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Water & power use in AI are design variables
Recent headlines claim AI systems consume half a liter of water per prompt or strain national
power grids, but these narratives are based on outdated assumptions and worst-case
scenarios. This policy briefing corrects the record with data from real-world engineering. 

Today’s best-in-class infrastructure uses closed-loop cooling, reclaimed water, and load
balancing systems to achieve Water Usage Effectiveness (WUE) as low as 0.19 L/kWh and
Power Usage Effectiveness (PUE) below 1.2. Contrary to media alarmism, AI’s environment
footprint is determined by design choices, not fixed technological costs. 

This briefing lays out: 

The origins of the “500 mL per prompt”
myth and why it fails scientific scrutiny.

PART 2: INTRODUCING THE POWER REALITY
Examines AI’s electricity demand and whether AI will
overwhelm national grids. We examine how AI training
and inference workloads differ in their draw, how those
workloads are distributed, and how real-world
deployments (especially those using advanced liquid
cooling and intelligent scheduling) achieve low Power
Usage Effectiveness (PUE). 

Regulatory recommendations for
transparency, efficiency benchmarks,

and location optimization. 

PART 1: CRACKING THE AI WATER MYTH
Tracks the origin of the half-liter bottle of water claim,
dissects the thermodynamics behind it, and compares
it against the cooling methods used in modern AI-
ready data centers. The findings reveal that the “500
mL” figure only applies under legacy evaporative
systems, and that state-of-the-art facilities consume
an order of magnitude less, or none at all. 

Why this briefing matters 
Policymakers, regulators, and industry leaders are
currently making high-stakes decisions based on
outdated, worst-case assumptions about AI’s
environmental footprint. These assumptions
(particularly around water use) have made their way
into legislative drafts and global media cycles,
shaping public pressure and influencing digital
infrastructure investment. This report presents an
engineering-based correction. By separating media
myth from operational fact, it equips stakeholders to
regulate and innovate with accuracy, not alarm. 

What this report delivers
In addition to correcting public misconceptions, this
briefing concludes with a set of forward-looking
policy recommendations. These include measurable
efficiency benchmarks, transparent disclosure
standards, and siting strategies to ensure AI
infrastructure evolves sustainably, and credibly. 

In a two-part series, No, AI doesn’t drink a bottle
of water per prompt, will cover:
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The conclusion is clear: both water and power consumption are design
variables, not fixed outcomes. Regulatory panic is premature, but

engineering-based policy is overdue.



Provider WUE (L/kWh)

AWS (2022) 0.19

Microsoft (2022) 0.49

Google (2021 est.) ~1.1

Industry Avg
(legacy) ~1.8

Fully air-cooled DC 0.0

5 Engineering Flaws in the “500 mL per Prompt” Claim

1-Assumes Outdated Cooling Design (Evaporative Towers Only)
The study bases its estimate on evaporative cooling, which inherently consumes
water. But modern AI data centers increasingly use closed-loop, air-cooled, or
hybrid systems that use little to no water. AWS, for instance, reports a WUE of just
0.19 L/kWh, not 1-2 L/kWh as implied by the Ren model. 

2-Applies Static Efficiency to a Dynamic, Climate-Adapted System
Water use in real-world data centers is not constant. Modern operators dynamically
adjust workloads and cooling modes (like air-side economization and adiabatic
assist) to match environmental conditions, dramatically reducing water use during
cooler seasons or at night.

3-Fails to Account for AI-Specific Design Innovations
High-density AI workloads are typically deployed in next-gen facilities designed for
GPU heat flux. These often use direct-to-chip liquid cooling with dry coolers or heat
reuse loops, not evaporative towers. As a result, water is a last resort, not a default
cooling mechanism. 

4-Treats Location and Timing as Invariant 
The paper treats water intensity as fixed across regions and times of day. But in
reality, training jobs can be scheduled in low-humidity, cool climates (like Sweden
or Iowa), or run at night, cutting evaporation drastically. This flexibility invalidates
fixed “per prompt” water costs. 

5-Presents One-Time Peak Estimate as Universal Baseline
The “500 mL per 20-50 prompts” figure stems from worst-case stacking: high
energy, evaporative cooling, and fossil-powered electricity. But AI queries today
often run in stable, renewably powered, air-cooled infrastructure. There is no
universal water cost per prompt - it depends entirely on design. 
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What the “bottle per
prompt” claim gets
wrong about data

center design

Part 1: Cracking the AI
Water Myth

On-site Water Usage Efficiency (WUE)

“Evaporative cooling is optional. Modern
AI data centers often use zero-water

systems.”
 – ASHRAE Handbook, Data Center Cooling Standards
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The Ren et al. Model Ignores Modern
Cooling Practices

The “500 mL per prompt” figure originated
from a 2023 preprint by Ren et al. (UC
Riverside & UT Arlington), which used a
broad-stack estimate combining ChatGPT’s
compute load, legacy evaporative cooling,
and fossil-fuel grid water use. But modern
AI infrastructure doesn’t operate this way.
For example, AWS reports a fleetwide on-
site WUE of just 0.19 L/kWh, meaning a
typical AI query would use a tenth of that
figure, or none at all in air-cooled systems 

Engineering First Principles Say
Otherwise

Water use in cooling is not intrinsic to AI. It
is a design parameter. Evaporative cooling
uses water, yes - but dry coolers, air-side
economization, and liquid-to-air heat
exchangers do not. Many modern facilities
are already using zero-water cooling,
especially during cooler seasons or off-peak
hours. 

Climate-Aware Scheduling Makes a
Measurable Difference 

Even when evaporation is used, operators
can reduce water use by timing AI
workloads. Training runs are increasingly
scheduled at night or in cool climates like
Sweden, Oregon, or Iowa. This strategy,
endorsed even by Ren et al., shows that
“per prompt” water can vary 3x or more
based on location and hour; meaning,
averages are often misleading. 

Modern AI Data Centers Are Actively
Redesigning for Water Efficiency

Microsoft, Google, and Meta now deploy
direct-to-chip liquid cooling and use
reclaimed or non-potable water where
possible. 

These systems use water only as a last
resort, not as a baseline cooling method—
cutting water use by 70–100% compared
to legacy towers.

If all global data centers matched
AWS’s 0.19 L/kWh, the total

freshwater savings would exceed 5
billion liters annually—enough to

supply over 9,000 homes.

“0.19 L/kWh is not theory—it’s
AWS’s actual fleet-wide WUE.”
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For full technical documentation, cooling cycle diagrams, and
empirical WUE benchmarks, see:

 No, AI Doesn’t Drink a Bottle of Water per Prompt



Reframing Water Use: From Myth to Measurable Policy

The sensationalism around AI’s “water footprint” has
outpaced engineering reality. As shown in the Ren et al.
(2023) study, worst-case assumptions 
stack high-legacy cooling towers, fossil
power, and static scheduling. But those 
conditions do not reflect how modern AI 
systems are cooled, nor how water
efficiency is achieved. 

Modern hyperscale data centers are 
designed for flexibility. They adapt 
cooling strategies in real-time, using
economizers in cold weather, dry coolers 
where water is scarce, and reclaimed 
water instead of potable sources when 
needed. These design decisions aren’t 
theoretical; they are the standard across Microsoft, 
Google, Meta, AWS, and NVIDIA’s latest AI builds. 

The issue is not AI itself. It’s the assumptions regulators
make when interpreting early-stage studies. Many
headlines cite outdated averages and miss critical
variables: climate, scheduling, heat reuse, or cooling
architecture. Good policy must distinguish between
facilities running state-of-the-art zero-water cooling and
those using high-evaporation legacy systems. 

Design flexibility is the defining feature of modern AI
infrastructure. Cooling is no longer a one-size-fits-all
constraint—it is a tunable parameter shaped by climate,
load type, and sustainability goals. Leading hyperscalers
dynamically balance efficiency and resilience by using
reclaimed water, dry systems, or seasonally adaptive
controls. These aren’t theoretical solutions—they’re
deployed now. To regulate AI’s impact accurately,
policymakers must stop treating water consumption as
an inevitable cost and start treating it as a solvable
engineering input.

To ensure environmental oversight keeps pace with
technical reality, policymakers must require visibility
into how AI infrastructure is actually cooled. Today’s
best systems already minimize or eliminate water
use, but these improvements are invisible in legacy 

“When regulators
assume static

infrastructure, they
regulate against
yesterday’s data

centers—not
today’s

capabilities.”

permitting frameworks. 

Without standardized WUE reporting,
reclaimed water tracking, and
cooling architecture disclosures,
regulators are left regulating ghosts
in the machine, based on estimates
from outdated facilities with
evaporative towers and fossil-fueled
power. These five policy
recommendations reflect current
capabilities already deployed by
major operators. The role of
regulation is to recognize, reward,
and require what is already
technically possible. 

• “Require Transparent WUE Reporting“
Mandate standardized Water Usage Effectiveness
(WUE) metrics for all AI-capable data centers to
distinguish between legacy and efficient systems. 

“Water use is not a function of computation.
It is a function of heat rejection method.
Change the method, and you eliminate the
water.
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• “Differentiate Potable vs. Non-Potable Use”
Count only potable water draw in regulatory
assessments. Encourage use of reclaimed or non-
potable sources through incentives. 

• “Align Siting Incentives with Climate-Aware Design
Offer policy support for facilities that locate in cooler
climates or use economization to reduce annual
water use. 

• “Incentivize Zero-Water Cooling Tech” 
Provide R&D credits or expedited permitting for
operators investing in air-cooled or closed-loop
systems. 

• “Disclose Cooling Architecture in Environmental Reviews
Require data center projects to include detailed
cooling systems specs (e.g., evaporative vs. dry)
during EIR/EA processes to accurately project local
impact.
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The public narrative has focused on water, but it is
electricity—not liquid cooling—that defines AI’s
environmental profile. Training a large language
model today consumes hundreds of megawatt-
hours. But that figure is not a fixed cost; it varies
widely depending on scheduling, siting, and
architecture.

This section reframes AI’s power demand using real-
world engineering data. It distinguishes training from
inference, and legacy data centers from modern
liquid-cooled clusters. The findings show that AI
workloads can be efficiently scheduled around grid
availability, and that some data centers already
operate at PUEs approaching 1.1 or lower—
comparable to top supercomputing facilities.

Rather than triggering alarm, the growth in AI
compute should motivate policy clarity. Without
accurate metrics or meaningful transparency, well-
designed facilities risk being mischaracterized by
outdated national averages.

Understanding Power Use in AI Workloads
Electricity consumption in AI systems depends on
the type of workload, model architecture, and data
center design. Training large-scale models like GPT-
3 can consume up to 1,300 MWh, but inference
workloads are several orders of magnitude lower. 

Key Takeaways: 
• AI power use is driven by training runs, not
everyday prompts.
 • Energy use varies up to 5x based on data center
design.
 • Modern deployments use direct-to-chip liquid
cooling and align workloads with grid availability.
 • PUEs below 1.2 are already being achieved by
hyperscalers.
 • Policy must separate outdated infrastructure from
high-efficiency builds.

Part 2: Introducing the Power
Reality
Electricity, Not Water, Is the Backbone of AI Infrastructure
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Recent benchmarking shows that: 
Training GPT-3 consumed ~1,287 MWh over two
weeks. 
Inference using GPT-3 or GPT-4 typically draws
0.01-0.02 kWh per prompt when run on GPU
clusters. 
This means training a model is equivalent to 60-80
million individual queries.

Best-in-class operators are addressing this delta
with: 

Smart workload scheduling, shifting training jobs to
nights or off-peak hours. 
AI siting strategy, placing clusters near renewable
generation. 
Low-PUE facilities, now reporting fleet-wide PUEs as
low as 1.1-1.2, with some approaching 1.05 in
optimized sites. 
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From Water Warnings to Power
Reality

Unlike water, where outdated cooling models have
dominated headlines, concerns over power draw are
rooted in real, measurable demand growth. AI
workloads require significant electricity for both
training and inference, and the accelerating global
buildout of GPU-intensive data centers has prompted
fears that AI will outstrip national grids. 

However, these concerns must be placed in context.
Power consumption in AI systems is not an
uncontrollable externality. It is a function of system
design, workload management, and facility efficiency. 

Just as cooled-loop cooling helped debunk the myth
of the “500 mL per prompt,” data shows that best-in-
class AI data centers are already achieving record low
PUEs (Power Usage Effectiveness), with intelligent
scheduling and hardware advances slashing total
energy consumption per compute unit. 

Understanding PUE and Energy Performance in AI
Workloads
Power Usage Effectiveness (PUE) is the industry-
standard metric for evaluating the energy efficiency of
a data center. It is defined as the ratio of total facility
energy to energy used by IT equipment. The closer
this value is to 1.0, the more efficiently a data center
is operating.

Legacy data centers often reported PUEs above 1.6 or
even 2.0, reflecting substantial overhead from cooling
and facility operations. By contrast, state-of-the-art
AI facilities from Google, Microsoft, and AWS report

Electricity Use is the New Regulatory Frontier
With policy makers now considering moratoriums
and quotas on new data centers, it is critical to
distinguish between physical limits and design
variables. Many of the most alarming power
statistics—such as AI models “using as much
energy as a small country”—are based on
outdated infrastructure or worst-case stacking.
In contrast, leading AI operators are deploying
direct-to-chip liquid cooling, aligning compute
loads with renewable generation, and locating
facilities in regions with ample grid capacity.

AI infrastructure is not inherently unsustainable.
But without standards for disclosure,
performance benchmarking, and climate-aware
siting, even well-engineered systems risk being
lumped into inflated industry narratives. Page 8
will present real-world benchmarks for training
vs. inference power loads and recommend
pathways for transparent energy governance in
AI development zones.

AI’s energy footprint is not a law of nature. It is
the result of compute intensity, model size, and
system design. Better infrastructure = better
outcomes. 
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“Power isn’t the price of AI
intelligence. It’s the cost of
infrastructure inefficiency.

PUEs as low as 1.1 or even below. NVIDIA’s DGX
SuperPOD deployments—used for large model
training—are designed to operate within this
ultra-efficient range, using direct-to-chip liquid
cooling and optimized airflow paths to reduce
waste heat and fan power draw. Real-world GPT-
scale models now consume hundreds of
megawatt-hours per training cycle. But
improvements in scheduling, rack density, and
GPU utilization have driven down the energy cost
per token by up to 70% compared to 2020
benchmarks. This shows that training large
models is not fixed-cost intensive; it depends
heavily on architectural design.
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Unaddressed Power Realities
and Governance Risks
Regulatory concern around AI’s electricity use has
grown rapidly, but the loudest claims (comparing AI
workloads to entire countries) often ignore context.
While training GPT-3 consumed ~1,287 MWh over
two weeks, Microsoft and Google’s latest
deployments are cutting that energy per training
token by up to 70%, using direct-to-chip cooling and
intelligent scheduling. 

The real issue is not consumption itself, but the
absence of disclosure standards. OpenAI, for
example, has not published full training data for their
GPT-4. Meanwhile, local utilities are beginning to
push back, with Microsoft’s Iowa deployment
drawing 11.5 million gallons in one hot month,
prompting the city to demand peak water cuts for
future expansion. Without enforced transparency on
training loads, cooling architecture, and energy
sourcing, AI infrastructure remains at risk of
mischaracterization—or overregulation.

Why Transparency Matters: Modeling Policy After
Performance 
Policy debates around AI infrastructure often rely on
outdated or generalized energy profiles that don’t
reflect what modern data centers achieve. Facilities
running cutting-edge AI systems, such as NVIDIAs
SuperPODs or hyperscaler AI clusters operate under
a very different set of assumptions than the industry
average. Without mandatory reporting of PUE, WUE,
and energy sourcing, regulators may default to
national baseliens that penalize efficient sites and
discourage innovation. 

Key Energy Benchmarks from Hyperscale AI
Deployments 

U.S. Data Center Power Use surged from 58 TWh
in 2014 to 176 TWh in 2023, with AI expected to
push that to 325–580 TWh by 2028, representing
as much as 12% of all U.S. electricity.
Training GPT-3 used as much electricity as 130
U.S. homes consume in a year.
Inference workloads now draw more power than
training, with ChatGPT’s live usage exceeding 400
GWh annually.
A typical ChatGPT query uses 10× the power of a
Google search (2.9 Wh vs. 0.3 Wh).
AI model inference at global scale is now
comparable to charging over 3 million electric
vehicles annually.
NVIDIA claims 300× improvement in water
efficiency using closed-loop cooling for H100
systems.
AWS fleet-wide PUE: ~1.1; WUE: 0.19 L/kWh. In
contrast, legacy data centers exceed 1.8 L/kWh
and PUE of 1.6–2.0.
AI operators are strategically siting facilities near
renewable generation zones and deploying
climate-aware scheduling to match training with
low-carbon energy availability.
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Transparent benchmarking enables smarter zoning
decisions, grid coordination, and investment into zero-
carbon compute. It also helps separate normal energy
scaling from true excess. Just as emissions targets
have differentiated between Scope 1 and Scope 2
carbon, AI infrastructure needs a similar framework to
parse training loads, inferencing loads, and cooling
method impacts. Data-backed differentiation is the key
to future-proof regulation. 
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Conclusion 
AI governance begins with engineering accuracy

Increased risk and demand are reshaping the legal function,
but nowhere is clarity more urgent than in how we define the
infrastructure powering artificial intelligence. Water headlines
have captured attention, but the real challenge is
understanding how power, performance, and transparency
intersect. The legal community (often tasked with interpreting
these risks) must press for better data, not just bigger
disclosures.

Mischaracterizing AI infrastructure leads to misguided
regulation, unnecessary restrictions, and distorted climate
narratives. The truth is that many of the loudest claims rely on
outdated averages, not on how today’s hyperscale
deployments operate. AI power draw is elastic. With dynamic
scheduling, workloads can be tuned to grid conditions and
throttled to avoid peak carbon impact.

What general counsel need now is technical fluency to assess
infrastructure claims, and policy frameworks that separate
outdated facilities from high-efficiency builds. This report offers
a starting point: real benchmarks, measurable metrics, and
grounded insights to inform strategic decisions across
governance, regulation, and enterprise risk.

As AI advances, the question is no longer how much it
consumes—but how intelligently it operates.
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