A o, qﬂ"fj <

' ‘ENQCYC?L*:O?T}E@??R}L OF
COMPUTER
SCIENCE AND

SCIENCE LIBRARY

ol () B

g I_'l.
- ¥ .I'i"
y ¥
1'l' F
) £
I l|"l'
y! ;
' H‘
p W :
i Ay ' LN
r \1‘ "“h

T REVISED EDITION . Kot

s
" rﬂ
Fa
’."- \
- "
e ..""l‘ F v - k

Id FACTS ON

ENCYCLOPEDIA OF
COMPUTER SCIENCE
AND TECHNOLOGY

REVISED EDITION

HARRY HENDERSON

4 Facts On File
An imprint of Infobase Publishing

In memory of my brother,
Bruce Henderson,
who gave me my first opportunity to explore

personal computing almost 30 years ago.

ENCYCLOPEDIA OF COMPUTER SCIENCE AND TECHNOLOGY, Revised Edition
Copyright © 2009, 2004, 2003 by Harry Henderson

All rights reserved. No part of this book may be reproduced or utilized in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any
information storage or retrieval systems, without permission in writing from the publisher.
For information contact:

Facts On File, Inc.
An imprint of Infobase Publishing
132 West 31st Street
New York NY 10001

Library of Congress Cataloging-in-Publication Data

Henderson, Harry, 1951—

Encyclopedia of computer science and technology / Harry Henderson.—Rev. ed.
p. cm.
Includes bibliographical references and index.
ISBN-13: 978-0-8160-6382-6

ISBN-10: 0-8160-6382-6

1. Computer science—Encyclopedias. 2. Computers—Encyclopedias. I. Title.
QA76.15.H43 2008
004.03—dc22 2008029156

Facts On File books are available at special discounts when purchased in bulk quantities
for businesses, associations, institutions, or sales promotions. Please call our Special Sales
Department in New York at (212) 967-8800 or (800) 322-8755.

You can find Facts On File on the World Wide Web at http://www.factsonfile.com
Text design by Erika K. Arroyo
Cover design by Salvatore Luongo
llustrations by Sholto Ainslie
Photo research by Tobi Zausner, Ph.D.
Printed in the United States of America

VB Hermitage 10987654321

This book is printed on acid-free paper and contains
30 percent postconsumer recycled content.

CONTENTS

ACKNOWLEDGMENTS
iv

INTRODUCTION TO THE REVISED EDITION
v

A-Z ENTRIES
1

APPENDIX I
Bibliographies and Web Resources
527

APPENDIX II
A Chronology of Computing
529

APPENDIX III
Some Significant Awards
542

APPENDIX IV
Computer-Related Organizations
553

INDEX
555

ACKNOWLEDGMENTS

wish to acknowledge with gratitude the patient and thorough

management of this project by my editor, Frank K. Darmstadt. I can
scarcely count the times he has given me encouragement and nudges
as needed. I also wish to thank Tobi Zausner, Ph.D., for her ability and
efficiency in obtaining many of the photos for this book.

INTRODUCTION TO THE
REVISED EDITION

hances are that you use at least one computer or com-

puter-related device on a daily basis. Some are obvi-
ous: for example, the personal computer on your desk or at
your school, the laptop, the PDA that may be in your brief-
case. Other devices may be a bit less obvious: the “smart”
cell phone, the iPod, a digital camera, and other essentially
specialized computers, communications systems, and data
storage systems. Finally, there are the “hidden” computers
found in so many of today’s consumer products—such as
the ones that provide stability control, braking assistance,
and navigation in newer cars.

Computers not only seem to be everywhere, but also
are part of so many activities of daily life. They bring
together willing sellers and buyers on eBay, allow you
to buy a book with a click on the Amazon.com Web site,
and of course put a vast library of information (of vary-
ing quality) at your fingertips via the World Wide Web.
Behind the scenes, inventory and payroll systems keep
businesses running, track shipments, and more problem-
atically, keep track of where people go and what they
buy. Indeed, the infrastructure of modern society, from
water treatment plants to power grids to air-traffic con-
trol, depends on complex software and systems.

Modern science would be inconceivable without com-
puters to gather data and run models and simulations.
Whether bringing back pictures of the surface of Mars or
detailed images to guide brain surgeons, computers have
greatly extended our knowledge of the world around us and
our ability to turn ideas into engineering reality.

The revised edition of the Facts On File Encyclopedia of
Computer Science and Technology provides overviews and
important facts about these and dozens of other applica-
tions of computer technology. There are also many entries
dealing with the fundamental concepts underlying com-
puter design and programming, the Internet, and other
topics such as the economic and social impacts of the infor-
mation society.

The book’s philosophy is that because computer tech-
nology is now inextricably woven into our everyday lives,
anyone seeking to understand its impact must not only
know how the bits flow, but also how the industry works
and where it may be going in the years to come.

NEW AND ENHANCED COVERAGE

The need for a revised edition of this encyclopedia becomes
clear when one considers the new products, technologies,
and issues that have appeared in just a few years. (Consider
that at the start of the 2000 decade, Ajax was still only a
cleaning product and blog was not even a word.)

The revised edition includes almost 180 new entries,
including new programming languages (such as C# and
Ruby), software development and Web design technologies
(such as the aforementioned Ajax, and Web services), and
expanded coverage of Linux and other open-source soft-
ware. There are also entries for key companies in software,
hardware, and Web commerce and services.

Many other new entries reflect new ways of using infor-
mation technology and important social issues that arise
from such use, including the following:

* blogging and newer forms of online communication
that are influencing journalism and political cam-
paigns

¢ other ways for users to create and share content, such
as file-sharing networks and YouTube

e new ways to share and access information, such as
the popular Wikipedia

e the ongoing debate over who should pay for Internet
access, and whether service providers or governments
should be able to control the Web’s content

e the impact of surveillance and data mining on privacy
and civil liberties

vi Introduction to the Revised Edition

e threats to data security, ranging from identity thieves
and “phishers” to stalkers and potential “cyberterror-
ists”

¢ the benefits and risks of social networking sites (such
as MySpace)

e the impact of new technology on women and minori-
ties, young people, the disabled, and other groups

Other entries feature new or emerging technology, such
as

¢ portable media devices (the iPod and its coming suc-
Ccessors)

e home media centers and the gradual coming of the
long-promised “smart house”

¢ navigation and mapping systems (and their integra-
tion with e-commerce)

¢ how computers are changing the way cars, appliances,
and even telephones work

e “Web 2.0”—and beyond

Finally, we look at the farther reaches of the imagina-
tion, considering such topics as

¢ nanotechnology

¢ quantum computing

e science fiction and computing

e philosophical and spiritual aspects of computing
e the ultimate “technological singularity”

In addition to the many new entries, all existing entries
have been carefully reviewed and updated to include the
latest facts and trends.

GETTING THE MOST OUT OF THIS BOOK

This encyclopedia can be used in several ways: for example,
you can look up specific entries by referring from topics in
the index, or simply by browsing. The nearly 600 entries
in this book are intended to read like “mini-essays,” giving
not just the bare definition of a topic, but also developing its
significance for the use of computers and its relationship to
other topics. Related topics are indicated by SMALL CAPITAL
LETTERS. At the end of each entry is a list of books, articles,
and/or Web sites for further exploration of the topic.

Every effort has been made to make the writing acces-
sible to a wide range of readers: high school and college
students, computer science students, working computer
professionals, and adults who wish to be better informed
about computer-related topics and issues.

The appendices provide further information for refer-
ence and exploration. They include a chronology of sig-
nificant events in computing; a listing of achievements in
computing as recognized in major awards; an additional
bibliography to supplement that given with the entries;
and finally, brief descriptions and contact information for
some important organizations in the computer field.

This book can also be useful to obtain an overview of
particular areas in computing by reading groups of related
entries. The following listing groups the entries by cat-

egory.
Al and Robotics

artificial intelligence
artificial life

Bayesian analysis
Breazeal, Cynthia
Brooks, Rodney

cellular automata

chess and computers
cognitive science
computer vision

Dreyfus, Hubert L.
Engelberger, Joseph
expert systems
Feigenbaum, Edward
fuzzy logic

genetic algorithms
handwriting recognition
iRobot Corporation
knowledge representation
Kurzweil, Raymond C.
Lanier, Jaron

Maes, Pattie

McCarthy, John

Minsky, Marvin Lee

MIT Media Lab

natural language processing
neural interfaces

neural network

Papert, Seymour

pattern recognition
robotics

singularity, technological
software agent

speech recognition and synthesis
telepresence
Weizenbaum, Joseph

Business and E-Commerce Applications

Amazon.com

America Online (AOL)

application service provider (ASP)
application software

application suite

auctions, online

auditing in data processing
banking and computers

Bezos, Jeffrey P.

Brin, Sergey

business applications of computers
Craigslist

customer relationship management (CRM)
decision support system

desktop publishing (DTP)

Introduction to the Revised Edition

vii

enterprise computing

Google

groupware

home office

management information system (MIS)
middleware

office automation

Omidyar, Pierre

online advertising

online investing

online job searching and recruiting
optical character recognition (OCR)
Page, Larry

PDF (Portable Document Format)
personal health information management
personal information manager (PIM)
presentation software

project management software

smart card

spreadsheet

supply chain management

systems analyst

telecommuting

text editor

transaction processing

trust and reputation systems

word processing

Yahoo!

Computer Architecture

addressing

arithmetic logic unit (ALU)
bits and bytes

buffering

bus

cache

computer engineering
concurrent programming
cooperative processing
Cray, Seymour

device driver

distributed computing
embedded system

grid computing

parallel port

reduced instruction set computer (RISC)
serial port

supercomputer

USB (Universal Serial Bus)

Computer Industry

Adobe Systems

Advanced Micro Devices (AMD)
Amdahl, Gene Myron

Apple Corporation

Bell, C. Gordon

Bell Laboratories

benchmark

certification of computer professionals
Cisco Systems

compatibility and portability
computer industry

Dell, Inc.

education in the computer field
employment in the computer field
entrepreneurs in computing

Gates, William III (Bill)

Grove, Andrew

IBM

Intel Corporation

journalism and the computer industry
marketing of software

Microsoft Corporation

Moore, Gordon E.

Motorola Corporation

research laboratories in computing
standards in computing

Sun Microsystems

Wozniak, Steven

Computer Science Fundamentals

Church, Alonzo

computer science
computability and complexity
cybernetics

hexadecimal system
information theory
mathematics of computing
measurement units used in computing
Turing, Alan Mathison

von Neumann, John

Wiener, Norbert

Computer Security and Risks

authentication

backup and archive systems
biometrics

computer crime and security
computer forensics

computer virus

copy protection
counterterrorism and computers
cyberstalking and harassment
cyberterrorism

Diffie, Bailey Whitfield
disaster planning and recovery
encryption

fault tolerance

firewall

hackers and hacking

identity theft

information warfare

Mitnick, Kevin D.

online frauds and scams
phishing and spoofing

RFID (radio frequency identification)

viii Introduction to the Revised Edition

risks of computing
Spafford, Eugene H.
spam

spyware and adware
Y2K Problem

Databases

CORBA (Common Object Request Broker Architecture)
data conversion

data dictionary

data mining

data security

data warehouse

database administration

database management system (DBMS)
database

hashing

information retrieval

Oracle Corporation

SAP

SOAP (Simple Object Access Protocol)
SQL

Data Communications and Networking
(General)

bandwidth

Bluetooth

broadband

cable modem
client-server computing
data acquisition

data communications
data compression

DSL (digital subscriber line)
error correction

fiber optics

file server

file transfer protocols
FireWire

local area network (LAN)
modem

network

satellite Internet service
Shannon, Claude E
synchronous/asynchronous operation
telecommunications
terminal

Wifi

wireless computing

Data Types and Algorithms

algorithm

array

binding

bitwise operations
Boolean operators
branching statements
characters and strings

class

constants and literals
data

data abstraction

data structures

data types
enumerations and sets
heap (data structure)
Knuth, Donald

list processing
numeric data
operators and expressions
sorting and searching
stack

tree

variable

Development of Computers

Aiken, Howard

analog and digital
analog computer
Atanasoff, John Vincent
Babbage, Charles
calculator

Eckert, J. Presper
history of computing
Hollerith, Hermann
Mauchly, John William
mainframe
minicomputer

Zuse, Konrad

Future Computing

bioinformation

Dertouzos, Michael

Joy, Bill

molecular computing
nanotechnology

quantum computing

trends and emerging technologies
ubiquitous computing

Games, Graphics, and Media

animation, computer

art and the computer
bitmapped image

codec

color in computing

computer games

computer graphics

digital rights management (DRM)
DVR (digital video recording)
Electronic Arts

film industry and computing
font

fractals in computing

game consoles

graphics card

Introduction to the Revised Edition

graphics formats

graphics tablet

image processing

media center, home
multimedia

music and video distribution, online
music and video players, digital
music, computer

online gambling

online games

photography, digital
podcasting

PostScript

RSS (real simple syndication)
RTF (Rich Text Format)

sound file formats

streaming (video or audio)
Sutherland, Ivan Edward

video editing, digital

YouTube

Hardware Components

CD-ROM and DVD-ROM
flash drive

flat-panel display

floppy disk

hard disk

keyboard

monitor

motherboard

networked storage

optical computing

printers

punched cards and paper tape
RAID (redundant array of inexpensive disks)
scanner

tape drives

Internet and World Wide Web

active server pages (ASP)

Ajax (Asynchronous JavaScript and XML)
Andreessen, Marc

Berners-Lee, Tim

blogs and blogging

bulletin board systems (BBS)
Bush, Vannevar

cascading style sheets (CSS)
Cerf, Vinton G.

certificate, digital

CGI (common gateway interface)
chat, online

chatterbots

conferencing systems

content management

cookies

Cunningham, Howard (Ward)
cyberspace and cyber culture
digital cash (e-commerce)
digital convergence

domain name system (DNS)
eBay

e-books and digital libraries
e-commerce

e-mail

file-sharing and P2P networks
flash and smart mob

HTML, DHTML, and XHTML
hypertext and hypermedia
Internet

Internet applications programming
Internet cafes and “hot spots”
Internet organization and governance
Internet radio

Internet service provider (ISP)
Kleinrock, Leonard
Licklider, J. C. R.

mashups

Netiquette

netnews and newsgroups
online research

online services

portal

Rheingold, Howard

search engine

semantic Web

social networking

TCP/TP

texting and instant messaging
user-created content
videoconferencing

virtual community

Wales, Jimmy

Web 2.0 and beyond

Web browser

Web cam

Web filter

Webmaster

Web page design

Web server

Web services

wikis and Wikipedia

World Wide Web

XML

Operating Systems

demon

emulation

file

input/output (1/0)
job control language
kernel

Linux

memory

memory management
message passing
microsoft windows
MS-DOS
multiprocessing

X Introduction to the Revised Edition

multitasking
operating system

OS X

system administrator
regular expression
Ritchie, Dennis

shell

Stallman, Richard
Torvalds, Linus
UNIX

Other Applications

bioinformatics
cars and computing

computer-aided design and manufacturing (CAD/CAM)

computer-aided instruction (CAI)
distance education

education and computers
financial software

geographical information systems (GIS)
journalism and computers
language translation software

law enforcement and computers
legal software

libraries and computing
linguistics and computing

map information and navigation systems
mathematics software

medical applications of computers
military applications of computers
scientific computing applications
smart buildings and homes

social sciences and computing
space exploration and computers
statistics and computing
typography, computerized
workstation

Personal Computer Components

BIOS (Basic Input-Output System)
boot sequence

chip

chipset

clock speed

CPU (central processing unit)
green PC

IBM PC

laptop computer
microprocessor

personal computer (PC)

PDA (personal digital assistant)
plug and play

smartphone

tablet PC

Program Language Concepts

authoring systems
automatic programming
assembler

Backus-Naur Form (BNF)
compiler

encapsulation

finite state machine

flag

functional languages
interpreter

loop

modeling languages
nonprocedural languages
ontologies and data models
operators and expressions
parsing

pointers and indirection
procedures and functions
programming languages
queue

random number generation
real-time processing
recursion

scheduling and prioritization
scripting languages
Stroustrup, Bjarne
template

Wirth, Niklaus

Programming Languages
Ada

Algol

APL

awk
BASIC

C

C#

C++
Cobol
Eiffel
Forth
FORTRAN
Java
JavaScript
LISP
LOGO
Lua
Pascal
Perl

PHP

PL/1
Prolog
Python
RPG
Ruby
Simula
Tcl
Smalltalk
VBScript

Social, Political, and Legal Issues

anonymity and the Internet
censorship and the Internet

Introduction to the Revised Edition

Xi

computer literacy

cyberlaw

developing nations and computing
digital divide

disabled persons and computing
e-government

electronic voting systems

globalization and the computer industry
government funding of computer research
identity in the online world

intellectual property and computing
Lessig, Lawerence

net neutrality

philosophical and spiritual aspects of computing
political activism and the Internet
popular culture and computing

privacy in the digital age

science fiction and computing

senior citizens and computing
service-oriented architecture (SOA)
social impact of computing

Stoll, Clifford

technology policy

women and minorities in computing
young people and computing

Software Development and Engineering

applet
application program interface (API)

bugs and debugging

CASE (computer-aided software engineering)
design patterns

Dijkstra, Edsger

documentation of program code
documentation, user

document model

DOM (document Object Model)
error handling

flowchart

Hopper, Grace Murray
information design

internationalization and localization
library, program

macro

Microsoft .NET

object-oriented programming (OOP)
open source movement

plug-in

programming as a profession
programming environment
pseudocode

quality assurance, software

reverse engineering

shareware

Simonyi, Charles

simulation

software engineering

structured programming

systems programming
virtualization

User Interface and Support

digital dashboard
Engelbart, Doug
ergonomics of computing
haptic interface

help systems

installation of software
Jobs, Steven Paul

Kay, Alan

Macintosh

mouse

Negroponte, Nicholas
psychology of computing
technical support
technical writing
touchscreen

Turkle, Sherry

ser groups

user interface

virtual reality

wearable computers

abstract data type See paTA ABSTRACTION.

active server pages (ASP)

Many users think of Web pages as being like pages in
a book, stored intact on the server, ready to be flipped
through with the mouse. Increasingly, however, Web pages
are dynamic—they do not actually exist until the user
requests them, and their content is determined largely by
what the user requests. This demand for greater interactiv-
ity and customization of Web content tends to fall first on
the server (see CLIENT-SERVER COMPUTING and WEB SERVER)
and on “server side” programs to provide such functions as
database access. One major platform for developing Web
services is Microsoft’s Active Server Pages (ASP).

In ASP programmers work with built-in objects that rep-
resent basic Web page functions. The RecordSet object can
provide access to a variety of databases; the Response object
can be invoked to display text in response to a user action;
and the Session object provides variables that can be used
to store information about previous user actions such as
adding items to a shopping cart (see also COOKIES).

Control of the behavior of the objects within the Web
page and session was originally handled by code written
in a scripting language such as VBScript and embedded
within the HTML text (see HTML and VBSCRIPT). How-
ever, ASP .NET, based on Microsoft’s latest Windows
class libraries (see MICROSOFT .NET) and introduced in
2002, allows Web services to be written in full-fledged
programming languages such as Visual Basic .NET and

C#, although in-page scripting can still be used. This can
provide several advantages: access to software develop-
ment tools and methodologies available for established
programming languages, better separation of program
code from the “presentational” (formatting) elements of
HTML, and the speed and security associated with com-
piled code. ASP .NET also emphasizes the increasingly
prevalent Extensible Markup Language (see XML) for orga-
nizing data and sending those data between objects using
Simple Object Access Protocol (see SOAP).

Although ASP .NET was designed to be used with
Microsoft’s Internet Information Server (IIS) under Win-
dows, the open-source Mono project (sponsored by Novell)
implements a growing subset of the .NET classes for use on
UNIX and Linux platforms using a C# compiler with appro-
priate user interface, graphics, and database libraries.

An alternative (or complementary) approach that has
become popular in recent years reduces the load on the
Web server by avoiding having to resend an entire Web
page when only a small part actually needs to be changed.
See AJAX (asynchronous JavaScript and XML).

Further Reading

Bellinaso, Marco. ASP .NET 2.0 Website Programming: Problem—
Design—Solution. Indianapolis: Wiley Publishing, 2006.

Liberty, Jesse, and Dan Hurwitz. Programming ASP .NET. 3rd ed.
Sebastapol, Calif.: O'Reilly, 2005.

McClure, Wallace B., et al. Beginning Ajax with ASP .NET. India-
napolis: Wiley Publishing, 2006.

Mono Project. Available online. URL: http://www.mono-project.
com/Main_Page. Accessed April 10, 2007.

2 Ada

Ada

Starting in the 1960s, the U.S. Department of Defense
(DOD) began to confront the growing unmanageability of
its software development efforts. Whenever a new applica-
tion such as a communications controller (see EMBEDDED
SYSTEM) was developed, it typically had its own special-
ized programming language. With more than 2,000 such
languages in use, it had become increasingly costly and
difficult to maintain and upgrade such a wide variety of
incompatible systems. In 1977, a DOD working group began
to formally solicit proposals for a new general-purpose pro-
gramming language that could be used for all applications
ranging from weapons control and guidance systems to bar-
code scanners for inventory management. The winning lan-
guage proposal eventually became known as Ada, named
for 19th-century computer pioneer Ada Lovelace see also
BABBAGE, CHARLES). After a series of reviews and revisions
of specifications, the American National Standards Institute
officially standardized Ada in 1983, and this first version of
the language is sometimes called Ada-83.

LANGUAGE FEATURES
In designing Ada, the developers adopted basic language
elements based on emerging principles (see STRUCTURED
PROGRAMMING) that had been implemented in languages
developed during the 1960s and 1970s (see ALGOL and
PASCAL). These elements include well-defined control
structures (see BRANCHING STATEMENTS and LOOP) and
the avoidance of the haphazard jump or “goto” directive.
Ada combines standard structured language features
(including control structures and the use of subprograms)
with user-definable data type “packages” similar to the
classes used later in C++ and other languages (see CLASS
and OBJECT-ORIENTED PROGRAMMING). As shown in this
simple example, an Ada program has a general form similar
to that used in Pascal. (Note that words in boldface type are
language keywords.)

with Ada. Text |G use Ada. Text |G
procedure Get_Nane is

Narme : String (1..80);

Length : | nteger;

begi n

Put (“What is your first name?”);
Get _Line (Nane, Length);

New Li ne;

Put (“Nice to neet you,”);

Put (Nane (1..Length));

end Get _Nane;

The first line of the program specifies what “packages”
will be used. Packages are structures that combine data
types and associated functions, such as those needed for
getting and displaying text. The Ada.Text.IO package, for
example, has a specification that includes the following:

package Text_10is
type File_Type is limted private;
type File Mde is (In_File, Qut_File, Append_F le);

procedure Create (File : in out File_Type;
Mode : in File_Mde := Qut_File;
Name : in String := *");

procedure Close (File : in out File_Type);

procedure Put _Line (File : in File_Type;
Item: in String);
procedure Put_Line (Item: in String);

end Text |G

The package specification begins by setting up a data
type for files, and then defines functions for creating and
closing a file and for putting text in files. As with C++
classes, more specialized packages can be derived from
more general ones.

In the main program Begin starts the actual data pro-
cessing, which in this case involves displaying a message
using the Put function from the Ada.Text.IO function and
getting the user response with Get_Line, then using Put
again to display the text just entered.

Ada is particularly well suited to large, complex software
projects because the use of packages hides and protects the
details of implementing and working with a data type. A
programmer whose program uses a package is restricted to
using the visible interface, which specifies what parameters
are to be used with each function. Ada compilers are care-
fully validated to ensure that they meet the exact specifica-
tions for the processing of various types of data (see DATA
TYPES), and the language is “strongly typed,” meaning that
types must be explicitly declared, unlike the case with C,
where subtle bugs can be introduced when types are auto-
matically converted to make them compatible.

Because of its application to embedded systems and real-
time operations, Ada includes a number of features designed
to create efficient object (machine) code, and the language
also makes provision for easy incorporation of routines writ-
ten in assembly or other high-level languages. The latest offi-
cial version, Ada 95, also emphasizes support for parallel
programming (see MULTIPROCESSING). The future of Ada is
unclear, however, because the Department of Defense no lon-
ger requires use of the language in government contracts.

Ada development has continued, particularly in areas
including expanded object-oriented features (including
support for interfaces with multiple inheritance); improved
handling of strings, other data types, and files; and refine-
ments in real-time processing and numeric processing.

Further Reading

“Ada 95 Lovelace Tutorial.” Available online. URL: http:/www.
adahome.com/Tutorials/Lovelace/lovelace.htm. Accessed April
18, 2008.

Ada 95 On-line Reference Manual (hypertext) Available online.
URL: http://www.adahome.com/Resources/refs/rm95.html.
Accessed April 18, 2008.

Barnes, John. Programming in Ada 2005 with CD. New York: Pear-
son Education, 2006.

Dale, Nell, and John W. McCormick. Ada Plus Data Structures: An
Object-Oriented Approach. 2nd ed. Sudbury, Mass.: Jones and
Bartlett, 2006.

Adobe Systems 3

addressing

In order for computers to manipulate data, they must be
able to store and retrieve it on demand. This requires a way
to specify the location and extent of a data item in memory.
These locations are represented by sequential numbers, or
addresses.

Physically, a modern RAM (random access memory)
can be visualized as a grid of address lines that crisscross
with data lines. Each line carries one bit of the address,
and together, they specify a particular location in memory
(see MEMORY). Thus a machine with 32 address lines can
handle up to 32 bits, or 4 gigabytes (billions of bytes) worth
of addresses. However the amount of memory that can be
addressed can be extended through indirect addressing,
where the data stored at an address is itself the address of
another location where the actual data can be found. This
allows a limited amount of fast memory to be used to point
to data stored in auxiliary memory or mass storage thus
extending addressing to the space on a hard disk drive.

Some of the data stored in memory contains the actual
program instructions to be executed. As the processor
executes program instructions, an instruction pointer
accesses the location of the next instruction. An instruc-
tion can also specify that if a certain condition is met the
processor will jump over intervening locations to fetch
the next instruction. This implements such control struc-
tures as branching statements and loops.

Swap to

Requests disk
block 3 1 > 1
Program » 2 >
RAM Load from 3
(2 blocks) disk 4
5
6
7
8
9
10

Disk
(10 blocks)

© Infobase Publishing

Virtual memory uses indirect addressing. When a program requests
data from memory, the address is looked up in a table that keeps
track of each block’s actual location. If the block is not in RAM, one
or more blocks in RAM are copied to the swap file on disk, and the
needed blocks are copied from disk into the vacated area in RAM.

ADDRESSING IN PROGRAMS

A variable name in a program language actually references
an address (or often, a range of successive addresses, since
most data items require more than one byte of storage). For
example, if a program includes the declaration

Int Ad_Total, New Total;

when the program is compiled, storage for the variables
Old_Total and New_Total is set aside at the next available
addresses. A statement such as

New_Total = 0;

is compiled as an instruction to store the value 0 in the
address represented by New_Total. When the program later
performs a calculation such as:

New Total = O d _Total + 1;

the data is retrieved from the memory location designated
by Old_Total and stored in a register in the CPU, where 1 is
added to it, and the result is stored in the memory location
designated by New_Total.

Although programmers don’t have to work directly with
address locations, programs can also use a special type of
variable to hold and manipulate memory addresses for more
efficient access to data (see POINTERS AND INDIRECTION).

Further Reading

“Computer Architecture Tutorial.” Available online. URL: http://
www.cs.iastate.edu/~prabhu/Tutorial/title.html. Accessed April
10, 2007.

Murdocca, Miles J., and Vincent P. Heuring. Principles of Computer
Architecture. Upper Saddle River, N J.: Prentice Hall, 2000.

Adobe Systems

Adobe Systems (NASDAQ symbol ADBE) is best known for
products relating to the formatting, printing, and display of
documents. Founded in 1982 by John Warnock and Charles
Geschke, the company is named for a creek near one of their
homes.

Adobe’s first major product was a language that describes
the font sizes, styles, and other formatting needed to print
pages in near-typeset quality (see POSTSCRIPT). This was a
significant contribution to the development of software for
document creation (see DESKTOP PUBLISHING), particularly on
the Apple Macintosh, starting in the later 1980s. Building on
this foundation, Adobe developed high-quality digital fonts
(called Type 1). However, Apple’s TrueType fonts proved to
be superior in scaling to different sizes and in the precise
control over the pixels used to display them. With the licens-
ing of TrueType to Microsoft for use in Windows, TrueType
fonts took over the desktop, although Adobe Type 1 remained
popular in commercial typesetting applications. Finally, in
the late 1990s Adobe, together with Microsoft, established a
new font format called OpenType, and by 2003 Adobe had
converted all of its Type 1 fonts to the new format.

Adobe’s Portable Document Format (see PDF) has become
a ubiquitous standard for displaying print documents. Adobe
greatly contributed to this development by making a free
Adobe Acrobat PDF reader available for download.

4 Advanced Micro Devices (AMD)

IMAGE PROCESSING SOFTWARE

In the mid-1980s Adobe’s founders realized that they could
further exploit the knowledge of graphics rendition that they
had gained in developing their fonts. They began to create
software that would make these capabilities available to illus-
trators and artists as well as desktop publishers. Their first
such product was Adobe Illustrator for the Macintosh, a vec-
tor-based drawing program that built upon the graphics capa-
bilities of their PostScript language.

In 1989 Adobe introduced Adobe Photoshop for the
Macintosh. With its tremendous variety of features, the
program soon became a standard tool for graphic artists.
However, Adobe seemed to have difficulty at first in antici-
pating the growth of desktop publishing and graphic arts
on the Microsoft Windows platform. Much of that market
was seized by competitors such as Aldus PageMaker and
QuarkXPress. By the mid-1990s, however, Adobe, fueled by
the continuing revenue from its PostScript technology, had
acquired both Aldus and Frame Technologies, maker of the
popular FrameMaker document design program. Meanwhile
PhotoShop continued to develop on both the Macintosh and
Windows platforms, aided by its ability to accept add-ons
from hundreds of third-party developers (see PLUG-INS).

MULTIMEDIA AND THE WEB

Adobe made a significant expansion beyond document pro-
cessing into multimedia with its acquisition of Macromedia
(with its popular Flash animation software) in 2005 at a cost
of about $3.4 billion. The company has integrated Macrome-
dia’s Flash and Dreamweaver Web-design software into its
Creative Suite 3 (CS3). Another recent Adobe product that
targets Web-based publishing is Digital Editions, which inte-
grated the existing Dreamweaver and Flash software into a
powerful but easy-to-use tool for delivering text content and
multimedia to Web browsers. Buoyed by these developments,
Adobe earned nearly $2 billion in revenue in 2005, about
$2.5 billion in 2006, and $3.16 billion in 2007.

Today Adobe has over 6,600 employees, with its head-
quarters in San Jose and offices in Seattle and San Francisco
as well as Bangalore, India; Ottawa, Canada; and other loca-
tions. In recent years the company has been regarded as a
superior place to work, being ranked by Fortune magazine
as the fifth best in America in 2003 and sixth best in 2004.

Further Reading

“Adobe Advances on Stronger Profit.” Business Week Online, Decem-
ber 18, 2006. Available online. URL: http://www.business-
week.com/investor/content/dec2006/pi20061215_986588.
htm. Accessed April 10, 2007.

Adobe Systems Incorporated home page. Available online. URL:
http://www.adobe.com. Accessed April 10, 2007.

“Happy Birthday Acrobat: Adobe’s Acrobat Turns 10 Years Old.”
Print Media 18 (July—August 2003): 21.

Advanced Micro Devices (AMD)

Sunnyvale, California-based Advanced Micro Devices, Inc.,
(NYSE symbol AMD) is a major competitor in the market
for integrated circuits, particularly the processors that are

at the heart of today’s desktop and laptop computers (see
MICROPROCESSOR). The company was founded in 1969 by a
group of executives who had left Fairchild Semiconductor.
In 1975 the company began to produce both RAM (mem-
ory) chips and a clone of the Intel 8080 microprocessor.

When IBM adopted the Intel 8080 for its first personal
computer in 1982 (see INTEL CORPORATION and IBM PC),
it required that there be a second source for the chip. Intel
therefore signed an agreement with AMD to allow the latter
to manufacture the Intel 9806 and 8088 processors. AMD
also produced the 80286, the second generation of PC-com-
patible processors, but when Intel developed the 80386 it
canceled the agreement with AMD.

A lengthy legal dispute ensued, with the California
Supreme Court finally siding with AMD in 1991. However,
as disputes continued over the use by AMD of “microcode”
(internal programming) from Intel chips, AMD eventually
used a “clean room” process to independently create func-
tionally equivalent code (see REVERSE ENGINEERING). How-
ever, the speed with which new generations of chips was
being produced rendered this approach impracticable by
the mid-1980s, and Intel and AMD concluded a (largely
secret) agreement allowing AMD to use Intel code and pro-
viding for cross-licensing of patents.

In the early and mid-1990s AMD had trouble keeping up
with Intel’s new Pentium line, but the AMD K6 (introduced
in 1997) was widely viewed as a superior implementation of
the microcode in the Intel Pentium—and it was “pin com-
patible,” making it easy for manufacturers to include it on
their motherboards.

Today AMD remains second in market share to Intel.
AMD’s Athlon, Opteron, Turion, and Sempron processors
are comparable to corresponding Intel Pentium processors,
and the two companies compete fiercely as each introduces
new architectural features to provide greater speed or pro-
cessing capacity.

In the early 2000s AMD seized the opportunity to beat
Intel to market with chips that could double the data band-
width from 32 bits to 64 bits. The new specification stan-
dard, called AMD64, was adopted for upcoming operating
systems by Microsoft, Sun Microsystems, and the develop-
ers of Linux and UNIX kernels. AMD has also matched
Intel in the latest generation of dual-core chips that essen-
tially provide two processors on one chip. Meanwhile,
AMD strengthened its position in the high-end server mar-
ket when, in May 2006, Dell Computer announced that it
would market servers containing AMD Opteron processors.
In 2006 AMD also moved into the graphics-processing field
by merging with ATI, a leading maker of video cards, at
a cost of $5.4 billion. Meanwhile AMD also continues to
be a leading maker of flash memory, closely collaborat-
ing with Japan’s Fujitsu Corporation (see FLASH DRIVE). In
2008 AMD continued its aggressive pursuit of market share,
announcing a variety of products, including a quad-core
Opteron chip that it expects to catch up to if not surpass
similar chips from Intel.

Ajax 5

Further Reading

AMD Web site. Available online. URL: http:/www.amd.com/us-
en/. Accessed April 10, 2007.

Rodengen, Jeffrey L. The Spirit of AMD: Advanced Micro Devices. Ft.
Lauderdale, Fla.: Write Stuff Enterprises, 1998.

Tom’s Hardware [CPU articles and charts]. Available online. URL:
http://www.tomshardware.com/find_by_topic/cpu.html.
Accessed April 10, 2007.

advertising, online Sce ONLINE ADVERTISING.
agent software See SOFTWARE AGENT.
Al See ARTIFICIAL INTELLIGENCE.

Aiken, Howard
(1900-1973)
American

Electrical Engineer

Howard Hathaway Aiken was a pioneer in the development
of automatic calculating machines. Born on March 8, 1900,
in Hoboken, New Jersey, he grew up in Indianapolis, Indi-
ana, where he pursued his interest in electrical engineering
by working at a utility company while in high school. He
earned a B.A. in electrical engineering in 1923 at the Uni-
versity of Wisconsin.

By 1935, Aiken was involved in theoretical work on
electrical conduction that required laborious calculation.
Inspired by work a hundred years earlier (see BABBAGE,
CHARLES), Aiken began to investigate the possibility of build-
ing a large-scale, programmable, automatic computing device
(see CALCULATOR). As a doctoral student at Harvard, Aiken
aroused interest in his project, particularly from Thomas
Watson, Sr., head of International Business Machines (IBM).
In 1939, IBM agreed to underwrite the building of Aiken’s
first calculator, the Automatic Sequence Controlled Calcula-
tor, which became known as the Harvard Mark L.

MARK I AND ITS PROGENY

Like Babbage, Aiken aimed for a general-purpose program-
mable machine rather than an assembly of special-pur-
pose arithmetic units. Unlike Babbage, Aiken had access
to a variety of tested, reliable components, including card
punches, readers, and electric typewriters from IBM and
the mechanical electromagnetic relays used for automatic
switching in the telephone industry. His machine used dec-
imal numbers (23 digits and a sign) rather than the binary
numbers of the majority of later computers. Sixty registers
held whatever constant data numbers were needed to solve
a particular problem. The operator turned a rotary dial to
enter each digit of each number. Variable data and program
instructions were entered via punched paper tape. Calcula-
tions had to be broken down into specific instructions simi-

lar to those in later low-level programming languages such
as “store this number in this register” or “add this number
to the number in that register” (see ASSEMBLER). The results
(usually tables of mathematical function values) could be
printed by an electric typewriter or output on punched
cards. Huge (about 8 feet [2.4 m] high by 51 feet [15.5 m]
long), slow, but reliable, the Mark I worked on a variety
of problems during World War II, ranging from equations
used in lens design and radar to the designing of the implo-
sive core of an atomic bomb.

Aiken completed an improved model, the Mark 1I, in
1947. The Mark III of 1950 and Mark IV of 1952, however,
were electronic rather than electromechanical, replacing
relays with vacuum tubes.

Compared to later computers such as the ENIAC and
UNIVAC, the sequential calculator, as its name suggests,
could only perform operations in the order specified. Any
looping had to be done by physically creating a repetitive
tape of instructions. (After all, the program as a whole was
not stored in any sort of memory, and so previous instruc-
tions could not be reaccessed.) Although Aiken’s machines
soon slipped out of the mainstream of computer develop-
ment, they did include the modern feature of parallel pro-
cessing, because different calculation units could work on
different instructions at the same time. Further, Aiken rec-
ognized the value of maintaining a library of frequently
needed routines that could be reused in new programs—
another fundamental of modern software engineering.

Aiken’s work demonstrated the value of large-scale auto-
matic computation and the use of reliable, available tech-
nology. Computer pioneers from around the world came to
Aiken’s Harvard computation lab to debate many issues that
would become staples of the new discipline of computer
science. The recipient of many awards including the Edison
Medal of the IEEE and the Franklin Institute’s John Price
Award, Howard Aiken died on March 14, 1973, in St. Louis,
Missouri.

Further Reading

Cohen, 1. B. Howard Aiken: Portrait of a Computer Pioneer. Cam-
bridge, Mass.: MIT Press, 1999.

Cohen, I. B., R. V. D. Campbell, and G. Welch, eds. Makin’ Num-
bers: Howard Aiken and the Computer. Cambridge, Mass.: MIT
Press, 1999.

Ajax (Asynchronous JavaScript and XML)
With the tremendous growth in Web usage comes a chal-
lenge to deliver Web-page content more efficiently and with
greater flexibility. This is desirable to serve adequately the
many users who still rely on relatively low-speed dial-up
Internet connections and to reduce the demand on Web
servers. Ajax (asynchronous JavaScript and XML) takes
advantage of several emerging Web-development technolo-
gies to allow Web pages to interact with users while keep-
ing the amount of data to be transmitted to a minimum.

In keeping with modern Web-design principles, the
organization of the Web page is managed by coding in
XHTML, a dialect of HTML that uses the stricter rules and

6 Algol

grammar of the data-description markup language XML
(see HTML, DHTML, AND XHTML and XML). Alternatively,
data can be stored directly in XML. A structure called
the DOM (Document Object Model; see DOM) is used to
request data from the server, which is accessed through an
object called httpRequest. The “presentational” information
(regarding such matters as fonts, font sizes and styles, justi-
fication of paragraphs, and so on) is generally incorporated
in an associated cascading style sheet (see CASCADING STYLE
SHEETS). Behavior such as the presentation and processing
of forms or user controls is usually handled by a scripting
language (for example, see JAVASCRIPT). Ajax techniques tie
these forms of processing together so that only the part of
the Web page affected by current user activity needs to be
updated. Only a small amount of data needs to be received
from the server, while most of the HTML code needed to
update the page is generated on the client side—that is, in
the Web browser. Besides making Web pages more flexible
and interactive, Ajax also makes it much easier to develop
more elaborate applications, even delivering fully functional
applications such as word processing and spreadsheets over
the Web (see APPLICATION SERVICE PROVIDER).

Some critics of Ajax have decried its reliance on Java-
Script, arguing that the language has a hard-to-use syntax
similar to the C language and poorly implements objects
(see OBJECT-ORIENTED PROGRAMMING). There is also a need
to standardize behavior across the popular Web browsers.
Nevertheless, Ajax has rapidly caught on in the Web devel-
opment community, filling bookstore shelves with books
on applying Ajax techniques to a variety of other languages
(see, for example, PHP).

Ajax can be simplified by providing a framework of
objects and methods that the programmer can use to set up
and manage the connections between server and browser.
Some frameworks simply provide a set of data structures
and functions (see APPLICATION PROGRAM INTERFACE), while
others include Ajax-enabled user interface components such
as buttons or window tabs. Ajax frameworks also vary in

Client Server
XHTML page CSS stylesheet
interface | styling

XML document
content

S

XML
XML DOM _ .| HttpRequest |
manipulation [7 object XSLT stylesheet
and display communication .
transformation

© Infobase Publishing

Ajax is a way to quickly and efficiently update dynamic Web
pages—formatting is separate from content, making it easy to
revise the latter.

how much of the processing is done on the server and how
much is done on the client (browser) side. Ajax frameworks
are most commonly used with JavaScript, but also exist for
Java (Google Web Toolkit), PHP, C++, and Python as well as
other scripting languages. An interesting example is Flap-
jax, a project developed by researchers at Brown University.
Flapjax is a complete high-level programming language that
uses the same syntax as the popular JavaScript but hides
the messy details of sharing and updating data between cli-
ent and server.

DRAWBACKS AND CHALLENGES
By their very nature, Ajax-delivered pages behave differ-
ently from conventional Web pages. Because the updated
page is not downloaded as such from the server, the
browser cannot record it in its “history” and allow the
user to click the “back” button to return to a previous
page. Mechanisms for counting the number of page views
can also fail. As a workaround, programmers have some-
times created “invisible” pages that are used to make the
desired history entries. Another problem is that since con-
tent manipulated using Ajax is not stored in discrete pages
with identifiable URLs, conventional search engines can-
not read and index it, so a copy of the data must be pro-
vided on a conventional page for indexing. The extent
to which XML should be used in place of more compact
data representations is also a concern for many devel-
opers. Finally, accessibility tools (see DISABLED PERSONS
AND COMPUTERS) often do not work with Ajax-delivered
content, so an alternative form must often be provided to
comply with accessibility guidelines or regulations.
Despite these concerns, Ajax is in widespread use and
can be seen in action in many popular Web sites, including
Google Maps and the photo-sharing site Flickr.com.

Further Reading

Ajaxian [news and resources for Ajax developers]. Available
online. URL: http://ajaxian.com/. Accessed April 10, 2007.

Crane, David, Eric Pascarello, and Darren James. Ajax in Action.
Greenwich, Conn.: Manning Publications, 2006.

“Google Web Toolkit: Build AJAX Apps in the Java Language.”
Available online. URL: http:/code.google.com/webtoolkit/.
Accessed April 10, 2007.

Holzner, Steve. Ajax for Dummies. Hoboken, N J.: Wiley, 2006.

Jacobs, Sas. Beginning XML with DOM and Ajax: From Novice to
Professional. Berkeley, Calif.: Apress, 2006.

Algol
The 1950s and early 1960s saw the emergence of two high-
level computer languages into widespread use. The first was
designed to be an efficient language for performing scien-
tific calculations (see FORTRAN). The second was designed
for business applications, with an emphasis on data pro-
cessing (see COBOL). However many programs continued to
be coded in low-level languages (see ASSEMBLER) designed
to take advantages of the hardware features of particular
machines.

In order to be able to easily express and share meth-
ods of calculation (see ALGORITHM), leading programmers

algoritm 7

began to seek a “universal” programming language that
was not designed for a particular application or hardware
platform. By 1957, the German GAMM (Gesellschaft fur
angewandte Mathematik und Mechanik) and the American
ACM (Association for Computing Machinery) had joined
forces to develop the specifications for such a language. The
result became known as the Zurich Report or Algol-58, and
it was refined into the first widespread implementation of
the language, Algol-60.

LANGUAGE FEATURES

Algol is a block-structured, procedural language. Each vari-
able is declared to belong to one of a small number of kinds
of data including integer, real number (see DATA TYPES),
or a series of values of either type (see ARRAY). While the
number of types is limited and there is no facility for defin-
ing new types, the compiler’s type checking (making sure a
data item matches the variable’s declared type) introduced a
level of security not found in most earlier languages.

An Algol program can contain a number of separate
procedures or incorporate externally defined procedures
(see LIBRARY, PROGRAM), and the variables with the same
name in different procedure blocks do not interfere with
one another. A procedure can call itself (see RECURSION).
Standard control structures (see BRANCHING STATEMENTS
and LOOP) were provided.

The following simple Algol program stores the numbers
from 1 to 10 in an array while adding them up, then prints
the total:

begin
integer array ints[1:10];
i nteger counter, total;

total := 0O;
for counter :=1 step 1 until counter > 10
do

begin

ints [counter] := counter;
total :=total + ints[counter];
end;
printstring “The total is:”;
printint (total);
end

ALGOL’S LEGACY

The revision that became known as Algol-68 expanded
the variety of data types (including the addition of bool-
ean, or true/false values) and added user-defined types
and “structs” (records containing fields of different types
of data). Pointers (references to values) were also imple-
mented, and flexibility was added to the parameters that
could be passed to and from procedures.

Although Algol was used as a production language in
some computer centers (particularly in Europe), its rela-
tive complexity and unfamiliarity impeded its acceptance,
as did the widespread corporate backing for the rival lan-
guages FORTRAN and especially COBOL. Algol achieved
its greatest success in two respects: for a time it became
the language of choice for describing new algorithms for

computer scientists, and its structural features would be
adopted in the new procedural languages that emerged in
the 1970s (see PASCAL and C).

Further Reading

“Algol 68 Home Page.” URL: http://www.algol68.org. Accessed
April 10, 2007.

Backus, J. W., and others. “Revised Report on the Algorithmic Lan-
guage Algol 60.” Originally published in Numerische Mathema-
tik, the Communications of the ACM, and the Journal of the British
Computer Society. Available online. URL: http://www.masswerk.
at/algol60/report.htm. Accessed April 10, 2007.

algorithm

When people think of computers, they usually think of
silicon chips and circuit boards. Moving from relays to
vacuum tubes to transistors to integrated circuits has
vastly increased the power and speed of computers, but
the essential idea behind the work computers do remains
the algorithm. An algorithm is a reliable, definable proce-
dure for solving a problem. The idea of the algorithm goes
back to the beginnings of mathematics and elementary
school students are usually taught a variety of algorithms.
For example, the procedure for long division by succes-
sive division, subtraction, and attaching the next digit is
an algorithm. Since a bona fide algorithm is guaranteed to
work given the specified type of data and the rote following
of a series of steps, the algorithmic approach is naturally
suited to mechanical computation.

ALGORITHMS IN COMPUTER SCIENCE

Just as a cook learns both general techniques such as how
to sauté or how to reduce a sauce and a repertoire of specific
recipes, a student of computer science learns both general
problem-solving principles and the details of common algo-
rithms. These include a variety of algorithms for organizing
data (see SORTING AND SEARCHING), for numeric problems
(such as generating random numbers or finding primes),
and for the manipulation of data structures (see LIST PRO-
CESSING and QUEUE).

A working programmer faced with a new task first tries
to think of familiar algorithms that might be applicable to
the current problem, perhaps with some adaptation. For
example, since a variety of well-tested and well-understood
sorting algorithms have been developed, a programmer is
likely to apply an existing algorithm to a sorting problem
rather than attempt to come up with something entirely
new. Indeed, for most widely used programming languages
there are packages of modules or procedures that imple-
ment commonly needed data structures and algorithms (see
LIBRARY, PROGRAM).

If a problem requires the development of a new algo-
rithm, the designer will first attempt to determine whether
the problem can, at least in theory, be solved (see COMPUT-
ABILITY AND COMPLEXITY). Some kinds of problems have
been shown to have no guaranteed answer. If a new algo-
rithm seems feasible, principles found to be effective in the
past will be employed, such as breaking complex problems

8 ALU

down into component parts or building up from the sim-
plest case to generate a solution (see RECURSION). For exam-
ple, the merge-sort algorithm divides the data to be sorted
into successively smaller portions until they are sorted, and
then merges the sorted portions back together.

Another important aspect of algorithm design is choosing
an appropriate way to organize the data (see DATA STRUC-
TURES). For example, a sorting algorithm that uses a branch-
ing (tree) structure would probably use a data structure that
implements the nodes of a tree and the operations for adding,
deleting, or moving them (see CLASS).

Once the new algorithm has been outlined (see PSEUDO-
CODE), it is often desirable to demonstrate that it will work
for any suitable data. Mathematical techniques such as the
finding and proving of loop invariants (where a true asser-
tion remains true after the loop terminates) can be used to
demonstrate the correctness of the implementation of the
algorithm.

PRACTICAL CONSIDERATIONS

It is not enough that an algorithm be reliable and cor-
rect, it must also be accurate and efficient enough for its
intended use. A numerical algorithm that accumulates too
much error through rounding or truncation of intermediate
results may not be accurate enough for a scientific applica-
tion. An algorithm that works by successive approximation
Or convergence on an answer may require too many itera-
tions even for today’s fast computers, or may consume too
much of other computing resources such as memory. On
the other hand, as computers become more and more pow-
erful and processors are combined to create more power-
ful supercomputers (see SUPERCOMPUTER and CONCURRENT
PROGRAMMING), algorithms that were previously consid-
ered impracticable might be reconsidered. Code profiling
(analysis of which program statements are being executed
the most frequently) and techniques for creating more effi-
cient code can help in some cases. It is also necessary to
keep in mind special cases where an otherwise efficient
algorithm becomes much less efficient (for example, a tree
sort may work well for random data but will become badly
unbalanced and slow when dealing with data that is already
sorted or mostly sorted).

Sometimes an exact solution cannot be mathematically
guaranteed or would take too much time and resources to
calculate, but an approximate solution is acceptable. A so-
called “greedy algorithm” can proceed in stages, testing at
each stage whether the solution is “good enough.” Another
approach is to use an algorithm that can produce a rea-
sonable if not optimal solution. For example, if a group of
tasks must be apportioned among several people (or com-
puters) so that all tasks are completed in the shortest pos-
sible time, the time needed to find an exact solution rises
exponentially with the number of workers and tasks. But
an algorithm that first sorts the tasks by decreasing length
and then distributes them among the workers by “dealing”
them one at a time like cards at a bridge table will, as dem-
onstrated by Ron Graham, give an allocation guaranteed to
be within 4/3 of the optimal result—quite suitable for most
applications. (A procedure that can produce a practical,

though not perfect solution is actually not an algorithm but
a heuristic.)

An interesting approach to optimizing the solution to
a problem is allowing a number of separate programs to
“compete,” with those showing the best performance sur-
viving and exchanging pieces of code (“genetic material”)
with other successful programs (see GENETIC ALGORITHMS).
This of course mimics evolution by natural selection in the
biological world.

Further Reading

Berlinksi, David. The Advent of the Algorithm: The Idea That Rules
the World. New York: Harcourt, 2000.

Cormen, T. H., C. E. Leiserson, R. L. Rivest, and Clifford Stein.
Introduction to Algorithms. 2nd ed. Cambridge, Mass.: MIT
Press, 2001.

Knuth, Donald E. The Art of Computer Programming. Vol. 1: Funda-
mental Algorithms. 3rd ed. Reading, Mass.: Addison-Wesley,
1997. Vol. 2: Seminumerical Algorithms. 3rd ed. Reading, Mass.:
Addison-Wesley, 1997. Vol. 3: Searching and Sorting. 2nd ed.
Reading, Mass.: Addison-Wesley, 1998.

ALU See ARITHMETIC LOGIC UNIT.

Amazon.com

Beginning modestly in 1995 as an online bookstore, Ama-
zon.com became one of the first success stories of the early
Internet economy (see also E-COMMERCE).

Named for the world’s largest river, Amazon.com was
the brainchild of entrepreneur Jeffrey Bezos (see BEZOS,
JEFFREY P.). Like a number of other entrepreneurs of the
early 1990s, Bezos had been searching for a way to market
to the growing number of people who were going online.
He soon decided that books were a good first product, since
they were popular, nonperishable, relatively compact, and
easy to ship.

Several million books are in print at any one time,
with about 275,000 titles or editions added in 2007 in
the United States alone. Traditional “brick and mortar”
(physical) bookstores might carry a few thousand titles
up to perhaps 200,000 for the largest chains. Bookstores
in turn stock their shelves mainly through major book
distributors that serve as intermediaries between publish-
ers and the public.

For an online bookstore such as Amazon.com, however,
the number of titles that can be made available is limited
only by the amount of warehouse space the store is willing
to maintain—and no intermediary between publisher and
bookseller is needed. From the start, Amazon.com’s busi-
ness model has capitalized on this potential for variety and
the ability to serve almost any niche interest. Over the years
the company’s offerings have expanded beyond books to
34 different categories of merchandise, including software,
music, video, electronics, apparel, home furnishings, and
even nonperishable gourmet food and groceries. (Amazon.
com also entered the online auction market, but remains a
distant runner-up to market leader eBay).

Amazon.com 9

EXPANSION AND PROFITABILITY

Because of its desire to build a very diverse product line,
Amazon.com, unusually for a business startup, did not
expect to become profitable for about five years. The grow-
ing revenues were largely poured back into expansion.
In the heated atmosphere of the Internet boom of the
late 1990s, many other Internet-based businesses echoed
that philosophy, and many went out of business follow-
ing the bursting of the so-called dot-com bubble of the
early 2000s. Some analysts questioned whether even the
hugely popular Amazon.com would ever be able to con-
vert its business volume into an operating profit. How-
ever, the company achieved its first profitable year in 2003
(with a modest $35 million surplus). Since then growth
has remained steady and generally impressive: In 2005,
Amazon.com earned $8.49 billion revenues with a net
income of $359 million. By then the company had about
12,000 employees and had been added to the S&P 500
stock index.

In 2006 the company maintained its strategy of invest-
ing in innovation rather than focusing on short-term prof-
its. Its latest initiatives include selling digital versions of
books (e-books) and magazine articles, new arrangements
to sell video content, and even a venture into moviemaking.
By year end, annual revenue had increased to $10.7 billion.

In November 2007 Amazon announced the Kindle, a
book reader (see E-BOOKS AND DIGITAL LIBRARIES) with a
sharp “paper-like” display. In addition to books, the Kindle
can also subscribe to and download magazines, content
from newspaper Web sites, and even blogs.

As part of its expansion strategy, Amazon.com has
acquired other online bookstore sites including Borders.com
and Waldenbooks.com. The company has also expanded
geographically with retail operations in Canada, the United
Kingdom, France, Germany, Japan, and China.

Amazon.com has kept a tight rein on its operations even
while continually expanding. The company’s leading mar-
ket position enables it to get favorable terms from publishers
and manufacturers. A high degree of warehouse automation
and an efficient procurement system keep stock moving
quickly rather than taking up space on the shelves.

INFORMATION-BASED STRATEGIES

Amazon.com has skillfully taken advantage of information
technology to expand its capabilities and offerings. Exam-
ples of such efforts include new search mechanisms, cul-
tivation of customer relationships, and the development of
new ways for users to sell their own goods.

Amazon’s “Search Inside the Book” feature is a good
example of leveraging search technology to take advantage
of having a growing amount of text online. If the publisher
of a book cooperates, its actual text is made available for
online searching. (The amount of text that can be displayed
is limited to prevent users from being able to read entire
books for free.) Further, one can see a list of books citing
(or being cited by) the current book, providing yet another
way to explore connections between ideas as used by dif-
ferent authors. Obviously for Amazon.com, the ultimate
reason for offering all these useful features is that more

potential customers may be able to find and purchase books
on even the most obscure topics.

Amazon.com’s use of information about customers’
buying histories is based on the idea that the more one
knows about what customers have wanted in the past, the
more effectively they can be marketed to in the future
through customizing their view of the site. Users receive
automatically generated recommendations for books or
other items based on their previous purchases (see also
CUSTOMER RELATIONSHIP MANAGEMENT). There is even a
“plog” or customized Web log that offers postings related
to the user’s interests and allows the user to respond.

There are other ways in which Amazon.com tries to
involve users actively in the marketing process. For exam-
ple, users are encouraged to review books and other prod-
ucts and to create lists that can be shared with other users.
The inclusion of both user and professional reviews in turn
makes it easier for prospective purchasers to determine
whether a given book or other item is suitable. Authors are
given the opportunity through “Amazon Connect” to pro-
vide additional information about their books. Finally, in
late 2005 Amazon replaced an earlier “discussion board”
facility with a wiki system that allows purchasers to cre-
ate or edit an information page for any product (see WIKIS
AND WIKIPEDIA).

The company’s third major means of expansion is to
facilitate small businesses and even individual users in
the marketing of their own goods. Amazon Marketplace,
a service launched in 2001, allows users to sell a variety of
items, with no fees charged unless the item is sold. There
are also many provisions for merchants to set up online
“storefronts” and take advantage of online payment and
other services.

Another aspect of Amazon’s marketing is its referral net-
work. Amazon’s “associates” are independent businesses
that provide links from their own sites to products on Ama-
zon. For example, a seller of crafts supplies might include
on its site links to books on crafting on the Amazon site. In
return, the referring business receives a commission from
Amazon.com.

Although often admired for its successful business plan,
Amazon.com has received criticism from several quar-
ters. Some users have found the company’s customer ser-
vice (which is handled almost entirely by e-mail) to be
unresponsive. Meanwhile local and specialized bookstores,
already suffering in recent years from the competition of
large chains such as Borders and Barnes and Noble, have
seen in Amazon.com another potent threat to the survival
of their business. (The company’s size and economic power
have elicited occasional comparisons with Wal-Mart.)
Finally, Amazon.com has been criticized by some labor
advocates for paying low wages and threatening to termi-
nate workers who sought to unionize.

Further Reading

Amazon.com Web site. Available online. URL: http://www.amazon.
com. Accessed August 28, 2007.

Daisey, Mike. 21 Dog Years: Doing Time @ Amazon.com. New York:
The Free Press, 2002.

Marcus, James. Amazonia. New York: New Press, 2005.

10 Amdahl, Gene Myron

Shanahan, Francis. Amazon.com Mashups. New York: Wrox/Wiley,
2007.

Spector, Robert. Amazon.com: Get Big Fast: Inside the Revolutionary
Business Model That Changed the World. New York: Harper-
Business, 2002.

Amdahl, Gene Myron
(1922-)

American

Inventor, Entrepreneur

Gene Amdahl played a major role in designing and develop-
ing the mainframe computer that dominated data process-
ing through the 1970s (see MAINFRAME). Amdahl was born
on November 16, 1922, in Flandreau, South Dakota. After
having his education interrupted by World War 1I, Amdahl
received a B.S. from South Dakota State University in 1948
and a Ph.D. in physics at the University of Wisconsin in
1952.

As a graduate student Amdahl had realized that fur-
ther progress in physics and other sciences required better,
faster tools for computing. At the time there were only a few
computers, and the best approach to getting access to sig-
nificant computing power seemed to be to design one’s own
machine. Amdahl designed a computer called the WISC
(Wisconsin Integrally Synchronized Computer). This com-
puter used a sophisticated procedure to break calculations
into parts that could be carried out on separate processors,
making it one of the earliest examples of the parallel com-
puting techniques found in today’s computer architectures.

DESIGNER FOR IBM

In 1952 Amdahl went to work for IBM, which had commit-
ted itself to dominating the new data processing industry.
Amdahl worked with the team that eventually designed the
IBM 704. The 704 improved upon the 701, the company’s
first successful mainframe, by adding many new internal
programming instructions, including the ability to per-
form floating point calculations (involving numbers that
have decimal points). The machine also included a fast,
high-capacity magnetic core memory that let the machine
retrieve data more quickly during calculations. In Novem-
ber 1953 Amdahl became the chief project engineer for
the 704 and then helped design the IBM 709, which was
designed especially for scientific applications.

When IBM proposed extending the technology by build-
ing a powerful new scientific computer called STRETCH,
Amdahl eagerly applied to head the new project. However,
he ended up on the losing side of a corporate power strug-
gle, and did not receive the post. He left IBM at the end of
1955.

In 1960 Amdahl rejoined IBM, where he was soon
involved in several design projects. The one with the most
lasting importance was the IBM System/360, which would
become the most ubiquitous and successful mainframe com-
puter of all time. In this project Amdahl further refined his
ideas about making a computer’s central processing unit
more efficient. He designed logic circuits that enabled the

processor to analyze the instructions waiting to be executed
(the “pipeline”) and determine which instructions could be
executed immediately and which would have to wait for the
results of other instructions. He also used a cache, or special
memory area, in which the instructions that would be needed
next could be stored ahead of time so they could be retrieved
immediately when needed. Today’s desktop PCs use these
same ideas to get the most out of their chips’ capabilities.

Amdahl also made important contributions to the
further development of parallel processing. Amdahl cre-
ated a formula called Amdahl’s law that basically says that
the advantage gained from using more processors gradu-
ally declines as more processor are added. The amount of
improvement is also proportional to how much of the cal-
culation can be broken down into parts that can be run in
parallel. As a result, some kinds of programs can run much
faster with several processors being used simultaneously,
while other programs may show little improvement.

In the mid-1960s Amdahl helped establish IBM’s
Advanced Computing Systems Laboratory in Menlo Park,
California, which he directed. However, he became increas-
ingly frustrated with what he thought was IBM’s too rigid
approach to designing and marketing computers. He
decided to leave IBM again and, this time, challenge it in
the marketplace.

CREATOR OF “CLONES”

Amdahl resolved to make computers that were more power-
ful than IBM’s machines, but that would be “plug compati-
ble” with them, allowing them to use existing hardware and
software. To gain an edge over the computer giant, Amdahl
was able to take advantage of the early developments in
integrated electronics to put more circuits on a chip with-
out making the chips too small, and thus too crowded for
placing the transistors.

Thanks to the use of larger scale circuit integration,
Amdahl could sell machines with superior technology to
that of the IBM 360 or even the new IBM 370, and at a
lower price. IBM responded belatedly to the competition,
making more compact and faster processors, but Amdahl
met each new IBM product with a faster, cheaper alterna-
tive. However, IBM also countered by using a sales tech-
nique that opponents called FUD (fear, uncertainty, and
doubt). IBM salespersons promised customers that IBM
would soon be coming out with much more powerful and
economical alternatives to Amdahl’s machines. As a result,
many would-be customers were persuaded to postpone pur-
chasing decisions and stay with IBM. Amdahl Corporation
began to falter, and Gene Amdahl gradually sold his stock
and left the company in 1980.

Amdahl then tried to repeat his success by starting a
new company called Trilogy. The company promised
to build much faster and cheaper computers than those
offered by IBM or Amdahl. He believed he could accomplish
this by using the new, very-large-scale integrated silicon
walfer technology in which circuits were deposited in layers
on a single chip rather than being distributed on separate
chips on a printed circuit board. But the problem of dealing
with the electrical characteristics of such dense circuitry,

America Online 11

as well as some design errors, somewhat crippled the new
computer design. Amdahl was forced to repeatedly delay
the introduction of the new machine, and Trilogy failed in
the marketplace.

Amdahl’s achievements could not be overshadowed by
the failures of his later career. He has received many indus-
try awards, including Data Processing Man of the Year by
the Data Processing Management Association (1976), the
Harry Goode Memorial Award from the American Federa-
tion of Information Processing Societies, and the SIGDA Pio-
neering Achievement Award (2007).

Further Reading

“Gene Amdahl.” Available online. URL: http:/www.thocp.net/
biographies/amdahl_gene.htm. Accessed April 10, 2007.

Slater, Robert. Portraits in Silicon. Cambridge, Mass.: MIT Press,
1987.

America Online (AOL)

For millions of PC users in the 1990s, “going online” meant
connecting to America Online. However, this once domi-
nant service provider has had difficulty adapting to the
changing world of the Internet.

By the mid-1980s a growing number of PC users were
starting to go online, mainly dialing up small bulletin board
services. Generally these were run by individuals from their
homes, offering a forum for discussion and a way for users
to upload and download games and other free software and
shareware (see BULLETIN BOARD SYSTEMS). However, some
entrepreneurs saw the possibility of creating a commercial
information service that would be interesting and useful
enough that users would pay a monthly subscription fee
for access. Perhaps the first such enterprise to be successful
was Quantum Computer Services, founded by Jim Kimsey
in 1985 and soon joined by another young entrepreneur,
Steve Case. Their strategy was to team up with personal
computer makers such as Commodore, Apple, and IBM to
provide special online services for their users.

In 1989 Quantum Link changed its name to America
Online (AOL). In 1991 Steve Case became CEO, taking over
from the retiring Kimsey. Case’s approach to marketing AOL
was to aim the service at novice PC users who had trouble
mastering arcane DOS (disk operating system) commands
and interacting with text-based bulletin boards and primi-
tive terminal programs. As an alternative, AOL provided a
complete software package that managed the user’s connec-
tion, presented “friendly” graphics, and offered point-and-
click access to features.

Chat rooms and discussion boards were also expanded
and offered in a variety of formats for casual and more for-
mal use. Gaming, too, was a major emphasis of the early
AOL, with some of the first online multiplayer fantasy role-
playing games such as a version of Dungeons and Dragons
called Neverwinter Nights (see ONLINE GAMES). A third pop-
ular application has been instant messaging (IM), including
a feature that allowed users to set up “buddy lists” of their
friends and keep track of when they were online (see also
TEXTING AND INSTANT MESSAGING).

INTERNET CHALLENGE

By 1996 the World Wide Web was becoming popular (see
WORLD WIDE WEB). Rather than signing up with a proprie-
tary service such as AOL, users could simply get an account
with a lower-cost direct-connection service (see INTERNET
SERVICE PROVIDER) and then use a Web browser such as
Netscape to access information and services. AOL was slow
in adapting to the growing use of the Internet. At first, the
service provided only limited access to the Web (and only
through its proprietary software). Gradually, however, AOL
offered a more seamless Web experience, allowing users to
run their own browsers and other software together with
the proprietary interface. Also, responding to competition,
AOL replaced its hourly rates with a flat monthly fee ($19.95
at first).

Overall, AOL increasingly struggled with trying to ful-
fill two distinct roles: Internet access provider and content
provider. By the late 1990s AOLs monthly rates were higher
than those of “no frills” access providers such as NetZero.
AOL tried to compensate for this by offering integration of
services (such as e-mail, chat, and instant messaging) and
news and other content not available on the open Internet.

AOL also tried to shore up its user base with aggressive
marketing to users who wanted to go online but were not
sure how to do so. Especially during the late 1990s, AOL
was able to swell its user rolls to nearly 30 million, largely
by providing millions of free CDs (such as in magazine
inserts) that included a setup program and up to a month of
free service. But while it was easy to get started with AOL,
some users began to complain that the service would keep
billing them even after they had repeatedly attempted to
cancel it. Meanwhile, AOL users got little respect from the
more sophisticated inhabitants of cyberspace, who often
complained that the clueless “newbies” were cluttering
newsgroups and chat rooms.

In 2000 AOL and Time Warner merged. At the time, the
deal was hailed as one of the greatest mergers in corporate

= AL e - WSS AT - TR B e | e -
e a
. R e L - ¢
"
——— -]
| [——— E::: |
p——— 4 o L1
il | e
L e Tl "]] []
P P - e —
[- S
= e
a——— (= j
=] ™ . §
— - = i o
= § o e
E o o -
- —— — s
s . | h

America Online (AOL) was a major online portal in the 1990s,
but has faced challenges adapting to the modern world of the
Web. (SCREEN IMAGE CREDIT: AOL)

12 analog and digital

history, bringing together one of the foremost Internet com-
panies with one of the biggest traditional media companies.
The hope was that the new $350 billion company would
be able to leverage its huge subscriber base and rich media
resources to dominate the online world.

FROM SERVICE TO CONTENT PROVIDER
By the 2000s, however, an increasing number of people
were switching from dial-up to high-speed broadband Inter-
net access (see BROADBAND) rather than subscribing to ser-
vices such as AOL simply to get online. This trend and the
overall decline in the Internet economy early in the decade
(the “dot-bust™) contributed to a record loss of $99 billion
for the combined company in 2002. In a shakeup, Time-
Warner dropped “AOL” from its name, and Steve Case was
replaced as executive chairman. The company increasingly
began to shift its focus to providing content and services
that would attract people who were already online, with
revenue coming from advertising instead of subscriptions.
In October 2006 the AOL division of Time-Warner
(which by then had dropped the full name America Online)
announced that it would provide a new interface and soft-
ware optimized for broadband users. AOLs OpenRide
desktop presents users with multiple windows for e-mail,
instant messaging, Web browsing, and media (video and
music), with other free services available as well. These
offerings are designed to compete in a marketplace where
the company faces stiff competition from other major Inter-
net presences who have been using the advertising-based
model for years (see YAHOO! and GOOGLE).

Further Reading

AOL Web site. Available online. URL: http:/www.aol.com.
Accessed August 28, 2007.

Kaufeld, John. AOL for Dummies. 2nd ed. Hoboken, NJ.: Wiley,
2004.
Klein, Alec. Stealing Time: Steve Case, Jerry Levin, and the Collapse
of AOL Time Warner. New York: Simon & Schuster, 2003.
Mehta, Stephanie N. “Can AOL Keep Pace?” Fortune, August 21,
2006, p. 29.

Swisher, Kara. AOL.COM: How Steve Case Beat Bill Gates, Nailed the
Netheads, and Made Millions in the War for the Web. New York:
Times Books, 1998.

analog and digital

The word analog (derived from Greek words meaning “by
ratio”) denotes a phenomenon that is continuously vari-
able, such as a sound wave. The word digital, on the other
hand, implies a discrete, exactly countable value that can be
represented as a series of digits (numbers). Sound recording
provides familiar examples of both approaches. Recording
a phonograph record involves electromechanically transfer-
ring a physical signal (the sound wave) into an “analogous”
physical representation (the continuously varying peaks
and dips in the record’s surface). Recording a CD, on the
other hand, involves sampling (measuring) the sound level
at thousands of discrete instances and storing the results in
a physical representation of a numeric format that can in
turn be used to drive the playback device.

Sampling intervals

I

Analog (continuous) signal

1 2 3 3 2 2 3 4 4 3
Digital representation

© Infobase Publishing

Most natural phenomena such as light or sound intensity are ana-
log values that vary continuously. To convert such measurements
to a digital representation, “snapshots” or sample readings must be
taken at regular intervals. Sampling more frequently gives a more
accurate representation of the original analog data, but at a cost in
memory and processor resources.

Virtually all modern computers depend on the manipu-
lation of discrete signals in one of two states denoted by the
numbers 1 and 0. Whether the 1 indicates the presence of
an electrical charge, a voltage level, a magnetic state, a pulse
of light, or some other phenomenon, at a given point there
is either “something” (1) or “nothing” (0). This is the most
natural way to represent a series of such states.

Digital representation has several advantages over ana-
log. Since computer circuits based on binary logic can be
driven to perform calculations electronically at ever-increas-
ing speeds, even problems where an analog computer better
modeled nature can now be done more efficiently with digi-
tal machines (see ANALOG COMPUTER). Data stored in digi-
tized form is not subject to the gradual wear or distortion of
the medium that plagues analog representations such as the
phonograph record. Perhaps most important, because digi-
tal representations are at base simply numbers, an infinite
variety of digital representations can be stored in files and
manipulated, regardless of whether they started as pictures,
music, or text (see DIGITAL CONVERGENCE).

CONVERTING BETWEEN ANALOG AND

DIGITAL REPRESENTATIONS

Because digital devices (particularly computers) are the
mechanism of choice for working with representations of
text, graphics, and sound, a variety of devices are used to
digitize analog inputs so the data can be stored and manip-
ulated. Conceptually, each digitizing device can be thought
of as having three parts: a component that scans the input
and generates an analog signal, a circuit that converts the
analog signal from the input to a digital format, and a com-
ponent that stores the resulting digital data for later use. For
example, in the ubiquitous flatbed scanner a moving head
reads varying light levels on the paper and converts them to

analog computer 13

a varying level of current (see SCANNER). This analog signal
is in turn converted into a digital reading by an analog-to-
digital converter, which creates numeric information that
represents discrete spots (pixels) representing either levels
of gray or of particular colors. This information is then
written to disk using the formats supported by the operat-
ing system and the software that will manipulate them.

Further Reading

Chalmers, David J. “Analog vs. Digital Computation.” Available
online. URL: http://www.u.arizona.edu/~chalmers/notes/ana-
log.html. Accessed April 10, 2007.

Hoeschele, David F. Analog-to-Digital and Digital-to-Analog Conver-
sion Techniques. 2nd ed. New York: Wiley-Interscience, 1994.

analog computer

Most natural phenomena are analog rather than digital in
nature (see ANALOG AND DIGITAL). But just as mathematical
laws can describe relationships in nature, these relation-
ships in turn can be used to construct a model in which
natural forces generate mathematical solutions. This is the
key insight that leads to the analog computer.

The simplest analog computers use physical components
that model geometric ratios. The earliest known analog
computing device is the Antikythera Mechanism. Con-
structed by an unknown scientist on the island of Rhodes
around 87 B.C., this device used a precisely crafted differen-
tial gear mechanism to mechanically calculate the interval
between new moons (the synodic month). (Interestingly,
the differential gear would not be rediscovered until 1877.)

Another analog computer, the slide rule, became the
constant companion of scientists, engineers, and students

until it was replaced by electronic calculators in the 1970s.
Invented in simple form in the 17th century, the slide rule’s
movable parts are marked in logarithmic proportions,
allowing for quick multiplication, division, the extraction
of square roots, and sometimes the calculation of trigono-
metric functions.

The next insight involved building analog devices that
set up dynamic relationships between mechanical move-
ments. In the late 19th century two British scientists, James
Thomson and his brother Sir William Thomson (later Lord
Kelvin) developed the mechanical integrator, a device
that could solve differential equations. An important new
principle used in this device is the closed feedback loop,
where the output of the integrator is fed back as a new
set of inputs. This allowed for the gradual summation or
integration of an equation’s variables. In 1931, VANNEVAR
BUSH completed a more complex machine that he called a
“differential analyzer.” Consisting of six mechanical inte-
grators using specially shaped wheels, disks, and servo-
mechanisms, the differential analyzer could solve equations
in up to six independent variables. As the usefulness and
applicability of the device became known, it was quickly
replicated in various forms in scientific, engineering, and
military institutions.

These early forms of analog computer are based on fixed
geometrical ratios. However, most phenomena that scien-
tists and engineers are concerned with, such as aerodynam-
ics, fluid dynamics, or the flow of electrons in a circuit,
involve a mathematical relationship between forces where
the output changes smoothly as the inputs are changed. The
“dynamic” analog computer of the mid-20th century took
advantage of such force relationships to construct devices
where input forces represent variables in the equation, and

Light strikes sensor

— W

Amplifier

© Infobase Publishing

Voltage
(analog)

>

A/D 7 Control 7
converter Reading program
(digital)
Recorded
data

Converting analog data to digital involves several steps. A sensor (such as the CCD, or charge-coupled device in a digital camera) creates

a varying electrical current. An amplifier can strengthen this signal to make it easier to process, and filters can eliminate spurious spikes or
“noise.” The “conditioned” signal is then fed to the analog-to-digital (A/D) converter, which produces numeric data that is usually stored in a
memory buffer from which it can be processed and stored by the controlling program.

14 Andreessen, Marc

Completed in 1931, Vannevar Bush’s Differential Analyzer was a triumph of analog computing. The device could solve equations with up to

six independent values. (MIT MUSEUM)

nature itself “solves” the equation by producing a resulting
output force.

In the 1930s, the growing use of electronic circuits
encouraged the use of the flow of electrons rather than
mechanical force as a source for analog computation. The
key circuit is called an operational amplifier. It generates
a highly amplified output signal of opposite polarity to the
input, over a wide range of frequencies. By using compo-
nents such as potentiometers and feedback capacitors, an
analog computer can be programmed to set up a circuit in
which the laws of electronics manipulate the input voltages
in the same way the equation to be solved manipulates its
variables. The results of the calculation are then read as a
series of voltage values in the final output.

Starting in the 1950s, a number of companies mar-
keted large electronic analog computers that contained
many separate computing units that could be harnessed
together to provide “real time” calculations in which the
results could be generated at the same rate as the actual
phenomena being simulated. In the early 1960s, NASA set
up training simulations for astronauts using analog real-
time simulations that were still beyond the capability of
digital computers.

Gradually, however, the use of faster processors and
larger amounts of memory enabled the digital computer to

surpass its analog counterpart even in the scientific pro-
gramming and simulations arena. In the 1970s, some hybrid
machines combined the easy programmability of a digital
“front end” with analog computation, but by the end of that
decade the digital computer had rendered analog computers
obsolete.

Further Reading

“Analog Computers.” Computer Museum, University of Amster-
dam. Available online. URL: http:/www.science.uva.n/
museum/AnalogComputers.html. Accessed April 18, 2007.

Hoeschele, David F., Jr. Analog-to-Digital and Digital-to-Analog
Conversion Techniques. 2nd ed. New York: John Wiley, 1994.

Vassos, Basil H., and Galen Ewing, eds. Analog and Computer Elec-
tronics for Scientists. 4th ed. New York: John Wiley, 1993.

Andreessen, Marc
1971-)

American

Entrepreneur, Programmer

Marc Andreessen brought the World Wide Web and its
wealth of information, graphics, and services to the desk-
top, setting the stage for the first “e-commerce” revolution
of the later 1990s. As founder of Netscape, Andreessen also

Andreessen, Marc 15

created the first big “dot-com,” or company doing business
on the Internet.

Born on July 9, 1971, in New Lisbon, Wisconsin,
Andreessen grew up as part of a generation that would
become familiar with personal computers, computer games,
and graphics. By seventh grade Andreessen had his own PC
and was programming furiously. He then studied computer
science at the University of Illinois at Urbana-Champaign,
where his focus on computing was complemented by a wide-
ranging interest in music, history, literature, and business.

By the early 1990s the World Wide Web (see WORLD
WIDE WEB and BERNERS-LEE, TIM) was poised to change
the way information and services were delivered to users.
However, early Web pages generally consisted only of
linked pages of text, without point-and-click navigation or
the graphics and interactive features that adorn Web pages
today.

Andreessen learned about the World Wide Web shortly
after Berners-Lee introduced it in 1991. Andreessen thought
it had great potential, but also believed that there needed
to be better ways for ordinary people to access the new

e W

Marc Andreessen, Chairman of Loudcloud, Inc., speaks at Fortune
magazine’s “Leadership in Turbulent Times” conference on Novem-
ber 8, 2001, in New York City. (PHOTO BY MARIO TAMA/GETTY
IMAGES)

medium. In 1993, Andreessen, together with colleague Eric
Bina and other helpers at the National Center for Supercom-
puting Applications (NCSA), set to work on what became
known as the Mosaic Web browser. Since their work was
paid for by the government, Mosaic was offered free to
users over the Internet. Mosaic could show pictures as well
as text, and users could follow Web links simply by click-
ing on them with the mouse. The user-friendly program
became immensely popular, with more than 10 million
users by 1995.

After earning a B.S. in computer science, Andreessen left
Mosaic, having battled with its managers over the future of
Web-browsing software. He then met Jim Clark, an older
entrepreneur who had been CEO of Silicon Graphics. They
founded Netscape Corporation in 1994, using $4 million
seed capital provided by Clark.

Andreessen recruited many of his former colleagues at
NCSA to help him write a new Web browser, which became
known as Netscape Navigator. Navigator was faster and
more graphically attractive than Mosaic. Most important,
Netscape added a secure encrypted facility that people could
use to send their credit card numbers to online merchants.
This was part of a two-pronged strategy: First, attract the
lion’s share of Web users to the new browser, and then sell
businesses the software they would need to create effective
Web pages for selling products and services to users.

By the end of 1994 Navigator had gained 70 per-
cent of the Web browser market. Time magazine named
the browser one of the 10 best products of the year, and
Netscape was soon selling custom software to companies
that wanted a presence on the Web. The e-commerce boom
of the later 1990s had begun, and Marc Andreessen was one
of its brightest stars. When Netscape offered its stock to the
public in summer 1995, the company gained a total worth
of $2.3 billion, more than that of many traditional blue-
chip industrial companies. Andreessen’s own shares were
worth $55 million.

BATTLE WITH MICROSOFT

Microsoft (see MICROSOFT and GATES, BILL) had been slow
to recognize the growing importance of the Web, but by the
mid-1990s Gates had decided that the software giant had to
have a comprehensive “Internet strategy.” In particular, the
company had to win control of the browser market so users
would not turn to “platform independent” software that
could deliver not only information but applications, with-
out requiring the use of Windows at all.

Microsoft responded by creating its own Web browser,
called Internet Explorer. Although technical reviewers gen-
erally considered the Microsoft product to be inferior to
Netscape, it gradually improved. Most significantly, Micro-
soft included Explorer with its new Windows 95 operating
system. This “bundling” meant that PC makers and con-
sumers had little interest in paying for Navigator when they
already had a “free” browser from Microsoft. In response
to this move, Netscape and other Microsoft competitors
helped promote the antitrust case against Microsoft that
would result in 2001 in some of the company’s practices
being declared an unlawful use of monopoly power.

16 animation, computer

Andreessen tried to respond to Microsoft by focusing
on the added value of his software for Web servers while
making Navigator “open source,” meaning that anyone was
allowed to access and modify the program’s code (see OPEN
SOURCE). He hoped that a vigorous community of program-
mers might help keep Navigator technically superior to
Internet Explorer. However, Netscape’s revenues began to
decline steadily. In 1999 America Online (AOL) bought the
company, seeking to add its technical assets and Webcenter
online portal to its own offerings (see AMERICA ONLINE).

After a brief stint with AOL as its “principal technical
visionary,” Andreessen decided to start his own company,
called LoudCloud. The company provided Web-site devel-
opment, management, and custom software (including e-
commerce “shopping basket” systems) for corporations that
had large, complex Web sites. However, the company was
not successful; Andreessen sold its Web-site-management
component to Texas-based Electronic Data Systems (EDS)
while retaining its software division under the new name
Opsware. In 2007 Andreessen scored another coup, selling
Opsware to Hewlett-Packard (HP) for $1.6 billion.

In 2007 Andreessen launched Ning, a company that
offers users the ability to add blogs, discussion forums, and
other features to their Web sites, but facing established com-
petitors such as MySpace (see also SOCIAL NETWORKING). In
July 2008 Andresseen joined the board of Facebook.

While the future of his recent ventures remains uncer-
tain, Marc Andreessen’s place as one of the key pioneers of
the Web and e-commerce revolution is assured. His inven-
tiveness, technical insight, and business acumen made him
a model for a new generation of Internet entrepreneurs.
Andreessen was named one of the Top 50 People under the
Age of 40 by Time magazine (1994) and has received the
Computerworld/Smithsonian Award for Leadership (1995)
and the W. Wallace McDowell Award of the IEEE Computer
Society (1997).

Further Reading

Clark, Jim. Netscape Time: The Making of the Billion-Dollar Startup
That Took on Microsoft. New York: St. Martin’s Press, 1999.

Guynn, Jessica. “Andreessen Betting Name on New Ning.” San
Francisco Chronicle, February 27, 2006, p. D1, D4.

Payment, Simone. Marc Andreessen and Jim Clark: The Founders of
Netscape. New York: Rosen Pub. Group, 2006.

Quittner, Joshua, and Michelle Slatala. Speeding the Net: The Inside
Story of Netscape and How It Challenged Microsoft. New York:
Atlantic Monthly Press, 1998.

animation, computer

Ever since the first hand-drawn cartoon features entertained
moviegoers in the 1930s, animation has been an important
part of the popular culture. Traditional animation uses a
series of hand-drawn frames that, when shown in rapid
succession, create the illusion of lifelike movement.

COMPUTER ANIMATION TECHNIQUES

The simplest form of computer animation (illustrated in
games such as Pong) involves drawing an object, then eras-
ing it and redrawing it in a different location. A somewhat

more sophisticated approach can create motion in a scene
by displaying a series of pre-drawn images called sprites—
for example, there could be a series of sprites showing a
sword-wielding troll in different positions.

Since there are only a few intermediate images, the use
of sprites doesn’t convey truly lifelike motion. Modern
animation uses a modern version of the traditional drawn
animation technique. The drawings are “keyframes” that
capture significant movements by the characters. The key-
frames are later filled in with transitional frames in a pro-
cess called tweening. Since it is possible to create algorithms
that describe the optimal in-between frames, the advent of
sufficiently powerful computers has made computer anima-
tion both possible and desirable. Today computer animation
is used not only for cartoons but also for video games and
movies. The most striking use of this technique is morph-
ing, where the creation of plausible intermediate images
between two strikingly different faces creates the illusion of
one face being transformed into the other.

Algorithms that can realistically animate people, ani-
mals, and other complex objects require the ability to create
a model that includes the parts of the object that can move
separately (such as a person’s arms and legs). Because the
movement of one part of the model often affects the posi-
tions of other parts, a treelike structure is often used to
describe these relationships. (For example, an elbow moves
an arm, the arm in turn moves the hand, which in turn
moves the fingers). Alternatively, live actors performing a
repertoire of actions or poses can be digitized using wear-
able sensors and then combined to portray situations, such
as in a video game.

Less complex objects (such as clouds or rainfall) can be
treated in a simpler way, as a collection of “particles” that
move together following basic laws of motion and gravity.
Of course when different models come into contact (for
example, a person walking in the rain), the interaction
between the two must also be taken into consideration.

While realism is always desirable, there is inevitably
a tradeoff between the resources available. Computation-
ally intensive physics models might portray a very realistic
spray of water using a high-end graphics workstation, but
simplified models have to be used for a program that runs
on a game console or desktop PC. The key variables are the
frame rate (higher is smoother) and the display resolution.
The amount of available video memory is also a consider-
ation: many desktop PCs sold today have 256MB or more of
video memory.

APPLICATIONS

Computer animation is used extensively in many fea-
ture films, such as for creating realistic dinosaurs (Juras-
sic Park) or buglike aliens (Starship Troopers). Computer
games combine animation techniques with other tech-
niques (see COMPUTER GRAPHICS) to provide smooth
action within a vivid 3D landscape. Simpler forms of ani-
mation are now a staple of Web site design, often written
in Java or with the aid of animation scripting programs
such as Adobe Flash.

API 17

The intensive effort that goes into contemporary com-
puter animation suggests that the ability to fascinate the
human eye that allowed Walt Disney to build an empire is
just as compelling today.

Further Reading

“3-D Animation Workshop.” Available online. URL: http:/www.
webreference.com/3d/indexa.html. Accessed April 12, 2007.

Comet, Michael B. “Character Animation: Principles and Prac-
tice.” Available online. URL: http:/www.comet-cartoons.
com/toons/3ddocs/charanim. Accessed April 12, 2007.

Hamlin, J. Scott. Effective Web Animation: Advanced Techniques for
the Web. Reading, Mass.: Addison-Wesley, 1999.

O’Rourke, Michael. Principles of Three-Dimensional Computer Ani-
mation: Modeling, Rendering, and Animating with 3D Computer
Graphics. New York: Norton, 1998.

Parent, Rick. Computer Animation: Algorithms and Techniques. San
Francisco: Morgan Kaufmann, 2002.

Shupe, Richard, and Robert Hoekman. Flash 8: Projects for Learn-
ing Animation and Interactivity. Sebastapol, Calif.: O’Reilly
Media, 2006.

anonymity and the Internet

Anonymity, or the ability to communicate without disclos-
ing a verifiable identity, is a consequence of the way most
Internet-based e-mail, chat, or news services were designed
(see E-MAIL, CHAT, TEXTING AND INSTANT MESSAGING, and
NETNEWS AND NEWGROUPS). This does not mean that mes-
sages do not have names attached. Rather, the names can
be arbitrarily chosen or pseudonymous, whether reflecting
development of an online persona or the desire to avoid
having to take responsibility for unwanted communications
(see SPAM).

ADVANTAGES

If a person uses a fixed Internet address (see TCP/IP), it may
be possible to eventually discover the person’s location and
even identity. However, messages can be sent through anon-
ymous remailing services where the originating address is
removed. Web browsing can also be done “at arm’s length”
through a proxy server. Such means of anonymity can argu-
ably serve important values, such as allowing persons living
under repressive governments (or who belong to minority
groups) to express themselves more freely precisely because
they cannot be identified. However, such techniques require
some sophistication on the part of the user. With ordinary
users using their service provider accounts directly, gov-
ernments (notably China) have simply demanded that the
user’s identity be turned over when a crime is alleged.

Pseudonymity (the ability to choose names separate
from one’s primary identity) in such venues as chat rooms
or online games can also allow people to experiment with
different identities or roles, perhaps getting a taste of how
members of a different gender or ethnic group are perceived
(see IDENTITY IN THE ONLINE WORLD).

Anonymity can also help protect privacy, especially in
commercial transactions. For example, purchasing some-
thing with cash normally requires no disclosure of the pur-
chaser’s identity, address, or other personal information.

Various systems can use secure encryption to create a cash
equivalent in the online world that assures the merchant
of valid payment without disclosing unnecessary informa-
tion about the purchaser (see DIGITAL CASH). There are also
facilities that allow for essentially anonymous Web brows-
ing, preventing the aggregation or tracking of information
(see COOKIES).

PROBLEMS

The principal problem with anonymity is that it can allow
the user to engage in socially undesirable or even criminal
activity with less fear of being held accountable. The com-
bination of anonymity (or the use of a pseudonym) and the
lack of physical presence seems to embolden some people
to engage in insult or “flaming,” where they might be inhib-
ited in an ordinary social setting. A few services (notably
The WELL) insist that the real identity of all participants
be available even if postings use a pseudonym.

Spam or deceptive e-mail (see PHISHING AND SPOOF-
ING) takes advantage both of anonymity (making it hard
for authorities to trace) and pseudonymity (the ability
to disguise the site by mimicking a legitimate business).
Anonymity makes downloading or sharing files easier
(see FILE-SHARING AND P2P NETWORKS), but also makes
it harder for owners of videos, music, or other content to
pursue copyright violations. Because of the prevalence of
fraud and other criminal activity on the Internet, there
have been calls to restrict the ability of online users to
remain anonymous, and some nations such as South Korea
have enacted legislation to that effect. However, civil lib-
ertarians and privacy advocates believe that the impact on
freedom and privacy outweighs any benefits for security
and law enforcement.

The database of Web-site registrants (called Whois)
provides contact information intended to ensure that
someone will be responsible for a given site and be will-
ing to cooperate to fix technical or administrative prob-
lems. At present, Whois information is publicly available.
However, the Internet Corporation for Assigned Names
and Numbers (ICANN) is considering making the contact
information available only to persons who can show a
legitimate need.

Further Reading

Lessig, Lawrence. Code: Version 2.0. New York: Basic Books, 2006.

Rogers, Michael. “Let’s See Some ID, Please: The End of Anonym-
ity on the Internet?” The Practical Futurist (MSNBC), Decem-
ber 13, 2005. Available online. URL: http:/www.msnbc.msn.
com/ID/10441443/. Accessed April 10, 2007.

Wallace, Jonathan D. “Nameless in Cyberspace: Anonymity on the
Internet.” CATO Institute Briefing Papers, no. 54, December
8, 1999. Available online. URL: http://www.cato.org/pubs/
briefs/bp54.pdf. Accessed April 10, 2007.

AOL See AMERICA ONLINE.

APl See APPLICATIONS PROGRAM INTERFACE.

18 APL

APL (a programming language)

This programming language was developed by Harvard
(later IBM) researcher Kenneth E. Iverson in the early 1960s
as a way to express mathematical functions clearly and
consistently for computer use. The power of the language
to compactly express mathematical functions attracted a
growing number of users, and APL soon became a full gen-
eral-purpose computing language.

Like many versions of BASIC, APL is an interpreted lan-
guage, meaning that the programmer’s input is evaluated
“on the fly,” allowing for interactive response (see INTER-
PRETER). Unlike BASIC or FORTRAN, however, APL has
direct and powerful support for all the important mathe-
matical functions involving arrays or matrices (see ARRAY).

APL has over 100 built-in operators, called “primitives.”
With just one or two operators the programmer can per-
form complex tasks such as extracting numeric or trigono-
metric functions, sorting numbers, or rearranging arrays
and matrices. (Indeed, APLs greatest power is in its ability
to manipulate matrices directly without resorting to explicit
loops or the calling of external library functions.)

To give a very simple example, the following line of APL
code:

X [A X]

sorts the array X. In most programming languages this
would have to be done by coding a sorting algorithm in a
dozen or so lines of code using nested loops and temporary
variables.

However, APL has also been found by many program-
mers to have significant drawbacks. Because the language
uses Greek letters to stand for many operators, it requires
the use of a special type font that was generally not available
on non-IBM systems. A dialect called J has been devised to
use only standard ASCII characters, as well as both simpli-
fying and expanding the language. Many programmers find
mathematical expressions in APL to be cryptic, making
programs hard to maintain or revise. Nevertheless, APL
Special Interest Groups in the major computing societies
testify to continuing interest in the language.

Further Reading

ACM Special Interest Group for APL and J Languages. Available
online. URL: http://www.acm.org/sigapl/. Accessed April 12,
2007.

“APL Frequently Asked Questions.” Available from various sites
including URL: http:/home.earthlink.net/~swsirlin/apl.faq.
html. Accessed May 8, 2007.

Gilman, Leonard, and Allen J. Rose. APL: An Interactive Approach.
3rd ed. (reprint). Malabar, Fla.: Krieger, 1992.

“Why APL?” Available online. URL: http:/www.acm.org/sigapl/
whyapl.htm. Accessed.

Apple Corporation

Since the beginning of personal computing, Apple has had
an impact out of proportion to its relatively modest market
share. In a world generally dominated by IBM PC-compat-
ible machines and the Microsoft DOS and Windows operat-
ing systems, Apple’s distinctive Macintosh computers and

more recent media products have carved out distinctive
market spaces.

Headquartered in Cupertino, California, Apple was
cofounded in 1976 by Steve Jobs, Steve Wozniak, and Ron-
ald Wayne (the latter sold his interest shortly after incor-
poration). (See JOBS, STEVE, and WOZNIAK, STEVEN.) Their
first product, the Apple I computer, was demonstrated to
fellow microcomputer enthusiasts at the Homebrew Com-
puter Club. Although it aroused considerable interest, the
hand-built Apple I was sold without a power supply, key-
board, case, or display. (Today it is an increasingly valuable
“antique.”)

Apple’s true entry into the personal computing mar-
ket came in 1977 with the Apple 1I. Although it was more
expensive than its main rivals from Radio Shack and Com-
modore, the Apple II was sleek, well constructed, and fea-
tured built-in color graphics. The motherboard included
several slots into which add-on boards (such as for printer
interfaces) could be inserted. Besides being attractive to
hobbyists, however, the Apple II began to be taken seri-
ously as a business machine when the first popular spread-
sheet program, VisiCalc, was written for it.

By 1981 more than 2 million Apple IIs (in several varia-
tions) had been sold, but IBM then came out with the IBM
PC. The IBM machine had more memory and a somewhat
more powerful processor, but its real advantage was the
access IBM had to the purchasing managers of corporate
America. The IBM PC and “clone” machines from other
companies such as Compaq quickly displaced Apple as
market leader.

THE MACINTOSH

By the early 1980s Steve Jobs had turned his attention to
designing a radically new personal computer. Using tech-
nology that Jobs had observed at the Xerox Palo Alto
Research Center (PARC), the new machine would have a
fully graphical interface with icons and menus and the abil-
ity to select items with a mouse. The first such machine,
the Apple Lisa, came out in 1983. The machine cost almost
$10,000, however, and proved a commercial failure.

In 1984, however, Apple launched a much less expen-
sive version (see MACINTOSH). Viewers of the 1984 Super
Bowl saw a remarkable Apple commercial in which a female
figure runs through a group of corporate drones (represent-
ing IBM) and smashes a screen. The “Mac” sold reasonably
well, particularly as it was given more processing power and
memory and was accompanied by new software that could
take advantage of its capabilities. In particular, the Mac
came to dominate the desktop publishing market, thanks to
Adobe’s PageMaker program.

In the 1990s Apple diversified the Macintosh line with
a portable version (the PowerBook) that largely set the
standard for the modern laptop computer. By then Apple
had acquired a reputation for stylish design and superior
ease of use. However, the development of the rather similar
Windows operating system by Microsoft (see MICROSOFT
WINDOWS) as well as constantly dropping prices for IBM-
compatible hardware put increasing pressure on Apple and
kept its market share limited. (Apple’s legal challenge to

applet 19

Microsoft alleging misappropriation of intellectual property
proved to be a protracted and costly failure.)

Apple’s many Macintosh variants of the later 1990s
proved confusing to consumers, and sales appeared to bog
down. The company was accused of trying to rely on an
increasingly nonexistent advantage, keeping prices high,
and failing to innovate.

However, in 1997 Steve Jobs, who had been forced out of
the company in an earlier dispute, returned to the company
and brought with him some new ideas. In hardware there
was the iMac, a sleek all-in-one system with an unmistak-
able appearance that restored Apple to profitability in 1998.
On the software side, Apple introduced new video-edit-
ing software for home users and a thoroughly redesigned
UNIX-based operating system (see OS X). In general, the
new incarnation of the Macintosh was promoted as the ideal
companion for a media-hungry generation.

CONSUMER ELECTRONICS

Apple’s biggest splash in the new century, however, came
not in personal computing, but in the consumer electronics
sector. Introduced in 2001, the Apple iPod has been phe-
nomenally successful, with 100 million units sold by 2006.
The portable music player can hold thousands of songs and
easily fit into a pocket (see also MUSIC AND VIDEO PLAY-
ERS, DIGITAL). Further, it was accompanied by an easy-to-
use interface and an online music store (iTunes). (By early
2006, more than a billion songs had been purchased and
downloaded from the service.) Although other types of por-
table MP3 players exist, it is the iPod that defined the genre
(see also PODCASTING). Later versions of the iPod include
the ability to play videos.

In 2005 Apple announced news that startled and perhaps
dismayed many long-time users. The company announced
that future Macintoshes would use the same Intel chips
employed by Windows-based (“Wintel”) machines like the
IBM PC and its descendants. The more powerful machines
would use dual processors (Intel Core Duo). Further, in
2006 Apple released Boot Camp, a software package that
allows Intel-based Macs to run Windows XP. Jobs’s new
strategy seems to be to combine what he believed to be a
superior operating system and industrial design with indus-
try-standard processors, offering the best user experience
and a very competitive cost. Apple’s earnings continued
strong into the second half of 2006.

In early 2007 Jobs electrified the crowd at the Mac-
world Expo by announcing that Apple was going to “rein-
vent the phone.” The product, called iPhone, is essentially
a combination of a video iPod and a full-featured Inter-
net-enabled cell phone (see SMARTPHONE). Marketed by
Apple and AT&T (with the latter providing the phone ser-
vice), the iPhone costs about twice as much as an iPod but
includes a higher-resolution 3.5-in. (diagonal) screen and a
2 megapixel digital camera. The phone can connect to other
devices (see BLUETOOTH) and access Internet services such
as Google Maps. The user controls the device with a new
interface called Multitouch.

Apple also introduced another new media product, the
Apple TV (formerly the iTV), allowing music, photos, and

video to be streamed wirelessly from a computer to an exist-
ing TV set. Apple reaffirmed its media-centered plans by
announcing that the company’s name would be changed from
Apple Computer Corporation to simply Apple Corporation.

In the last quarter of 2006 Apple earned a record-
breaking $1 billion in profit, bolstered mainly by very
strong sales of iPods and continuing good sales of Macin-
tosh computers.

Apple had strong Macintosh sales performance in the
latter part of 2007. The company has suggested that its
popular iPods and iPhones may be leading consumers to
consider buying a Mac for their next personal computer.

Meanwhile, however, Apple has had to deal with ques-
tions about its backdating of stock options, a practice by
which about 200 companies have, in effect, enabled execu-
tives to purchase their stock at an artificially low price.
Apple has cleared Jobs of culpability in an internal investi-
gation, and in April 2007 the Securities and Exchange Com-
mission announced that it would not take action against the
company.

Further Reading

Carlton, Jim. Apple: The Inside Story of Intrigue, Egomania and Busi-
ness Blunders. New York: Random House, 1997.

Deutschman, Alan. The Second Coming of Steve Jobs. New York:
Broadway Books, 2000.

Hertzfeld, Andy. Revolution in the Valley. Sebastapol, Calif.:
O'Reilly, 2005.

Kunkel, Paul. AppleDesign: The Work of the Apple Industrial Design
Group. New York: Graphis, 1997.

Levy, Steven. Insanely Great: The Life and Times of Macintosh, The
Computer that Changed Everything. New York: Penguin Books,
2000.

Linzmayer, Owen W. Apple Confidential 2.0: The Definitive History
of the World’s Most Colorful Company. 2nd ed. San Francisco,
Calif.: No Starch Press, 2004.

applet

An applet is a small program that uses the resources of a
larger program and usually provides customization or addi-
tional features. The term first appeared in the early 1990s
in connection with Apple’s AppleScript scripting language
for the Macintosh operating system. Today Java applets rep-
resent the most widespread use of this idea in Web develop-
ment (see JAVA).

Java applets are compiled to an intermediate repre-
sentation called bytecode, and generally are run in a Web
browser (see WEB BROWSER). Applets thus represent one
of several alternatives for interacting with users of Web
pages beyond what can be accomplished using simple text
markup (see HTML; for other approaches see JAVASCRIPT,
PHP, SCRIPTING LANGUAGES, and AJAX).

An applet can be invoked by inserting a reference to
its program code in the text of the Web page, using the
HTML applet element or the now-preferred object element.
Although the distinction between applets and scripting
code (such as in PHP) is somewhat vague, applets usually
run in their own window or otherwise provide their own
interface, while scripting code is generally used to tailor
the behavior of separately created objects. Applets are also

20 application program interface

rather like plug-ins, but the latter are generally used to
provide a particular capability (such as the ability to read
or play a particular kind of media file), and have a stan-
dardized facility for their installation and management (see
PLUG-IN).

Some common uses for applets include animations of
scientific or programming concepts for Web pages support-
ing class curricula and for games designed to be played
using Web browsers. Animation tools such as Flash and
Shockwave are often used for creating graphic applets.

To prevent badly or maliciously written applets from
affecting user files, applets such as Java applets are gen-
erally run within a restricted or “sandbox” environment
where, for example, they are not allowed to write or change
files on disk.

Further Reading

“Java Applets.” Available online. URL: http:/en.wikibooks.org/
wiki/Java_Programming/Applets. Accessed April 10, 2007.

McGuffin, Michael. “Java Applet Tutorial.” Available online. URL:
http://www.realapplets.com/tutorial/. Accessed April 10, 2007.

application program interface (API)
In order for an application program to function, it must
interact with the computer system in a variety of ways, such
as reading information from disk files, sending data to the
printer, and displaying text and graphics on the monitor
screen (see USER INTERFACE). The program may need to find
out whether a device is available or whether it can have
access to an additional portion of memory. In order to pro-
vide these and many other services, an operating system
such as Microsoft Windows includes an extensive applica-
tion program interface (API). The API basically consists of
a variety of functions or procedures that an application pro-
gram can call upon, as well as data structures, constants, and
various definitions needed to describe system resources.
Applications programs use the API by including calls to
routines in a program library (see LIBRARY, PROGRAM and
PROCEDURES AND FUNCTIONS). In Windows, “dynamic link
libraries” (DLLs) are used. For example, this simple func-
tion puts a message box on the screen:

MessageBox (O, “ProgramlInitialization Failed!”,
“Error!”, MB_| CONEXCLAMATION | MB OK | MB_
SYSTEMMODAL) ;

In practice, the API for a major operating system such as
Windows contains hundreds of functions, data structures,
and definitions. In order to simplify learning to access the
necessary functions and to promote the writing of readable
code, compiler developers such as Microsoft and Borland
have devised frameworks of C++ classes that package related
functions together. For example, in the Microsoft Founda-
tion Classes (MFC), a program generally begins by deriving
a class representing the application’s basic characteristics
from the MFC class CWinApp. When the program wants to
display a window, it derives it from the CWnd class, which
has the functions common to all windows, dialog boxes,
and controls. From CWnd is derived the specialized class

Application| Calls “Create Dialog” Operating
program | system
API
functions
P ——
> =

API returns handle to dialog
(or error code}

Do you want to save the changes you made to
"Microsoft Word'?

—
Program can now access
dialog through its handle

(iDon't save]

[Cancel] Save

© Infobase Publishing

Modern software uses API calls to obtain interface objects such as
dialog boxes from the operating system. Here the application calls
the CreateDialog API function. The operating system returns a
pointer (called a handle) that the application can now use to access
and manipulate the dialog.

for each type of window: for example, CFrameWnd imple-
ments a typical main application window, while CDialog
would be used for a dialog box. Thus in a framework such
as MFC or Borland’s OWL, the object-oriented concept of
encapsulation is used to bundle together objects and their
functions, while the concept of inheritance is used to relate
the generic object (such as a window) to specialized ver-
sions that have added functionality (see OBJECT-ORIENTED
PROGRAMMING and ENCAPSULATION INHERITANCE).

In recent years Microsoft has greatly extended the reach
of its Windows API by providing many higher level functions
(including user interface items, network communications,
and data access) previously requiring separate software com-
ponents or program libraries (see MICROSOFT.NET).

Programmers using languages such as Visual Basic can
take advantage of a further level of abstraction. Here the
various kinds of windows, dialogs, and other controls are
provided as building blocks that the developer can insert
into a form designed on the screen, and then settings can
be made and code written as appropriate to control the
behavior of the objects when the program runs. While the
programmer will not have as much direct control or flex-
ibility, avoiding the need to master the API means that use-
ful programs can be written more quickly.

Further Reading

“DevCentral Tutorials: MFC and Win32.” Available online. URL:
http://devcentral.iftech.com/learning/tutorials/submfc.asp.
Accessed April 12, 2007.

application service provider 21

Petzold, Charles. Programming Windows: the Definitive Guide to the
Win32 API. 5th ed. Redmond, Wash.: Microsoft Press, 1999.

“Windows API Guide.” Available online. URL: http:/www.vbapi.
com/. Accessed April 12, 2007.

application service provider (ASP)

Traditionally, software applications such as office suites are
sold as packages that are installed and reside on the user’s
computer. Starting in the mid-1990s, however, the idea of
offering users access to software from a central repository
attracted considerable interest. An application service pro-
vider (ASP) essentially rents access to software.

Renting software rather than purchasing it outright has
several advantages. Since the software resides on the pro-
vider’s server, there is no need to update numerous desktop
installations every time a new version of the software (or a
“patch” to fix some problem) is released. The need to ship
physical CDs or DVDs is also eliminated, as is the risk of
software piracy (unauthorized copying). Users may be able
to more efficiently budget their software expenses, since
they will not have to come up with large periodic expenses
for upgrades. The software provider, in turn, also receives a
steady income stream rather than “surges” around the time
of each new software release.

For traditional software manufacturers, the main con-
cern is determining whether the revenue obtained by pro-
viding its software as a service (directly or through a third
party) is greater than what would have been obtained by
selling the software to the same market. (It is also possible
to take a hybrid approach, where software is still sold, but
users are offered additional features online. Microsoft has
experimented with this approach with its Microsoft Office
Live and other products.)

Renting software also has potential disadvantages. The
user is dependent on the reliability of the provider’s servers
and networking facilities. If the provider’s service is down,
then the user’s work flow and even access to critical data
may be interrupted. Further, sensitive data that resides on a
provider’s system may be at risk from hackers or industrial
spies. Finally, the user may not have as much control over
the deployment and integration of software as would be
provided by outright purchase.

The ASP market was a hot topic in the late 1990s, and
some pundits predicted that the ASP model would eventu-
ally supplant the traditional retail channel for mainstream
software. This did not happen, and more than a thousand
ASPs were among the casualties of the “dot-com crash” of
the early 2000s. However, ASP activity has been steadier if
less spectacular in niche markets, where it offers more eco-
nomical access to expensive specialized software for appli-
cations such as customer relationship management, supply
chain management, and e-commerce related services—for
example, Salesforce.com. The growing importance of such
“software as a service” business models can be seen in
recent offerings from traditional software companies such
as SAS. By 2004, worldwide spending for “on demand”
software had exceeded $4 billion, and Gartner Research
has predicted that in the second half of the decade about

a third of all software will be obtained as a service rather
than purchased.

WEB-BASED APPLICATIONS AND FREE SOFTWARE
By that time a new type of application service provider
had become increasingly important. Rather than seeking
to gain revenue by selling online access to software, this
new kind of ASP provides the software for free. A striking
example is Google Pack, a free software suite offered by the
search giant (see GOOGLE). Google Pack includes a variety
of applications, including a photo organizer and search and
mapping tools developed by Google, as well as third-party
programs such as the Mozilla Firefox Web browser, Real-
Player media player, the Skype Internet phone service (see
VOIP), and antivirus and antispyware programs. The soft-
ware is integrated into the user’s Windows desktop, pro-
viding fast index and retrieval of files from the hard drive.
(Critics have raised concerns about the potential violation
of privacy or misuse of data, especially with regard to a
“share across computers” feature that stores data about user
files on Google’s servers.) America Online has also begun to
provide free access to software that was formerly available
only to paid subscribers.

This use of free software as a way to attract users to
advertising-based sites and services could pose a major
threat to companies such as Microsoft that rely on software
as their main source of revenue. In 2006 Google unveiled
a Google Docs & Spreadsheets, a program that allows
users to create and share word-processing documents and
spreadsheets over the Web. Such offerings, together with
free open-source software such as Open Office.org, may
force traditional software companies to find a new model
for their own offerings.

Microsoft in turn has launched Office Live, a service
designed to provide small offices with a Web presence and
productivity tools. The free “basic” level of the service is
advertising supported, and expanded versions are available
for a modest monthly fee. The program also has features
that are integrated with Office 2007, thus suggesting an
attempt to use free or low-cost online services to add value
to the existing stand-alone product line.

By 2008 the term cloud computing had become a popular
way to describe software provided from a central Internet
site that could be accessed by the user through any form
of computer and connection. An advantage touted for this
approach is that the user need not be concerned with where
data is stored or the need to make backups, which are
handled seamlessly.

Further Reading

Chen, Anne. “Office Live Makes Online Presence Known.” eWeek,
November 2, 2006. Available online. URL: http:/www.eweek.
com/article2/0,1759,2050580,00.asp. Accessed May 22, 2007.

Focacci, Luisa, Robert J. Mockler, and Marc E. Gartenfeld. Appli-
cation Service Providers in Business. New York: Haworth,
2005.

Garretson, Rob. “The ASP Reincarnation: The Application Ser-
vice Provider Name Dies Out, but the Concept Lives on
among Second-Generation Companies Offering Software as
a service.” Network World, August 29, 2005. Available online.

22 application software

URL: http://www.networkworld.com/research/2005/082905-
asp.html. Accessed May 22, 2007.

“Google Spreadsheets: The Soccer Mom’s Excel.” eWeek, June 6,
2006. Available online. URL: http:/www.eweek.com/arti-
cle2/0,1759,1972740,00.asp. Accessed May 22, 2007.

Schwartz, Ephraim. “Applications: SaaS Breaks Down the Wall:
Hosted Applications Continue to Remove Enterprise Objec-
tions.” Infoworld, January 1, 2007. Available online. URL:
http://www.infoworld.com/article/07/01/01/01FEtoyapps_
1.html. Accessed May 22, 2007.

application software
Application software consists of programs that enable com-
puters to perform useful tasks, as opposed to programs that
are concerned with the operation of the computer itself (see
OPERATING SYSTEM and SYSTEMS PROGRAMMING). To most
users, applications programs are the computer: They deter-
mine how the user will accomplish tasks.

The following table gives a selection of representative
applications:

DEVELOPING AND DISTRIBUTING APPLICATIONS

Applications can be divided into three categories based
on how they are developed and distributed. Commercial
applications such as word processors, spreadsheets, and
general-purpose Database Management Systems (DBMS)
are developed by companies specializing in such software
and distributed to a variety of businesses and individual
users (see WORD PROCESSING, SPREADSHEET, and DATABASE
MANAGEMENT SYSTEM). Niche or specialized applications
(such as hospital billing systems) are designed for and mar-

keted to a particular industry (see MEDICAL APPLICATIONS
OF COMPUTERS). These programs tend to be much more
expensive and usually include extensive technical support.
Finally, in-house applications are developed by program-
mers within a business or other institution for their own
use. Examples might include employee training aids or a
Web-based product catalog (although such applications
could also be developed using commercial software such as
multimedia or database development tools).

While each application area has its own needs and pri-
orities, the discipline of software development (see SOFT-
WARE ENGINEERING and PROGRAMMING ENVIRONMENT) is
generally applicable to all major products. Software devel-
opers try to improve speed of development as well as pro-
gram reliability by using software development tools that
simplify the writing and testing of computer code, as well
as the manipulation of graphics, sound, and other resources
used by the program. An applications developer must also
have a good understanding of the features and limitations of
the relevant operating system. The developer of commercial
software must work closely with the marketing department
to work out issues of feature selection, timing of releases,
and anticipation of trends in software use (see MARKETING
OF SOFTWARE).

Further Reading

“Business Software Buyer’s Guide.” Available online. URL: http://
businessweek.buyerzone.com/software/business_software/
buyers_guidel.html. Accessed April 12, 2007.

ZDnet Buyer’s Guide to Computer Applications. Available online.
URL: http://www.zdnet.com/computershopper/edit/howto-
buy/. Accessed April 12, 2007

GENERAL AREA APPLICATIONS

EXAMPLES

Business Operations payroll, accounts receivable,

inventory, marketing

Education school management, curriculum
reinforcement, reference aids,
curriculum expansion or
supplementation, training

Engineering design and manufacturing

Entertainment games, music, and video

Government administration, law enforcement,
military
Health Care hospital administration, health care

delivery

Internet and World web browser, search tools,

Wide Web e-commerce

Libraries circulation, cataloging, reference
Office Operations e-mail, document creation
Science statistics, modeling, data analysis

specialized business software, general spreadsheets and
databases

attendance and grade book management, drill-and-practice
software for reading or arithmetic, CD or online encyclo-
pedias, educational games or simulations, collaborative

and Web-based learning, corporate training programs
computer-aided design (CAD), computer-aided manufacturing
(CAM)

desktop and console games, online games, digitized music
distribution (MP3 files), streaming video (including movies)
tax collection, criminal records and field support for police,
legal citation databases, combat information and weapons
control systems

hospital information and billing systems, medical records
management, medical imaging, computer-assisted treatment
or surgery

browser and plug-in software for video and audio, search
engines, e-commerce support and secure transactions
automated book check-in systems, cataloging databases, CD
or online bibliographic and full-text databases

e-mail clients, word processing, desktop publishing
mathematical and statistical software, modeling of molecules,
gene typing, weather forecasting

array 23

application suite

An application suite is a set of programs designed to be
used together and marketed as a single package. For exam-
ple, a typical office suite might include word processing,
spreadsheet, database, personal information manager, and
e-mail programs.

While an operating system such as Microsoft Windows
provides basic capabilities to move text and graphics from
one application to another (such as by cutting and pasting),
an application suite such as Microsoft Office makes it easier
to, for example, launch a Web browser from a link within a
word processing document or embed a spreadsheet in the
document. In addition to this “interoperability,” an applica-
tion suite generally offers a consistent set of commands and
features across the different applications, speeding up the
learning process. The use of the applications in one package
from one vendor simplifies technical support and upgrad-
ing. (The development of comparable applications suites
for Linux is likely to increase that operating system’s accep-
tance on the desktop.)

Applications suites have some potential disadvan-
tages as compared to buying a separate program for each
application. The user is not necessarily getting the best
program in each application area, and he or she is also
forced to pay for functionality that may not be needed or
desired. Due to their size and complexity, software suites
may not run well on older computers. Despite these prob-
lems, software suites sell very well and are ubiquitous in
today’s office.

(For a growing challenge to the traditional standalone
software suite, see APPLICATION SERVICE PROVIDER.)

Further Reading

Villarosa, Joseph. “How Suite It Is: One-Stop Shopping for Soft-
ware Can Save You Both Time and Money.” Available online.
Forbes magazine online. URL: http://www.forbes.com/buyers/
070.htm. Accessed April 12, 2007.

arithmetic logic unit (ALU)

The arithmetic logic unit is the part of a computer system
that actually performs calculations and logical comparisons
on data. It is part of the central processing unit (CPU), and
in practice there may be separate and multiple arithmetic
and logic units (see CPU).

The ALU works by first retrieving a code that represents
the operation to be performed (such as ADD). The code also
specifies the location from which the data is to be retrieved
and to which the results of the operation are to be stored.
(For example, addition of the data from memory to a num-
ber already stored in a special accumulator register within
the CPU, with the result to be stored back into the accumu-
lator.) The operation code can also include a specification
of the format of the data to be used (such as fixed or float-
ing-point numbers)—the operation and format are often
combined into the same code.

In addition to arithmetic operations, the ALU can also
carry out logical comparisons, such as bitwise operations
that compare corresponding bits in two data words, corre-

sponding to Boolean operators such as AND, OR, and XOR
(see BITWISE OPERATIONS and BOOLEAN OPERATORS).

The data or operand specified in the operation code is
retrieved as words of memory that represent numeric data,
or indirectly, character data (see MEMORY, NUMERIC DATA,
and CHARACTERS AND STRINGS). Once the operation is per-
formed, the result is stored (typically in a register in the
CPU). Special codes are also stored in registers to indicate
characteristics of the result (such as whether it is positive,
negative, or zero). Other special conditions called excep-
tions indicate a problem with the processing. Common
exceptions include overflow, where the result fills more bits
than are available in the register, loss of precision (because
there isn’t room to store the necessary number of decimal
places), or an attempt to divide by zero. Exceptions are
typically indicated by setting a flag in the machine status
register (see FLAG).

THE BIG PICTURE

Detailed knowledge of the structure and operation of the
ALU is not needed by most programmers. Programmers
who need to directly control the manipulation of data in
the ALU and CPU write programs in assembly language
(see ASSEMBLER) that specify the sequence of operations to
be performed. Generally only the lowest-level operations
involving the physical interface to hardware devices require
this level of detail (see DEVICE DRIVER). Modern compilers
can produce optimized machine code that is almost as effi-
cient as directly-coded assembler. However, understanding
the architecture of the ALU and CPU for a particular chip
can help predict its advantages or disadvantages for various
kinds of operations.

Further Reading

Kleitz, William. Digital and Microprocessor Fundamentals: Theory
and Applications. 4th ed. Upper Saddle River, NJ.: Prentice
Hall, 2002.

Stokes, Jon. “Understanding the Microprocessor.” Ars Technica.
Available online. URL: http://arstechnica.com/paedia/c/cpu/
part-1/cpul-1.html. Accessed May 22, 2007.

array
An array stores a group of similar data items in consecutive
order. Each item is an element of the array, and it can be
retrieved using a subscript that specifies the item’s location
relative to the first item. Thus in the C language, the state-
ment

int Scores (10);

sets up an array called Scores, consisting of 10 integer val-
ues. The statement

Scores [5] = 93;

stores the value 93 in array element number 5. One subtlety,
however, is that in languages such as C, the first element of
the array is [0], so [5] represents not the fifth but the sixth
element in Scores. (Many version of BASIC allow for setting
either O or 1 as the first element of arrays.)

24 array

In languages such as C that have pointers, an equivalent
way to access an array is to declare a pointer and store the
address of the first element in it (see POINTERS AND INDI-
RECTION):

int * ptr;
ptr = &Scores [0];

(See POINTERS AND INDIRECTION.)

Arrays are useful because they allow a program to work
easily with a group of data items without having to use sep-
arately named variables. Typically, a program uses a loop to
traverse an array, performing the same operation on each
element in order (see LOOP). For example, to print the cur-
rent contents of the Scores array, a C program could do the
following:

int index;
for (index = 0; i < 10; i++)

printf (“Scores [%] = % \n”, index,
Scores [index]);
This program might print a table like this:

Scores [0] = 22
Scores [1] = 28
Scores [2] = 36

and so on. Using a pointer, a similar loop would increment
the pointer to step to each element in turn.

An array with a single subscript is said to have one
dimension. Such arrays are often used for simple data lists,
strings of characters, or vectors. Most languages also sup-

0 1 2
0| 7 5 3
1 1 9 4 |«— MyArray (1,2) =4
Stores 4 in MyArray
6 5

N = MyArray (2,0)
SetsNto 8

Computer memory

7 5 3 1 9 4 8 6 5

How array is stored in memory in most languages

© Infobase Publishing

A two-dimensional array can be visualized as a grid, with the
array subscripts indicating the row and column in which a par-
ticular value is stored. Here the value 4 is stored at the location
(1,2), while the value at (2,0), which is 8, is assigned to N. As
shown, the actual computer memory is a one dimensional line
of successive locations. In most computer languages the array is
stored row by row.

port multidimensional arrays. For example, a two-dimen-
sional array can represent X and Y coordinates, as on a
screen display. Thus the number 16 stored at Colors[10][40]
might represent the color of the point at X=10, Y=40 on a
640 by 480 display. A matrix is also a two-dimensional
array, and languages such as APL provide built-in support
for mathematical operations on such arrays. A four-dimen-
sional array might hold four test scores for each person.

Some languages such as FORTRAN 90 allow for defin-
ing “slices” of an array. For example, in a 3 x 3 matrix, the
expression MAT(2:3, 1:3) references two 1 x 3 “slices” of the
matrix array. Pascal allows defining a subrange, or portion
of the subscripts of an array.

ASSOCIATIVE ARRAYS

It can be useful to explicitly associate pairs of data items
within an array. In an associative array each data element
has an associated element called a key. Rather than using
subscripts, data elements are retrieved by passing the key
to a hashing routine (see HASHING). In the Perl language, for
example, an array of student names and scores might be set
up like this:

%Scores = (“Henderson” => 86, “Johnson” => 87, “Jack-
son” => 92);

The score for Johnson could later be retrieved using the
reference:

$Scores (“Johnson™)

Associative arrays are handy in that they facilitate look-up
tables or can serve as small databases. However, expanding
the array beyond its initial allocation requires rehashing all
the existing elements.

PROGRAMMING ISSUES

To avoid error, any reference to an array must be within
its declared bounds. For example, in the earlier example,
Scores[9] is the last element, and a reference to Scores[10]
would be out of bounds. Attempting to reference an out-
of-bounds value gives an error message in some languages
such as Pascal, but in others such as standard C and C++, it
simply retrieves whatever happens to be in that location in
memory.

Another issue involves the allocation of memory for the
array. In a static array, such as that used in FORTRAN 77,
the necessary storage is allocated before the program runs,
and the amount of memory cannot be changed. Static arrays
use memory efficiently and reduce overhead, but are inflex-
ible, since the programmer has to declare an array based
on the largest number of data items the program might be
called upon to handle. A dynamic array, however, can use a
flexible structure to allocate memory (see HEAP). The pro-
gram can change the size of the array at any time while it
is running. C and C++ programs can create dynamic arrays
and allocate memory using special functions (malloc and
free in C) or operators (new and delete in C++).

art and the computer 25

In the early days of microcomputer programming, arrays
tended to be used as an all-purpose data structure for stor-
ing information read from files. Today, since there are more
structured and flexible ways to store and retrieve such data,
arrays are now mainly used for small sets of data (such as
look-up tables).

Further Reading

Jensen, Ted. “A Tutorial on Pointers and Arrays in C.” Available
online. URL: http:/pw2.netcom.com/~tjensen/ptr/pointers.
htm. Accessed April 12, 2007.

Sebesta, Robert W. Concepts of Programming Languages. 8th ed.
Boston: Addison-Wesley, 2008.

art and the computer

While the artistic and technical temperaments are often
viewed as opposites, the techniques of artists have always
shown an intimate awareness of technology, including the
physical characteristics of the artist’s tools and media. The
development of computer technology capable of generating,
manipulating, displaying, or printing images has offered a
variety of new tools for existing artistic traditions, as well
as entirely new media and approaches.

Computer art began as an offshoot of research into image
processing or the simulation of visual phenomena, such as
by researchers at Bell Labs in Murray Hill, New Jersey, dur-
ing the 1960s. One of these researchers, A. Michael Noll,
applied computers to the study of art history by simulat-
ing techniques used by painters Piet Mondrian and Bridget
Riley in order to gain a better understanding of them. In
addition to exploring existing realms of art, experiment-
ers began to create a new genre of art, based on the ideas of
Max Bense, who coined the terms “artificial art” and “gen-
erative esthetics.” Artists such as Manfred Mohr studied
computer science because they felt the computer could pro-
vide the tools for an esthetic strongly influenced by math-
ematics and natural science. For example, Mohr’s P-159/A
(1973) used mathematical algorithms and a plotting device
to create a minimalistic yet rich composition of lines. Other
artists working in the minimalist, neoconstructivist, and
conceptual art traditions found the computer to be a com-
pelling tool for exploring the boundaries of form.

By the 1980s, the development of personal computers
made digital image manipulation available to a much wider
group of people interested in artistic expression, including
the more conventional realms of representational art and
photography. Programs such as Adobe Photoshop blend art
and photography, making it possible to combine images
from many sources and apply a variety of transformations
to them. The use of computer graphics algorithms make
realistic lighting, shadow, and fog effects possible to a much
greater degree than their approximation in traditional
media. Fractals can create landscapes of infinite texture
and complexity. The computer has thus become a standard
tool for both “serious” and commercial artists.

Artificial intelligence researchers have developed pro-
grams that mimic the creativity of human artists. For exam-
ple, a program called Aaron developed by Harold Cohen

Air, created by Lisa Yount with the popular image-editing program
Adobe Photoshop, is part of a group of photocollages honoring the
ancient elements of earth, air, water, and fire. The “wings” in the
center are actually the two halves of a mussel shell. (LISA YOUNT)

can adapt and extend existing styles of drawing and paint-
ing. Works by Aaron now hang in some of the world’s most
distinguished art museums.

An impressive display of the “state of the computer art”
could be seen at a digital art exhibition that debuted in
Boston at the SIGGRAPH 2006 conference. More than 150
artists and researchers from 16 countries exhibited work
and discussed its implications. Particularly interesting
were dynamic works that interacted with visitors and the
environment, often blurring the distinction between digi-
tal arts and robotics. In the future, sculptures may change
with the season, time of day, or the presence of people in
the room, and portraits may show moods or even converse
with viewers.

IMPLICATIONS AND PROSPECTS

While traditional artistic styles and genres can be repro-
duced with the aid of a computer, the computer has the
potential to change the basic paradigms of the visual arts.
The representation of all elements in a composition in digi-
tal form makes art fluid in a way that cannot be matched

26 artificial intelligence

by traditional media, where the artist is limited in the abil-
ity to rework a painting or sculpture. Further, there is no
hard-and-fast boundary between still image and anima-
tion, and the creation of art works that change interactively
in response to their viewer becomes feasible. Sound, too,
can be integrated with visual representation, in a way far
more sophisticated than that pioneered in the 1960s with
“color organs” or laser shows. Indeed, the use of virtual
reality technology makes it possible to create art that can be
experienced “from the inside,” fully immersively (see VIR-
TUAL REALITY). The use of the Internet opens the possibility
of huge collaborative works being shaped by participants
around the world.

The growth of computer art has not been without mis-
givings. Many artists continue to feel that the intimate
physical relationship between artist, paint, and canvas can-
not be matched by what is after all only an arrangement of
light on a flat screen. However, the profound influence of
the computer on contemporary art is undeniable.

Further Reading

Computer-Generated Visual Arts (Yahoo). Available online. URL:
http://diryahoo.com/Arts/Visual_Arts/Computer_Generated/.
Accessed April 13, 2007.

Ashford, Janet. Arts and Crafts Computer: Using Your Computer as
an Artist’s Tool. Berkeley, Calif.: Peachpit Press, 2001.

Kurzweil Cyber Art Technologies homepage. Available online.
URL: http://www.kurzweilcyberart.com/index.html. Accessed
May 22, 2007.

Popper, Frank. Art of the Electronic Age. New York: Thames &
Hudson, 1997.

Rush, Michael. New Media in Late 20th-Century Art. New York:
Thames & Hudson, 1999.

SIGGRAPH 2006 Art Gallery. “Intersections.” Available online.
URL: http://www.siggraph.org/s2006/main.php?f=conference
&p=art. Accessed May 22, 2007.

artificial intelligence
The development of the modern digital computer follow-
ing World War II led naturally to the consideration of the
ultimate capabilities of what were soon dubbed “thinking
machines” or “giant brains.” The ability to perform cal-
culations flawlessly and at superhuman speeds led some
observers to believe that it was only a matter of time before
the intelligence of computers would surpass human levels.
This belief would be reinforced over the years by the devel-
opment of computer programs that could play chess with
increasing skill, culminating in the match victory of IBM’s
Deep Blue over world champion Garry Kasparov in 1997.
(See CHESS AND COMPUTERS.)

However, the quest for artificial intelligence would face
a number of enduring challenges, the first of which is a
lack of agreement on the meaning of the term intelligence,
particularly in relation to such seemingly different entities
as humans and machines. While chess skill is considered
a sign of intelligence in humans, the game is deterministic
in that optimum moves can be calculated systematically,
limited only by the processing capacity of the computer.
Human chess masters use a combination of pattern recogni-
tion, general principles, and selective calculation to come

up with their moves. In what sense could a chess-playing
computer that mechanically evaluates millions of positions
be said to “think” in the way humans do? Similarly, com-
puters can be provided with sets of rules that can be used to
manipulate virtual building blocks, carry on conversations,
and even write poetry. While all these activities can be per-
ceived by a human observer as being intelligent and even
creative, nothing can truly be said about what the computer
might be said to be experiencing.

In 1950, computer pioneer Alan M. Turing suggested
a more productive approach to evaluating claims of artifi-
cial intelligence in what became known as the Turing test
(see TURING, ALAN). Basically, the test involves having a
human interact with an “entity” under conditions where he
or she does not know whether the entity is a computer or
another human being. If the human observer, after engag-
ing in teletyped “conversation” cannot reliably determine
the identity of the other party, the computer can be said to
have passed the Turing test. The idea behind this approach
is that rather than attempting to precisely and exhaustively
define intelligence, we will engage human experience and
intuition about what intelligent behavior is like. If a com-
puter can successfully imitate such behavior, then it at least
may become problematic to say that it is not intelligent.

Computer programs have been able to pass the Tur-
ing test to a limited extent. For example, a program called
ELIZA written by Joseph Weizenbaum can carry out what
appears to be a responsive conversation on themes chosen
by the interlocutor. It does so by rephrasing statements
or providing generalizations in the way that a nondirec-
tive psychotherapist might. But while ELIZA and similar
programs have sometimes been able to fool human inter-
locutors, an in-depth probing by the humans has always
managed to uncover the mechanical nature of the response.

Although passing the Turing test could be considered
evidence for intelligence, the question of whether a com-
puter might have consciousness (or awareness of self) in
the sense that humans experience it might be impossible to
answer. In practice, researchers have had to confine them-
selves to producing (or simulating) intelligent behavior, and
they have had considerable success in a variety of areas.

TOP-DOWN APPROACHES

The broad question of a strategy for developing artificial
intelligence crystallized at a conference held in 1956 at Dart-
mouth College. Four researchers can be said to be founders
of the field: Marvin Minsky (founder of the AI Laboratory at
MIT), John McCarthy (at MIT and later, Stanford), and Her-
bert Simon and Allen Newell (developers of a mathematical
problem-solving program called Logic Theorist at the Rand
Corporation, who later founded the AI Laboratory at Carn-
egie Mellon University). The 1950s and 1960s were a time
of rapid gains and high optimism about the future of AI (see
MINSKY, MARVIN and MCCARTHY, JOHN).

Most early attempts at Al involved trying to specify rules
that, together with properly organized data, can enable the
machine to draw logical conclusions. In a production system
the machine has information about “states” (situations) plus
rules for moving from one state to another—and ultimately,

artificial intelligence 27

to the “goal state.” A properly implemented production sys-
tem cannot only solve problems, it can give an explanation
of its reasoning in the form of a chain of rules that were
applied.

The program SHRDLU, developed by Marvin Minsky’s
team at MIT, demonstrated that within a simplified “micro-
world” of geometric shapes a program can solve problems
and learn new facts about the world. Minsky later developed
a more generalized approach called “frames” to provide the
computer with an organized database of knowledge about
the world comparable to that which a human child assimi-
lates through daily life. Thus, a program with the appropri-
ate frames can act as though it understands a story about
two people in a restaurant because it “knows” basic facts
such as that people go to a restaurant to eat, the meal is
cooked for them, someone pays for the meal, and so on.

While promising, the frames approach seemed to founder
because of the sheer number of facts and relationships
needed for a comprehensive understanding of the world.
During the 1970s and 1980s, however, expert systems were
developed that could carry out complex tasks such as deter-
mining the appropriate treatment for infections (MYCIN)
and analysis of molecules (DENDRAL). Expert systems
combined rules of inference with specialized databases of
facts and relationships. Expert systems have thus been able
to encapsulate the knowledge of human experts and make it
available in the field (see EXPERT SYSTEMS and KNOWLEDGE
REPRESENTATION).

The most elaborate version of the frames approach has
been a project called Cyc (short for “encyclopedia”), devel-
oped by Douglas Lenat. This project is now in its third
decade and has codified millions of assertions about the
world, grouping them into semantic networks that repre-
sent dozens of broad areas of human knowledge. If success-
ful, the Cyc database could be applied in many different
domains, including such applications as automatic analysis
and summary of news stories.

BOTTOM-UP APPROACHES

Several “bottom-up” approaches to Al were developed in
an attempt to create machines that could learn in a more
humanlike way. The one that has gained the most prac-
tical success is the neural network, which attempts to
emulate the operation of the neurons in the human brain.
Researchers believe that in the human brain perceptions or
the acquisition of knowledge leads to the reinforcement of
particular neurons and neural paths, improving the brain’s
ability to perform tasks. In the artificial neural network a
large number of independent processors attempt to perform
a task. Those that succeed are reinforced or “weighted,”
while those that fail may be negatively weighted. This leads
to a gradual improvement in the overall ability of the sys-
tem to perform a task such as sorting numbers or recogniz-
ing patterns (see NEURAL NETWORK).

Since the 1950s, some researchers have suggested that
computer programs or robots be designed to interact with
their environment and learn from it in the way that human
infants do. Rodney Brooks and Cynthia Breazeal at MIT
have created robots with a layered architecture that includes

motor, sensory, representational, and decision-making ele-
ments. Each level reacts to its inputs and sends information
to the next higher level. The robot Cog and its descendant
Kismet often behaved in unexpected ways, generating com-
plex responses that are emergent rather than specifically
programmed.

The approach characterized as “artificial life” adds a
genetic component in which the successful components
pass on program code “genes” to their offspring. Thus, the
power of evolution through natural selection is simulated,
leading to the emergence of more effective systems (see
ARTIFICIAL LIFE and GENETIC ALGORITHMS).

In general the top-down approaches have been more
successful in performing specialized tasks, but the bottom-
up approaches may have greater general application, as well
as leading to cross-fertilization between the fields of arti-
ficial intelligence, cognitive psychology, and research into
human brain function.

APPLICATION AREAS

While powerful artificial intelligence is not yet ubiquitous
in everyday computing, Al principles are being successfully
used in a number of application areas. These areas, which
are all covered separately in this book, include

e devising ways of capturing and representing knowl-
edge, making it accessible to systems for diagnosis and
analysis in fields such as medicine and chemistry (see
KNOWLEDGE REPRESENTATION and EXPERT SYSTEMS)

e creating systems that can converse in ordinary lan-
guage for querying databases, responding to customer
service calls, or other routine interactions (see NATU-
RAL LANGUAGE PROCESSING)

e enabling robots to not only see but also “understand”
objects in a scene and their relationships (see COM-
PUTER VISION and ROBOTICS)

e improving systems for voice and face recognition, as
well as sophisticated data mining and analysis (see
SPEECH RECOGNITION AND SYNTHESIS, BIOMETRICS,
and DATA MINING)

¢ developing software that can operate autonomously,
carrying out assignments such as searching for and
evaluating competing offerings of merchandise (see
SOFTWARE AGENT)

PROSPECTS

The field of Al has been characterized by successive waves
of interest in various approaches, and ambitious projects
have often failed. However, expert systems and, to a lesser
extent, neural networks have become the basis for viable
products. Robotics and computer vision offer a significant
potential payoff in industrial and military applications. The
creation of software agents to help users navigate the com-
plexity of the Internet is now of great commercial interest.
The growth of AI has turned out to be a steeper and more
complex path than originally anticipated. One view sug-
gests steady progress. Another, shared by science fiction

28 artificial life

writers such as Vernor Vinge, suggests a breakthrough, per-
haps arising from artificial life research, might someday
create a true—but truly alien—intelligence (see SINGULAR-
ITY, TECHNOLOGICAL).

Further Reading

American Association for Artificial Intelligence. “Welcome to Al
Topics.” Available online. URL: http://www.aaai.org/Pathfinder/
html/welcome.html. Accessed April 13, 2007.

“An Introduction to the Science of Artificial Intelligence.” Available
online. URL: http:/library.thinkquest.org/2705/. Accessed
April 13, 2007.

Feigenbaum, E. A. and J. Feldman, eds. Computers and Thought.
New York: McGraw-Hill, 1963.

Henderson, Harry. Artificial Intelligence: Mirrors for the Mind. New
York: Facts On File, 2007.

Jain, Sanjay, et al. Systems that Learn: An Introduction to Learning
Theory. 2nd ed. Cambridge, Mass: MIT Press, 1999.

Kurzweil, Ray. The Age of Spiritual Machines: When Computers
Exceed Human Intelligence. New York: Viking, 1999.

McCorduck, Pamela. Machines Who Think. 25th Anniversary
update. Notick, Mass.: A. K. Peters, 2004.

Shapiro, Stuart C. Encyclopedia of Artificial Intelligence. 2nd ed.
New York: Wiley, 1992.

artificial life (AL)

This is an emerging field that attempts to simulate the
behavior of living things in the realm of computers and
robotics. The field overlaps artificial intelligence (AI) since
intelligent behavior is an aspect of living things. The design
of a self-reproducing mechanism by John von Neumann in
the mid-1960s was the first model of artificial life (see VON
NEUMANN, JOHN). The field was expanded by the devel-
opment of cellular automata as typified in John Conway’s
Game of Life in the 1970s, which demonstrated how simple
components interacting according to a few specific rules
could generate complex emergent patterns. A program by
Craig Reynolds uses this principle to model the flocking
behavior of simulated birds, called “boids” (see CELLULAR
AUTOMATA).

The development of genetic algorithms by John Holland
added selection and evolution to the act of reproduction.
This approach typically involves the setting up of numerous
small programs with slightly varying code, and having them
attempt a task such as sorting data or recognizing patterns.
Those programs that prove most “fit” at accomplishing the
task are allowed to survive and reproduce. In the act of
reproduction, biological mechanisms such as genetic muta-
tion and crossover are allowed to intervene (see GENETIC
ALGORITHMS). A rather similar approach is found in the
neural network, where those nodes that succeed better at
the task are given greater “weight” in creating a composite
solution to the problem (see NEURAL NETWORK).

A more challenging but interesting approach to AL is to
create actual robotic “organisms” that navigate in the physi-
cal rather than the virtual world. Roboticist Hans Moravec
of the Stanford Al Laboratory and other researchers have
built robots that can deal with unexpected obstacles by
improvisation, much as people do, thanks to layers of soft-
ware that process perceptions, fit them to a model of the

world, and make plans based on goals. But such robots,
built as full-blown designs, share few of the characteristics
of artificial life. As with AI, the bottom-up approach offers
a different strategy that has been called “fast, cheap, and
out of control”—the production of numerous small, simple,
insectlike robots that have only simple behaviors, but are
potentially capable of interacting in surprising ways. If a
meaningful genetic and reproductive mechanism can be
included in such robots, the result would be much closer to
true artificial life (see ROBOTICS).

The philosophical implications arising from the pos-
sible development of true artificial life are similar to those
involved with “strong AL” Human beings are used to view-
ing themselves as the pinnacle of a hierarchy of intelligence
and creativity. However, artificial life with the capability
of rapid evolution might quickly outstrip human capabili-
ties, perhaps leading to a world like that portrayed by sci-
ence fiction writer Gregory Benford, where flesh-and-blood
humans become a marginalized remnant population.

Further Reading

“ALife Online 2.0.” Available online. URL: http:/alife.org/.
Accessed April 13, 2007.

“Karl Sims Retrospective.” Available online. URL: http:/www.
biota.org/ksims/. Accessed April 13, 2007.

Langton, Christopher G., ed. Artificial Life: an Overview. Cam-
bridge, Mass.: MIT Press, 1995.

Levy, Stephen. Artificial Life: the Quest for a New Creation. New
York: Pantheon Books, 1992.

Tierra homepage. Available online. URL: http://www.his.atr.jp/
cray/tierra. Accessed.

ASP See APPLICATION SERVICE PROVIDER.

assembler
All computers at bottom consist of circuits that can perform
a repertoire of mathematical or logical operations. The ear-
liest computers were programmed by setting switches for
operations and manually entering numbers in working stor-
age, or memory. A major advance in the flexibility of com-
puters came with the idea of stored programs, where a set of
instructions could be read in and held in the machine in the
same way as other data. These instructions were in machine
language, consisting of numbers representing instructions
(operations to be performed) and other numbers represent-
ing the address of data to be manipulated (or an address
containing the address of the data, called indirect address-
ing—see ADDRESSING). Operations include basic arithmetic
(such as addition), the movement of data between storage
(memory) and special processor locations called registers,
and the movement of data from an input device (such as a
card reader) and an output device (such as a printer).
Writing programs in machine code is obviously a
tedious and error-prone process, since each operation must
be specified using a particular numeric instruction code
together with the actual addresses of the data to be used. It
soon became clear, however, that the computer could itself
be used to keep track of binary codes and actual addresses,

asynchronous JavaScript and XML 29

© Infobase Publishing

Allocated
memory
Symbolic labels “Define byte” Size Allocation locations Actual address
— 2
firstnum: .db 1 EEEE—— 200
secondnum: .db 1 > »| 3 201
total: .db 1 EE— 202
mov firstnum, 2
mov secondnum, 3 A
mov a, firstnum > <
add a, secondnum B
mov total, a 3 |= +)
—| 5

Accumulator
(in CPU)

In this assembly language example, the “define byte” (.db) directive is used to assign one memory byte to each of the symbolic names (vari-
ables) firstnum, secondnum, and total. The two mov commands then load 2 and 3 into firstnum and secondnum, respectively. Firstnum is
then loaded into the processor’s accumulator (a), and secondnum is then added to it. Finally, the sum is moved into the memory location

labeled total.

allowing the programmer to use more human-friendly
names for instructions and data variables. The program
that translates between symbolic language and machine
language is the assembler.

With a symbolic assembler, the programmer can give
names to data locations. Thus, instead of saying (and hav-
ing to remember) that the quantity Total will be in location
&H100, the program can simply define a two-byte chunk of
memory and call it Total:

Total DB

The assembler will take care of assigning a physical mem-
ory location and, when instructed, retrieving or storing the
data in it.

Most assemblers also have macro capability. This means
that the programmer can write a set of instructions (a pro-
cedure) and give it a name. Whenever that name is used in
the program, the assembler will replace it with the actual
code for the procedure and plug in whatever variables are
specified as operands (see MACRO).

APPLICATIONS

In the mainframe world of the 1950s, the development of
assembly languages represented an important first step
toward symbolic programming; higher-level languages such
as FORTRAN and COBOL were developed so that program-
mers could express instructions in language that was more
like mathematics and English respectively. High-level lan-
guages offered greater ease of programming and source
code that was easier to understand (and thus to maintain).
Gradually, assembly language was reserved for systems pro-
gramming and other situations where efficiency or the need

to access some particular hardware capability required the
exact specification of processing (see SYSTEMS PROGRAM-
MING and DEVICE DRIVER).

During the 1970s and early 1980s, the same evolution
took place in microcomputing. The first microcomputers
typically had only a small amount of memory (perhaps
8-64K), not enough to compile significant programs in a
high-level language (with the partial exception of some ver-
sions of BASIC). Applications such as graphics and games in
particular were written in assembly language for speed. As
available memory soared into the hundreds of kilobytes and
then megabytes, however, high level languages such as C
and C++ became practicable, and assembly language began
to be relegated to systems programming, including device
drivers and other programs that had to interact directly
with the hardware.

While many people learning programming today receive
little or no exposure to assembly language, some under-
standing of this detailed level of programming is still useful
because it illustrates fundamentals of computer architec-
ture and operation.

Further Reading

Abel, Peter. IBM PC Assembly Language and Programming. 5th ed.
Upper Saddle River, N J.: Prentice Hall, 2001.

Duntemann, Jeff. Assembly Language Step by Step: Programming
with DOS and Linux. 2nd ed. New York: Wiley, 2000.

Miller, Karen. An Assembly Language Introduction to Computer
Architecture Using the Intel Pentium. New York: Oxford Uni-
versity Press, 1999.

asynchronous JavaScript and XML see ajax.

30 Atanasoff, John Vincent

Atanasoff, John Vincent
(1903-1995)

American

Computer Engineer

John V. Atanasoff is considered by many historians to be
the inventor of the modern electronic computer. He was
born October 4, 1903, in Hamilton, New York. As a young
man, Atanasoff showed considerable interest in and a talent
for electronics. His academic background (B.S. in electrical
engineering, Florida State University, 1925; M.S. in mathe-
matics, lowa State College, 1926; and Ph.D. in experimental
physics, University of Wisconsin, 1930) well equipped him
for the design of computing devices. He taught mathemat-
ics and physics at Iowa State until 1942, and during that
time, he conceived the idea of a fully electronic calculating
machine that would use vacuum tubes for its arithmetic cir-
cuits and would store binary numbers on a rotating drum
memory that used high and low charges on capacitors.
Atanasoff and his assistant Clifford E. Berry built a suc-

Y
/

"71?? _

-

Tifne p=;

According to a federal court it was John Atanasoff, not John
Mauchly and Presper Eckert, who built the first digital computer.
At any rate the “ABC” or Atanasoff-Berry computer represented
a pioneering achievement in the use of binary logic circuits for
computation. (IOWA STATE UNIVERSITY)

cessful computer called ABC (Atanasoff-Berry computer)
using this design in 1942. (By that time he had taken a war-
time research position at the Naval Ordnance Laboratory in
Washington, D.C.)

The ABC was a special-purpose machine designed for
solving up to 29 simultaneous linear equations using an
algorithm based on Gaussian elimination to eliminate
a specified variable from a pair of equations. Because of
inherent unreliability in the system that punched cards to
hold the many intermediate results needed in such calcula-
tions, the system was limited in practice to solving sets of
five or fewer equations.

Despite its limitations, the ABC’s design proved the fea-
sibility of fully electronic computing, and similar vacuum
tube switching and regenerative memory circuits were
soon adopted in designing the ENIAC and EDVAC, which
unlike the ABC, were general-purpose electronic computers.
Equally important was Atanasoff’s use of capacitors to store
data in memory electronically: The descendent of his capaci-
tors can be found in the DRAM chips in today’s computers.

When Atanasoff returned to lowa State in 1948, he dis-
covered that the ABC computer had been dismantled to
make room for another project. Only a single memory drum
and a logic unit survived. Iowa State granted him a full
professorship and the chairmanship of the physics depart-
ment, but he never returned to that institution. Instead, he
founded the Ordnance Engineering Corporation in 1952,
which grew to a 100-person workforce before he sold the
firm to Aerojet General in 1956. He then served as a vice
president at Aerojet until 1961.

Atanasoff then semi-retired, devoting his time to a vari-
ety of technical interests (he had more than 30 patents to
his name by the time of his death). However, when Sperry
Univac (owner of Eckert and Mauchly’s computer patents)
began demanding license fees from competitors in the mid-
1960s, the head lawyer for one of these competitors, Hon-
eywell, found out about Atanasoff’s work on the ABC and
enlisted his aid as a witness in an attempt to overturn the
patents. After prolonged litigation, Judge Earl Richard Lar-
son ruled in 1973 that the two commercial computing pio-
neers had learned key ideas from Atanasoff’s apparatus and
writings and that their patent was invalid because of this
“prior art.”

Atanasoff received numerous awards for his work for the
Navy on acoustics and for his pioneering computer work.
These awards included the IEEE Computer Pioneer Award
(1984) and the National Medal of Technology (1990). In
addition, he had both a hall at lowa State University and
an asteroid (3546-Atanasoff) named in his honor. John
Atanasoff died on June 15, 1995, in Monrovia, Maryland.

Further Reading

Burks, A. R., and A. W. Burks. The First Electronic Computer: the
Atanasoff Story. Ann Arbor, Mich: University of Michigan
Press, 1988.

Lee, J. A. N. Computer Pioneers. Los Alamitos, Calif.: IEEE Com-
puter Society Press, 1995.

“Reconstruction of the Atanasoff-Berry Computer (ABC).” Avail-
able online. URL: http:/www.scl.ameslab.gov/ABC/ABC.
html. Accessed April 13, 2007.

authentication 31

auctions, online

By the late 1990s, millions of computer users had discov-
ered a new way to buy and sell an immense variety of items
ranging from traditional collectibles to the exotic (such as a
working German Enigma encoding machine).

Since its founding in 1995, leading auction site eBay has
grown to 78 million users in mid-2006, with revenue of
about $7.6 billion in 2007 (see EBAY). (Two other e-com-
merce giants, Amazon.com and Yahoo!, also entered the
online auction market, but with much more modest results.)

PROCEDURES
Online auctions differ from traditional auctions in several
ways. Traditional auction firms generally charge the seller
and buyer a commission of around 10 percent of the sale or
“hammer” price. Online auctions charge the buyer nothing,
and the seller typically pays a fee of about 3-5 percent of the
amount realized. Online auctions can charge much lower
fees because unlike traditional auctions, there is no live
auctioneer, no catalogs to produce, and little administra-
tion, since all payments pass from buyer to seller directly.
An online auction is like a mail bid auction in that bids
can be posted at any time during the several days a typi-
cal auction runs. A buyer specifies a maximum bid and if
he or she becomes the current high bidder, the high bid is
adjusted to a small increment over the next highest bid. As
with a “live” auction, however, bidders can revise their bids
as many times as they wish until the close of the auction.
An important difference between online and traditional live
auctions is that a traditional auction ends as soon as no
one is willing to top the current high bid. With an online
auction, the bidding ends at the posted ending time. This
has led to a tactic known as “sniping,” where some bidders
submit a bid just over the current high bid just before the
auction ends, such that the previous high bidder has no
time to respond.

FUTURE AND IMPLICATIONS

Online auctions have become very popular, and an increas-
ing number of people run small businesses by selling items
through auctions. The markets for traditional collectibles
such as coins and stamps have been considerably affected
by online auctions. Knowledgeable buyers can often obtain
items for considerably less than a dealer would charge, or
sell items for more than a dealer would pay. However, many
items are overpriced compared to the normal market, and
faked or ill-described items can be a significant problem.
Attempts to hold the auction service legally responsible
for such items are met with the response that the auction
service is simply a facilitator for the seller and buyer and
does not play the role of traditional auctioneers who catalog
items and provide some assurance of authenticity. If courts
or regulators should decide that online auctions must bear
this responsibility, the cost of using the service may rise or
the variety of items that can be offered may be restricted.

Further Reading
Cohen, Adam. The Perfect Store: Inside eBay. Boston: Little, Brown,
2002.

Encell, Steve, and Si Dunn. The Everything Online Auctions Book:
All You Need to Buy and Sell with Success—on eBay and Beyond.
Avon, Mass.: Adams Publishing Group, 2006.

Kovel, Ralph M., and Terry H. Kovel. Kovels’ Bid, Buy, and Sell
Online: Basic Auction Information and Tricks of the Trade. New
York: Three Rivers Press, 2001.

auditing in data processing

The tremendous increase in the importance and extent of
information systems for all aspects of commerce and indus-
try has made it imperative that businesses be able to ensure
the accuracy and integrity of their accounting systems and
corporate databases. Errors can result in loss of revenue
and even exposure to legal liability.

Auditing involves the analysis of the security and accu-
racy of software and the procedures for using it. For exam-
ple, sample data can be extracted using automated scripts
or other software tools and examined to determine whether
correct and complete information is being entered into the
system, and whether the reports on which management
relies for decision making are accurate. Auditing is also
needed to confirm that data reported to regulatory agencies
meets legal requirements.

In addition to confirming the reliability of software and
procedures, auditors must necessarily also be concerned
with issues of security, since attacks or fraud involving
computer systems can threaten their integrity or reliability
(see COMPUTER CRIME AND SECURITY). The safeguarding of
customer privacy has also become a sensitive concern (see
PRIVACY IN THE DIGITAL AGE). To address such issues, the
auditor must have a working knowledge of basic psychol-
ogy and human relations, particularly as they affect large
organizations.

Auditors recommend changes to procedures and prac-
tices to minimize the vulnerability of the system to both
human and natural threats. The issues of backup and
archiving and disaster recovery must also be addressed
(see BACKUP AND ARCHIVE SYSTEMS). As part accountant
and part systems analyst, the information systems auditor
represents a bridging of traditional practices and rapidly
changing technology.

Further Reading

Cannon, David L., Timothy S. Bergmann, and Brady Pamplin.
CISA: Certified Information Systems Auditor Study Guide. Indi-
anapolis: Wiley Publishing, 2006.

Champlain, Jack. Auditing Information Systems. Hoboken, N].:
Wiley, 2003.

Information Systems Audit and Control Association. Available
online. URL: http://www.isaca.org/. Accessed May 22, 2007.

Pathak, Jagdish. Information Systems Auditing: An Evolving Agenda.
New York: Springer-Verlag, 2005.

authentication

This process by which two parties in a communication
or transaction can assure each other of their identity is a
fundamental requirement for any transaction not involv-
ing cash, such as the use of checks or credit or debit cards.
(In practice, for many transactions, authentication is “one

32 authoring systems

way”—the seller needs to know the identity of the buyer
or at least have some way of verifying the payment, but the
buyer need not confirm the identity of the seller—except,
perhaps in order to assure proper recourse if something
turns out to be wrong with the item purchased.)

Traditionally, authentication involves paper-based iden-
tification (such as driver’s licenses) and the making and
matching of signatures. Since such identification is rela-
tively easy to fake, there has been growing interest in the
use of characteristics such as voice, facial measurements,
or the patterns of veins in the retina that can be matched
uniquely to individuals (see BIOMETRICS). Biometrics, how-
ever, requires the physical presence of the person before a
suitable device, so it is primarily used for guarding entry
into high-security areas.

AUTHENTICATION IN ONLINE SYSTEMS

Since many transactions today involve automated systems
rather than face-to-face dealings, authentication systems
generally involve the sharing of information unique to the
parties. The PIN used with ATM cards is a common exam-
ple: It protects against the physical diversion of the card by
requiring information likely known only to the legitimate
owner. In e-commerce, there is the additional problem of
safeguarding sensitive information such as credit card num-
bers from electronic eavesdroppers or intruders. Here a sys-
tem is used by which information is encrypted before it is
transmitted over the Internet. Encryption can also be used
to verify identity through a digital signature, where a mes-
sage is transformed using a “one-way function” such that it is
highly unlikely that a message from any other sender would
have the same encrypted form (see ENCRYPTION). The most
widespread system is public key cryptography, where each
person has a public key (known to all interested parties) and
a private key that is kept secret. Because of the mathematical
relationship between these two keys, the reader of a message
can verify the identity of the sender or creator.

The choice of technology or protocol for authentication
depends on the importance of the transaction, the vulner-
ability of information that needs to be protected, and the
consequences of failing to protect it. A Web site that is pro-
viding access to a free service in exchange for information
about users will probably not require authentication beyond
perhaps a simple user/password pair. An online store, on the
other hand, needs to provide a secure transaction environ-
ment both to prevent losses and to reassure potential custom-
ers that shopping online does not pose an unacceptable risk.

Authentication ultimately depends on a combination
of technological and social systems. For example, crypto-
graphic keys or “digital certificates” can be deposited with
a trusted third party such that a user has reason to believe
that a business is who it says it is.

Further Reading

Ratha, Nalini, and Ruud Bolie, eds. Automatic Fingerprint Recogni-
tion Systems. New York: Springer-Verlag, 2004.

Smith, Richard E., and Paul Reid. User Authentication Systems and
Role-Based Security. Upper Saddle River, NJ.: Pearson Custom
Publishing, 2004.

Tung, Brian. Kerberos: A Network Authentication System. Reading,
Mass.: Addison-Wesley, 1999.

authoring systems

Multimedia presentations such as computer-based-training
(CBT) modules are widely used in the corporate and educa-
tional arenas. Programming such a presentation in a high-
level language such as C++ (or even Visual Basic) involves
writing code for the detailed arrangement and control of
graphics, animation, sound, and user interaction. Authoring
systems offer an alternative way to develop presentations or
courses. The developer specifies the sequence of graphics,
sound, and other events, and the authoring system gener-
ates a finished program based on those specifications.

Authoring systems can use a variety of models for orga-
nizing presentations. Some use a scripting language that
specifies the objects to be used and the actions to be per-
formed (see SCRIPTING LANGUAGES). A scripting language
uses many of the same features as a high-level program-
ming language, including the definition of variables and the
use of control structures (decision statements and loops).
Programs such as the once ubiquitous Hypercard (for the
Macintosh) and Asymetrix Toolbook for Windows organize
presentations into segments called “cards,” with instruc-
tions fleshed out in a scripting language.

As an alternative, many modern authoring systems
such as Discovery Systems’ CourseBuilder use a graphical
approach to organizing a presentation. The various objects
(such as graphics) to be used are represented by icons, and
the icons are connected with “flow lines” that describe
the sequence of actions, serving the same purpose as con-
trol structures in programming languages. This “iconic”
type of authoring system is easiest for less experienced
programmers to use and makes the creation of small pre-
sentations fast and easy. Such systems may become more
difficult to use for lengthy presentations (due to the num-
ber of symbols and connectors involved), and speed of the
finished program can be a problem. Other popular mod-
els for organizing presentations include the “timeline” of
Macromedia Flash, which breaks the presentation into
“movies” and specifies actions for each frame, as well as
providing multiple layers to facilitate animation. With the
migration of many presentations to the Internet, the abil-
ity of authoring systems to generate HTML (or DHTML)
code is also important.

Further Reading

Makedon, Fillia, and Samuel A. Rebelsky, ed. Electronic Multimedia
Publishing: Enabling Technologies and Authoring Issues. Boston:
Kluwer Academic, 1998.

“Multimedia Authoring Systems FAQ.” Available online. URL:
http://fags.cs.uu.nl/na-dir/multimedia/authoring-systems/
partl.html. Accessed August 8, 2007.

Murray, T. “Authoring Intelligent Tutoring Systems: An analysis of
the state of the art.” International J. of Artificial Intelligence in
Education 10 (1999): 98-129.

Wilhelm, Jeffrey D., Paul Friedman, and Julie Erickson. Hyper-
learning: where Projects, Inquiry, and Technology Meet. York,
Me.: Stenhouse, 1998.

awk 33

automatic programming

From the beginning of the computer age, computer sci-
entists have grappled with the fact that writing programs
in any computer language, even relatively high-level ones
such as FORTRAN or C, requires painstaking attention to
detail. While language developers have responded to this
challenge by trying to create more “programmer friendly”
languages such as COBOL with its English-like syntax,
another approach is to use the capabilities of the com-
puter to automate the task of programming itself. It is true
that any high-level language compiler does this to some
extent (by translating program statements into the under-
lying machine instructions), but the more ambitious task
is to create a system where the programmer would specify
the problem and the system would generate the high-level
language code. In other words, the task of programming,
which had already been abstracted from the machine code
level to the assembler level and from that level to the high-
level language, would be abstracted a step further.

During the 1950s, researchers began to apply artificial
intelligence principles to automate the solving of mathemat-
ical problems (see ARTIFICIAL INTELLIGENCE). For example,
in the 1950s Anthony Hoare introduced the definition of
preconditions and postconditions to specify the states of
the machine as it proceeds toward an end state (the solution
of the problem). The program Logic Theorist demonstrated
that a computer could use a formal logical calculus to solve
problems from a set of conditions or axioms. Techniques
such as deductive synthesis (reasoning from a set of pro-
grammed principles to a solution) and transformation (step-
by-step rules for converting statements in a specification
language into the target programming language) allowed for
the creation of automated programming systems, primarily
in mathematical and scientific fields (see also PROLOG).

The development of the expert system (combining a
knowledge base and inference rules) offered yet another
route toward automated programming (see EXPERT SYS-
TEMS). Herbert Simon’s 1963 Heuristic Compiler was an
early demonstration of this approach.

APPLICATIONS

Since many business applications are relatively simple in
logical structure, practical automatic principles have been
used in developing application generators that can cre-
ate, for example, a database management system given a
description of the data structures and the required reports.
While some systems output code in a language such as C,
others generate scripts to be run by the database manage-
ment software itself (for example, Microsoft Access).

To simplify the understanding and specification of prob-
lems, a visual interface is often used for setting up the appli-
cation requirements. Onscreen objects can represent items
such as data files and records, and arrows or other connect-
ing links can be dragged to indicate data relationships.

The line between automated program generators and
modern software development environments is blurry. A
programming environment such as Visual Basic encapsu-
lates a great deal of functionality in objects called controls,

which can represent menus, lists, buttons, text input boxes,
and other features of the Windows interface, as well as
other functionalities (such as a Web browser). The Visual
Basic programmer can design an application by assembling
the appropriate interface objects and processing tools, set
properties (characteristics), and write whatever additional
code is necessary. While not completely automating pro-
gramming, much of the same effect can be achieved.

Further Reading

Andrews, James H. Logic Programming: Operational Semantics and
Proof Theory. New York: Cambridge University Press, 1992.

“Automatic Programming Server.” Available online. URL: http:/
www.cs.utexas.edu/users/novak/cgi/apserver.cgi. ~ Accessed
April 14, 2007.

“Programming and Problem Solving by Connecting Diagrams.”
Available online. URL: http://www.cs.utexas.edu/users/novak/
cgi/vipdemo.cgi. Accessed April 14, 2007.

Tahid, Walid, ed. Semantics, Applications and Implementation of
Program Generation. New York: Springer-Verlag, 2000.

awk

This is a scripting language developed under the UNIX
operating system (see SCRIPTING LANGUAGES) by Alfred V.
Aho, Brian W. Kernighan, and Peter J. Weinberger in 1977.
(The name is an acronym from their last initials.) The lan-
guage builds upon many of the pattern matching utilities
of the operating system and is designed primarily for the
extraction and reporting of data from files. A number of
variants of awk have been developed for other operating
systems such as DOS.

As with other scripting languages, an awk program con-
sists of a series of commands read from a file by the awk
interpreter. For example the following UNIX command
line:

awk -f MyProgram > Report

reads awk statements from the file MyProgram into the
awk interpreter and sends the program’s output to the file
Report.

LANGUAGE FEATURES

An awk statement consists of a pattern to match and an
action to be taken with the result (although the pattern can
be omitted if not needed). Here are some examples:

{print $1} # prints the first field of every
line of input (since no pattern
is specified)
/debit/ {print $2} # print the second field of
every line that contains the
word “debit”
if (Code == 2) # if Code equals 2,
print $3 # print third field
of each line

Pattern matching uses a variety of regular expressions famil-
iar to UNIX users. Actions can be specified using a limited
but adequate assortment of control structures similar to

34 awk

those found in C. There are also built-in variables (including
counters for the number of lines and fields), arithmetic func-
tions, useful string functions for extracting text from fields,
and arithmetic and relational operators. Formatting of out-
put can be accomplished through the versatile (but some-
what cryptic) print function familiar to C programmers.
Awk became popular for extracting reports from data
files and simple databases on UNIX systems. For more
sophisticated applications it has been supplanted by Perl,

which offers a larger repertoire of database-oriented fea-
tures (see PERL).

Further Reading

Aho, Alfred V., Brian Kernighan, and Peter J. Weinberger. The
Awk Programming Language. Reading, Mass.: Addison-Wesley,
1998.

Goebel, Greg. “An Awk Primer.” Available online. URL: http://
www.vectorsite.net/tsawk.html. Accessed May 22, 2007.

Babbage, Charles
(1791-1871)

British

Mathematician, Inventor

Charles Babbage made wide-ranging applications of math-
ematics to a variety of fields including economics, social
statistics, and the operation of railroads and lighthouses.
Babbage is best known, however, for having conceptualized
the key elements of the general-purpose computer about a
century before the dawn of electronic digital computing.

As a student at Trinity College, Cambridge, Babbage
was already making contributions to the reform of calcu-
lus, championing new European methods over the New-
tonian approach still clung to by British mathematicians.
But Babbage’s interests were shifting from the theoretical
to the practical. Britain’s growing industrialization as well
as its worldwide interests increasingly demanded accurate
numeric tables for navigation, actuarial statistics, inter-
est rates, and engineering parameters. All tables had to be
hand-calculated, a long process that inevitably introduced
numerous errors. Babbage began to consider the possibil-
ity that the same mechanization that was revolutionizing
industries such as weaving could be turned to the auto-
matic calculation of numeric tables.

Starting in 1820, Babbage began to build a mechani-
cal calculator called the difference engine. This machine
used series of gears to accumulate additions and sub-
tractions (using the “method of differences”) to gener-
ate tables. His small demonstration model worked well,
so Babbage undertook the full-scale “Difference Engine

35

Number One,” a machine that would have about 25,000
moving parts and would be able to calculate up to 20 dec-
imal places. Unfortunately, Babbage was unable, despite
financial support from the British government, to over-
come the difficulties inherent in creating a mechanical
device of such complexity with the available machining
technology.

Undaunted, Babbage turned in the 1830s to a new design
that he called the Analytical Engine. Unlike the Difference
Engine, the new machine was to be programmable using
instructions read in from a series of punch cards (as in the
Jacquard loom). A second set of cards would contain the
variables, which would be loaded into the “store”—a series
of wheels corresponding to memory in a modern computer.
Under control of the instruction cards, numbers could be
moved between the store and the “mill” (corresponding to a
modern CPU) and the results of calculations could be sent
to a printing device.

Collaborating with Ada Lovelace (who translated his lec-
ture transcripts by L. F. Menebrea) Babbage wrote a series
of papers and notes that explained the workings of the pro-
posed machine, including a series of “diagrams” (programs)
for performing various sorts of calculations.

Building the Analytical Engine would have been a far
more ambitious task than the special-purpose Difference
Engine, and Babbage made little progress in the actual con-
struction of the device. Although Babbage’s ideas would
remain obscure for nearly a century, he would then be rec-
ognized as having designed most of the key elements of the
modern computer: the central processor, memory, instruc-
tions, and data organization. Only in the lack of a capability

36 backup and archive systems

If it had been built, Charles Babbage’s Analytical Engine, although
mechanical rather than electrical, would have had most of the
essential features of modern computers. These included input,

(via punched cards), a processor; a memory (store), and a printer.
A reproduction of part of the early Difference Engine is shown
here. (PHOTO RESEARCHERS, INC.)

to manipulate memory addresses did the design fall short of
a modern computer.

Further Reading

“The Analytical Engine: the First Computer.” Available online. URL:
http://www.fourmilab.ch/babbage/. Accessed April 20, 2007.

Babbage, Henry Prevost, ed. Babbage’s Calculating Engines: A Col-
lection of Papers. With a new introduction by Allan G. Brom-
ley. Los Angeles: Tomash, 1982.

Campbell-Kelly, M., ed. The Works of Charles Babbage. 11 vols.
London: Picerking and Chatto, 1989.

“Who Was Charles Babbage?” Charles Babbage Institute. Avail-
able online. URL: http://www.cbi.umn.edu/exhibits/cb.html.
Accessed April 20, 2007.

Swade, Doron D. “Redeeming Charles Babbage’s Mechanical Com-
puter.” Scientific American, February 1993.

backup and archive systems
The need to create backup copies of data has become increas-
ingly important as dependence on computers has grown and

the economic value of data has increased. Potential threats
to data include bugs in the operating system or software
applications, malicious acts such as the introduction of
computer viruses, theft, hardware failure (such as in hard
disk drives), power outages, fire, and natural disasters such
as earthquakes and floods.

A variety of general principles must be considered in
devising an overall strategy for creating and maintaining
backups:

Reliability: Is there assurance that the data is stored accu-
rately on the backup medium, and will automatic back-
ups run reliably as scheduled? Can the data be accurately
retrieved and restored if necessary?

Physical storage: Is the backed-up data stored securely and
organized in a way to make it easy to retrieve particular
disks or tapes? Is the data stored at the site where it is to
be used, or off-site (guarding against fire or other disas-
ter striking the workplace).

|

The daughter of poet Lord Byron, Lady Ada Lovelace (1815-52)
acquired mathematical training usually denied to her gender.
When she met Charles Babbage and learned about his com-
puter design, she translated his work and wrote the world’s first
computer programs. (PHOTO RESEARCHERS, INC. / Science
Photo Library)

backup and archive systems 37

Ease of Use: To the extent backups must be set up or initi-
ated by human operators, is the system easy to under-
stand and use with minimal training? Ease of use both
promotes reliability (because users will be more likely
to perform the backups), and saves money in training
costs.

Economy: How does a given system compare to others in
terms of the cost of the devices, software, media (such
as tapes or cartridges), training, and administration?

The market for storage and backup software and ser-
vices has grown rapidly in the mid-2000s, driven in part by
a new awareness of the need of corporations to protect their
vital data assets from natural disasters or possible terrorist
attacks (see CYBERTERRORISM and DISASTER PLANNING AND
RECOVERY). In many corporations the amount of data that
needs to be backed up or archived grows at a rate of 50 per-
cent per year or more.

CHOICE OF METHODS

The actual choice of hardware, software, and media depends
considerably on how much data must be backed up (and
how often) as well as whether the data is being generated
on individual PCs or being stored at a central location. (See
FILE SERVER, DATA WAREHOUSE.)

Backups for individual PCs can be accomplished using
the backup software that comes with various versions of
Microsoft Windows or through third-party software.

In addition to traditional tapes, the media used include
CDs or DVDs (for very small backups), tiny USB “flash
drives” (generally up to a few gigabytes of data), cartridge
drives (up to 70 gigabytes or more), or even compact exter-
nal USB hard drives that can store hundreds of gigabytes.
(see CD AND DVD ROM, FLASH DRIVE, HARD DRIVE, TAPE
DRIVE, and USB.)

In addition to backing up documents or other data gener-
ated by users, the operating system and applications software
is often backed up to preserve configuration information
that would otherwise be lost if the program were reinstalled.
There are utilities for Microsoft Windows and other operat-
ing systems that simplify the backing up of configuration
information by identifying and backing up only those files
(such as the Windows Registry) that contain information
particular to the installation.

The widespread use of local area networks makes it eas-
ier to back up data automatically from individual PCs and
to store data at a central location (see LOCAL AREA NET-
WORK and FILE SERVER). However, having all data eggs in
one basket increases the importance of building reliability
and redundancy into the storage system, including the use
of RAID (multiple disk arrays), “mirrored” disk drives, and
uninterruptible power supplies (UPS). Despite such mea-
sures, the potential risk in centralized storage has led to
advocacy of a “replication” system, preferably at the operat-
ing system level, that would automatically create backup
copies of any given object at multiple locations on the net-
work.

Another alternative of growing interest is the use of the
Internet to provide remote (off-site) backup services.

By 2005 Gartner Research was reporting that about
94 percent of corporate IT managers surveyed were using
or considering the use of “managed backup” services.
IDC has estimated that the worldwide market for online
backup services would reach $715 million by 2011. Online
backup offers ease of use (the backups can be run auto-
matically, and the service is particularly handy for laptop
computer users on the road) and the security of off-site
storage, but raise questions of privacy and security of sen-
sitive information, particularly if encryption is not built
into the process. Online data storage is also provided to
individual users by a variety of service providers such as
Google. Application Service Providers (ASPs) have a natu-
ral entry into the online storage market since they already
host the applications their users use to create data (see
APPLICATION SERVICE PROVIDER).

A practice that still persists in some mainframe installa-
tions is the tape library, which maintains an archive of data
on tape that can be retrieved and mounted as needed.

ARCHIVING

Although using much of the same technology as making
backups, archiving of data is different in its objectives and
needs. An archive is a store of data that is no longer needed
for routine current use, but must be retrievable upon
demand, such as the production of bank records or e-mail
as part of a legal process. (Data may also be archived for
historical or other research purposes.) Since archives may
have to be maintained for many years (even indefinitely),
the ability of the medium (such as tape) to maintain data
in readable condition becomes an important consideration.
Besides physical deterioration, the obsolescence of file for-
mats can also render archived data unusable.

MANAGEMENT CONSIDERATIONS

If backups must be initiated by individual users, the users
must be trained in the use of the backup system and moti-
vated to make backups, a task that is easy to put off to
another time. Even if the backup is fully automated, sample
backup disks or tapes should be checked periodically to
make sure that data could be restored from them. Backup
practices should be coordinated with disaster recovery and
security policies.

Further Reading

Backup Review. Available online. URL: http://www.backupreview.
info/index.php. Accessed April 22, 2007.

Jacobi, Jon L. “Online Backup Services Come of Age.” PC World
Online, July 28, 2005. Available online. URL: http://www.
peworld.com/article/id,121970-page,1-c,utilities/article.html.
Accessed April 22, 2007.

Jackson, William. “Modern Relics: NIST and Others Work on How
to Preserve Data for Later Use.” Available online. URL: http:/
www.gen.com/print/25_16/41069-1.html. Accessed April 22,
2007.

Storage Search. Available online. URL: http://www.storagesearch.
com/. Accessed April 22, 2007.

Preston, W. Curtis. Backup & Recovery. Sebastapol, Calif.: O'Reilly
Media, 2006.

38 Backus-Naur form

Backus-Naur form
As the emerging discipline of computer science struggled
with the need to precisely define the rules for new program-
ming languages, the Backus-Naur form (BNF) was devised
as a notation for describing the precise grammar of a com-
puter language. BNF represents the unification of separate
work by John W. Backus and Peter Naur in 1958, when they
were trying to write a specification for the Algol language.

A series of BNF statements defines the syntax of a lan-
guage by specifying the combinations of symbols that con-
stitute valid statements in the language.

Thus in a hypothetical language a program can be
defined as follows:

<progran® ::= program
<decl arati on_sequence>
begi n
<st at ement s_sequence>
end,
Here the symbol ::= means “is defined as” and items in
brackets <> are metavariables that represent placeholders
for valid symbols. For example, <declaration_sequence>
can consist of a number of different statements defined else-
where.
Statements in square brackets [] indicate optional ele-
ments. Thus the If statement found in most programming
languages is often defined as:

<if_statement> ::=if >bool ean_expressi on> then
<st at enent _sequence>
[else
<st at ement _sequence>]
end if ;

This can be read as “an If statement consists of a boolean_
expression (something that evaluates to “true” or “false”)
followed by one or more statements, followed by an optional
else that in turn is followed by one or more statements, fol-
lowed by the keywords end if.” Of course each item in angle
brackets must be further defined—for example, a Boolean_
expression.

Curly brackets {} specify an item that can be repeated
one or more times. For example, in the definition

<identifier> ::=<letter>{ <letter>| <digit>}

An identifier is defined as a letter followed by one or more
instances of either a letter or a digit.

An extended version of BNF (EBNF) offers operators
that make definitions more concise yet easier to read. The
preceding definition in EBNF would be:

Identifier = Letter
{Letter | Digit}

EBNF statements are sometimes depicted visually in
railroad diagrams, so called because the lines and arrows
indicating the relationship of symbols resemble railroad
tracks. The definition of <identifier> expressed in a railroad
diagram is depicted in the above figure.

|— (Digit) <—
——>»(Letter)

\/

I— (Letter) «—

© Infobase Publishing

This “railroad diagram” indicates that an identifier must begin
with a letter; which can be followed by a digit or another letter.
The tracks curving back indicate that an element can appear more
than once.

BNF and EBNF are useful because they can provide
unambiguous definitions of the syntax of any computer lan-
guage that is not context-dependent (which is to say, nearly
all of them). It can thus serve as a reference for introduc-
tion of new languages (such as scripting languages) and for
developers of parsers for compilers.

Further Reading

Garshol, Lars Marius. “BNF and EBNF: What Are They and How
Do They Work?” Available online. URL: http://www.garshol.
priv.no/download/text/bnf.html. Accessed April 23, 2007.

Jensen, K., N. Wirth et al. Pascal User Manual and Report: ISO Pas-
cal Standard. New York: Springer-Verlag, 1985.

Sebesta, Robert W. Concepts of Programming Languages. 9th ed.
Boston: Addison-Wesley, 2008.

bandwidth

In its original sense, bandwidth refers to the range of fre-
quencies that a communications medium can effectively
transmit. (At either end of the bandwidth, the transmission
becomes too attenuated to be received reliably.) For a stan-
dard voice telephone, the bandwidth is about 3kHz.

In digital networks, bandwidth is used in a rather differ-
ent sense to mean the amount of data that can be transmit-
ted in a given time—what is more accurately described as
the information transfer rate. A common measurement is
Mb/sec (megabits per second). For example, a fast Ethernet
network may have a bandwidth of 100 Mb/sec while a home
phone-line network might have a bandwidth of from 1 to 10
Mb/sec and a DSL or cable modem runs at about 1 Mb/sec.
(By comparison, a typical dial-up modem connection has a
bandwidth of about 28-56 kb/sec, roughly 20 times slower
than even a slow home network.)

The importance of bandwidth for the Internet is that it
determines the feasibility of delivering new media such as
sound (MP3), streaming video, and digital movies over the
network, and thus the viability of business models based on
such products. The growth of high-capacity access to the
Internet (see BROADBAND) is changing the way people use
the network.

Further Reading

Benedetto, Sergio, and Ezio Biglieri. Principles of Digital Transmis-
sion: With Wireless Applications. New York: Springer, 1999.

Smith, David R. Digital Transmission Systems. 3rd ed. New York:
Kluwer Academic Publishers, 2003.

BASIC 39

banking and computers

Beginning in the 1950s, banks undertook extensive auto-
mation of operations, starting with electronic funds trans-
fer (EFT) systems. Check clearing (the sending of checks
for payment to the bank on which they are drawn) was
facilitated by the development of magnetic ink character
recognition (MICR) that allowed checks to be automati-
cally sorted and tabulated. Today an automated clearing
house (ACH) network processes checks and other payments
through regional clearinghouses.

Starting in the 1960s, the use of credit cards became an
increasingly popular alternative to checks, and they were
soon joined by automatic teller machine (ATM) networks
and the use of debit cards (cards for transferring funds from
a checking account at the point of sale).

Direct deposit of payroll and benefit checks has also
been promoted for its safety and convenience. Credit card,
ATM, and debit card systems rely upon large data process-
ing facilities operated by the issuing financial institution.
Because of the serious consequences of system failure both
in immediate financial loss and customer goodwill, these
fund transfer systems must achieve a high level of reliabil-
ity and security. Reliability is promoted through the use
of fault-tolerant hardware (such as redundant systems that
can take over for one another in the event of a problem).
The funds transfer messages must be provided a high level
of security against eavesdropping or tampering through the
use of algorithms such as the long-established DES (Data
Encryption Standard)—see ENCRYPTION. Designers of
EFT systems also face the challenge of providing a legally
acceptable paper trail. Electronic signatures are increas-
ingly accepted as an alternative to written signatures for
authorizing fund transfers.

ONLINE BANKING

The new frontier of electronic banking is the online bank,
where customers can access many banking functions via
the Internet, including balance queries, transfers, automatic
payments, and loan applications. For the consumer, online
banking offers greater convenience and access to informa-
tion than even the ATM, albeit without the ability to obtain
cash.

From the bank’s point of view, online banking offers a
new way to reach and serve customers while relieving the
strain on the ATM hardware and network. However, use of
the Internet increases vulnerability to hackers and raises
issues of privacy and the handling of personal information
similar to those found in other e-commerce venues (see
COMPUTER CRIME AND SECURITY and PRIVACY IN THE DIGI-
TAL AGE). In 2006 a Pew Center survey found that 43 per-
cent of Internet users were banking online—a total of about
63 million American adults. Other surveys have found
about a third of Internet users now pay bills online. There
are also a relatively small but growing number of Internet-
only banks, many of which are affiliated with traditional
banks. A particularly attractive feature of online banking is
the ability to integrate bank services with popular personal
finance software such as Quicken.

As impressive as it has been, the growth in online bank-
ing may have been inhibited by a perceived lack of security.
A 2006 Gartner Research survey reported that nearly half
of adults surveyed said that concerns over the potential for
information theft and computer attacks had affected their
use of online services such as banking and e-commerce
transactions. Gartner translates this to an estimated 33 mil-
lion U.S. adults who do not bank online because of such
concerns. (Banks are frequently impersonated in deceptive
emails and Web sites—see PHISHING AND SPOOFING.)

In response, government regulations (FFIEC or Federal
Financial Institutions Examination Council) guidelines
issued in October 2005 required banks by the end of 2006
to provide detailed risk assessments and mitigation plans
for dealing with data breaches. Large banks spent about $15
million each on this process in 2006. Much greater expenses
are likely as banks find themselves compelled to purchase
and install more-secure user authentication software. They
face the multiple challenge of securing their systems while
reassuring their users and not forcing them to go through
complicated, hard-to-remember log-in procedures.

Credit card issuers are also starting to turn to the Inter-
net to provide additional services. According to the com-
Score service 524 million credit card bills were paid online
in 2006. By 2007 about 70 percent of all credit card holders
had logged on to their accounts at least once. Many custom-
ers have responded to incentives to discontinue receiving
paper statements.

Further Reading

Fox, Susannah, and Jean Beier. “Online Banking 2006: Surfing
to the Bank.” Pew Internet & American Life Project, June
14, 2006. Available online. URL: http:/www.pewinternet.
org/pdfs/PIP_Online_Banking_ 2006.pdf. Accessed April 23,
2007.

Macklin, Ben. “Trust Has Value in E-Commerce,” November 30,
2006. Available online. URL: http://www.emarketer.com/
Article.aspx?1004323. Accessed April 23, 2007.

BASIC

The BASIC (Beginner’s All-purpose Symbolic Instruction
Code) language was developed by J. Kemeny and T. Kurtz
at Dartmouth College in 1964. At the time, the college was
equipped with a time-shared computer system linked to
terminals throughout the campus, an innovation at a time
when most computers were programmed from a single loca-
tion using batches of punch cards. John G. Kemeny and
Thomas Kurtz wanted to take advantage of the interactivity
of their system by providing an easy-to-learn computer lan-
guage that could compile and respond immediately to com-
mands typed at the keyboard. This was in sharp contrast to
the major languages of the time, such as COBOL, Algol, and
FORTRAN in which programs had to be completely written
before they could be tested.

Unlike the older languages used with punch cards,
BASIC programs did not have to have their keywords typed
in specified columns. Rather, statements could be typed
like English sentences, but without punctuation and with
a casual attitude toward spacing. In general, the syntax for

40 basic input/output system

decision and control structures is simpler than other lan-
guages. For example, a for loop counting from 1 to 10 in C
looks like this:

for (i =1; i <= 10; i++)
printf(“%”, i);
The same loop in BASIC reads as follows:

for i =1 to 10
print i
next i

BASIC AND MICROCOMPUTERS

During the 1960s and 1970s BASIC was used on a growing
number of time-sharing computers. The language’s simplic-
ity and ease of use made it useful for writing short utility
programs and for teaching basic principles of computing,
particularly to noncomputer science majors. When the first
personal computers became widely available in the early
1980s, they typically had memory capacities of 8KB—64KB,
not enough to run the editor, compiler, and other utilities
needed for a language such as C. However, a simple inter-
preter version of BASIC could be put on a read-only memory
(ROM) chip, as was done with the Apple 1I, the early IBM
PC, and dozens of other microcomputers. More advanced
versions of BASIC (including compilers) could be loaded
from tape (the first sales by a young entrepreneur named
Bill Gates consisted of such products).

As a consequence of the adopting of BASIC for a variety
of microcomputers, numerous dialects of the language came
into existence. Commands for generating simple graphics
and for manipulating memory and hardware directly (PEEK
and POKE) made many BASIC programs platform specific.

Gradually, as microcomputers gained in memory capac-
ity and processing power, languages such as Pascal (espe-
cially with the integrated development environment created
at the University of California at San Diego) and C (from
the UNIX community) began to supplant BASIC for the
development of more complex microcomputer software.

CRITIQUE AND PROSPECTS

Most versions of BASIC used line numbers (a legacy of the
early text editors that worked on a line-by-line basis) and
a Goto statement could be used to make program control
jump to a given line. While the language had simple subrou-
tines (reached by a Gosub statement), it lacked the ability to
explicitly pass variables to a procedure as in Pascal and C.
Indeed, all variables were global, meaning that they could
be accessed from anywhere in the program, leading to the
danger of their values being unintentionally changed.

As interest in the principles of structured programming
grew (see STRUCTURED PROGRAMMING), BASIC’s structural
shortcomings made it poorly regarded among computer sci-
entists, who preferred Pascal as a teaching language and C
for systems programming. In 1984, BASIC’s original devel-
opers responded to what they saw as the problems of “street
Basic” by introducing True BASIC, a modern, well-structured
version of the language, and the 1988 ANSI BASIC stan-
dard incorporated similar features. These efforts had only
limited impact. However, Microsoft introduced new BASIC

development systems (Quick BASIC in the 1980s and Visual
Basic in the 1990s) that also featured improved control
structures and data types and that dispensed with the need
for cumbersome line numbers. Visual Basic in particular
has achieved considerable success, offering a combination
of the interactivity of traditional BASIC and access to pow-
erful pre-packaged “controls” that provide menus, dialog
boxes, and other features of the Windows user interface.
Recent versions of Visual Basic have become increasingly
object-oriented, using classes similar to those in C++.

While BASIC in its newer forms continues to have a
significant following, it can be argued that what was most
distinctive about the original BASIC (the quick, interactive
approach to programming) is no longer much in evidence.
The writing of short utility programs is now more likely to
be undertaken in any of a variety of scripting languages.

Further Reading

Brin, David. “Why Johnny Can't Code,” September 14, 2006.
Available online. URL: http:/www.salon.com/tech/feature/
2006/09/14/basic/print.html. Accessed April 24, 2007.

Kemeny, J. G., and Thomas E. Kurtz. Back to Basic: The History, Cor-
ruption, and Future of the Language. Reading, Mass.: Addison-
Wesley, 1985.

Lomax, Paul, and Ron Petrusha. VB and VBA in a Nutshell: The
Languages. Sebastopol, Calif.: O'Reilly, 1998.

Neuberg, Matt. REALbasic: The Definitive Guide. 2nd ed. Sebasta-
pol, Calif.: O'Reilly, 2001.

Sempf, Bill. Visual Basic 2008 for Dummies. Hoboken, NJ.: Wiley,
2008.

basic input/output system see Bios.

Bayesian analysis

Formerly obscure topics in mathematics have a way of sud-
denly becoming relevant in the information age. For exam-
ple, the true/false algebraic logic invented by George Boole
in the 19th century turned out to perfectly map the opera-
tion of electronic on/off in computer circuits.

The Reverend Thomas Bayes (1701?-1761) was another
formerly obscure British mathematician who discovered a
completely different way of looking at probability. Classical
probability assumes that one can make no prior assump-
tions about the events to be tested. That is, when throwing
a die, one does not base the probability that it will come up
with a six on the results of any prior throws. Of course that
approach is correct in that probability of a six is always 1 in
6 (as long as the dice are honest).

In some situations, however, what has already hap-
pened does influence the probability of a future event.
Consider a blackjack player who wants to know the prob-
ability that the next card drawn will be a face card. If the
deck has been properly shuffled, that probability starts out
as 12/52 (or 3/13), since there are 12 face cards in the deck
of 52 cards.

But suppose that, of the six cards dealt to three players in
the first hand, two are face cards. When the dealer deals the
next hand, the probability that any card will be a face card

Bell, C. Gordon 41

has changed. There are now two fewer face cards (12 - 2 = 10)
and four fewer non-face cards (40 - 4 = 36), so the probability
that a given card is a face card becomes 10/36 or 5/18.

While this is pretty straightforward, in many situations
one cannot easily calculate the shifting probabilities. What
Bayes discovered was a more general formula:

P(EIT) * P(T)

P(TIE) = P(E)

In this formula T is a theory or hypothesis about a
future event. E represents a new piece of evidence that
tends to support or oppose the hypothesis. P(T) is an esti-
mate of the probability that T is true, before considering the
evidence represented by E. The question then becomes: If
E is true, what happens to the estimate of the probability
that T is true? This is called a conditional probability, rep-
resented by the left side of the equation, P(T|E), which is
read “the probability of T, given E.” The right side of Bayes’s
equation considers the reverse probability—that E will be
true if T turns out to be true. This is represented by P(E|T),
multiplied by the prior probability of T and divided by the
independent probability of E.

PRACTICAL APPLICATIONS

In the real world one generally has imperfect knowledge
about the future, and probabilities are seldom as clear cut
as those available to the card counter at the blackjack table.
However, Bayes’s formula makes it possible to continually
adjust or “tune” estimates based upon the accumulating
evidence. One of the most common applications of Bayes-
ian analysis is in e-mail filters (see SPAM). Bayesian spam
filters work by having the user identify a sample of mes-
sages as either spam or not spam. The filter then looks for
patterns in the spam and non-spam messages and calcu-
lates probabilities that a future message containing those
patterns will be spam. The filter then blocks future mes-
sages that are (above some specified threshold) probably
spam. While it is not perfect and does require work on the
part of the user, this technique has been quite effective in
blocking spam.

A Bayesian algorithm’s effectiveness can be expressed in
terms of its rate of false positives (in the spam example, this
would be the percentage of messages that have been mistak-
enly classified as spam). If the rate of “true positives” is
too low, the algorithm is not effective enough. However, if
the rate of false positives is too high, the negative effects
(blocking wanted e-mail) might outweigh the positive
ones (blocking unwanted spam).

Further Reading

Kantor, Andrew. “Bayesian Spam Filters Use Math that Works
Like Magic.” USA Today online, September 17, 2004. Avail-
able online. URL: http://www.usatoday.com/tech/columnist/
andrewkantor/2004-09-17-kantor_x.htm. Accessed March
15, 2007.

Lee, Peter M. Bayesian Statistics: An Introduction. 3rd ed. New
York: Wiley, 2004.

Sivia, D. S. Data Analysis: A Bayesian Tutorial. 2nd ed. New York:
Oxford University Press, 2006.

“Thomas Bayes, 1702-1761.” St. Andrews University Mac Tutor.
Available online. URL: http:/www-history.mcs.st-andrews.
ac.uk/Mathematicians/Bayes.html. Accessed March 15, 2007.

BBS See BULLETIN BOARD SYSTEM.

Bell, C. Gordon
(1934-)

American

Engineer, Computer Designer

Chester Gordon Bell (also known as Gordon Bennet Bell)
was born August 19, 1934, in Kirksville, Missouri. As a
young boy Bell worked in his father’s electrical contracting
business, learning to repair appliances and wire circuits.
This work led naturally to an interest in electronics, and
Bell studied electrical engineering at MIT, earning a B.S. in
1956 and an M.S. in 1957. After graduation and a year spent
as a Fulbright Scholar in Australia, Bell worked in the MIT
Speech Computation Laboratory (see SPEECH RECOGNITION
AND SYNTHESIS). In 1960 he was invited to join the Digital
Equipment Corporation (DEC) by founders Ken Olsen and
Harlan Anderson.

Bell was a key architect of DEC’s revolutionary PDP
series (see MINICOMPUTER), particularly as designer of the
input/output (I/0) hardware in the PDP-1 and the multi-
tasking PDP-6. Bell left DEC to teach computer science at
Carnegie Mellon University (1966—72), but then returned to
DEC until his retirement in 1983 following a heart attack.
During this time Bell developed a deployment plan for the
new VAX series minicomputers, which were data-process-
ing workhorses in many organizations during the 1970s
and 1980s.

As a close observer of the computer industry, Bell formu-
lated “Bell's Law of Computer Classes” in 1972. It basically
states that as new technologies (such as the microproces-
sor) emerge, they result about once a decade in the emer-
gence of new “classes” or computing platforms, each being
generally cheaper and being perceived as a distinct product
with new applications. Within a given class, price tends to
hold constant while performance increases. Examples thus
far include mainframes, minicomputers, personal comput-
ers and workstations, networks, cluster or grid comput-
ing, and today’s ubiquitously connected wireless, portable
devices. Bell has indeed suggested that the trend to ubiqui-
tous computing will continue (see UBIQUITOUS COMPUTING
and WEARABLE COMPUTERS).

After retirement Bell soon became active again. He
founded Encore Computer, a company that specialized in
multiprocessor computers, and later was a founding member
of Ardent Computer as well as participating in the estab-
lishment of the Microelectronics and Computer Technology
Corporation, a consortium that attempted to be America’s
answer to a surging competitive threat from Japanese com-
panies. Bell was also active in debates over technology pol-
icy, playing an instrumental role as an assistant director
in the National Science Foundation’s computing initiatives

42 Bell Laboratories

and the early adoption of the Internet. In 1987 Bell estab-
lished the Gordon Bell Prize for achievements in parallel
processing.

Bell began the 1990s in a new role, helping Microsoft
develop a research group, where he was still working as of
2008. Here Bell has developed what amounts to a new para-
digm for managing personal data, a project called MyLife-
Bits. Its main idea is that pictures, e-mails, documents, and
other materials that are important to a person’s life and
work should be organized according to their chronological
and other relationships so they can be retrieved naturally
and virtually automatically, eschewing the often arbitrary
conventions of traditional file systems and interfaces. In
1992 Bell presciently told a Computer World interviewer
that “twenty-five years from now ... computers will be
exactly like telephones. They are probably going to be com-
municating all the time.”

Bell also retains a strong interest in the history of com-
puting. He cofounded the Computer History Museum in
Boston in 1979 and was also a founder of its successor, the
Computer History Museum in Mountain View, California.

Bell is a distinguished member of the American Acad-
emy of Arts and Sciences, American Association for the
Advancement of Science, the Association for Computing
Machinery (ACM), and the Institute of Electrical and Elec-
tronic Engineering (IEEE). His awards include the IEEE
Von Neumann Medal, the AEA Inventor Award, and the
National Medal of Technology (1991).

Further Reading

Gordon Bell Home Page. Microsoft Bay Area Research Center.
Available online. URL: http:/research.microsoft.com/users/
gbell/. Accessed April 30, 2007.

Slater, Robert. Portraits in Silicon. Boston: MIT Press, 1987.

“Vax Man: Gordon Bell.” Computerworld, June 22, 1992, p. 13.
Available online. URL: http:/research.microsoft.com/~gbell//
CGB%20Files/Computerworld%20Vax%20Ma n%20920622%
20c.pdf. Accessed April 30, 2007.

Bell Laboratories

Bell Telephone Laboratories was established in 1925 in
Murray Hill, New Jersey: It was intended to take over the
research arm of the Western Electric division of American
Telephone and Telegraph (AT&T) and was jointly admin-
istered by the two companies. The organization’s principal
task was to design and develop telephone switching equip-
ment, but there was also research in facsimile (fax) trans-
mission and television.

The research that would have the greatest impact,
however, would come from a relative handful of Bell scien-
tists who were given resources to undertake fundamental
research. In the 1930s Bell scientist Karl Jansky, investi-
gating interference with long-range radio transmissions,
discovered that radio waves were arriving from space,
leading to the development of radio astronomy. Other Bell
Labs developments of the 1930s and 1940s included the
vocoder, an early electronic speech synthesizer, and the
photovoltaic cell, with its potential application to solar
power systems.

Several Bell Labs technologies would have a direct
impact on the computer field. The transistor, developed
by Bell Labs researchers John Bardeen, Walter Brattain,
and William Shockley, would make a new generation of
more compact and reliable computers possible. Informa-
tion theory (see INFORMATION THEORY and SHANNON,
CLAUDE) would revolutionize telecommunications, signal
processing, and data transfer. Work on the laser in the
1960s would eventually lead to the compact disc (see CD-
ROM AND DVD-ROM). Other hardware contributions include
the charge-coupled device (CCD) that would revolutionize
astronomical and digital photography and fiber-optic cables
for high-volume data communications.

In software engineering the most important achieve-
ments of Bell researchers were the development of the C
programming language and the UNIX operating system in
the early 1970s (see C; RITCHIE, DENNIS; and UNIX). The
elegant design of the modular UNIX system is still admired
today, and versions of UNIX and Linux power many servers
and networks.

NEW CORPORATE DIRECTION

Perhaps ironically, AT&T’s near monopolistic position in
the telecommunications industry both provided substan-
tial revenue for fundamental research and shielded the lab
from competitive pressure and the need to tie research to
the development of commercial products. As a result, Bell
Labs arguably became the most important private research
institution in the 20th century. By the end of the 1980s,
however, court decisions had reshaped the landscape of the
communications field, and Bell Labs became a victim of the
company’s change from monopolist to competitor.

In 1996 AT&T divested Bell Labs along with its main
equipment manufacturing facilities into a new company,
Lucent Technologies. A smaller group of researchers were
retained and reorganized as AT&T Laboratories. As the 2000s
began these researchers made new achievements, including
tiny transistors whose size is measured in atoms, optical
data routing (see OPTICAL COMPUTING) and nanotechnology,
DNA-based computing (see MOLECULAR COMPUTING), and
other esoteric but potentially momentous fields.

In recent years, however, the organization has largely
changed its focus from long-term research in fundamental
topics to the search for projects that can be quickly turned
into commercial products—in essence the requirement that
the Labs become a profit center. The merger of Lucent and
another communications giant, Alcatel, in 2006 has led to
renewed concerns that consolidation and even tighter inte-
gration of the Labs with corporate goals might come at the
expense of the kind of research culture that has inspired
the Labs’ greatest breakthroughs.

Further Reading

Alcatel-Lucent Bell Laboratories. Available online. URL: http:/
www.alcatel-lucent.com. Accessed May 2, 2007.

Bell Labs Technical Journal. Available online. URL: http://www3.
interscience.wiley.com. Accessed May 2, 2007.

Gehani, Narain. Bell Labs: Life in the Crown Jewel. Summit, NJ.:
Silicon Press, 2003.

Berners-Lee, Tim 43

benchmark
A benchmark is a tool used to evaluate or compare the
performance of computer software or systems. Typically,
this involves the design of a program (or suite of programs)
that performs a series of operations that mimic “real world”
activities. For example, computer processors (CPUs) can be
given calculations in floating-point arithmetic, yielding a
result in “flops” (floating point operations per second). Sim-
ilarly, several different C-language compilers can be given
the same files of source code and rated according to how
quickly they produce the executable code, as well as the
code’s compactness, speed, or efficiency.

Some examples of computer industry benchmarks
include:

e Dhrystone and Whetstone for integer and floating
point arithmetic, respectively

e MIPS (millions of instructions per second) and
MFLOPS (millions of floating point instructions per
second) for microprocessors

¢ FPS (frames per second) for various types of graphics
¢ 3DMark for three-dimensional graphics

e test suites using Linpack and LAPACK for super-
computers

The devising of appropriate benchmarks is impor-
tant because they can help prospective purchasers decide
which competing CPU, program development tool, data-
base system, or Web server to buy. Often the aspects
of systems that are highlighted in advertising are not
those that are most relevant to determining their actual
utility. For example, CPUs are often compared according
to clock speed, but a chip with a superior architecture
and algorithm for handling instructions might actually
outperform chips with faster clock speeds. By putting
chips through their paces using the same arithmetic, data
transfer, or graphics instructions, the benchmark pro-
vides a more valid comparison.

The most relevant benchmarks tend to focus on re-cre-
ating real-world use. Thus database systems can be com-
pared in their speed of retrieval or update of data records.
Real-world benchmarks also help guard against manufac-
turers “tweaking” their systems to create artificially high
benchmark results. Nevertheless, benchmarks cannot be
used mechanically. While a given industry may have an
“industry standard” benchmark, and a given product may
be the highest performer using that test, the user must con-
sider how well that benchmark reflects the actual work for
which the system or program is being purchased. Perfor-
mance, however well benchmarked, is usually only one key
consideration, with environment (such as network connec-
tions), reliability, security, ease of use, and of course cost
being other considerations.

Further Reading

comp.benchmarks (USENET newsgroup).

Jones, Capers. Software Assessments, Benchmarks, and Best Prac-
tices. Boston: Addison-Wesley, 2000.

Netlib [repository for mathematical benchmarking software].
Available online. URL: http://www.netlib.org/. Accessed May
10, 2007.

Berners-Lee, Tim
(1955-)

British

Computer Scientist

A graduate of Oxford University, Tim Berners-Lee created
what would become the World Wide Web in 1989 while
working at CERN, the giant European physics research
institute. At CERN, he struggled with organizing the doz-
ens of incompatible computer systems and software that
had been brought to the labs by thousands of scientists
from around the world. With existing systems each requir-
ing a specialized access procedure, researchers had little
hope of finding out what their colleagues were doing or of
learning about existing software tools that might solve their
problems.

Berners-Lee’s solution was to bypass traditional data-
base systems and to consider text on all systems as “pages”
that would each have a unique address, a universal docu-
ment identifier (later known as a uniform resource locator,
or URL). He and his assistants used existing ideas of hyper-
text to link words and phrases on one page to another page
(see HYPERTEXT AND HYPERMEDIA), and adapted existing
hypertext editing software for the NeXT computer to create
the first World Wide Web pages, a server to provide access
to the pages and a simple browser, a program that could be
used to read pages and follow the links as the reader desired
(see WEB SERVER and WEB BROWSER). But while existing
hypertext systems were confined to browsing a single file
or at most, the contents of a single computer system, Bern-
ers-Lee’s World Wide Web used the emerging Internet to
provide nearly universal access.

Between 1990 and 1993, word of the Web spread
throughout the academic community as Web software was
written for more computer platforms (see WORLD WIDE
WEB). As demand grew for a body to standardize and shape
the evolution of the Web, Berners-Lee founded the World
Wide Web Consortium (W3C) in 1994 and continues as
its director. Together with his colleagues, he has struggled
to maintain a coherent vision of the Web in the face of tre-
mendous growth and commercialization, the involvement
of huge corporations with conflicting agendas, and conten-
tious issues of censorship and privacy. His general approach
has been to develop tools that would empower the user to
make the ultimate decision about the information he or she
would see or divulge.

Berners-Lee now works as a senior researcher at the
Massachusetts Institute of Technology Computer Science
and Artificial Intelligence Laboratory. In his original vision
for the Web, users would create Web pages as easily as they
could read them, using software no more complicated than
a word processor. While there are programs today that hide
the details of HTML coding and allow easier Web page cre-
ation, Berners-Lee feels the Web must become even easier to

44 Bezos, Jeffrey P.

use if it is to be a truly interactive, open-ended knowledge
system. He is also interested in developing software that
can take better advantage of the rich variety of information
on the Web, creating a “semantic” Web of meaningful con-
nections that would allow for logical analysis and permit
human beings and machines not merely to connect, but to
actively collaborate (see SEMANTIC WEB and XML).

In the debate over a possible tiered Internet service (see
INTERNET ACCESS POLICY) Berners-Lee has spoken out for
“net neutrality,” the idea that priority given to material
passing over the Internet should not depend on its content
or origin. He describes equal treatment to be a fundamental
democratic principle, given the primacy of the Net today.

Berners-Lee has garnered numerous awards and honor-
ary degrees. In 1997 he was made an Officer of the British
Empire, and in 2001 he became a Fellow of the British Royal
Society. Berners-Lee also received the Japan Prize in 2002
and in that same year shared the Asturias Award with fel-
low Internet pioneers Lawrence Roberts, Robert Kahn, and
Vinton Cerf. In 2007 Berners-Lee received the Charles Stark
Draper Prize of the U.S. National Academy of Engineering.

Further Reading

Berners-Lee, Tim. Home page with biography and links: Avail-
able online. URL: http://www.w3.org/People/Berners-Lee/.
Accessed April 20, 2007.

———. Papers on Web design issues. Available online. URL:
http://www.w3.org/Designlssues/.

———. “Proposal for the World Wide Web, 1989.” Available
online. URL: http://www.w3.org/History/1989/proposal.html.

Berners-Lee, Tim, and Mark Fischetti. Weaving the Web. San Fran-
cisco: HarperSanFrancisco, 1999.

Henderson, Harry. Pioneers of the Internet. San Diego, Calif.:
Lucent Books, 2002.

Markoff, John. ““Neutrality’ Is New Challenge for Internet Pioneer.”
New York Times, September 27, 2006. Available online. URL:
http://www.nytimes.com/2006/09/27/technology/circuits/
27neut.html. Accessed April 25, 2007.

Bezos, Jeffrey P.
1964-)
American
Entrepreneur

With its ability to display extensive information and interact
with users, the World Wide Web of the mid-1990s clearly
had commercial possibilities. But it was far from clear how
traditional merchandising could be adapted to the online
world, and how the strengths of the new medium could be
translated into business advantages. In creating Amazon.
com, “the world’s largest bookstore,” Jeff Bezos would show
how the Web could be used to deliver books and other mer-
chandise to millions of consumers.

Jeff Bezos was born on January 12, 1964, and grew up
in Miami, Florida. He would be remembered as an intense,
strong-willed boy who was fascinated by gadgets but also
liked to play football and other sports. His uncle, Pres-
ton Gise, a manager for the Atomic Energy Commission,
encouraged young Bezos’s interest in technology by giving
him electronic equipment to dismantle and explore. Bezos

Jeff Bezos, founder and CEO of Amazon.com, poses for a portrait
in the Internet retailer’s distribution center. (© JACK KURTZ/THE
IMAGE WORKS)

also liked science fiction and became an enthusiastic advo-
cate for space colonization.

Bezos entered Princeton University in 1982. At first he
majored in physics, but later switched to electrical engi-
neering, graduating in 1986 with highest honors. By then
Bezos had become interested in business software applica-
tions, particularly financial networks. At the age of only
23, he led a project at Fitel, a financial communications
network, managing 12 programmers and commuting each
week between the company’s New York and London offices.

As a vice president at Bankers Trust, a major Wall Street
firm in the late 1980s, Bezos became very enthusiastic about
the use of computer networking and interactive software for
providing timely information for managers and investors.
However, he found that the “old line” Wall Street firms
resisted his efforts and declined to invest in these new uses
of information technology.

In 1990, however, Bezos was working at the D.E. Shaw
Company and his employer asked him to research the com-
mercial potential of the Internet, which was starting to grow
(even though the World Wide Web would not reach most
consumers for another five years). Bezos ranked the top 20
possible products for Internet sales. They included computer
software, office supplies, clothing, music—and books.

Analyzing the publishing industry, Bezos identified
ways in which he believed it was inefficient. Even large
bookstores could stock only a small portion of the avail-
able titles, while on the other hand many books that were
in stock stayed on the shelves for months, tying up money
and space. Bezos believed that by combining a single huge
warehouse with an extensive tracking database, an online
ordering system, and fast shipping, he could satisty many
more customers while keeping costs low.

Bezos pitched his idea to D.E. Shaw. When the company
declined to invest in the venture, Bezos decided to put his
promising corporate career on hold and start his own online
business. By then it was the mid-1990s and the World Wide
Web was just starting to become popular, thanks to the new
graphical Web browsers such as Netscape.

binding 45

Looking for a place to set up shop, Bezos decided on Seat-
tle, partly because the state of Washington had a relatively
small population (the only customers who would have to
pay sales tax) yet had a growing pool of technically trained
workers, thanks to the growth of Microsoft and other com-
panies in the area. After several false starts he decided to
call his store Amazon, deciding that the name of the Earth’s
biggest river would be suited to earth’s biggest bookstore.
Amazon’s first headquarters was a converted garage.

Bezos soon decided that the existing software for mail-
order businesses was too limited and set a gifted program-
mer named Shel Kaphan to work creating a custom program
that could keep track not only of each book in stock, but
how long it would take to get more copies from the pub-
lisher or book distributor.

By mid-1995 Amazon.com was ready go online from a
new Seattle office using $145,553 contributed by Bezos’s
mother from the family trust. As word about the store
spread through Internet chat rooms and a listing on Yahoo!,
the orders began to pour in and Bezos had to struggle to
keep up. Despite the flood of orders, the business was los-
ing money as expenses piled up even more quickly.

Bezos went to Silicon Valley in search of venture capital.
Bezos’s previous experience as a Wall Street “star,” together
with his self-confidence, enabled him to raise $1 million.
Bezos believed that momentum was the key to long-term
success. The company’s motto became “get big fast.” Rev-
enue was poured back into the business, expanding sales
into other product lines such as music, video, electronics,
and software. The other key element of Bezos’s growth strat-
egy was to take advantage of the vast database that Amazon
was accumulating—not only information about books and
other products, but about what products a given individ-
ual or type of customer was buying. Once a customer has
bought something from Amazon, he or she is greeted by
name and given recommendations for additional purchases
based upon what items other customers who had bought
that item had also purchased. Customers are encouraged
to write reviews of books and other items so that each cus-
tomer gets the sense of being part of a virtual peer group.

By 1997, the year of its first public stock offering, Ama-
zon seemed to be growing at an impressive rate. A year
later the stock was worth almost $100 a share, and by 1999
Jeff Bezos’s personal wealth neared $7.5 billion. Bezos and
Amazon proved to be one of the few Internet businesses
to weather the “dot-bust” collapse of 2000 and 2001. In
2003 Amazon.com chalked up its first annual profit, and
the company’s stock prices tripled during that time.

Bezos gained a reputation as a very demanding CEO,
insisting on recruiting top talent, then demanding that proj-
ects set bold goals and complete them ahead of schedule.
The pressure resulted in high turnover of top executives,
but Bezos has also been quick to encourage and reward
initiative. (The company’s “Just Do It” program encourages
managers to start projects without asking permission of
their superiors.)

Aside from Amazon.com, Bezos has maintained his
interest in space travel. In 2002 he founded a company
called Blue Origin, whose spaceship project has remained

shrouded in secrecy. However, in January 2007 the com-
pany released video of the first successful (albeit brief) test
of a prototype suborbital passenger craft.

Bezos has written a new chapter in the history of retail-
ing, making him a 2lst-century counterpart to such pio-
neers as Woolworth and Montgomery Ward. Time magazine
acknowledged this by making him its 1999 Person of the
Year, while Internet Magazine put Bezos on its list of the 10
persons who have most influenced the development of the
Internet.

Further Reading

Blue Origin website. Available online. URL: http:/public.blueori-
gin.com/index.html. Accessed April 10, 2007.

Byers, Ann. Jeff Bezos: The Founder of Amazon.com. New York:
Rosen Publishing Group, 2006.

Marcus, James. Amazonia: Five Years at the Epicenter of the Dot.
Com Juggernaut. New York: New Press, 2004.

Spector, Robert. Amazon.com: Get Big Fast: Inside the Revolution-
ary Business Model that Changed the World. New York: Harper
Business, 2000.

binding

Designers of program compilers are faced with the question
of when to translate a statement written in the source lan-
guage into final instructions in machine language (see also
ASSEMBLER). This can happen at different times depending
on the nature of the statement and the decision of the com-
piler designer.

Many programming languages use formal data types
(such as integer, floating point, double, string, and so on)
that result in allocation of an exact amount of storage space
to hold the data (see DATA TYPES). A statement that declares
a variable with such a type can be effectively bound imme-
diately (that is, a final machine code statement can be gen-
erated). This is also called compile-time binding.

However, there are a variety of statements for which
binding must be deferred until more information becomes
available. For example, it is common for programmers to use
libraries of precompiled routines. A statement that calls such
a routine cannot be turned immediately into machine lan-
guage because the compiler doesn’t know the actual address
where the routine will be embedded in the final compiled
program. (That address will be determined by a program
called a linker that links the object code from the source
program to the library routines called upon by that code.)

Another aspect of binding arises when there is more
than one object in a program with the same name. In lan-
guages such as C or Pascal that use a nested block struc-
ture, lexical binding can determine that a name refers to the
closest declaration of that name—that is, the smallest scope
that contains that name (see VARIABLE). In a few languages
such as Lisp, however, the reference for a name depends on
how (or for what) the function is being called, so binding
can be done only at run time.

BINDING AND OB]ECT—ORIENTED LANGUAGES
The use of polymorphism in object-oriented languages such
as C++ raises a similar issue. Here there can be a base class

46 bioinformatics

and a hierarchy of derived classes. A function in the base
class can be declared to be virtual, and versions of the same
function can be declared in the derived classes. In this case
a statement containing a pointer to the function in the base
class cannot be bound until run time, because only then
will it be known which version of the virtual function is
being called. However, compilers for object-oriented lan-
guages can be written so they do early binding on state-
ments for which it is safe (such as those involving static
data types), but do dynamic binding when necessary.

From the point of view of efficiency, early binding is bet-
ter because memory can be allocated efficiently. Dynamic
binding provides greater flexibility, however, and facilitates
debugging—for example, because the name of a variable
is normally lost once it is bound and the machine code is
generated.

Further Reading

Aho, Alfred V., et al. Compilers: Principles, Techniques, and Tools.
2nd ed. Reading, Mass.: Addison-Wesley, 2006.

Scott, Michael L. Programming Language Pragmatics. 2nd ed. San
Francisco: Morgan Kaufmann, 2005.

bioinformatics

Broadly speaking, bioinformatics (and the related field of
computational biology) is the application of mathematical
and information-science techniques to biology. This under-
taking is inherently difficult because a living organism rep-
resents such a complex interaction of chemical processes.
Understanding any one process in isolation gives little
understanding of the role it plays in physiology. Similarly,
as more has been learned about the genome of humans
and other organisms, it has become increasingly clear that
the “programs” represented by gene sequences are “inter-
preted” through complex interactions of genes and the envi-
ronment. Given this complexity, the great strides that have
been made in genetics and the detailed study of metabolic
and other biological processes would have been impossible
without advances in computing and computer science.

APPLICATION TO GENETICS

Since information in the form of DNA sequences is the heart
of genetics, information science plays a key role in under-
standing its significance and expression. The sequences of
genes that determine the makeup and behavior of organ-
isms can be represented and manipulated as strings of sym-
bols using, for example, indexing and search algorithms.
It is thus natural that the advent of powerful computer
workstations and automated lab equipment would lead to
the automation of gene sequencing (determining the order
of nucleotides), comparing or determining the relation-
ship between corresponding sequences, and identifying
and annotating regions of interest. The completion of the
sequencing of the human genome well ahead of schedule
was thus a triumph of computer science as much as biology.
Today the systematic search for genetic and metabolic inter-
actions has been greatly sped up by the use of microarrays,
silicon chips with grids of tiny holes that each contain a

AT

A scientist observes an experiment performed by robotic
equipment. (ANDREI TCHERNOV/ISTOCKPHOTO)

specified material that can be automatically tested for reac-
tion to a given sample.

EVOLUTIONARY BIOLOGY

The ability to compare genes and to account for the effects
of mutation has also established evolutionary biology on a
firm foundation. Given a good estimate of the mutation rate
(a “molecular clock”) in mitochondrial DNA, the chronol-
ogy of species and common ancestors can be determined
with considerable accuracy using statistical methods and
appropriate data structures (see TREE). The results of such
research have cast intriguing if sometimes controversial
light on such issues in paleontology as the relationship
between early modern humans and Neanderthals. Com-
putational genetics can also measure the biodiversity of a
present-day ecosystem and predict the likely future of par-
ticular species in it.

FROM GENES TO PROTEINS

Gene sequences are only half of many problems in biol-
ogy. Computational techniques are also being increasingly
applied to the analysis and simulation of the many intricate

biometrics 47

chemical steps that link genetic information to expression
in the form of a particular protein and its three-dimensional
structure in the process known as protein folding. Already
molecular simulations and predictive techniques are being
used to determine which of thousands of possible molec-
ular configurations might have promising pharmaceutical
applications. The development of better algorithms and
more powerful computing architectures for such analysis
can further speed up research, avoid wasteful “dead ends,”
and bring effective treatments for cancer and other serious
diseases to market sooner. Recently, the unlikely platform
of a Sony PlayStation 3 and its powerful new processor has
been harnessed to turn gamers’ idle time to the processing
of protein-folding data in the Folding@Home project.

SIMULATION

A variety of other types of biological computer simula-
tion have been employed. Examples include the chemical
components (metabolites and enzymes) that are respon-
sible for metabolic activity in organisms, the structure of
the nervous system and the brain (see NEURAL NETWORK),
and the interaction of multiple predators and food sources
in an ecosystem. Simulations can also incorporate algo-
rithms first devised by artificial intelligence researchers
(see GENETIC ALGORITHMS and ARTIFICIAL LIFE). Simula-
tions are combined with sophisticated graphics to enable
researchers to visualize structure. Such visualization can

Computers can create detailed representations that give scientists
unprecedented ability to visualize nature’s most intricate structures.
This is a computer model of trypanathione Reductase, a protein
crystal. (NASA PHOTO; MARSHALL SPACE FLIGHT CENTER
IMAGE EXCHANGE)

provide insight and encourage intuitive “leaps” that might
be missed when working only with formulas. Visualiza-
tion algorithms developed for biomedical research can also
be applied to the development of advanced MRI and other
scans for use in diagnosis and therapy.

A FRUITFUL RELATIONSHIP

Bioinformatics has been one of the “hottest” areas in com-
puting in recent years, often following trends in the broader
“biotech” sector. This challenging field involves such diverse
subjects as genetics, biochemistry, physiology, mathemat-
ics (structural and statistical), database analysis and search
techniques (see DATA MINING), simulation, modeling, graph-
ics, and image analysis. Major projects often involve close
cooperation between bioinformatics specialists and other
researchers. Many computer scientists may find it profitable
to study biology just as biologists will need to learn about
and master the latest software tools. Researchers must also
consider how the availability of ever-increasing computing
power might make previously impossible projects feasible
(see SUPERCOMPUTER and GRID COMPUTING). (The National
Institutes of Health (NIH) currently funds seven biomedi-
cal computation centers, including the National Center for
Physics-based Simulation of Biological Structures at Stan-
ford University.)

The relationship between biology and computer science
seems destined to be even more fruitful in coming years. As
software tools allow researchers to probe ever more deeply
into biological processes and to bridge the gap between
physics, biochemistry, and the emergent behavior of living
organisms, understanding of those processes may in turn
inspire the creation of new architectures and algorithms in
areas such as artificial intelligence and robotics.

Further Reading

Bader, David A. “Computational Biology and High-Performance
Computing.” Communications of the ACM 47, 11 (2004): 34—41.

Brent, Roger, and Jehoshua Bruck. “Can Computers Help to
Explain Biology?” Nature 440 (March 23, 2006): 416.

Campbell, A. Malcolm, and Laurie J. Heyer. Discovering Genomics,
Proteomics, and Bioinformatics. 2nd ed. San Francisco: Benja-
min Cummings, 2006.

Claverie, Jean-Michel, and Cedric Notredame. Bioinformatics for
Dummies. 2nd ed. Indianapolis: Wiley, 2006.

Cohen, Jacques. “Computer Science and Bioinformatics.” Commu-
nications of the ACM 48 (2005): 72-78.

“Just the Facts: A Basic Introduction to the Science Underlying
NCBI Resources: Bioinformatics.” National Center for Bio-
technology Information. Available online. URL: http:/www.
ncbi.nlm.nih.gov/About/primer/bioinformatics.html. Accessed
April 24, 2007.

biometrics

The earliest use of biometrics was probably the development
by Alphonse Bertillon in 1882 of anthropometry, a system
of classification by physical measurements and description.
While this was soon supplanted by the discovery that fin-
gerprints could serve as an easier to use means of unique
identification of persons, the need for a less invasive means
of physical identification has led to the development of a

48 biometrics

variety of biometric scanners that take Bertillon’s ideas to a
much more detailed level.

TECHNOLOGIES
In general, biometric scanning involves four steps: the
capture of an image using a camera or other device, the
extraction of key features from the image, the creation of
a template that uniquely characterizes the person being
scanned, and the matching of the template to stored tem-
plates in order to identify the person.

There are several possible targets for biometric scan-
ning, including the following areas:

FACIAL SCANNING

Facial scanning uses cameras and image analysis software
that looks at areas of the human face that change little
during the course of life and are not easily alterable, such
as the upper outline of the eye sockets and the shape of
the cheekbones. Researchers at MIT developed a series of
about 125 grayscale images called eigenfaces from which
features can be combined to characterize any given face.
The template resulting from a scan can be compared with
the one on file for the claimed identity, and coefficients
expressing the degree of similarity are calculated. Variance
above a specified level results in the person being rejected.
Facial scanning is often viewed as less intrusive than the
use of fingerprints, and it can also be applied to surveil-
lance images.

FINGER SCANNING

Finger scanning involves the imaging and automatic analy-
sis of the pattern of ridges on one or more fingertips. Unlike
traditional fingerprinting, the actual fingerprint is not
saved, but only enough key features are retained to provide
a unique identification. This information can be stored in a
database and also compared with full fingerprints stored in
existing databases (such as that maintained by the Federal
Bureau of Investigation). Finger scanning can meet with
resistance because of its similarity to fingerprinting and the
association of the latter with criminality.

HAND GEOMETRY

This technique measures several characteristics of the
hand, including the height of and distance between the
fingers and the shape of the knuckles. The person being
scanned places the hand on the scanner’s surface, aligning
the fingers to five pegs. Hand-scanning is reasonably accu-
rate in verifying an individual compared to the template
on file, but not accurate enough to identify a scan from an
unknown person.

IRIS AND RETINA SCANNING

These techniques take advantage of many unique individ-
ual characteristics of these parts of the eye. The scanned
characteristics are turned into a numeric code similar to a
bar code. Retina scanning can be uncomfortable because it
involves shining a bright light into the back of the eye, and
has generally been used only in high-security installations.

However, iris scanning involves the front of the eye and is
much less intrusive, and the person being scanned needs
only to look into a camera.

VOICE SCANNING

Voice scanning and verification systems create a “voice-
print” from a speech sample and compare it to the voice
of the person being verified. It is a quick and nonintrusive
technique that is particularly useful for remote transactions
such as telephone access to banking information.

BEHAVIORAL BIOMETRICS

Biometrics are essentially invariant patterns, and these can
be found in behavior as well as in physical features. One of
the most promising techniques (recently patented) analyzes
the pace or rhythm of a person’s typing on a keyboard and
generates a unique numeric code. A similar approach might
be applicable to mouse usage.

APPLICATIONS OF BIOMETRICS

Due to the expense of the equipment and the time involved
in scanning, biometrics were originally used primarily in
verifying identity for people entering high-security installa-
tions. However, the development of faster and less intrusive
techniques, combined with the growing need to verify users
of banking (ATM) and other networks has led to a growing

FiEA 3.3

SELElimEsiE.

A portable iris recognition scanner being demonstrated at the Bio-
metrics 2004 exhibition and conference in London. (IAN WALDIE/
GETTY IMAGES)

BIOS 49

interest in biometrics. For example, a pilot program in the
United Kingdom has used iris scanning to replace the PIN
(personal identification number) as a means of verifying
ATM users.

The general advantage of biometrics is that it does not
rely on cards or other artifacts that can be stolen or other-
wise transferred from one person to another, and in turn,
a person needing to identify him or herself doesn’t have
to worry about forgetting or losing a card. However, while
workers at high-security installations can simply be required
to submit to biometric scans, citizens and consumers have
more choice about whether to accept techniques they may
view as uncomfortable, intrusive, or threatening to privacy.

Recent heightened concern about the stealing of per-
sonal identification and financial information (see IDENTITY
THEFT) may promote greater acceptance of biometric tech-
niques. For example, a built-in fingerprint reader (already
provided on some laptop computers) could be used to
secure access to the hard drive or transmitted to authenti-
cate an online banking customer.

Of course every security measure has the potential for
circumvention or misuse. Concerns about the stealing and
criminal use of biometric data (particularly online) might
be addressed by a system created by Emin Martinian of the
Mitsubishi Electric Research Laboratories in Cambridge,
Massachusetts. The algorithm creates a unique code based
on a person’s fingerprint data. The data itself is not stored,
and the code cannot be used to re-create it, but only to
match against the actual finger.

The growing use of biometrics by government agencies
(such as in passports and border crossings) is of concern
to privacy advocates and civil libertarians. When com-
bined with surveillance cameras and central databases, bio-
metrics (such as face analysis and recognition) could aid
police in catching criminals or terrorists, but could also
be used to strip the anonymity from political protesters.
The technology is thus double-edged, with the potential
both to enhance the security of personal information and to
increase the effectiveness of surveillance.

Further Reading

Ashborn, Julian D. M. Biometrics: Advanced Identity Verification,
the Complete Guide. New York: Springer-Verlag, 2000.

“BiometricsOverview.” Availableonline. URL: http://www.biometric
group.com/a_biol/_technology/research_a_technology.htm.
Accessed April 20, 2007.

Biometrics Research Homepage at Michigan State University. Avail-
able online. URL: http:/biometrics.cse.msu.edu/. Accessed
April 24, 2007.

“Biometrics: Who’s Watching You?” Electronic Frontier Founda-
tion. Available online. URL: http://www.eff.org/Privacy/Sur-
veillance/biometrics/. Accessed April 24, 2007.

Harreld, Heather. “Biometrics Points to Greater Security.” Fed-
eral Computer Week, July 22, 1999. Available online. URL:
http://www.cnn.com/TECH/computing/9907/22/biometrics.
idg/index.html.

Jain, Anil, Ruud Bolle, and Sharath Pankanti. Biometrics: Personal
Identification in Networked Society. Norwell, Mass.: Kluwer
Academic Publishers, 1999.

Woodward, John D., Nicholas M. Orlans, and Peter T. Higgins.
Biometrics: Identity Assurance in the Information Age. New
York: McGraw-Hill, 2002.

BIOS (Basic Input-Output System)

With any computer system a fundamental design problem
is how to provide for the basic communication between the
processor (see CPU) and the devices used to obtain or dis-
play data, such as the video screen, keyboard, and parallel
and serial ports.

In personal computers, the BIOS (Basic Input-Output
System) solves this problem by providing a set of routines
for direct control of key system hardware such as disk
drives, the keyboard, video interface, and serial and par-
allel ports. In PCs based on the IBM PC architecture, the
BIOS is divided into two components. The fixed code is
stored on a PROM (programmable read-only memory) chip
commonly called the “ROM BIOS” or “BIOS chip.” This
code handles interrupts (requests for attention) from the
peripheral devices (which can include their own special-
ized BIOS chips). During the boot sequence the BIOS code
runs the POST (power-on self test) and queries various
devices to make sure they are functional. (At this time the
PC’s screen will display a message giving the BIOS manu-
facturer, model, and other information.) Once DOS is run-
ning, routines in the operating system kernel can access
the hardware by making calls to the BIOS routines. In turn,
application programs can call the operating system, which
passes requests on to the BIOS routines.

The BIOS scheme has some flexibility in that part of
the BIOS is stored in system files (in IBM PCs, 10.SYS and
IBMIO.COM). Since this code is stored in files, it can be
upgraded with each new version of DOS. In addition, sepa-
rate device drivers can be loaded from files during system
startup as directed by DEVICE commands in CONFIG.SYS,
a text file containing various system settings.

For further flexibility in dealing with evolving device
capabilities, PCs also began to include CMOS (complemen-
tary metal oxide semiconductor) chips that allow for the
storage of additional parameters, such as for the configura-
tion of memory and disk drive layouts.

In modern PCs the BIOS setup screen also allows users
to specify the order of devices to be used for loading system
startup code. This, for example, might allow a potentially
corrupted hard drive to be bypassed in favor of a bootable
CD or DVD with disk repair tools. Another scenario would
allow users to boot from a USB memory stick (see FLASH
DRIVE) and use a preferred operating system and working
files without disturbing the PC’s main setup.

The data on these chips is maintained by a small on-
board battery so settings are not lost when the main system
power is turned off.

Additionally, modern PC BIOS chips use “flash memory”
(EEPROM or “electrically erasable programmable read-only
memory”) to store the code. These chips can be “flashed” or
reprogrammed with newer versions of the BIOS, enabling the
support of newer devices without having to replace any chips.

BEYOND THE BIOS

While the BIOS scheme was adequate for the earliest PCs,
it suffered from a lack of flexibility and extensibility. The
routines were generic and thus could not support all the
functions of newer devices. Because BIOS routines for

50 bitmapped image

such tasks as graphics tended to be slow, applications pro-
grammers often bypassed the BIOS and dealt with devices
directly or created device drivers specific to a particular
model of device. This made the life of the PC user more
complicated because programs (particularly games) may
not work with some video cards, for example, or at least
required an updated device driver.

While both the main BIOS and the auxiliary BIOS chips
on devices such as video cards are still essential to the
operation of the PC, modern operating systems, such as
Microsoft Windows and applications written for them, gen-
erally do not use BIOS routines and employ high perfor-
mance device drivers instead. (By the mid-1990s BIOSes
included built-in support for “Plug and Play,” a system for
automatically loading device drivers as needed. Thus, the
BIOS is now usually of concern only if there is a hardware
failure or incompatibility.)

Further Reading

“System BIOS Function and Operation.” Available online. URL:
http://www.pcguide.com/ref/mbsys/bios/func.htm. Accessed
April 20, 2007.

bitmapped image

A bitmap is a series of bits (within a series of bytes in
memory) in which the bits represent the pixels in an image.
In a monochrome bitmap, each pixel can be represented by
one bit, with a 1 indicating that the pixel is “on.” For gray-
scale or color images several bits must be used to store the
information for each pixel. The pixel value bits are usually
preceded by a data structure that describes various charac-
teristics of the image.

For example, in the Microsoft Windows BMP format,
the file for an image begins with a BITMAPFILEHEADER
that includes a file type, size, and layout. This is followed
by a BITMAPINFOHEADER that gives information about
the image itself (dimensions, type of compression, and
color format). Next comes a color table that describes each

ojojojofo]O|O]O
of1|1111]11(1]0
oj1]0|0f0]jO|1]0
oj1]o|0fo0]jO|1]0
oj1]o0|0f0]JO|1]0
oj1]o0|0f0]JO|1]0
oj1]11f1]1|1]0
ojojojofo]O|O]O
© Infobase Publishing

In a monochrome bitmapped image, a 1 is used to represent a pixel
that is turned on, while the empty pixels are represented by zeroes.
Color bitmaps must use many more bits per pixel to store color
numbers.

color found in the image in terms of its RGB (red, green,
blue) components. Finally comes the consecutive bytes rep-
resenting the bits in each line of the image, starting from
lower left and proceeding to the upper right.

The actual number of bits representing each pixel
depends on the dimensions of the bitmap and the num-
ber of colors being used. For example, if the bitmap has a
maximum of 256 colors, each pixel value must use one byte
to store the index that “points” to that color in the color
table. However, an alternative format stores the actual RGB
values of each pixel in three consecutive bytes (24 bits),
thus allowing for a maximum of 24 (16,777,216) colors (see
COLOR IN COMPUTING).

SHORTCOMINGS AND ALTERNATIVES
The relationship between number of possible colors and
amount of storage needed for the bitmap means that the
more realistic the colors, the more space is needed to store
an image of a given size, and generally, the more slowly the
bitmap can be displayed. Various techniques have been used
to shrink the required space by taking advantage of redun-
dant information resulting from the fact that most images
have areas of the same color (see DATA COMPRESSION).
Vector graphics offer an alternative to bitmaps, particu-
larly for images that can be constructed from a series of lines.
Instead of storing the pixels of a complete image, vector graph-
ics provides a series of vectors (directions and lengths) plus
the necessary color information. This can make for a much
smaller image, as well as making it easy to scale the image to
any size by multiplying the vectors by some constant.

Further Reading

Artymiak, Jacek. Dynamic Bitmap Graphics with PHP and Gd. 2nd
ed. Lublin, Poland: devGuide.net, 2007.

“Microsoft Windows Bitmap File Format Summary.” FileFormat-
Info. Available online. URL: http:/www.fileformat.info/format/
bmp/egff.htm. Accessed May 10, 2007.

Slaybaugh, Matt. Professional Web Graphics. Boston: Course Tech-
nology, 2001.

bits and bytes

Computer users soon become familiar with the use of bits
(or more commonly bytes) as a measurement of the capac-
ity of computer memory (RAM) and storage devices such
as disk drives. They also speak of such things as “16-bit
color,” referring to the number of different colors that can
be specified and generated by a video display.

In the digital world a bit is the smallest discernable
piece of information, representing one of two possible states
(indicated by the presence or absence of something such as
an electrical charge or magnetism, or by one of two voltage
levels). Bit is actually short for “binary digit,” and a bit cor-
responds to one digit or place in a binary (base 2) number.
Thus an 8-bit value of

11010101

corresponds, from right to left, to (1 * 29 + (0 * 21 + (1 *
2+ 0*2)+Q*2H+0*25) + (1A *29 + (1 *27),0r 213
in terms of the familiar decimal system.

bitwise operations 51

Place value (power of 2)

2> 2 22 2

1 1 0 1 0 1 0 1

128 64 32 16 8 4 2 1
Place value (decimal)

1x27 =128
1x2%= 64
0x2°=0
1x2%=16
0x23=0
1x2%=4
ox2'=0
1x2%=1
Total value = 213

© Infobase Publishing

One byte in memory can store an 8-bit binary number. Just as each
place to the left in a decimal number represents the next higher
power of 10, the places in the byte increase as powers of 2. Here the
places with 1 in them add up to a total decimal value of 213.

With regard to computer architectures the number
of bits is particularly relevant to three areas: (1) The size
of the basic “chunk” of data or instructions that can be
fetched, processed, or stored by the central processing unit
(CPU); (2) The “width” of the data bus over which data is
sent between the CPU and other devices—given the same
processor speed, a 32-bit bus can transfer twice as much
data in a given time as a 16-bit bus; and (3) The width of the
address bus (now generally 32 bits), which determines how
many memory locations can be addressed, and thus the
maximum amount of directly usable RAM.

The first PCs used 8-bit or 16-bit processors, while
today’s PC processors and operating systems often use 32-
bits at a time, with 64-bit processors now entering the mar-
ket. Besides the “width” of data transfer, the number of bits
can also be used to specify the range of available values.
For example, the range of colors that can be displayed by
a video card is often expressed as 16 bit (65,536 colors) or
32 bit (16,777,777,216 colors, because only 24 of the bits are
used for color information).

Since multiple bits are often needed to specify meaningful
information, memory or storage capacity is often expressed

in terms of bytes. A byte is 8 bits or binary digits, which
amounts to a range of from 0 to 255 in terms of decimal (base
10) numbers. A byte is thus enough to store a small inte-
ger or a character code in the standard ASCII character set
(see CHARACTER). Common multiples of a byte are a kilobyte
(thousand bytes), megabyte (million bytes), gigabyte (billion
bytes), and occasionally terabyte (trillion bytes). The actual
numbers represented by these designations are actually some-
what larger, as indicated in the accompanying table.

Further Reading
“How Bits and Bytes work.” Available online. URL: http:/www.
howstuffworks.com/bytes.htm. Accessed April 22, 2007.

bitwise operations

Since each bit of a number (see BITS AND BYTES) can hold
a truth value (1 = true, 0 = false), it is possible to use indi-
vidual bits to specify particular conditions in a system, and
to compare individual pairs of bits using special operators
that are available in many programming languages.

Bitwise operators consist of logical operators and shift
operators. The logical operators, like Boolean operators in
general (see BOOLEAN OPERATORS), perform logical compar-
isons. However, as the name suggests, bitwise logical opera-
tors do a bit-for-bit comparison rather than comparing the
overall value of the bytes. They compare the corresponding
bits in two bytes (called source bits) and write result bits
based on the type of comparison.

The AND operator compares corresponding bits and
sets the bit in the result to one if both are one. Otherwise, it
sets it to zero.

Example: 10110010 AND 10101011 = 10100010

The OR operator compares corresponding bits and sets
the bit in the result to one if either or both of the bits are
ones.

Example: 10110110 OR 10010011 = 10110111

The XOR (“exclusive OR”) operator works like OR
except that it sets the result bit to one only if either (not
both) of the source bits are ones.

Example: 10110110 XOR 10010011 = 00100101

The COMPLEMENT operator switches all the bits to
their opposites (ones for zeroes and zeroes for ones).

Example: COMPLEMENT 11100101 = 00011010

MEASUREMENT NUMBER OF BYTES EXAMPLES OF USE

byte 1 small integer, character

kilobyte 210 1,024 RAM (PCs in the 1980s)

megabyte 220 1,048,576 hard drive (PCs to mid-1990s)
RAM (modern PCs)

gigabyte 230 1,073,741,824 hard drive (modern PCs)

terabyte 240

1,099,511,627,776

RAM (latest PCs)
large drive arrays

52 blogs and blogging

The shift operators simply shift all the bits left (LEFT
SHIFT) or right (RIGHT SHIFT) by the number of places
specified after the operator. Thus

00001011 LEFT SHIFT 2 = 00101100
and

00001011 RIGHT SHIFT 2 = 00000010 (bits that shift off
the end of the byte simply “drop off” and are replaced with
zeroes).

While we have used words in our general description of
these operators, actual programming languages often use
special symbols that vary somewhat with the language. The
operators used in the C language are typical:

& AND

| OR

A Exclusive OR
~ Complement
>> Right Shift
<< Left Shift

MASKING

There are a number of programming tasks where the
contents of individual bits must be read or manipulated.
Operating systems and network protocols often have data
structures where several separate pieces of information are
stored in a single byte in order to save space. (For exam-
ple, in IBM architecture PC’s interrupts are often enabled
or disabled by setting particular bits in a mask register.)
Operations using bitmapped images can also involve bit
manipulation.

Suppose the right three bits of a byte contain a desired
piece of information. The byte is ANDed with a prepared
byte called a mask in which the desired bits are set to one
and the rest of the bits are zero: in this case it would be
00000111. Thus if the byte contains 11010110:

11010110 AND 00000111 = 000000110

The result contains only the value of the right three bits.
Similarly, if one wants to set a particular bit to zero, one
simply ANDs the byte with a byte that has a zero in that
position and ones in the rest of the byte. Thus to “zero out”
the second bit from the left in 11010110:

11010110 AND 10111111 = 10010110

Further Reading

“Bitwise Operators in C and C++.” Available online. URL: http://
www.cprogramming.com/tutorial/bitwise_operators.html.
Accessed September 17, 2007.

“Java Lesson 7: Bitwise Operations with Good Examples.” Avail-
able online. URL: http://www.javafaq.nu/java-article402.
html. Accessed September 17, 2007.

“Logic and Bitwise Operators in PHP.” Available online. URL:
http://theopensourcery.com/phplogic.htm. Accessed Septem-
ber 17, 2007.

blogs and blogging

As the 20th century drew to a close, a new form of per-
sonal self-expression began to appear on the Web. Called
“Web logs” but soon universally shortened to blogs, this new
type of online journal caught on rapidly, being adopted not
only by Web-savvy designers and writers, but by millions of
ordinary users wanting to express opinions on the news of
the day, critique music or restaurants, analyze technological
developments, or just keep relatives informed about family
doings. (By 2006 the Pew Internet and American Life project
was reporting that about 16 percent of the American popu-
lation—around half of all Internet users—was writing or
at least reading blogs.) Additionally, today’s blogs can have
institutional as well as personal roles. They have created
a new form of journalism that challenges the mainstream
media, have kept researchers in touch with new develop-
ments, and have provided a new way for corporations to
communicate with customers or prospective investors.

FORMATS AND SOFTWARE

The “classic” blog resembles a diary or journal. The writer
simply adds a new entry either on a regular basis such as
daily or weekly, or when there is something new to be said
or responded to. Indeed, what makes blogs different from
traditional journals is two things: linkage and interactivity.
When a “blogger” writes about something such as a news
story, he or she almost always includes a Web link that can
take the reader directly to the source in question. The inter-
activity comes in readers having the opportunity to click a
button and write their own response—either to the original
journal entry or to someone’s earlier response.

In order for blogging to become ubiquitous, there needed
to be software that anyone could use without knowing any-
thing about Web design or HTML coding. Most commonly,
the software is hosted on a Web site, and users only need a
Web browser to create and manage their blogs. One of the
first popular blogging applications was developed in the late
1990s by David Winer of Userland Software. Google’s Blog-
ger.com is another popular choice. Many blogging applica-
tions are free and open source, such as Drupal, Mephisto,
and WordPress (which can be used stand-alone or as a
hosted service). Today anyone can start and maintain a blog
with just a few clicks.

As blogs proliferated, the value of a search engine
devoted specifically to finding blogs and blog entries became
evident. While a general search engine can find blog entries
that match keywords, the results generally do not show the
context or the necessary links to follow the threads of dis-
cussion. In addition to such services as Bloglines, general
search engines such as Google include options for search-
ing the burgeoning “blogosphere.”

As with many other Web developments, what began as
primarily a textual medium soon embraced multimedia.
The availability of inexpensive cameras makes it easy for
bloggers to engage in “video blogging.” Anyone who wants
to see these videos regularly can “subscribe” and have them
downloaded automatically to their PC or portable player
(see PODCASTING).

Boolean operators 53

Blogging can also be seen as part of a larger trend toward
Web users taking an active role in expressing and sharing
opinion and resources (see USER-CREATED CONTENT, FILE-
SHARING AND P2P NETWORKS, and YOUTUBE).

SOCIAL AND ECONOMIC IMPACT

Blogs first emerged in popular consciousness as a new way
in which people caught in the midst of a tragedy such as the
September 11, 2001, attacks could reassure friends about
their safety while describing often harrowing accounts. The
Iraq war that began in 2003 was the first war to be blogged
on a large scale. Like their journalistic counterparts, blog-
gers, whether American or Iraqi, were “embedded” in the
often-violent heart of the protracted conflict, but they were
also effectively beyond the control of government or mil-
itary authorities. (See also POLITICAL ACTIVISM AND THE
INTERNET.)

Blogs are also being used widely in business. Within a
company, a blog can highlight ongoing activities and relevant
resources that might otherwise be overlooked in a large cor-
porate network. Software developers can also report on the
progress of bug fixes or enhancements and solicit comments
from end users. There has been some concern, however, that
corporate blogs are not sufficiently supervised to prevent
the dissemination of sensitive information or the posting of
libelous or inflammatory material. (For the collaborative cre-
ation of large bodies of structured knowledge, see WIKIS AND
WIKIPEDIA.)

Blogs have provided an outlet where other means of
expression are unavailable because of war (as in Iraq),
disaster (Hurricane Katrina), or government censorship—
although China in particular has hired hundreds of censors
to remove offending postings as well as requiring blog pro-
viders such as MSN to police their content (see CENSORSHIP
AND THE INTERNET).

Further Reading

Blogger. Available online. URL: http:/www.bloger.com. Accessed
September 2, 2007.

Bloglines. Available online. URL: http:/www.bloglines.com. Accessed
April 10, 2007.

Blood, Rebecca. The Weblog Handbook: Practical Advice on Creating
and Maintaining Your Blog. Cambridge, Mass.: Perseus, 2002.

Burden, Matthew Currier. The Blog of War: Front-Line Dispatches
from Soliders in Iraq and Afghanistan. New York: Simon &
Schuster, 2006.

Dedman, Jay. Videoblogging. New York: Wiley, 2006.

Farber, Dan. “Reflections on the First Decade of Blogging.” Febru-
ary 25. 2007. Available online. URL: http://blogs.zdnet.com/
BTL/?p=4541&tag=nl.e539. Accessed April 10, 2007.

Hasin, Hayder. WordPress Complete: Set Up, Customize, and Market
Your Blog. Birmingham, U.K.: Packt Publishing, 2006.

Radio Userland. Available online. URL: http:/radio.userland.com.
Accessed September 2, 2007.

Rebecca’s Pocket. Available online. URL: http://www.rebeccablood.
net/. Accessed April 10, 2007.

Technorati. Available online. URL: http://www.technorati.com.
Accessed April 10, 2007.

WordPress. Available online. URL: http:/ www.wordpress.com.
Accessed April 10, 2007.

Bluetooth

Loosely named after a 10th-century Danish king, Bluetooth
is a wireless data communications and networking system
designed for relatively short-range operation (generally
within the same room, although it can be used over longer
distances up to several hundred feet [tens of meters]). The
radio transmission is in the 2.4-GHz band and is typically
low power, making it suitable for battery-powered devices
such as laptops.

APPLICATIONS

Bluetooth was originally developed by Ericsson Corpora-
tion to provide a wireless connection for mobile telephone
headsets. Today it is often used to “sync” (update data)
between a PDA such as a Blackberry or Palm (see PDA)
with a Bluetooth-equipped laptop or desktop. Many cell
phones are also equipped with Bluetooth, allowing them to
be dialed from a PDA, although the growing use of phones
that combine telephony and PDA functions is making this
scenario less common (see SMARTPHONE). Bluetooth can
also be used for wireless keyboards, mice, or printers.

It is possible to connect PDAs or PCs to the Internet and
local area networks using a Bluetooth wireless access point
(WAP) attached to a router, but faster and longer range Wifi
(802.11) wireless connections are much more widely used
for this application (see WIFI).

Bluetooth connections between devices are specified
using profiles. Profiles have been developed for common
kinds of devices, specifying how data is formatted and
exchanged. For example, there are profiles for controlling
telephones, printers and faxes, digital cameras, and audio
devices. Most modern operating systems (including Win-
dows Mobile, Linux, Palm OS, and Mac OS X) include sup-
port for basic Bluetooth profiles. Functions fundamental to
all Bluetooth operations are found in Bluetooth Core Speci-
fications (version 2.1 as of August 2007). Planned future
enhancements include accommodation for ultra-wide band
(UWB) radio technology, allowing for data transfer up to
480 megabits per second. At the same time, Bluetooth is
extending the ultra-low-power modes that are particularly
important for wearable or implanted medical devices.

Further Reading
“Bluetooth.” Wikipedia. Available online. URL: http://en.wikipedia.
org/wiki/Bluetooth. Accessed July 20, 2007.

Bluetooth Special Interest Group. Available online. URL: http:/
www.bluetooth.com/bluetooth/. Accessed July 20, 2007.
Layton, Julia, and Curt Franklin. “How Bluetooth Works.” Avail-
able online. URL: http://www.howstuffworks.com/bluetooth.

htm. Accessed September 3, 2007.

Boolean operators

In 1847, British mathematician George Boole proposed a
system of algebra that could be used to manipulate proposi-
tions, that is, assertions that could be either true or false. In
his system, called propositional calculus or Boolean Alge-
bra, propositions can be combined using the “and” and “or”

54 boot sequence

operators (called Boolean operators), yielding a new propo-
sition that is also either true or false. For example:

“A cat is an animal” AND “The sun is a star” is true
because both of the component propositions are true.

“A square has four sides” AND “The Earth is flat” is false
because only one of the component propositions is true.

However “A square has four sides” OR “The Earth is
flat” is true, because at least one of the component proposi-
tions is true.

A chart called a truth table can be used to summarize
the AND and OR operations. Here 1 means true and 0
means false, and you read across from the side and down
from the top to see the result of each combination.

AND TABLE
0 1
0 0 0
1 0 1
OR TABLE
0 1
0 0 1
1 1 1

A variant of the OR operator is the “exclusive OR,”
sometimes called “XOR” operator. The XOR operator yields
a result of true (1) if only one of the component propositions
is true:

XOR TABLE
0 1
0 0 1
1 1 0

Additionally, there is a NOT operator that simply
reverses the truth value of a proposition. That is, NOT 1 is
0and NOT O is 1.

APPLICATIONS

Note the correspondence between the two values of Boolean
logic and the binary number system in which each digit can
have only the values of 1 or 0. Electronic digital computers
are possible because circuits can be designed to follow the
rules of Boolean logic, and logical operations can be har-
nessed to perform arithmetic calculations.

Besides being essential to computer design, Boolean
operations are also used to manipulate individual bits in
memory (see BITWISE OPERATIONS), storing and extracting
information needed for device control and other purposes.
Computer programs also use Boolean logic to make deci-
sions using branching statements such as If and loop state-
ments such as While. For example, the Basic loop
Wil e (Not Eof()) OR (Line = 50)

Read (Line$)

Print (Line$)

Line = Line + 1

Endwhi | e

will read and print lines from the previously opened file
until either the Eof (end of file) function returns a value of
True or the value of Line reaches 50. (In some programming
languages different symbols are used for the operators. In
C, for example, AND is &&, OR is ||, and NOT is !.)

Users of databases and Web search engines are also
familiar with the use of Boolean statements for defining
search criteria. In many search engines, the search phrase
“computer science” AND “graduate” will match sites that
have both the phrase “computer science” and the word
“graduate,” while sites that have only one or the other will
either not be listed or will be listed after those that have
both (see SEARCH ENGINE).

Further Reading

University at Albany Libraries. “Boolean Searching on the Inter-
net.” Available online. URL: http://www.albany.edu/library/
internet/boolean.html.

Whitesitt, J. E. Boolean Algebra and Its Applications. New York:
Dover, 1995.

boot sequence

All computers are faced with the problem that they need
instructions in order to be able to read in the instructions
they need to operate. The usual solution to this conundrum
is to store a small program called a “loader” in a ROM
(read-only memory) chip. When the computer is switched
on, this chip is activated and runs the loader. The loader
program has the instructions needed to be able to access
the disk containing the full operating system. This process
is called booting (short for “bootstrapping”).

BOOTING A PC

While the details of the boot sequence vary with the hard-
ware and operating system used, a look at the booting of a
“Wintel” machine (IBM architecture PC running DOS and
Microsoft Windows) can serve as a practical example.

When the power is turned on, a chip called the BIOS
(basic input-output system) begins to execute a small pro-
gram (see BIOS). The first thing it does is to run a rou-
tine called the POST (power-on self test) that sends a
query over the system bus (see BUS) to each of the key
devices (memory, keyboard, video display, and so on) for
a response that indicates it is functioning properly. If an
error is detected, the system generates a series of beeps,
the number of which indicates the area where the problem
was found, and then halts.

Assuming the test runs successfully (sometimes indi-
cated by a single beep), the BIOS program then queries the
devices to see if they have their own BIOS chips, and if so,
executes their programs to initialize the devices, such as
the video card and disk controllers. At this point, since the
video display is available, informational and error messages
can be displayed as appropriate. The BIOS also sets various
parameters such as the organization of the disk drive, using
information stored in a CMOS chip. (There is generally
a way the user can access and change these information
screens, such as when installing additional memory chips.)

branching statements 55

The BIOS now looks for a disk drive that is bootable—
that is, that contains files with the code needed to load the
operating system. This is generally a hard drive, but could
be a floppy disk or even a CD-ROM or USB device. (The
order in which devices are checked can be configured.) On
a hard drive, the code needed to start the operating system
is found in a “master boot record.”

The booting of the operating system (DOS) involves the
determination of the disk structure and file system and the
loading of the operating system kernel (found in files called
10.SYS and MSDOS.SYS), and a command interpreter (COM-
MAND.COM). The latter can then read the contents of the
files AUTOEXEC.BAT and CONFIG.SYS, which specify sys-
tem parameters, device drivers, and other programs to be
loaded into memory at startup. If the system is to run Micro-
soft Windows, that more elaborate operating system will then
take over, building upon or replacing the foundation of DOS.

Further Reading

PC Guide. “System Boot Sequence.” Available online. URL: http://
www.pcguide.com/_ref/mbsys/bios/bootSequence-c.html.
Accessed April 10, 2008.

branching statements

The simplest calculating machines (see CALCULATOR)
could only execute a series of calculations in an unalter-
able sequence. Part of the transition from calculator to full
computer is the ability to choose different paths of execu-
tion according to particular values—in some sense, to make
decisions.

Branching statements (also called decision statements
or selection statements) give programs the ability to choose
one or more different paths of execution depending on the
results of a logical test. The general form for a branching
statement in most programming languages is

i f (Bool ean expression)
st at ement
el se statenent

For example, a blackjack game written in C might have a
statement that reads:

if ((Card_Count + Value(This_Card)) > 21)
printf (“You're busted!”);

Here the Boolean expression in parenthesis following the if
keyword is evaluated. If it is true, then the following state-
ment (beginning with printf) is executed. (The Boolean
expression can be any combination of expressions, function
calls, or even assignment statements, as long as they evalu-
ate to true or false—see also BOOLEAN OPERATORS.)

The else clause allows the specification of an alternative
statement to be executed if the Boolean expression is not
true. The preceding example could be expanded to:

if (Card_Count + Value (This_Card) > 21)
printf (“You're busted!”);

el se
printf(“Do you want another card?”);

In most languages if statements can be nested so that a
second if statement is executed only if the first one is true.
For example:

if (Turn > Max_Turns)
{
if (Wnner())
Print Score();
}

Here the first if test determines whether the maximum
number of turns in the game has been exceeded. If it has,
the second if statement is executed, and the Winner() func-
tion is called to determine whether there is a winner. If
there is a winner, the PrintScore() function is called. This
example also illustrates the general rule in most languages
that wherever a single statement can be used a block of
statements can also be used. (The block is delimited by
braces in the C family of languages, while Pascal uses
Begin . .. End.)

The switch or case statement found in many languages
is a variant of the if statement that allows for easy testing of
several possible values of a condition. One could write:

if (Category = = “A")
ASt uff();

else if (Category = = “B")
BSt uff () ;

else if (Category
CStuff();

=“C)

el se
printf “(None of the above\n”);

However, C, Pascal, and many other languages provide a
more convenient multiway branching statement (called
switch in C and case in Pascal). Using a switch statement,
the preceding test can be rewritten in C as:

switch (Category) {
case “A’:
ASt uff();
br eak;
case “B’:
BSt uff();
br eak;
case “C
CStuff();
br eak;
defaul t:
printf (“None of the above\n”);

}

(Here the break statements are needed to prevent execution
from continuing on through the other alternatives when
only one branch should be followed.)

Further Reading
Sebesta, Robert W. Concepts of Programming Languages. 8th ed.
Boston: Addison-Wesley, 2008.

56 Breazeal, Cynthia

Breazeal, Cynthia
(1968-)
American
Roboticist

Born in Albuquerque, New Mexico, in 1968, Cynthia
Breazeal (pronounced like “Brazil”) grew up in Califor-
nia. Her father was a mathematician and her mother was a
computer scientist at the Lawrence Livermore Laboratory.
When she was only eight, Breazeal saw the 1970s film Star
Wars and became intrigued with the “droids.”

Besides robots, as a student the young Breazeal was also
fascinated by medicine and astronomy. When she attended
the University of California at Santa Barbara, Breazeal con-
sidered a future career in NASA. UC also had a robotics
center, and Breazeal encountered there the possibility of
building planetary robot rovers.

After getting her undergraduate degree in electrical and
computer engineering, Breazeal applied for graduate school
to the Massachusetts Institute of Technology. The MIT
robotics lab, headed by Rodney Brooks, was developing a
new generation of small, agile robotic rovers based in part
on observing how insects moved. Breazeal's work on two
such robots, named Attila and Hannibal, helped prove the
feasibility of mobile robots for planetary exploration while
furnishing her a topic for her master’s thesis.

Besides its implications for space research, Breazeal’s
work with Attila and Hannibal demonstrated the feasibil-
ity of building robots that were controlled by hundreds of
small, interacting programs that detected and responded to

MIT researcher Cynthia Breazeal, shown here with her robot
“Leonardo,” specializes in “sociable” robots that can interact
and learn much like human children. (SAM OGDEN / PHOTO
RESEARCHERS, INC.)

specified conditions or “states.” It gave concrete reality to
Brooks’s and Breazeal’s belief that robots, like living organ-
isms, grew by building more complex behaviors on top of
simpler ones, rather than depending on some single top-
down design.

Brooks then announced that he was starting a new proj-
ect: to make a robot that could interact with people in much
the same way people encounter one another socially. The
result of the efforts of Brooks, Breazeal, and their colleagues
was the creation of a robot called Cog. Cog attempted to
replicate the sense perceptions and reasoning skills of a
human infant. Cog had eyes that focused like those of a
person. Like an infant, Cog could pick up on what people
nearby were doing, and what they were focused on.

Breazeal had done much of the work in designing Cog’s
stereovision system. She and another graduate student also
programmed many of the interacting feedback routines that
allowed Cog to develop its often-intriguing behavior. Cog
could focus on and track moving objects and sound sources.
Eventually, the robot gained the kind of hand-eye coordina-
tion that enabled it to throw and catch a ball and even play
rhythms on a snare drum.

For her doctoral research, Breazeal decided to design
a robot unlike the 6-foot, 5-inch (1.96 m) Cog; one that
instead would be more child-sized and childlike. She named
the new robot Kismet, from the Turkish word for fate or for-
tune. Kismet looks a bit like the alien from the film ET: The
Extra-Terrestrial. The robot is essentially a head without
arms or legs. With big eyes (including exaggerated eye-
brows), pink ears that can twist, and bendable surgical tub-
ing for lips that can “smile,” Kismet has a “body language”
that conveys a kind of brush-stroked essence of response
and emotion. Kismet has a variety of hardware and software
features that support its interaction with humans.

Like Cog, Kismet's camera “eyes” function much like
the human eye. However, the vision system is more sophis-
ticated than that in the earlier robot. Kismet looks for col-
orful objects, which are considered to be toys, for potential
play activities. An even higher priority is given to potential
playmates, which are recognized by certain facial features,
such as eyes, as well as the presence of flesh tones. Kismet
does not actually understand the words spoken to it; how-
ever, it perceives the intonation and rhythms of human
speech and identifies them as corresponding to emotional
states. If a visitor addresses Kismet with tones of friendly
praise (as perhaps one might a baby, or a dog), the robot
moves to a “happy” emotional state. On the other hand, a
harsh, scolding tone moves Kismet toward an “unhappy”
condition.

Kismet’s “emotions” are not just simple indicators of
what state the software decides the robot should be in,
based on cues it picks up from humans. Rather, the robot
has been so carefully “tuned” in its feedback systems that
it establishes a remarkably natural rhythm of vocalization
and visual interaction. Kismet reacts to the human, which
in turn elicits further human responses.

Kismet’s successor is called Leonardo. Unlike Kismet,
Leonardo has a full torso with arms and legs and looks
rather like a furry little Star Wars alien. With the aid of arti-

broadband 57

ficial skin and an array of 32 separate motors, Leonardo’s
facial expressions are much more humanlike than Kismet’s.
Body language now includes shrugs. The robot can learn
new concepts and tasks both by interacting with a human
teacher and by imitating what it sees people do, starting
with facial expressions and simple games.

Breazeal's group at MIT is currently investigating ways
in which computers can use “body language” to communi-
cate with users and even encourage better posture. “RoCo”
is a computer whose movable “head” is a monitor screen.
Using a camera, RoCo can sense the user’s posture and
emotional state.

Breazeal has also created “responsive” robots in new
forms, and for venues beyond the laboratory. In 2003 the
Cooper-Hewitt National Design Museum in New York
hosted a “cyberfloral installation” designed by Breazeal. It
featured “flowers” of metal and silicone that exhibit behav-
iors such as swaying and glowing in bright colors when a
person’s hand comes near.

Besides earning her a master’s degree (1993) and doc-
toral degree (2000) from MIT, Breazeal’s work has brought
her considerable acclaim and numerous appearances in the
media. She has been widely recognized as being a signifi-
cant young inventor or innovator, such as by Time magazine
and the Boston Business Forward. Breazeal is one of 100
“young innovators” featured in MIT’s Technology Review.

Further Reading

Bar-Cohen, Yoseph, and Cynthia Breazeal. Biologically Inspired
Intelligent Robots. Bellingham, Wash.: SPIE Press, 2003.

Biever, Celeste. “Robots Like Us: They Can Sense Human Moods.”
San Francisco Chronicle, May 6, 2007. Available online. URL:
http://www.sfgate.com/cgi-bin/article.cgi?f=/c/a/2007/05/06/
ING9GPKOU51.DTL. Accessed May 7, 2007.

Breazeal, Cynthia. Designing Sociable Robots. Cambridge, Mass.:
MIT Press, 2002.

Brooks, Rodney. Flesh and Machines: How Robots Will Change Us.
New York: Pantheon Books, 2002.

Dreifus, Claudia. “A Passion to Build a Better Robot, One with
Social Skills and a Smile.” New York Times, June 10, 2003, p.
F3.

Henderson, Harry. Modern Robotics: Building Versatile Machines.
New York: Chelsea House, 2006.

Robotic Life Group (MIT Media Lab). Available online. URL:
http://robotic.media.mit.edu/. Accessed May 1, 2007.

Brin, Sergey
1973-)
Russian-American
Entrepreneur

Cofounder and current president of technology at Google,
Sergey Brin has turned the needs of millions of Web users
to find information online into a gigantic and pervasive
enterprise.

Brin was born in Moscow, Russia, on August 21, 1973
to a Jewish family (his father, Michael, was a mathema-
tician and economist). However, the family immigrated
to the United States in 1979, settling in Maryland. Brin’s
father supplemented his education, particularly in math-

ematics. Brin graduated with honors from the University
of Maryland in 1993, earning a bachelor’s degree in com-
puter science and mathematics. Brin then went to Stanford,
receiving his master’s degree in computer science in 1995.
Along the way to his Ph.D., however, Brin was “sidetracked”
by his growing interest in the Internet and World Wide
Web, particularly in techniques for searching for and iden-
tifying data (see also DATA MINING).

SEARCH ENGINES AND GOOGLE

The year 1995 was pivotal for Brin because he met fel-
low graduate student Larry Page (see PAGE, LARRY). Page
shared Brin’s interests in the Web, and they collaborated
on a seminal paper titled “The Anatomy of a Large-Scale
Hypertextual Web Search Engine.” This work (including
the key “PageRank” algorithm) would form the basis for the
world’s most widely used search engine (see GOOGLE and
SEARCH ENGINE).

In 1998 Brin took a leave of absence from the Ph.D. pro-
gram. The fall of that year Brin and Page launched Google.
The search engine was much more useful and accurate than
existing competitors, and received a Technical Excellence
Award from PC magazine in 1999. Google soon appeared
near the top of many analysts’ lists of “companies to watch.”
In 2004 the company went public, and Brin’s personal net
worth is now estimated to be more than $16 billion. (Brin
and Page remain closely involved with Google, promot-
ing innovation such as the aggregation and presentation of
information including images and maps.)

Besides Google, Brin’s diverse interests include movie-
making (he was an executive producer of the film Broken
Arrow) and innovative transportation (he is an investor in
Tesla Motors, makers of long-range electric vehicles). In
2005 Brin was named as one of Time magazine’s 100 most
influential people. In 2007 Brin was named by PC World as
number one on their list of the 50 most important people
on the Web.

Further Reading

Brin, Sergey, and Lawrence Page. “The Anatomy of a Large-Scale
Hypertextual Web Search Engine.” Available online. URL:
http://infolab.stanford.edu/~backrub/google. html. Accessed
September 3, 2007.

“The Founders of Google.” NPR Fresh Air interview, October 14,
2003 [audio]. Available online. URL: http://www.npr.org/
templates/story/story.php?storyld=1465274. Accessed Septem-
ber 3, 2007.

Sergey Brin’s Home Page. Available online. URL: http:/infolab.
stanford.edu/~sergey/. Accessed September 3, 2007.

“Sergey Brin Speaks with UC Berkeley Class” [video]. Available
online. URL: http://video.google.com/videoplay?docid=75829
02000166025817. Accessed September 3, 2007.

broadband

Technically, broadband refers to the carrying of multiple
communications channels in a single wire or cable. In the
broader sense used here, broadband refers to high-speed
data transmission over the Internet using a variety of tech-
nologies (see DATA COMMUNICATIONS and TELECOMMU-

58 broadband

NICATIONS). This can be distinguished from the relatively
slow (56 Kbps or slower) dial-up phone connections used by
most home, school, and small business users until the late
1990s. A quantitative change in speed results in a qualita-
tive change in the experience of the Web, making continu-
ous multimedia (video and sound) transmissions possible.

BROADBAND TECHNOLOGIES

The earliest broadband technology to be developed consists
of dedicated point-to-point telephone lines designated T1,
T2, and T3, with speeds of 1.5, 6.3, and 44.7 Mbps respec-
tively. These lines provide multiple data and voice chan-
nels, but cost thousands of dollars a month, making them
practicable only for large companies or institutions.

Two other types of phone line access offer relatively
high speed at relatively low cost. The earliest, ISDN (Inte-
grated Services Digital Network) in typical consumer form
offers two 64 Kbps channels that can be combined for 128
Kbps. (Special services can combine more channels, such as
a 6 channel 384 Kbps configuration for videoconferencing.)
The user’s PC is connected via a digital adapter rather than
the usual analog-to-digital modem.

The most common telephone-based broadband system
today is the digital subscriber line (see DSL). Unlike ISDN,
DSL uses existing phone lines. A typical DSL speed today
is 1-2 Mbps, though higher speed services up to about 5
Mbps are now being offered. The main drawback of DSL is
that the transmission rate falls off with the distance from
the telephone company’s central office, with a maximum
distance of about 18,000 feet (5,486.4 m).

The primary alternative for most consumers uses exist-
ing television cables (see CABLE MODEM). Cable is generally
a bit faster (1.5-3 Mbps) than DSL, with premium service
of up to 8 Mbps or so available in certain areas. However,
cable speed slows down as more users are added to a given
circuit. With both DSL and cable upload speeds (the rate
at which data can be sent from the user to an Internet site)
are generally fixed at a fraction of download speed (often
about 128 kbps). While this “throttling” of upload speed
does not matter much for routine Web surfing, the growing
number of applications that involve users uploading videos
or other media for sharing over the Internet (see USER-CRE-
ATED CONTENT) has led to some pressure for higher upload
speeds.

ULTRA BROADBAND

Rather surprisingly, the country that brought the world the
Internet has fallen well behind many other industrialized
nations in broadband speed. In Japan, DSL speeds up to
40 Mbps are available, and at less cost than in the United
States. South Korea also offers “ultra broadband” speeds of
20 Mbps or more. American providers, on the other hand,
have tended to focus on expanding their networks and
competing for market share rather than investing in higher
speed technologies. However, this situation is beginning to
improve as American providers ramp up their investment
in fiber networks (see FIBER OPTICS). For example, in 2005
Verizon introduced Fios, a fiber-based DSL service that can

reach speeds up to 15 Mbps. However, installing fiber net-
works is expensive, and as of 2007 it was available in only
about 10 percent of the U.S. market.

Cable and phone companies typically offer Internet and
TV as a package—many are now including long-distance
phone service (and even mobile phone service) in a “triple
play” package. (For long-distance phone carried via Inter-
net, see VOIP).

WIRELESS BROADBAND

The first wireless Internet access was provided by a wireless
access point (WAP), typically connected to a wired Internet
router. This is still the most common scenario in homes
and public “hot spots” (see also INTERNET CAFES AND
“HOT SPOTS”). However, with many people spending much
of their time with mobile devices (see LAPTOP, PDA, and
SMARTPHONE), the need for always-accessible wireless con-
nectivity at broadband speeds has been growing. The larg-
est U.S. service, Nextlink, offered wireless broadband in 37
markets in 2007 (including many large and mid-sized cit-
ies) at speeds starting at 1.5 Mbps. An alternative is offered
by cell phone companies such as Verizon and Sprint, which
“piggy back” on the existing infrastructure of cell phone
towers. However, the speed of this “3G” service is slower,
from 384 kbps up to 2 Mbps.

Yet another alternative beginning to appear is WiMAX,
a technology that is conceptually similar to Wifi but has
much greater range because its “hot spots” can be many
miles in diameter. WiMAX offers the possibility of covering
entire urban areas with broadband service, although ques-
tions about its economic viability have slowed implementa-
tion as of 2008.

Satellite Internet services have the advantage of being
available over a wide area. The disadvantage is that there is
about a quarter-second delay for the signal to travel from a
geostationary satellite at an altitude of 22,300 km. (Lower-
altitude satellites can be used to reduce this delay, but then
more satellites are needed to provide continuous coverage.)

ADOPTION AND APPLICATIONS

By mid-2007, 53 percent of adult Americans had a broad-
band connection at home. This amounts to 72 percent of
home Internet users. (About 61 percent of broadband con-
nections used cable and about 37 percent DSL.)

With dial-up connections declining to less than 25
percent, Web services are increasingly designed with the
expectation that users will have broadband connections.
This, however, has the implication that users such as rural
residents and the inner-city poor may be subjected to a
“second class” Web experience (see also DIGITAL DIVIDE).
Meanwhile, as with connection speed, many other coun-
tries now surpass the United States in the percentage of
broadband users.

Broadband Internet access is virtually a necessity for
many of the most innovative and compelling of today’s
Internet applications. These include downloading media
(see PODCASTING, STREAMING, and MUSIC AND VIDEO DIS-
TRIBUTION, ONLINE), uploading photos or videos to sites

Brooks, Rodney 59

such as Flickr and YouTube, using the Internet as a substi-
tute for a traditional phone line (see VOIP), and even gaming
(see ONLINE GAMES). Broadband is thus helping drive the
integration of many forms of media (see DIGITAL CONVER-
GENCE) and the continuous connectivity that an increasing
number of people seem to be relying on (see UBIQUITOUS
COMPUTING).

Further Reading

Bates, Regis. Broadband Telecommunications Handbook. 2nd ed.
New York: McGraw-Hill, 2002.

Bertolucci, Jeff. “Broadband Expands.” PC World (August 2007):
77-90.

Cybertelecom. “Statistics: Broadband.” Available online. URL:
http://www.cybertelecom.org/data/broadband.htm. Accessed
July 17, 2007.

Gaskin, James E. Broadband Bible. New York: Wiley, 2004.

Hellberg, Chris, Dylan Greene, and Truman Boyes. Broadband
Network Architectures: Designing and Deploying Triple-Play
Services. Upper Saddle River, N J.: Prentice Hall, 2007.

Brooks, Rodney
(1954-)
Australian, American
Roboticist

Rodney Brooks’s ideas about robots have found their way
into everything from vacuum cleaners to Martian rovers.
Today, as director of the Artificial Intelligence Labora-
tory at the Massachusetts Institute of Technology, Brooks
has extended his exploration of robot behavior into new
approaches to artificial intelligence.

Brooks was born in Adelaide, Australia, in 1954. As
a boy he was fascinated with computers, but it was still
the mainframe era, and he had no access to them. Brooks
decided to build his own logic circuits from discarded
electronics modules from the defense laboratory where his
father worked. Brooks also came across a book by Grey
Walter, inventor of the “cybernetic tortoise” in the late
1940s. He tried to build his own and came up with “Nor-
man,” a robot that could track light sources while avoiding
obstacles. In 1968, when young Brooks saw the movie 2001:
A Space Odyssey, he was fascinated by the artificial intel-
ligence of its most tragic character, the computer HAL 9000
(see ARTIFICIAL INTELLIGENCE and ROBOTICS).

Brooks majored in mathematics at Flinders University
in South Australia, where he designed a computer language
and development system for artificial intelligence projects.
He also explored various Al applications such as theorem
solving, language processing, and games. He was then able
to go to Stanford University in Palo Alto, California, in 1977
as a research assistant.

While working for his Ph.D. in computer science,
awarded in 1981, Brooks met John McCarthy, one of the
“elder statesmen” of Al in the Stanford Artificial Intelli-
gence Lab (SAIL). He also joined in the innovative projects
being conducted by researchers such as Hans Moravec, who
were revamping the rolling robot called the Stanford Cart
and teaching it to navigate around obstacles.

In 1984 Brooks moved to the Massachusetts Institute
of Technology. For his Ph.D. research project, Brooks and
his fellow graduate students equipped a robot with a ring
of sonars (adopted from a camera rangefinder) plus two
cameras. The cylindrical robot was about the size of R2D2
and was connected by cable to a minicomputer. However,
the calculations needed to enable a robot to identify objects
as they appear at different angles were so intensive that the
robot could take hours to find its way across a room.

Brooks decided to take a lesson from biological evolu-
tion. He realized that as organisms evolved into more com-
plex forms, they could not start from scratch each time they
added new features. Rather, new connections (and ways of
processing them) would be added to the existing structure.
For his next robot, called Allen, Brooks built three “layers”
of circuits that would control the machine’s behavior. The
simplest layer was for avoiding obstacles: If a sonar signal
said that something was too close, the robot would change
direction to avoid a collision. The next layer generated a
random path so the robot could “explore” its surroundings
freely. Finally, the third layer was programmed to identify
specified sorts of “interesting” objects. If it found one, the
robot would head in that direction.

Each of these layers or behaviors was much simpler
than the complex calculations and mapping done by a tradi-
tional Al robot. Nevertheless, the layers worked together in
interesting ways. The result would be that the robot could
explore a room, avoiding both fixed and moving obstacles,
and appear to “purposefully” search for things.

In the late 1980s, working with Grinell More and a
new researcher, Colin Angle, Brooks built an insectlike
robot called Genghis. Unlike Allen’s three layers of behav-
ior, Genghis had 51 separate, simultaneously running com-
puter programs. These programs, called “augmented finite
state machines,” each kept track of a particular state or
condition, such as the position of one of the six legs. It is
the interaction of these small programs that creates the
robot’s ability to scramble around while keeping its balance.
Finally, three special programs looked for signals from the
infrared sensors, locked onto any source found, and walked
in its direction.

Brooks’s new layered architecture for “embodied” robots
offered new possibilities for autonomous robot explorers.
Brooks’s 1989 paper, “Fast, Cheap, and Out of Control: A
Robot Invasion of the Solar System,” envisaged flocks of
tiny robot rovers spreading across the Martian surface,
exploring areas too risky when one has only one or two
very expensive robots. The design of the Sojourner Mars
rover and its successors, Spirit and Opportunity, would par-
tially embody the design principles developed by Brooks
and his colleagues.

In the early 1990s Brooks and his colleagues began
designing Cog, a robot that would embody human eye
movement and other behaviors. Cog’s eyes are mounted
on gimbals so they can easily turn to track objects, aided
by the movement of the robot’s head and neck (it has no
legs). Cog also has “ears”—microphones that can help it
find the source of a sound. The quest for more humanlike
robots continued in the late 1990s with the development of

60 buffering

Kismet, a robot that includes dynamically changing “emo-
tions.” Brooks’s student Cynthia Breazeal would build her
own research career on Kismet and what she calls “sociable
robots” (see BREAZEAL, CYNTHIA).

By 1990, Brooks wanted to apply his ideas of behavior-
based robotics to building marketable robots that could
perform basic but useful tasks, and he enlisted two of his
most innovative and hard-working students, Colin Angle
and Helen Greiner (see IROBOT CORPORATION). The com-
pany is best known for the Roomba robotic vacuum cleaner.
Brooks remains the company’s chief technical officer.

Meanwhile Brooks has an assured place as one of the
key innovators in modern robotics research. He is a Found-
ing Fellow of the American Association for Artificial Intel-
ligence and a Fellow of the American Association for the
Advancement of Science. Brooks received the 1991 Com-
puters and Thought Award of the International Joint Con-
ference on Artificial Intelligence. He has participated in
numerous distinguished lecture series and has served as an
editor for many important journals in the field, including
the International Journal of Computer Vision.

Further Reading

Brockman, John. “Beyond Computation.” Edge 2000. Available
online. URL: http://www.edge.org/3rd_culture/brooks_
beyond/beyond_index.html. Accessed May 3, 2007.

. “The Deep Question: A Talk with Rodney Brooks.” Edge
29 (November 19, 1997). Available online. URL: http:/www.
edge.org/documents/archive/edge29.html. Accessed May 3,
2007.

Brooks, Rodney. Flesh and Machines: How Robots Will Change Us.
New York: Pantheon Books, 2002.

Computer Science and Artificial Intelligence Laboratory (CSAIL),
MIT. Available online. URL: http:/www.csail.mit.edu/index.
php. Accessed May 3, 2007.

Henderson, Harry. Modern Robotics: Building Versatile Machines.
New York: Chelsea House, 2006.

O’Connell, Sanjida. “Cog—Is It More than a Machine?” London
Times (May 6, 2002): 10. Rodney Brooks [homepage]. CSAIL.
Available online. URL: http:/people.csail.mit.edu/brooks/.
Accessed May 3, 2007.

“Rodney Brooks—The Past and Future of Behavior Based Robot-
ics” [Podcast]. Available online. URL: http:/lis.epfl.ch/
resources/podcast/mp3/TalkingRobots-RodneyBrooks.mp3.
Accessed May 3, 2007.

buffering

Computer designers must deal with the way different parts
of a computer system process data at different speeds. For
example, text or graphical data can be stored in main mem-
ory (RAM) much more quickly than it can be sent to a
printer, and in turn data can be sent to the printer faster
than the printer is able to print the data. The solution to
this problem is the use of a buffer (sometimes called a
spool), or memory area set aside for the temporary storage
of data. Buffers are also typically used to store data to be
displayed (video buffer), to collect data to be transmitted
to (or received from) a modem, for transmitting audio or
video content (see STREAMING) and for many other devices
(see INPUT/OUTPUT). Buffers can also be used for data that
must be reorganized in some way before it can be further

processed. For example, character data is stored in a com-
munications buffer so it can be serialized for transmission.

BUFFERING TECHNIQUES

The two common arrangements for buffering data are the
pooled buffer and the circular buffer. In the pool buffer,
multiple buffers are allocated, with the buffer size being
equal to the size of one data record. As each data record is
received, it is copied to a free buffer from the pool. When it
is time to remove data from the buffer for processing, data
is read from the buffers in the order in which it had been
stored (first in, first out, or FIFO). As a buffer is read, it is
marked as free so it can be used for more incoming data.

In the circular buffer there is only a single buffer, large
enough to hold a number of data records. The buffer is set
up as a queue (see QUEUE) to which incoming data records
are written and from which they are read as needed for pro-
cessing. Because the queue is circular, there is no “first” or
“last” record. Rather, two pointers (called In and Out) are
maintained. As data is stored in the buffer, the In pointer is
incremented. As data is read back from the buffer, the Out
pointer is incremented. If either pointer reaches around
back to the beginning, it begins to wrap around. The soft-
ware managing the buffer must make sure that if the In
pointer goes past the Out pointer, then the Out pointer
must not go past In. Similarly, if Out goes past In, then In
must not go past Out.

The fact that programmers sometimes fail to check for
buffer overflows has resulted in a seemingly endless series
of security vulnerabilities, such as in earlier versions of the
UNIX sendmail program. In one technique, attackers can
use a too-long value to write data, or worse, commands
into the areas that control the program’s execution, possibly
taking over the program (see also COMPUTER CRIME AND
SECURITY).

Buffering is conceptually related to a variety of other
techniques for managing data. A disk cache is essentially a
special buffer that stores additional data read from a disk in
anticipation that the consuming program may soon request
it. A processor cache stores instructions and data in antici-
pation of the needs of the CPU. Streaming of multimedia
(video or sound) buffers a portion of the content so it can be
played smoothly while additional content is being received
from the source.

Depending on the application, the buffer can be a part
of the system’s main memory (RAM) or it can be a separate
memory chip or chips onboard the printer or other device.
Decreasing prices for RAM have led to increases in the
typical size of buffers. Moving data from main memory
to a peripheral buffer also facilitates the multitasking fea-
ture found in most modern operating systems, by allowing
applications to buffer their output and continue processing.

Further Reading

Buffer Overflow [articles]. Available online. URL: http://doc.bug-
hunter.net/buffer-overflow/. Accessed May 23, 2007.

Grover, Sandeep. “Buffer Overflow Attacks and Their Counter-
measures.” Linux Journal, March 3, 2003. Available online.
URL: http:/www.linuxjournal.com/article/6701. Accessed
May 23, 2007.

bulletin board systems 61

bugs and debugging

In general terms a bug is an error in a computer program
that leads to unexpected and unwanted behavior. (Lore has
it that the first “bug” was a burnt moth found in the relays
of the early Mark I computer in the 1940s; however, as early
as 1878 Thomas Edison had referred to “bugs” in the design
of his new inventions.)

Computer bugs can be divided into two categories: syn-
tax errors and logic errors. A syntax error results from
failing to follow a language’s rules for constructing state-
ments, or from using the wrong symbol. For example, each
statement in the C language must end with a semicolon.
This sort of syntax error is easily detected and reported by
modern compilers, so fixing it is trivial.

A logic error, on the other hand, is a syntactically valid
statement that does not do what was intended. For example,
if a C programmer writes:

if Total = 100
i nstead of
if Total == 100

the programmer may have intended to test the value of Total
to see if it is 100, but the first statement actually assigns the
value of 100 to Total. That’s because a single equals sign in
C is the assignment operator; testing for equality requires
the double equals sign. Further, the error will result in the
if statement always being true, because the truth value of an
assignment is the value assigned (100 in this case) and any
nonzero value is considered to be “true” (see BRANCHING
STATEMENTS).

Loops and pointers are frequent sources of logical errors
(see LOOP and POINTERS AND INDIRECTION). The boundary
condition of a loop can be incorrectly specified (for exam-
ple, < 10 when < = 10 is wanted). If a loop and a pointer or
index variable are being used to retrieve data from an array,
pointing beyond the end of the array will retrieve whatever
data happens to be stored out there.

Errors can also be caused in the conversion of data of
different types (see DATA TYPES). For example, in many lan-
guage implementations the compiler will automatically con-
vert an integer value to floating point if it is to be assigned
to a floating point variable. However, while an integer can
retain at least nine decimal digits of precision, a float may
only be able to guarantee seven. The result could be a loss
of precision sufficient to render the program’s results unre-
liable, particularly for scientific purposes.

DEBUGGING TECHNIQUES

The process of debugging (identifying and fixing bugs) is
aided by the debugging features integrated into most mod-
ern programming environments. Some typical features
include the ability to set a breakpoint or place in the code
where the running program should halt so the values of key
variables can be examined. A watch can be set on specified
certain variables so their changing values will be displayed
as the program executes. A trace highlights the source code
to show what statements are being executed as the program

runs. (It can also be set to follow execution into and through
any procedures or subroutines called by the main code.)

During the process of software development, debugging
will usually proceed hand in hand with software testing.
Indeed, the line between the two can be blurry. Essentially,
debugging deals with fixing problems so that the program
is doing what it intends to do, while testing determines
whether the program’s performance adequately meets the
needs and objectives of the end user.

Further Reading

Agans, David J. Debugging: The Nine Indispensable Rules for Finding
Even the Most Elusive Software and Hardware Problems. New
York: AMACOM, 2002.

Robbins, John. Debugging Applications. Redmond, Wash.: Micro-
soft Press, 2000.

Rosenberg, Jonathan B. How Debuggers Work: Algorithms, Data
Structures, and Architecture. New York: Wiley, 1996.

bulletin board systems (BBS)

An electronic bulletin board is a computer application that
lets users access a computer (usually with a modem and
phone line) and read or post messages on a variety of top-
ics. The messages are often organized by topic, resulting
in threads of postings, responses, and responses to the
responses. In addition to the message service, many bul-
letin boards provide files that users can download, such
as games and other programs, text documents, pictures, or
sound files. Some bulletin boards expect users to upload
files to contribute to the board in return for the privilege of
downloading material.

The earliest form of bulletin board appeared in the late
1960s in government installations and a few universities par-
ticipating in the Defense Department’s ARPANET (the ances-
tor to the Internet). As more universities came online in the
early 1970s, the Netnews (or Usenet) system offered a way to
use UNIX file-transfer programs to store messages in topi-
cal newsgroups (see NETNEWS AND NEWSGROUPS). The news
system automatically propagated messages (in the form of a
“news feed”) from the site where they were originally posted
to regional nodes, and from there throughout the network.

By the early 1980s, a significant number of personal
computer users were connecting modems to their PCs. Bul-
letin board software was developed to allow an operator
(called a “sysop”) to maintain a bulletin board on his or
her PC. Users (one or a few at a time) could dial a phone
number to connect to the bulletin board. In 1984, program-
mer Tom Jennings developed the Fido BBS software, which
allowed participating bulletin boards to propagate postings
in a way roughly similar to the distribution of UNIX Net-
news messages.

DECLINE OF THE BBS

In the 1990s, two major developments led to a drastic decline
in the number of bulletin boards. The growth of major ser-
vices such as America Online and CompuServe (see ONLINE
SERVICES) offered users a friendlier user interface, a com-
prehensive selection of forums and file downloads, and

62 bus

richer content than bulletin boards with their character-
based interface and primitive graphics. An even greater
impact resulted from the development of the World Wide
Web and Web browsing software, which offered access to
a worldwide smorgasbord of services in which each Web
home page had the potential of serving as a virtual bulletin
board and resource center (see WORLD WIDE WEB and WEB
BROWSER). As the 1990s progressed, increasingly rich mul-
timedia content became available over the Internet in the
form of streaming video, themed “channels,” and the shar-
ing of music and other media files.

Traditional bulletin boards are now found mostly in
remote and underdeveloped areas (where they can provide
users who have only basic phone service and perhaps obso-
lescent PCs with an e-mail gateway to the Internet). How-
ever the BBS contributed much to the grassroots online
culture, providing a combination of expansive reach and
a virtual small-town atmosphere (see also VIRTUAL COM-
MUNITY). Venues such as The Well (see CONFERENCING SYS-
TEMS) retain much of the “feel” of the traditional bulletin
board system.

Further Reading

“The BBS Corner.” Available online. URL: http:/www.dmine.com/
bbscorner/. Accessed August 14, 2007.

Byrant, Alan D. Growing and Maintaining a Successful BBS: The
Sysop’s Handbook. Reading, Mass.: Addison-Wesley, 1995.

The BBS History Library. Available online. URL: http:/www.
bbshistory.org/. Accessed May 23, 2007.

O’Hara, Robert. Commodork: Sordid Tales from a BBS Junkie. Mor-
risville, N.C.: Lulu.com, 2006.

Sanchez, Julian. “The Prehistory of Cyberspace: How BBSes Paved
the Way for the Web.” Reason 37 (December 1, 2005): 61
ff. Available online. URL: http:/www.reason.com/news/
show/36324.html. Accessed May 23, 2007.

bus

A computer bus is a pathway for data to flow between the
central processing unit (CPU), main memory (RAM), and
various devices such as the keyboard, video, disk drives,
and communications ports. Connecting a device to the bus
allows it to communicate with the CPU and other compo-
nents without there having to be a separate set of wires for
each device. The bus thus provides for flexibility and sim-
plicity in computer architecture.

Mainframe computers and large minicomputers typi-
cally have proprietary buses that provide a wide multipath
connection that allows for data transfer rates from about 3
MB/s to 10 MB/s or more. This is in keeping with the use of
mainframes to process large amounts of data at high speeds
(see MAINFRAME).

MICROCOMPUTER BUSES

The bus played a key role in the development of the mod-
ern desktop computer in the later 1970s and 1980s. In the
microcomputer, the bus is fitted with connectors called
expansion slots, into which any expansion card that meets
connection specifications can be inserted. Thus the S-100
bus made it possible for microcomputer pioneers to build

a variety of systems with cards to expand the memory and
add serial and parallel ports, disk controllers, and other
devices. (The Apple II had a similar expansion capability.)
In 1981, when IBM announced its first PC, it also defined an
8-bit expansion bus that became known as the ISA (Indus-
try Standard Architecture) as other companies rushed to
“clone” IBM’s hardware.

In the mid-1980s, IBM advanced the industry with the
AT (Advanced Technology) machine, which had the 16-bit
Intel 80286 chip and an expanded bus that could trans-
mit data at up to 2 MB/s. The clone manufacturers soon
matched and exceeded these specifications, however. IBM
responded by trying both to improve the microcomputer
bus and to define a proprietary standard that it could con-
trol via licensing. The result was called the Micro-Chan-
nel Architecture (MCA), which increased data throughput
to 20 MB/s with full 32-bit capability. This bus had other
advanced features such as a direct connection to the video
system (Video Graphics Array) and the ability to config-
ure cards in software rather than having to set physical
switches. In addition, cards could now incorporate their
own processors and memory in a way similar to that of
their powerful mainframe counterparts (this is called bus
mastering). Despite these advantages, however, the propri-
etary nature of the MCA and the fact that computers using
this bus could not use any of the hundreds of ISA cards led
to a limited market share for the new systems.

Instead of paying IBM and adopting the new standard,
nine major clone manufacturers joined to develop the EISA
(Extended ISA) bus. EISA was also a 32-bit bus, but its maxi-
mum transfer rate of 33 MB/s made it considerably faster
than the MCA. It was tailored to the new Intel 80386 and
80486 processors, which supported the synchronous trans-
fer of data in rapid bursts. The EISA matched and exceeded
the MCA's abilities (including bus mastering and no-switch
configuration), but it also retained the ability to use older ISA
expansion cards. The EISA soon became the industry stan-
dard as the Pentium family of processors were introduced.

However, the endless hunger for more data-transfer
capability caused by the new graphics-oriented operating
systems such as Microsoft Windows led to the development

A Standard ISA bus PC expansion card. This “open architecture”
allowed dozens of companies to create hundreds of add-on devices
for IBM-compatible personal computers.

business applications of computers 63

of local buses. A local bus is connected to the processor’s
memory bus (which typically runs at half the processor’s
external speed rather than the much slower system bus
speed), a considerable advantage in moving data (such as
graphics) from main memory to the video card.

Two of these buses, the VESA (or VL) bus and the PCI
bus came into widespread use in higher-end machines, with
the PCI becoming dominant. The PCI bus runs at 33 MHz
and supports features such as Plug and Play (the ability to
automatically configure a device, supported in Windows 98
and later) and Hot Plug (the ability to connect or reconnect
devices while the PC is running). The PCI retains compat-
ibility with older 8-bit and 16-bit ISA expansion cards. At
the end of the 1990s, PC makers were starting to introduce
even faster buses such as the AGP (accelerated graphics
port), which runs at 66 MHz.

Two important auxiliary buses are designed for the con-
nection of peripheral devices to the main PC bus. The older
SCSI (Small Computer Systems Interface) was announced in
1986 (with the expanded SCSI-2 in 1994). SCSI is primarily
used to connect disk drives and other mass storage devices
(such as CD-ROMs), though it can be used for scanners and
other devices as well. SCSI-2 can transfer data at 20 MB/s
over a 16-bit path, and SCSI-3 (still in development) will
offer a variety of high-speed capabilities. SCSI was adopted
as the standard peripheral interface for many models of
Apple Macintosh computers as well as UNIX workstations.
On IBM architecture PCs SCSI is generally used for servers
that require large amounts of mass storage. Multiple devices
can be connected in series (or “chained”).

The newer USB (Universal Serial Bus) is relatively slow
(12 MB/s) but convenient because a simple plug can be
inserted directly into a USB socket on the system board
or the socket can be connected to a USB hub to which sev-
eral devices can be connected. In 2002, USB 2.0 entered
the marketplace. It offers 480 MB/s data transfer speed.
(See USB.)

It is uncertain whether the next advance will be the adop-
tion of a 64-bit PCI bus or the development of an entirely dif-
ferent bus architecture. The latter is attractive as a way to get
past certain inherent bottlenecks in the PCI design, but the
desire for downward compatibility with the huge number of
existing ISA, EISA, and PCI devices is also very strong.

Further Reading

PC Guide. “System Buses.” Available online. URL: http:/www.
pcguide.com/ref/mbsys/_buses/index.htm. Accessed May 23,
2007.

Bush, Vannevar
(1890-1974)
American

Engineer and Inventor

Vannevar Bush, grandson of two sea captains and son of a
clergyman, was born in Everett, Massachusetts, just outside
of Boston. Bush earned his B.S. and M.S. degrees in engineer-
ing at Tufts University, and received a joint doctorate from

Harvard and MIT in 1916. He went on to full professorship at
MIT and became dean of its Engineering School in 1932.

Bush combined an interest in mathematics with the
design of mechanical devices to automate calculations.
During his undergraduate years he invented an automatic
surveying machine using two bicycle wheels and a record-
ing instrument. His most important invention was the dif-
ferential analyzer, a special type of computer that used
combinations of rotating shafts and cams to incrementally
add or subtract the differences needed to arrive at a solution
to the equation (see also ANALOG COMPUTER). His improved
model (Rockefeller Differential Analyzer, or RDA2) replaced
the shafts and gears with an electrically-driven system, but
the actual integrators were still mechanical. Several of these
machines were built in time for World War II, when they
served for such purposes as calculating tables of ballistic
trajectories for artillery.

Later, Bush turned his attention to problems of infor-
mation processing. Together with John H. Howard (also of
MIT), he invented the Rapid Selector, a device that could
retrieve specific information from a roll of microfilm by
scanning for special binary codes on the edges of the film.
His most far-reaching idea, however, was what he called the
“Memex”—a device that would link or associate pieces of
information with one another in a way similar to the asso-
ciations made in the human brain. Bush visualized this as
a desktop workstation that would enable its user to explore
the world’s information resources by following links, the
basic principle of what would later become known as hyper-
text (see HYPERTEXT AND HYPERMEDIA).

In his later years, Bush wrote books that became influen-
tial as scientists struggled to create large-scale research teams
and to define their roles and responsibilities in the cold war
era. He played the key role in establishing the National Sci-
ence Foundation in 1950, and served on its advisory board
from 1953 to 1956. He then became CEO of the drug company
Merck (1955-1962) as well as serving as chairman (and then
honorary chairman) of the MIT Corporation (1957-1974).

Bush would receive numerous honorary degrees and
awards that testified to the broad range of his interests and
achievements not only in electrical and mechanical engi-
neering, but also in social science. In 1964, he received the
National Medal of Science. Bush died on June 28, 1974, in
Belmont, Massachusetts.

Further Reading

Bush, Vannevar. Pieces of the Action. New York: William Morrow,
1970.

. Science: The Endless Frontier. Washington, D.C.: U.S. Gov-
ernment Printing Office, 1945.

Nyce, J. M., and P. Kahn. From Memex to Hypertext: Vannevar Bush
and the Mind’s Machine. Boston: Academic Press, 1991. [Includes
two essays by Bush: “As We May Think” and “Memex I1.”]

Zachary, G. Pascal. Endless Frontier: Vannevar Bush, Engineer of the
American Century. Cambridge, Mass.: MIT Press, 1999.

business applications of computers
Efficient and timely data processing is essential for businesses
of all sizes from corner shop to multinational corporation.

64 business applications of computers

Business applications can be divided into the broad catego-
ries of Administration, Accounting, Office, Production, and
Marketing and Sales.

Administrative applications deal with the organization
and management of business operations. This includes per-
sonnel-related matters (recruiting, maintenance of person-
nel records, payroll, pension plans, and the provision of
other benefits such as health care). It also includes manage-
ment information or decision support systems, communi-
cations (from simple e-mail to teleconferencing), and the
administration of the data processing systems themselves.

The Accounting category includes databases of accounts
receivable (money owed to the firm) and payable (such
as bills from vendors). While this software is decidedly
unglamorous, in a large corporation small inefficiencies can
add up to significant costs or lost revenue. (For example,
paying a bill before it is due deprives the firm of the “float”
or interest that can be earned on the money, while paying a
bill too late can lead to a loss of discounts or the addition of
penalties.) A variety of reports must be regularly generated
so management can spot such problems and so taxes and
regulatory requirements can be met.

The Office category involves the production and track-
ing of documents (letters and reports) as required for the
day-to-day operation of the business. Word processing,
desktop publishing, presentation and other software can be
used for this purpose (see APPLICATION SUITE, WORD PRO-
CESSING, SPREADSHEET, and PRESENTATION SOFTWARE).

Production is a catchall term for the actual product or
service that the business provides. For a manufacturing
business this may require specialized design and manufac-
turing programs (see COMPUTER-AIDED DESIGN AND MANU-
FACTURING CAD/CAM) as well as software for tracking and
scheduling the completion of tasks. For a business that
markets already produced goods the primary applications
will be in the areas of transportation (tracking the shipping
of goods [see also SUPPLY CHAIN MANAGEMENT]), inventory
and warehousing, and distribution. Service businesses will
need to establish accounts for customers and keep track of
the services performed (on an hourly basis or otherwise).

Marketing and Sales includes market research, adver-
tising, and other programs designed to make the public
aware of and favorably disposed to the product or service
(see CUSTOMER RELATIONSHIP MANAGEMENT). Once people
come to the store to buy something, the actual retail trans-
action must be provided for, including the point-of-sale ter-
minal (formerly “cash register”) with its interface to the
store inventory system and the verification of credit cards
or other forms of payment.

CHANGING ROLE OF COMPUTERS
Computer support for business functions can be provided
in several forms. During the 1950s and 1960s (the era of

mainframe dominance), only the largest firms had their
own computer facilities. Many medium- to small-sized
businesses contracted with agencies called service bureaus
to provide computer processing for such functions as pay-
roll processing. Service bureaus and in-house data process-
ing facilities often developed their own software (typically
using the COBOL language).

The development of the minicomputer (and in the 1980s,
the desktop microcomputer) allowed more businesses to
undertake their own data processing, in the expectation
(not always fulfilled) that they would be able both to save
money and to create systems better tailored to their needs.
Areas such as payroll and accounts payable/receivable gen-
erally still relied upon specialized software packages. How-
ever, the growing availability of powerful database software
(such as dBase and its descendants) as well as spreadsheet
programs enabled businesses to maintain and report on a
variety of information.

During the 1980s, the daily life of the office began to
change in marked ways. The specialized word processing
machines gave way to programs such as WordStar, Word-
Perfect, and Microsoft Word running on desktop comput-
ers. Advanced word processing and desktop publishing
software moved more of the control of the appearance of
documents into the hands of office personnel. The local
area network (LAN) made it possible to share resources
(such as the new laser printers and databases on a power-
ful file server PC) as well as providing for communication
in the form of e-mail.

As the Internet and the World Wide Web came into
prominence in the later 1990s, another revolution was soon
under way. Every significant organization is now expected
to have its own Web site or sites. These Web pages serve
a Janus-like function. On the one hand, they present the
organization’s face to the world, providing announcements,
advertising, catalogs, and the capability for online purchas-
ing (e-commerce). On the other hand, many organizations
now put their databases and other records on Web sites (in
secured private networks) so that employees can readily
access and update them. The growth in mobile comput-
ing and readily available Internet connections (including
wireless services) increasingly enables traveling business-
persons to effectively take the office and its resources with
them on the road.

Further Reading

Bodnar, George H,. and William S. Hopwood. Accounting Infor-
mation Systems. Upper Saddle River, N.J.: Prentice Hall,
2000.

Cortada, James W. 21st Century Business: Managing and Working in
the New Digital Economy. Upper Saddle River, N J.: Prentice
Hall, 2000.

O’Brien, James A. Introduction to Information Systems. New York:
McGraw-Hill, 2000.

C

The C programming language was developed in the early
1970s by Dennis Ritchie, who based it on the earlier lan-
guages BCPL and B. C was first used on DEC PDP-11
computers running the newly developed UNIX operating
system, where the language provided a high-level alterna-
tive to the use of PDP Assembly language for develop-
ment of the many utilities that give UNIX its flexibility.
Since the 1980s, C and its descendent, C++, have become
the most widely used programming languages.

LANGUAGE FEATURES

Like the earlier Algol and the somewhat later Pascal, C
is a procedural language that reflects the philosophy of
programming that was gradually taking shape during
the 1970s (see STRUCTURED PROGRAMMING). In general,
C’s approach can be described as providing the neces-
sary features for real world computing in a compact and
efficient form. The language provides the basic control
structures such as if and switch (see BRANCHING STATE-
MENTS) and while, do, and for (see LOOP). The built-in
data types provide for integers (int, short, and long),
floating-point numbers (float and double), and characters
(char). An array of any type can be declared, and a string
is implemented as an array of char (see DATA TYPES and
CHARACTERS AND STRINGS).

Pointers (references to memory locations) are used for a
variety of purposes, such as for storing and retrieving data
in an array (see POINTERS AND INDIRECTION). While the
use of pointers can be a bit difficult for beginners to under-

65

stand, it reflects C’'s emphasis as a systems programming
language that can “get close to the hardware” in manipulat-
ing memory.

Data of different types can be combined into a record
type called a struct. Thus, for example:

struct Enpl oyee_Record {
char [10] First_Nane;
char [1] Mddle_Initial;
char [20] Last_Nare;

i nt Enpl oyee_Nunber;

b

(There is also a union, which is a struct where the same
structure can contain one of two different data items.)

The standard mathematical and logical comparison
operators are available. There are a couple of quirks: the
equals comparison operator is = =, while a single equal sign
= is an assignment operator. This can create a pitfall for the
wary, since the condition

if (Total = 10)
printf (“Finished!”);

always prints Finished, since the assignment Total = 10
returns a value of 10 (which not being zero, is “true” and
satisfies the if condition).

C also features an increment ++ and decrement - - oper-
ator, which is convenient for the common operation of rais-
ing or lowering a variable by one in a counting loop. In C
the following statements are equivalent:

66 C

Total = Total + 1;
Total += 1;
Total ++;

Unlike Pascal’s two separate kinds of procedures (func,
or function, which returns a value, and proc, or proce-
dure, which does not), C has only functions. Arguments are
passed to functions by value, but can be passed by reference
by using a pointer. (See PROCEDURES AND FUNCTIONS.)

SAMPLE PROGRAM
The following is a brief example program:

#i ncl ude <stdio. h>
fl oat Average (void);
main () {
printf (“The average is: %", Average());
}
float Average (void) {
int NunbersRead = O;
int Nunber;
int Total = O;
while (scanf(“%\n”, &Nunmber) == 1)
{
Total = Total + Nunber;
Nunber sRead = NunbersRead + 1;

}
return (Total / NumbersRead);
}
}

Statements at the beginning of the program that begin
with # are preprocessor directives. These make changes to
the source code before it is compiled. The #include directive
adds the specified source file to the program. Unlike many
other languages, the C language itself does not include
many basic functions, such as input/output (I/O) state-
ments. Instead, these are provided in standard libraries.
(The purpose of this arrangement is to keep the language
itself simple and portable while keeping the implementa-
tion of functions likely to vary on different platforms sepa-
rate.) The stdio.h file here is a “header file” that defines
the I/O functions, such as printf() (which prints formatted
data) and scanf() (which reads data into the program and
formats it).

The next part of the program declares any functions that
will be defined and used in the program (in this case, there
is only one function, Average). The function declaration
begins with the type of data that will be returned by the
function to the calling statement (a floating point value in
this case). After the function name comes declarations for
any parameters that are to be passed to the function by the
caller. Since the Average function will get its data from user
input rather than the calling statement, the value (void) is
used as the parameter.

Following the declaration of Average comes the main()
function. Every C program must have a main function. Main
is the function that runs when the program begins to exe-
cute. Typically, main will call a number of other functions
to perform the necessary tasks. Here main calls Average

within the printf statement, which will print the average as
returned by that function. (Calling functions within other
statements is an example of C’s concise syntax.)

Finally, the Average function is defined. It uses a loop
to read in the data numbers, which are totaled and then
divided to get the average, which is sent back to the calling
statement by the return statement.

A programmer could create this program on a UNIX
system by typing the code into a source file (test.c in this
case) using a text editor such as vi. A C compiler (gcc in
this case) is then given the source code. The source code is
compiled, and linked, creating the executable program file
a.out. Typing that name at the command prompt runs the
program, which asks for and averages the numbers.

% gcc test.c
% a. out

5

7

9

The average is: 7.000000

SUCCESS AND CHANGE

In the three decades after its first appearance, C became one
of the most successful programming languages in history.
In addition to becoming the language of choice for most
UNIX programming, as microcomputers became capable of
running high-level languages, C became the language of
choice for developing MS-DOS, Windows, and Macintosh
programs. The application programming interface (API) for
Windows, for example, consists of hundreds of C functions,
structures, and definitions (see APPLICATION PROGRAMMING
INTERFACE and MICROSOFT WINDOWS).

However, C has not been without its critics among
computer scientists. Besides containing idioms that can
encourage cryptic coding, the original version of C (as
defined in Kernighan and Ritchie’s The C Programming
Language) did not check function parameters to make
sure they matched the data types expected in the func-
tion definitions. This problem led to a large number of
hard-to-catch bugs. However, the development of ANSI
standard C with its stricter requirements, as well as type
checking built into compilers has considerably amelio-
rated this problem. At about the same time, C++ became
available as an object-oriented extension and partial rec-
tification of C. While C++ and Java have considerably
supplanted C for developing new programs, C program-
mers have a relatively easy learning path to the newer
languages and the extensive legacy of C code will remain
useful for years to come.

Further Reading

Kernighan, B. W, and D. M. Ritchie. The C Programming Language,
2nd ed. Upper Saddle River, NJ.: Prentice-Hall, 1988.

Prata, Stephen. C Primer Plus. 5th ed. Indianapolis: SAMS, 2004.

Ritchie, D. M. “The Development of the C Language,” in History of
Programming Languages II, ed. T. J. Bergin and R. G. Gibson,
678-098. Reading, Mass.: Addison-Wesley, 1995.

C++ 67

C#

Introduced in 2002, C# (pronounced “C sharp”) is a pro-
gramming language similar to C++ and Java but simplified
in several respects and tailored for use with Microsoft’s
latest programming platform (see MICROSOFT.NET). C# is
a general-purpose language and is thoroughly object-
oriented—all functions must be declared as members of
a class or “struct,” and even fundamental data types are
derived from the System.Object class (see CLASS and OBJECT-
ORIENTED PROGRAMMING).

Compared with C++, C# is stricter about the use and
conversion of data types, not allowing most implicit con-
versions (such as from an enumeration type to the cor-
responding integer—see DATA STRUCTURES). Unlike C++,
C# does not permit multiple inheritance (where a type can
be derived from two or more base types), thereby avoid-
ing an added layer of complexity in class relationships in
large software projects. (However, a similar effect can be
obtained by declaring multiple “interfaces” or specified
ways of accessing the same class.)

Unlike Java (but like C++), C# includes pointers (and
a safer version called “delegates”), enumerations (enum
types), structs (treated as lightweight classes), and over-
loading (multiple definitions for operators). The latest ver-
sion of the language, C# 3.0 (introduced in 2007), provides
additional features for list processing and functional pro-
gramming (see FUNCTIONAL LANGUAGES).

The canonical “Hello World” program looks like this in
C#:

using System
/1 A “Hello World!” programin C#
nanespace Hel | oWorl d

{
class Hello
{
static void Min()
{
System Consol e. WiteLine(“Hello Wrld!");
}
}
}

Essentially all program structures must be part of a
class. The first statement brings in the System class, from
which are derived basic interface methods. A program can
have one or more namespaces, which are used to organize
classes and other structures to avoid ambiguity. This pro-
gram has only one class (Hello), which includes a Main
function (every program must have one and only one). This
function calls the Console member of the System class, and
in turn uses the WriteLine method to display the text.

C++ AND MICROSOFT DEVELOPMENT

C# is part of a family of languages (including C++, J#
[an equivalent version of Javal, and Visual Basic.NET). All
these languages compile to a common intermediate lan-
guage (IL). The common class framework, Microsoft.NET,
has replaced earlier frameworks for Windows program-

ming and, increasingly, for modern Web development (see
also AJAX).

Although it has been primarily associated with Micro-
soft development and Windows, the Mono and Dot GNU
projects provide C# and an implementation of the Com-
mon Language Infrastructure, and many (but not all) of the
.NET libraries for the Linux/UNIX environment.

Further Reading

“The C# Language.” MSDN. Available online. URL: http:/msdn2.
microsoft.com/en-us/vcsharp/aa336809.aspx. Accessed April
28.2007.

Davis, Stephen Randy. C# for Dummies. New York: Hungry Minds,
2002.

Hejlsberg, Andres, Scott Wiltamuth, and Peter Golde. The C# Pro-
gramming Language. 2nd ed. Upper Saddle River, NJ.: Addi-
son-Wesley, 2006.

C++

The C++ language was designed by Bjarne Stroustrup at
AT&T’s Bell Labs in Murray Hill, New Jersey, starting in
1979. By that time the C language had become well estab-
lished as a powerful tool for systems programming (see
C). However Stroustrup (and others) believed that C’s lim-
ited data structures and function mechanism were proving
inadequate to express the relationships found in increas-
ingly large software packages involving many objects with
complex relationships.

Consider the example of a simple object: a stack onto
which numbers can be “pushed” or from which they can be
“popped” (see STACK). In C, a stack would have to be imple-
mented as a struct to hold the stack data and stack pointer,
and a group of separately declared functions that could
access the stack data structure in order to, for example
“push” a number onto the stack or “pop” the top number
from it. In such a scheme there is no direct, enforceable
relationship between the object’s data and functions. This
means, among other things, that parts of a program could
be dependent on the internal structure of the object, or
could directly access and change such internal data. In a
large software project with many programmers working on
the code, this invites chaos.

An alternative paradigm already existed (see OBJECT-
ORIENTED PROGRAMMING) embodied in a few new languages
(see SIMULA and SMALLTALK). These languages allow for the
structuring of data and functions together in the form of
objects (or classes). Unlike a C struct, a class can contain
both the data necessary for describing an object and the
functions needed for manipulating it (see CLASS). A class
“encapsulates” and protects its private data, and communi-
cates with the rest of the program only through calls to its
defined functions.

Further in object-oriented languages, the principle of
inheritance could be used to proceed from the most gen-
eral, abstract object to particular versions suited for specific
tasks, with each object retaining the general capabilities
and revising or adding to them. Thus, a “generic” list foun-
dation class could be used as the basis for deriving a variety
of more specialized lists (such as a doubly-linked list).

68 C++

While attracted to the advantages of the object-ori-
ented approach, Stroustrup also wanted to preserve the C
language’s ability to precisely control machine behavior
needed for systems programming. He thus decided to build
a new language on C’s familiar syntax and features with
object-oriented extensions. Stroustrup wrote the first ver-
sion, called “C with Classes” as his Ph.D. thesis at Cam-
bridge University in England. This gradually evolved into
C++ through the early 1980s.

C++ FEATURES

The fundamental building block of C++ is the class. A class
is used to create objects of its type. Each object contains
a set of data and can carry out specified functions when
called upon by the program. For example, the following
class defines an array of integers and declares some func-
tions for working with the array. Typically, it would be put
in a header file (such as stack.h):

const int Max_size=20; // maxi mum el ements
in Stack

class Stack { // Declare the Stack class

public: // These functions are avail able
out si de

Stack(); // Constructor to create Stack
obj ects

void push (int); // push int on Stack

int pop(); // renove top el enent

private: // This data can only be used in
cl ass

int index;

int Data[Max_si ze];

b

Next, the member functions of the Stack class are
defined. The definitions can be put in a source file Stack.

cpp:

#include “Stack.h” // bring in the declarations

Stack:: Stack() { index=0;} // set zero for
new st ack

void Stack::push (int item) { // put a num
ber on stack

Dat a[i ndex++] = item

}

int Stack::pop(){ // renove top nunber

return Data [index-];

}

Now a second source file (Stacktest.cpp) can be written.
It includes a main() function that creates a Stack object and
tests some of the class functions:

#i ncl ude “Stack.cpp” // include the Stack
cl ass
#i nclude <iostreamh> // include standard 1/0O
l'ibrary
mai n() {
Stack S; // Create a Stack object called S
int index;

for (index = 1; index <= 5; index++)

S. push(index); // put nunbers 1-5 on stack
for (index = 1; index <=5; index++)

cout < S.pop(); // print the stack
}

The stack implementation is completely separate from
any program code that uses stack objects. Thus, a program-
mer could revise the stack class (perhaps using an improved
algorithm or generalizing it to work with different data
types). As long as the required parameters for the member
functions aren’t changed, programs that use stack objects
won't need to be changed.

In addition to classes and inheritance, C++ has some
other important features. The data types for function param-
eters can be fully defined, and types checked automatically
(although programmers can bypass this type checking if
they really want or need to). New operators can be added
to a class by defining special operator functions, and the
same operator can be given different meanings when work-
ing with different data types. (This is called overloading.)
Thus, the + operator can be defined with a String class to
combine (concatenate) two strings. The operator will still
mean “addition” when used with numeric data.

An abstract object (one with no actual implementation)
can be used as the basis for virtual functions. These func-
tions can be redefined in each derived object so that when-
ever an object of that type is encountered the compiler will
automatically search “downward” from the base class and
find the correct derived class function.

Later versions of C++ include a related concept called
templates. A template is an abstract specification that can
be used to generate class definitions for data types passed
to it (see TEMPLATE). Thus, a list template could be passed a
vector and a 2D array and it will create a list class definition
for each of these types. Templates are generally used when
there is no hierarchical inheritance relationship between
the types (in that case the virtual base class is a better
approach).

C++ provides object-oriented alternatives to the stan-
dard libraries. For example, input/output uses a stream
model, and 1/O operators can be overloaded so they’ll work
with new classes. There is also an improved error-handling
mechanism using appropriate objects.

GROWTH OF C++

During the late 1980s and 1990s, C++ became a very popu-
lar language for a variety of applications ranging from sys-
tems programming to business applications and games. The
growth of the language coincided with the development
of more powerful desktop computers and the release of
inexpensive, easy-to-use but powerful development envi-
ronments from Microsoft, Borland, and others. Since these
compilers could also handle traditional C code, program-
mers could “port” existing code and use the object-oriented
techniques of C++ as they mastered them. By the late 1990s,
however, C++, although still dominant in many areas, was
being challenged by Java, a language that simplified some
of the more complex features of C++ and that was designed

cache 69

particularly for writing software to run on Web servers and
browsers (see JAVA). For an alternative approach to creating
a somewhat more “streamlined” C-type language, see C#.

Further Reading

“C++ Archive.” Available online. URL: http://www.austinlinks.
com/CPlusPlus/. Accessed May 24, 2007.

“Complete C++ Language Tutorial.” Available online. URL:
http://www.cplusplus.com/_doc/tutorial/. Accessed May
24, 2007.

Prata, Stephen. C++ Primer Plus. 5th ed. Indianapolis: SAMS,
2004.

Stroustrup, Bjarne. “A History of C++: 1979-1991.” In History of
Programming Languages 1I, edited by Thomas J. Bergin, Jr.,
and Richard G. Gibson, Jr. New York: ACM Press; Reading,
Mass.: Addison-Wesley, 1996, 699-755.

. The C++ Programming Language. Special 3rd ed. Reading,

Mass.: Addison-Wesley, 2000.

cable modem

One of the most popular ways to connect people to the
Internet takes advantage of the cable TV infrastructure that
already exists in most communities. (For another pervasive
alternative, using telephone lines, see DSL.)

Cable systems offer high-speed access (see BROADBAND)
up to about 6 megabits/second (Mb/s), at least 20 times
faster than an ordinary telephone modem and generally
suitable for receiving today’s multimedia offerings, includ-
ing streaming video. (Upload speeds are usually “throttled”
to 384 kb/s or fewer.)

In a typical installation, a splitter is used to separate the
signal used for cable TV from the one used for data trans-
mission. The data cable is then connected to the modem.
The modem can then either be connected directly to a com-
puter using a standard Ethernet “Cat 5” cable, or connected
to a switch (or more commonly, a router) that will in turn
provide the Internet connection to computers on the local
network. (If the cable modem is connected directly to a
computer, additional security against intrusions should also
be provided. See FIREWALL.)

A typical cable TV system has from 60 channels to sev-
eral hundred, most of which are used for TV programming.
A few channels are dedicated to providing Internet service.
Users in a given division of the cable network (typically a
small neighborhood) thus share a fixed pool of bandwidth,
which can reduce speed at times of high usage. The cable
system can adjust by reallocating channels from TV to data
or by adding new channels.

DOCSIS (Data Over Cable Service Interface Specifica-
tion) is the industry standard for cable modems in North
America.

MARKETING CONSIDERATIONS

As of 2007 there were about 30 million households in North
America with cable Internet service. Monthly service fees
are $40-$60, though cable providers generally try to bun-
dle their cable TV and Internet services. Increasingly they
are also offering telephone service over the cable network,
using voice over Internet protocol (see VOIP).

In turn, telephone companies compete with cable com-
panies by offering DSL Internet access. Although “tradi-
tional” DSL is generally somewhat slower than cable
modems, Verizon in 2005 announced a new, much faster
fiber-based form of DSL called F10S, with speeds of up to
15 Mb/s (see also FIBER OPTICS). And just as cable compa-
nies can now offer phone service over the Internet, phone
companies can offer video content, potentially competing
with cable TV services. (Verizon has announced its own
Internet-based television network, IPTV.) In general there is
likely to be increased competition and more (if sometimes
perplexing) choices for consumers.

Further Reading

Cable Industry Insider. Available online. URL: http://www.light-
reading.com/cdn/. Accessed May 10, 2007.

Cable Modem Information Network. Available online. URL: http://
www.cable-modem.net/. Accessed May 10, 2007.

Dominick, Joseph R., Barry L. Sherman, and Fritz]J. Messere.
Broadcasting, Cable, the Internet and Beyond: An Introduction
to Electronic Media. 6th ed. New York: McGraw-Hill, 2007.

Dutta-Roy, Amitava. Cable Modem: Technology and Applications.
New York: Wiley-Interscience, 2007.

cache

A basic problem in computer design is how to optimize
the fetching of instructions or data so that it will be ready
when the processor (CPU) needs it. One common solution
is to use a cache. A cache is an area of relatively fast-access
memory into which data can be stored in anticipation of its
being needed for processing. Caches are used mainly in two
contexts: the processor cache and the disk cache.

CPU CACHE

The use of a processor cache is advantageous because
instructions and data can be fetched more quickly from
the cache (static memory chips next to or within the CPU)
than they can be retrieved from the main memory (usu-
ally dynamic RAM). An algorithm analyzes the instruc-
tions currently being executed by the processor and tries
to anticipate what instructions and data are likely to be
needed in the near future. (For example, if the instructions
call for a possible branch to one of two sets of instruc-
tions, the cache will load the set that has been used most
often or most recently. Since many programs loop over
and over again through the same instructions until some
condition is met, the cache’s prediction will be right most
of the time.)

These predicted instructions and data are transferred
from main memory to the cache while the processor is
still executing the earlier instructions. If the cache’s predic-
tion was correct, when it is time to fetch these instructions
and data they are already waiting in the high-speed cache
memory. The result is an effective increase in the CPU’s
speed despite there being no increase in clock rate (the rate
at which the processor can cycle through instructions).

The effectiveness of a processor cache depends on two
things: the mix of instructions and data being processed and

70 calculator

the location of the cache memory. If a program uses long
sequences of repetitive instructions and/or data, caching will
noticeably speed it up. A cache located within the CPU itself
(called an L1 cache) is faster (albeit more expensive) than an
L2 cache, which is a separate set of chips on the motherboard.

Changes made to data by the CPU are normally written
back to the cache, not to main memory, until the cache is
full. In multiprocessor systems, however, designers of pro-
cessor caches must deal with the issue of cache coherency.
If, for example, several processors are executing parts of the
same code and are using a shared main memory to commu-
nicate, one processor may change the value of a variable in
memory but not write it back immediately (since its cache
is not yet full). Meanwhile, another processor may load the
old value from the cache, unaware that it has been changed.
This can be prevented by using special hardware that can
detect such changes and automatically “write through” the
new value to the memory. The processors, having received
a hardware or software “signal” that data has been changed,
can be directed to reread it.

DISK CACHE

A disk cache uses the same general principle as a proces-
sor cache. Here, however, it is RAM (either a part of main
memory or separate memory on the disk drive) that is the
faster medium and the disk drive itself that is slower. When
an application starts to request data from the disk, the cache
reads one or more complete blocks or sectors of data from the
disk rather than just the data record being requested. Then, if
the application continues to request sequential data records,
these can be read from the high-speed memory on the cache
rather than from the disk drive. It follows that disk caching
is most effective when an application, for example, loads a
database file that is stored sequentially on the disk.

Similarly, when a program writes data to the disk, the
data can be accumulated in the cache and written back to
the drive in whole blocks. While this increases efficiency,
if a power outage or other problem erases or corrupts the
cache contents, the cache will no longer be in synch with
the drive. This can cause corruption in a database.

Microsoft's Windows Vista introduced an ingenious
type of cache at the system level. The “ReadyBoost” features
allows many inexpensive USB flash drives to be used auto-
matically as disk caches to store recently used data that had
been paged out of main RAM memory.

NETWORK CACHE

Caching techniques can be used in other ways. For exam-
ple, most Web browsers are set to store recently read pages
on disk so that if the user directs the browser to go back to
such a page it can be read from disk rather than having to
be retransmitted over the Internet (generally a slower pro-
cess). Web servers and ISPs (such as cable services) can also
cache popular pages so they can be served up quickly.

Further Reading

Nottingham, Mark. “Caching Tutorial for Web Authors and Web-
masters.” Available online. URL: http://www.wdvl.com/
Internet/Cache/index._html. Accessed May 24, 2007.

“System Cache.” Available online. URL: http:/www.pcguide.com/
ref/mbsys/cache/. Accessed April 14, 2008.

Peir, J.-K., W. Hsu, and A. J. Smith. “Implementation Issues in
Modern Cache Memories.” IEEE Transactions on Computers,
48,2 (1998): 100-110.

calculator

The use of physical objects to assist in performing calcula-
tions begins in prehistory with such practices as count-
ing with pebbles or making what appears to be counting
marks on pieces of bone. Nor should such simple manipula-
tions be despised: In somewhat more sophisticated form it
yielded the abacus, whose operators regularly outperformed
mechanical calculators until the advent of electronics.

Generally, however, the term calculator is used to refer
to a device that is able to store a number, add it to another
number, and mechanically produce the result, taking care
of any carried digits. In 1623, astronomer Johannes Kepler
commissioned such a machine from Wilhelm Schickard.
The machine combined a set of “Napier’s bones” (slides
marked with logarithmic intervals, the ancestor of the slide
rule) and a register consisting of a set of toothed wheels that
could be rotated to displays the digits 0 to 9, automatically
carrying one place to the left. This ingenious machine was
destroyed in a fire before it could be delivered to Kepler.

In 1642, French philosopher and mathematician Blaise
Pascal invented an improved mechanical calculator. Its
mechanism used a carry mechanism with a weight that
would drop when a carry was reached, pulling the next
wheel into position. This avoided having to use excessive
force to carry a digit through several places. Pascal pro-
duced a number of his machines and tried to market them
to accountants, but they never really caught on.

Schikard’s and Pascal’s calculators could only add, but
in 1674 German mathematician Gottfried Wilhelm Leibniz
invented a calculator that could work with all the digits of
a number at once, rather than carrying from digit to digit.
It worked by allowing a variable number of gear teeth to
be engaged in each digit wheel. The operator could, for
example, set the wheels to a number such as 215, and then
turn a crank three times to multiply it by three, giving a
result of 645. This mechanism, gradually improved, would
remain fundamental to mechanical calculators for the next
three centuries.

The first calculator efficient enough for general business
use was invented by an American, Dorr E. Felt, in 1886.
His machine, called a Comptometer, used the energy trans-
mitted through the number-setting mechanism to perform
the addition, considerably speeding up the calculating pro-
cess. Improved machines by William Burroughs and oth-
ers would replace the arm of the operator with an electric
motor and provide a printing tape for automatically record-
ing input numbers and results.

ELECTRONIC CALCULATORS

The final stage in the development of the calculator would
be characterized by the use of electronics to replace
mechanical (or electromechanical) action. The use of logic

cars and computing 71

circuits to perform calculations electronically was first seen
in the giant computers of the late 1940s, but this was obvi-
ously impractical for desktop office use. By the late 1960s,
however, transistorized calculators comparable in size to
mechanical desktop calculators came into use. By the 1970s,
the use of integrated circuits made it possible to shrink the
calculator down to palm-size and smaller. These calculators
use a microprocessor with a set of “microinstructions” that
enable them to perform a repertoire of operations ranging
from basic arithmetic to trigonometric, statistical, or busi-
ness-related functions.

The most advanced calculators are programmable by
their user, who can enter a series of steps (including per-
haps decisions and branching) as a stored program, and
then apply it to data as needed. At this point the calculator
can be best thought of as a small, somewhat limited com-
puter. However, even these limits are constantly stretched:
During the 1990s it became common for students to use
graphing calculators to plot equations. Calculator use is
now generally accepted in schools and even in the taking of
the Scholastic Aptitude Test (SAT). However, some educa-
tors are concerned that overdependence on calculators may
be depriving students of basic numeracy, including the abil-
ity to estimate the magnitude of results.

Further Reading

Aspray, W., ed. Computing Before Computers. Ames: Iowa State
University Press, 1989.

The Old Calculator Museum. Links to Interesting Calculator-Related
Sites. Available online. URL: http:/www.oldcalculatormuseum.
com/links.html. Accessed May 25, 2007.

cars and computing

Development of automotive technology has tended to be
incremental rather than revolutionary. The core “hardware”
such as the engine and drive train has changed little over
several decades, other than the replacement of carburetors
with fuel injection systems, and some improvements in
areas such as brake design. On the other hand there have
been significant improvements in safety features such as
seat belts, air bags, and improved crash absorption barriers.

In recent years, however, the incorporation of comput-
ers in automobile design (see also EMBEDDED SYSTEM) has
led to a number of significant advances in areas such as
fuel efficiency, traction/stability, crash response, and driver
information and navigation. Put simply, cars are becoming
“smarter” and are making driving easier and safer.

Hybrid cars (such as gas/electric systems) depend on
computers to sense how the car is being driven and when
to augment electric power with the gas engine, as well as
controlling the feeding of power back into the batteries (as
in regenerative braking). In all cars, a general-purpose com-
puting platform (such as one that has been developed by
Microsoft) can keep drivers up to date on everything from
road conditions to regular maintenance reminders. Many
purchasers of higher-end vehicles are purchasing services
such as OnStar that provide a variety of communication,
navigation, and security and safety features. An example of

the latter includes the automatic sending of a signal when
air bags are deployed. An operator then tries to determine if
assistance is needed, and contacts local dispatchers. Drivers
who lock themselves out accidentally can also have their
cars unlocked remotely.

Another promising approach is to build systems that
can monitor the driver’s condition or behavior. For exam-
ple, by analyzing images of the driver’s eyes, facial features,
and posture (such as slumping), the car may be able to tell
when the driver has a high probability of being impaired
(sleepy, drunk, or sick) and take appropriate action. (Of
course many drivers may object to having their car “watch”
them all the time.)

ULTIMATE SMART CARS

Much future progress in car computing will depend on creat-
ing integrated networking between vehicles and the road. An
advanced navigation system could take advantage of real-time
information being transmitted by the surrounding vehicles.
For example, a stalled car would transmit warning messages
to other drivers about the impending obstacle. Vehicles that
sense an oil slick, ice, or other road hazard could also “mark”
the location so it can be avoided by subsequent drivers. Data
about the speed and spacing of traffic could provide real-time
information about traffic jams, possibly routing vehicles into
alternative lanes or other roads to reduce congestion and
travel time (see MAPPING AND NAVIGATION SYSTEMS).

For many futurists, the ultimate “smart car” is one that
can drive itself with little or no input from its human occu-
pant. Such cars (with appropriate infrastructure) could
eliminate most accidents, use roads more efficiently, and
maintain mobility for a rapidly aging population. Such events
as the annual DARPA automated vehicle challenge show con-
siderable progress being made: Automated cars are already
driving cross-country, with the human driver or follow-on
vehicle serving only as a safety backup. In 2005 for the first
time some competitors actually made it across the finish
line. “Stanley,” a robotic Volkswagen Touareg designed by
Stanford University, won the race over an arduous 131-mile

- g ——— AT---

b ~ e
iy -

1 | '__"f i—

This Mercedes Benz has an integrated navigation system—a fea-
ture appearing increasingly in other higher-end cars. (© WOLF-
GANG MEIER / VISUM / THE IMAGE WORKS)

72 cascading style sheets

Mojave Desert course, navigating by means of a camera, laser
range finders, and radar. In 2007 the contest entered a more
difficult arena, where the robot vehicles had to deal with
simulated urban traffic, negotiate intersections and traffic
circles, and merge with traffic, all while obeying traffic laws.

Meanwhile efforts continue for developing a practical
automated system that could be used for everyday driving. A
“tethered” system using magnetic or radio frequency guides
embedded in the road would reduce the complexity of the
on-board navigation system, but would probably require ded-
icated roads. A “free” system linked only wirelessly would be
much more flexible, but would require the ability to visual-
ize and assess a constantly changing environment and, if
necessary, make split-second decisions to avoid accidents.
Such systems may also feature extensive automatic commu-
nication, where cars can provide each other with information
about road conditions as well as their intended maneuvers.

The biggest obstacles to implementation of a fully auto-
mated highway system may be human rather than techni-
cal: the cost of the infrastructure, the need to convince the
public the system is safe and reliable, and concerns about
potential legal liability.

Ironically, just as information technology is making cars
safer, such activities as cell phone use, text messaging, and
use of in-car entertainment systems seem to be making
drivers more distracted. Whether cars will get smart fast
enough to compensate for increasingly inattentive drivers
remains an open question.

Further Reading

DARPA Grand Challenge. Available online. URL: http:/www.
darpa.mil/grandchallenge/index.asp. Accessed May 18, 2007.

Edwards, John. “Robotic Cars Get Street Smart.” Electronic Design
55 (June 29, 2007): 89 ff.

Shladover, Steven E. “What if Cars Could Drive Themselves?” Avail-
able online. URL: http:/faculty.washington.edu/jbs/itrans/
ahspath.htm. Accessed May 18, 2007.

Whelan, Richard. Smart Highways, Smart Cars. Boston: Artech
House, 1995.

cascading style sheets (CSS)
Most word processor users are familiar with the use of styles
in formatting text. Using a built-in style or defining one’s
own, particular characteristics can be assigned to the struc-
tural parts of a document, such as headings, lead and body
paragraphs, quotations, references, and so on. There are sev-
eral advantages to using styles. Once a style is associated
with an element, the formatting attached to that style can
automatically be applied to all instances of the element. If the
writer decides that, for example, level two headings should
be in italics rather than normal font, a simple change to the
“head2” style will change all level two headings to italics.
Cascading style sheets (CSS) extend this idea to the
creation of Web pages. The style sheet defines the structural
elements of the document and applies the desired format-
ting. Instead of the main text of the document being filled
with formatting directives (see HTML), a style sheet is asso-
ciated with the document. When a compatible Web browser
loads the page, it also loads the associated style sheet and

Designer style sheet \

/ User style sheet

Browser style sheet

© Infobase Publishing

Cascading Style sheets enable the appearance and formatting of a
Web page to be handled separately from the page contents. Specifi-
cations provided in one sheet can be inherited or modified by other
sheets.

uses it to determine how the page will be displayed. In
other words, the structure of the document is separated
from the details of its presentation. This not only makes
it easier to change styles (as with word processing), but it
also means that different style sheets can be used to tailor
the document to different viewing situations (for example,
viewing in a browser on a handheld PDA).

CSS uses a standard “box model” for laying out the pre-
sentation of a page. From outside in, the areas are defined
as outer edge, margin, border, padding, inner edge, and the
content area. Styles are applied in an order that depends
on the relationship of the affected elements. For example,
a style defined for the text body will be inherited by the
paragraph, which can then redefine one or more of its ele-
ments. Similarly, an emphasis style used within a sentence
might override the paragraph style in turn. It is this flowing
of definitions down through the hierarchy of styles that cre-
ates the “cascading” part of CSS.

As CSS developed further, separate specifications have
been provided for different media that can be included in
a Web page: speech (to be read by a speech synthesizer),
Braille (for a tactile Braille system), Emboss (for Braille
printing), Handheld (for PDAs and other devices with lim-
ited display space), Print, Projection (for computer projec-
tion or transparencies), Screen, Tty (teletype-like displays
with fixed-width characters), and TV.

Further Reading

“CSS From the Ground Up.” Web Page Design. Available online.
URL: http://www.wpdfd.com/editorial/basics/index.html.
Accessed May 19, 2007.

Lie, Hakon Wium, and Bert Ros. Cascading Style Sheets: Designing
for the Web. 3rd ed. Addison-Wesley Professional, 2005.

CASE 73

Meyer, Eric A. CSS: The Definitive Guide. 3rd ed. Sebastapol, Calif.:
O'Reilly, 2007.

“Zen Garden: The Beauty of CSS Design.” Available online. URL:
http://www.csszengarden.com. Accessed May 19, 2007.

CASE (computer-aided software engineering)

During the late 1950s and 1960s, software rapidly grew more
complex—especially operating system software and large
business applications. With the typical program consist-
ing of many components being developed by different pro-
grammers, it became difficult both to see the “big picture”
and to maintain consistent procedures for transferring data
from one program module to another. As computer scien-
tists worked to develop sounder principles (see STRUCTURED
PROGRAMMING) it also occurred to them that the power of
the computer to automate procedures could be used to cre-
ate tools for facilitating program design and managing the
resulting complexity. CASE, or computer-aided software
engineering, is a catchall phrase that covers a variety of such
tools involved with all phases of development.

DESIGN TOOLS

The earliest design tool was the flowchart, often drawn
with the aid of a template that could be used to trace the
symbols on paper (see FLOWCHART). With its symbols for
the flow of execution through branching and looping, the
flowchart provides a good tool for visualizing how a pro-
gram is intended to work. However large and complex pro-
grams often result in a sea of flowcharts that are hard to
relate to one another and to the program as a whole. Start-
ing in the 1960s, the creation of programs for manipulating
flow symbols made it easier both to design flowcharts and
to visualize them in varying levels of detail.

Another early tool for program design is pseudocode, a
language that is at a higher level of abstraction than the tar-
get programming language, but that can be refined by add-
ing details until the actual program source code has been
specified (see PSEUDOCODE). This is analogous to a writer
outlining the main topics of an essay and then refining
them into subtopics and supporting details. Attempts were
made to create a well-defined pseudocode that could be
automatically parsed and transformed into compilable lan-
guage statements, but they met with only limited success.

During the 1980s and 1990s, the graphics capabilities
of desktop computers made it attractive to use a visual
rather than linguistic approach to program design. Symbols
(sometimes called “widgets”) represent program functions
such as reading data from a file or creating various kinds
of charts. A program can be designed by connecting the
widgets with “pipes” representing data flow and by setting
various characteristics or properties.

CASE principles can also be seen in mainstream pro-
gramming environments such as Microsoft’s Visual Basic
and Visual C++, Borland’s Delphi and Turbo C++, and oth-
ers (see also PROGRAMMING ENVIRONMENT). The design
approach begins with setting up forms and placing objects
(controls) that represent both user interface items (such as
menus, lists, and text boxes) and internal processing (such

as databases and Web browsers). However these environ-
ments do not in themselves provide the ability of full CASE
tools to manage complex projects with many components.

ANALYSIS TOOLS

Once a program has been designed and implementation is
under way, CASE tools can help the programmers maintain
consistency across their various modules. One such tool
(now rather venerable) is the data dictionary, which is a
database whose records contain information about the defi-
nition of data items and a list of program components that
use each item (see DATA DICTIONARY). When the definition
of a data item is changed, the data dictionary can provide
a list of affected components. Database technology is also
applied to software design in the creation of a database of
objects within a particular program, which can be used to
provide more extensive information during debugging.

INTEGRATION AND TRENDS

A typical CASE environment integrates a variety of tools
to facilitate the flow of software development. This pro-
cess may begin with design using visual flowcharting,

Traditional design tools

Flowchart Pseudocode Design specs.

Newer design
tools

Development
(coding) S

Data dictionary

Visual layout >

Class database

Debugger |«

Version control
\
Build
(version of code) —|_>

Automatic
documentation

© Infobase Publishing

Many tools are used today to aid the complex endeavor of software
engineering. Design tools include the traditional flowchart, pseudo-
code, and design specifications document. Additionally, many sys-
tems today use interactive, visual layout tools. During the coding
and debugging phase, a data dictionary and/or class database can
be used to describe and verify relationships and characteristics of
objects in the program. Once the code is “built,” a version control
system keeps track of what was changed, and various automatic
documentation features can be used to obtain listings of classes,
functions, and other program elements.

74 CD-ROM and DVD-ROM

“rapid prototyping,” or other design tools. Once the over-
all design is settled, the developer proceeds to the detailed
specification of objects used by the program and perhaps
creates a data dictionary or other databases with informa-
tion about program objects. During the coding process,
source control or versioning facilities help log and keep
track of the changes to code and the succession of new
versions (“builds”). While testing the program, an inte-
grated debugger (see BUGS AND DEBUGGING) can use infor-
mation from the program components database to help
pinpoint errors. As the code is finished, other tools can
automatically generate documentation and other support-
ing materials (see TECHNICAL WRITING and DOCUMENTA-
TION OF PROGRAM CODE).

Just as some early proponents of the English-like
COBOL language proclaimed that professional program-
mers would no longer be needed for generating busi-
ness applications, CASE tools have often been hyped as a
panacea for all the ills of the software development cycle.
Rather than causing the demise of the programmer, how-
ever, CASE tools have played an important role in keeping
software development viable.

In recent years, tools for managing or debugging code
have been supplemented with tools to aid the design pro-
cess itself (see MODELING LANGUAGES). There are also tools
to aid in refactoring, or the process of reorganizing and
clarifying code to make it easier to maintain.

In a broader sense, CASE can also include tools for man-
aging the programming team and its efforts. Even social
networking tools (see BLOGS AND BLOGGING and WIKIS AND
WIKIPEDIA) can play a part in keeping programmers in
touch with issues and concerns relating to many different
aspects of a project.

Further Reading

Carnegie Mellon Software Engineering Institute. “What Is a CASE
Environment?” Available online. URL: http:/www.sei.cmu.
edu/legacy/case/case_whatis.html. Accessed May 18, 2007.

CASE Tool Index. Available online. URL: http://www.cs.queensu.
ca/Software-Engineering/tools.html. Accessed May 18,
2007.

Stahl, Thomas, and Markus Voelter. Model-Driven Software Devel-
opment: Technology, Engineering, Management. New York:
Wiley, 2006.

CD-ROM and DVD-ROM

CD-ROM (compact disk read-only memory) is an optical
data storage system that uses a disk coated with a thin layer
of metal. In writing data, a laser etches billions of tiny pits
in the metal. The data is encoded in the pattern of pits and
spaces between them (called “lands”). Unlike the case with
a magnetic hard or floppy disk, the data is written in a
single spiral track that begins at the center of the disk. The
CD-ROM drive uses another laser to read the encoded data
(which is read from the other side as “bumps” rather than
pits). The drive slows down as the detector (reading head)
moves toward the outer edge of the disk. This maintains a
constant linear velocity and allows for all sectors to be the
same size. This system was adapted from the one used for

Laser
pickup assembly

Digital
data

Disk drive Tracking

Disk dm

motor Tracking
motor

© Infobase Publishing

Schematic of the components of a CD drive. The tracking drive
and tracking motor move the laser pickup assembly across the
spinning disk drive to position it to the correct track. The laser
beam hits the disk surface, reflecting differently from the pits and
flat areas (lands). This pattern of differences encodes the data as
ones and zeros.

the audio CDs that largely supplanted phonograph records
during the 1980s.

A CD can hold about 650 MB of data. By the early 1990s,
the CD had become inexpensive and ubiquitous, and it has
now largely replaced the floppy disk as the medium of soft-
ware distribution. The relatively large capacity meant that
one CD could replace multiple floppies for a distribution
of products such as Microsoft Windows or Word, and it
also made it practical to give users access to the entire text
of encyclopedias and other reference works. Further, the
CD was essential for the delivery of multimedia (graphics,
video, and sound) to the desktop, since such applications
require far more storage than is available on 1.44-MB floppy
disks. CD drives declined in price from several hundred
dollars to about $50, while their speeds have increased by a
factor of 30 or more, allowing them to keep up with games
and other software that needs to read data quickly from the
disk.

RECORDABLE CDS

In the late 1990s, a new consumer technology enabled users
to create their own CDs with data or audio tracks. The
cheapest kind, CD-R (Compact Disk Recordable) uses a
layer of a dyed material and a thin gold layer to reflect the
laser beam. Data is recorded by a laser beam hitting the dye
layer in precise locations and marking it (in one of several
ways, depending on technology). The lengths of marked
(“striped”) track and unmarked track together encode the
data.

A more versatile alternative is the CD-RW (Compact
Disk, Readable/Writeable), which can be recorded on,
erased, and re-recorded many times. These disks have a
layer made from a mixture of such materials as silver, anti-
mony, and rare earths such as indium and tellurium. The

cellular automata 75

mixture forms many tiny crystals. To record data, an infra-
red laser beam is directed at pinpoint spots on the layer.
The heat from the beam melts the crystals in the target
spot into an amorphous mass. Because the amorphous state
has lower reflectivity than the original crystals, the reading
laser can distinguish the marked “pits” from the surround-
ing lands. Because of a special property of the material, a
beam with a heat level lower than the recording beam can
reheat the amorphous material to a point at which it will,
upon cooling, revert to its original crystal form. This per-
mits repeated erasing and re-recording.

DVD-ROM

The DVD (alternatively, Digital Video Disc or Digital Ver-
satile Disc) is similar to a CD, but uses laser light with a
shorter wavelength. This means that the size of the pits and
lands will be considerably smaller, which in turns means
that much more data can be stored on the same size disk. A
DVD disk typically stores up to 4.7 GB of data, equivalent to
about six CDs. This capacity can be doubled by using both
sides of the disk.

The high capacity of DVD-ROMs (and their record-
able equivalent, DVD-RAMs) makes them useful for stor-
ing feature-length movies or videos, very large games and
multimedia programs, or large illustrated encyclopedias.
The development of high-definition television (HDTV)
standards spurred the introduction of higher capacity
DVD formats. The competition between Sony’s Blu-Ray
and HD-DVD (backed by Toshiba and Microsoft, among
others) was resolved by 2008 in favor of the former. Blu-
Ray offers high capacity (25GB for single layer discs, 50GB
for dual layer).

Further Reading

About.com “Home Recording: Burning CDs.” Available online. URL:
http://homerecording.about.com/cs/burningeds/. Accessed May
10, 2007.

Taylor, Jim. DVD Demystified. 3rd ed. New York: McGraw-Hill,
2006.

White, Ron, and Timothy Edward Downs. How Computers Work.
8th ed. Indianapolis: Que, 2005.

cellular automata

In the 1970s, British mathematician John H. Conway
invented a pastime called the Game of Life, which was pop-
ularized in Martin Gardner’s column in Scientific American.
In this game (better termed a simulation), each cell in a grid
“lived” or “died” according to the following rules:

1. A living cell remains alive if it has either two or
three living neighbors.

2. A dead cell becomes alive if it has three living
neighbors.

3. A living cell dies if it has other than two or three
living neighbors.

Investigators created hundreds of starting patterns of liv-
ing cells and simulated how they changed as the rules were
repeatedly applied. (Each application of the rules to the
cells in the grid is called a generation.) They found, for

dlrekn Jwea Callebratan ».1.50 =

R T

A screen from a Game of Life simulator called Mirek’s Celebration.
(This version runs as a Web browser—accessible Java applet.) This
and other programs make it easy to experiment with a variety of
Life patterns and track them across hundreds of “generations.”

example, that a simple pattern of three living cells in a row
“blinked” or switched back and forth between a horizon-
tal and vertical orientation. Other patterns, called “glider
guns” ejected smaller patterns (gliders or spaceships) that
traveled across the grid.

The Game of Life is an instance of the general class
called cellular automata. Each cell operates like a tiny com-
puter that takes as input the states of its neighbors and
produces its own state as the output. (See also FINITE STATE
MACHINE.) The cells can be arranged in one (linear), two
(grid), or three dimensions, and a great variety of sets of
rules can be applied to them, ranging from simple variants
of Life to exotic rules that can take into account how long a
cell has been alive, or subject it to various “environmental”
influences.

APPLICATIONS

Cellular automata theory has been applied to a variety of
fields that deal with the complex interrelationships of com-
ponents, including biology (microbe growth and popula-
tion dynamics in general), ecology (including forestry), and
animal behavior, such as the flight of birds. (The cues that a
bird identifies in its neighbors are like the input conditions
for a cell in a cellular automaton. The “output” would be the
bird’s flight behavior.)

The ability of cellular automatons to generate a rich
complexity from simple components and rules mimics the
development of life from simple components, and thus cel-
lular automation is an important tool in the creation and
study of ARTIFICIAL LIFE. This can be furthered by com-
bining a set of cellular automation rules with a GENETIC
ALGORITHM, including a mechanism for inheritance of
characteristics. Cellular automation principles can also be
applied to engineering in areas such as pattern or image
recognition.

76 censorship and the Internet

In 2002, computer scientist and mathematician Stephen
Wolfram (developer of the Mathematica program) published
a book titled A New Kind of Science that undertakes the
modest project of explaining the fundamental structure and
behavior of the universe using the principles of cellular
automation. Time will tell whether this turns out to be
simply an idiosyncratic (albeit interesting) approach or a
generally useful paradigm.

Further Reading

Gutowitz, Howard, ed. Cellular Automata. Cambridge, Mass.: MIT
Press, 1991.

“Patterns, Programs, and Links for Conway’s Game of Life.”
Available online. URL: http:/www.radicaleye.com/lifepage/.
Accessed May 28, 2007.

Wojtowicz, Mirek. “Welcome to Mirek’s Celebration.: 1D and
2D Cellular Automation Explorer.” Available online. URL:
http:/www.mirwoj.opus.chelm.pl/ca/. Accessed May 28,

2007.
Wolfram, S. A New Kind of Science. Champaign, Il1l.: Wolfram
Media, 2002.

. Theory and Applications of Cellular Automata. Singapore:
World Scientific, 1986.

censorship and the Internet

Governments have always to varying degrees concerned
themselves with the content of public media. The grow-
ing use of the Internet for expressive activities (see BLOGS
AND BLOGGING and JOURNALISM AND COMPUTERS) has
prompted authoritarian governments such as that of China
to attempt to block “objectionable” material both through
filtering techniques (see WEB FILTER) and through pressure
on service providers. Further, users identified as creators of
banned content may be subjected to prosecution. However
because of the Internet’s decentralized structure and the
ability of users to operate relatively anonymously, Internet
censorship tends to be only partially effective (see ANO-
NYMITY AND THE INTERNET).

In the democratic West, Internet censorship generally
applies to only a few forms of content. Attempts to crimi-
nalize the online provision of pornography to minors in the
1996 Communications Decency Act have generally been
overturned by the courts as excessively infringing on the
right of adults to access such content. However, a succession
of bills seeking to require schools and libraries to install
Web-filtering software culminated in the Children’s Inter-
net Protection Act, which was upheld by the U.S. Supreme
Court in 2003.

Another area of potential censorship involves the rights
of bloggers and other nontraditional journalists to post or
link to documents that might be involved with a legal case.

Although the term “censorship” is sometimes lim-
ited to government action under criminal law, there are
other ways in which Internet content may be restricted.
For example, content providers seek to protect their work
from unauthorized copying or distribution (see INTELLEC-
TUAL PROPERTY AND COMPUTING). Civil sanctions can be
brought to bear on violators of copyright or in cases of

libel. However, as with other forms of censorlike activity
on the Internet, the targeted behavior can be curtailed only
to a limited extent.

CENSORSHIP IN CHINA

China has played a central role in the debate over cen-
sorship. The rapidly growing Chinese economy offers
seemingly unlimited market potential for Internet-based
businesses and sellers of software and hardware. However
the Chinese government’s desire to closely control the
spread of “subversive” ideas has brought it into collision
with the liberal ideas shared by many of the Internet’s most
important developers.

Human rights organizations such as Amnesty Interna-
tional have criticized online service providers such as Yahoo,
Google, and Microsoft for providing the Internet addresses
of users who have then been arrested. The companies have
been accused of putting the potential profits of China’s huge
market ahead of ensuring free access to information. Gener-
ally, the companies say they have no choice but to comply
with all local laws and legal demands for information about
users. However, critics charge that the technology compa-
nies have often gone well beyond mere compliance to the
provision of sophisticated filtering software for Web sites,
blogs, and online chat and discussion groups.

The actual extent of censorship in China seems to vary
considerably, depending on shifting political consider-
ations. The nation’s increasingly sophisticated users often
find ways around the censorship, such as through using
“proxy servers” that are inside the “Great Firewall” but can
connect to the outside Internet. (Encrypted protocols such
as VPN [virtual private networks] and SSH [secure shell]
can also be used, because their content is not detected by
monitoring and filtering software.)

Although generally not as highly organized, Internet
censorship can also be found in countries such as Burma
(Myanmar), North Korea, Iran, and Syria and to a lesser
extent in South Korea and Saudi Arabia.

While Internet censorship can be viewed as being ulti-
mately a political problem, technical realities limit its effec-
tiveness, and curtailing the free exchange of information
and open-ended communication that the Net affords is
likely to have economic costs as well.

Further Reading

Amnesty International. Available online. URL: http:/www.
amnestyusa.org. Accessed May 22, 2007.

Axelrod-Contrada, Joan. Reno v. ACLU: Internet Censorship. New
York: Benchmark Books, 2006.

Chase, Michael. Youve Got Dissent! Chinese Dissident Use of the
Internet and Beijing’s Counter-Strategies. Santa Monica, Calif.:
RAND Corporation, 2002.

Herumin, Wendy. Censorship on the Internet: From Filters to Free-
dom of Speech. Berkeley Heights, N.J.: Enslow, 2004.

Reporters without Borders. Handbook for Bloggers and Cyber-
Dissidents. Available online. URL: http:/www.rsf.org/
rubrique.php3?id_rubrique=542. Accessed May 8, 2007.

Ringmar, Erik. A Blogger’s Manifesto: Free Speech and Censorship in
the Age of the Internet. London: Anthem Press, 2007.

censorship and the Internet 77

+ Haringkids - Microsoft Internet Explorer S|
Fis R Yew Feories Toow el T
ek -] A [b Gearh o rFeaorrer ot Mede £ 5. L -

=
D e ey Ferigiucte Som et _art_flis Rem w ! EliGo
i) Peating
L Childranm | Haiferag Feaple
=1
EEITH
5 CTWITHE
L]

BB

Chifldien | Helging Peops

)i & Fr
alisie] TELFS DL 3 v o [T P | O LI UNY FERE LY

While some parents and many schools use filtering software to block Web sites considered to be inappropriate for children, another approach is to
provide a site with “child friendly” material and links. (IMAGE COURTESY OF THE ESTATE OF KEITH HARING, WWW.HARINGKIDS.COM)

78 central processing unit

central processing unit See CPU.

Cerf, Vinton D.
(1943-)
American
Computer Scientist

Vinton (Vint) Cerf is a key pioneer in the development of
the packet-switched networking technology that is the basis
for the Internet. In high school, Cerf distinguished himself
from his classmates by wearing a jacket and a tie and car-
rying a large brown briefcase, which he later described as
“maybe a nerd’s way of being different.” He has a lifelong
love for fantasy and science fiction, both of which explore
difference. Finally, Cerf was set apart by being hearing-
impaired as a result of a birth defect. He would overcome
this handicap through a combination of hearing aids and
communications strategies. And while he was fascinated by
chemistry and rocketry, it would be communications, math,
and computer science that would form his lifelong interest.

After graduating from Stanford in 1965 with a B.S. in
mathematics, Cerf worked at IBM as an engineer on its
time-sharing systems, while broadening his background in
computer science. At UCLA he earned on M.S. and then a
Ph.D. in computer science while working on technology
that could link one computer to another. Soon he was work-
ing with Len Kleinrock’s Network Measurement Center to
plan the ARPA network, a government-sponsored computer
link. In designing software to simulate a network that as
yet existed only on paper, Cerf and his colleagues had to
explore the issues of network load, response time, queuing,
and routing, which would prove fundamental for the real-
world networks to come.

By the summer of 1968, four universities and research
sites (UCLA, UC Santa Barbara, the University of Utah, and
SRI) as well as the firm BBN (Bolt Beranek and Newman)
were trying to develop a network. At the time, a custom
combination of hardware and software had to be devised
to connect each center’s computer to the other. The hard-
ware, a refrigerator-sized interface called an IMP, was still
in development.

By 1970, the tiny four-node network was in operation,
cobbled together with software that allowed a user on one
machine to log in to another. This was a far cry from a
system that would allow any computer to seamlessly com-
municate with another, however. What was needed on the
software end was a universal, consistent language—a pro-
tocol—that any computer could use to communicate with
any other computer on the network.

In a remarkable display of cooperation, Cerf and his
colleagues in the Network Working Group set out to design
such a system. The fundamental idea of the protocol is that
data to be transmitted would be turned into a stream of
“packets.” Each packet would have addressing information
that would enable it to be routed across the network and
then reassembled back into proper sequence at the desti-
nation. Just as the Post Office doesn’t need to know what’s
in a letter to deliver it, the network doesn’t need to know

whether the data it is handling is e-mail, a news article, or
something else entirely. The message could be assembled
and handed over to a program that would know what to do
with it.

With the development of what eventually became TCP/
IP (Transmission Control Protocol/Internet Protocol) Vint
Cerf and Bob Kahn essentially became the fathers of the
Internet we know today (see TCP/IP). As the online world
began to grow in the 1980s, Cerf worked with MCI in the
development of its electronic mail system, and then set up
systems to coordinate Internet researchers.

In later years, Cerf undertook new initiatives in the
development of the Internet. He was a key founder and the
first president of the Internet Society in 1992, serving in that
post until 1995 and then as chairman of the board, 1998-
1999. This group seeks to plan for expansion and change
as the Internet becomes a worldwide phenomenon. Cerf’s
interest in science fiction came full circle in 1998 when he
joined an effort at the Jet Propulsion Laboratory (JPL) in
Pasadena, California. There they are designing an “inter-
planetary Internet” that would allow a full network connec-
tion between robot space probes, astronauts, and eventual
colonists on Mars and elsewhere in the solar system.

In 2005 Cerf joined Google as its “chief Internet evan-
gelist,” where he has the opportunity to apply his imagina-
tion to network applications and access policies. Cerf also
served as chairman of the board of the Internet Corporation
for Assigned Names and Numbers (ICANN), a position that
he left in 2007.

Cerf has received numerous honors, including the IEEE
Kobayashi Award (1992), International Telecommunications
Union Silver Medal (1995), and the National Medal of Tech-
nology (1997). In 2005 Cerf (along with Robert Kahn) was
awarded the Presidential Medal of Freedom, the nation’s
highest civilian award.

Further Reading

“Cerf’s Up.” Personal Perspectives. Available online. URL: http:/
global.mci.com/ca/resources/cerfs_up/personal_perspective/.
Accessed May 28, 2007.

Hafner, Katie and Matthew Lyon. Where Wizards Stay Up Late: the
Origins of the Internet. New York: Simon & Schuster, 1996.

Henderson, Harry. Pioneers of the Internet. San Diego, Calif:
Lucent Books, 2002.

certificate, digital
The ability to use public key encryption over the Inter-
net makes it possible to send sensitive information (such
as credit card numbers) to a Web site without electronic
eavesdroppers being able to decode it and use it for crimi-
nal purposes (see ENCRYPTION and COMPUTER CRIME AND
SECURITY). Any user can send information by using a per-
son or organization’s public key, and only the owner of the
public key will be able to decode that information.
However, the user still needs assurance that a site actu-
ally belongs to the company that it says it does, rather
than being an imposter. This assurance can be provided
by a trusted third party certification authority (CA), such
as VeriSign, Inc. The CA verifies the identity of the appli-

certification of computer professionals 79

Certificate
authority
(cA)

Business’s public
key b

Consumer >

Initial contact

Y

Business

Digital certificate |-

Verifies and decodebA Encrypted reply

with CA's (such as credit card
public key Business’s transaction)
public
key

© Infobase Publishing

Digital certification relies upon public key cryptography and the
existence of a trusted third party, the Certificate Authority (CA).
First a business properly identifies itself to the CA and receives a
digital certificate. A consumer can obtain a copy of the business’
digital certificate and use it to obtain the business’s public key from
the CA. The consumer can now send encrypted information (such
as a credit card number) to the business.

cant and then provides the company with a digital certifi-
cate, which is actually the company’s public key encrypted
together with a key used by the CA and a text message.
(This is sometimes called a digital signature.) When a user
queries the Web site, the user’s browser uses the CA’s pub-
lic key to decrypt the certificate holder’s public key. That
public key is used in turn to decrypt the accompanying
message. If the message text matches, this proves that the
certificate is valid (unless the CA’s private key has somehow
been compromised).

The supporting technology for digital certification is
included in a standard called Secure Sockets Layer (SSL),
which is a protocol for sending encrypted data across the
Internet. SSL is supported by leading browsers such as
Microsoft Internet Explorer and Netscape. As a result, digi-
tal certification is usually transparent to the user, unless
the user is notified that a certificate cannot be verified.

Digital certificates are often attached to software such as
browser plug-ins so the user can verify before installation
that the software actually originates with its manufacturer
and has not been tampered with (such as by introduction of
a virus).

The use of digital certification is expanding. For exam-
ple, VeriSign and the federal General Services Administra-
tion (GSA) have begun an initiative called ACES (Access
Certificates for Electronic Services) that will allow citizens
a secure means to send information (such as loan applica-
tions) and to view benefits records. The IRS has a pilot

program for accepting tax returns that are digitally certified
and signed.

Further Reading

Altreya, Mohan, et al. Digital Signatures. Berkeley, Calif.: Osborne/
McGraw-Hill, 2002.

Brands, Stefan A. Rethinking Public Key Infrastructures and Digital
Certificates. Cambridge, Mass.: MIT Press, 2000.

Feghhi, Jalal, and Peter Williams. Digital Certificates: Applied
Internet Security. Reading, Mass.: Addison-Wesley, 1998.

certification of computer professionals
Unlike medicine, the law, or even civil engineering, the
computer-related fields do not have legally required certi-
fication. Given society’s critical dependence on computer
software and hardware for areas such as infrastructure
management and medical applications, there have been
persistent attempts to require certification or licensing of
software engineers. However, the fluid nature of the infor-
mation science field would make it difficult to decide which
application areas should have entry restrictions.

At present, a variety of academic degrees, professional
affiliations, and industry certificates may be considered in
evaluating a candidate for a position in the computing field.

ACADEMIC AND PROFESSIONAL CREDENTIALS

The field of computer science has the usual levels of aca-
demic credentials (baccalaureate, master’s, and doctoral
degrees), and these are often considered prerequisites for
an academic position or for industry positions that involve
research or development in areas such as ROBOTICS or ARTI-
FICIAL INTELLIGENCE. For business-oriented IT positions, a
bachelor’s degree in computer science or information sys-
tems may be required or preferred, and candidates who
also have a business-oriented degree (such as an MBA) may
be in a stronger position. However, degrees are generally
viewed only as a minimum qualification (or “filter”) before
evaluating experience in the specific application or platform
in question. While not a certification, membership in the
major professional organizations such as the Association
for Computing Machinery (ACM) and Institute for Electri-
cal and Electronic Engineers (IEEE) can be viewed as part
of professional status. Through special interest groups and
forums, these organizations provide computer professionals
with a good way to track emerging technical developments
or to broaden their knowledge.

In the early years of computing and again, in the micro-
computer industry of the 1980s, programming experience
and ability were valued more highly than academic creden-
tials. (Bill Gates, for example, had no formal college train-
ing in computer science.) In general, degree or certification
requirements tend to be imposed as a sector of the informa-
tion industry becomes well defined and established in the
corporate world. For example, as local area networks came
into widespread use in the 1980s, certifications were devel-
oped by Microsoft, Novell, and others. In turn, colleges
and trade schools can train technicians, using the certifi-
cate examinations to establish a curriculum, and numerous
books and packaged training courses have been marketed.

80 CaGl

In a newly emerging sector there is less emphasis on
credentials (which are often not yet established) and more
emphasis on being able to demonstrate knowledge through
having actually developed successful applications. Thus, in
the late 1990s, a high demand for Web page design and pro-
gramming emerged, and a good portfolio was more impor-
tant than the holding of some sort of certificate. However as
e-commerce and the Web became firmly established in the
corporate world, the cycle is beginning to repeat itself as
certification for webmastering and e-commerce applications
is developed.

INDUSTRY CERTIFICATIONS
Several major industry certifications have achieved wide-
spread acceptance.

Since 1973, the Institute for Certification of Computing
Professionals (ICCP) has offered certification based on gen-
eral programming and related skills rather than mastery of
particular platforms or products. The Associate Computing
Professional (ACP) certificate is offered to persons who have
a basic general knowledge of information processing and
who have mastered one major programming language. The
more advanced Certified Computing Professional (CCP) cer-
tificate requires several years of documented experience in
areas such as programming or information systems manage-
ment. Both certificates also require passing an examination.

A major trade group, the Computing Technology Indus-
try Association (CompTIA) offers the A+ Certificate for
computer technicians. It is based on passing a Core Service
Technician exam focusing on general hardware-related skills
and a DOS/Windows Service Technician exam that empha-
sizes knowledge of the operating system. The exams are
updated regularly based on required job skills as assessed
through industry practices.

Networking vendor Novell offers the Certified NetWare
Engineer (CNE) certificate indicating mastery of the instal-
lation, configuration, and maintenance of its networking
products or its GroupWise messaging system. The Certified
NetWare Administrator (CNA) certificate emphasizes sys-
tem administration.

Microsoft offers a variety of certificates in its networking
and applications development products. The best known
is the Microsoft Certified System Engineer (MCSE) certifi-
cate. It is based on a series of required and elective exams
that cover the installation, management, configuration, and
maintenance of Windows 2000 and other Microsoft net-
works.

A number of other vendors including Cisco Systems and
Oracle offer certification in their products. Given the ever-
changing marketplace, it is likely that most computer pro-
fessionals will acquire multiple certificates as their career
advances.

Further Reading

CompTIA Certification Page. Available online. URL: http:/www.
comptia.org/. Accessed May 28, 2007.

Institute for Certification of Computing Professionals. Available
online. URL: http://www.iccp.org. Accessed May 28, 2007.

“MCSE Guide.” Available online. URL: http://www.mcseguide.com/

Novell Education Page. Available online. URL: http:/www.novell.
com/training/certinfo/howdoi.htm. Accessed May 28, 2007.

CGI (common gateway interface)

By itself, a Web page coded in HTML is simply a “static”
display that does not interact with the user (other than for
the selection of links). (See HTML, DHTML, and XHTM.) Many
Web services, including online databases and e-commerce
transactions, require that the user be able to interact with
the server. For example, an online shopper may need to
browse or search a catalog of CD titles, select one or more
for purchase, and then complete the transaction by provid-
ing credit card and other information. These functions are
provided by “gateway programs” on the server that can
access databases or other facilities.

One way to provide interaction with (and through) a Web
page is to use the CGI (common gateway interface). CGl is a
facility that allows Web browsers and other client programs
to link to and run programs stored on a Web site. The stored
programs, called scripts, can be written in various languages
such as JavaScript or PHP (see SCRIPTING LANGUAGES) and
placed in a cgi-bin folder on the Web server.

The CGI script is referenced by an HTML hyperlink on
the Web page, such as

<A HREF="http://www. MyServer. coni cgi - bi n/
MyScri pt”>MyScri pt </ A>

Or more commonly, it is included in an HTML form
that the user fills in, then clicks the Submit button. In
either case, the script executes. The script can then pro-
cess the information the user provided on the form, and
return information to the user’s Web browser in the form

External program
(database, etc.)
A
/
Webpage
CaGl
program
Form
User's Updated
Web browser
browser display
© Infobase Publishing

CGI or Common Gateway Interface allows a program linked to
a Web page to obtain data from databases and use it to generate
forms to be shown on users’ Web browsers. For example, a CGI
program can link a Web user to a “shopping cart” and inventory
system for online purchases.

characters and strings 81

of an HTML document. The script can perform additional
functions such as logging the user’s query for marketing
purposes.

The complexity of Web features and the heavy load on
servers have prompted a number of strategies for serving
dynamic content more efficiently. Traditionally, each time
a CGI request is passed to the URL for a script, the appro-
priate language interpreter must be loaded and initialized.
However, modern Web servers such as Apache have built-in
modules for commonly used scripting languages such as
PHP, Perl, Python, and Ruby. This allows the Web server
to run the script directly without the overhead of starting a
new interpreter process.

A more fundamental shift in implementation is the
development of methods to tie together DHTML and XML
with a document model and scripting languages to allow
for dynamic changes in page content without having to
reload the page (see AJAX).

Note: the acronym CGI can also stand for “computer-
generated imagery” (see COMPUTER GRAPHICS).

Further Reading

“A Guide to HTML and CGI Scripts.” Available online. URL: http://
snowwhite.it.brighton.ac.uk/~mas/mas/courses/html/html.
html. Accessed May 30, 2007.

Hamilton, Jacqueline D. CGI Programming 101. Houston, Tex.:
CGI10l.com, 2000. (First six chapters are available free
online at URL: http:/www.cgil0l.com/book/) Accessed
August 12, 2007.

“The Most Simple Intro to CGI.” Available online. URL: http:/
bignosebird.com/prcgi.shtml. Accessed August 12, 2007.

characters and strings
While the attention of the first computer designers focused
mainly on numeric calculations, it was clear that much of
the data that business people and others would want to
manipulate with the new machines would be textual in
nature. Billing records, for example, would have to include
customer names and addresses, not just balance totals.

The “natural” representation of data in a computer is as
a series of two-state (binary) values, interpreted as binary
numbers. The solution for representing text (letters of the
alphabet, punctuation marks, and other special symbols) is
to assign a numeric value to each text symbol. The result is
a character code, such as ASCII (American Standard Code
for Information Interchange), which is the scheme used
most widely today. (Another system, EBCDIC (Extended
Binary-Coded Decimal Interchange Code) was used during
the heyday of IBM mainframes, but is seldom used today.)

The seven-bit ASCII system is compact (using one byte
of memory to store each character), and was quite suit-
able for early microcomputers that required only the basic
English alphabet, punctuation, and a few control charac-
ters (such as carriage return). In an attempt to use charac-
ters to provide simple graphics capabilities, an “extended
ASCII” was developed for use on IBM-compatible PCs.
This used eight bits, increasing the number of charac-
ters available from 128 to 256. However, the use of bit-
mapped graphics in Windows and other operating systems

made this version of ASCII unnecessary. Instead, the ANSI
(American National Standards Institute) eight-bit charac-
ter set used the additional character positions to store a
variety of special symbols (such as fractions and the copy-
right symbol) and various accent marks used in European
languages.

TABLE OF 7-BIT ASCI1 CHARACTER CODES

The following are control (nonprinting) characters:
0 Null (nothing)

7 Bell (rings on an old teletype; beeps on most PCs)

8 Backspace

9 Tab

10 Line feed (goes to next line without changing column
position)

13 Carriage return (positions to beginning of next line)
26 End of file
27 [Esc] (Escape key)

The characters with codes from 32 to 127 produce printable
characters.

32 [space] 64 @ 96)
33 ! 65 A 97 a
34 “ 66 B 98 b
35 # 67 C 99 c
36 $ 68 D 100 d
37 % 69 E 101 e
38 & 70 F 102 f
39 ! 71 G 103 g
40 (72 H 104 h
41) 73 | 105 i
42 74 106 j
43 + 75 K 107 k
44 ! 76 L 108 I
45 - 77 M 109 m
46 . 78 N 110 n
47 79 O 111 o
48 0 80 P 112 p
49 1 81 Q 113 q
50 2 82 R 114 r
51 3 83 S 115 s
52 4 84 T 116 t
53 5 85 U 117 u
54 6 86 \ 118 v
55 7 87 w 119 w
56 8 88 X 120 X
579 89 Y 121y
58 : 90 Z 122 z
59 ; 91 [123 {
60 < 92 \ 124 |
61 = 93] 125 }
62 > 94 A 126 ~
63 ? 95 - 127 [delete]

82 characters and strings

As computer use became more widespread internation-
ally, even 256 characters proved to be inadequate. A new
standard called Unicode can accommodate all of the world’s
alphabetic languages including Arabic, Hebrew, and Japa-
nese (Kana Unicode schemes can also be used to encode
ideographic languages (such as Chinese) and languages
such as Korean that use syllabic components. At present
each ideograph has its own character code, but Unicode 3.0
includes a scheme for describing ideographs through their
component parts (radicals). Most modern operating systems
use Unicode exclusively for character representation. How-
ever, support in software such as Web browsers is far from
complete, though steadily improving. Unicode also includes
many sets of internationally used symbols such as those
used in mathematics and science. In order to accommodate
this wealth of characters, Unicode uses 16 bits to store each
character, allowing for 65,535 different characters at the
expense of requiring twice the memory storage.

PROGRAMMING WITH STRINGS
Before considering how characters are actually manipulated
in the computer, it is important to realize that what the
binary value such as 1000001 (decimal 65) stored in a byte
of memory actually represents depends on the context given
to it by the program accessing that location. If the program
declares an integer variable, then the data is numeric. If the
program declares a character (char) value, then the data will
be interpreted as an uppercase “A” (in the ASCII system).
Most character data used by programs actually repre-
sents words, sentences, or longer pieces of text. Multiple
characters are represented as a string. For example, in tradi-
tional BASIC the statement:

NAME$ = “Honer Sinpson”

declares a string variable called NAME$ (the $ is a suffix
indicating a string) and sets its value to the character string
“Homer Simpson.” (The quotation marks are not actually
stored with the characters.)

Some languages (such as BASIC) store a string in mem-
ory by first storing the number of characters in the string,
followed by the characters, with one in each byte of mem-
ory. In the family of languages that includes C, however,
there is no string type as such. Instead, a string is stored as
an array of char. Thus, in C the preceding example might
look like this:

char Nane [20] = “Honer Sinpson”;

This declares Name as an array of up to 20 characters, and
initializes it to the string literal “Homer Simpson.”
An alternative (and equivalent) form is:

char * Nane = “Honmer Sinpson”;

Here Name is a pointer that returns the memory location
where the data begins. The string of characters “Homer
Simpson” is stored starting at that location.

Unlike the case with BASIC, in the C languages, the
number of characters is not stored at the beginning of the
data. Rather, a special “null” character is stored to mark the
end of the string.

Programs can test strings for equality or even for greater
than or less than. However, programmers must be careful
to understand the collating sequence, or the order given to
characters in a character set such as ASCII. For example the
test

If State = “CA’

will fail if the current value of State is “ca.” The lowercase
characters have different numeric values than their upper-
case counterparts (and indeed must, if the two are to be
distinguished). Similarly, the expression:

“Zebra” < “aardvark”

€

is true because uppercase Z comes before lowercase “a” in
the collating sequence.

Programming languages differ considerably in their
facilities for manipulating strings. BASIC includes built-in
functions for determining the length of a string (LEN) and
for extracting portions of a string (substrings). For example
given the string Test consisting of the text “Test Data,” the
expression Right$ (Test, 4) would return “data.”

Following their generally minimalist philosophy, the
C and C++ languages contains no string facilities. Rather,
they are provided as part of the standard library, which can
be included in programs as needed. In the following little
program:

#i ncl ude <i ostream h>

#i ncl ude <string. h>

void main ()

{

char Stringl[20];

char String2[20];

strcpy (Stringl, “Homer”);
strcpy (String2, “Sinmpson”);
/1 Concatenate string2 to the end of stringl
strcat (Stringl, String2);
cout Stringl <<endl;

}

Here the strcpy function is used to initialize the two strings,
and then the strcat (string concatenate) function is used to
combine the two strings and store the result back in stringl,
which is then sent to the output.

As an alternative, one can take advantage of the object
orientation of C++ and define a string class. The addition
operator (+) can then be extended, or “overloaded” so that
it will concatenate strings. Then, the preceding program,
instead of using the strcat function, can use the more natu-
ral syntax:

cout << Stringl + String2

to display the combined strings.

STRING-ORIENTED LANGUAGES

Sophisticated string processing (such as parsing and pat-
tern matching) tends to be awkward to express in tradi-
tional number-oriented programming languages. Several
languages have been designed especially for manipulating
textual data. Snobol, designed in the early 1960s, is best

chatterbots 83

known for its sophisticated pattern-matching and pattern
processing capabilities. A similar language, Icon, is widely
used for specialized string-processing tasks today. Many
programmers working with textual data in the UNIX envi-
ronment have found that the awk and Perl languages are
easier to use than C for extracting and manipulating data
fields. (See AWK and PERL.)

Further Reading

Gillam, Richard. Unicode Demystified: A Practical Programmer’s
Guide to the Encoding Standard. Reading, Mass.: Addison-
Wesley, 2002.

Korpela, Jukka. Unicode Explained. Sebastapol, Calif.: O'Reilly,
2006.

A Tutorial on Character Code Issues. Available online. URL: http:/
www.cs.tut.fi/~jkorpela/chars.html. Accessed May 31, 2007.

Unicode Consortium. Unicode Standard, Version 5.0. 5th ed. Read-
ing, Mass.: Addison-Wesley, 2006.

chat, online

In general terms, to “chat” is to communicate in real time
by typing messages to other online users who can immedi-
ately type messages in reply. It is this conversational imme-
diacy that distinguishes chat services from conferencing
systems or bulletin boards.

COMMERCIAL SERVICES

Many PC users have become acquainted with chatting
through participating in “chat rooms” operated by online
services such as AMERICA ONLINE (AOL). A chat room is
a “virtual space” in which people meet either to social-
ize generally or to discuss particular topics. At their best,
chat rooms can develop into true communities whose par-
ticipants develop long-term friendships and provide one
another with information and emotional support (see VIR-
TUAL COMMUNITY).

However, the essentially anonymous character of chat
(where participants often use “handles” rather than real
names) that facilitates freedom of expression can also pro-
vide a cover for mischief or even crime. Chat rooms have
acquired a rather lurid reputation in the eyes of the general
public. There has been considerable public concern about
children becoming involved in inappropriate sexual con-
versation. This has been fueled by media stories (sometimes
exaggerated) about children being recruited into face-to-
face meetings with pedophiles. AOL and other online ser-
vices have tried to reduce such activity by restricting online
sex chat to adults, but there is no reliable mechanism for
a service to verify its user’s age. A chat room can also be
supervised by a host or moderator who tries to prevent
“flaming” (insults) or other behavior that the online service
considers to be inappropriate.

DISTRIBUTED SERVICES

For people who find commercial online services to be too
expensive or confining, there are alternatives available for
just the cost of an Internet connection. The popular Inter-
net Relay Chat (IRC) was developed in Finland by Jarkko
Oikarinen in the late 1980s. Using one of the freely avail-

able client programs, users connect to an IRC server, which
in turn is connected to one of dozens of IRC networks.
Users can create their own chat rooms (called channels).
There are thousands of IRC channels with participants all
over the world. To participate, a user simply joins a chan-
nel and sees all messages currently being posted by other
users of the channel. In turn, the user’s messages are posted
for all to see. While IRC uses only text, there are now
enhanced chat systems (often written in Java to work with a
Web browser) that add graphics and other features.

There are many other technologies that can be used
for conversing via the Internet. Some chat services (such
as Cu-SeeMe) enable participants to transmit their images
(see VIDEOCONFERENCING and WEB CAM). Voice can also
be transmitted over an Internet connection (see VOIP). For a
very pervasive form of “ad hoc” textual communication, see
TEXTING AND INSTANT MESSAGING.

Further Reading

McDonald, Wayne. Chat Rooms in Wonderland. Frederick, Md.:
PublishAmerica, 2005.

Ploch, Nicolas. “A Short IRC Primer.” Available online. URL: http:/
www.irchelp.org/irchelp/ircprimer.html. Accessed June 1,
2007.

Wasuki, Dennis D. Self-Games and Body-Play: Personhood in Online
Chat and Cybersex. Bern: Peter Lang, 2003.

Weverka, Peter. Mastering ICQ: the Official Guide. Dulles, Va.: ICQ
Press, 2001.

chatterbots

The famous Turing test (see TURING, ALAN M.) proposes
that if a human is unable to reliably distinguish mes-
sages from a computer from those of another person, the
computer program involved can at least be provisionally
declared to be “intelligent.” The advent of textual commu-
nication via the Internet (see TEXTING AND INSTANT MES-
SAGING) has afforded a variety of ways to attempt to meet
this challenge. Programs that mimic human conversational
styles have come to be known as “chatterbots.”

The prototypical chatterbot was ELIZA, developed by
Joseph Weizenbaum in the mid-1960s (see WEIZENBAUM,
JOSEPH). ELIZA mimicked a form of nondirective psychother-
apy in which the therapist echoes or plays off of the client’s
statements as a form of gentle encouragement and validation.
Thus if one types, “My father didn’t really like me,” ELIZA
might reply, “Tell me more about your father” Although
primitive, ELIZA once inadvertently fooled an executive into
thinking he was exchanging messages with Weizenbaum.
Other classic chatterbots include Parry, designed to mimic a
paranoid, and the story-generating Racter.

The first online chatterbot, Julia, was created by Michael
Mauldin in 1994. (Mauldin also coined the term chatterbot.)
More sophisticated chatterbots include Jabberwocky, which
includes learning algorithms, and ELLA, which applies
linguistic principles to produce more realistic speech (see
NATURAL LANGUAGE PROCESSING). On a negative note, some
chatterbots have been designed to enter chat rooms and
spew advertising (spambots) or even to elicit personal infor-
mation (see IDENTITY THEFT and PHISHING AND SPOOFING).

84 chess and computers

One of the best known and most versatile modern chatter-
bots is ALICE (Artificial Linguistic Internet Computer Entity),
developed by Richard Wallace. ALICE does much more than
simply echo statements; it includes an elaborate parser and
sentence generator and specialized scripts for initiating or
responding to conversational gambits. ALICE can even tell
lies and spread “gossip” that it learns from other users.

In the following dialog ALICE seems to be able to
respond appropriately:

Human: Are you intelligent?

ALICE: I am highly intelligent. I have many intellectual functions.
Human: How do you know you are intelligent?

ALICE: By introspection.

However the illusion breaks down as the matter is
pressed further and the bot uses a “deflection” strategy:

Human: What were you thinking while you said that?
ALICE: I was minding my own business.
Human: How do you feel about being interrogated in this way?

ALICE: The opposite of not being interrogated in this way.

Still, with more than 25,000 conversation templates
stored in XML files that are modifiable by the user, ALICE
has repeatedly won the Loebner Contest, a modern version
of the Turing test.

Although many are created as programming exercises
or for amusement, chatterbots embody principles that are
important in artificial intelligence research, including natu-
ral language processing and machine learning (see ARTI-
FICIAL INTELLIGENCE). Techniques first developed with
chatterbots can contribute to the creation of programs
designed to provide answers to users’ questions or other
forms of assistance (see SOFTWARE AGENT).

Further Reading

A.LILC.E. Artificial Intelligence Foundation. Available online.
URL: http://www.alicebot.org/. Accessed April 27, 2007.

Chatterbot Central (The Simon Laven Page). Available online.
URL: http://www.simonlaven.com/. Accessed April 27, 2007.

Loebner Prize. Available online. URL: http:/www.loebner.net/
Prizef/loebner-prize.html. Accessed April 27, 2007.

chess and computers
With simple rules but endless permutations, chess has fas-
cinated millions of players for hundreds of years. When
mechanical automatons became fashionable in the 18th
century, onlookers were intrigued by “the Turk,” a chess-
playing automaton. While the Turk was eventually shown
to be a hoax (a human player was hidden inside), the devel-
opment of the electronic digital computer in the mid-20th
century provided the opportunity to create a true automatic
chess player.

In 1950 Claude Shannon outlined the two basic strate-
gies that would be used by future chess-playing programs.
The “brute force” strategy would examine the possible

moves for the computer chess player, the possible replies
of the opponent to each move, the possible next moves by
the computer, and so on for as many half moves or “plies”
as possible. The moves would be evaluated by a “minimax”
algorithm that would find the move that best improves the
computer’s position despite the opponent’s best play.

The fundamental problem with the brute force is the
“combinatorial explosion”: Looking ahead just three moves
(six plies) would involve evaluating more than 700,000,000
positions. This was impractical given the limited comput-
ing power available in the 1950s. Shannon realized this
and decided that a successful chess program would have to
incorporate principles of chess strategy that would enable it
to quickly recognize and discard moves that did not show
a likelihood of gaining material or improving the position
(such as by increasing control of center squares). As a result
of this “pruning” approach, only the more promising initial
moves would result in the program looking ahead—but
those moves could be analyzed much more deeply.

The challenge of the pruning approach is the need to
identify the principles of good play and codify them in such
a way that the program can use them reliably. Progress
was slow at first—programs of the 1950s and 1960s could
scarcely challenge an experienced amateur human player,
let alone a master. A typical program would play a mix-
ture of reasonable moves, odd-looking but justifiable moves,
and moves that showed the chess version of “nearsighted-
ness.” By the 1970s, however, computing power was rapidly
increasing, and a new generation of programs such as Chess
4.0 from Northwestern University abandoned most pruning
techniques in favor of brute-force searches that could now
extend further ahead. In practice, each programmer chose a
particular balance between brute force and pruning-selection

In the 18th century the Turk, a mechanical chess playet; astonished
onlookers. Although the original Turk was a fraud (a small human
player was hidden inside), the modern computer chess program
Fritz 9 pays its homage by simulating its predecessor. (FRITZ 9,
CHESSBASE GMBH, WWW.CHESSBASE.COM)

chip 85

techniques. An ever-increasing search base could be com-
bined with evaluation of particularly important positional
features (such as the possibility of creating a “passed pawn”
that could be promoted to a queen).

By the end of the 1970s, International Master David
Levy was still beating the best chess programs of the time
(defeating Chess 4.7 in 1978). A decade later, however, Levy
was defeated in 1989 by Deep Thought, a program that
ran on a specially designed computer that could examine
hundreds of millions of positions per move. That same year
World Champion Garry Kasparov decisively defeated the
machine. In 1996, however, the successor program Deep
Blue (sponsored by IBM) shocked the chess world by beat-
ing Kasparov in the first game of their match. Kasparov
went on to win the match, but the following year an updated
version of Deep Blue defeated Kasparov 3 1/2-2 1/2. A com-
puter had arguably become the strongest chess player in the
world. As a practical matter, the match brought IBM invalu-
able publicity as a world leader in supercomputing.

CHESS AND Al

The earliest computer chess theorists such as Claude Shan-
non and Alan Turing saw the game as one potential way
to demonstrate true machine intelligence. Ironically, by
the time computers had truly mastered chess, the artificial
intelligence (AI) community had concluded that mastering
the game was largely irrelevant to their goals. Al pioneers
Herbert Simon and John McCarthy have referred to chess
as “the Drosophila of AL” By this they mean that, like the
ubiquitous fruit flies in genetics research, chess became an
easy way to measure computer prowess. But what was it
measuring? The dominant brute-force approach was more
a measure of computing power than the application of such
Al techniques as pattern recognition. (There is, however,
still some interest in writing chess programs that “think”
more like a human player.) In recent years there has been
some interest in programming computers to play the Asian
board game Go, where positional and structural elements
play a greater role than in chess. However, even the latest
generation of Go programs seem to be relying more on a
statistical approach than a deep conceptual analysis.

Further Reading

Computer History Museum. “Mastering the Game: A History
of Computer Chess.” Available online. URL: http:/www.
computerhistory.org/chess/. Accessed April 28, 2007.

Hsu, Feng-Hsiung. Behind Deep Blue: Building the Computer That
Defeated the World Chess Champion. Princeton, N.J.: Princ-
eton University Press, 2004.

Levy, David, and Monty Newborn. How Computers Play Chess.
New York: Computer Science Press, 1991.

Shannon, Claude E. “Programming a Computer for Playing
Chess.” Philosophical Magazine 41 (1950): 314. Available from
Computer History Museum. Available online. URL: http:/
archive.computerhistory.org. Accessed April 27, 2007.

chip
As early as the 1930s, researchers had begun to investi-
gate the electrical properties of materials such as silicon

and germanium. Such materials, dubbed “semiconductors,”
were neither a good conductor of electricity (such as cop-
per) nor a good insulator (such as rubber). In 1939, one
researcher, William Shockley, wrote in his notebook “It has
today occurred to me that an amplifier using semiconduc-
tors rather than vacuum [tubes] is in principle possible.” In
other words, if the conductivity of a semiconductor could
be made to vary in a controlled way, it could serve as an
electronic “valve” in the same way that a vacuum tube can
be used to amplify a current or to serve as an electronic
switch.

The needs of the ensuing wartime years made it evi-
dent that a solid-state electronic device would bring many
advantages over the vacuum tube: compactness, lower
power usage, higher reliability. Increasingly complex elec-
tronic equipment, ranging from military fire control sys-
tems to the first digital computers, further underscored the
inadequacy of the vacuum tube.

In 1947, William Shockley, along with John Bardeen
and Walter Brattain, invented the transistor, a solid-state
electronic device that could replace the vacuum tube for
most low-power applications, including the binary switch-
ing that is at the heart of the electronic digital computer.
But as the computer industry strove to pack more process-
ing power into a manageable volume, the transistor itself
began to appear bulky.

Starting in 1958, two researchers, Jack Kilby of Texas
Instruments and Robert Noyce of Fairchild Semiconduc-
tor, independently arrived at the next stage of electronic
miniaturization: the integrated circuit (IC). The basic idea
of the IC is to make semiconductor resistors, capacitors,
and diodes, combine them with transistors, and assemble
them into complete, compact solid-state circuits. Kilby did
this by embedding the components on a single piece of ger-
manium called a substrate. However, this method required
the painstaking and expensive hand-soldering of the tiny
gold wires connecting the components. Noyce soon came
up with a superior method: Using a lithographic process, he
was able to print the pattern of wires for the circuit onto a
board containing a silicon substrate. The components could
then be easily connected to the circuit. Thus was born the
ubiquitous PCB (printed circuit board). This technology
would make the minicomputer (a machine that was roughly
refrigerator-sized rather than room-sized) possible during
the 1960s and 1970s. Besides the PCBs being quite reli-
able compared to hand-soldered connections, a failed board
could be easily “swapped out” for a replacement, simplify-
ing maintenance.

FrROM IC TO CHIP

The next step to the truly integrated circuit was to form the
individual devices onto a single ceramic substrate (much
smaller than the printed circuit board) and encapsulate
them in a protective polymer coating. The device then func-
tioned as a single unit, with input and output leads to con-
nect it to a larger circuit. However, the speed of this “hybrid
IC” is limited by the relatively large distance between com-
ponents. The modern IC that we now call the “computer
chip” is a monolithic IC. Here the devices, rather than being

86 chipset

attached to the silicon substrate, are formed by altering the
substrate itself with tiny amounts of impurities (a process
called “doping”). This creates regions with an excess of
electrons (n-type, for negative) or a deficit (p-type for posi-
tive). The junction between a p and an n region functions
as a diode. More complex arrangements of p and n regions
form transistors. Layers of transistors and other devices can
be formed on top of one another, resulting in a highly com-
pact integrated circuit. Today this is generally done using
optical lithography techniques, although as the separation
between components approaches 100 nm (nanometers, or
billionths of a meter) it becomes limited by the wavelength
of the light used.

In computers, the IC chip is used for two primary func-
tions: logic (the processor) and memory. The microproces-
sors of the 1970s were measured in thousands of transistor
equivalents, while chips such as the Pentium and Athlon
being marketed by the late 1990s are measured in tens
of millions of transistors (see MICROPROCESSOR). Mean-
while, memory chips have increased in capacity from the
4K and 16K common around 1980 to 256 MB and more.
In what became known as “Moore’s law,” Gordon Moore
has observed that the number of transistors per chip has
doubled roughly every 18 months.

FUTURE TECHNOLOGIES

Although Moore’s law has proven to be surprisingly resil-
ient, new technologies will be required to maintain the
pace of progress.

In January 2007, Intel and IBM separately announced a
process for making transistors out of the exotic metal haf-
nium. It turns out that hafnium is much better than the tra-
ditional silicon at preventing power leakage (and resulting
inefficiency) through layers that are only about five atoms
thick. Hafnium transistors can also be packed more closely
together and/or run at a higher speed.

Another approach is to find new ways to connect the
transistors so they can be placed closer together, allow-
ing signals to travel more quickly and thus provide faster
operation. Hewlett-Packard (HP) is developing a way to
place the connections on layers above the transistors them-
selves, thus reducing the space between components. The
scheme uses two layers of conducting material separated by
a layer of insulating material that can be made to conduct
by having a current applied to it. Although promising, the
approach faces difficulties in making the wires (only about
100 atoms thick) reliable enough for applications such as
computer memory or microprocessors.

Ultimately, direct fabrication at the atomic level (see
NANOTECHNOLOGY) will allow for the maximum density
and efficiency of computer chips.

Further Reading

Baker, R. Jacob, Harry W. Li, and David E. Boyce. CMOS Circuit
Design, Layout and Simulation. New York: IEEE Press, 1998.

Saint, Christopher and Judy Saint. IC Layout Basics. New York:
McGraw-Hill, 2001.

Semiconductor Industry Association. Available online. URL:
http://www.sia-online.org/home.cfm. Accessed August 13,
2007.

Thompson, J. M. T., ed. Visions of the Future: Physics and Electron-
ics. New York: Cambridge University Press, 2001.

chipset

In personal computers a chipset is a group of integrated
circuits that together perform a particular function. System
purchasers generally think in terms of the processor itself
(such as a Pentium III, Pentium IV, or competitive chips
from AMD or Cyrix). However they are really buying a
system chipset that includes the microprocessor itself (see
MICROPROCESSOR) and often a memory cache (which may be
part of the microprocessor or a separate chip—see CACHE)
as well as the chips that control the memory bus (which
connects the processor to the main memory on the moth-
erboard—see BUS.) The overall performance of the system
depends not just on the processor’s architecture (including
data width, instruction set, and use of instruction pipe-
lines) but also on the type and size of the cache memory,
the memory bus (RDRAM or “Rambus” and SDRAM) and
the speed with which the processor can move data to and
from memory.

In addition to the system chipset, other chipsets on the
motherboard are used to support functions such as graphics
(the AGP, or Advanced Graphics Port, for example), drive
connection (EIDE controller), communication with exter-
nal devices (see PARALLEL PORT, SERIAL PORT, and USB), and
connections to expansion cards (the PCI bus).

At the end of the 1990s, the PC marketplace had chip-
sets based on two competing architectures. Intel, which
originally developed an architecture called Socket 7, has
switched to the more complex Slot-1 architecture, which
is most effective for multiprocessor operation but offers
the advantage of including a separate bus for accessing the
cache memory. Meanwhile, Intel's main competitor, AMD,
has enhanced the Socket 7 into “Super Socket 7” and is
offering faster bus speeds. On the horizon may be com-
pletely new architecture. In choosing a system, consumers
are locked into their choice because the microprocessor pin
sockets used for each chipset architecture are different.

Further Reading

Intel. “Desktop Chipsets.” Available online. URL: http:/www.
intel.com/products/desktop/chipsets/. Accessed June 6, 2007.

“Motherboards.” Available online. URL: http://www.motherboards.
org/index.html. Accessed June 6, 2007.

Walrath, Josh. “Chipsets Today and Tomorrow.” ExtremeTech.
Available online. URL: http:/www.extremetech.com/article2/
0,1697,1845493,00.asp. Accessed June 6, 2007.

Church, Alonzo
(1903-1995)
American
Mathematician

Born in Washington, D.C., mathematician and logician
Alonzo Church made seminal contributions to the funda-
mental theory of computation. Church was mentored by
noted geometer Oswald Veblen and graduated from Prince-

Cisco Systems 87

ton with an A.B. in mathematics in 1924. Veblen encouraged
Church to devote his graduate thesis to the investiga-
tion of the fundamental problem of computability. At the
time, mathematician David Hilbert and his followers were
attempting to create a formal way to express mathematical
propositions.

In 1927, Church received his Ph.D. from Princeton for
a dissertation on the axiom of choice in set theory. During
the 1930s, Church developed the lambda calculus, which
provided rules for substituting bound variables in generat-
ing mathematical functions. The Church thesis (also called
the Church-Turing thesis, because Alan Turing [see TUR-
ING, ALAN] approached the same conclusion from a differ-
ent angle) stated that every calculable function in number
theory could be defined in lambda calculus and was also
computable in Turing’s sense (see COMPUTABILITY AND COM-
PLEXITY). This provided the theoretical confidence that given
appropriate technology, computers could tackle a variety of
problems reliably. At the same time, another of Church’s
achievements, the Church theorem, proved that there were
theorems that could not be proven by any computer.

Church’s lambda calculus became important for the
design and verification of computer languages, and the LISP
language in particular was based on lambda expressions.
Computer scientists working with problems in list pro-
cessing and the use of recursion also have owed much to
Church’s pioneering work.

Church taught at Princeton for many years. In 1961,
he received the title of Professor of Mathematics and Phi-
losophy. In 1967, he took the same position at UCLA, where
he was active until 1990. He received numerous honorary
degrees, and in 1990 an international symposium was held
in his honor at the State University of New York at Buffalo.

Further Reading

Barendregt, H. “The Impact of the Lambda Calculus in Logic and
Computer Science.” The Bulletin of Symbolic Logic 3: 181-215.

Church, Alonzo. Introduction to Mathematical Logic. Princeton,
NJ.: Princeton University Press, 1956.

Copeland, Jack. “The Church-Turing Thesis.” AlanTuring.net.
Available online. URL: http:/www.alanturing.net/turing_
archive/pages/Reference%20Articles/The%20Turing-Church
%20Thesis.html. Accessed June 6, 2007.

Davis, M. The Undecidable: Basic Papers on Undecidable Proposi-
tions, Unsolvable Problems, and Computable Functions. Hack-
ett, N.Y.: Raven Press, 1965.

Cisco Systems

Cisco Systems (NASDAQ symbol: CSCO) builds much of
the physical infrastructure of the Internet—the routers and
switches that direct the streams of data between Web serv-
ers and millions of users, as well as specialized networking,
security, and storage devices.

Cisco was founded in 1984 by Leo Bosack and Sandy
Lerner, a married couple who worked in computer opera-
tions at Stanford University. (The name “Cisco” is from
“San Francisco,” and the company’s logo is a stylized ver-
sion of the Golden Gate Bridge.)

The company focused on networking at a time when
that sector of the computer industry was still rather small.
They were able to build one of the first routers that could
link otherwise incompatible computers over the Internet.
(Eventually, when the protocol was standardized (see TCP/
IP), routers could focus on the burgeoning traffic in IP
packets.)

As the market for basic hardware became relatively sat-
urated, Cisco began to emphasize the development of more
intelligent “application aware” routing solutions as well
as equipment geared for distributed processing (see GRID
COMPUTING).

Cisco grew along with the Internet/Web boom of the
late 1990s. In 2000 Cisco was for a time the most valu-
able company in the world, with a market capitalization of
more than half a trillion dollars. (Today that has shrunk to
a “mere” $180 billion or so—still one of the world’s most
valuable companies.)

THE “LAST MILE”

In the telecommunications industry, “the last mile” refers to
the connections and equipment that actually bring content
to users’ homes and businesses. One source of Cisco’s con-
tinued growth in the 2000 decade is the way it has addressed
the consumer sector through strategic acquisitions. In 2003,
Cisco acquired Linksys, maker of home Internet routers and
wireless access points. In 2005, Scientific Atlanta—maker
of cable modems, digital cable boxes, and other consumer
equipment—also became a Cisco company.

The company has also entered the area of Internet tele-
phony (see VOIP) by teaming up with Skype to build a cord-
less phone that can connect to a computer to make phone
calls over the Internet.

Moving from hardware into software, Cisco in 2007
purchased Utah Street Networks, a San Francisco—based
maker of software to link online communities (see also
SOCIAL NETWORKING) and operator of the Tribe.net Web
site. Around the same time, Cisco made a much larger buy,
acquiring WebEx, maker of online collaboration software,
for $3.2 billion.

In 2007 Cisco had revenue of $35 billion, with more
than 63,000 employees.

Further Reading

Burrows, Peter. “Microsoft and Cisco: Product Promises: The Tech
Giants’ New Spirit of Cooperation Is Promising, but CEOs
Ballmer and Chambers Say Making the Alliance Work Will
Be Difficult.” Business Week Online, August 20, 2007. Avail-
able online. URL: http://www.businessweek.com/technol-
ogy/content/aug2007/tc20070820_282297. htm?chan=search.
Accessed September 3, 2007.

Cisco Corporation Web site. Available online. URL: http:/www.
cisco.com/. Accessed September 3, 2007.

Paulson, E. Inside Cisco: The Real Story of Sustained M&A Growth.
New York: Wiley, 2001.

Stauffer, Davide. Nothing but Net: Business the Cisco Way. Milford,
Conn.: Capstone Publishing, 2000.

Velte, Toby J., and Anthony T. Velte. Cisco: A Beginner’s Guide. 4th
ed. New York: McGraw-Hill, 2007.

Waters, John K. John Chambers and the Cisco Way: Navigating
through Volatility. New York: Wiley, 2002.

88 class

class

A class is a data type that combines both a data structure
and methods for manipulating the data. For example, a
string class might consist of an array to hold the charac-
ters in the string and methods to compare strings, combine
strings, or extract portions of a string (see CHARACTERS
AND STRINGS).

As with other data types, once a class is declared,
objects (sometimes called instances) of the class can be
created and used. This way of structuring programs is
called object-oriented programming because the class
object is the basic building block (see OBJECT-ORIENTED
PROGRAMMING).

Object-oriented programming and classes provide sev-
eral advantages over traditional block-structured languages.
In a traditional BASIC or even Pascal program, there is
no particular connection between the data structure and
the procedures or functions that manipulate it. In a large
program one programmer might change the data structure
without alerting other programmers whose code assumes
the original structure. On the other hand, someone might
write a procedure that directly manipulates the internal
data rather than using the methods already provided. Either
transgression can lead to hard-to-find bugs.

With a class, however, data and procedures are bound
together, or encapsulated. This means that the data in a
class object can be manipulated only by using one of the
methods provided by the class. If the person in charge
of maintaining the class decides to provide an improved
implementation of the data structure, as long as the data
parameters expected by the class methods do not change,
code that uses the class objects will continue to function

properly.

Class circle

Private data
Position | Radius

b

Public methods
Get positionl Get radius

L

Using program | P = MyCircle.GetPosition

© Infobase Publishing

A class encapsulates (or hides) its internal information from the
rest of the program. When the program calls MyCircle.GetPosition,
the GetPosition member function of the MyCircle Circle class object
retrieves the private Position data and sends it back to the calling
statement, where it is assigned to the variable P Private data can-
not be directly accessed or changed by an outside caller.

Most languages that use classes also allow for inheri-
tance, or the ability to create a new class that derives data
and methods from a “parent” class and then modifies or
extends them. For example, a class that provides support
for 3D graphics could be derived from an existing class for
2D graphics by adding data items such as a third (Z) coor-
dinate and replacing a method such as “line” with a version
that works with three coordinates instead of two.

In designing classes, it is important to identify the
essential features of the physical situation you are trying to
model. The most general characteristics can be put in the
“base class” and the more specialized characteristics would
be added in the inherited (derived) classes.

CLASSES AND C++

Classes first appeared in the Simula 67 language, which
introduced the terms class and object (see SIMULA). As the
name suggests, the language was used mainly for simu-
lation and modeling, but its object-oriented ideas would
prove influential. The Smalltalk language developed at
Xerox PARC in the 1970s ran on the Alto computer, which
pioneered the graphic user interface that would become
popular with the Macintosh in the 1980s. Smalltalk used
classes to build a seamless and extensible operating system
and environment (see SMALLTALK).

However it was Bjarne Stroustrup’s C++ language that
brought classes into the programming mainstream (see
C+4). C++ essentially builds its classes by extending the
C struct so that it contains both methods (class functions)
and data. An access mechanism allows class variables to be
designated as completely accessible (public), which is rare,
accessible only by derived classes (protected), or accessible
only within the class itself (private). The creation of a new
object of the class is specified by a constructor function,
which typically allocates memory for the object and sets
initial default values. The corresponding destructor func-
tion frees up the memory when the object no longer exists.

C++ allows for multiple inheritance, meaning that a class
can be derived from more than one parent or base class.
The language also provides two powerful mechanisms for
extending functionality. The first, called virtual functions,
allows a base class and its derived classes to have functions
based on the same interface. For example, a base graph-
ics class might have virtual line, circle, setcolor, and other
functions that would be implemented in derived classes for
3D objects, 3D solid objects, and so on. When the program
calls a method in a virtual class, the compiler automatically
searches the class’s “family tree” until it finds the class that
corresponds to the actual data type of the object.

A template specifies how to create a class definition
based on the type of data to be used by the class. In other
words, where a regular procedure takes and manipulates
data parameters and returns data, a template takes data
parameters and returns a definition of a class for working
with that data (see TEMPLATE).

Other languages of the 1980s and later have embraced
classes. Examples include descendants of the Algol family
of languages (see PASCAL, ADA, C++s close cousin—JAVA),
and Microsoft’s Visual Basic. (There is even a version of
COBOL with classes.)

client-server computing 89

The use of class frameworks, such as the Microsoft
Foundation Classes (MFC), the C++ STL (Standard Tem-
plate Library) and various Java implementations, has pro-
vided a superior way to organize the complexities of data
access and operating system functions.

Further Reading

Sebesta, Robert W. Concepts of Programming Languages. 8th ed.
Boston: Addison-Wesley, 2007.

Stroustrup, Bjarne. The C++ Programming Languages. Special 3rd
ed. Reading, Mass.: Addison-Wesley, 2000.

clean room Sece REVERSE ENGINEERING.

client-server computing

It is often more efficient to have a large, relatively expen-
sive computer provide an application or service to users on
many smaller, inexpensive computers that are linked to it
by a network connection. The term server can apply to both
the application providing the service and the machine run-
ning it. The program or machine that receives the service is
called the client.

A familiar example is browsing the Web. The user runs
a Web browser, which is a client program. The browser
connects to the Web server that hosts the desired Web site.
Another example is a corporate server that runs a database.
Users’ client programs connect to the database over a local
area network (LAN). Many retail transactions are also han-
dled using a client-server arrangement. Thus, when a travel
or theater booking agent sells a ticket, the agent’s client pro-
gram running on a PC or terminal connects to the server
containing the database that keeps track of what seats are
available (see TERMINAL).

There are several advantages to using the client-server
model. Having most of the processing done by one or
more servers means that these powerful and more costly
machines can be used to the greatest efficiency. If more
processing capacity is needed, more servers can be brought
online without having to revamp the whole system. Users,
on the other hand, only need PCs (or terminals) that are
powerful enough to run the smaller client program to con-
nect to the server.

Keeping the data in a central location helps ensure its
integrity: If a database is on a server, transactions can be
committed in an orderly way to ensure that, for example, the
same ticket isn’t sold to two people. A client-server model
also offers flexibility to users. Any client program that
meets the standards supported by the server can be used
to make a connection. (The marketplace generally decides
which clients will be supported: for example most Web sites
today support both Microsoft Internet Explorer and Firefox,
although they may cater to some features unique to one or
the other and other browsers will also work to some extent.)

Client-server computing does have potential disadvan-
tages. If there is only one server, a failure of the server
(whether from a hardware failure, a bug, or a hacker attack)
brings the whole system to a halt, since the client has no

ability to complete transactions on its own. The clients’
access to the server is also dependent on the network that
connects them. A network failure or traffic bottleneck will
also prevent the client from getting any work done.

EXTENDING THE MODEL

One way used in larger organizations to improve the effi-
ciency of the client-server model is to introduce an interme-
diary between the client and the server. The intermediary
program can cache frequently requested data so it can be
supplied immediately rather than having to be retrieved
from the server (see CACHE). The intermediary can also act
as a “traffic cop” to route client requests to the server that
currently has the least load or the fastest network access.

Another design consideration is the distribution of pro-
cessing between the client and the server. At one extreme is
the “thin client,” where the client machine may only display
forms and transmit information to and display information
from the server. A POS (point of sale) terminal typifies this
approach. On the other hand, a “fat client” running on a
full-featured desktop PC may perform functions such as
verifying the completeness and validity of data before send-
ing it to the server, or use information from the server to
generate graphics (this is typical with online games, where
limiting the amount of information that must be sent over
the network can be crucial to speed).

The ultimate extension of the client-server model is
“distributed object computing.” This is an application of
object-oriented programming principles to the organiza-
tion of the resources needed for data processing. In this
model each object (such as a database table) is accessible
throughout the network by all other objects, regardless of
their physical location. This scheme provides the ultimate
in flexibility, because objects can be moved freely among
physical machines in order to even out the load. For one
popular implementation of distributed object computing is
CORBA (Common Object Request Broker Architecture—see
CORBA). For Windows-based programs, Microsoft has devel-
oped the DCOM (Distributed Component Object Model),
which allows controls (that is, objects with functional inter-
faces) written using ActiveX to communicate with each
other in a networked environment. (For example, an Excel
spreadsheet in an ActiveX control can be embedded in a
Word document, and instructed to update itself regularly
by obtaining data from a Microsoft Access database table
on another machine.) The Microsoft.NET initiative is also
geared toward creating applications that can fluidly inter-
operate over the Internet (see MICROSOFT .NET).

Further Reading

Fox, Dan. Building Distributed Applications with Visual Basic .NET.
Indianapolis: Sams, 2002.

Goodyear, Mark, ed. Enterprise System Architectures. Grand Rap-
ids, Mich.: CRC Press, 1999.

Graham, Steve [and others]. Building Web Services with Java: Mak-
ing Sense of XML, SOAP, WSDL and UDDI. 2nd ed. Indianapo-
lis: Sams, 2004.

“Network Design Manual: Client-Server Fundamentals.” Available
online. URL: http://www.networkcomputing.com/netdesign/
1005partla.html. Accessed January 25, 2008.

90 clock speed

Sinclair, Joseph T., and Mark S. Merkow. Thin Clients Clearly
Explained. San Francisco: Morgan Kaufmann, 2000.

clock speed

The transfer of data within the microprocessor and between
the microprocessor and memory must be synchronized to
ensure that the data needed to execute each instruction is
available when the flow of execution has reached an appro-
priate point. This synchronization is accomplished by mov-
ing data in intervals that correspond to the pulses of the
system clock (a quartz crystal). This is done by sending
control signals that tell the components of the processor
and memory when to send or wait for data. Thus, if the
microprocessor is the heart of the computer, the clock is the
heart’s pacemaker. Because most devices cannot run at the
same pace as the processor, circuits in various parts of the
motherboard create secondary control signals that run at
various ratios of the actual system clock speed.

The following table shows the speed of various system
components in relation to the system clock rate. Although
the example uses a 600-MHz clock, the ratios will generally
hold for faster processors.

DEVICE SPEED RELATIONSHIP
Processor 600 System bus * 4.5
System

(Memory) Bus 133 (depends on multiplier)
Level 2 Cache 300 Processor / 2

AGP 66 System bus / 2

PCI bus 33 System bus / 4

Microprocessors are rated according to the frequency
(that is, number of pulses per second) of their associated
clock. For example, a 1.2-GHz Pentium IV processor has
1.2 billion (giga-) pulses per second. It follows that all other
things being equal, the higher a processor’s clock frequency,
the more instructions it can process per second. An alterna-
tive way to rate processors is according to the number of a
standard type of instruction that it can process per second,
hence MIPS (millions of instructions per second).

The relationship between clock speed and processor
performance is not as simple as the preceding might imply,
however. Each processor is designed with circuits that can
move data at a certain rate. In some cases a processor can
be run at a higher clock rate than specified (this is called
overclocking), but then reliability comes into question.
Also, the actual processing power of a processor depends
on many other factors. If a processor implements instruc-
tions in its microcode that are more efficient for handling
certain operations (such as floating point math or graphics
rendering), applications that depend on these operations
may run faster on one processor than on another, even if
the two processors run at the same clock speed. The speed
of the system bus (which connects the processor to the
RAM memory) also affects the speed at which data can be
fetched, processed, and stored. A processor with a clock
speed of 733 MHz should perform better on a motherboard

with a bus speed of 133 MHz than on one with a bus speed
of only 100 MHz.

Speed is “sexy” in marketing terms, so the major chip
manufacturers always tout their fastest chips. However, the
difference in speed between, for example, a 2.2-GHz version
of a processor and a 2.0-GHz version may be unnoticeable
to the user of all but the most processor-intensive applica-
tions (such as image processing). Indeed, if the system with
the slower chip has a faster bus, faster memory (such as
RDRAM), or a larger processor cache (see CACHE) it may
well outperform the one with a faster chip.

Another reason for caution in interpreting clock speed
is that many recent PCs have two or even four proces-
sors (see MULTIPROCESSING). Performance in such systems
is likely to depend at least as much on optimization of the
operating system and applications as on any multiple of raw
clock speed. This trend to multicore CPUs is also seen as an
alternative to any substantial increase in processor speed,
because higher speeds bring increasing concerns about heat
and power usage.

In PCs the term “clock” can also refer to the battery-pow-
ered “real-time” clock that provides a timing interval that
can be accessed by the operating system and applications.

Further Reading

Clock speed resources. TechRepublic. Available online. URL:
http://search.techrepublic.com.com/search/clock+speed.
htm1?t=11& s=0&0=0. Accessed June 6, 2007.

“Understanding System Memory and CPU Speeds.” Available online.
URL: http://www.directron.com/fsbguide.html. Accessed June
6, 2007.

“What Is CPU Overclocking?” Available online. URL: http:/www.
webopedia.com/DidYouKnow/Computer_Science/2005/over
clocking.asp. Accessed June 6, 2007.

COBOL

Common Business-Oriented Language was developed under
the impetus of a 1959 Department of Defense initiative to
create a common language for developing business applica-
tions that centered on the processing of data from files. (The
military, after all, was a “business” whose inventory control
and accounting needs dwarfed those of all but the largest
corporations.) At the time, the principal business-oriented
language for mainframe computers was FLOW-MATIC, a
language developed by Grace Hopper’s team at Remington-
Rand UNIVAC and limited to that company’s computers
(see HOPPER, GRACE MURRAY). The first COBOL compil-
ers became available in 1960, and the American National
Standards Institute (ANSI) issued a standard specification
for the language in 1968. Expanded standards were issued
in 1974 and 1985 (COBOL-74 and COBOL-85) with a new
standard issued in 2002.

The committee that outlined the language that would
become COBOL focused on making program statements
resemble declarative English sentences rather than the
mathematical expressions used by FORTRAN for scientific
programming. COBOLs designers hoped that accountants,
managers, and other business professionals could quickly
master the language, reducing if not removing the need for

COBOL 91

professional programmers. (This theme of “programming
without programmers” would recur with regard to other
languages such as RPG, BASIC, and various database sys-
tems, always with limited success.)

PROGRAM STRUCTURE
A COBOL program as a whole resembles a business form in
that it is divided into specific sections called divisions, each
with required and optional items.

The Identification division simply identifies the pro-
grammer and gives some information about the program:

| DENTI FI CATI ON DI VI SI ON.

PROGRAM | D WEEKLY REPORT.

AUTHOR JAMES BRADLEY.

DATE- WRI TTEN DECEMBER 10, 2000.
DATE- COVPI LED DECEMBER 12, 2000.
REMARKS THI S IS AN EXAMPLE PROGRAM

The Environment division contains specifications about
the environment (hardware) for which the program will
be compiled. In some cases (for example, microcomputer
versions of COBOL) it may not be needed. In other cases, it
might simply have a Configuration section that specifies the
machine to be used:

ENVI RONMVENT DI VI SI ON.
CONFI GURATI ON SECTI ON.
SOURCE- COMPUTER | BM 370.
OBJECT- COWUTER | BM 370.

(The reason for the separate source and object computers is
that programs were sometimes compiled on one computer
for use on another, often smaller, one.)

In some cases, the Environment Division must also
include an Input-Output section that specifies devices and
files that will be used by the program. For example:

I NPUT- QUTPUT SECTI ON.

FI LE- CONTROL.
SELECT STUDENT- FI LE ASSI GN TO READER
SELECT STUDENT- LI STI NG ASSI GN TO LOCAL-
PRI NTER

The Data division gives a description of the data records
and other items that will be processed by the program.
It is roughly comparable to the declarations of variables
in languages such as Pascal, C, or BASIC. Since COBOL
focuses on the processing of file records and the format-
ting of reports, it tends to have fewer data types than many
other languages, but it makes it easier to describe the kinds
of data structures commonly used in business applications.
For example, it is easy to describe records that have fields
and subfields by using level numbers to indicate the rela-
tionship:

DATA DI VI SI ON.
FI LE SECTI ON.
FD I NFI LE
LABEL RECCRDS ARE OM TTED.

01 STUDENT- DATA.

02 STUDENT- 1D Pl C 999999.
02 STUDENT- NAME.

03 LAST-NAME PI C X(15).

03 INITIAL PIC X.

03 FI RST-NAME PI C X(10).
02 GPA PIC 9.99

The “PIC” or picture clause specifies the type of data
(using 9’s and a decimal point for numbers and X for text)
and the length. In addition to specifying the input records,
the Data division often includes items that specify the for-
mat of the lines of output that are to be printed.

The Procedure division provides the statements that
perform the actual data manipulation. Procedures can be
organized as subroutines (roughly equivalent to procedures
or functions on other languages). Some sample procedure
statements are:

READ STUDENT- DATA | NTO STUDENT- WORK- RECORD
AT END MOVE ‘'E TO PROC- FLAG ST
GO TO EXI T- PRI NT
ADD 1 TO TOTAL- STUDENT- RECORDS

Mathematical expressions can be computed using a
Compute statement:

COWUTE GPA = TOTAL- GRADES / CLASSES

Branching (if) statements are available, and looping is
provided by the Perform statement, for example:

PERFORM 100- PRI NT- LI NE
UNTIL LINES-FL IS EQUAL TO 'FE

(As with older versions of BASIC, subroutines are numbered.)

IMPACT AND PROSPECTS

From the 1960s through the 1980s, COBOL became the
workhorse language for business applications for main-
frame and mid-size computers, and it is still widely used
today. (The concerns about possible problems at the end
of the century often involved older programs written in
COBOL, see Y2K PROBLEM.) The main line of programming
language evolution bypassed COBOL and went through
Algol (a contemporary of COBOL) and on into Pascal, C,
and other block-structured languages (see also STRUCTURED
PROGRAMMING).

Some modern versions of COBOL have incorporated
later developments in structured programming (such as
modularization) and even object-oriented design. COBOL
has also shown considerable versatility in accommodating
modern development frameworks, including Microsoft. NET
as well as processing now-ubiquitous XML data. Neverthe-
less, usage of COBOL continues to decline slowly as devel-
opers increasingly turn to languages such as C++, scripting
languages, or database development systems.

Further Reading

Bivar de Oliveria, Rui. The Power of COBOL: For Systems Developers
of the 21st Century. Charleston, S.C.: BookSurge, 2006.

COBOL Portal. Available online. URL: http:/www.cobolportal.
com. Accessed June 8, 2007.

92 codec

Murcah, Mike, Anne Prince, and Raul Menendez. Murach’s Main-
frame COBOL. Fresno, Calif.: Murach and Associates, 2004.

Sammet, J. E. “The Early History of COBOL,” in History of Pro-
gramming Languages. Wexelblat, R. L., ed., 199-276. New
York: Academic Press, 1985.

codec

Short for “coder/decoder,” a codec is essentially an algo-
rithm for encoding (and compressing) a stream of data for
transmission, and then decoding and decompressing it at
the receiving end. Usually the data involved represents
audio or video content (see STREAMING). Typically the data
is being downloaded from a Web site to be played on a
personal computer or portable player (see MULTIMEDIA and
MUSIC AND VIDEO PLAYERS, DIGITAL).

A codec is described as “lossy” if some of the origi-
nal information is lost in the compression process. It then
becomes a question of whether the loss in quality is per-
ceived by the user as significant. A codec that preserves all
the information needed to re-create the original file is “loss-
less.” For most purposes, the much greater size of the loss-
less version of a file is not worth the (often imperceptible)
increase in quality or fidelity.

A codec is usually used in connection with a “container
format” that specifies how the encoded data is to be stored

CODEC CONTAINER DESCRIPTION

AAC advanced audio coding; developed as a
successor to MP3 and especially used
by Apple (iTunes, iPod, iPhone, etc.)

AIFF audio interchange file format; audio
container format for transferring content
between applications

ALAC Apple lossless audio codec

AVI audio video interleave; video and movies
container format

FLACC free lossless audio codec; music, open
source, lossless

MP3 actually MPEG-3, probably the most
common music codec

MPEG Moving Picture Experts Group; video,
movies, audio (four layers MPEG-1
through MPEG-4)

Ogg Vorbis music, open source (often used on Linux
systems)

Quick Time Apple multimedia

Real Audio and developed by RealNetworks for many

and RealVideo platforms

RIFF resource interchange file format; container
format

Vorbis free, open-source audio codec (often used
in Linux)

WAV Windows audio format (usually
uncompressed)

WMA Windows media audio

WMV Windows media video

in a file. Often a container can hold more than one data
stream and even more than one kind of media (such as
video and audio). When one refers to a Windows WAV file,
for example, one is actually referring to a container.

Most of the popular codecs and file formats are propri-
etary, which creates something of a dilemma for users who
prefer open-source solutions. However, while most Linux
distributions do not include support for formats such as
MP3 out of the box, distributions such as Ubuntu are now
making it easier for users to choose nonsupported propri-
etary codecs if desired.

The preceding table lists some codecs likely to be
encountered by program developers and consumers.

Further Reading

Audio Files. Available online. URL: http:/www.fileinfo.net/
filetypes/audio. Accessed September 3, 2007.

Harte, Lawrence. Introduction to MPEG. Fuquay Varina, N.C.:
Althos Publishing, 2006.

Rathbone, Andy. MP3 for Dummies. 2nd ed. New York: Hungry
Minds, 2001.

Richardson, Iain E. G. Video Codec Design: Developing Image and
Video Compression Systems. New York: Wiley, 2002.

Roberts-Breslin, Jan. Making Media: Foundations of Sound and
Image Production. Boston: Focal Press, 2003.

Thurott, Paul. PC Magazine Windows XP Digital Media Solutions.
Indianapolis: Wiley, 2005.

Video Files. Available online. URL: http:/www.fileinfo.net/
filetypes/video. Accessed September 3. 2007.

cognitive science

Cognitive science is the study of mental processes such as
reasoning, memory, and the processing of perception. It
is necessarily an interdisciplinary approach that includes
fields such as psychology, linguistics, and neurology. The
importance of the computer to cognitive science is that it
offers a potential nonhuman model for a thinking entity.
The attempts at artificial intelligence over the past 50 years
have used the insights of cognitive science to help devise
artificial means of reasoning and perception. At the same
time, the models created by computer scientists (such as
the neural network and Marvin Minsky’s idea of “multiple
intelligent agents”) have in turn been applied to the study
of human cognition (see MINSKY, MARVIN LEE and NEURAL
NETWORK).

Since the late 19th century, technological metaphors
have been used to describe the human mind. The neurons
and synapses of the brain were compared to the multi-
tude of switches in a telephone company central office. The
invention of digital computers seemed to offer an even more
compelling correspondence between neurons and their elec-
trochemical states and the binary state of a vacuum tube or
transistor. It is only a small further step to assert that human
mental processes can be reduced in principle to computa-
tion, albeit a very complex tapestry of computation. Various
schools of popular psychology and personal improvement
have offered simplistic images of the human mind suffering
from “bad programming” that can be debugged or manipu-
lated through various processes. The simulation of some
forms of reasoning and language construction by Al pro-

color in computing 93

grams certainly suggests that there are fruitful analogies
between human and machine cognition, but construction
of a detailed model that would be applicable to both human
and artificial intelligences seemed almost as distant in the
science fictional year of 2001 as it was when Alan Turing
and other Al pioneers first considered such questions in the
early 1950s (see TURING, ALAN MATHISON).

SYMBOLISTS AND CONNECTIONISTS

Unlike standard computer memory cells, neurons can have
hundreds of potential connections (and thus states). If a
human being is a computer, it must be to a considerable
extent an analog computer, with input in the form of levels of
various chemicals and electrical impulses. Yet in the 1980s,
Allen Newell and Herbert Simon suggested that the “output”
of human mental experience can be effectively mapped as
relationships between symbols (words, images, and so forth)
that correspond to physical states (this is called the Physical
Symbol System Hypothesis). If so, then such a symbol sys-
tem would be “computable” in the Turing-Church sense (see
COMPUTABILITY AND COMPLEXITY). Working from the com-
puter end, Al researchers have created a variety of programs
that seem to “understand” restricted universes of discourse
such as a table with variously shaped blocks upon it or
“story frames” based upon common human activities such
as eating in a restaurant. Thus, symbol manipulators can at
least appear to be intelligent.

The “connectionists,” however, argue that it is not sym-
bolic representations that are significant, but the structure
within the mind that generates them. By designing neu-
ral networks (or distributed processor networks) the con-
nectionists have been able to create systems that produce
apparently intelligent behavior (such as pattern recogni-
tion) without any reference to symbolic representation.

Critiques have also come from philosophers. Herbert
Dreyfus has pointed out that computers lack the body,
senses, and social milieu that shape human thought. That
machines can generate symbolic representations according
to some sort of programmed rules doesn’t make the machine
truly intelligent, at least not in the way experienced by
human beings. John Searle responded to the famous Turing
test (which states that if a human being can’t distinguish a
computer’s conversation from a human’s, the computer is
arguably intelligent). Searle’s “Chinese Room” imagines a
room in which an English-speaking person who knows no
Chinese is equipped with a program that lets him manipu-
late Chinese words in such a way that a Chinese observer
would think he knows Chinese. Similarly, Searle argues,
the computer might act “intelligently,” but it doesn’t really
understand what it is doing.

Advances in cognitive science will both influence and
depend on developments in brain research (especially the
connection between physical states and cognition) and in
artificial intelligence.

Further Reading

Bechtel, William, and Adele Abrahamson. Connectionism and the
Mind: Parallel Processing, Dynamics, and Evolution in Net-
works. 2nd ed. Cambridge, Mass.: Blackwell, 2000.

“Cognitive Science.” Stanford Encyclopedia of Philosophy. Avail-
able online. URL: http:/plato.stanford.edu/entries/cognitive-
science/. Accessed June 10, 2007.

Horgan, Terence, and John Tienson. Connectionism and the Philoso-
phy of Psychology. Cambridge, Mass.: MIT Press, 1996.

Sobel, Carolyn. Cognitive Science: An Interdisciplinary Approach.
New York: McGraw-Hill, 2001.

Thagard, Paul. Mind: Introduction to Cognitive Science. 2nd ed.
Cambridge, Mass.: MIT Press, 2005.

color in computing

With the exception of a few experimental systems, color
graphics first became widely available only with the begin-
nings of desktop computers in the late 1970s. The first
microcomputers were able to display only a few colors
(some, indeed, displayed only monochrome or grayscale).
Today’s PC video hardware has the potential to display
millions of colors, though of course the human eye cannot
directly distinguish colors that are too close together. There
are several important schemes that are used to define a
“color space”—that is, a range of values that can be associ-
ated with physical colors.

RGB

One of the simplest color systems displays colors as varying
intensities of red, green, and blue. This corresponds to the
electronics of a standard color computer monitor, which
uses three electron guns that bombard red, green, and blue
phosphors on the screen. A typical RGB color scheme uses
8 bits to store each of the red, green, and blue components
for each pixel, for a total of 24 bits (16,777,216 colors). The
32-bit color system provides the same number of colors but
includes 8 bits for alpha, or the level of transparency. The
number of bits per pixel is also called the bit depth or color

depth.

CMYK

CMYK stands for cyan, magenta, yellow, and black. This
four component color system is standard for most types of
color printing, since black is an ink color in printing but is
simply the absence of color in video. One of the more diffi-
cult tasks to be performed by DESKTOP PUBLISHING software
is to properly match a given RGB screen color to the cor-
responding CMYK print color. Recent versions of Microsoft
Windows and the Macintosh operating system include a
CMS (color matching system) to support color matching.

PALETTES

Although most color schemes now support thousands or
millions of colors, it would be wasteful and inefficient to
use three or four bytes to store the color of each pixel in
memory. After all, any given application is likely to need
only a few dozen colors. The solution is to set up a palette,
which is a table of (usually 256) color values currently in
use by the program. (A palette is also sometimes called a
CLUT, or color lookup table.) The color of each pixel can
then be stored as an index to the corresponding value in the
palette.

94 COM

178

2,059

Colors 8,751
actually 16,316 8.751
In use 1,456,819
by program
16,316
AAYAAAAYA
Palette WW\/\/\A
(look-up table)
up to 256 colors 1,456,819
Millions of
possible
colors

© Infobase Publishing

A color lookup table (CLUT) or palette can be used to store the col-
ors actually being used by an image. Here up to 256 colors can be
selected out of millions of possibilities.

The user of a paint program can select a palette from
the full range of colors available from the operating system.
Many color graphics image formats such as GIF (graphic
interchange format) store a palette of the colors used by
the image. When converting an image that has more colors
that the palette can hold, various algorithms can be used to
choose a palette that preserves as much of the color range
as possible.

Further Reading

“Color” Webopedia. Available online. URL: http://www.webopedia.
com/Graphics/Color/. Accessed June 10, 2007.

Drew, John, and Sarah Meyer. Color Management: A Comprehensive
Guide for Graphic Designers. East Sussex, U.K.: RotoVision,
2005.

“Introduction to Color and Color Management Systems.” Apple
Computer Developer Connection. Available online. URL:
http://developer.apple.com/documentation/mac/ACI/ACI46.
html. Accessed June 10, 2007.

Koren, Norman. “Color Management and Color Science: Introduc-
tion.” Available online. URL: http:/www.normankoren.com/
color_management.html. Accessed June 10, 2007.

COM (common object model)
NET.

See MICROSOFT

common gateway interface See cal.

common object request broker architecture
See CORBA.

compatibility and portability

The computers of the 1940s were each hand built and
unique. When the first commercial models were developed,
such as the UNIVAC and the first IBM mainframes, the
question of compatibility was born. Broadly speaking, com-
patibility is the degree to which a program or hardware
device designed for one system can work with or run on
another.

The designers of high-level languages usually intend that
a source program written using the proper language syntax
will compile and run on any system for which a compiler is
available. However, there are many factors that can destroy
compatibility. For example, if one machine stores the bytes
of a numeric value from least significant to most significant
while another does it in the opposite order, program code
that depends on directly referencing memory locations will
give the wrong results on one machine or another. Simi-
larly, standard data sizes such as “integer” might be 16 bits
on one system and 32 bits on another.

Language designers can minimize such problems by
separating hardware-related issues from the language itself,
as is the case with C and C++. A program is then linked
with standard libraries implemented for each hardware or
operating system environment.

Manufacturers often design newer models of their com-
puters so they are “upwardly compatible” with existing
models. This means that a program written for the smaller
machine should run correctly on the new, larger one. This
is of obvious benefit to users who do not want to have
to rewrite their software every time they upgrade their
machine. Often, however, such systems are not “down-
wardly compatible”—a program written for the new, larger
machine may rely on features or architectural characteris-
tics that are not available on the older, smaller machines.
Sometimes a “compatibility mode” can be specified for a
compiler or operating system. This restricts the use of fea-
tures to those available on the older system.

Compatibility is also important with regard to software.
Generally speaking, a newer version of a program such as a
word processor will be able to read files that were originally
created by a previous version, although this may not be true
for more than a few versions back. However, files saved from
the newest version may well be incompatible with older ver-
sions, because they contain formatting or other information
that is not understandable by the earlier version. Sometimes
an intermediate format (for example, see RTF, or Rich Text
Format) can be used to transfer files between otherwise
incompatible systems.

Compatibility between vendors can be an important
competitive issue. If a developer wants to enter a market
where one or two products are viewed as industry stan-
dards, the new product will have to be compatible with at
least most files created by the dominant products. A techni-
cally superior product can thus be a market disaster if it is
not compatible with the industry standard. In areas (such

compiler 95

as graphics file formats) where there are many alternatives
in widespread use, most programs will support multiple
formats.

PORTABILITY

Portability is the ability to adapt software or hardware to
a wide variety of platforms (that is, computer systems or
operating systems). Developers want their products to be
portable so they can adapt to an often rapidly changing
marketplace. A typical strategy for portability is to choose
a language that is in widespread use and a compiler that
is certified as meeting the ANSI or other standard for the
language. The program should be written in such a way that
it makes as few assumptions as possible about hardware-
dependent matters such as how data is stored in memory. It
is also sometimes possible to use standard frameworks that
provide the same functions in several different operating
systems such as Windows, Macintosh, and UNIX.

However, there is a tradeoff: The more “generic” a pro-
gram is made in order to be portable, the less optimized it
will be for any given hardware or operating environment.
The program will also not be able to take advantage of the
special features of a given operating system, which may put
it at a competitive disadvantage compared to the “native
version” of a program. (This is particularly true with Win-
dows, given that operating system’s dominance in personal
computing.)

The Internet has in general been a force for portability.
The Java language, in particular, is designed to be platform-
independent. A Java program is compiled into an interme-
diate language called byte code, which is interpreted or
compiled by a “virtual machine” program running on each
platform. Thus, the same Java program should run in a
browser under Windows, Macintosh, or UNIX (see JAVA).

Further Reading

Hakuta, Mitsuari, and Masato Ohminami. “A Study of Software
Portability Evaluation.” Journal of Systems and Software 38
(August 1997): 145-154.

Robinson, John. “Delivering on Standards: Balancing Portabil-
ity and Performance.” Available online. URL: http:/ipdps.
cc.gatech.edu/1999/papers/it2.pdf. Accessed August 11, 2007.

“Software Portability Home Page.” Available online. URL: http://
www.cs.wvu.edu/~jdm/research/portability/home.html.
Accessed June 11, 2007.

compiler

A compiler is a program that takes as input a program
written in a source language and produces as output an
equivalent program written in another (target) language.
Usually the input program is in a high-level language such
as C++ and the output is in assembly language for the target
machine (see ASSEMBLER).

Compilers are useful because programming directly
in low-level machine instructions (as had to be done with
the first computers) is tedious and prone to errors. Use of
assembly language helps somewhat by allowing substitu-
tion of symbols (variable names) for memory locations and
the use of mnemonic names for operations (such as “add”

for addition, rather than some binary instruction code). An
assembler is essentially a compiler that needs to make only
relatively simple translations, because assembly language is
still at a relatively low level.

Moving to higher-level languages with relatively Eng-
lish-like statements makes programming easier and makes
programs easier to read and maintain. However, the task
of translating high-level statements to machine-level code
becomes a more complex multistep process.

THE COMPILATION PROCESS

Compilers are traditionally thought of as having a “front
end” that analyzes the source code (high-level language
statements) and a “back end” that generates the appropriate
low-level code. The front end processing begins with lexical
analysis. The compiler scans the source program looking for
matches to valid tokens as defined by the language. A token
is any word or symbol that has meaning in the language,

Program
T N
BEGIN Declaration Statement END
INT ID SEMICOLON Assignment
ID ASSIGN Expression SEMICOLON
Term
Factor
Primary
NUM
© Infobase Publishing

A parse tree showing how an assignment statement in Pascal can
be broken down into its component parts. Here ID stands for a vari-
able name, or identifier. An expression can be broken all the way
down to a single number.

96 compiler

such as a keyword (reserved word) such as if or while.
Next, the tokens are parsed or grouped according to the
rules of the language. The result of parsing is a “parse tree”
that resolves statements into their component parts. For
example, an assignment statement may be parsed into an
identifier, an assignment operator (such as =), and a value to
be assigned. The value in turn may be an arithmetic expres-
sion that consists of operators and operands.

Parsing can be done either “bottom up” (finding the
individual components of the statement and then linking
them together) or “top down” (identifying the type of state-
ment and then breaking it down into its component parts).
A set of grammatical rules specifies how each construct
(such as an arithmetic expression) can be broken into (or
built up from) its component parts.

The next step is semantic analysis. During this phase the
parsed statements are analyzed further to make sure they
don’t violate language rules. For example, most languages
require that variables must be declared before they are ref-
erenced by the program. Many languages also have rules for
which data types may be converted to other types when the
two types are used in the same operation.

The result of front-end processing is an intermediate rep-
resentation somewhere between the source statements and
machine-level statements. The intermediate representation
is then passed to the back end.

CODE GENERATION AND OPTIMIZATION

The process of code generation usually involves multiple
passes that gradually substitute machine-specific code and
data for the information in the parse tree. An important
consideration in modern compilers is optimization, which
is the process of substituting equivalent (but more efficient)
constructs for the original output of the front end. For
example, an optimizer can replace an arithmetic expression
with its value so that it need not be repeatedly calculated
while the program is running. It can also “hoist out” an
invariant expression from a loop so that it is calculated only
once before the loop begins. On a larger scale, optimiza-
tion can also improve the communication between different
parts (procedures) of the program.

The compiler must attempt to “prove” that the change it
is making in the program will never cause the program to
operate incorrectly. It can do this, for example, by tracing
the possible paths of execution through the program (such
as through branching and loops) and verifying that each
possible path yields the correct result. A compiler that is
too “aggressive” in making assumptions can produce subtle
program errors. (Many compilers allow the user to control
the level of optimization, and whether to optimize for speed
or for compactness of program size.) During development,
a compiler is often set to include special debugging code in
the output. This code preserves potentially important infor-
mation that can help the debugging facility better identify
program bugs. After the program is working correctly, it
will be recompiled without the debugging code.

The final code generation is usually accomplished by
using templates that match each intermediate construc-
tion with a construction in the target (usually assembly)

Source
code

\

Lexical analysis

Parser

Parse tree «

Grammar
\ rules
| Semantic >
Error <€ . >
analysis
\

Intermediate
representation

Y
OPTIMIZATION

Y
Generated
object code

© Infobase Publishing

Compilation is a multistep process. Lexical analysis breaks state-
ments down into tokens, which are then parsed and subjected to
semantic analysis. The resulting intermediate representation can be
optimized before the final object code is generated.

language, plugging items in as specified by the template.
Often a final step, called peephole optimization, examines
the assembly code and identifies redundancies or, if pos-
sible, replaces a memory reference so that a faster machine
register is used instead.

In most applications the assembly code produced by
the compiler is linked to code from other source files. For
example, in a C++ applications class definitions and code
that use objects from the classes may be compiled sepa-
rately. Also most languages (such as C and C++) have oper-
ating system-specific libraries that contain commonly used
support functions.

computability and complexity 97

As an alternative to bringing the external code into the
final application file, code can be “dynamically linked” to
libraries that will be accessed only while the program is
being run. This eliminates the waste that would occur if
several running applications are all using the same stan-
dard library code (see LIBRARY, PROGRAM).

In mainframes compilers were usually invoked as part of
a batch file using some form of JCL (job control language).
With operating systems such as UNIX and MS-DOS a pro-
gram called make is typically used with a file that specifies
the compiler, linker, and other options to be used to com-
pile the program. Modern visually oriented development
environments (such as those provided by products such as
Visual C++) allow options to be set via menus or simply by
selecting from a variety of typical configurations.

Compiler design has become a highly complex field.
A modern compiler is developed using a variety of tools
(including packaged parsers and lexical analyzers), and
involves a large team of programmers. Nevertheless, the
principles of compiler design are emphasized in the gen-
eral computer science curriculum because when a student
understands even a simplified compiler in detail, he or she
has become acquainted both with important ideas (such
as language grammar, parsing, and optimization) and with
many levels of understanding computer architecture.

Further Reading

Aho, Alfred V., Ravi Sethi, and Jeffrey D. Ullman. Compiler Design:
Principles, Techniques, and Tools. 2nd ed. Reading, Mass.:
Addison-Wesley, 2006.

“Compiler Connection: A Resource for Compiler Developers and
Those Who Use Their Products and Services.” Available
online. URL: http://www.compilerconnection.com/. Accessed
August 12, 2007.

Grune, Dick, et al. Modern Compiler Design. New York: Wiley, 2000.

component model (Microsoft) Sce

MICROSOFT .NET.

object

computability and complexity

Interestingly, one of the important discoveries of 20th-cen-
tury mathematics is that certain kinds of problems were
not computable. The Turing machine and Alonzo Church’s
lambda calculus provided equivalent models that could be
used to determine what was computable (see TURING, ALAN
MATHISON, and CHURCH, ALONZO). Thus far, the equiva-
lence between the Turing machine and actual computers
has held. That is, any decision problem (a problem with a
“yes” or “no” answer) that can in theory be solved with a
Turing machine can in theory be solved by any actual com-
puter. Conversely, if a problem can'’t be solved by a Turing
machine, it cannot be solved by a computer, no matter how
powerful.

THE HALTING PROBLEM
The Halting problem is a classic example of an undecidable
problem (or proposition). The problem is this: Given any

computer program, can you determine whether the pro-
gram will halt (end) given any input? There are specific
programs that can be shown to halt on particular inputs.
For example, this program:

If Input = 99 then end.

will obviously halt on an input of 99. But to decide whether
a determination can be made for any program for any input,
it is only necessary to construct a logical paradox. Assume
that there is a program P that halts if and only if it receives
input D. (Further assume that the program can print some-
thing to let you know that it has halted.)

Since the input can be anything, you can let it be a copy
of the program itself. The question then becomes: Will the
program halt if it is given a copy of itself? Create a proce-
dure (or subroutine) called HaltTest, and define it as:

If P halts then print “Halted”
else print “Didn’t Halt.”

Now create another program called Main. It calls Halt-
Test and is programmed to do the opposite of what HaltTest
indicates.

If HaltTest (Main) prints “Yes” then | oop
forever else halt;

But what happens when Main is run? It calls HaltTest,
giving itself (Main) as input. If HaltTest halts, then Main
loops forever. But if HaltTest doesn’t halt, then Main halts.
But this means that Main halts if it doesn’t halt, and doesn’t
halt if it halts. This paradox shows that whether Main halts
is undecidable.

The undecidability of the Halting problem has some
interesting implications. For example, it means that there
is no way a computer can reliably determine that a program
does not contain an infinite loop. Also, because a math-
ematical function f(x) is equivalent to a computer program
with input x, similar proofs by contradiction can be written
to show that it can’t be decided whether a program will halt
on all inputs (which is equivalent to f(x) being defined for
all x.) Nor can it be decided whether two different programs
(or mathematical functions) are equivalent for all x.

It is important to realize that a program (or function)
being undecidable in all cases doesn’t necessarily mean that
it can’t be decided for some cases (or inputs). Indeed, the
answer of the Halting Problem for any given input can be
determined by feeding that particular input to the program,
which will either halt or run forever.

COMPLEXITY

If a problem turns out to be computable, we then enter
the realm of complexity—the analysis of how much com-
putation will be required (see ALGORITHM). Sometimes a
designer can devise a significantly faster algorithm for a
given problem (such as finding prime factors or sorting).
However, other problems appear to have complexity based
on an exponential expression, meaning that they become
more complex much more rapidly as the input increases.
An example is the Traveling Salesman Problem, which is to

98 computer-aided design and manufacturing

find the most efficient route for a person traveling to a num-
ber of cities to visit each of the cities.

Mathematicians therefore categorize the complexity of
problems as P (solvable in a polynomial period of time),
EXP (requiring an exponential time), or an intermediate
class NP, which means “nondeterministic polynomial.” An
NP problem is one that can be solved in polynomial time if
one is able to guess (and then verify) the answer. The Trav-
eling Salesman Problem is believed to be in the NP class.

While abstruse, the study of computability and complex-
ity has important implications for practical applications.
For example, determining the complexity of a crypto-
graphic algorithm can help determine whether the resulting
encryption is strong enough to withstand the efforts of a
feasible attacker.

Further Reading

Boolos, George S., John P. Burgess, and Richard C. Jeffrey. Comput-
ability and Logic. 4th ed. New York: Cambridge University
Press, 2002.

Jones, Neil D. Computability and Complexity: From a Programming
Perspective. Cambridge, Mass.: MIT Press, 1997.

Sipser, Michael. Introduction to the Theory of Computation. 2nd ed.
Boston: Thomson Course Technology, 2006.

computer-aided design and manufacturing
(CAD/CAM)

The use of computers in the design and manufacturing of
products revolutionized industry in the last quarter of the
20th century. Although computer-aided design (CAD) and
computer-aided manufacturing (CAM) are different areas
of activity, they are now so closely integrated that they are
often discussed together as CAD/CAM.

COMPUTER-AIDED DESIGN

In 1950, science fiction writer Robert Heinlein had his
future inventor create “Drafting Dan,” an automated draft-
ing system that would enable designers to turn their ideas
into manufacturing plans in a fraction of the time required
for the hand preparation of schematics and parts lists. By
the 1960s, engineers had developed the first computer-
assisted design programs, running on terminals attached to
mainframe computers.

The activity of a CAD workstation centers on the cre-
ation of geometrical models (first 2D, then 3D). With the
aid of models, a virtual representation of the product being
designed can be built up. With its knowledge of geometrical
and physical relationships, routines in the CAD system can
perform not only measurement of dimensions and mass but
also structural analysis. (In some cases CAD can be inter-
faced with systems that provide full-blown simulation of
the effects of stresses, heat, and other factors.)

The growth of desktop computing power in the 1980s
and 1990s moved CAD from the mainframe to the high-end
workstation (such as those built by Sun Microsystems) and
even to high-end personal computers. The growing pro-
cessing power also meant that the geometric models could
become more sophisticated, including solid models with

realistically rendered surfaces rather than just wireframes.
The model of surfaces can include such factors as reflectiv-
ity, friction, or even aerodynamic characteristics. In design-
ing a product (or a subsystem of a product), engineers can
now use simulation software to determine how well a group
of parts in a complex assembly (such as a car’s steering
mechanism) will perform. The ability to get detailed data in
real time means that the CAD operator can work in a feed-
back loop in which the design is incrementally refined until
the required parameters are met.

This growing modeling capability has been combined
with the use of detailed databases containing the stan-
dard parts used in a particular industry or application.
Libraries of templates allow the designer to “plug in” stan-
dard assemblies of parts and then modify them. The data-
bases can also be used with algorithms that can assist the
designer in optimizing the design for some desired char-
acteristic, such as strength, light weight, or lower cost.
Recent systems even have the capability to set “strategic”
design goals for a whole family of products and to identify
particular optimizations that would help each part or sub-
system achieve those goals.

COMPUTER-AIDED MANUFACTURING

The automated fabricating of products on the factory floor
originally developed independently of computer-aided
design. Numerically controlled machine tools and lathes can
be programmed using specialized languages such as APT
(Automatically Programmed Tool) or more recently, through
a system that uses a graphical interface. Advances in pattern
recognition and other artificial intelligence techniques have
been used to improve the ability of the automatic tool to
identify particular features (such as holes into which bolts
are to be inserted) and to properly orient surfaces. At some
point the programmability and flexibility of the system with
regard to its ability to manipulate the environment gives it
the characteristics of a robot (see ROBOTICS).

INTEGRATION OF CAD AND CAM

As CAD systems became more capable, it soon became evi-
dent that there could be substantial benefits to be gained
from integrating the design and manufacturing process.

The CAD software can also output detailed parts and
assembly specifications that can be fed into the CAM pro-
cess. In turn, manufacturing considerations can be applied
to the selection of parts during the design process.

The integration of design, simulation, and manu-
facturing continues. The goal is to give the engineer a
seamless way to “tweak” a design and have a number of
simulation modules automatically depict the effects of the
design change. In essence, the designer or engineer would
be working in a virtual world that accurately reflects the
physical constraints that the product will face in the real
world.

The automation of the design and manufacturing process
has been mainly responsible for the increasing productivity
of modern factories. Factories using traditional methods in
producing complex products such as automobiles or con-

computer-aided instruction 99

sumer electronics have generally had to refit for CAD/CAM
in order to remain competitive. Low-skill but relatively high-
paying factory jobs characteristic of the earlier industrial era
have given way to smaller numbers of more technical jobs.
This has meant a greater emphasis on education and special-
ized training for the industrial workforce.

Further Reading

Amirouche, Farid M. Principles of Computer Aided Desigh and Manu-
facturing. 2nd ed. Upper Saddle River, NJ.: Prentice Hall, 2003.

CADLAB (MIT). Available online. URL: http:/cadlab.mit.edu/.
Accessed June 12, 2007.

“Computer-Aided Design” [outline and knowledge base]. Comp-
info.ws. Available online. URL: http://www.compinfo-center.
com/cad/cad.htm. Accessed June 12, 2007.

Duggal, Vijay. CADD Primer: A General Guide to Computer Aided
Design and Drafting. New York: Mailmax Publications, 2000.

computer-aided instruction (CAI)

Also called computer based training (CBT), computer-aided
instruction (CAI) is the use of computer programs to pro-
vide instruction or training. (See EDUCATION AND COM-
PUTERS for a more comprehensive discussion of the use of
computers for teaching and learning.)

The American reaction to Soviet space achievements
led to many attempts to modernize the educational sys-
tem. While the high cost and limited capabilities of
1950s computing technology allowed only for theoreti-
cal research by IBM and some universities, by the 1960s
more powerful solid-state computers were starting to
make what were then called “teaching machines” practi-
cable. The first large-scale initiative was the PLATO teach-
ing system designed by the Computer-based Educational
Research Laboratory at the University of Illinois, Urbana.
PLATO used a large timesharing system to provide edu-
cational software to about a thousand users at terminals
throughout the university. PLATO pioneered the use of
graphics and what would later be called multimedia, and
was eventually marketed by Control Data Corporation, a
leading manufacturer of high-end mainframe computers.
Stanford University also began a large-scale initiative to
deliver computerized instruction.

The early CAI systems required expensive hardware,
however, and generally could be sustained only by research
funding or where they met the growing training needs of
the military, the aerospace industry, or other specialized
users. However, the advent of the personal computer in the
late 1970s provided both a new technology for delivering
educational software and a potential market. With its color
graphics and astute marketing the Apple II had became a
staple of classrooms by the mid-1980s, when its succes-
sor, the Macintosh, brought more advanced graphics (see
MACINTOSH) and a program called Hypercard that made it
easy for educators to create simple interactive presentations
(see HYPERTEXT AND HYPERMEDIA). The Intel-based IBM PC
and its “clones” also gained a foothold in the classroom, and
Microsoft Windows brought a graphical interface similar to
that on the Macintosh.

APPLICATIONS

The simplest (and probably least interesting) form of CAI is
often called “drill and practice” programs. Such programs
(usually found in the elementary grades) repetitively pres-
ent math problems, reading vocabulary, or other exercises
and test the user’s understanding. (Teaching keyboard skills
to young students is another common application.) In an
attempt to hold the student’s interest, many such programs
provide a gamelike atmosphere and offer periodic rewards
or reinforcement for success.

More sophisticated programs allow the student more
creative scope, such as by letting the student program and
test virtual “robots” as a means of mastering a program-
ming language. Many computer games, while not designed
explicitly for instruction, provide simulations that exercise
thinking and planning skills (see COMPUTER GAMES). (For
example, the strategy game Civilization incorporates con-
cepts such as resource management, labor allocation, and
a balanced economy.) Even more sophisticated programs
use advanced programming (see ARTIFICIAL INTELLIGENCE)
to interact with students in ways similar to those used by
human teachers. For example, a program called Cognitive
Tutor, now used in many schools, can recognize different
“styles” of learning and approaches to solving, for example,
an algebra problem. The program can also identify a stu-
dent’s specific weaknesses and tailor practice and supple-
mental instruction accordingly. These programs can teach
and reinforce reasoning skills rather than just imparting
specific knowledge.

Industry remains a large market for computer-based train-
ing. A variety of CBT packages are available for introducing
and teaching programming languages such as C++ and Java
as well as for preparing students to earn industry certificates
such as the A+ certificate for computer technicians.

TRENDS

Two continuing trends in CAI are the growing use of
graphics and multimedia, including video or movies, and
the increasing delivery of training via the Internet. Some
training software can be accessed directly over the Internet
through a Web browser, without requiring special software
on the user’s PC. Increasingly, even products delivered on
CD and run from the user’s PC include links to supplemen-
tal material on the Web.

Further Reading

Horton, William. E-Learning by Design. San Francisco: Pfeiffer,
2006.

Ko, Suasan Schor and Steve Rossen. Teaching On-line: A Practical
Guide. 2nd ed. Boston: Houghton Mifflin, 2003.

Rosenberg, Marc J. E-Learning: Strategies for Delivering Knowledge
in the Digital Age. New York: McGraw-Hill, 2001.

Viadero, Debra. “New Breed of Digital Tutors Yielding Learning
Gains.” Education Week, April 2, 2007. Available online. URL:
http://www.edweek.org/ew/articles/2007/04/02/31intelligent.
h26.html. Accessed June 13, 2007.

Watkins, Ryan, and Michael Corry. E-Learning Companion: A
Student’s Guide to Online Success. Boston: Houghton Mifflin,
2004.

Web-Based Training Information Center. Available online. URL:
http://wbtic.com. Accessed June 12, 2007.

100 computer crime and security

computer crime and security

The growing economic value of information, products, and
services accessible through computer systems has attracted
increased attention from opportunistic criminals. In par-
ticular, the many potential vulnerabilities of online systems
and the Internet have made computer crime attractive and
pose significant challenges to professionals whose task it is
to secure such systems.

The motivations of persons who use computer systems
in unauthorized ways vary. Some hackers primarily seek
detailed knowledge of systems, while others (often teenag-
ers) seek “bragging rights.” Other intruders have the more
traditional criminal motive of gaining access to information
such as credit card numbers and personal identities that
can be used to make unauthorized purchases (see IDENTITY
THEFT). Computer access can also be used to intimidate (see
CYBERSTALKING AND HARASSMENT), as well as for extortion,
espionage, sabotage, or terrorism (see CYBERTERRORISM).
Attacking and defending information infrastructure is now
a vital part of military and homeland security planning (see
INFORMATION WARFARE).

According to the federal Internet Crime Complaint Cen-
ter, in 2006 the most commonly reported computer-related
crime was auction-related fraud (44.9 percent), followed by
nondelivery of goods (19 percent)—these no doubt reflect
the high volume of auction and e-commerce transactions.
Various forms of financial fraud (including identity theft)
make up most of the rest.

The new emphasis on the terrorist threat following Sep-
tember 11, 2001, has included some additional attention to
cyberterrorism, or the attack on computers controlling key
infrastructure (including banks, water and power systems,
air traffic control, and so on). So far ideologically inspired
attacks on computer systems have mainly amounted to
simple electronic vandalism of Web sites. Internal systems
belonging to federal agencies and the military tend to be
relatively protected and isolated from direct contact with
the Internet. However, the possibility of a crippling attack
or electronic hijacking cannot be ruled out. Commercial
systems may be more vulnerable to denial-of-service attacks
(see below) that cause economic losses by preventing con-
sumers from accessing services.

FORMS OF ATTACK

Surveillance-based attacks involve scanning Internet traffic
for purposes of espionage or obtaining valuable informa-
tion. Not only businesses but also the growing number of
Internet users with “always-on” Internet connections (see
BROADBAND) are vulnerable to “packet-sniffing” software
that exploits vulnerabilities in the networking software or
operating system. The main line of defense against such
attacks is the software or hardware firewall, which both
“hides” the addresses of the main computer or network and
identifies and blocks packets associated with the common
forms of attack (see FIREWALL).

In the realm of harassment or sabotage, a “denial of ser-
vice” (DOS) attack can flood the target system with packets
that request acknowledgment (an essential feature of net-
work operation). This can tie up the system so that a Web

server, for example, can no longer respond to user requests,
making the page inaccessible. More sophisticated DOS
attacks can be launched by first using viruses to insert pro-
grams in a number of computers (a so-called botnet), and
then instructing the programs to simultaneously launch
attacks from a variety of locations.

Computer viruses can also be used to randomly vandal-
ize computers, impeding operation or destroying data (see
COMPUTER VIRUS). But a virus can also be surreptitiously
inserted as a “Trojan horse” into a computer’s operating sys-
tem where it can intercept passwords and other information,
sending them to the person who planted the virus. Viruses
were originally spread through infected floppy disks (often
“bootleg” copies of software). Today, however, the Internet
is the main route of access, with viruses embedded in e-mail
attachments. This is possible because many e-mail and other
programs have the ability to execute programs (scripts) that
they receive. The main defense against viruses is regular
use of antivirus software, turning off scripting capabili-
ties unless absolutely necessary, and making a policy of not
opening unknown or suspicious-looking e-mail attachments
as well as messages that pretend to be from reputable banks
or other agencies (see PHISHING AND SPOOFING).

COMPUTER SECURITY

Because there are a variety of vulnerabilities of computer
systems and of corresponding types of attacks, computer
security is a multifaceted discipline. The vulnerability of
computer systems is not solely technical in nature. Some-
times the weakest link in a system is the human link.
Hackers are often adept at a technique they call “social
engineering.” This involves tricking computer operators
into giving out sensitive information (such as passwords)
by masquerading as a colleague or someone else who might
have a legitimate need for the information.

Since computer crimes and attacks can take so many
forms, the best defense is layered or in depth. It includes
appropriate software (firewalls and antivirus programs,
and network monitoring programs for larger installations).
It emphasizes proper training of personnel, ranging from
security investigators to clerical users. Finally, if informa-
tion is compromised, the use of strong encryption can make
it much less likely to be usable (see ENCRYPTION).

While the flexibility and speed of the Internet can aid
attackers, it can also facilitate defense. Emergency response
networks and major vendors of antivirus software can
quickly disseminate protective code or “patches” that close
vulnerabilities in operating systems or applications.

The growing concern about vulnerability to computer
intrusion and information theft has also been reflected in
attempts to make operating systems inherently more secure.
The introduction of new security features in Microsoft Win-
dows Vista has received mixed reviews. Some features, such
as User Account Control, make it harder for viruses or
other automated attacks to access critical system resources,
but also annoy users by constant requests for permission to
carry out common tasks. This reflects a fundamental truth:
Security features that make everyday computing more
tedious tend to be turned off or bypassed by users.

computer engineering 101

Once a computer-based crime is detected, a system-
atic approach to evidence gathering and investigation is
required (see COMPUTER FORENSICS). This is because evi-
dence in computer crimes tends to be technical, intangi-
ble, and transient, and thus difficult to explain properly to
judges and juries.

Individual consumers can reduce their vulnerability by
ensuring that they do not give out personal information
without verifying both the requester and the need for the
data. Use of secure Web sites for credit card transactions
has become standard. Generally speaking, vulnerability
to computer crime is inversely proportional to the degree
of privacy individuals have with regard to their personal
information (see PRIVACY IN THE DIGITAL AGE). Public con-
cern about privacy and security has led to recent laws and
initiatives aimed at disclosure of organizations’ privacy
policy and limiting the redistribution of information once
collected.

Further Reading

Balkin, J. M. Cybercrime: Digital Cops in a Networked Environment.
New York: New York University Press, 2007.

CERT Coordination Center, Carnegie-Mellon University. Available
online. URL: http://www.cert.org. Accessed August 12, 2007.

Easttom, Chuck. Computer Security Fundamentals. Upper Saddle
River, N J.: Prentice Hall, 2005.

McQuade, Sam C. Understanding and Managing Cybercrime. Bos-
ton: Allyn & Bacon, 2005.

Mitnick, Kevin, and William L. Simon. The Art of Intrusion. New
York: Wiley, 2005.

computer engineering
Computer engineering involves the design and implemen-
tation of all aspects of computer systems. It is the prac-
tical complement to computer science, which focuses on
the study of the theory of the organization and processing
of information (see COMPUTER SCIENCE). Because hardware
requires software (particularly operating systems) in order
to be useful, computer engineering overlaps into software
design, although the latter is usually considered to be a
separate field (see SOFTWARE ENGINEERING).

To get an idea of the scope of computer engineering, con-
sider the range of components commonly found in today’s
desktop computers:

PROCESSOR

The design of the microprocessor includes the number and
width of registers, method of instruction processing (pipe-
lining), the chipset (functions to be integral to the package
with the microprocessor), the amount of cache, the con-
nection to memory bus, the use of multiple processors, the
order in which data will be moved and stored in memory
(low or high-order byte first?), and the clock speed. (See
MICROPROCESSOR, CHIPSET, CACHE, BUS, MULTIPROCESSING,
MEMORY, and CLOCK SPEED.)

MEMORY
The design of memory includes the type (static or dynamic)
and configuration of RAM, the maximum addressable mem-

ory, and the use of parity for error detection (see MEMORY,
ADDRESSING, and ERROR CORRECTION). Besides random-
access memory, other types of memory include ROM (read-
only memory) and CMOS (rewritable persistent memory).

MOTHERBOARD

The motherboard is the platform and data transfer infra-
structure for the computer system. It includes the main data
bus and secondary buses (such as for high-speed connec-
tion between the processor and video subsystem—see BUS).
The designer must also decide which components will be
integral to the motherboard, and which provided as add-
ons through ports of various kinds.

PERIPHERAL DEVICES

Peripheral devices include fixed and removable disk drives;
CD and DVD-ROM drives, tape drives, scanners, printers,
and modems.

DEVICE CONTROL

Each peripheral device must have an interface circuit that
receives commands from the CPU and returns data (see
GRAPHICS CARD).

INPUT/OUTPUT AND PORTS

A variety of standards exist for connecting external devices
to the motherboard (see PARALLEL PORT, SERIAL PORT, and
USB). Designers of devices in turn must decide which con-
nections to support.

There are also a variety of input devices to be handled,
including the keyboard, mouse, joystick, track pad, graph-
ics tablet, and so on.

Of course this discussion isn’t limited to the desktop PC;
similar or analogous components are also used in larger com-
puters (see MAINFRAME, MINICOMPUTER, and WORKSTATION).

NETWORKING

Networking adds another layer of complexity in controlling
the transfer of data between different computer systems,
using various typologies and transport mechanisms (such
as Ethernet); interfaces to connect computers to the net-
work; routers, hubs, and switches (see NETWORK).

OTHER CONSIDERATIONS

In designing all the subsystems of the modern computer and
network, computer engineers must consider a variety of fac-
tors and tradeoffs. Hardware devices must be designed with
a form factor (size and shape) that will fit efficiently into a
crowded computer case. For devices that require their own
source of power, the capacity of the available power supply
and the likely presence of other power-consuming devices
must be taken into account. Processors and other circuits
generate heat, which must be dissipated. (In an increasingly
energy-conscious world the reduction of energy consump-
tion, such as through standby or “hibernation” modes, is
also an important consideration—see GREEN PC.) Heat and
other forms of stress affect reliability. And in terms of how

102 computer forensics

a device processes input data or commands, the applicable
standards must be met. Finally, cost is always an issue.

Moving beyond hardware to operating system (OS)
design, computer engineers must deal with many additional
questions, including the file system, how the OS will com-
municate with devices (or device drivers), and how applica-
tions will obtain data from the OS (such as the contents of
input buffers). Today’s operating systems include hundreds
of system functions. Since the 1980s, the provision of all
the objects needed for a standard user interface (such as
windows, menus, and dialog boxes) has been considered
to be part of the OS design. Finally, the building of secu-
rity features into both hardware and operating systems has
become an integral part of computer engineering (see, for
example, BIOMETRICS and ENCRYPTION).

TRENDS

In the early days of mainframe computing (and again at
the beginning of microcomputing) many distinctive system
architectures entered the market in rapid succession. For
example, the Apple II (1977), IBM PC (1981), and Apple
Macintosh (1984) (see IBM PC and MACINTOSH). Because
architectures are now so complex (and so much has been
invested in legacy hardware and software), wholly new
architectures seldom emerge today. Because of the com-
plexity and cost involved in creating system architectures,
development tends to be incremental, such as adding PCI
card slots to the IBM PC architecture while retaining older
ISA slots, or replacing IDE controllers with EIDE.

The growing emphasis on networks in general and the
Internet in particular has probably diverted some effort and
resources from the design of stand-alone PCs to network
and telecommunications engineering. At the same time,
new categories of personal computing devices have emerged
over the years, including the suitcase-size “transportable”
PC, the laptop, the book-sized notebook PC, the handheld
PDA (personal digital assistant), as well as network-ori-
ented PCs and “appliances.” (See PORTABLE COMPUTERS and
SMARTPHONE.)

As computing capabilities are built into more traditional
devices (ranging from cars to home entertainment centers),
computer engineering has increasingly overlapped other
fields of engineering and design. This often means thinking
of devices in nontraditional ways: a car that is able to plan
travel, for example, or a microwave that can keep track of
nutritional information as it prepares food (see EMBEDDED
SYSTEM). The computer engineer must consider not only the
required functionality but the way the user will access the
functions (see USER INTERFACE).

Further Reading

IEEE Computer Society. Available online. URL: http:/www.com-
puter.org

Patterson, D. A. and J. L. Hennessy. Computer Organization and
Design. 3rd ed. San Francisco: Morgan Kaufmann, 2004.

“PC Guide.” Available online. URL: www.pcguide.com. Accessed
June 18, 2007.

Stokes, John. Inside the Machine: An Illustrated Introduction to
Microprocessors and Computer Architecture. San Francisco: No
Starch Press, 2007.

computer forensics

Computer forensics is the process of uncovering, docu-
menting, analyzing, and preserving criminal evidence that
has been stored on (or created using) a computer system.
(For the use of computers by police, see LAW ENFORCEMENT
AND COMPUTERS.)

In general, computer forensics involves both adher-
ence to legal evidentiary standards and the use of sophis-
ticated technical tools. The legal standards require
practices similar to those used in obtaining other types
of criminal evidence (observing expectations of privacy,
knowing when a warrant is needed to search and seize
evidence, and so on).

Once there is a go-ahead for a search, the first step is to
document the layout and nature of the equipment (gener-
ally by photographing it) and to identify both devices that
might be problematic or notes or other materials that might
reveal passwords for encrypted data.

If the system is running it may be viewed or scanned to
determine what applications are running and what network
connections may be active. However, this has to be done as
unobtrusively as possible, since some machines can detect
physical intrusions.

Step by step, the forensic technician must document
each software program or other tool used, and why it is
justified (such as the possibility that simply shutting down
the system might lead to loss of data in RAM). There are a
variety of such tools, particularly for UNIX/Linux environ-
ments, some of which have been ported to Windows. (In
some cases a Linux “live” CD might be booted and used to
explore a Windows file system.)

The next step is to collect the evidence from storage
media in such a way as to ensure that it is accurately and
completely preserved. A running machine must generally
first be shut down in such a way as to prevent trigger-
ing any “trip wire” or intrusion-detection or self-destruct
mechanism that may have been installed.

As a practical matter, once the system has been properly
shut down or immobilized, it is usually taken to the foren-
sic laboratory for extraction, copying, and documenting of
the evidence (such as files on a hard drive or other storage
device).

Once the data has been collected, each file or document
must be analyzed to determine if it is relevant to the crimi-
nal investigation and what key information it contains. For
example, e-mail headers may be analyzed to determine the
source and routing of the message.

SOME TYPICAL CASES

Computer-based evidence may be relevant for almost any
type of crime, but certain kinds of crimes are more likely to
involve computer forensics. These include:

¢ financial crimes, such as embezzlement

e corporate crimes such as insider trading, where e-
mails may reveal who knew what and when

e data or identity theft, including online scams or
phishing

computer games 103

e stalking or harassment, particularly involving chat
rooms or social networks

e child pornography, particularly distribution of images

In recent years many law enforcement agencies have
become aware of the importance of proper investigation and
treatment of evidence in our digital society, and demand
for trained computer forensic specialists is expected to
increase.

Further Reading

Britz, Marjie T. Computer Forensics and Cyber Crime: An Introduc-
tion. Upper Saddle River, N.J.: Prentice Hall, 2003.

Carrier, Brian. File System Forensic Analysis. Upper Saddle River,
NJ.: Addison-Wesley Professional, 2005.

“Searching and Seizing Computers and Obtaining Electronic
Evidence in Criminal Investigations.” U.S. Dept. of Justice,
July 2002. Available online. URL: http://www.usdoj.gov/
criminal/cybercrime/s&smanual2002.htm. Accessed Sep-
tember 3, 2007.

Steel, Chad. Windows Forensics: The Field Guide for Conducting
Corporate Computer Investigations. Indianapolis: Wiley, 2006.

Vacca, John R. Computer Forensics: Computer Crime Scene Investi-
gation. 2nd ed. Hingham, Mass.: Charles River Media, 2005.

computer games

Today, playing games is one of the most popular computing
activities. In the early days of computing, games offered a
way to test Al techniques (see ARTIFICIAL INTELLIGENCE).
Games have also encouraged the development of more
sophisticated graphics (see COMPUTER GRAPHICS) and ways
of interacting with the machine (see USER INTERFACE).

GAMES AND Al

Although modern computer games may draw upon several
genres, several recognizably distinct types of games have
been developed over the past half century or so. The first
were computer versions of existing board games. “Deter-
ministic” games (where there is no element of chance) such
as tick-tack-toe and, more important, checkers and chess
offered a challenge to the first computer scientists who were
seeking to learn how to make machines perform tasks that
are usually attributed to human intelligence. For example,
Alan Turing and Claude Shannon both developed chess-
playing programs, although Turing’s came at a time when
computers were still too primitive to handle the volume of
calculations required, and was thus carried out by hand. By
the time a computer program (Deep Blue) had defeated the
world champion in 1997, the Al field had long since left the
game behind (see CHESS AND COMPUTERS).

SIMULATION GAMES

Military planners had devised war games since the 19th
century, but the complexity of modern warfare (including
logistics as well as tactics) cried out for the help of the com-
puter. By 1955 the U.S. military was running large-scale
global cold war simulations pitting NATO against the USSR
and the Eastern bloc. Unlike deterministic games such as
chess, war games generally use complex rules to capture

A scene from the computer strategy game Civilization. Some games
specialize in realistic physical simulation, while others (such as this
one) embody sophisticated economic and strategic considerations.

the many interacting factors such as the morale, experi-
ence, and firepower of a military unit or the performance
of an air defense system against different types of targets.
The results will be more or less realistic depending on how
many factors are properly accounted for—often only later
combat experience will tell.

The use of game theory (the mathematics of competitive
situations) and economics also proved to be fruitful areas
for the use of computer simulations. In 1959 Carnegie Tech
(later Carnegie-Melon University) introduced a simulation
called “The Management Game.” Until the 1980s, however,
lack of inexpensive computing power kept sophisticated
simulations limited to large institutions such as the mili-
tary, government, universities, and major corporations.

Today simulation games are popular in both the educa-
tional and consumer markets. They include flight simula-
tors, a variety of sports including baseball, football, soccer,
and golf, and games in which the player strives to build a
19th-century railroad empire or run a modern city. Indeed
some games, such as the popular kingdom-building simula-
tor Civilization or the complex Sim City, while marketed pri-
marily as entertainment, can easily fit into a social studies
curriculum.

ARCADE AND GRAPHIC GAMES

Starting in the 1960s, CRT (television-like) displays gave
the new minicomputers the means to display simple graph-
ics. In 1962, an intrepid band of game hackers at MIT cre-
ated Spacewar, the first interactive graphic game and the
forerunner of the arcade boom of the 1970s. When the
first home computers from Apple, Commodore, Atari, and
IBM hit the market in the late 1970s and early 1980s, they
included rudimentary (but often colorful) graphics capa-
bilities. Many amateur programmers used the comput-
ers’ built-in BASIC language to create games such as lunar
lander simulators and Star Trek—style space battles. Around

104 computer graphics

the same time, the home game cartridge machine was intro-
duced by Atari and other companies, while the arcade game
Pac-Man became a phenomenal success in 1980 (see GAME
CONSOLES).

ROLE-PLAYING, REAL-TIME, AND SOCIAL WORLDS
Around the time of the first home computers, a noncom-
puter game called Dungeons and Dragons became extremely
popular. “D&D” and other role-playing games allowed play-
ers to create and portray characters, with elaborate rules
being used to resolve events such as battles. Role-play-
ing games soon began to appear on PCs—early examples
include the Wizardry and Ultima series. Meanwhile, text-
based adventure games were becoming popular on early
computer networks, particularly at universities. These
evolved into MUDs (Multi-User Dungeons) where players’
characters could interact with each other. Eventually many
of these programs went beyond their adventuring roots to
create a variety of social worlds in a sort of text-based vir-
tual reality.

By the 1990s, the typical PC had a special circuit (see
GRAPHICS CARD) capable of displaying millions of colors,
together with video memory (now 256 MB or more) that
could hold the complex images needed for high-resolution
animation. Computer game graphics have become increas-
ingly complex (see COMPUTER GRAPHICS), including real-
istic textures, shading and light, smooth animation, and
special effects rivaling Hollywood. (Compare, for example,
early wireframe graphics in games such as the Wizardry of
1980 with games such as Diablo II and Warcraft with ani-
mated characters moving in a richly textured world.)

The way players interact with the game world has also
significantly changed. The first computer games tended to
be divided into turn-based strategy and role-playing games
and real-time arcade-style “shoot ’em ups.” Today, however,
most games, regardless of genre, run as RTS (real-time sim-
ulations) in which players must interact continuously with
the game situation.

By the late 1990s gaming was no longer a solitary pur-
suit. The Internet made it possible to offer game worlds in
which thousands of players could participate simultane-
ously (see ONLINE GAMES). Games such as Everquest and
Asheron’s Call have thousands of devoted players who spend
many hours developing their characters’ skills, while open-
ended worlds such as Second Life seem to no longer be
games at all, but a virtual, parallel universe with a full
range of social interaction. However, the increased real-
ism of modern games has also heightened the controversy
about in-game violence and other antisocial behavior, as
in the Grand Theft Auto series. (Although there is a rating
system for games similar to that for movies, its effectiveness
in keeping adult-themed games out of the hands of young
children seems to be limited.)

GAME DEVELOPMENT

The emphasis on state-of-the-art animation and graphics
and multiplayer design has changed the way game develop-
ment is done. The earliest home computer games were typi-
cally the product of a single designer’s vision, such as Chris

Crawford’s Balance of Power and Richard Garriott (“Lord
British”) in the Ultima series. Today, however, commercially
competitive games are the product of teams that include
graphics, animation, and sound specialists, actors and voice
talent, and other specialists in addition to the game design-
ers. While earlier games might be compared to books with
single authors, modern game developers often compare
their industry to the movie industry with its dominant stu-
dios. And, as with the movie industry, critics have argued
that the high cost of development and of access to the mar-
ket has led to much imitation of successful titles and less
innovation.

On the other hand, a variety of modern programming
environments (such as Visual Basic or even Macromedia
Flash) make it easy for young programmers to get a taste
of game programming, and for amateur programmers to
create games that can be distributed via the Internet (see
SHAREWARE AND FREEWARE). Although computer science
programs have been slow to recognize the attraction and
value of game programming, a variety of academic pro-
grams are now emerging. These range from computer arts,
graphics, and animation programs to a full-fledged four-
year degree program in game design at the University of
California, Santa Cruz. This program includes not only
courses in game design and programming, but also courses
on the game business and even ethics.

Further Reading

Aronson, Sean. “School Fills Need for Game Designers.” Medi-
anews, June 18, 2007. Available online. URL: http:/www.
insidebayarea.com/sanmateocountytimes/localnews/ci_
6168502. Accessed June 20, 2007.

Chaplain, Heather, and Aaron Ruby. Smartbomb: The Quest for
Art, Entertainment, and Big Bucks in the Videogame Revolution.
Chapel Hill, N.C.: Algonquin Books, 2005.

Crawford, Chris. Chris Crawford on Game Design. Indianapolis:
New Riders, 2003.

. Chris Crawford on Interactive Storytelling. Berkeley, Calif.:
New Riders, 2005.

Game Developer. [magazine] Available online. URL: http:/www.
gdmag.com/homepage.htm. Accessed June 23, 2007.

Howland, Geoff. “How Do I Make Games? A Path to Game Devel-
opment.” Available online. URL: http:/www.gamedev.net/
reference/design/features/makegames/. Accessed June 23, 2007.

Moore, Michael E., and Jennifer Sward. Introduction to the Game
Industry. Upper Saddle River, N.J.: Prentice Hall, 2006.

computer graphics

Most early mainframe business computers produced out-
put only in the form of punched cards, paper tape, or text
printouts. However, system designers realized that some
kinds of data were particularly amenable to a graphical rep-
resentation. In the early 1950s, the first systems using the
cathode ray tube (CRT) for graphics output found special-
ized application. For example, the MIT Whirlwind and the
Air Force’s SAGE air defense system used a CRT to display
information such as the location and heading of radar tar-
gets. By 1960, the new relatively inexpensive minicomput-
ers such as the DEC PDP series were being connected to
CRTs by experimenters, who among other things created
Spacewar, the first interactive video game.

computer graphics 105

By the late 1970s, the microcomputers from Apple, Radio
Shack, Commodore, and others either included CRT moni-
tors or had adapters that allowed them to be hooked up
to regular television sets. These machines generally came
with a version of the BASIC language that included com-
mands for plotting lines and points and filling enclosed
figures with color. While crude by modern standards, these
graphics capabilities meant that spreadsheet programs
could provide charts while games and simulations could
show moving, interacting objects. Desktop computers that
showed pictures on television-like screens seemed less for-
bidding than giant machines spitting out reams of printed
paper (see GRAPHICS CARD).

Research at the Xerox PARC laboratory in the 1970s
demonstrated the advantages of a graphical user interface
based on visual objects, including menus, windows, dialog
boxes, and icons (see USER INTERFACE). The Apple Macin-
tosh, introduced in 1984, was the first commercially via-
ble computer in which everything displayed on the screen
(including text) consisted of bitmapped graphics. Micro-
soft’s similar Windows operating environment became
dominant on IBM architecture PCs during the 1990s.
Today Apple, Microsoft, and UNIX-based operating sys-
tems include extensive graphics functions. Game and mul-
timedia developers can call upon such facilities as Apple
QuickDraw and Microsoft DirectX to create high resolu-
tion, realistic graphics (see also GAME CONSOLE).

BASIC GRAPHICS PRINCIPLES

The most basic capabilities needed for computer graphics are
the ability to control the display of pixels (picture elements)
on the screen and a way to specify the location of the spots
to be displayed. A CRT screen is essentially a grid of pixels
that correspond to phosphors (or groups of colored phos-
phors) that can be lit up by the electron beam(s). The first
IBM PCs, for example, often displayed graphics on a 320
(horizontal) by 200 (vertical) grid, with 4 available colors.

A memory buffer is set up whose bytes correspond to the
video display. (A simple monochrome display needs only
one bit per pixel, but color displays must use additional
space to store the color for each pixel.) A screen image is
set up by writing the data bytes to the buffer, which then
is sent to the video system. The video system uses the data
to control the display device so the corresponding pixels
are shown (in the case of a CRT, this means lighting up the
“on” pixels with the electron gun([s]).

In most cases screen locations are defined in coordi-
nates where point 0,0 is the upper left corner of the screen.
The coordinates of the lower right corner depend on the
screen resolution, At 320 by 200, the lower right corner
would be 319,199.

For example, many versions of BASIC use statements
such as the following:

PSET 50,50 ' draws a dot at X=50, Y=50
LI NE (100, 50) - (150, 100), B’ draw square
with UL

corner at 100,50 and LR

corner at 150, 100

)

Line (100,50) - (150,100), B
0,0 PSETI50,50 200,0
10050 y
. —‘
® 150,100
100,150
50
0,200 200,200
Circle (100,150), 50
© Infobase Publishing

Some example figures plotted by BASIC graphics statements using
screen coordinates.

Cl RCLE (100, 150), 50, 4 ' draw a circle of
radi us 50

" with center at 200, 200 and

" color 4 (red)

Languages such as C, C++ and Java don’t have built-in
graphics commands, but functions can be provided in pro-
gram libraries (see LIBRARY, PROGRAM). They would be used
much like the BASIC commands given above.

More commonly, however, programmers use language-
independent graphics platforms (see API). With Windows,
this usually means DirectX, which includes Direct2D for
3D graphics, as well as a variety of multimedia libraries
for sound, user interfacing, and networking. A competitor
that is particularly popular in the Mac and UNIX/Linux
worlds is OpenGL (Open Graphics Library). Both DirectX
and OpenGL run on a wide variety of supported hardware.

GRAPHICS MODELS AND ENGINES
Modern applications (such as drawing programs and games)
go well beyond simple two-dimensional objects. Indeed,
multimedia developers typically use graphics engines
designed to work with C++ or Java. A graphics engine
provides a way to define and model 2D and 3D polygons.
(Curves can be constructed by specifying “control points”
for bicubic curves.)

Complex objects can be built up by specifying hierar-
chies (for example, a human figure might consist of a head,
neck, upper torso, arms, hands, lower torso, legs, feet, and

106 computer industry

so on). By creating a hierarchy of arm, hand, fingers a trans-
formation (scaling or rotation) of one object can be propa-
gated to its dependent objects (see ANIMATION). In many
cases graphics are created from real-world objects that have
been digitally photographed or scanned, and then manipu-
lated (see IMAGE PROCESSING).

In most scenes the relationships between graphical
objects are also important. Modern graphics modeling pro-
grams use a virtual “camera” to indicate the position and
angle from which the graphics are to be viewed. In render-
ing the scene, the Painter’s Algorithm can be used to sort
objects and draw closer surfaces on top of farther ones, as
a painter might paint over the background. Alternatively,
the Z-buffer algorithm stores depth information for each
pixel to determine which ones are drawn. This technique
requires less calculation (because surfaces don’t need to
be sorted), but more memory, since the depth of each pixel
must be stored.

Within a scene, the effects of light (and its absence,
shadows) must be realistically rendered. A simple tech-
nique can be used to calculate an overall light level for an
object based on its angle in relation to the light source,
plus a factor to account for ambient and diffuse light in the
environment. The Gouraud shading technique can be used
to smooth out the artifacts caused by the simple flat shad-
ing method. Another technique, Phong shading, can more
realistically reproduce highlights (the sharp image of a light
source being reflected within a surface). But the most realis-
tic lighting effects are provided through ray tracing, which
involves tracing how representative vectors (representing
rays of light) reflect from or refract through various sur-
faces. However, ray tracing is also the most computationally
intensive lighting technique.

Several techniques can be used to give objects more
realistic surfaces. Texture mapping can be used to “paint”
a realistic texture (perhaps scanned from a real-world
object) onto a surface. For example, pieces in a chess game
could be given a realistic wood grain or marble texture.
This can be further refined through bump mapping, which
calculates variations in the texture at each point based on
light reflections.

APPLICATIONS AND TRADEOFFS
The most graphics-intensive applications today are games,
multimedia programs, and scientific visualization or mod-
eling applications. Because of the impact graphics have on
users’ perception of games and multimedia programs, devel-
opers spend a high proportion of their resources on graph-
ics. Critics often complain that this is at the expense of
core program functions. The software in turn places a high
demand on user hardware: The contemporary “multime-
dia-ready” PC has a video card that includes special “video
accelerator” hardware to speed up the display of graphics
data and a video memory buffer of 256 MB or more.
Complex 3D graphics with lighting, shading, and tex-
tures may have to be displayed at a relatively low resolution
(such as 640 x 480) because of the limitations of the main
processor (which performs necessary calculations) and the
video card. However as processor speed and memory capac-

ity continue to increase, many computer graphics now rival
video and even film in realistic detail.

Further Reading

ACMSIGGRAPH. [graphics special interest group] Available
online. URL: http://www.siggraph.org/. Accessed June 24,
2007.

Computer Graphics World. [magazine] Available online. URL:
http://www.cgw.com/ME2/Default.asp. Accessed June 24,
2007.

Govil-Pai, Shalini. Principles of Computer Graphics: Theory and
Practice Using OpenGL and Maya. New York: Springer, 2005.

Jones, Wendy. Beginning DirectX 10 Game Programming. Boston:
Thomson Course Technology PTR, 2007.

computer industry

The U.S. computer industry began with the marketing of the
Univac, designed by J. Presper Eckert and John Mauchly in
the early 1950s. The first computers were made one at a time
and only as ordered, and the market for the huge, expensive
machines was thought to be limited to government agencies
and the largest corporations. However, astute marketing by
Sperry-Univac, Burroughs, and particularly, International
Business Machines (see IBM) convinced a growing number
of companies that modern data processing facilities would
be essential for managing their growing and increasingly
complex business (see MAINFRAME).

The mainframe market was controlled by a handful of
vendors who typically provided the complete computer sys-
tem (including peripherals such as printers) and a long-term
service contract. (Eventually, third-party vendors began to
make compatible peripherals.) Companies that could not
afford their own computers began to contract with service
bureaus for their data processing needs, such as payroll
processing.

By the 1960s, transistorized circuitry was replacing
the vacuum tube, and somewhat smaller machines became
practicable (see MINICOMPUTER). While these computers
were the size of a desk, not a desktop, models such as Digi-
tal Equipment Corporation’s PDP series and competition
from companies such as Data General provided computing
power for engineers and scientists to use in factories and
laboratories. During the 1970s, the dedicated word pro-
cessing machine marketed by the Wang Corporation began
the digital transformation of the office. By the end of that
decade, the first general-purpose desktop microcomputers
were marketed. The Apple II made a modest inroad into
business, fueled by VisiCalc, the first spreadsheet program.

This new market attracted the attention of IBM, viewed
by many microcomputer enthusiasts as a dinosaurlike relic
of the mainframe age. Uncharacteristically, IBM manage-
ment gave the developers of their personal computer (PC)
project free rein, and the result was the IBM PC introduced
in 1981. The machine had two major advantages. One was
the IBM name itself, which was comforting to executives
contemplating a bewildering new technology. The other
was that IBM (again, uncharacteristically) had followed
Apple’s lead in designing their PC with an “open architec-
ture,” meaning that third-party manufacturers could mar-

computer industry 107

ket a variety of expansion cards to increase the machine’s
capabilities. By 1990, about 10 million PCs worth about $80
billion were being sold annually (see IBM PQ).

Although IBM tried to prevent other manufacturers from
“cloning” the IBM chipset itself, it was unable to prevent
companies such as Compagq from creating “IBM compatible”
PCs that often surpassed the capabilities of the IBM mod-
els. (IBM introduced its microchannel architecture in the
late 1980s in an unsuccessful attempt to regain proprietary
advantage.) By the 1990s the IBM-compatible PCs (some-
times called “Wintel,” for the Microsoft Windows operat-
ing system and Intel-compatible processor) had become
an industry standard and a commodity manufactured and
marketed by everything from the big name brands such
as Dell and Gateway down to the corner computer store’s
backroom operation.

The announcement of Apple’s Macintosh computer in
1984 made a vivid impression on the public (see MACIN-
TOSH). With its fully graphical user interface, mouse, draw-
ing program, and fonts, it seemed light-years ahead of the
text-based IBM PCs. However, the Mac’s slow speed, rela-
tively high price, and closed architecture limited its pen-
etration into the business market. The Mac did attract an
enthusiastic minority of consumer users and achieved a
lasting niche presence in education and among graphics
and video professionals. Gradually, as Microsoft’s graphical
Windows operating system improved in the early 1990s,
the Mac’s advantages over the IBM-compatible machines
diminished.

During the 1990s, desktop computers came with a
series of increasingly powerful series of Pentium proces-
sors, matched by offerings from AMD and Cyrix. Multime-
dia (including high-end graphics and sound capabilities)
became a standard feature, particularly on consumer PCs.
Increasingly, the business PC was being connected to a
local area network, and both business and consumer PCs
included modems or broadband access to online services
and the Internet. The need to manage network files and ser-
vices (such as Web servers) led to the development of server
PCs featuring high-capacity mass storage. At the same time,
high-end PCs also challenged the graphics workstations
made by companies such as Sun. The traditional minicom-
puter and high performance workstation category began
to melt away. By 2002, an estimated 600 million personal
computers were in use worldwide, with about half of them
in homes.

The personal computer also grew smaller. The suitcase-
sized “luggable” computers of the 1980s gave way to a range
of laptop, notebook-sized, and palm-sized computers. Today
wireless networking technology allows users of diminutive
machines to access the full resources of the World Wide
Web and local networks.

The idea of “appliance computing” has also been a
recurrent theme among industry pundits. Proponents argue
that there are still many people who feel intimidated by a
standard computer interface but have become comfortable
with other consumer electronic products such as televi-
sions, CD players, or microwaves. If computer functions
could be built into such devices, people might use them

comfortably. For example, WebTV is a box that allows the
user to surf the Web from the same armchair where he or
she watches TV, using controls little more complicated than
those found on a regular TV remote. Kitchen appliances
might be transformed, with the microwave providing reci-
pes and the refrigerator keeping an inventory and automati-
cally ordering from the grocery store. However, as with the
fully automated “wired home,” featured in Sunday news-
paper supplements, the appliance computer has remained
difficult to market to consumers (see SMART BUILDINGS AND
HOMES).

THE SOFTWARE INDUSTRY

Hardware is useless without software. Since the operating
system (OS) is the software that enables all other software
to access the computer, the OS market is a key part of the
computer industry. Through a historical accident, a young
programmer-entrepreneur named Bill (WILLIAM) GATES
and his MICROSOFT Corporation received the contract to
develop the operating system for the first IBM PC. Micro-
soft bought and adapted an existing operating system to
create MS-DOS (also called PC-DOS). Until the end of the
1980s, DOS was the dominant operating system for IBM-
compatible PCs (see MS-DOS). In the early 1990s, Microsoft
introduced Windows 3.0, the first successful version of its
graphical operating environment (see MICROSOFT WIN-
DOWS). The dominance of Windows became so complete
that a federal antitrust case against Microsoft resulted in
the company having to provide competitors greater access
to the operating system.

The source of emerging challenges to Windows comes
not from another desktop vendor but from the Internet,
where Java offers the potential of delivering applications
through the user’s Web browser, regardless of whether that
user is running Windows, the Macintosh OS, or Linux, a
variant of UNIX that has been embraced by many enthu-
siasts. However, Java applications and Linux still represent
only a tiny fraction of the market share held by Windows
(see JAVA and LINUX).

The 1990s saw considerable consolidation in the office
software arena. Microsoft’s Office software suite over-
whelmed once formidable competitors such as WordPerfect
and Corel. Packages such as Microsoft Office create their
own mini-industries where developers create templates and
add-ins. However, the widespread use of high-speed Inter-
net access (see BROADBAND) has made it practicable to offer
many office software functions online, providing workers
with convenient access from any location. The most signifi-
cant offering here has been Google Apps, which includes
calendar and communications features as well as Google
Docs & Spreadsheets. In turn, Microsoft has been prompted
to offer added-value online features to Microsoft Office.

Outside the office there is considerably more competi-
tion in the software industry. Today’s consumers can choose
from a wide variety of software that fills utility or other niche
needs, including shareware (“try before you buy”) offerings.
In educational software and games some once-major innova-
tors have been bought out or consolidated, but there is no
one dominant company. Thousands of specialized software

108 computer industry

packages serve scientific, manufacturing, and business
needs. While the general public is unaware of such pro-
grams, they make up much of the strength of the software
industry.

OTHER PRODUCTS AND SERVICES

By the 2000s there were many new niches in the computer
industry landscape. Powerful dedicated game machines
such as the Microsoft Xbox 360 and the Sony PlayStation
3 make for a vigorous software industry that potentially
goes beyond games (see GAME CONSOLES). Portable media
players such as Apple’s iPod are ubiquitous (see MUSIC AND
VIDEO PLAYERS, DIGITAL). The personal digital assistant (see
PDA) and the cell phone have largely merged and morphed
(see SMARTPHONE), capable of running a variety of soft-
ware including e-mail, Web browsing, games, and music.
Meanwhile, digital cameras have virtually replaced film for
all but the most high-end and specialized applications (see
PHOTOGRAPHY, DIGITAL). The convergence and proliferation
of all of these devices is continuing at a rapid pace, and
competition is fierce.

The services sector of the computer industry lacks the
visibility of new hardware products, but provides most
of the industry’s employment and much of its economic
impact. In addition to the hundreds of thousands of pro-
grammers who provide business-related, consumer, and
specialized software, there are the legions of help desk
employees, computer and network technicians, creators of
software development tools, writers of technical books and
training products, industry investment analysts, reporters,
and many others whose livelihood depends on the com-
puter industry.

INTERNATIONAL COMPUTING

The computing industry came of age mainly in the United
States. By the 1960s IBM had extended its dominant posi-
tion to Britain and Europe despite the efforts of indigenous
companies and government initiatives. Japan was consider-
ably more successful in developing a competitive electron-
ics and computer industry under the long-term guidance of
MITI (Ministry of International Trade and Industry). The
Japanese became dominant in industrial robotics and strong
in consumer electronics, including game machines (Sony),
digital cameras (Sony and Fujitsu), and laptop computers
(Toshiba). They have been less successful in desktop com-
puters, Internet-related technology, and commercial soft-
ware. China has become an increasingly important player
in the components and peripherals industry. The growing
importance of Asia in the international computer industry
is also underscored by the large number of programmers,
engineers, and support personnel being trained in India
(see GLOBALISM AND THE COMPUTER INDUSTRY).

Major Internet industry players such as Google and
Yahoo! as well as hardware giant Dell have become heavily
involved in the Chinese market, which boasted about 100
million users in 2006, second only to the United States.

A number of initiatives are helping spread computing
even in the limited economies of many countries in Africa,

Asia, and Latin America (see DEVELOPING NATIONS AND
COMPUTING). While illicit copying has hindered the mar-
keting of commercial software in many countries, the alter-
native model of open-source software and very inexpensive
laptops (the One Laptop Per Child initiative) may offer a
viable path to the true globalization of computing.

EMERGING TRENDS
As the 2000 decade has progressed, a number of trends
continue to reshape the computer industry. These include:

¢ The recovery from the “bust” years of 2001-3 was fol-
lowed by more modest but significant growth, with
rapid growth in particular sectors such as mobile
devices, Web applications (see WEB 2.0), and security.

e Desktop PC sales were strong through 2005 (about
200 million that year) but now appear to be stagnat-
ing (in the United States at least) in favor of laptops,
smaller portable computers, and smart phones.

e Although a new generation of multicore proces-
sors and the resource-hungry Microsoft Windows
Vista operating system may eventually speed up the
replacement of older PCs, businesses have been tend-
ing to keep slightly obsolescent machines and operat-
ing systems longer.

¢ Free or lower-cost alternative software and operating
systems (see OPEN SOURCE and LINUX) are attracting
considerable publicity, but it is unclear how much
penetration they will achieve in the mainstream home
and small-business computing sectors.

* Besides cost consciousness and other priorities (such
as networking and security), the trend toward Web-
based applications may be shifting sales away from
hardware and traditional operating systems and soft-
ware suites. (See APPLICATION SERVICE PROVIDER.)

e QOutsourcing of many IT functions is continuing,
including network administration, managed backup
and storage