  

30, 297
Abelson, Harold  284
About.com  350, 379
AboutUs  122
abstract data type. See data 

abstraction
abstract object  68
Abstract Windowing Toolkit 

(AWT)  254
accelerated graphics port (AGP)  

63, 214, 243
Access (Microsoft)  131, 132
Access Certificates for Electronic 

Services (ACES)  79
accessibility (data)  130–131
accessibility (universal design). See 

disabled persons and computing
accountability, and privacy  384
accounting applications  64
accumulator  304
ACE (Automatic Computing 

Engine)  481
A+ Certificate  80
ACES (Access Certificates for 

Electronic Services)  79
ACH (automated clearing house)  39
ACLU v. Reno  125
ACM (Association for Computing 

Machinery)  7, 79, 267, 296, 
297, 404

ACP (Associate Computing 
Professional) certificate  80

Acrobat  257, 374, 504. See also PDF
active matrix display  199
active RFID  405
Active Server Pages (ASP)  1, 249, 

422, 491, 508. See also ASP.NET
ActiveX  89, 422, 508
Ada  2

in computer history  229
enumerations in  184
government funding for  404
Pascal and  363
sets in  185
Simula and  431

ADA (American with Disabilities 
Act)  152

Ad-Aware  453
address bus  51
addressing  3, 3. See also 

indirection; pointers
Analytical Engine and  

35–36
in ARPANET  247
binding and  45
bits and  51
hexadecimals for  225
indirect  375–377
on Internet  155–158
in list processing  282
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in memory  301
in minicomputers  227
in MS-DOS  321–322
in multiprocessing  323
with pointers  375–376
variables in  490–491
in virtual memory  302
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administrative applications  64
administrator status  136
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ADO.NET  306
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adult education  171
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(AACS)  149
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Advanced Micro Devices (AMD)  

4–5, 86, 140, 218, 245
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272
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online advertising
ADVISE  119, 136
adware  111, 344–345, 384, 

453–454
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Aegis  311
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affiliate marketing  344
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63, 214, 243
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AI. See artificial intelligence
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Ajax (asynchronous JavaScript and 

XML)  5–6, 6, 110
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434
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Aldus Pagemaker. See Pagemaker
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Backus-Naur Form and  38
McCarthy’s work on  297
Pascal and  362
PL/I and  373
recursion in  401
Simula and  431
Wirth’s work with  514
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in banking security  39
in computer animation  16
in computer science  109
in computing  295
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error handling and  186
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211, 423, 480
in graphics  106
in graphics cards  214
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for memory management  

302
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in Pascal  362
patentability of  245
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generation  399
for scheduling and 

prioritization  417–418
for searching  446
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also PageRank algorithm
in software engineering  444
for sorting  446–448
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Allen, George  377
Allen, Paul  206
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Altair  206, 228, 304, 366, 519
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Alto  320, 517
ALU (arithmetic logic unit)  23, 

119, 120, 305
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CRM used by  123
data mining by  136
entrepreneurship and  184
in mashups  294
online research with  349
“Search inside the Book” 

on  167
software sales of  294
World Wide Web and  518

Amazon Unbox  327
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4–5, 86, 140, 218, 245
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chat on  83
instant messaging on  477
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350–351
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Angle, Colin  59, 60, 253
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and  75
animated GIF  214, 507
animation, computer  16–17, 104, 

194. See also computer graphics
anonymity and the Internet  17

censorship and  76
in chat  83
cyberbullying and  126
cyberterrorism and  118
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on file-sharing networks  193
fraud and  345
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ANSI characters  81
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Antikythera Mechanism  13, 405
Anti-Phishing Phil  370
Anti-Phishing Working Group  370
antitrust  107, 206–207, 274, 306
antivirus software  100, 111, 417. 

See also security
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Apache  81, 306, 352, 508
API. See application program 

interface
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204, 490, 491
Apollo spacecraft  449
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IBM PC and  366
market entry of  106
Pascal on  362
success of  18, 258
VisiCalc on  452
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Wozniak’s work on  519
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iPhone; iPod; Macintosh
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DRM and  150
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Wozniak at  519

Apple DOS  353
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Apple Lisa  18
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Apple Newton  220–221, 364
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applet  19–20. See also Java
Apple TV  19
appliance computing  107, 177, 434
application layer  334
application program interface (API)  
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for content management 

systems  116
graphics in  105
in mashups  294

for operating systems  354
virtual  494

Application Service Provider (ASP)
broadband and  107
in computer industry trends  

108
in computing history  229
groupware and  217
Microsoft Windows and  309
office suites through  107
Oracle on Demand  356
PC market and  367
for remote backup services  

37
SAP as  415
software installation and  244
in software market  294
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word processor from  517

application service provider (ASP)  
6, 21–22

application software  22
auditing of  31
backup of  37
benchmarks for  43
bugs in. See bugs and 

debugging
commenting in  158
compatibility of  94
copyright for  245
CORBA for  118
custom  293
device drivers and  144
document model and  160
for early computers  427
for education  170
ergonomics of  185
error handling in  186
file formats in  135
files in  192
firewalls and  197
fonts in  200
free access to  21
freeware  427–428
help systems in  225
in identity theft prevention  

238
installation of  244
internationalization of  

246–247
Internet-related  249
in law enforcement  273
legal  273–274
licensing violations  445
for Linux  279, 280
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localization of  246–247
for Macintosh  287
macros in  289
for management information 

systems  292
marketing of  107–108, 

293–294
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338, 453, 458. See also 
spreadsheet

message passing in  303
multiprocessing and  324
for music  326
with OS X  357
for PDAs  364
plug-in versions of  374–375
portability of  95
presentation  32, 64, 380, 

380–381, 492. See also 
Microsoft PowerPoint

project management  342, 
389–390, 418, 444

quality assurance in. See 
quality assurance, 
software

registration of  244
renting  21
reverse engineering  404–405
for RSS  412–413
by SAP  415
scheduling and prioritization 

of  417–418
in service-oriented 

architecture  426
shareware  427–428
for supply chain management  

462
threading in  324
as trade secret  245–246
types of  22
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user documentation for  159, 

471
validation of  445
Web services for  508–509

application suite  23. See also 
Microsoft Office

in computer industry  107
document model and  160
from Google  211
market for  206
marketing of  293
in office automation  342
spreadsheet in  453
word processor in  517

APT (Automatically Programmed 
Tool)  98

Aqua  357
arcade games  103–104
archive attribute  191
archive systems. See backup and 

archive systems
Archon (game)  174
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arithmetic expressions  354
arithmetic logic unit (ALU)  23, 

119, 120, 305
Arnie Street  326
ARPANET

bulletin board systems 
and  61

Cerf and  78
in computer history  228
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distance education on  153
e-mail and  177
funding for  212
hypertext in  182
Internet and  247
network for  266
Roberts’s work on  145
Sutherland’s work on  463

array  23–25, 24. See also hashing
in C  65
in computer science  109
data in  128
as data type  138
data types in  137
in data warehouse  139
in FORTRAN  202
in hash sort  448
in heapsort  447
list compared to  137–138, 

282
logical errors in  61

art and the computer  25, 25–26
artificial intelligence (AI)  26–28

academic credentials for  79
in automatic programming  

33
Brooks’s work in  59
in chatterbots  83–84
cognitive science and  92–93
computer science in  110
computer vision in  112
creativity in  25

cybernetics in  511
dangers of  261–262
data models in  351
Dreyfus’s work in  161–162
in education  99
epistemology and  369
in expert systems  187, 188
Feigenbaum’s work in  190
in games  103
government funding of  212
for image interpretation  239
for information retrieval  241
Joy on  261–262
knowledge representation in  

266–267
Kurzweil’s work in  268
Licklider and  277
LISP used in  204, 280–281, 

297
McCarthy’s work in  297
Minsky’s work in  313
in natural language 

processing  330
ontologies in  351
Papert’s work in  359
pattern recognition in  363
philosophy and  369
programming profession and  

386–387
Prolog used in  390
research institutions in  403
risk and  409
in robotics  411
in science fiction  418, 419
in search engines  423
in semantic Web  424
Shannon’s work in  427
simulation and  432
singularity from  269
Smalltalk for  434
software agents in  289, 442
for software testing  395
in technological singularity  

432–433
Turing in  481
Weizenbaum in  509–510

artificial life (AL)  28
artificial intelligence in  27
cellular automata in  75
finite state machines and  196
genetic algorithms in  208
robotic  411
simulation and  432
technological singularity 

and  433
artificial limbs  335
Art of Computer Programming, The 

(Knuth)  267
ASCII characters  81, 81–82, 236, 

265
Asheron’s Call  104
Asia  108
Asimov, Isaac  418, 433
Ask Jeeves  241
ASP. See application service 

provider
ASP (active server pages)  1, 249, 

422, 491, 508. See also ASP.NET
A-Space  119
ASP .NET  1, 306
assembler  5, 28–29, 29, 95, 288, 

388
assertion  188, 266
assistive devices  268, 425
Associate Computing Professional 

(ACP) certificate  80
Association for Computing 

Machinery (ACM)  7, 79, 267, 
296, 297, 404

associative arrays  24
“As We May Think” (Bush)  182
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asymmetric multiprocessing  323
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(Ajax)  5–6, 6, 110
asynchronous processes  154
ATA (Advanced Technology 
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Atanasoff, John Vincent  30, 226, 

297
Atanasoff-Berry computer (ABC)  

30, 297
Atari  104, 179, 205, 258, 264
Atkinson, Bill  322
ATM. See automatic teller machines
Atom  413
AT&T  473, 477–478, 486. See also 

Bell Laboratories
attachments  111, 134, 177, 193
attenuation  191
Attila (robot)  56
AT (Advanced Technology) 

machine  62
attributes  191, 201, 232
auctions, online  31, 100, 120, 343. 

See also eBay
AuctionWeb  165, 343
Audio Interchange File Format 

(AIFF)  448
auditing in data processing  31, 130
AU format  448
Augmentation Research Center  

182
augmented finite state machines  59
“Augmenting Human Intellect: 

A Conceptual Framework” 
(Engelbart)  182

authentication  31–32, 39, 146, 181
authoring systems  32
automata  196, 410. See also cellular 

automata
“Automata Studies” (Shannon and 

McCarthy)  427
automated cars  71–72
automated clearing house (ACH)  

39
Automatically Programmed Tool 

(APT)  98
Automatic Computing Engine 

(ACE)  481
automatic programming  33
automatic tabulating machine  229, 

230, 294, 341, 392
automatic teller machines (ATM)

authentication at  32
in banking  39
biometrics used with  48–49
real-time processing in  400
as terminal  476
touchscreens in  478
transaction processing in  

478–479
automotive computers  71, 71–72, 

177, 293
avatars  237–238, 348
awk  33–34, 83, 365, 485–486
AWT (Abstract Windowing 

Toolkit)  254
axioms, in Prolog  390

B
Babbage, Charles  35–36, 36

analog computer of  226
mechanical computer of  294
memory and  301
printer design by  381
punched cards and  392
on statistics  458

Babel Fish  271
back door, in Clipper Chip  146, 

181
background process. See demon

backup and archive systems  36–37
in auditing  31
in content management 

systems  116
copy protection and  117, 150
in database administration  

130–131
in disaster planning and 

recovery  152
as fair use  246
fault tolerance with  189
floppy disks and  200
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outsourcing of  108
tape for  467

Backus, John W.  38, 202, 404
Backus-Naur form (BNF)  38, 38, 

110, 278
backward chaining  188
Baker, Nicholas  276
Ballistic Research Laboratory  167
ballots  175
bandwidth  38, 298, 335. See also 

broadband
Bankers Trust  44
banking and computers  39

biometrics used in  48–49
identity theft and  238
investing  348
personal software for  195
phishing and  370
smart card in  435
terrorism against  127

Bank of America  370, 509
banner ads  344
Bardeen, John  42, 85, 404
Bard’s Tale, The (game)  174
Barlow, John Perry  123, 124
BarnesandNoble.com  349
Bartik, Jean  515
BASH (Bourne Again Shell)  429
BASIC  39–40

classes and  88
games in  103
Gates and  305
graphics in  105, 105
as interpreter  252
loop in  285–286
Microsoft and  305
parsing  360
in personal computers  228
procedures in  384–385
strings in  82

basic input/output system (BIOS)  
49–50, 54, 236, 319, 405

Bateson, Gregory  124
battle management  311
baud  298
Baudot character set  265
Bayes, Thomas  40
Bayesian analysis  40–41, 270
BBN (Bolt Beranek and Newman)  

247, 277, 284, 404
BBS. See bulletin board systems
beams  493–494
Beesley, Angela  500
behavioral biometrics  48
Being Digital (Negroponte)  331
Bell, C. Gordon (Bennet)  41–42
Bell Laboratories  42

art research at  25
C++ at  67
charged-couple device at  371
government funding of  212
research of  404
Ritchie at  409
Shannon at  427
Stroustrup at  459
telecommunications and  473
UNIX and  486

Bell’s Law of Computer Classes  41

benchmark  43
Bendix  227
Benford, Gregory  28
Bense, Max  25
Beowulf clusters  217, 462
Berkeley, Edmund  463
Berkeley Open Infrastructure for 

Network Computing (BOINC)  
117

Berkeley Software Distribution 
(BSD)  261, 486

Berners-Lee, Tim  43–44
in computer history  229
Dertouzos and  141
as entrepreneur  184
HTML invented by  232
in Internet growth  247
semantic Web and  424
on user-created content  487
in World Wide Web 

development  518
Bernstein, Daniel  125, 181, 246
Berry, Clifford E.  30
Bertillon, Alphonse  47
best fit algorithm  302
beta testing  395
Better Business Bureau  345
Bezos, Jeffrey P.  8, 44, 44–45, 184
Bigelow, Julian  510
Bill and Melinda Gates Foundation  

207
Billings, John Shaw  229
bill payment, online  39
Billpoint  146–147
Bina, Eric  15
BINAC  167, 296, 381
binary data  128, 225
binary search  448
binary tree  479
binding  45–46
bins  223
biodiversity, measuring  46
bioinformatics  46–47, 110, 136, 179
biology and computing  75
biometrics  27, 47–49, 48

for authentication  32
employment in  179
in flash drives  198
in law enforcement  273
military use of  310
pattern recognition in  363
with smart cards  436

BIOS (Basic Input-Output System)  
49–50, 54, 236, 319, 405

biotechnology  262
bird flight  75
BISON  361
bitmapped fonts  201
bitmapped image  50, 50, 81, 214
bits  50–51, 51, 52, 204, 298
BitTorrent  193, 413
bitwise operations  51–52, 54
black, in CYMK  93
BlackBerry  220, 364, 437
black box testing  395
blacklists  370
blindness  151
block-structured languages  491
Blogger.com  52, 211
Bloglines  52
blogs and blogging  52–53

advertising in  344
censorship of  76
in cyberbullying  126
on eBay  166
freedom of speech for  125
Google in  211
hypertext in  234
in Internet growth  248
as journalism  259
netiquette in  332

in office automation  342
political activism and  377
RSS for  412
user-created content of  487
World Wide Web and  518
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Blue Gene  462
Blue Origin  45
Bluetooth  53, 273, 299, 487, 513
Blu-ray  75, 205, 446
BMP (Windows bitmap)  214
BNF (Backus-Naur form)  38, 38, 

110, 278
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Infrastructure for Network 
Computing)  117

Bolt Beranek and Newman (BBN)  
247, 277, 284, 404

Bomis  500
Boneh, Dan  317
bookmarks  234, 374
books, technical  471
bookstore, online. See Amazon.com
Boole, George  40, 53–54
Boolean bitwise operators  51
Boolean data type  138
Boolean operators  53–54

in branching statements  55
Differential Analyzer and  

426
with flags  197
for information retrieval  240
in searching  422–423
in switched computers  295

Boot Camp  19, 288
booting  353
boot sequence  54–55
Bootstrap Institute  182
Borland  20
Borland Sidekick  368
Bosack, Leo  87
botnet  100, 111, 451
bots. See software agents
bound port  303
bounds, of arrays  24
Bourne, Steven R.  429
Bourne Again Shell (BASH)  429
Bourne Shell  429, 485
Boyer, Amy  126
bragging rights  100
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brain implants  336
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Brainstorms Community  407
branching statements  55

Boolean operators in  54
in C  65
in COBOL  91
in error handling  187
in flowcharts  200
functional languages and  204
in PL/I  373
in procedural languages  388
in structured programming  

460
Brand, Stewart  407
Brattain, Walter  42, 85, 404
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Breazeal, Cynthia  27, 56, 56–57, 60
Bricklin, Daniel  366, 452
Brief Code  297
Brin, David  384
Brin, Sergey  57, 210, 358
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service

with AOL  12
cable modems for  69
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in digital divide  149
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153–154
fiber optic cable for  191
firewalls and  196, 197
in Internet growth  248
ISPs for  252
modems and  316
net neutrality and  332
office applications over  107
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streaming and  459
telecommunications and  473
for videoconferencing  492
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for VoIP  497
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Brooks, Frederick  386
Brooks, Rodney  27, 56, 59–60, 
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browser. See Web browser
browser history, Ajax pages and  6
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Distribution) UNIX  261, 486
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Buckimaster, Jim  120
buddy system  302
budgeting software  195
buffering  60. See also queue

in data acquisition  130
for graphics display  105
in I/O processing  243
overflows in  60
pointers for  376
queue in  396
in streaming  459
in tape drives  467
in video capture  493

bugs and debugging  61
in C  66
CASE tools for  74
in compiling  96
data and, threat to  36
dynamic binding and  46
error handling and  186
in programming environment  

388
quality assurance and  394
risk of  408
technical support and  470

bulletin board systems (BBS)  
61–62

on ARPANET  247
in computer history  228
conferencing systems and  

114
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cyberspace and  125
early use of  11
in Internet development  247
Rheingold and  407
as social networking  440
for technical support  470

bullet train  408
bullying  126
bump mapping  106
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“Burning Chrome” (Gibson)  419
Burroughs  459
Burroughs, William  70
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bits and  51
in boot sequence  54
in chipset  86
clock speed and  90
CPU and  304
in Ethernet network  283

for graphics cards  214
in IBM PC  236
for I/O processing  242–243
for modem  316
on motherboard  319
in multiprocessing  323
in personal computers  228

Bush, Vannevar  13, 63, 182, 212, 
233
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business applications of computers  

63–64. See also application suite
blogging in  53
in disaster planning and 

recovery  152
enterprise computing  

183–184
ergonomics and  185
financial software and  195
groupware in  217
Macintosh and  287
management information 

systems for  291–292
mashups  294
online advertising  344–345
PCs  366
personal information 

managers  368
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389–390
SAP software in  415
software installation and  244
supply chain management  

462
surveillance  383
text in  81
Web filters  505

Business Objects  415
Business Software Alliance  445
bus mastering  62
bus snooping  323
“Buy It Now”  165
byte  50–51, 51, 52, 204, 298
byte code  19, 95, 253
Byte magazine  260, 366

C
C (language)  65–66

BASIC and  40
bitwise operator symbols 

in  52
branching statements in  55
commenting in  158
in computer history  228
C shell and  429
current use of  389
development of  42, 404, 410
enumerations in  184–185
functions in  385
logic errors in  61
macros in  288
numeric data in  338
Pascal and  363
Perl and  365
PL/I and  374
pointers in  375–376
porting to C++  68
procedures in  385
professional programming 

with  386
program libraries in  276
recursion in  401
strings in  82
syntax errors in  61
variables in  490, 491
viability of  389
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classes in  88
commenting in  158

compiling  96
in computer history  228
development of  459–460
Eiffel and  173–174
enumerations in  184–185
error handling in  187
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for Internet applications 

programming  249
Java and  255
in Microsoft Windows  309
operators in  341
Pascal and  363
pointers in  376–377
procedures in  385
program libraries in  276
Simula and  431

cable modem  38, 58, 69, 162–163, 
299

cache  69–70
buffering and  60
in chipset  86
in client-server computing  

89
in computer engineering  101
CPU and  304, 305
development of  10
for file server  192
for hard disks  223
in information retrieval  240
memory for  301
in multiprocessing  323
in Web browsers  503

CAD/CAM (computer-aided design 
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CAI (computer-aided instruction)  
32, 99, 169, 311
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calculator  5, 70–71, 341, 392. See 

also mechanical calculator
calendaring, in groupware  217
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camcorders, digital  372, 446
camera-ready copy  142
cameras  108, 223, 371–372. See 

also photography, digital
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Campbell, John W.  418
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Canion, Rod  184
CAN-SPAM Act  370, 451
capacitive touchscreens  478
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Čapek, Carl  410, 418
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and paper tape
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Computation  117
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185
cars and computing  71, 71–72, 

177, 293
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cartridge drives  37, 258, 467, 

467–468
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CASE (computer-aided software 
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Case, Steve  11, 12, 350
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cash, digital  146–147
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cassette tape  37, 258, 467, 467–468
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scanning  300
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Cate, Fred H.  383
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in defense computing 
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for graphics  104, 105
as memory  301
in monitors  199, 317
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CB Simulator  350
CBT (computer-aided instruction)  

32, 99, 169, 311
CCM (CORBA Component Model)  
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CCP (Certified Computing 

Professional) certificate  80
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164, 273
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99, 121, 227, 323, 461
CD copy protection  149–150
CDMA (Code Division 

Multiplexing Access)  514
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in boot sequence  55
for data backup  37, 200
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lasers for  356
multimedia and  322
for music files  449
reusable media for  216
Sony and  446

CDT (Center for Democracy and 
Technology)  125, 440

cell chip  205, 305
cell phones. See also smartphone

broadband access through  58
by Motorola  320
MySpace and  440
smartphones and  108
texting on  477
touchscreens on  478
with VoIP  497

cell processors  462
cells, of memory  224
cellular automata  28, 75, 75–76, 

432, 499. See also Game of Life
censorship and the Internet  76

of blogs  53
centralization and  440
in China  211, 250
encryption and  246
policy and  472
political extremism and  377

Center for Democracy and 
Technology (CDT)  125, 440
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central computer  154
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Centronics  360
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CERN  43, 247, 403
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223–224
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in computer history  228
enumerations in  184–185
interpreters for  252–253
PL/I and  373
procedures in  385
recursion in  401
sets in  185
variables in  491
Wirth’s work on  514

Pascal, Blaise  70, 226, 294
passing by reference  385
passing by value  385
passive matrix display  199
passive RFID  405
PATA (parallel ATA)  223
patches  111
patent, for ENIAC  297
Patent Reform Act  245
patent system  245, 472
patent trollers  245
Paterson, Tim  321
Patient Safety Institute  300
PATRIOT Act  383
pattern language  142
Pattern Language, A (Alexander)  

142
pattern matching  33–34, 402, 485
pattern recognition  112, 363–364

in counterterrorism  119
in data mining  136
fuzzy logic in  204
in handwriting recognition  

220, 221
for information retrieval  

241
Kurzweil’s work in  268
in law enforcement  273

Paul, Ron  377
PayPal  146–147

payroll software  64
PC. See personal computer
PC AT  236, 265
PCB (printed circuit board)  85
PC clones  107, 228, 236, 304, 366, 

405
PC-DOS  321
PC-File  427
PCI (peripheral component 

interconnect)  63, 86, 237, 319
PC Magazine  260
p-code  362, 391
PCR (polymerase chain reaction)  

316
PC/SC standard  436
PC’s Limited  140
PC-Talk  427
PC-Write  428
PCX  215
PC-XT  236
PDA (personal digital assistant)  

364, 437. See also mobile 
computing

in computing history  229
GPS in  293
“hot spots” and  250
keyboards and  265
music playback on  327
in office automation  342
operating system and  354
PC market and  367
personal information 

managers on  368
smartphones and  108, 437
texting on  477
touchscreens on  478

PDF (portable document format)  
364–365

in desktop publishing  143
for e-books  166
in office automation  342
PostScript and  380
success of  3
for technical manuals  471
for user documentation  159

PDP Assembly  65
PDP minicomputer  41, 106, 227, 

312, 485
PEAR (PHP Extension and 

Application Repository)  373
pedophiles, chat rooms and  83
PEEK  40
peephole optimization  96
peering arrangements  332
peer network  513
pen, with graphics tablet  215
pen computing  343
Pentium microprocessor  4, 218, 

244, 304, 305
perception  92, 112, 162
perceptron  313, 336–337, 359
Perceptrons (Papert and Minsky)  

359
peripheral hardware  49–50, 54, 

101, 140, 230, 374
Perl (Practical Extraction and 

Repot Language)  24, 83, 365–
366, 393, 508

permission status  136–137
Perot, H. Ross  293
perpendicular hard disk  223
persistent cookies  116
personal ads  120
personal computer (PC)  366–367. 

See also laptop computers; 
microcomputer

backup for  37
BASIC used on  40
BIOS in  49
bus in  62
in CAD  98
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in client-server computing  
89

computer-aided instruction 
on  99

in computing history  228
in data acquisition  130
by Dell  140
in desktop publishing  142
as DVR  163–164
entrepreneurship in  184
file servers and  192
fingerprint readers on  49
graphics on  105, 213–214, 

322
help systems for  225
in home office  230
Kay and  263
Linux offered for  306
mainframes and  290
marketing of  106–107
McCarthy and  297
as media center  299
microprocessors in  304
minicomputer and  312
motherboard in  319, 319
in office automation  342
operating systems for  353
podcasts on  375
in popular culture  378
professional programmers 

of  386
publications on  260
RISC processors in  402
sales of  108
software marketed for  293
standards for  457
statistical analysis with  458
tablet  221, 466
as terminal  476
UNIX and  486
user groups for  488
user interfaces for  488–489
virtual memory in  302
in wireless network  513

personal data management  42
personal digital assistant. See PDA
personal finance software  39
personal health information 

management  300–301, 367–
368, 436

personal information manager 
(PIM)  368–369, 389, 437, 466

personal robots  314
PERT (Program Evaluation and 

Review Technique)  389
Pet  228
PET (positron emission 

tomography)  300
PGP (Pretty Good Privacy)  181, 

383
pharming  370
phenomenology  162
philosophical and spiritual aspects 

of computing  28, 148, 237, 369
phishing and spoofing  369–371

anonymity of  17
banks and  39
in e-commerce  168
fraud from  345
by hackers  220
identity theft from  238
information collection from  

384
in information warfare  242
Internet growth and  248
spam and  451
viruses spread by  111

phoneme  452
phone phreaks  314
Phong shading  106
phosphors  105

photography, digital  239, 275, 371, 
371–372, 382. See also digital 
cameras; video editing, digital; 
Web cam

photonic crystal  191
Photoshop

art and  25, 25
in desktop publishing  143
for image processing  4, 239
on Macintosh  287
memory for  301
for photo editing  372
plug-ins for  374

photosites  371
photovoltaic cells  42
PHP  372–373
PHP Extension and Application 

Repository (PEAR)  373
physical layer  334
Physical Symbol System Hypothesis  

93
Piaget, Jean  284, 359
Picospan  114
picture frames, electronic  484
PIM (personal information 

manager)  368–369, 389, 437, 
466

Pinball Construction Set (game)  
174

pipelining  101, 305, 402
pipes, in software engineering  73
piracy. See software piracy and 

counterfeiting
Pitts, Walter  336, 510–511
pivot  447
Pixar  258
pixels

in bitmaps  50, 214
in CRTs  317, 318
in digital photography  371
in GIFs  214
in graphics  105, 214
in LCD displays  199

PKZip  428
plain old telephone service (POTS)  

162, 473
Plan 9  410
Plankalkül  526
PLATO (Programmed Logic for 

Automatic Teaching Operations)  
99, 114, 153, 169, 322, 347

Plato Notes  114
platters, in hard disks  222, 222
PlayStation  446
PlayStation 2  205
PlayStation 3  108, 205, 305, 462
PL/I  373–374
Plug and Play (PnP)  50, 63, 144–

145, 244, 374, 487
plug-in  19–20, 79, 374–375, 459, 

493, 504, 518
P-machine  252–253
podcasting  19, 251, 375
pointers  375–377, 376

addressing and  3
in Algol  7
in arrays  24
in binary trees  479
in buffering  60
in C  65
in C#  67
Java and  255
in list processing  282
logical errors in  61
in memory allocation  224
in procedures  385
in queues  396, 396–397
variables and  490

pointing devices  185
POKE  40
poker, online  346

political activism and the Internet  
377–378

democracy and  439
flash and smart mobs  198
journalism and  259–260
Lessig and  275
podcasts  375
user-created content in  487
YouTube and  524

political policy  472
polling  243
poll-taking  441
pollution  216
polymerase chain reaction (PCR)  

316
polymorphism  45–46, 340–341
polynomial period of time  98
Pong (game)  205
pooled buffer  60
popular culture and computing  

378–379, 418–419, 496
pop-under ads  344
pop-up ads  344
pornography  76, 193, 505, 523
port  303
portability  94–95, 135, 465
portable computers. See also laptop 

computers; mobile computing; 
PDA; smartphone

global market for  108
handwriting recognition 

for  220
“hot spots” and  250
identity theft from  238
market entry of  107
medical use of  300
military use of  310
Web browsers on  504
wireless access for  514

portable document format. See PDF
portal  350, 379, 422, 523
Portland Pattern Repository  122
port numbers  469
port scanning  196
positive feedback  510
positron emission tomography 

(PET)  300
POSIX  429
POST (power-on self test)  49, 54
postal mail  177
POS terminal  89
postfix notation  201
PostScript  3, 180, 201, 202, 214, 

364, 379–380
poststructuralism  482
posttraumatic stress disorder 

(PTSD)  311
POTS (plain old telephone service)  

162, 473, 496
PowerBook  18, 273
PowerPC chip  245, 288, 320
precedence, of operators  355
Predator  311
predicate calculus  266
predictability, fractals and  203
preemptive multitasking  113, 

324–325
Premiere  493
Premiere (Adobe)  493
preprocessor directives  66
presentation layer  334
presentation software  32, 64, 380, 

380–381, 492. See also Microsoft 
PowerPoint

presidential election  175, 227, 296, 
392, 438

pressure, haptic interfaces and  221
pressure gauges  129
Pretty Good Privacy (PGP)  181, 

383
Primavera Project Planner  390

primitives  18
printed circuit board (PCB)  85
printers  381, 381–383. See also dot-

matrix printers; inkjet printer; 
laser printer

Braille from  151
in desktop publishing  142
device driver for  144
for digital photos  372
parallel port for  360
PostScript for  379–380
for SOHO market  230
standard for  457
toner cartridges for  216

print journalism  259–260
print spooler demon  140, 396
prior art  245
prioritization  389, 417–418
privacy in the digital age  383–384

advocacy groups for  125
anonymity and  17
avatars and  237–238
banking and  39
biometrics and  49
centralization and  440
Clipper Chip and  146
computer crime and  101
cookies and  116
counterterrorism and  119
in CRM  123
data mining and  136
e-commerce and  168
e-government and  173
encryption and  181
Google Earth and  211, 

292–293
Google Maps and  423
Internet growth and  248
ISPs and  252
law enforcement and  273
medical information and  300
network PCs and  367
online advertising and  345
online backup services 

and  37
policy on  472
RFID and  406
risk and  408
smart cards and  436
social networking and  441
ubiquitous computing and  

484
user-created content and  

487
Privacy in the Information Age 

(Cate)  383
Privacy on the Line (Diffie and 

Landau)  146
private class variables  88
private key cryptography  146, 

180–181, 181
probability  40–41, 241, 270, 296, 

389
probes, in space exploration  449
problem solving, design patterns 

in  142
Probst, Larry  174
procedural languages  138, 282, 

337, 388. See also C (language)
Procedure division  91
procedures  384–385

in Algol  7
in BASIC  40, 88
in classes  88
in COBOL  91
in computer science  109, 

110
encapsulation and  180
in Logo  284–285
macros and  288–289
in mathematics software  296



574        Index

in object-oriented 
programming  340–341, 
388

in Pascal  88, 362
in Plankalkül  526
programming languages 

and  388
in scripting languages  421
in Simula  431
in SQL  455
stack and  456
in structured programming  

443, 460
process control  264
processes  151, 154, 186, 264
process management  353
processor. See CPU; microprocessor
Prodigy  350
production applications  64. See 

also CAD/CAM
production systems, in artificial 

intelligence  26–27
professional organizations  79
profiles, Bluetooth  53
profiling, cookies in  116
program(s)

addressing in  3
applications. See application 

software
for batch processing  257
code clarity in  158
commenting in  158
concurrent  112–113
CPU and  120
data security in  137
demons  140–141
as finite-state machine  196
firewalls and  197
global flags in  197–198
internationalization of  247
libraries for. See library, 

program
localization of  247
scripts and  421
in Smalltalk  434
in software engineering  444
stored  227
for supercomputers  461
testing  394
as trade secrets  245–246
undecidable  97

program code, documentation 
of  74, 158–159. See also 
documentation; technical 
writing

program code modules  73–74, 135
Program Evaluation and Review 

Technique (PERT)  389
program library. See library, 

program
programmable calculator  71
programmable read-only memory 

(PROM)  49, 301
programming. See also automatic 

programming; concurrent 
programming; object-oriented 
programming; structured 
programming; systems 
programming

benchmarks in  43
bugs in  61
in data integrity  130
of Differential Analyzer  426
employment in  385–387
of Internet applications  249
libraries for. See library, 

program
in Microsoft Windows  

308–309
as profession  385–387
pseudocode for  390–391

for supercomputers  461
systems analyst and  464
in text editor  476
of UNIVAC  296–297

programming environment  387, 
387–388

CASE tools in  73
compilers in  253
current use of  389
documentation tools in  159
for games  104
interpreters in  253
for Microsoft Windows  309
for OS X  357
professional programmers 

and  386
punched cards and  392
for Ruby  414
Smalltalk as  434
in software engineering  443

programming languages  388, 388–
389. See also specific languages

in ASP .NET  1
assembly language and  29
Backus-Naur Form for  38
binding and  45
compatibility and  94
compilers for  95
in computing history  227, 

228
for concurrent programming  

113
data in  128
data structures in  138
for embedded systems  178
graphics and  105
lambda calculus in  87
linguistics in  278
for multiprocessing  324
open-source  352
operator precedence in  355
parsing  360–361
scripting and  421
string-oriented  82–83
variables in  490–491

Project Gutenberg  167
project management software  342, 

389–390, 418, 444
Project Oxygen  484
Prolog  389, 390
PROM (programmable read-only 

memory)  49, 301
PROMIS  140
propaganda  126–127, 242
propagation  131
proportional fonts  201
propositional calculus  53–54
prostheses  335–336, 336, 411
protected class variables  88
protein folding  46–47, 117
Proteins@home  117
protein simulation  47, 47
protocols  154, 157–158, 177, 360, 

469, 513. See also file transfer 
protocols; TCP/IP; VoIP

proxy address  197
pruning strategy  84–85
PS/2  236, 366
pseudocode  73, 362, 390–391, 460
pseudonymity  17
psychoacoustics  449
psychology of computing  237, 391, 

482–483
psychotherapy, ELIZA and  83, 509
PTSD (posttraumatic stress 

disorder)  311
public key cryptography  32, 78–79, 

79, 145–146, 180–181, 181
Publicly Available Specifications 

(PAS)  457
public variables  88, 491

puck, with graphics tablet  215
punched cards and paper tape  392

in Analytical Engine  35, 226
automatic tabulation of  

229–230
commenting in  158
in ENIAC  488
in mainframes  290
in voting systems  175

PVM (Parallel Virtual Machine)  
217

Python  392–393, 508

Q
QDOS  321
Qpass  146
quad-core processors  4, 245
quadriplegia  151
quality assurance, software  61, 

109, 186, 394–395, 408, 444, 
464

Quality of Life Technologies Center  
424–425

Quantum Computer Services  11
quantum computing  181, 329, 

395–396
Quantum Random Bit Generator 

Service  399
QuarkXPress  4
qubit  395
queries  131, 139, 337, 455
queue  396, 396–397

in circular buffer  60
in computer science  109
as data structure  138
in multitasking  325
for scheduling and 

prioritization  417
stack and  456

Quick BASIC  40
QuickBooks  195
Quicken  39, 195
quicksort  447, 447
QuickTime  374
quote marks, in search engines  423
QWERTY keyboard  185

R
race  149, 515–516
race condition  113
Racter (chatterbot)  83
radiation, from monitors  185
radio astronomy  42
radio frequency identification 

(RFID)  384, 405–407, 406, 436
radio interference  408
Radio Shack  228
radix  338
RAID (redundant array of 

inexpensive disks)  398, 
398–399

for data backup  37
in disaster planning and 

recovery  152
fault tolerance with  189
as file server  192
hard disks for  223
for networked storage  335
virtualization and  494

Rainbow Six (game)  311
RAM (random access memory)  3, 

3, 301, 304. See also memory
RAND Corporation  162. See also 

Sperry-Rand Corporation
random access  192
random access memory (RAM)  3, 

3, 301, 304. See also memory
randomization, in quality 

assurance  395
random number generation  295, 

399

range, in DAQ performance  130
rape, virtual  125, 494
Rapid Selector  63
raster data  208
Raster Image Processor (RIP)  379
RateMDs.com  367–368
rationalism  162
RCA MKI  325
RCA MKII  325
RDF (Resource Description 

Format)  424
RDF Site Summary  413
read attribute  191
readme  244
Read-Only Memory (ROM)  301, 

304
ReadyBoost  70, 198
reality, nature of  369, 378, 

482–483
Really Simple Syndication (RSS)  

375, 412–413
RealPlayer  327, 374, 428, 504
real-time games  104
real-time processing  2, 399–400
real-time simulations (RTS)  104, 

311
reasoning, in cognitive science  92
record data type  138
Recording Industry Association of 

America (RIAA)  125, 150, 246
record-level security  137
recruitment, of terrorists  126–127
recursion  400, 400–401

in Algol  7
in FORTRAN  202
lambda calculus in  87
in LISP  281
in Logo  359
in mergesort  447
in quicksort  447
Ritchie and  409
in shellsort  447
trees and  479

recycling of computers  140
red, in RGB  93
Red Hat  279, 352
reduced instruction set computer 

(RISC)  261, 288, 305, 320, 
401–402

redundancy  39, 247, 427
redundant array of inexpensive 

disks. See RAID
refactoring  74
reference counter  224
referential integrity  130, 131
referral network, of Amazon.com  9
refraction  190–191
registers  28, 304
regression analysis  136, 458
regular expression  402–403, 485
relational database model  131–132, 

139, 292, 455. See also database 
management systems

relations  455
relationships, online  237
relevance, in information retrieval  

241
reliability  36, 39, 130–131
religion, extremist  127
Remington-Rand UNIVAC  90, 296
remote backup services  37
remote procedure call (RPC)  154, 

309, 438, 509
Reno, ACLU v.  125
repetitive stress injuries (RSIs)  

185, 265
Replay TV  163
Report Program Generator (RPG)  

412
repository  116. See also data 

warehouse
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Representational State Transfer 
(REST)  509

reputation systems  480–481
research, online. See online 

research
research laboratories in computing  

403–404. See also specific 
laboratories

Research Library Information 
Network (RLIN)  275

resistive touchscreen  478
resource consumption, of 

computers  216
resource data type  373
Resource Description Format 

(RDF)  424
resource lock  113
resource management  151, 389
REST (Representational State 

Transfer)  509
retina scanning  48
retirement planning  195
reverse engineering  4, 404–405
Reynolds, Craig  28
RFID (radio frequency 

identification)  384, 405–407, 
406, 436

RGB  93, 371
Rhapsody  326
Rheingold, Howard  198, 407–408, 

493
Rheingold Associates  407
RIAA (Recording Industry 

Association of America)  125, 
150, 246

Rich Text Format (RTF)  135, 413
RIGHT SHIFT bitwise operator  52
Riley, Bridget  25
RIM BlackBerry  220, 364, 437
Ringley, Jennifer  504
RIP (Raster Image Processor)  379
RISC (reduced instruction set 

computer)  261, 288, 305, 320, 
401–402

Rise of the Expert Company, The 
(Feigenbaum)  190

risks of computing  408–409, 438
Ritchie, Dennis  65, 409, 409–410, 

429, 485
River, The  114
Rivest, Ron  146, 181
RLE (run-length encoding)  214
RLIN (Research Library 

Information Network)  275
Roadrunner  462
Roberts, Lawrence G.  145, 266
RoboHelp  225
robotics  410–412

academic credentials for  79
artificial intelligence in  27
in artificial life  28
artificial limbs and  335–336
in assistive technologies  425
Breazeal’s work in  56–57
Brooks’s work in  59–60
in CAM  98
computer science in  110
computer vision in  112
cybernetics in  124
finite state machines in  196
frames used in  313
genetic algorithms in  208
haptic interfaces in  222
industrial use of  182–183
in law enforcement  273
“laws” of  418, 433
layered architecture for  59
military use of  311
Minsky’s work in  313
natural language processing 

in  330

neural networks in  337
personal robots  314
research institutions in  403
risk and  408
in science fiction  418
social impact of  439
in space exploration  449
for telepresence  474–475

Robotics in Practice (Engelberger)  
183

Robotics in Service (Engelberger)  
183

Robot Wars  410
Rock, Andrew  318
Rockefeller Differential Analyzer 

(RDA2)  63
RoCo (robot)  57
role-playing games  104, 237, 347
Rollins, Kevin B.  140
ROM (Read-Only Memory)  301
Roomba (robot)  60, 253
root, of tree  138
rootkit  150, 446
root status  136
Rosenblatt, Frank  313, 336
Rosenbleuth, Arturo  510–511
routers  87, 197
routines  45, 49, 197–198, 200, 

207, 296
royalties, for Internet radio  251
RPC (remote procedure call)  154, 

309, 438, 509
RPG (Report Program Generator)  

412
R. R. Donnelly  292
RSA algorithm  146, 181
RSIs (repetitive stress injuries)  

185, 265
RSS (Really Simple Syndication)  

375, 412–413
RTF (Rich Text Format)  135, 413
RTS (real-time simulations)  104, 

311
Ruby  413–414
Ruby on Rails  414
ruggedized laptops  273
rules  188, 204, 270, 271
run-length encoding (RLE)  214
run-time errors  186
R.U.R. (Čapek)  410, 418
Rural Free Delivery  153

S
SABRE  404
SAC (Strategic Air Command)  311
Safari  504
SAGE (Strategic Air Ground 

Environment)  104, 139, 212, 
235, 311

SageTV  299
SAIL (Stanford Artificial 

Intelligence Laboratory)  59, 
145, 403

sales applications  64
Salesforce.com  21
salon.com  259
SAM (software asset management)  

244
Samba  405
sampling, in computer vision  112
sampling rate  130, 399–400
SAN (storage area network)  192, 

335
sandbox  255
Sanger, Larry  500
sans serif fonts  201
SAP  293, 415–416, 462
SAP Business ByDesign  415
SATA (serial IDE)  223
satellite communications network  

320

satellite Internet service  58, 416
SAX (Simple API for SML)  161
Scalia, Antonin  274
scams, online  100, 344, 345–346, 

349, 472. See also identity theft
scanner  12–13, 48, 268, 342, 355, 

416–417
scheduling and prioritization  389, 

417–418
schema. See frames
Scheme  281
Schickard, Wilhelm  70
Schmidt, Eric  358
Schmitt, William  297
Schockley Semiconductor Labs  318
Scholastic Aptitude Test (SAT)  71
school shootings  126
science fiction and computing  220, 

335, 410, 411, 418–419
Scientific Atlanta  87
scientific computing applications  

27, 110, 130, 136, 419–421, 420, 
431–432. See also FORTRAN

scientific instrumentation  419–420
scientific modeling  106. See also 

simulation
Scooba (robot)  253
scope, of variables  491
Scottrade  348
screen savers  203
scripting languages  421–422. 

See also awk; JavaScript; Lua; 
Perl; PHP; Python; Ruby; Tcl; 
VBScript

for administrative tasks  464
in Ajax  5–6
applets and  19
in ASP  1
in authoring systems  32
for CGI  80–81
computer science in  110
for database development  

132
with DHTML  233
in DOM  161
for Internet applications 

programming  249
Java and  256
regular expressions in  402
in shell  428, 429–430
in software installation  244
in text editor  476
in UNIX  485–486
Web servers and  508

scriptwriting  194
SCSI (Small Computer Systems 

Interface)  63, 197, 223, 335
Sculley, John  258
SDRAM (synchronous DRAM)  301
search engine  422–424, 423. 

See also Google; information 
retrieval

Ajax pages and  6
Boolean operators in  54
in computing history  229
in cyberstalking  126
for information retrieval  

241, 241
in Internet growth  248
knowledge representation 

in  267
Microsoft research in  306
natural language processing 

in  330
in online advertising  344
for online research  350
portals and  379
Semantic web and  424

searching  109, 240–241, 401, 402, 
446–448

“Search Inside the Book”  9

Searle, John  93
Seattle Computer Products  321
Second Life  347, 347–348

as computer game  104
cyberlaw and  124
distance education in  154
study of  391, 441–442
virtual community of  494

Second Self, The (Turkle)  482
sector interleaving  222
sectors  222
Secure Digital (SD) memory card  

198
secure shell (ssh)  248
Secure Sockets Layer (SSL)  79, 503
security  100–101. See also 

computer crime; data security
auditing and  31
banking and  39
buffer overflows and  60
cable modems and  69
cookies and  116
of credit card transactions  

146
digital certificates and  78–79
in e-commerce  168
e-mail and  177
employment in  178, 179
forensics in  102–103
in information warfare  242
Internet growth and  248
JavaScript and  256
of mainframes  290–291
in Microsoft Windows  309
in military systems  311
Mitnick and  314
NAT and  469
networks and  334, 450
in operating systems  354
outsourcing of  108
risk and  408
system administrators and  

464
telnet and  248
of voting systems  176
of Web servers  508
on wireless networks  513

security patches  111
sed  365
seed  399
Sega  205
SEI (Software Engineering 

Institute)  444
selection sort  446–447
selection statements. See branching 

statements
Selectric typewriter  516
self  369
self-replicating computers  329
semantic analysis  96, 96
semantics  270
semantic Web  424

Berners-Lee and  44
in counterterrorism  118
for information retrieval  241
knowledge representation 

in  267
ontologies in  351, 369
technological singularity 

and  433
Web 2.0 and  503

semaphore  113, 151
semiconductors  85, 318
semipassive RFID  405
sendmail  60, 111, 177
senior citizens and computing  

424–425, 434
sensors  178, 178, 208, 496
September 11, 2001, attacks  53, 

383, 439
sequential access  192
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sequential calculator  5
serial IDE (SATA)  223
serial numbers  117–118
serial port  360, 425, 486
serial transmission  133
serif fonts  201
server  89, 133. See also file server; 

Web server
server message block (SMB)  335
service broker  426
service bureaus  64
service-oriented architecture (SOA)  

110, 415, 425–426, 509
service robot  183, 410
servlets  255
session layer  334
SETI@home  116–117, 155, 217, 462
sets  67, 184–185
set theory  87, 351
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