
Choosing Kafka vs. MQ Solutions for Agentic AI and RAG 
Workflows 
As our work on AI and agentic workflows has accelerated, we’ve found ourselves 
repeatedly weighing the merits of Kafka versus traditional MQ solutions for event-
driven architectures. While RabbitMQ remains a tool we appreciate and trust, our 
experience at Duczer East has shown that Kafka is the better fit for most of our use cases, 
especially those involving agentic AI and RAG. There are, of course, exceptions-and in some 
cases, using both technologies together makes the most sense. This ongoing evaluation 
ensures we’re always choosing the best tool for the job as our integration landscape 
evolves. 

While RabbitMQ and other MQ solutions have served us well and remain a favorite for 
certain use cases, our experience at Duczer East increasingly points to Kafka as the 
optimal choice for most of our agentic AI and Retrieval Augmented Generation (RAG) 
workflows. There are, however, important exceptions and scenarios where MQs or a hybrid 
approach may be preferable. 

Why Kafka Is Our Initial Assumption for Agentic AI + RAG 
• Scalability and Throughput: Kafka’s distributed log architecture is purpose-built for 

handling massive data streams and real-time event processing. As our AI agents 
and RAG systems require access to large volumes of fresh, contextual data, Kafka’s 
horizontal scalability and persistent storage have proven invaluable. 

• Real-Time Streaming: RAG workflows, in particular, benefit from Kafka’s ability to 
deliver up-to-date information with low latency, ensuring our AI agents always 
operate with the most current context. 

• Event-Driven Flexibility: Kafka’s publish/subscribe model enables our agentic 
systems to react to events as they happen, supporting autonomous decision-
making and complex, multi-agent orchestration. 

• Integration and Replay: Kafka’s ecosystem (including Kafka Connect and stream 
processing tools) makes it straightforward to integrate with modern data stacks and 
vector databases, and its persistent log allows us to replay and audit events-critical 
for retraining and compliance in AI workflows. 

• Consumer Control: Kafka’s pull-based consumption model allows our agents to 
process events at their own pace, reducing the risk of overload during traQic spikes. 



When RabbitMQ or a Hybrid Approach Makes Sense 
• Complex Routing Needs: For workflows that require advanced message routing, 

prioritization, or dead-letter handling, RabbitMQ’s flexible exchange and queue 
model can be more eQective. 

• Legacy Integrations: RabbitMQ’s protocol support and maturity make it a strong fit 
for integrating with older systems or where AMQP/MQTT compatibility is required. 

• Hybrid Architectures: In some scenarios, combining Kafka for high-throughput 
streaming with RabbitMQ for specific routing or task-queueing requirements 
delivers the best of both worlds. 

Conclusion and Recommendation 

Based on the majority of integration scenarios at Duczer East, Kafka has become our go-
to solution for agentic AI and RAG-powered event-driven architectures. Its strengths in 
scalability, real-time processing, and integration with modern AI data stacks make it the 
clear choice for most of our needs. That said, we continue to value RabbitMQ for 
specialized tasks and recognize that a hybrid approach can sometimes oQer the greatest 
flexibility and performance. 

 

 


