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Abstract 

Recent headlines have painted artificial intelligence (AI) as an unsustainable "resource guzzler," 

citing sensational figures like "500 mL of water per ChatGPT prompt" or claims that AI data 

centers will soon rival countries in electricity use. These narratives have directly shaped public 

perception, driven calls for urgent regulation, and influenced policy debates across the U.S. and 

around the globe. Yet, the technical reality behind AI's environmental footprint is far more nuanced 

and is often misrepresented by advocacy groups, industry incumbents, and media outlets with 

vested interests.  

This white paper examines the most widely cited claims about AI's water and electricity 

consumption, using validated engineering fundamentals, the latest data center practices, and 

authoritative sources such as the American Society of Heating, Refrigeration and Air-Conditioning 

(ASHRAE) Handbook, International Energy Agency (IEA), and the Department of Energy (DOE). 

We deconstruct the mechanics of data center cooling, clarifying the distinction between legacy 

open-loop evaporative systems (which do consume significant water) and modern closed-loop, air-

cooled, or hybrid systems that dramatically reduce or eliminate direct water usage. The analysis is 

extended to the energy domain, where we break down the difference between AI training and 

inference workloads, quantify actual power demands, and reveal how industry leaders are 

achieving record-low Power Usage Effectiveness (PUE) through advanced hardware, liquid 

cooling, and intelligent workload management.  

The report exposes the strategic motivations behind exaggerated claims, ranging from lobbying 

for subsidies and regulatory capture to market positioning and greenwashing. We show, with 

empirical evidence, that water and power use in AI data centers are design variables, not immutable 

costs, and that responsible engineering choices can slash resource consumption by orders of 

magnitude. The study also includes actionable recommendations for U.S. regulators, including 

transparency mandates, performance standards, and targeted incentives to drive continued 

improvements in both water and energy efficiency.  

By separating fact from hype, this white paper aims to equip policymakers, regulators, and industry 

leaders with a clear-eyed understanding of AI's true environmental impact, ensuring that future 

regulation and investment are grounded in scientific reality, not media mythology.  

https://projectalden.com/
https://cobeal.com/
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Policy Recommendations for Regulators and Industry Leaders 

This white paper provides evidence that the most alarming reports of AI’s water and electricity 

consumption are not borne out by actual engineering performance in modern data centers. 

Headlines, such as "500 mL of water per prompt" or predictions that AI will overwhelm national 

power grids have influenced public debate, but these statements are rooted in outdated models or 

worst-case scenarios. Data centers use closed-loop cooling, liquid-cooled AI hardware, and 

advanced workload scheduling to reduce water and power consumption per compute unit by a 

factor of ten compared to industry averages from only a few years ago. Regulators and 

policymakers should move past sensational narratives and ground oversight in engineering facts. 

Effective regulation depends on transparency, enforceable performance standards, and real 

incentives for adopting modern infrastructure. Policymakers must watch for greenwashing, 

selective disclosure, and misleading metrics. These should be replaced by standardized and 

transparent reporting. AI’s true resource impact depends on design, location, and operational 

choices, not on technological fate. Policy should reflect what modern systems are already 

achieving and should adapt to ongoing technical progress. 

 

Responsible action means: 

• Requiring transparency on energy and water use for large AI facilities. 

• Setting efficiency standards based on current best practices instead of legacy averages. 

• Supporting the adoption of closed-loop cooling and clean energy across the industry. 

• Demanding life cycle resource reporting that covers both training and inference. 

 

AI does not have to be a drain on resources. The tools and knowledge to build sustainable digital 

infrastructure already exist and are being used by industry leaders. Policymakers must set fact-

based regulations and make sustainable AI the standard for all future deployments. 

 

1. Introduction 

Public debate over artificial intelligence (AI) and resource consumption is now shaping real-world 

regulatory priorities. Alarmist headlines claiming that "each AI conversation requires a bottle of 

water" or that "large AI models will rival small nations in power draw" have found their way into 

draft policy language, advocacy reports, and media cycles worldwide. These narratives (though 

attention-grabbing) are often based on outdated data, simplified models, or worst-case scenarios 

that no longer reflect the engineering realities of modern high-density data centers.  

 

This white paper presents a real-world technical response to these claims by exploring the true 

water footprint of AI workloads and the actual electricity consumption of modern data centers 

supporting large-scale AI models. By grounding every argument in validated engineering practice, 

operational data, and consensus standards from bodies such as ASHRAE and government energy 
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agencies, we aim to replace speculation and marketing with a transparent, science-based 

understanding.  

 

1.1. Why This Matters Now 

As AI becomes the default workload across sectors, from finance and healthcare to logistics and 

national infrastructure, the buildout of new data centers and the retrofitting of existing sites are 

accelerating at an unprecedented pace. Regulatory authorities, sustainability officers, and public 

sector buyers are all seeking answers to the same questions: How much water and power do these 

AI systems require? Are the risks being presented in industry literature and policy drafts 

representative of typical operations, or are they based on edge cases and legacy designs? Most 

critically, are there proven design and operational choices that can substantially reduce the 

environmental impact of AI computing, and if so, are they being adopted at scale?  

 

The stakes are not theoretical. Billions of dollars are being invested based on assumptions about 

'AI sustainability.' Local utilities are revising grid forecasts and water allocations, and lawmakers 

are beginning to propose quotas, moratoria, and reporting mandates. It is therefore essential that 

regulatory frameworks reflect physical reality and not inflated or strategically curated figures.  

 

1.2. Two Myths, One Engineering Reality  

This report addresses the two dominant environmental narratives around AI data centers (water 

consumption and electricity use) in parallel, revealing how both have been consistently 

exaggerated through selective reporting and technical misunderstanding.  

 

1.3. The Water Footprint Narrative  

First, we dissect the widely circulated claim that AI workloads are "water guzzlers," often 

represented in visuals like bottled water per chat session or million-liter training runs. These claims 

typically originate from simplified models that extrapolate water usage based on older, evaporative 

cooling tower systems, ignoring major advances in facility cooling technologies and best practices.  

 

We systematically deconstruct these claims by:  

• Describing the thermodynamic principles of data center cooling, detailing how heat is 

removed from IT hardware.  

• Explaining the difference between open-loop evaporative systems (which consume water 

through evaporation) and closed-loop or air-based systems (which can reduce or even 

eliminate direct water consumption).  

• Presenting real-world water usage effectiveness (WUE) metrics, including recent 

performance data from leading U.S. operators, which consistently demonstrate an order of 

magnitude improvement over historic averages.  
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• Detailing operational strategies such as air-side economization, adiabatic and hybrid 

cooling, and climate-aware workload scheduling, all of which dramatically cut the need for 

potable water.  

• Demonstrating, with schematic diagrams and site case studies, how facilities in different 

climates are achieving near-zero water draw for cooling, refuting the premise that water 

consumption scales linearly with AI workload.  

• Highlighting that where water is still used, it is increasingly sourced from non-potable or 

recycled supplies, further reducing impact on local reservoirs.  

 

By contextualizing every step in the cooling chain, this report shows that sensational per-prompt 

water usage figures are based on static, outdated assumptions rather than dynamic, modern 

engineering practice. The path to low-water or water-free AI is not hypothetical: it is already well-

established among major U.S. data center operators.  

 

1.4. The Electricity Consumption Narrative  

Second, we address the claim that AI workloads will overwhelm electrical grids or rival the power 

consumption of entire cities. This narrative often emerges from multiplying the highest available 

energy-per-query or training-run figures across projected AI adoption curves, without accounting 

for rapid gains in both hardware and system-level efficiency.  

 

Our analysis responds by:  

• Disaggregating the phases of AI operation by differentiating between the one-time, high-

intensity power use of model training and the ongoing, distributed consumption of 

inference at scale.  

• Mapping the end-to-end power flow in a typical AI-ready data center, showing how 

electricity is apportioned between IT loads, cooling, power conversion, and other facility 

overheads.  

• Utilizing consensus efficiency metrics such as power usage effectiveness (PUE) and 

presenting actual measured PUE values from recent U.S. data center deployments, which 

are significantly below industry averages, often cited in the media.  

• Reviewing recent advances in high-density server design, including the deployment of 

liquid cooling, increased allowable temperature setpoints, hot/cold aisle containment, and 

direct-to-chip cooling. All of these reduce both total power consumption and cooling 

overhead. 

• Addressing the nuances of workload scheduling, such as aligning compute-intensive tasks 

with periods of grid surplus or renewable generation, which can further mitigate grid 

impact.  

• Critically examining red flags in public reporting: the tendency of some industry players 

to withhold full energy disclosure, the prevalence of misleading comparisons (e.g., 
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"equivalent to millions of EVs charged"), and the habit of reporting per-inference 

efficiency gains without mentioning absolute scale growth.  

 

We provide empirical evidence that modern AI data centers are not only more energy efficient per 

unit of compute but also increasingly powered by low-carbon or renewable sources. This matters 

because the environmental impact per AI query or training run is as much a function of 

infrastructure as of algorithmic demand.  

 

1.5. Structure of the Report  

To maximize clarity and regulatory usefulness, this paper proceeds as follows:  

• Section 2 presents a detailed, diagram-backed analysis of data center cooling systems, with 

a focus on water use. We compare traditional and modern system architectures, quantify 

WUE improvements, and debunk per-query water consumption myths with both empirical 

data and operational examples.  

• Section 3 delivers a breakdown of data center energy use in the AI era. Here, we separate 

engineering fact from PR-driven narrative, benchmarking real power draws and 

highlighting where selective disclosure or misleading analogies have distorted the 

regulatory conversation.  

• Section 4 reframes the discussion around physical, not rhetorical, limits and calls for 

evidence-based policy anchored in actual best practices.  

 

1.6. The Imperative for Evidence-Based Oversight  

The rapid growth of AI workloads, and the resulting construction of high-density digital 

infrastructure, demand oversight that is as technically sophisticated as the systems being built. This 

paper equips decision-makers to distinguish between headline-grabbing projections and grounded 

engineering possibility. By doing so, it aims to prevent misallocation of resources, avoid reactive 

or misdirected policy interventions, and encourage the adoption of solutions that materially reduce 

environmental impact.  

 

The central finding is straightforward: water and power usage in AI data centers are design 

variables, not fixed costs. Modern facilities can achieve radically lower environmental footprints 

than those assumed by most public reports. It is time for the regulatory conversation to catch up to 

this reality, so that both innovation and sustainability are properly served.  

 

2. Debunking Exaggerated Claims of AI's Water Footprint: Engineering Realities of Data 

Center Cooling  

 

2.1. Introduction 

Recent reports have raised alarm about water consumption of artificial intelligence (AI) workloads, 

claiming that "ChatGPT needs to drink a 500 mL bottle of water for a simple conversation of 20-
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50 questions" and that "training GPT-3 consumed 700,000 liters of freshwater". These striking 

figures originate from a 2023 preprint by researchers at UC Riverside and UT Arlington, which 

estimated AI's "water footprint" by considering data center cooling and even the water used in 

electricity generation. While water usage is indeed an important sustainability concern, such 

claims must be examined critically using engineering first principles and real data center practices.  

 

In this white paper, we present a technical analysis of modern data center cooling systems to 

debunk these inflated water-use claims. By drawing on authoritative sources (e.g., the ASHRAE 

Handbook and Industry data) and illustrating actual cooling cycles, we show that most AI-focused 

data centers employ high-efficient, low-water, or even water-free cooling designs. Empirical 

evidence and engineering fundamentals demonstrate that modern facilities can minimize or nearly 

eliminate freshwater consumption for AI computing workloads. We begin by reviewing how 

typical data center cooling works and where water comes into play.  

 

Next, we explore advanced cooling technologies, from air-side economization to closed-loop 

liquid cooling, which drastically cut water usage. We then present documented water efficiency 

metrics of leading cloud operators and contrast them with the assumptions behind the UC 

Riverside/UT Arlington study. Finally, we provide an engineering reality check on the specific 

claims (e.g., "500 mL per 20-50 prompts" and "700,000 L per training") to explain why those 

numbers are technically inaccurate or misleading for well-designed AI data centers. Throughout, 

schematics of cooling systems (closed loops, cooling tower heat rejection, etc.) are included to 

visually clarify key concepts. The goal is to ground the discussion in factual, engineering-based 

understanding, including how heat is removed in data centers, how much water that requires, and 

how modern design practices minimize water consumption while reliably cooling high-density AI 

hardware.  

 

2.2. Data Center Cooling Fundamentals and Water Use 

How do data centers use water for cooling?  

Modern data centers dissipate enormous heat loads from servers and must reject that heat to the 

environment. There are two main stages to this cooling process: first, heat is transferred from 

server hardware to a facility cooling medium (air or liquid), and second, that heat is expelled from 

the facility to outside air. Water typically enters the picture in the second stage, if the facility uses 

evaporative cooling. In many large data centers, especially older designs, cooling towers are used 

to reject heat. A cooling tower is essentially an open-loop evaporative heat exchanger, it takes 

warm water from the data center's condensers and sprays it in a tower so that evaporating some of 

that water carries away heat. This process consumes water, as the hot water trickles over fill 

material, a portion evaporates into the air. This removes heat but using up fresh water in the form 

of vapor. The remaining cooled water is recirculated, and makeup water must be continuously 

added to replace the volume lost to evaporation (as well as blowdown water drained to purge 

mineral buildup). In summary, any cooling system that relies on phase-change evaporation will 
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have a direct water footprint: evaporating 1 liter of water removes roughly 2,260 kJ of heat (the 

latent heat of vaporization), about 0.63 kWh, so evaporative cooling consumes on the order of 1.6 

liters of water per kWh of heat dissipated under design conditions, plus additional losses. This 

aligns with industry observations that traditional data centers using cooling towers average on the 

order between 1 and 2 L of water per kWh of IT load cooled. 

 

By contrast, air-based cooling methods reject heat without evaporating water. For example, an air-

cooled chiller or dry cooler uses ambient air (blown by fans through a radiator) to carry away heat 

sensibly (via warm air), consuming no water in the process. Many modern facilities also employ 

air-side economization, bringing in outside air to cool the servers when outdoor conditions are cool 

enough, again with no need for water. In short, data centers can be designed either to use water for 

cooling (evaporative open-loop systems) or to operate in a closed-loop manner with purely air-

based heat rejection. The water usage patterns differ drastically between these approaches. To 

illustrate this clearly, we next examine common cooling system configurations and their water 

requirements, from conventional cooling towers to advanced closed-loop systems.  

 

2.3. Cooling Towers and Evaporative Cooling Systems (Open Loop)  

Cooling towers have been a staple in high-capacity HVAC and data center cooling for decades. In 

an open-loop cooling tower system, water itself is the working fluid that directly dumps heat to 

the atmosphere by evaporation. The data center's chillers or heat exchangers send warm water 

(typical ~30-40ºC) to the cooling tower. Within the tower, this water is sprayed over fill media 

while fans draw air through it, causing a fraction of the water to evaporate and carry away heat. 

The diagram in Figure 1 depicts a simplified water-cooled chiller loop with a rooftop cooling 

tower.  

 

Figure 1: Schematic of a water-cooled chiller with an open cooling tower (red lines = hot water, 

blue lines = cooled water). Warm condenser water from the chiller is pumped up to the cooling 

tower, where it is cooled by evaporation (wavy lines at the tower indicate the moist air exiting). 

This open-loop design continuously consumes water: as heat is rejected, some water evaporates, 

and the remainder (cooled water) returns to the chiller. The system must add makeup water to 

compensate for evaporation and blowdown losses.  
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Open cooling towers are effective heat rejectors and can cool water to near the ambient wet-bulb 

temperature, which is often much lower than the air dry-bulb temperature. This efficiency is why 

evaporative towers have been popular: they reduce chiller electricity usage by rejecting heat at 

lower temperatures. However, the trade-off is significant water consumption. A rule-of-thumb 

estimate is that about 1% of the circulating water is evaporated for each 6-7ºC of cooling achieved. 

For example, if a chiller's condenser water enters the tower at 35ºC and is cooled to 29ºC, roughly 

5 mL of water will be evaporated for each kilowatt of heat rejected per second (equivalently, ~1.8 

L per kWh). In practice, real data centers have reported water use on the order of 1-9 liters per 

kWh of IT energy, depending on climate and cooling design. Google's global fleet averaged ~1 

L/kWh in on-site cooling water, while one large commercial data center in Arizona reported a near 

9 L/kWh during summer peak. This water is consumed in the sense that it leaves the local water 

environment as vapor. Moreover, additional "blowdown" water must be bled off to remove mineral 

concentrations, meaning extra water input is needed. Typically cooling towers operate at 3 to 6 

cycles of concentration, so for every 3-6 liters evaporated, approximately 1 liter is dumped via 

blowdown. The net effect is that open-loop evaporative cooling can strain water resources if used 

continuously in a large facility. As one U.S. Department of Energy guide bluntly states: "A cooling 

tower system by necessity uses an extensive amount of water," especially for 24/7 loads like data 

centers.  

 

It is important to note that the much-publicized figures from the UCR/UTA study assume such 

evaporative cooling scenarios. The notion of "500 mL per 20-50 prompts" was derived by 

combining the energy consumption of a series of ChatGPT queries with an assumed water use rate 

Figure 1 
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(likely on the order of 1-2 L/kWh) representative of typical evaporative cooling and power 

generation. Similarly, the 700,000 L for a two-week AI training was calculated as the direct cooling 

water "consumed" (evaporated) in a state-of-the-art data center, presumably one employing water-

cooled chillers and cooling towers. These numbers are plausible for an open-loop design (e.g., 

training GPT-3 was estimated to use ~1287 MWh of electricity; at ~0.5 L/kWh on-site WUE, that 

gives ~700kL), in line with the paper's claim. However, such water usage is not an inherent or 

fixed requirement of AI computation; it is a consequence of cooling design choices. Modern data 

centers need not operate this way, as we will see. First, we examine alternatives that drastically 

cut or eliminate water use by rejecting heat through air or closed loops instead of evaporative open 

loops.  

 

2.4. Air-to-Air and Air-to-Water Cooling (Closed-Loop Systems)  

Not all large-scale cooling relies on evaporating water. Closed-loop cooling systems keep the 

coolant (water or refrigerant) completely contained and use air as the final heat sink. For example, 

an air-cooled chiller removes heat from the data center's water loop via a refrigeration cycle and 

then dumps that heat through an outdoor condenser coil cooled by fans (just like a gigantic air-

conditioner). No cooling tower is needed: heat is expelled directly to outside air. This design results 

in zero routine water consumption on-site. Many enterprise data centers and telecom facilities have 

long used air-cooled chillers or dry coolers (essentially radiator/fan units) to avoid water use, 

especially in regions where water is scarce or expensive. The clear benefit is WUE = 0 (Liters per 

kWh) for the cooling system in normal operation. The drawback is that air-cooled systems can 

have a higher energy penalty, especially in hot climates because the chiller's compressors must 

work harder when rejecting heat to 35ºC air vs. a 24ºC wet-bulb via cooling tower. Nonetheless, 

improvements in IT equipment tolerance and cooling technology have narrowed this gap. Higher 

allowable server temperatures per ASHRAE guidelines (inlet air up to ~27ºC or even higher) mean 

chillers don't need to overcool; indeed, ASHRAE TC9.9 recommends supply air temperatures of 

18-27ºC for "A1-A4" class IT equipment (with allowable excursions above 30ºC), which has 

enabled more hours of air-based cooling and less mechanical overcooling. As a result, many new 

data centers run comfortably at warmer temperatures, making air-cooled heat rejection more 

feasible without compromising reliability. In short, air-cooled (water-free) designs can handle data 

center loads efficiently in many climates, and they completely avoid the evaporative water losses 

that plague cooling towers.  

 

Another approach in modern facilities is air-side economization, a form of air-to-air cooling. In 

this scheme, when outside weather is cool enough, outside air is directly drawn into the data hall 

(or passed through an air-to-air heat exchanger) to carry away heat, instead of using chillers at all. 

This is essentially free cooling by Mother Nature. The only water use might be a small amount for 

humidity control in dry winter conditions (to keep humidity within safe ranges), but this is minimal 

compared to evaporative cooling water. Many hyperscale data centers (e.g., Facebook/Meta's in 

Oregon or Sweden, and Google's in Finland) are designed to leverage northern climates with 
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extensive air economization. For example, a facility might use outside air cooling for 8-10 months 

of the year and only on the hottest summer days switch to evaporative assist. By maximizing air-

side free cooling, annual water usage plummets. A Lawrence Berkeley Lab case study noted that 

economizer use can significantly reduce cooling system energy and water demand, depending on 

climate. In essence, every hour that a data center can use 100% air cooling is an hour of zero water 

consumption for cooling. Modern automation and control strategies seek to extend those hours as 

much as possible.  

 

Beyond chillers and air economizers, there are also adiabatic hybrid coolers that blend air and 

water cooling in a water-efficient way. An adiabatic cooler is basically a dry cooler (air-cooled 

radiator) that can be augmented with a little water on peak hot days. For example, the unit may 

have an evaporative pad or a misting system in front of the coil that activates only when ambient 

air is above a set temperature. This precools the air a few degrees via evaporation, boosting cooling 

capacity, but uses far less water than a full cooling tower. Manufacturers report that such hybrid 

adiabatic systems can reduce water consumption by 70-95% compared to traditional cooling 

towers. Figure 2 illustrates one such hybrid cooling concept. Most of the time it runs dry, like a 

closed radiator, and only sprays a fine mist on the hottest afternoons. One example product 

(Nimbus VIRGA) can provide ~500 tons of cooling while consuming <6 gallons per minute in wet 

mode (≈1.36 m³/hour), whereas an equivalent conventional tower might consume 20+ gallons per 

minute (gpm) for the same load.  

 

By dramatically spreading the cooling load across air and using water sparingly, these systems 

ensure that water use is a last resort. In practice, large cloud operators have widely adopted such 

approaches in new buildings. Microsoft, for instance, uses indirect evaporative cooling (IDEC) 

units in many Azure data centers (essentially air-to-water heat exchangers with adiabatic assist) 

achieving much lower water use than open-loop chillers. In climates like Ireland or Northern 

Sweden, they may hardly ever need to turn on the water mist, while in hotter climates they still 

save water relative to a tower by only running wet occasionally. The key point is that modern 

cooling technologies allow a continuum from fully dry to modest intermittent water use, instead 

of the old paradigm of continuous evaporative loss.  

 

Figure 2: Open-loop vs. closed-loop cooling tower designs. At right, an open-circuit cooling tower 

directly contacts water with air: hot condenser water (green line) from the chiller is sprayed and 

cooled by evaporation (red arrows indicate hot moist air exhaust). This maximizes heat rejection 

but consumes the most water. At left, a closed-circuit tower keeps the primary coolant in a closed 

coil (blue loop) and cascades water over that coil. Heat is still rejected by evaporating some water, 

but the process fluid stays clean. Both designs rely on evaporation and thus use water 

continuously. In contrast, a fully dry cooler (not pictured) would use a finned coil and fans with 

no water spray, eliminating evaporation at the cost of higher air flow.  
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2.5. Liquid Cooling for AI Hardware: High Efficiency with Low Water Footprint 

A notable trend for AI-focused data centers is the shift to liquid cooling at the server level (such 

as direct-to-chip cold plates or immersion cooling). High-performance AI accelerators (GPUs, 

TPUs, etc.) often produce heat fluxes that air cooling struggles to handle. Liquid cooling (using 

water or dielectric fluid) can remove heat more efficiently, which lowers the overall cooling energy 

requirement and enables higher rack densities. But how does this affect water usage? The answer 

depends on how the heat is ultimately rejected from the liquid. The ideal scenario is a warm-water 

cooling loop that rejects heat via dry coolers or heat reuse, avoiding any evaporative step. For 

example, some supercomputing centers (like NREL's ESIF data center) use a warm water closed 

loop to capture >90% of server heat, then first attempt to reuse it for facility heating, next use an 

advanced dry cooler (thermosyphon) when ambient permits, and only finally use a cooling tower 

if absolutely needed during peak conditions. This tiered approach means for much of the year, zero 

water is used despite enormous HPC heat loads: evaporation is a "last resort" for the hottest times 

or when other cooling capacity is saturated. The result is a vastly smaller water footprint than 

running cooling towers 24/7.  

 

Even when heat reuse is not an option, liquid-cooled AI systems can be paired with closed-loop 

heat rejection. NVIDIA's latest AI supercomputers are a prime example. NVIDIA's new H100 

GPU racks (the "NVL72" systems) use direct-to-chip liquid cooling with a closed coolant loop. 

The GPUs and CPUs are mounted with water-cooled cold plates, and warm liquid from the racks 

is routed to a coolant distribution unit and then to external heat exchangers. Crucially, no water is 

evaporated in this process. The loop is sealed, and heat is dumped to ambient via liquid-to-air heat 
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exchangers (which could be dry coolers or air-cooled chillers). As Tom's Hardware reported, 

unlike immersion or evaporative cooling, NVIDIA's closed-loop design "does not evaporate or 

require replacement due to loss from phase change, saving water". NVIDIA claims that this design 

is "300 times more water-efficient" than conventional evaporative cooling for comparable 

workloads. In plain terms, that means essentially negligible water usage (a 300x improvement over 

a baseline that presumably assumed a water-cooled system). While the exact 300x figure is 

marketing, it illustrates that leading-edge AI infrastructure is moving toward no-water cooling 

solutions. Other companies are following suit: Meta's latest data center designs incorporate cold 

plate liquid cooling with dry heat rejection for their AI training clusters, and Google has 

experimented with liquid-cooling AI pods that attach to existing dry coolers.  

 

The cooling architecture for AI hardware is evolving rapidly, and efficiency and sustainability are 

major drivers. AI-centric data centers, which often house extremely high-density racks, are more 

likely to use advanced cooling (meaning either indirect evaporative, low-water or liquid cooling 

with closed loops) rather than old-fashioned always-on cooling towers. The water usage patterns 

are fundamentally better in these modern designs: water, if used at all, is used sparingly and 

intelligently (e.g., only in hot weather, or via recycled sources), and many next-generation facilities 

aim for zero direct water usage by relying on air cooling or heat reuse. Now, having described the 

spectrum of cooling methods, let us examine empirical data on how much water cutting-edge data 

centers use. This will provide context to judge the claims about AI water footprints.  

 

2.6. Water Usage Effectiveness (WUE) and Empirical Data  

To quantify data center water efficiency, the industry uses a metric called Water Usage 

Effectiveness (WUE). WUE is defined as the liters of water used in cooling per kilowatt-hour of 

IT energy use. It is analogous to Power Usage Effectiveness (PUE) but focusing on water. A lower 

WUE means less water consumed for the same IT workload. This metric helps compare different 

cooling approaches on equal footing. An older-generation facility with chillers and cooling towers 

might have a WUE around 1.5-2 L/kWh, whereas a fully air-cooled site has a WUE of 0.0 L/kWh 

(no water). It's important to note WUE can be computed for on-site water only (sometimes called 

WUEscope-1) or including off-site water (like water at power plants, WUEscope-2). Here we'll 

focus on the on-site cooling water, since that is what data center designers directly control (and 

what the "cooling systems" discussion above addresses.)  

 

2.7. Real-world WUE figures show dramatic improvements in recent years.  

According to TechTarget, an average data center (across all types) historically uses about 1.8 

L/kWh.  However, cloud giants significantly beat that: Amazon Web Services (AWS) reports a 

fleet-wide WUE of just 0.19 L/kWh for its data centers, and Microsoft reports 0.49 L/kWh as of 

2022. These numbers are an order of magnitude lower than the industry average, reflecting the 

shift to efficient cooling designs. In practical terms, AWS using 0.19 L/kWh means that for every 

1,000 kWh of IT compute, only 190 liters of water are used; a mere 1/10th of what a typical legacy 
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data center might use for the same workload. Google's data centers, which have widely employed 

evaporative cooling for energy efficiency, had an on-site WUE around 1.1 L/kWh in 2021 

(extrapolated from 4.3 billion gallons over ~10 TWh), but Google has since committed to new 

"climate-conscious" cooling tech to slash water use by 2030. In fact, Google announced it is 

developing non-potable water cooling and advanced thermosyphon systems aimed at reducing data 

center water use by 30 to 50% even in existing evaporative-cooled sites. Furthermore, Google 

already uses reclaimed wastewater instead of drinking water at roughly a quarter of its campuses. 

For example, its Douglas County (Georgia, USA) data center is cooled with 100% recycled sewage 

water, eliminating stress on the freshwater supply. This indicates that even when water is used, it 

may not be the "fresh water from overtaxed reservoirs" implied in the sensational claims; many AI 

data centers use non-potable sources or are located near large water bodies to mitigate local water 

impact.  

 

Crucially, the temporal and spatial diversity of water efficiency is large. The UC Riverside study 

itself noted that when and where AI workloads run can swing water consumption by a factor of 2 

to 3x. For instance, performing training in a cool, humid region (or in winter nights) might use a 

fraction of the water that the same training would require in a hot, arid region at noon. This is 

precisely why modern data center operators schedule flexible jobs (like AI model training) 

strategically. Microsoft researchers have suggested "climate-aware" scheduling: running AI 

training during cooler nighttime hours or seasons to cut water evaporation losses. Such scheduling 

can directly reduce cooling tower evaporation because cooler ambient air means towers (if used at 

all) run more efficiently and possibly can be replaced by dry cooling during those periods. In fact, 

the paper's authors themselves likened AI training to watering a lawn: "We don't want to water our 

lawn at noon, so let's not water our AI (at) noon either."  This analogy illustrates that water use is 

a controllable parameter, not a fixed cost of computing. With intelligent scheduling, the water per 

task can drop further.  

 

Let's put the "500 mL per ChatGPT conversation" claim into perspective now. ChatGPT (GPT-

3.5/GPT-4) inference is an interactive workload, but we can estimate its energy per prompt. The 

preprint study cites an estimate that GPT-3 consumes ~0.4 kWh to generate 100 pages of content, 

which is about 0.004 kWh per page or per few prompts. Another estimate for a "medium" LLM 

response on an enterprise GPU system is ~0.016 kWh per query. Even assuming on the higher end 

(0.01-0.02 kWh per Q&A pair), 20 to 50 prompts would consume on the order of 0.2-1 kWh of 

energy. Now, if a data center had no special optimizations (say WUE !1 L/kWh, and using typical 

grid power with water-cooled plants), that 1kWh might indeed entail approximately 1 liter of water 

evaporated on-site and another liter off-site. Split across ~40 prompts, that is about 50 mL per 

prompt (hence the study's bottled-water visual). But in a highly efficient AI data center, this drops 

dramatically. For instance, in an AWS region with WUE 0.2 and largely renewable power, that 

same 0.5 kWh of ChatGPT work would use only 0.1 L of cooling water on-site. If the facility is 

air-cooled (WUE = 0), it uses zero liters on-site. The only water "used" might be at distant power 
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plants if fossil generation was involved. Note that AI-heavy companies are also leaders in 

renewable energy procurement, precisely to reduce both carbon and water footprints. In 2022, 

around 64% of the energy used by Google's data centers was carbon-free (and thus largely water-

free, since solar/wind use negligible water). Microsoft and others have similar targets for 100% 

carbon-free energy, which means it is also water-free. Therefore, an AI query handled in an air-

cooled, renewably powered data center might effectively consume negligible fresh water, contra 

the implication that every chat is guzzling from "overtaxed reservoirs."  

 

The GPT-3 training claim of 700,000 liters can be unpacked similarly. That figure was for two 

weeks of training in a "state-of-the-art U.S. data center". It presumably assumed Microsoft's 

reported average WUE (~0.5 L/kWh) and a certain PUE overhead. But Microsoft has already 

driven WUE down further and is aiming for "replenishment > consumption" by 2030" (i.e. 

becoming water-positive). If the same training were done in one of Microsoft's newest facilities 

with advanced cooling (or in a cooler location), the water use could be a small fraction of 700 m3. 

Moreover, the study's own scenario says if done in Asia it'd triple. This tells us that the original 

number was not a universal constant, but one point on a spectrum. It stands to reason that by 

choosing optimal locations (e.g., a Nordic data center with free cooling or a U.S. Midwest center 

using reclaimed water), one could also halve or better that water number. Instead, Microsoft could 

have trained GPT-3 in an air-cooled facility (with some energy penalty) and then the direct water 

consumption might have been near zero, demonstrating it's a controllable trade-off, not a hard 

requirement. The engineering reality is that AI computations don't inherently 'drink' water. Cooling 

systems do, and those systems can be designed for thrift.  

 

2.8. Engineering Reality Check: Why the Alarmist Claims Are Overstated  

By now it should be clear that the large water usage figures cited for AI models are worst-case or 

status-quo scenarios, not inevitabilities. We will now summarize the engineering arguments that 

debunk these claims and clarify the actual water use in modern AI data centers:  

 

Key Points:  

1. Most of AI's water footprint comes from certain cooling choices, not the AI 

computation itself. If you cool servers with evaporative towers, you will consume water 

roughly proportional to heat (on the order of 1.5 L per kWh), but this is a choice. 

Engineering alternative solutions, e.g., air-cooled or closed-loop cooling, breaks that link. 

The "500 mL per 50 prompts" claim explicitly assumes an underlying evaporative cooling 

process. Take away the cooling tower, and the prompt doesn't "drink" anything. The heat 

is dissipated by fans and air, not water. Modern data center design is increasingly favoring 

those alternatives for sustainability. The ASHRAE Handbook and data center best practices 

now emphasize air-side and water-side economization to reduce dependence on water-

intensive cooling. In short, AI workloads do not inherently require fresh water - they 

require cooling, which can be achieved water-efficiently.  
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2. Empirical data shows leading AI data centers use orders of magnitude less water per 

compute than assumed. The UC Riverside study painted a picture using averages and 

generalized conditions, but top cloud providers have already slashed water usage through 

innovation. Recall that AWS's water efficiency (0.19 L/kWh) is approximately nine times 

better than the 1.8 L/kWh industry average, and approximately five times better than 

Google's older average. Microsoft is around 0.5 L/kWh and improving. These companies 

are the very ones running large AI training and inference workloads - meaning the real 

water per AI operation in their facilities is far lower than the sensational claims. For 

example, if ChatGPT is served out of an Azure data center with 0.5 WUE and uses, say, 

0.5 kWh for a conversation, the water used is 0.25 L, not 0.5 L. If it's served from an AWS 

center at 0.2 WUE, the water is 0.1 L, 80% less than reported for a generic scenario. If 

served from a fully air-cooled or recycled-water-cooled facility, the potable water 

consumption might effectively be zero. Thus, the headline numbers do not reflect the 

operations of efficient, AI-focused data centers, but rather a broad average of data center 

cooling practices. The industry trend is moving the average closer to the efficient end.  

3. Modern cooling system designs dramatically mitigate water use through technology 

and scheduling. We have shown multiple techniques (raising temperature setpoints, 

hot/cold aisle containment, free cooling, adiabatic coolers, liquid cooling, etc.) that reduce 

or eliminate cooling water requirements. These are not theoretical; they are standard 

practice in new hyperscale builds. ASHRAE's data center guidelines explicitly allow higher 

server inlet temperatures (up to 27ºC or more) to facilitate economization and lower chiller 

loads, which directly reduces cooling tower evaporation by cutting how much heat needs 

to be removed via water. Operators also leverage climate. For example, they perform non-

urgent AI jobs at night or in cooler seasons when outside air can handle the load. 

Alternatively, they locate AI compute clusters in regions with favorable climates (or 

abundant non-potable water). These strategies are effective in practice. It is no coincidence 

that some of the world's largest AI supercomputer pods are in places like Iowa and Sweden 

- areas with cool ambient conditions or access to lake/sea water for cooling. Engineering-

first thinking treats water as a resource to conserve and designs the infrastructure 

accordingly. The alarmist view of "AI = massive water drain" assumes static, inefficient 

practices, which is contrary to how the industry is evolving.  

4. The scale of the claims often ignores context and mitigation. For example, 700,000 liters 

for GPT-3 training sounds huge, but note that it was compared to car manufacturing water 

usage in the source press release. Yet unlike manufacturing, where water may be inherently 

needed for processing, in computing, the water is only for cooling. It can be greatly reduced 

by spending a bit more energy or using a different cooling method. If that training had used 

exclusively air cooling with a slightly higher energy cost, it might have used virtually 0 

liters on-site (albeit with a few extra MWh of power, ideally from a renewable source). 

Thus, AI's water footprint can be traded off against its energy footprint - and with the rise 

of green energy, it makes sense to favor using a few more kilowatt-hours to save thousands 
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of liters of water. The study itself acknowledges a potential conflict between water-efficient 

scheduling and carbon-efficient scheduling (since daytime might have more solar power 

available), but that is a solvable optimization problem (e.g., using grid storage, as they 

noted). The bottom line is that engineering solutions exist to reconcile AI's growth with 

minimal water use, and many are already in action. Therefore, presenting AI models as 

inevitable massive water consumers is misleading - it assumes no changes in cooling 

technology or operations, which is not the case.  

5. AI data centers are often at the forefront of sustainability initiatives. Hyperscalers and 

AI companies are acutely aware of environmental impacts; in fact, the very UCR/UTA 

study cites commitments like Google's 'Water Positive by 2030' and Microsoft's water 

replenishment goals. These companies are under public pressure and the technical know-

how to implement cutting-edge cooling. For instance, Google has piloted thermosyphon 

cooling (an advanced heat pipe system) that can cut water use by 50% at sites that currently 

rely on evaporative towers. Meta has open-sourced its liquid-cooled server designs. These 

eliminate the need for traditional CRAH units altogether, enabling warm water cooling. 

These efforts show that AI-focused infrastructure is headed toward less water, not more. 

Yes, the absolute number of data centers is increasing (and thus total water use could grow), 

but on a per-compute or per-transaction basis, the efficiency gains are strong. In the long 

run, if AI data centers achieve near-zero water use (through things like 100% air cooling 

with only backup evaporation, or using seawater/brackish water), then the "water per AI 

query" will be negligible for practical purposes. We are not fully there yet across the board, 

but many facilities are already approaching that ideal.  

 

To be clear, none of this is to diminish the importance of water conservation. Rather it is to 

ensure the discussion is rooted in engineering reality and not misconceptions. The claims of 

"500 mL per few dozen prompts" or "millions of liters per training run" are technically 

oversimplified and do not generalize to all scenarios, especially not to well-engineered 

modern data centers. AI does not intrinsically require high water usage; it's the legacy 

cooling methods that do. When those methods are updated or replaced (as is happening now), 

the water footprint drops dramatically.  

 

2.9. Conclusion  

In conclusion, the dire warnings about AI's water thirst are overstated and neglect the strides in 

data center cooling efficiency. Yes, if one naively runs AI workloads in a typical mid-2010s data 

center that relies heavily on cooling towers and coal-powered electricity, the water footprint could 

be substantial: on the order of a half-liter per moderate chat session, or hundreds of thousands of 

liters for a big training job. However, engineering advancements provide a clear path to minimize 

or virtually eliminate this water usage for AI. By using closed-loop cooling (air-cooled chillers, 

dry coolers, etc.), leveraging free cooling whenever possible, and opportunistically scheduling 

workloads in harmony with cooler temperatures, data centers can support AI with only minimal 
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water draw. Empirical data from hyperscale operators already confirms this: leading AI cloud data 

centers achieve WUE well below 1 L/kWh, with some at 0.2 L/kWh or even effectively 0 L/kWh 

when air cooling is used. Additionally, many facilities are switching to non-potable water sources 

for the remaining cooling needs, further reducing the impact on freshwater resources.  

 

The claims such as "ChatGPT drinks a bottle of water per conversation" make for catchy headlines 

but fail to capture the nuanced reality. Modern data center design, guided by sources like the 

ASHRAE Handbook and industry best practices, is increasingly water conscious. Concepts like 

high allowable temperatures, economizer modes, and hybrid cooling are incorporated into new 

designs precisely to improve sustainability. AI, being a leading-edge workload, is often deployed 

in state-of-the-art facilities that use these innovations. It is therefore misleading to apply old 

average water usage intensities to new AI services without considering the design improvements.  

 

From an engineering standpoint, we have shown how closed-loop cooling cycles work 

(recirculating coolant without evaporation) and how cooling tower-assisted cycles can be 

augmented or replaced to cut water usage by orders of magnitude. We provided diagrams to clarify 

these cooling processes and why they matter for water consumption. The take-home lesson is that 

water use in data centers is a design parameter we can optimize, not a fixed cost. With smart 

engineering, AI can be cooled with far less water than early analyses suggest. In fact, the drive to 

reduce AI's water footprint is already underway: industry leaders are investing in novel cooling 

tech (such as advanced thermosyphons and liquid cooling) and better operational practices. As 

these become mainstream, the water-per-AI-task will keep dropping.  

 

Finally, it is worth reframing the narrative: rather than viewing AI as an unchecked drain on water 

resources, we should view it as an impetus to build greener, more efficient infrastructure. The 

attention brought by studies on AI's "secret water footprint" can serve as a catalyst for positive 

change. This encourages transparency and innovation in data center cooling. The engineering 

community, through organizations like ASHRAE, has been providing guidance on sustainable 

cooling for years, and now that message is resonating with AI data center designers. Given current 

trends, it is reasonable to expect that most AI-focused data centers soon will have negligible direct 

water consumption, even as their compute capabilities grow. In summary, AI does not have to be 

"thirsty": with efficient cooling architectures and responsible practices, we can support the 

growing computational demand without soaking up scarce freshwater. The claims of huge water 

usage per AI query or model are technically inaccurate when applied to optimized systems, and 

we have debunked them by explaining the real physics and engineering economics of data center 

cooling. The focus now should be on accelerating adoption of these best practices across the 

industry, ensuring that the expansion of AI is accompanied by sustainable, low-water 

infrastructure.  
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Transition. From Water Use Myths to the Realities of Data Center Power  

 

Having established that widely publicized figures about AI's water consumption are often 

overstated or based on outdated engineering models, we turn now to the other axis of the debate: 

electricity demand. If water has been the visible flashpoint in recent sustainability discussions, 

electrical power is the silent engine driving both the direct operational costs and the indirect 

environmental footprint of modern AI.  

 

The physics of data center operation are inescapable: every joule of energy delivered to AI 

hardware is eventually dissipated as heat, demanding reliable cooling to prevent system failures or 

degraded performance. This thermodynamic loop links power and water concerns at every step. 

but also offers multiple points of intervention. In practice, advances in facility design and workload 

management that reduce one resource footprint (for example, by shifting from evaporative cooling 

to closed-loop or air-based methods) often have direct consequences for the other, sometimes 

trading energy efficiency for water conservation or vice versa.  

 

Regulatory and public scrutiny has increasingly focused on headline claims that "AI models will 

overwhelm the electrical grid" or "data centers will soon consume the power of entire cities." These 

narratives have contributed to calls for new standards, mandatory reporting, and even moratoriums 

on new digital infrastructure. Yet, just as with water, a closer examination of actual data center 

operation, current best practices, and evolving technology reveals a more nuanced story.  

 

Section 3 delivers an evidence-based analysis of the real power dynamics behind AI. It examines 

how electricity is used, how much is required by current-generation AI systems, and where the 

gaps or exaggerations exist in public discourse and some regulatory filings. We will separate the 

fixed constraints of physics from the design variables of engineering, offering clarity on what is 

inevitable and what is simply the result of legacy architecture or imprecise communication.  

 

Crucially, this section builds on the principle established in our discussion of cooling systems: 

resource consumption in AI infrastructure is not a predetermined burden, but a parameter shaped 

by technology choice, operational policy, and intelligent design. By bringing the same level of 

engineering rigor and empirical scrutiny to the issue of electricity as we have to water, we aim to 

equip regulators, policymakers, and public stakeholders with the facts needed to chart a balanced 

and effective path forward.  

 

With this context in mind, we now turn to a detailed examination of data center energy use in the 

era of AI, separating hype from reality, and highlighting the regulatory implications of actual, not 

hypothetical, power consumption.  
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3. Investigating AI Data Center Electricity Use: Separating Hype from Reality  

 

3.1. Introduction 

Concerns have grown that GPT-style AI models are guzzling enormous amounts of electricity, 

with some claims likening their power draw to that of entire cities or countries. These fears, 

amplified by sensational comparisons, risk obscuring the real technical facts. This report provides 

an analysis of data center energy consumption for large AI (specifically GPT-like models). It 

clarifies exaggerated claims and grounding the discussion in engineering realities. We examine 

how electricity is used, distributed, and cooled in AI data centers, using benchmarks and standards 

from ASHRAE, IEEE, DOE, IEA, and others to quantify power needs for model training versus 

inference. We focus on key players (OpenAI, NVIDIA, and their affiliates like Microsoft Azure), 

evaluating what they have disclosed (or failed to disclose) about energy use. Along the way, we 

identify red flags and marketing language that may mislead regulators or the public. Finally, we 

offer concrete recommendations for U.S. policymakers to ensure transparency and efficiency in 

this rapidly growing sector. The goal is to equip regulators with an accurate, science-based 

understanding of AI's electrical footprint, so that oversight and legislation can be well-informed 

rather than reactive to hype.  

 

3.2. Data Center Energy Fundamentals for AI Workloads  

 

Figure 3: Schematic of a typical data center cooling system (chilled water based). Heat from server 

racks (IT equipment) is absorbed by chilled water coils in computer room air handlers, or by direct 

liquid cooling loops attached to high-density racks. Warm water is then pumped to a chiller system.  
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This cooling cycle illustrates how a large portion of data center energy is spent not on computation 

itself, but on removing the heat generated by that computation. In modern AI-centric facilities, 

servers (particularly GPU clusters) can draw tens of kilowatts per rack, requiring robust cooling to 

maintain safe operating temperatures. The efficiency of this process is measured by Power Usage 

Effectiveness (PUE): the ratio of total facility power to IT equipment power. For example, a PUE 

of 1.5 means that for every 1kW powering servers, 0.5 kW is consumed by cooling, power 

distribution losses, and other overhead. Cutting-edge cloud data centers achieve PUE ~1.1 to 1.2, 

meaning ~10% overhead for cooling/power delivery, whereas older or smaller facilities might be 

1.5 or higher (50% overhead). Low PUE is crucial for AI workloads because it implies most 

electricity feeds the GPUs and TPUs doing the work, rather than being wasted in ancillary systems.  

 

Importantly, AI workloads concentrate significant power in dense hardware clusters, which 

stresses cooling more than typical enterprise IT. A single NVIDIA H100 GPU has a thermal design 

power up to 700 W, and an AI training rack can contain dozens of such GPUs. At full tilt, a single 

high-end AI server rack can draw >20 kW, compared to perhaps 5 to 10 kW for a standard non-

AI server rack. This heat load has driven innovation in cooling: many AI data centers use liquid 

cooling (direct-to-chip water loops or immersion cooling) to more efficiently capture heat at the 

source. 

 

Figure 4: PUE Calculation Components  

 
 

Liquid cooling can remove heat with less energy input than chilling large volumes of air, 

improving efficiency and enabling higher rack densities. For example, rear-door heat exchangers 

and direct liquid-cooled plates can raise cooling effectiveness (heat removal efficiency) from 

approximately 60 to 70% (for traditional air cooling) to 80% or more. Furthermore, using cool 

ambient air for "free cooling" when climate allows, or evaporative cooling with water, can 
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drastically cut the electric power needed for chillers. (The tradeoff is water consumption, a key 

environmental factor discussed herein). In summary, the science of data center power is a 

balancing act: delivering huge electrical loads to AI chips, then expending additional energy (or 

water) to whisk away the resulting heat. Optimizing this cycle is central to any accurate accounting 

of AI's energy footprint.  

 

3.3. Power Use in AI: Training vs. Inference  

A critical distinction in understanding GPT-like models is the training phase versus the inference 

(application) phase. Training a large model is a one-time (or occasional) operation that is extremely 

energy-intensive; inference happens continuously in production, answering user queries or 

generating content, and its aggregate energy use can also become very large when scaled to 

millions of users.  

• Training: When OpenAI trained GPT-3 (175 billion parameters) in 2020, it was estimated 

to consume about 1,287 MWh (megawatt-hours) of electricity. This is roughly equivalent 

to the annual power suage of 120 to 130 U.S. homes. For further context, training one GPT-

3 model used about as much energy as 1.6 million hours of Netflix streaming. Other 

research from a few years prior found similarly sobering figures: an NLP model with 

extensive hyperparameter tuning and neural architecture search was calculated to emit 

626,000 lbs of CO2 (over 280 metric tons), equivalent to the lifetime emissions of five cars. 

These oft-cited numbers raised red flags about AI's sustainability. However, it is important 

to clarify the context:  

o Early large-model training runs (2018-2019) were often done with inefficient 

hardware or methods, compounding energy use. The 626,000 lbs CO2 figure, for 

example, came from an academic experiment that trained many models repeatedly 

during neural architecture search, essentially a worst-case scenario.  

o Hardware and efficiency improvements have since markedly reduced the energy 

per training unit of compute. Research from Google in 2021 showed that by using 

efficient data center design, custom AI accelerators, and geographic workload 

scheduling, the energy and carbon cost of large-model training can be cut by a 

factor of 100 to 1000 compared to naive approaches. For instance, training a model 

on a sparsely activated architecture (Mixture-of-Experts) can use less than one-

tenth the energy of an equally large dense model. And locating a training run in a 

region with cleaner electricity can yield a five-to ten-fold reduction in CO2 

emissions. This wide variance (two orders of magnitude) is a key reason to be 

skeptical of blanket statements about AI energy use. The context and choices matter 

enormously. 

o Unfortunately, transparency about these choices is declining. OpenAI and other 

labs have not publicly disclosed the full details of GPT-4's training (completed in 

2022), citing competitive and proprietary reasons. As a result, outsiders have to 

estimate GPT-4's electricity usage with only partial information. This lack of 
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disclosure is itself an issue, as we address herein. However, the consensus is that 

GPT-4's training likely exceeded GPT-3's by some multiple, given the trend toward 

larger models and more training compute. Yet concurrently, OpenAI and Microsoft 

likely employed efficiency measures (e.g., using newer NVIDIA A100 or H100 

GPUs, optimized software, and Azure's efficient data centers) that could mitigate 

per-unit energy costs. In short, training today's frontier models still draws on the 

order of millions of kilowatt-hours (kWh), but the range varies widely depending 

on how smartly the training is executed.  

• Inference: Once a model like ChatGPT is deployed, the energy used to answer billions of 

queries can rival or exceed the training cost. Inference is the ongoing, repetitive 

computation performed each time a user prompt is processed. Individually, an AI inference 

is not too costly (measured in watt-hours or kilowatt-hours) but at scale, they add up 

quickly. A recent study by Luccioni et al. (2023) provided the first systematic estimates of 

inference energy across many models. For example, answering 1,000 questions with a 

small BERT-like model consumed only about 0.002 kWh (essentially negligible) in their 

tests, and 1,000 text generation tasks (like GPT output) used around 0.047 kWh. This 

implies a single prompt-response, like running a 100 W light bulb for 2 seconds. However, 

as model size and complexity grow, so does per-query energy. The same study found image 

generation models (like DALL-E or Stable Diffusion) averaged 2.9 kWh per 1,000 images, 

meaning each image might consume ~0.0029 kWh, equivalent to 25% of the energy needed 

to fully charge a typical smartphone once.  

 

In practice, state-of-the-art models like GPT-4 are far more demanding than small lab models. 

Estimates by one research group using a new "infrastructure-aware" benchmark illustrates the real-

world stakes. They deduced that a single GPT-4 query (of moderate length) consumes roughly 0.4-

0.5 Wh of electricity, whereas a long, complex GPT-4 response might devour 30+ Wh. That range 

represents a difference of 70 times or more in energy per query, depending on length and model 

variant. Now multiple by scale: OpenAI's GPT-4 model was reported to handle about 700 million 

requests per day in 2023. At those volumes, the inference workload for ChatGPT could draw on 

the order of 400 GWh per year (0.4 TWh). That is enough electricity to power 35,000 U.S. homes 

for a year. In other terms, one analysis equated a year of ChatGPT's operations to charging over 3 

million electric vehicles. While such analogies should be taken with caution (as assumptions about 

usage can vary), they drive home the point: widespread AI adoption translates to continuous, 

significant power consumption.  

 

It's also instructive to compare AI inference to a baseline activity like web search. The Electric 

Power Research Institute (EPRI) found that a typical ChatGPT query uses about 10 times more 

energy than a Google search (approximately 2.9 Wh vs. 0.3 Wh per query). This reflects the greater 

computational intensity of generating a complex answer with a large neural network compared to 
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retrieving a list of web results. By 2024, with hundreds of millions of users querying AI assistants, 

this differential starts to matter on a grid scale.  

 

All else equal, if the world shifted every simple search to an AI query, the power needed would 

increase by an order of magnitude for those tasks. Of course, AI can also replace more energy-

intensive workflows in some cases (for instance, speeding up research or optimizing systems). 

Therefore, the net impact is nuanced. But today’s data indicate a clear upward pressure on 

electricity demand from AI usage. The U.S. Department of Energy noted in late 2024, that data 

center loads are already surging due to AI – with overall U.S. data center electricity use climbing 

from 58 TWh in 2014 to 176 TWh in 2023 and projected to reach 325–580 TWh by 2028. That 

means data centers alone might draw 6.7% to as much as 12% of all U.S. electricity by 2028, up 

from roughly 4–5% today. AI is the dominant factor in this trend, alongside continued growth of 

cloud services. Globally, the International Energy Agency (IEA) likewise projects data center 

consumption more than doubling by 2030 to approximately 945 TWh (almost the electricity use 

of Japan), with AI-related loads quadrupling during the same period.  

 

3.4. Bottom line 

Training a single model is a massive but infrequent energy expense, whereas inference is an 

ongoing burn that scales with user demand. Both aspects are undergoing rapid growth. The worst-

case headlines (e.g., “AI will use as much power as an entire country”) contain a kernel of truth 

but often assume no efficiency gains or transparency. As we’ll see that some such claims are indeed 

being bandied about, and it's important to dissect them critically.  

 

3.5. Claims by Industry Players: OpenAI, NVIDIA, and Affiliates  

The landscape of public information on AI energy use is uneven. Major AI developers and their 

cloud partners have been selective in disclosures, often highlighting performance improvements 

while staying quiet on exact energy metrics. Hardware makers like NVIDIA tout the efficiency of 

their products, yet absolute power draw is soaring as their chips multiply across data centers. Let’s 

examine what these players are saying (or not saying) about electricity consumption: 

 

1. OpenAI (and Microsoft Azure): OpenAI itself has provided very little detail on the 

energy footprint of models like GPT-3 or GPT-4. Unlike earlier years when researchers 

might publish training run details, OpenAI declined to comment to reporters on ChatGPT’s 

energy use. There is no public "sustainability report" from OpenAI quantifying its data 

center electricity or carbon. A climate tracking site notes that OpenAI "has not publicly 

disclosed specific carbon emissions data," indicating a lack of transparency in reporting its 

energy footprint. The task of estimating OpenAI’s usage has thus fallen to outsiders using 

indirect clues. We’ve already cited some such estimates: approximately 1.3 GWh for GPT-

3 training, and hundreds of GWh per year for GPT-4's service usage. OpenAI's primary 

infrastructure is hosted on Microsoft Azure, which adds another layer. Microsoft's cloud 
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division does not report overall data center metrics (Microsoft claims its operations have 

been carbon-neutral since 2012 through offsets and renewable purchasing), but it does not 

break out the portion used for specific clients or AI projects. Notably, Microsoft did divulge 

one striking piece of information under external pressure: the water consumption of its 

Iowa data center cluster during GPT-4's final training. In a single hot month (July 2022), 

the cooling that AI supercomputer consumed 11.5 million gallons of water, about 6% of 

the area's entire water use at the time. This was a rare concrete data point, and it illuminates 

how energy and water are intertwined for AI: Microsoft chose Iowa for its mix of cheap 

clean power and cooler climate (free cooling), but even there, a summer heat wave 

triggered substantial water usage to keep GPUs cool. The local utility has since demanded 

that any future expansions must cut peak water draws to protect the community supply. 

OpenAI itself did not comment on this, but Microsoft acknowledged the issue and is 

exploring new cooling technologies and efficiency improvements. In short, OpenAI's 

stance has been to highlight model capabilities, not environmental costs, leaving regulators 

largely in the dark about the true resource usage. This lack of transparency is a red flag, as 

it impedes public accountability.  

2. NVIDIA: As the leading manufacturer of AI hardware (GPUs), NVIDIA occupies a dual 

role. On one hand, its latest processors (like the A100 and H100 GPUs) are far more 

energy-efficient for AI computing than traditional CPUs (a point NVIDIA markets 

heavily). For example, by offloading AI tasks from CPUs to GPUs, data centers can 

perform the same work while saving energy. NVIDIA has claimed scenarios of a fivefold 

improvement in energy efficiency at the cluster level by using GPU-accelerated systems. 

In AI inference specifically, one analysis showed GPUs delivering 42 times better 

performance-per-watt than CPUs. NVIDIA often frames its mission as "accelerated 

computing is green computing." Over a decade, its GPUs achieved a 2,000x improvement 

in energy efficiency for AI training and an incredible 100,000x improvement for AI 

inference (measured in energy per model inference). Those numbers were presented at an 

industry summit in 2024, with the fine print that this was over 10 years and for specific 

workloads. While these gains are real, they can be misleading out of context: it doesn't 

mean a single H100 GPU is 100,000 times more efficient than a 2013 GPU overall. This 

means that due to algorithmic and hardware advances, something like generating one text 

token now uses a tiny fraction of the energy required in 2013. NVIDIA's messaging 

understandably focuses on efficiency per computation, not the absolute increase in total 

GPUs deployed. This absolute growth is staggering. The company's CEO, Jensen Huang, 

has acknowledged that expanding AI will raise global electricity use, though he argues the 

productivity gains outweigh the costs. Internally, NVIDIA is pushing solutions to temper 

the resource demands: most notably, liquid cooling to reduce both power and water usage 

in data centers. In 2025, NVIDIA announced that its next-generation Blackwell AI 

platform will use closed-loop direct-to-chip liquid cooling, enabling 25. times better energy 

efficiency and 300× better water efficiency for data center cooling compared to traditional 
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air-cooled systems. This is a bold claim: a 300 times reduction in water use would virtually 

eliminate evaporative cooling needs by using radiator-style closed loops. If achieved, it 

could hypothetically resolve the water crisis we saw in Iowa. However, adopting such 

liquid cooling at scale requires retrofitting data centers, a cost many operators are hesitant 

to pay. NVIDIA’s strategy is clearly to partner with cloud providers to deploy these new 

cooling systems alongside the latest GPUs, thereby easing the “energy vs. performance” 

tradeoff. Regulators should monitor how these promised gains materialize in practice, i.e., 

whether data centers are running cooler and with less overhead per GPU. NVIDIA tends 

to remain silent regarding the total power consumption driven by its booming sales. 

External analysts have done the math that NVIDIA avoids: one projection by a Microsoft 

data center engineer, Paul Churnock, estimates that all the H100 GPUs Nvidia will sell in 

just 2024 (around 1.5–2 million units) running at 61% utilization would draw more 

electricity than all the households in Phoenix, AZ combined. Even NVIDIA's 2023 GPU 

deployments for AI had a footprint comparable to the country of Cyprus, in terms of power 

demand. These aggregate impacts are not something NVIDIA emphasizes in its press 

releases, for obvious reasons.  

3. Microsoft, Google, Meta, Others: It is relevant to mention OpenAI and NVIDIA's 

affiliated giants. Microsoft, as OpenAI's cloud backer, has at least acknowledged the issue 

and is funding research on quantifying AI energy use. Microsoft's CTO for cloud 

operations said in early 2024 they are developing methodologies to measure AI's energy 

and carbon impact and working to make large systems more efficient. Microsoft has also 

pledged to power its data centers with 100% carbon-free energy by 2030 and is investing 

in grid-scale clean energy, an approach regulators might encourage for all AI data center 

operators. Google (and DeepMind) have been more transparent in their research: Google 

published data in 2022 indicating that machine learning workloads were about 10 to 15% 

of Google's total data center energy use (a surprisingly modest share). This was attributed 

to efficiency practices and the use of Google TPUs. Google’s engineers also led the way 

in calling for ML energy reporting and created metrics like MLPerf Energy (an industry 

benchmark for energy usage during training/inference). Meta (Facebook) has been 

relatively quiet publicly about AI energy, though it too builds massive AI training clusters 

(and like others, Meta runs them on renewables when possible). Meta’s latest data center 

designs use direct evaporative cooling and even capture warm water for reuse in heating, 

reflecting an engineering push to optimize PUE and WUE (water usage effectiveness). 

Others such as Amazon’s AWS and Oracle Cloud have announced high-efficiency GPU 

cloud offerings but typically market them as cost savings and carbon reductions versus 

customer on-premises computing (which may be true, since hyper-scale cloud centers are 

more efficient than small server rooms). Across the board, big tech companies prefer to 

publicize efficiency improvements on a per transaction basis rather than admit the total 

energy is skyrocketing due to scale. This narrative imbalance (highlighting efficiency gains 

while obscuring absolute consumption) is a key consideration for policymakers.  
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3.6. Red Flags and Misleading Claims  

In parsing industry statements and media coverage, we identified several patterns of 

overestimation or misrepresentation that could mislead regulators or the public. Here are key red 

flags to watch for, with examples: 

 

1. Lack of Transparency / Data Secrecy: When the entities best positioned to provide real 

data refuse to do so, external estimates fill the void, sometimes inaccurately. As noted, 

companies like OpenAI, Meta, and others have stopped sharing detailed energy metrics for 

cutting-edge models. This creates a risk that policy will be based on either worst-case 

speculation or on rose-colored corporate assurances, rather than hard numbers. Red flag: 

For example, if a company claims its AI is “efficient” or “sustainable” but will not release 

energy or carbon figures, regulators should be skeptical. Transparency is the first step to 

accountability. 

2. Sensational Comparisons Without Context: It's true that AI clusters consume an 

extraordinary amount of power, but some headlines overshoot or lack nuance. For instance, 

the claim that “NVIDIA’s GPUs will use more power than some countries” or "ChatGPT 

uses electricity like 3 million EVs" grabs attention. The red flag is not that these are wholly 

false. In fact, millions of AI GPUs could indeed draw on the order of gigawatts, comparable 

to a small nation's grid. The issue is context. A statement like "AI data centers equal 

Cyprus's power consumption" is based on specific deployment assumptions at a snapshot 

in time. It might assume all sold GPUs are running at high load 24/7. If utilization or 

technology changes, the reality could differ. Regulators encountering such claims should 

request clarification of the underlying assumptions and timeframes. A dramatic 

comparison can mislead if interpreted as destiny rather than a conditional scenario.  

3. Overestimates from Linear Extrapolation: Relatedly, some predictions simply 

extrapolate current growth with no mitigation. An extreme example: a data center industry 

piece once suggested data centers could use 51% of global electricity by 2030; a figure far 

above credible analyses (IEA projects ~4% by 2030 globally). Such outliers often assume 

exponential growth continuing unchecked. Red flag: Projections lacking consideration of 

efficiency improvements, saturation points, or policy intervention. Regulators should favor 

forecasts from neutral bodies (DOE, IEA, national labs) over vendor estimates or single-

dimension extrapolations.  

4. Greenwashing and Vague Efficiency Claims: Conversely, regulators should be alert to 

companies using jargon to downplay impact. Terms like “AI cloud is carbon neutral” can 

hide important details. For example, Microsoft touts that Azure is carbon-neutral (meaning 

they purchase renewable energy credits and offsets), which is positive but does not mean 

AI hardware is not drawing power from fossil-fueled grids in real time. Similarly, a claim 

that a new chip is “25 times more efficient” might only apply to a specific operation in 

ideal conditions. NVIDIA’s 100,000 times inference efficiency improvement is factual in 

context but easily misinterpreted. Red flag: Efficiency ratios without baseline context. 
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Regulators should require standard metrics (e.g., joules per inference at a given 

performance level) rather than marketing superlatives. Also, “carbon neutral” via offsets is 

not the same as “powered by 100% clean energy 24×7”; the latter has far more direct 

emissions reduction benefit. Clear definitions are needed to prevent misleading 

environmental claims. 

5. Ignoring the Inference Tsunami: A subtle misdirection is when discussions focus only 

on the one-time training cost of AI models and ignore the potentially much larger 

cumulative cost of inference. If a company says: “Training Model X only took Y MWh 

(and we bought offsets, so it is green)”, regulators should ask: how many users will query 

this model and how much energy will that use over time? Our earlier analysis showed 

inference for popular models can dwarf training: e.g., ChatGPT’s annual inference energy, 

could be dozens of times the training energy. Red flag: Any assessment of AI impact that 

leaves out usage phase energy. Policymakers should demand lifecycle energy reporting 

(training + years of inference) for a fuller picture.  

 

By keeping these red flags in mind, regulators can better discern which claims to question or verify. 

The common thread is the need for transparent, standardized data that leads to our final section on 

recommendations.  

 

4. Seven Recommendations for Industry Regulators and Policymakers  

To ensure that the AI industry’s energy impacts are managed responsibly, U.S. regulators should 

consider a multi-pronged approach focused on measurement, standards, and incentives. Below are 

concrete recommendations: 

1. Mandate Energy Transparency for Large AI Models: Require companies that train 

frontier models (e.g., exceeding a certain compute threshold) to report the energy 

consumption and carbon footprint of those training runs. This could be done confidentially 

to a regulator if IP is a concern, with aggregate statistics released publicly. Key metrics: 

total kWh for training, hardware used, location of data center (for grid emissions context). 

Likewise, for deployed models, companies should report inference energy per one 

thousand queries (or similar unit) for standard workloads. Transparency is the foundation; 

without data, neither the public nor policymakers can verify claims or improvements. 

2. Monitor and Enforce Efficiency Benchmarks (PUE, etc.): Regulators (perhaps DOE or 

state energy commissions) should track data center infrastructure efficiency metrics like 

PUE (Power Usage Effectiveness) and WUE (Water Usage Effectiveness) for AI-intensive 

facilities. Setting industry targets or codes could be an approach (ASHRAE Standard 90.4 

already provides design guides for data center efficiency). For example, new large data 

centers might be expected to achieve a PUE of 1.3 or better; if an operator consistently lags 

(say running at PUE 1.8 when peers achieve 1.2), regulators could push for upgrades or 

best practices. The same goes for water. Policymakers could require reporting of gallons 

per megawatt hour (MWh) cooling and encourage technologies that reduce potable water 
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use (like closed-loop cooling, reuse of greywater, etc.). This is akin to building energy 

codes but tailored to these digital infrastructure sites.  

3. Set Hardware Efficiency Standards or Labels: Work with industry groups (IEEE, 

MLPerf, etc.) to develop standardized efficiency ratings for AI hardware, a sort of 

EnergyStar for AI accelerators. For instance, a rating could be in FLOPS per Watt under 

certain neural network loads, or total energy to perform a benchmark task. This would let 

purchasers (and regulators) identify the most efficient hardware for AI tasks. It also 

pressures vendors like NVIDIA, AMD, Google (TPUs) to prioritize energy efficiency 

alongside raw performance. Tax incentives or procurement preferences could be given for 

utilizing more efficient hardware generations. Notably, much of AI’s energy burden can 

be alleviated by swift adoption of new chips that perform the same computation with fewer 

joules. Policy can help by accelerating retirement of power-hungry legacy equipment.  

4. Ensure Carbon-Free Power Supply for AI Growth: Given the projected doubling or 

tripling of data center electricity use by 2030, it is vital that this growth be met with clean 

energy rather than increased fossil generation. Regulators should work with utilities and 

AI data center operators on mechanisms to align data center demand with renewable energy 

supply. This could include:  

a. Requiring new large data centers to invest in or contract for new renewable 

generation equivalent to their consumption, as some hyperscalers (massive data 

centers that provide immense computing power and flexible cloud platforms for 

large-scale applications and services) already do voluntarily.  

b. Encouraging "time-matched" renewable procurement (so that data centers are 

powered by clean energy in real-time, not just annual offsets).  

c. Exploring tariffs or agreements where data centers provide load flexibility (e.g., 

delaying non-urgent workloads to times of high renewable output) to ease grid 

stress. The DOE suggests data centers could become grid assets if they add on-site 

generation or storage and adjust demand intelligently.  

d. In carbon accounting, moving beyond "neutral" claims via offsets to actual 

emission avoidance. Regulators might require disclosure of percentage of energy 

that is renewable sourced vs. offset.  

5. Address Water and Cooling Impacts in Site Approvals: For local and state regulators 

who permit data center construction, add specific conditions around cooling technology 

and water use. For example, if an AI data center in an arid region plans to use millions of 

gallons for evaporative cooling, authorities should demand mitigation: use of recycled 

water, adoption of liquid or refrigerant-based cooling that wastes less water, or heat reuse 

systems. In water-stressed areas, there could even be restrictions on evaporative cooling 

systems. The goal is to prevent situations like the Iowa case from becoming common, by 

pushing innovation in cooling. Federal agencies (EPA or DOE) can assist by publishing 

best-practice guides on low-water cooling for high-density compute. 
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6. Require Life-Cycle Impact Assessments for AI Systems: When companies deploy major 

new AI services (especially those using public cloud resources at massive scale), they could 

be required to submit a brief Energy Impact Assessment to a regulator. This would quantify 

expected electricity use and carbon emissions for, say, the first year of operation, and plans 

to mitigate those (use of renewable energy, offsets, efficiency measures). This is analogous 

to environmental impact statements in other industries. It forces companies to contemplate 

and document the resource demands before deployment. Such assessments could be 

reviewed by an agency like the Federal Trade Commission (FTC) to ensure claims (e.g., 

“our AI is sustainable”) are not deceptive. The FTC has recently shown interest in cracking 

down on false environmental claims (AI should not be an exception).  

7. Support R&D and Standards for Sustainable AI: Regulators and government research 

bodies should continue funding R&D into AI energy efficiency. This ranges from 

fundamental research in algorithms that require fewer computations, to system designs for 

better energy-proportional computing (where systems draw power more gradually instead 

of peaking even at low loads), to advanced cooling and power delivery tech. The U.S. can 

also take the lead in international standards; for example, working with IEEE to standardize 

methodologies for measuring AI energy and carbon (ensuring one company’s “query” is 

measured the same as another’s). Standardization will help in creating fair benchmarks and 

possibly certifications (a future scenario: an AI model could be “Energy Star certified” for 

meeting certain efficiency or green-power criteria in its operations). 

 

In implementing these recommendations, regulators should engage with both industry and 

independent experts (academia, national labs) to keep pace with the fast technical advances in AI. 

The encouraging news is that efficiency solutions exist, from hardware (GPUs, TPUs, novel chips) 

to software (optimized algorithms), to infrastructure (liquid cooling, smart grids), that can 

dramatically curb AI’s energy and carbon footprint if widely adopted. The challenge is ensuring 

adoption keeps pace with scale. Policy can catalyze this by making transparency and efficiency 

not just virtues, but requirements.  

 

4.1. Conclusion 

AI’s electricity consumption is no longer an esoteric footnote; it’s becoming a factor in energy 

policy and climate discussions. This report has shown that while some alarmist claims (“GPT will 

eat the grid!”) are exaggerated, the core reality is that AI at scale does consume very large amounts 

of power and is set to grow significantly. The data center physics behind this (high-performance 

chips drawing hundreds of watts each, multiplied by tens of thousands of chips, plus the cooling 

overhead) mean that, without proactive efforts, AI could become a major strain on power 

infrastructure and a source of CO₂ emissions (if that power isn’t clean). The flip side is that AI 

firms and engineers have a strong record of efficiency gains, often outpacing conventional Moore’s 

Law improvements. We’re entering an era where regulatory oversight and technological 

innovation must work in tandem. Policymakers should not aim to halt AI progress, but to steer it 
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onto a sustainable path: shining light on real energy usage, incentivizing reductions in waste, and 

ensuring the sector’s growth aligns with our broader climate and resource goals. By focusing on 

empirical data and engineering solutions (as we have done in this analysis), regulators can cut 

through the hype and craft policies that hold AI to account without stifling its benefits. In short, 

the key is truth and transparency in tech’s footprint, so that society can reap the rewards of GPT-

style AI while keeping its electricity appetite in check. 
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