District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007
Robert Gustafson, Ph.D.

Page 1
STATE OF MINNESOTA - COUNTY OF WABASHA
DISTRICT COURT - CIVIL DIVISION

Greg Siewert and
Harlan Siewert, dba Siewert Holsteins,

Plaintiffs,
vs.
Xcel Energy,

Defendant.

Case No. C5-04-498

DEPOSITION OF
Robert J. Gustafson, Ph.D.
January 29, 2007
Columbus, Ohio
Lead: Charles Bird, Esquire
Firm: Bird Jacobsen \& Stevens

FINAL
JANE ROSE REPORTING 1-800-825-3341

APPEARANCES:

CHARLES A. BIRD, Attorney at Law
Bird, Jacobsen \& Stevens, PC
305 Ironwood Square
300 Third Avenue, SE
Rochester, Minnesota 55904
(507) 282-1503

On behalf of Plaintiffs.
MICHAEL F. O'BRIEN, Attorney at Law
Weld, Riley, Prenn \& Ricci, SC
3624 Oakwood Hills Parkway
P.O. Box 1030

Eau Claire, Wisconsin 54702-1030
(715) 839-7786

On behalf of Defendant.
DREW RYBERG, Attorney at Law
Ryberg and Happe
1620 Ohm Avenue
Eau Claire, Wisconsin 54702
(Via telephone)
On behalf of Defendant.

INDEX

WITNESS
PAGE
ROBERT J. GUSTAFSON
EXAMINATION
(By Mr. Bird)
6

EXHIBITS

Exhibit No. 304

MARKED

6
(Curriculum Vitae)
Exhibit No. 305
6
(Article: Response to "Equipotential Planes, A Figment of the Imagination"

Exhibit No. 306
6
(Abstract: Equipotential Planes, A Figment of the Imagination)

Exhibit No. 307
6
(Abstract: The Hazardous Multigrounded
Neutral Distribution System and
Dangerous Stray Currents)
Exhibit No. 308
6
(Abstract: The Grounding of Power Systems
Above 600 Volts: A Practical View Point)
Exhibit No. 309
6
(July 28, 2006, letter to O'Brien from
Gustafson)
Exhibit No. 310
(Deposition Notice)
Exhibit No. 311
6
(Article: Cows, Ground Surface Potentials and Earth Resistivity)

INDEX

EXHIBITS MARKED
Exhibit No. 3126
(May 26, 2005, letter to Gustafson from O'Brien)
Exhibit No. 3136
(Handwritten notes)
Exhibit No. 314
6
(Metatec Associates Document MT06-114)
Exhibit No. 315
6
(8/23/06 memo to O'Brien from Gustafson)
Exhibit No. 316
6
(Cover page of: Final Report of the Science Advisors to the Minnesota PUC)

Exhibit No. 317
6
(Cover page of: Effects of Electrical Voltage/Current on Farm Animals)

Exhibit No. 318118
(Cover page of: Stray Voltage and Dairy Farms, NRAES-149)

Exhibit No. 31910
(Inventory of Materials Received)
Exhibit No. 320
91
(Paper: Behavioral Studies of Dairy Cattle
Sensitivity to Electrical Currents)
Exhibit No. $321 \quad 91$
(Abstract: Behavioral Studies of Dairy Cattle Sensitivity to Electrical Currents)
Exhibit No. 322 129
(April 6, 1994, letter to Gustafson from Gerald Bodman)
Exhibit No. 323
195
(University of Minnesota "Dairy Update" Abstract)

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007
Robert Gustafson, Ph.D.

JANE ROSE REPORTING 1-800-825-3341

PROCEEDINGS

And, thereupon, Exhibit Nos. 304-317 were marked for purposes of identification.
(Witness sworn.)
MR. BIRD: We've marked some exhibits here, 304 to 317 . For the record, on 316 and 317, those two being the Final Report -- 316 is the Final Report of the Science Advisors to the Minnesota Public Utilities Commission dated July 31, 1998. Counsel have agreed that all we're going to do is mark that cover page just to indicate what it is because we all know what the report is and we all have copies of it, and it's a document that has 47 pages.

Then Exhibit 317 is the so-called red book. Actually, it's a United States Department of Agriculture publication called, "Effects of Electrical Voltage/Current on Farm Animals: How to Detect and Remedy Problems," and, again, we're only going to mark the cover page for the same reasons as noted with respect to Exhibit 316.

Is that agreeable, counsel?
MR. O'BRIEN: That's correct.

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

		Page 7
1	ROBERT J. GUSTAFSON,	
2	being by me first duly sworn, as hereinafter certified,	
3	deposes and says as follows:	
4	EXAMINATION	
5	BY MR. BIRD:	
6	Q. What is your current status with The Ohio	
7	State University?	
8	A. My current status is I'm Associate Dean for	
9	Undergraduate Education and Student Services in the	
10	College of Engineering and a professor of food, ag and	
11	biological engineering.	
12	Q. What percentage of your time is involved in	
13	the former?	
14	A. Probably 95 percent of my time.	
15	Q. Are you teaching classes now?	
16	A. I teach some. Last year I taught three	
17	classes. This year l'm probably only teaching one.	
18	Q. Are you currently teaching a class?	
19	A. No.	
20	Q. Are you engaged at this point in any ongoing	
21	research relative to agricultural engineering?	
22	A. No.	
23	Q. Are you engaged in any research at present	
24	with respect to the issues of stray voltage?	
25	A. No formal research, no.	

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.
Q. When is the last time that you were actually involved formally in stray voltage research?
A. In a funded research project, probably the last funded project would have been at University of Minnesota, and I left there in '87.
Q. 1987. I know that you've done some writing since '87. Has that been in collaboration with others, either summarizing the research you did previously or -- I think as part of the red book you got together with some other scientists and collaborated on certain summaries; right?
A. That would be a reasonable characterization.
Q. When is the last time you did any writing -and outside of litigation, of course -- in the field of stray voltage?
A. Would be the IEEE paper done last summer.

It's marked as one of the exhibits.
Q. Is that the response to Zipse's?
A. Yes.
Q. Other than that, when was the last time?
A. What I'm looking for is the NRAES publication, which was in 2003, I think would have been the other.

MR. BIRD: We'll mark the cover of this too, if that's okay.

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

MR. O'BRIEN: Sure.
MR. BIRD: Let's do it at a break. I'm
going to call that exhibit next, whatever that is.
MR. O'BRIEN: 318.
MR. BIRD: We'll call it 318. We're marking the cover page of a publication of Natural Resource, Agriculture and Engineering Service.

THE WITNESS: Actually, it's the Northeast Regional Agricultural Engineering Service. No. You're right. They did change the name. I stand corrected. Used to be. I stand corrected.
BY MR. BIRD:
Q. NRAES-149, Stray Voltage in Dairy Farms proceedings from April 9-11, 2003, in which you participated, and it looks like you did what's called a stray voltage overview; right?
A. Correct.
Q. All right. Have you ever been on the Siewert farm?
A. No.
Q. Is it your intention to visit the Siewert farm at all before you testify in this case?
A. Not unless requested to.
Q. You don't believe it's necessary for you to visit there in order to render the opinions you're

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 intending to give in this case?
A. That is correct.
Q. All right. We've talked about the documents you've reviewed, and you've brought those with you. Based upon -- Let's see. Did you have that list? I could just take a look at, go over that very quickly.

MR. O'BRIEN: Let's just mark this.

And, thereupon, Exhibit No. 319 was marked for purposes of identification.

BY MR. BIRD:
Q. Showing you what's marked Exhibit 319. Are those the documents that you've looked at in this case?
A. Yes. This is just a summary of the titles on the letters that came to me documenting what documents came.
Q. And those are things that were sent to you, not necessarily that you reviewed in detail; correct?
A. That is correct.
Q. Those that you've looked at in more detail are the exhibits that were a part of the Reilly deposition?
A. That is true.
Q. And what is your reason for being interested

District Court - Minnesota
Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

Page 11

1 in reviewing those exhibits more than the other 2 documents?
A. Because they dealt more with the electrical aspects in the case.
Q. Do you know Mr. Reilly?
A. Yes.
Q. Have you met him in the past?
A. Yes.
Q. And have you met him in the context of this type of litigation?
A. There and at professional conferences and things like that.
Q. What is your current charge for your services?
A. $\quad \$ 120$ per hour.
Q. And does that charge vary at all whether it's reviewing documents, attending depositions, going to trial?
A. Excuse me. I usually charge $\$ 1,200$ a day for time I spend away from Columbus.
Q. Now, do you have a separate business entity set up for this purpose, or is it just run as a sole proprietorship?
A. I do not have a separate business set up for
it.

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

Page 12

1 Q. The money that you earn, does that go to the university or does it go to you directly?
A. Goes to me directly.
Q. Do you know how much you earn per year?
A. It's varied. Last year, I remember it was under $\$ 1,000$. Previous years, it would have been somewhat more than that.
Q. I'm showing you what we have here; it's Exhibit 310. Take a look at this. Have you seen that before?
A. Yes.
Q. Okay. Item two requests a bibliography, list or copies of any and all articles, publications, treatises or published documents upon which you've received or relied in forming any opinions as to whether electricity was a cause -- a potential cause of problems on a dairy farm, including the Siewert Dairy. Have you gathered that list?
A. The list I would rely on from my own articles are those that are in the vitae statement, and I think the USDA red book is a good bibliography as well as the subsequent one done by Dr. Reinemann, University of Wisconsin. So those are the bibliographies I would rely on.
Q. When you're saying you're relying on them,

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 you believe that those -- the documents in your own
$21 \quad$ Q. Yes, and that you felt were credible. curriculum vitae represent credible scientific information --
A. Yes.
Q. -- upon which experts in your field would normally and typically rely?
A. Yes.
Q. Would the same hold true with respect to the bibliography in the red book?
A. Those are more comprehensive. I'm not sure I would say I would rely on all the articles in there. Those are just more comprehensive that I would go to pull out relevant articles.
Q. If I were to ask you which articles in the red book you relied upon, would you be able to create that list for me? I mean, I can do it now or have you just spend a little time afterwards and you can send me a list through Mr. O'Brien.
A. You're really asking which ones I would view as most pertinent to what our discussion is today.
A. I could do that.
Q. And with regard to Dr. Reinemann's list, can you do that as well? I brought that list with me.
A. Okay. Yes, I could do that. So let me be

1 clear. What you'd like is just to know -- Tell me
again what it is that you would like to have.
Q. Well, what I'm looking for is a listing of the documents in the bibliography of both the red book and -- what's the other --

MR. O'BRIEN: Dr. Reinemann's summary of literature.
Q. -- Dr. Reinemann's literature summary that you feel are credible and that you'd rely upon.

All right. Then go to item three. And, again, these are items we asked you to bring today. Copies of any personal communications or correspondence you have had with any of the authors of the items listed in number two above, including e-mails, letters, fax, memoranda, or however stored, in the time frame ' 85 to the present.

So what l'm looking for is communications you've had with those persons that you find to be credible when you reviewed this list of materials. You did read this before you came here?
A. Yes, I did. I really don't keep personal communications files in that way. The only thing I could think of -- which, I apologize, I didn't think of before -- is that I may have some communications relative to the Zipse paper development. I think

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 that's about the only ones that I could probably 2 recover at this point in time.

21 A. I have not retained those over time. Once
22 the document was completed, I didn't try and keep that
23 sort of developmental material.
24 Q. You just threw it away?
25
Q. What you're saying is you don't have any files relative to any of the papers you've written back and forth to the various places that -- I mean, I just don't know how you keep your files, but --
A. No. I have files of the completed papers, but I don't have other correspondence sorts of things with people that would be behind it.
Q. You participated, for example, in producing the USDA red book; right?
A. Correct.
Q. So I'm assuming you had conferences regarding that; correct?
A. Correct.
Q. And l'm just guessing, but l'm suspecting you had telephone conference calls as well --
A. Yes, we did.
Q. -- and that you were taking notes about various things. Where are they?
A. Yes.

District Court - Minnesota
Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

Page 16

Q. Do you keep any personal correspondence over the years on this type of --
A. On these sorts of things, not really.
Q. Well, when you say "Not really," that means you might.
A. I'm sorry. No, I don't have a file of correspondence on these things.
Q. And do you have a list of these various research papers, refereed or not, related to stray voltage?
A. The ones that l've done are cited in my vitae.
Q. But do you have them laying around in a box or in a file drawer at your office?
A. Oh, yes, I have -- Yes.
Q. You have a stray voltage file?
A. I have files at home primarily of papers regarding stray voltage, yes.
Q. Would it be true then that you don't have any notes or records of any sort related to your involvement with this publication that we've been referring to as the red book, which is Exhibit 317 here?
A. I don't think I do. I can certainly check, but I don't think I do.

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.
Q. We'd ask that you check for that. And I'm looking for any type of information, however stored, which means I'm looking for digital data on it as well, e-mails and such.

And somehow you did come up with an e-mail here. I don't know where it is, but we marked something that -- Yeah; it looks like this was an e-mail here, Exhibit 315.
A. Correct. That was the e-mail to Mike, yes.
Q. And you must have saved that somewhere in your digital file.
A. Well, I printed it out at the time, I
believe. It probably still is stored in the archive of the e-mail system.
Q. And that's what l'm wondering, I mean, if you have -- if there's any kind of a method you have for saving important e-mails and records.
A. Not that's got any organization to it that would be around a particular topic. Plus, the red book one would have been back in '90-- late '80s into early '90s. I seriously doubt I'd be able to resurrect any of the e-mail correspondence if we had any at that point in time.
Q. Showing you what's marked as Exhibit 312, is that when you were first contacted in connection with
A. Yes. I believe Mr. O'Brien had contacted me by phone, likely, and this would have been a confirmation of that contact.
Q. And what was the date of that?
A. May 26, 2005.
Q. And at that time what were you asked to do?
A. I was asked to be available primarily for the electrical aspects, setting perspective on the research that's been done, the history and development of stray voltage information, and probably, particularly, the more recent was the Zipse paper or papers.
Q. And what you're saying is this "Response to the Equipotential Planes, a Figment of the Imagination," Exhibit 305?
A. Yes.
Q. You were asked to get involved in that?
A. Right; be prepared to explain or describe that particular article in particular.

MR. O'BRIEN: I guess I want to clarify something. It may be the way the question was asked.
Your article 305 wasn't a response to a request made in this lawsuit.

MR. BIRD: You can't testify, can you? I

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.
Q. All right. Now, did you have some collaboration with LaVerne Stetson on preparing this?
A. Yes.
Q. And what was that collaboration?
A. LaVerne is the second author on the response paper.
Q. Who wrote the response?
A. I wrote the bulk of it. I mean, I wrote it, and then LaVerne contributed assessment to it. I asked some other colleagues to contribute ideas as well.
Q. And do you have communication or --
A. I probably do have some of that communication.
Q. Can you provide me that communication by way of any kind of notes or e-mails or other kind of -- I'm interested in knowing what you have when you first received a copy of the Zipse paper and any communications you had with anybody at IEEE or otherwise relative to being invited to respond or coordinating the response or drafting the response or finally submitting.

Did you attend the meeting where the paper
was presented?
A. Yes.
Q. What occurred at that time?

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.
A. At the particular session where these papers were presented -- There were several papers presented during that particular session. I mean, it was like a regular kind of professional technical society technical session or technical paper session.
Q. Well, what happened? Did you listen to Mr. Zipse's presentation?
A. Yes.
Q. Do you recall anything that happened at that time?
A. Well, yes. He presented his paper. I
presented mine. There was one other presentation or a couple other presentations. Then there was a panel discussion following or a panel time that the audience could ask questions and make comments as well.
Q. Were you on the panel?
A. Yes.
Q. Who else was on the panel besides yourself?
A. Mr. Zipse, and I can't remember the name of the person that presented one of the other papers. I'd have to look that up.
Q. If you could get me that name of the other person.
A. Sure.
Q. To your knowledge, does a tape recording or

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.
$1 \quad$ videotape recording of that exist?
A. It was videotaped. My understanding is there is a video of that whole session.
Q. Do you have a copy of that?
A. I do not have a copy of it.
Q. The video, is that something that was just was there special arrangements made to have that videotaped?
A. It's my understanding that Mr. Zipse had made arrangements to have it videotaped.
Q. Okay. One of the things that we've discussed here today is Exhibit 315. Apparently you had some contact with somebody at IEEE about Mr. Zipse's paper after it was presented; correct?
A. Correct.
Q. And then you corresponded with Mike there. Is that Mike O'Brien?
A. Yes.
Q. And who is the individual that you contacted?
A. Mr. Bill or William Moylan; and he was part of the conference organizing team.
Q. And was that a telephone call that you're referring to or was it e-mail or what was it? normally done in the normal course of their business or

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 A. I believe it was a telephone call.
Q. Were there any e-mails you had with Mr.

Moylan?

A. There may have been prior to the conference just some preparing papers or the paper. I don't believe there were any around this particular -- at that particular time.
Q. Well, obviously, if there are e-mails to Moylan regarding Zipse's paper, that's something l've already requested. But l'm asking you in particular related to this exhibit, this inquiry or conversation, communication, if you will, that you had, l'd ask you also to search your records to see if you have any notes or e-mails or any other type of data relative to that communication. Okay?
A. Certainly.
Q. All right. Now, what was your purpose in contacting Mr. Moylan?
A. Just to help clarify how IEEE viewed the papers presented at a meeting relative to their refereed publications.
Q. And what's the name of their refereed publication?
A. It's the IEEE Transactions of Industrial and Commercial Power Systems.

District Court - Minnesota
Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 Q. And IEEE Transactions, is that a separate publication?
A. Yes.
Q. How often does that come out?
A. I don't know.
Q. If I read this correctly, this fellow indicated to you that Mr. Zipse was informed that his submission was not being considered for publication.
A. That is correct.
Q. And do you know this Mr. Moylan?
A. I've met Mr. Moylan, yes.
Q. Did you work with him on any committees?
A. No.
Q. Have any other papers presented in -- I
think it was May -- Isn't that when the presentation was -- of '06?
A. I think that's correct.
Q. Have any other papers that were presented at that time since been published in the Transactions?
A. I don't know. I don't follow that particular IEEE Transactions to know whether they have or not.
Q. Do you know whether or not, in fact, at this point Zipse's paper has been published in the Transactions?

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.
A. No.
Q. How would you find that out?
A. I'd go back and do a search of that particular Transactions.
Q. What's the typical, from the time a paper is presented, if you know -- I don't know if you're involved at all in this process, but if something is being considered for publication, what's the time frame from initial presentation at a meeting to the time that it actually comes out in the Transactions?
A. I'm speculating a bit because I don't know the IEEE process in detail, but from the journals l've worked with and have been associated with, a minimum would probably be a year.
Q. Okay. Are you currently on the editorial board of any peer reviewed publications?
A. Yes. I'm an associate editor for the Information and Electronic/Electrical Systems Division of ASABE.
Q. ASA --
A. -- BE, American Society of Agricultural and

Biological Engineers.
Q. And what's the name of their publication?
A. They have several, but the principal one would be the Transactions of ASABE and Applied

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 Engineering.
Q. The name is called Applied Engineering?
A. Yeah. That's a separate journal from the Transactions.
Q. Are there any other publications that you do any editorial work?
A. Not at this time.
Q. Have you in the past, let's say, 10 years been asked to review submissions from other periodicals that are peer reviewed?
A. Yes.
Q. Can you tell me what those are?
A. In the last 10 years, Journal of Dairy

Science, American Society of Engineering Education. I don't immediately think of any others outside of the ASABE system I can think of right now.
Q. Well, I noted that, in reviewing some of your prior testimony, you apparently were called upon to do some peer review work in connection with the submission made by Hillman and Graham. Do you recall that?
A. Oh, at that point in time I was actually division editor for the IET division of ASA, and so it was my responsibility to handle or manage the peer review of articles coming into that particular

1 division.
A. Yes. data?
Q. The red book that we have, is that in your view a peer reviewed publication?
A. No, it is not peer reviewed in the sense of being published by a technical professional society.
Q. Now, you know that there are -- I'm assuming you know that there's methods that are used by researchers relative to providing credible summaries of other scientific material.
Q. Are you familiar with that process?
A. Yes. There are -- Definitely doing review articles in the domain is a common practice.
Q. And isn't one of the criteria to make sure that protocols have some type of similarity or uniformity in order that you're going to be merging the

MR. O'BRIEN: Object to the form.
A. If you're going to develop a summary, you
have to be very careful that you don't mischaracterize or put things together that don't belong together, if that's what you're asking.
Q. Well, if you're going from raw results with a sample size of 10 and another one with a sample size of 20, but there's different cows and there's different

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 time periods and there's, frankly, different things 2 they're actually testing for, there's different methods for cow contact, I mean, what does the protocol require in order to make sure that you're comparing apples to apples when you're providing a summary?
A. Well, certainly whoever is doing the summary needs to understand those differences and be aware of those and cognizant of those as they put the summary together.
Q. Well, that's for sure. I'm just wondering if you're aware of any specific protocols that are in place in the scientific community in order to do that. I'm talking in general now. There are protocols for summaries, aren't there?
A. Well, I'm not -- I'm not sure I could point to one at this point that says, "This is a protocol for doing this type of summary of the literature in the area."
Q. I take it it's your testimony here that the contents of this red book in your view is credible and ought to be looked at by the finder of fact in this case?
A. Yes.
Q. Even though it's not a refereed publication?
A. Yes.

FINAL - January 29, 2007 Robert Gustafson, Ph.D.
Q. So, generally speaking, you don't have a hard rule that something has to be peer reviewed in order to be submitted in a court of law; correct?
A. There can be credible materials that are not peer reviewed.
Q. Okay. I'm just going to read to you something that I think may hit the nail on the head here, and I'm just going to ask you if you agree with it.
A. Okay.
Q. And this is an article from an entirely different field, but actually has to do with orthodontics.

They're discussing here evidence-based systematic reviews of literature. "The evidence-based paradigm has three hierarchical model levels. Model one derives its support from the personal experience of the practitioner and is not really evidence based, even though it is part of the classification." Do you agree with that?
A. Okay.
Q. "Evidence-based model two is a combination of a clinician's experience and, more importantly, an evaluation of the best available research data. Data gathered from studies of samples are considered

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 superior to case studies and anecdotal reports.
"The third and highest model of evidence-based information, model three, is the systematic review in which an exhaustive search of the literature is performed, and then an expert panel selects only a limited number of worthy studies that are included in a statistical procedure called meta-analysis," which is, in paren, "(a statistical analysis that combines the results of many studies). Systematic reviews are designed not only to identify all relevant information, but also to evaluate the quality of the information and then summarize the results from the strongest studies, i.e. blind prospective longitudinal studies with randomized control trials."

Do you agree with that?
A. Well, I can certainly see the structure that they're setting up there. If you have the type of data that they're referring to to do a meta-analysis, it certainly would be the highest level of review one could do.
Q. Was there a meta-analysis done as described with respect to the red book?
A. The meta-analysis that I would characterize there I think is kind of between your level two and
level three in that the protocols of the various experiments that were done would not allow them to be statistically combined in the sense of doing one overall statistical analysis in the way it's described there, or at least what I think I heard coming out of that, so I think it would really be kind of a partial way to the highest level meta-analysis.
Q. Would you be able to go to the bibliography in the red book and identify for me those limited number of studies that were done that had the highest quality and that were considered by you folks in connection with the graph on page 3-22, graph 3-4?
A. I could certainly identify relevant research reports or papers, the bibliography thereto, but that graph also embeds within it the experience of the authors working on that particular publication and pulling all that together as well. I'd have to acknowledge that.
Q. It includes some memory data from the authors is what you're saying?
A. Or their judgment in how to express all this into one -- in one simple chart like that.
Q. The problem l've got with that chart is it's going to show up in the courtroom as being the gospel according to you guys, and there has been no

21 this up?
22 A. The science is, I think, in the papers that
meta-statistical modeling of any of these studies upon which that graph is based; correct?
A. Not in a sense of trying to put all the data in one statistical analysis, that is correct.
Q. I mean, you are a scientist; right?
A. Yes.
Q. And you recognize and realize that what we've got here on this graph is something that's going to be presented in a court of law, and it will be represented to this jury as the collective wisdom of the scientists that prepared that report, you being among them?
A. Yes.
Q. And what l'm saying is, you're going to raise your hand and talk to this jury under oath, and I want to know what you believe to be the foundation in science for what's plotted on that chart. I want not just some guys getting together in the room and saying, "Well, let's make up this chart based upon our collective wisdom." Where is the science that backs it's based on, and then it does rely on the judgment of those persons in how to display that material into that chart.
Q. The problem l've got is that you don't have any information personal on cow response in terms of milk production, do you?
A. As far as controlled studies that we've done on milk production over time, no.
Q. Is there anybody that's in the list of authors there that has such experience?
A. It would be -- The people at Cornell would have worked in that milk -- milking area, as well as the USDA people of Beltsville, and then the -- not necessarily the authors, but the work at Ontario had milk production aspects to it.
Q. All right. So you've identified what;

Gorewit and -- How do you say that other guy's name?
Aneshansley?
A. Aneshansley.
Q. Those two had input in this graph; correct?
A. Their papers, yes.
Q. I'm talking about their mind, what was in their mind from their past experience, because you've said there's two bases; one is the papers, which I'm going to have you identify shortly, those that you felt were the credible scientific papers; and then, secondly, there was some collective judgment, and you've ruled yourself out of that; and I want to know

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 who those people were. One was Gorewit, one was
2 Aneshansley, and Lefcourt from Beltsville; correct?
A. Correct.
Q. And then who is the guy from Ontario?
A. I'd have to disagree with your statement I ruled myself out of being part of the process of interpreting the data. I'm trying to think -- May I look at the book?
Q. You're referring now to Exhibit -- What is it?

MR. O'BRIEN: 317.
Q. Yeah, 317, the red book.
A. The person from New Liskeard College of Agricultural Technology, Paul Gumprich, was a contributor that dealt with production issues.
Q. He dealt with production issues?
A. Yes.
Q. Isn't Ontario that place where they just passed that new regulation about stray voltage?
A. I understand they have some bill pending or something like that. I don't know the details at this point.
Q. I thought it actually had passed, but you're saying you don't know. Were you asked to contribute to that?

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 A. I've had some phone conversation, but nothing has followed up on that.
Q. With this fellow?
A. No. With people from what used to be Ontario Hydro, is now Hydro One, something like that.
Q. I suppose they're worried about this law passing up there.
A. I suspect they are.
Q. And how about your friend there, that Paul

Gumprich, have you talked to him about that law up there?

MR. O'BRIEN: Objection to form.
A. No.
Q. Is Gumprich still doing some research?
A. I do not know.
Q. Go ahead. I interrupted you. I apologize for that.
A. Just as a quick review, I think those would be the principal parties that were involved in doing some of the research publications that involved production.
Q. All right. So it's Gorewit, Aneshansley, Gumprich and Lefcourt?
A. Yes, and there may have been coauthors on papers they've done, people at those locations.

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.
Q. I understand that, but I'm talking about the contributors at the meeting, I mean, that contributed to the red book.
A. That would be the -- I think that would be the set.
Q. All right. So just so we're clear, you provided me with a statement of how this graph was created. It was based, A, on scientific research studies which are included in the bibliography, and then by the collective judgment of the scientists involved, but there were four upon which the group principally relied for the milk production information; right?
A. For the research data.
Q. For the research?
A. Yes.
Q. And for the collective view, I mean their mindset, on what that data showed; right?

MR. O'BRIEN: Objection to form.
A. Well, many of these people also have a good deal of field experience working in the area as well, so their own judgment is not based solely on the research, published research.
Q. Well, is field experience important and helpful then, in your view?

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.
Q. And credible opinions can be based upon field research?
A. That can be an element of developing credible opinions, yes.
Q. So, I mean, you know, again, looking at this, the things that I read you, I mean, as you get down to anecdotal type information, it becomes less helpful from a scientific standpoint.
A. Yes.
Q. And as you raise in terms of credibility and get up to a, you know, meta-statistical model, it becomes better at being predictive of or at least proving the hypothesis.
A. I concur.
Q. And what you're saying is that your group did something in between, and you really didn't get into, for purposes of the red book, statistical modeling?
A. Not statistical modeling in the way of trying to combine data sets together.
Q. Now, if you would go to the bibliography in the red book and point out to me those studies that you believe were the studies that supported the graph on 3-4.

1 A. This may be a little bit iffy doing it just
A. This may be a litle bit ify doing it just based on the titles. It's been a while since I've looked at the details of some of these papers, but l'll do the best I can on this.
Q. What I'm looking for are the prime ones, those you feel stand out in your mind as being the major contributors to the data points that are plotted on that graph.
A. From that context, I think I would bring in two papers by Aneshansley, one in 1988, "Stray Voltage Effects of Machine Milking;" then the second by Aneshansley and others, "Effects of Discontinuous Voltages Applied to Waters." I should retract that. I'm not sure that one deals specifically with production.

There's one by Gorewit, 1984, "Effects of Electrical Current on Milk Production and Animal Health." I think the Gorewit again in 1985, "Mechanisms Involved in the Adrenalin Induced Blockade of Milk Ejection in Dairy Cattle," and Gorewit, 1989, "AC Voltage on Water Bowls: Effects on Lactating Holsteins."

I hope I haven't missed any of the Gorewit ones there.

Then there's one in 1985, Henke Drenkard and

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 others, "Milk Production, Health, Behavior, and
2 Endocrine Responses of Cows Exposed to Electrical

Currents During Milking."
Then there's several works by Allen
Lefcourt. I'd have to actually go back to see which ones specifically deal with milk production itself. I know this Lefcourt, 1985, "Effects of Intermittent
Electrical Shock on Responses Related to Milk Ejection" deals with milking.

I think those would be some of the principal publications in a quick look through, recognizing I haven't -- This is more than 15 years ago.
Q. I understand that. And should you in review of your deposition -- You get a chance -- I don't know if you can do that or not, but we're probably going to recommend that you read it. If you happen to come up with any additional ones, you can add them to your list after you've gone through. I'm interested in getting all of those that you believe support the, you know, graph 3-4 on page 3-22. Okay?
A. With respect to the milk production aspect of it.
Q. Milk production, yeah, right.

Now, in going through this, I noted that
Norell did some papers back in 1982 and '83. It's on

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 8-8 of the bibliography there.
A. Yes.
Q. Are those two separate papers or are they the same thing?
A. I believe they would cover primarily the same body of research. The first one was a paper presented at a meeting; then the second was actually a refereed publication.
Q. The same data, though, was used for both?
A. I'd have to go back and check to make sure because Rick did a couple different experiments along the way, and I don't know if there's a hundred percent overlap between those two, but they would cover some of the same thing.
Q. Where is that Norell fellow at this time?
A. I believe he's at the University of Idaho.
Q. Is he an engineer?
A. No. He's, I believe, an extension dairy scientist.
Q. Do you know if he's done any additional writing in this area?
A. Not that I'm aware of.
Q. Do you keep up to date with him?
A. I haven't, no.
Q. All right. I want to get back to that in

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 just a bit, but I just wanted to ask you some -- Go 2 back to your notice of taking deposition. Go to item four. I was looking for a list of all cases in which you've testified by deposition or trial, including the names of the parties, names of the counsel, venue of the action, party or attorney who hired you, and the amount you were paid.
A. Again, I apologize. I tried to work on that list or something like that a couple years ago, and I have a list of most of that data. I just forgot to print it out and bring it today, so I can get that to you.
Q. All right. Thank you. And you had provided us with a CV.
A. Yes.
Q. And then I asked you for all writing you've done on the topic of stray voltage or stray current. Is that included in your CV?
A. Yes.
Q. And then seven, I asked you for a list of all presentations you've made on the topic of stray voltage to any person, company, corporation, energy co-op, association, insurance company, or any other organization, society or group, including all writings produced for each presentation. Do you have that?

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 A. I did not try to put all that together.
Q. Do you have that somewhere?
A. Not organized, no.
Q. Is that something you can put together or --
A. It would take days to put that together. To go back through calendars would be about the only way I could think about doing something like that.
Q. So what do you mean calendars? You have paper calendars of some sort?
A. For some years, yes. More recent years, I might have an electronic calendar.
Q. Well, have you given presentations to various co-ops and associations and insurance companies?
A. I don't recall any insurance companies. I certainly have done to co-op groups, other associations, many technical society presentations, of course.
Q. How many cases -- Again, you're going to give this to me, but, roughly speaking, how many cases have you been involved in?

MR. O'BRIEN: Stray voltage?
MR. BIRD: Yes.
A. Stray voltage, over the years, and I'll have to look at this list myself, but l'd say probably 60 to

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.
70.
Q. Now, have you ever been involved in a case on behalf of a plaintiff, a farmer, in Minnesota?
A. In Minnesota? I don't believe so, no.
Q. How about in Wisconsin?
A. I don't think so.
Q. And I think I read that there was one farmer in Ohio that you were involved with.
A. Yes.
Q. But that didn't go to trial?
A. That's correct. That was a -- What do you call it? -- mediation.
Q. Were you involved in the testing in that case or --
A. I did testing on the farmstead in that case, yes.
Q. What levels of electricity did you find?
A. By the time I arrived, it was in the -- it was relatively low. I think it was less than a volt at that point in time, but that was after the system had been -- well, the utility was rebuilding the system a couple of days before I got there, so the data I had that I personally took was much later -- was later.
Q. And were you actually hired by the farmer or did you just somehow get involved in the mediation as a

District Court - Minnesota
Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

				Page 44
1	neutral?			
2	A. I was involved as a neutral through the			
3	extension connection.			
4	Q. So you weren't really representing the			
5	farmer. You were trying to mediate the dispute?			
6	A. That is correct.			
7	Q. All right. And then has there ever been a			
8	case where you've actually testified at a trial on			
9	behalf of a farmer?			
10	A. Not at trial. I don't recall that I have.			
11	Q. Have you ever been hired by a farmer?			
12	A. Yes.			
13	Q. And what state was that in?			
14	A. Maryland.			
15	Q. Was that one time that you were hired by a			
16	farmer then?			
17	A. That's the only one that jumps to my mind			
18	right now, yes.			
19	Q. When was that that you got hired by the			
20	farmer?			
21	A. Probably in the late '80s.			
22	Q. Since the late '80s, you haven't been hired			
23	by a farmer, and you've never testified at trial on			
24	behalf of a farmer?			
25	A. Since that period of time, no.			

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

Page 45

21 Q. Any others? utility that hired you.
A. I'll do the best I can.
A. Yes.
A. Yes. cases?
Q. All right. When is the last time you testified at a trial in a stray voltage case?
A. I literally don't recall. I'd have to go back and look at my calendars to tell you.
Q. I'm wondering if in going through your -- You know, you said you'd put this thing together. If you could provide me with a list of those cases in which you've testified and the name of the
Q. Okay. You were familiar with Mr. O'Brien before getting involved in this case?
Q. You testified, you know, at his request in other cases for Northern States Power?
Q. And do you recall the names of any of those
A. I believe the Gumz, G-u-m-z -- is that a correct spelling? -- case would have been one.
A. Again, l'd have to go back to notes to come up with names. I can remember the farms I've been on, but I don't remember the names and stuff.
Q. Do you think there are other cases that

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

Page 46

1 you've been hired to act as an expert consultant where
2 the entity that was being sued was either Excel Energy or Northern States Power besides Gumz and this one?
A. That could well be. I certainly couldn't rule it out.
Q. Have you met this Forster fellow?
A. Yes.
Q. How about Brian Gunther, have you met him?
A. Yes.
Q. Have you met this Dr. Reinemann from Madison?
A. Yes.
Q. Have you worked with him at all?
A. Yes.
Q. You worked with him on what?
A. Primarily through the American Society of Agricultural and Biological Engineers, there, and then, of course, as colleagues doing similar research, l've been following his research that he's done since I became less active and he became more active in that area.
Q. You became less active in terms of actually doing funded studies back in '87. You know, looking at the red book, there's nothing cited by Reinemann there, and that was published in 1994 or '91?

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 Q. And under what circumstances have you run

21 A. That is correct, although I -- I'd have to into him?
A. I actually invited him to do a paper for

ASABE at one point in time, I believe, and I met him, I
think, probably through one of these particular cases.
After I'd read some of his materials, it was a delight
to get to know him at that point in time, and subsequently l've talked to him around different technical papers and things like that.
Q. Do you consider him a credible scientist?
A. Absolutely.
Q. You'd rely on the things that he said or testified to?
A. Yes.
Q. He's apparently not a Ph.D.
A. That may well be. I haven't looked at his vitae.
Q. Well, I mean, a person doesn't have to be a

Ph.D. in order to provide credible scientific testimony; is that correct? look.
Q. He had you fooled all these years that maybe he was a Ph.D.; is that it?

MR. O'BRIEN: I'll object to the form.

District Court - Minnesota
Siewert v. Xcel Energy

FINAL - January 29, 2007
Robert Gustafson, Ph.D.

1 Q. Stuff he said sounded so good, it sounds

21 A. That is correct.
22 Q. I wanted to ask you -- Let me see if l've
23 finished with this first. like it came from a Ph.D.?

MR. BIRD: I withdraw the question. All right.

THE WITNESS: I'll withdraw my answer that he does very credible work then.
Q. He does do credible work --
A. Yes.
Q. -- notwithstanding that he may not be a

Ph.D.; correct?
A. That is correct. If he's not --
Q. If he's not, he's not.
A. Correct.
Q. Your judgment of his work wouldn't be affected.
A. No.
Q. All right. So the point I'm making here is that a person doesn't have to have certain letters after their name in order to give credible scientific testimony; correct?

Okay. Item eight is the studies that you rely upon in giving your testimony for purposes of the

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

Page 50

opinions you're going to give, which I understand are marked here as Exhibit 309. What studies do you rely upon for purposes of those opinions that you have personally evaluated for scientific integrity?
A. Well, certainly, as listed here, the USDA
handbook; Minnesota Science Advisory Board is very helpful; the work that's been done at University of Madison since the red book are representative of the work I would go to.
Q. Well, see, that doesn't help me. I got two specific. I got the red book and I got the Science Advisors. And then you said the work that's been done. Can you provide me with that list of those that you have personally evaluated for scientific integrity? Do you see what l'm saying? In other words, by that -Just so you know what l'm saying is that you have actually not just read the studies, but you've been or had made available to you the data that forms the basis for that research and you believe that the data that's produced supports those studies.

MR. O'BRIEN: Objection to the form and foundation as to that to being the basis for scientific integrity. You may answer if you're able.
A. I can go through and list the Reinemann papers that I think are relevant to this particular

1 topic, if that's -- That I can certainly do.

21 A. Yes, or preceding papers that may have
Q. Well, I --
A. And that I think are credible to the topic.
Q. And I'm asking you to go a step further here. Those that you personally evaluated for scientific integrity, and so --
A. By "personally evaluated," you added some contingencies there of actually going further back to the original data that may be behind the paper itself, the raw data?
Q. Right, yeah. Have you done that on any of Reinemann's research?
A. Not that I recall, not going back to the raw data itself.
Q. Have you gone back and inspected or evaluated any of the protocols that were used?
A. I've certainly reviewed the papers carefully that they produced to document the protocols, yes.
Q. The paper meaning the final refereed publication? preceded that as well.
Q. Have you gone back at all to look at what actually happened to see the notes of the people that were gathering the data on any of Reinemann's papers?

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 A. No, l've not gone back and looked at their

22 those two cows that were removed? field notes or things like that.
Q. Well, there's this -- I'm moving off of

Reinemann, but just for example, were you aware that on
the -- I think it was either Gorewit or Aneshansley
that -- the so-called full lactation study? Remember
that one?
A. Yes.
Q. That there were two cows pulled because they had a violent reaction?
A. I understand that, yes.
Q. All right. Did you ever go back and look and find out what happened to those cows and make an independent determination of whether or not removing them from that database or milk production data was proper in your view as a scientist?
A. I didn't try and do an independent analysis of that, no.
Q. Have you talked to either of those two about why they took out those two cows, what their basis for reporting data was without including the milk from
A. I don't recall any conversations that specific.
Q. Until you get those questions answered, are

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 you able to rely upon that as a basis for opinions in 2 this case, on that particular study?

21 four years; correct?
22 A. Yes.
23 Q. And in that time frame, from the time that
A. I would include that particular study as just one of the set of studies that's relevant to understand the work.
Q. It's one of a set that you would include as part of -- you know, if you were going to do a meta-statistical analysis, you'd include that as one of a number of them?
A. Yes.
Q. But would that particular study come with a question mark, at least in your mind, that would have to be investigated?
A. If we're going to do a meta-analysis there, you'd have to understand it at that level of detail, yes.
Q. And, you know, you've been asked about this before in other testimony.
A. Uh-huh, yes.
Q. I think, you know, going back two, three, it's been first brought up, have you ever talked to Gorewit or Aneshansley?

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 A. Not that I recall.
Q. Well, you can pick up the phone and call them; right?
A. Could.
Q. And you haven't done anything since this question first came up to get the question answered about those two cows, what happened to those two cows and why did they get removed and why wasn't their data reported?
A. If I did, I don't recall doing that.
Q. Okay. If the data from those -- milk production data from those two cows were, in fact, included, I take it you're open to the possibility that the results from the study could be different?
A. They would be -- They may be somewhat different, yes.
Q. It might not support the conclusions if that data was included?
A. One would have to look at that carefully.
Q. Do you agree that stray voltage as a phenomenon exists?
A. Yes.
Q. And the existence of stray voltage isn't something that is any longer questioned by the scientific community; right?

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 A. Yes, that's correct.

21 A. Yes, as a scientist and an engineer, you
Q. As a phenomenon?
A. As a phenomenon.
Q. And the existence of stray voltage is something that's been peer reviewed and the scientific community has concluded it exists?
A. Yes.
Q. And the causes of stray voltage have been peer reviewed; right?
A. I'm not sure how I would say -- Papers that document that or describe that have been peer reviewed, yes.
Q. And there has been peer review of a conclusion that stray voltage can come from off-farm sources?
A. Yes.
Q. And it can come through the utility?
A. Yes.
Q. So we don't need some peer review study to tell us that. You accept that as a scientist? know, that's -- that's a fact.
Q. All right. And one of the ways that -- or the main way that cows get current is through the earth from a neutral-to-earth connection?

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

Page 56

MR. O'BRIEN: Objection to form.

Q. On the utility side.
A. When you said "through the earth," that makes it difficult to answer that question with an affirmative.
Q. Why is that?
A. Well, they get current by getting across a potential that represents often one connection to the grounded neutral system and then something closer to earth potential, so it's really across two points in the system. Earth may be part of that system.
Q. Well, they --
A. So when you said "coming from the earth," that I had difficulty in, you know, saying that's an accurate description of what's going on.
Q. Well, it can come from the neutral-to-earth ground, I mean, the current; right? And then it can go -- Depending on how close it is to the barn or whatever it is, the cow contact point, that neutral-to-earth voltage can travel through the ground and make contact with the cow?

MR. O'BRIEN: Objection to form.
A. That I don't think is an accurate description of what happens.
Q. Okay. Well, I understood that

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

Page 57

1 neutral-to-earth voltage that is right down that

21 that, so you are across part of what we call the 22 neutral-to-earth voltage. grounding wire can somehow get to the cow. Is that true or not?
A. That is correct.
Q. All right. And so that's not subject to debate in terms of the science; right?
A. Correct.
Q. That's been peer reviewed and peer reviewers have concluded that that phenomenon exists?
A. Correct.
Q. Now, when we get down to wherever it's grounded, tell me how it gets to the cow from there.
A. Generally, the easiest way to visualize this is you've got one connection to the cow that is attached to what you're describing as a grounded neutral system.
Q. How is it attached?
A. Cow may put, for example, her nose in a grounded water would be a good example, and then her feet represent the connection to potential away from Q. Okay. If there's a line outside the barn that has a grounded neutral from a pole and that current is going right into the earth right there, can

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 that current go from earth to where the cow is?
MR. O'BRIEN: Objection to form.
A. That current is not going to go to where the cow is unless there's some connection via the grounded neutral system. We wouldn't expect any significant potential across the cow once that current has gone to the earth.
Q. What if the line is right next to the barn, the neutral-to-earth ground?
A. Again, to get the cow across, you've got to get it across a significant potential to really create a stray voltage problem, and doing that through the earth itself is highly unlikely.
Q. And what study concluded that?
A. It's more the analysis that one would do just looking at the circuit analysis of the situation that we're describing or the circuits that would describe this.
Q. So you're saying that if the current is going down into the earth, it's impossible for any of that current to end up at the cow; you know, if it's really wet conditions, it can't make contact with some metal adjacent to it in the ground that travels back to the cow?

MR. O'BRIEN: Objection to form.

District Court - Minnesota
Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 A. If you create a low resistance connection to a metallic object so that becomes part of the grounded neutral system, then you might be able to create a potential in a cow contact area.
Q. So you're saying that if it's a -- What did you call it? A low --
A. Low resistance or low impedance path.
Q. Low impedance path. And the lower the impedance then between the grounded neutral line to the cow, the more likely it is that the current will travel and somehow get to the cow at a contact point?
A. Correct.
Q. All right. Is that a phenomenon that you recognize as potentially existing?
A. Yes.
Q. And there's been peer review on that?
A. Well, there's certainly been careful description of the electrical systems that would show that to be true.
Q. Now, has there been study of the symptoms of stray voltage?
A. Yes.
Q. Before I get to that, let me just back up.

I've used the term "stray voltage." Are you
comfortable with that?

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.
Q. And how do you define that, just so I have it on the record? What's your definition?
A. A good definition, I think, right now is that stray voltage is --
Q. You're reading from a paper. Maybe if you'd just tell me what exhibit that is.
A. Sure. I'm reading from the Exhibit 305, page 3. It's the definition that's come out of the Applications Handbook and a Lineman and Summons Handbook -- Cableman's Handbook. Excuse me. It defines -- Stray voltage has been defined as a low-level voltage presented across points -- for example, drinking cup to rear hooves -- which will cause a current to flow through an animal when the animal simultaneously comes in contact with the points. And I see there's a typographical.
Q. What's the typographical?
A. The typographical -- I read it correctly.

The typographical says "as animal" where it should say "an animal."
Q. A-n --
A. A-n.
Q. -- instead of A-s. Okay.

Now, I was asking you the symptoms of it, of

1 stray voltage, in terms of what you would see in terms of animal response.
A. The general symptoms we've come to expect are really behavioral type responses, so animal nervousness, reluctance to enter like the milking parlor, maybe reluctance to address a waterer or a feeder are the principal behavioral symptoms that we can see.
Q. Nervousness is expressed in what way in the cow?
A. The cows may, again, be reluctant; they may be kicking more; they may be defecating more.
Q. Anything else?
A. Those are the ones that come to mind.
Q. Are there any physiological responses in terms of like milk letdown and --
A. Oh, sure, that -- I'm sorry. I should have included milk letdown as a visible symptom as well.
Q. Any disease responses that are typically seen, such as foot and hoof problems or mastitis that are commonly associated with it? Not that there aren't other causes for these conditions. I'm not suggesting that. But is this something that's commonly seen with a stray voltage herd?
A. In practice, not in research, you know, we
get reports that would say, yes, you see increased mastitis, which may well go along with lower production.
Q. The response, behavioral response, that you've just listed -- and I'm going to get to the mastitis and the hoof thing. I'm going to exclude that for a moment. Those responses that you listed, they have been peer reviewed in the research; right?
A. Well, they're certainly common observations accepted in the industry. Whether they've been peer reviewed in that sense, I wouldn't say that.
Q. Well, there's an acceptance among scientists -- I think you're one of them -- that says, you know, if the cows don't have these things or some combination of them, then you don't have stray voltage; right?
A. That is correct.
Q. All right. And at least in that sense -and you've written that in peer reviewed publications?
A. Yes.
Q. All right. So there's acceptance in the scientific community that the set, of which you've listed these, of symptoms or some combination of those symptoms is a necessary condition for some conclusion that you've got stray voltage?
A. That's what we would expect to see, yes.
Q. What you expect to see. All right. And you add to that the caveat, of course, that these conditions that are behavioral responses can come from not only stray voltage, but a variety of other reasons and causes.
A. Correct.
Q. And a typical stray voltage investigation, for example, involves a farmer, you know, looking to their milking equipment and looking to their methods for prepping a cow, looking to their feeding regimen, and looking to all kinds of things before they finally come to stray voltage and try to look at that?

MR. O'BRIEN: Objection to form.
A. Or at least doing those in parallel.
Q. Well, you've seen in the past where farmers who have had a stray voltage problem have, you know, literally been pulling their hair out trying to find other reasons and trying to correct other things and then go to stray voltage; that's been something that you've seen?
A. Yes.
Q. Now, I want to turn to the mastitis. First of all, has that disease been associated with stray voltage?

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

17 A. That is correct. voltage? problem on the farmstead. voltage.

Answer if you're able.

A. From our field work, we'd say yes.
Q. Has any scientist studied that, as to whether or not at a high enough level of current, that mastitis is something that can be associated with stray
A. I don't believe the research has shown that you directly produce mastitis from the stray voltage.
Q. Are you satisfied as a scientist that that connection exists at a high enough current level?
A. I'm satisfied that if we have the behavioral aspects that are causing problems, that there's a likelihood that that can contribute to a mastitis
Q. So you wouldn't be surprised then as a scientist to see mastitis on a farm that has stray
Q. And you wouldn't have difficulty as a scientist in drawing a conclusion that, if other things are ruled out, that this mastitis in some substantial part was caused by the stray voltage?

MR. O'BRIEN: Objection to form, foundation.
A. I would say that it may be related, not directly causal, but if we've got animal behavior

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 problems, then I would accept that that could be part 2 of what might contribute to a mastitis problem.
Q. And you would be willing to make that conclusion that there was an indirect relationship?
A. Yes.
Q. All right. And in terms of milk production, I take it there has been science to establish that milk production can be related -- loss of milk production can be related to stray voltage?
A. If we get to a high enough level, yes.
Q. Right. And that level is expressed in current; right?
A. Correct.
Q. It's the current, not the voltage, that causes the problem?
A. Correct.
Q. And that relationship, the relationship of current to loss of milk production, is something that has been studied?
A. Yes, there's articles relating to that in the research literature.
Q. And there's been a conclusion amongst credible scientists in peer reviewed publications that there is a relationship between current and milk production; correct?

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

21 A. No. That is correct; I have not.
A. That there can be, yes.
Q. Right. So it is no longer a subject of debate in the scientific community that at a certain current, low-level current, that there can be adverse effects in milk production?

MR. O'BRIEN: Objection to form.
A. Certainly, if you can get to a high enough current level, you're going to have an impact on the animal which is going to impact production.
Q. And the debate in the scientific community is what's that level of current?

MR. O'BRIEN: Objection to form.
A. That's certainly a question that needs to continue to be addressed or has been addressed.
Q. All right. And the studies that have been done vary in terms of the level of current necessary to have an adverse effect on milk production; right?
A. Certainly there's some variability.
Q. You haven't had a chance to look at

Mr. Reilly's deposition testimony?
Q. Do you believe there's a difference in the resistance of a Jersey cow versus a Holstein cow?
A. Just because of breed, not necessarily, but may well be because of size of animal.
Q. Has that been studied at all?
A. We have some data on different sizes of animals. It's fairly limited.
Q. Not enough data for you to draw conclusions?
A. Well, other than they're not dramatically different in what we would see.
Q. You did some research on resistance --
A. Yes.
Q. -- early on, and your research indicated that a common resistance for a dairy cow was what; 250, 350, in that range, 250 to $\mathbf{3 5 0}$ ohms?
A. That would be characteristic of a minimum value for the body pathway of the animal.
Q. Body pathway.
A. One must recognize what we were trying to do is find minimum values, not common values, but minimum values that one could create.
Q. Well, do you have any of your data? Did you ever find a cow with a thousand ohms resistance?
A. I'd have to go back to the data to see, again, what the range is, and some of the Norell work would probably be -- and some of the summaries in the USDA book might refresh my memory on that, but I couldn't pull out specific numbers right now.
Q. I'm asking about you, whether you have a

1 memory in the resistance testing that you did of ever 2 finding a thousand ohm cow?
A. For just the body resistance, I can't say specifically to you now, but I wouldn't rule that out.
Q. The other part you're talking about is the contact resistance?
A. Well, certainly, yeah, that's part of the circuit, what we're working with.
Q. Well, you know, the resistor that's put in the line on testing is now currently $\mathbf{5 0 0}$ ohms. What does that represent?
A. That represents to me a very low-level --
Q. But what is it attempting to capture; the body resistance of the cow and contact resistance or what?
A. It's somewhat representative of the body resistance of the animal.
Q. Because the contact resistance is the contact resistance. That's not added to that. I mean, you're going to have the same issue on contact whether you're -- you know, whatever you're doing; right?

MR. O'BRIEN: Objection to form.
A. Well, certainly the contact resistance is going to vary given the circumstances of the animal and how they're making that contact and the facility itself

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

Page 69

1 would have a large effect on that.
2 Q. Sure. And if a cow is standing in salty

10 A. That is correct. It's going to be a relatively wet environment.
Q. And the contact resistance is going to be close to zero in that situation; right?
A. No, it's not going to be zero, but it would be a low -- relatively low value.
Q. Could be an ohm?
A. I'd have to go back and calculate again, but
it's not -- It's going to be more than an ohm. It's going to be relatively small.
Q. Would it be less than five ohms in that scenario?
A. If you're talking about just the surface contact resistance through a small layer of manure, it could be in that range.
Q. And if a cow has a sore on its foot, that

1 would increase or decrease the resistance? If whatever
the fluid is through which it's being contacted could get through the skin because of a sore, that would even further lower contact resistance?
A. That may have some effect, yes.
Q. All right. And so the $\mathbf{5 0 0}$ ohms doesn't -is something that's put in place to represent the resistance of the cow?
A. Yes.
Q. All right. In your studies, you came up with cows that were $\mathbf{2 5 0}$ ohms or less; right?
A. I don't recall any at that low value for the full animal.
Q. But I don't think your research showed any cows over 700 ohms, the stuff that you did.
A. As a minimum value --
Q. Not a minimum value; as the value. Did you ever see a cow have a resistance greater than 700 ohms in your whole life?
A. I'd have to go back and look at the data, but just for the body resistance itself, it probably would be in that order of magnitude.
Q. Well, you keep on using the word "body resistance." Is there some other kind of resistance that a cow has other than body resistance?

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 A. Well, certainly the contact resistances are very important in what kind of situation you have.
Q. I'm just talking about the 500 -ohm resistor that's commonly used now in testing and that you reflect in graph 3-4 in the red book; right?
A. Correct.
Q. All of the data on 3-4 in the red book is based upon data collected assuming 500 -ohm resistance and then 1,000 ohms, too; right?
A. No. It's using those two values to convert the current value, which we recognized earlier is really what the sensitivity was to, to an equivalent voltage, so it's using Ohm's Law with those two representative values.
Q. Ohm's Law is not subject to scientific debate; right?
A. I hope not.
Q. I mean it's a -- you know, it's been peer reviewed for centuries; right?
A. Yes; but, as an anecdote, George Ohm got fired from the university he was at at the time; and the treatise that originally contained Ohm's Law, he later got some international medals for it. But, yes, it's an accepted --
Q. Scientific principle?

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

Page 73

1 the graph would be wrong.

21 A. I don't believe I've seen that data.
A. If that's an invalid or a poor assumption, then that would affect the values in the graph.
Q. And if that's an invalid assumption, then farmers shouldn't be relying on that for purposes of doing stray voltage testing on their farm; right?
A. If you accept that, yes.
Q. And you agree with me today that $\mathbf{5 0 0}$ ohms isn't an accurate representation of dairy cows, is it, body resistance?
A. I think for the use that it's made there, I think it's a reasonable assumption to make.
Q. Well, what percentage of dairy cows in your view have resistances less than 500 ohms, body resistance?
A. Body resistance in that setting? I'd have to go back to the data. It would be, in my mind, a fairly low percentage I would expect to be below that.
Q. Well, you saw that Neubauer did some resistance testing on the Siewert herd, I take it?
Q. He didn't come up with any cows that have 500 ohms resistance.
A. I haven't seen his data.
Q. Well, if that were true, if the jury in this

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 case were to believe that that were true, then that graph wouldn't apply to the Siewert herd; right?

MR. O'BRIEN: I'll object to the form and foundation.
A. If that was -- were valid measurements and somehow these cows were lower -- somehow lower resistance than that, then you'd have to adjust that curve.
Q. And it's not a curve. It's a straight line.

I mean, you've got a linear relationship the way that it's expressed there.
A. Yes. It's a way of describing in a general sense what we expect to happen.
Q. Well, I mean, if you were to learn that the assumption of 500 ohms is a wrong assumption for dairy cows, I take it you'd be the first, as a credible scientist, to disavow that graph; right?

MR. O'BRIEN: Object to form.
A. If I was convinced that that wasn't representative for that type of display of material, yes, I'd want to change it.
Q. How did you go about, when you were doing it, testing for body resistance of the dairy cow? What was your method?
A. The principal method would be having a bit
in the mouth, then having a cow standing on two separated, expanded metal plates that were in a wet condition, so the front hooves would be separate from the rear hooves. Then we'd put a known current through whichever path we were looking at, measure the voltage drop, and from that then we could calculate, using Ohm's Law, the resistance.

Q. And you haven't been provided with the

 resistance testing that was done by Mr. Neubauer in this case?A. I don't believe I have.

MR. BIRD: Is it your intention to have him look at that, Mr. O'Brien?

MR. O'BRIEN: If we do, we'll let you know.
MR. BIRD: You know, I'm interested --
MR. O'BRIEN: I hadn't thought of it, actually, until today.

MR. BIRD: Well, just for the record, I mean, he has done this resistance testing, and I just want to tell you that. And, you know, I mean, his method is on videotape, and he's even got a description of exactly what he did. I think he actually had some clips or something that he used instead of a mouth thing. But then he had the two different tests, one where the cow was on some, I think -- was it a dry

21 terminology we're using because we're using body 22 resistance, which is represented by this $\mathbf{5 0 0}$ ohms, and
surface? -- and then one where the cow was in, you know, manure/urine combo up a little bit on the hoof, up some distance on the hoof, two different measurements.
Q. Would you expect the resistances might differ between those two methods?
A. Oh, absolutely.
Q. And Ithink under field conditions, you would expect that a cow may encounter manure, urine, straw, you know, whatever combinations that would get -- have access to current up some level on the hoof; right?
A. Conditions are certainly going to vary, yes.
Q. So the body resistance of a cow is going to be a function not only of their -- not body resistance, but it also is a function of how well the contact is on the hoof; right?
A. If we look at the full circuit, yes.
Q. I'm just in my mind trying to figure out how to define this so that I'm comfortable with the then contact resistance is something different. Then there's a third thing you talked about, which is circuit resistance, and I think that whole concept was

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 discussed in the red book, and that second author --
What was his name? That guy from -- What's his name?
Laughlin or something? Ludington.
A. Yeah.
Q. Yeah. Ludington kind of described that as -- that there's source impedance, path impedance, contact impedance and impedance of the animal.
A. Correct.
Q. Those are the four things that make up the circuit impedance.
A. Yes.
Q. All right. The source impedance is what?
A. That would be whatever the voltage source
is. You could think about a battery has a certain impedance in how much current it could put out, so what its characteristics are.
Q. And the path impedance?
A. That would be the resistance between the source and the first contact to the animal.
Q. And so if that's -- I want to go back to my example of, you know, neutral-to-earth grounding wire, you know, and then going right into the ground. The path impedance would be the earth between where that goes into the ground and wherever the cow can make contact; right?

District Court - Minnesota
Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 A. Assuming that object is not electrically bonded or grounded and that there isn't another path there, yes.
Q. So to the extent the soil in that location is salty and is wet, that would have a tendency to lower the impedance, the path impedance?
A. Yes.
Q. And then the contact impedance, that's what we talked about. That's where the cow actually makes contact with the source of the current?
A. Right; and you can look at that at the two points that the cow is making contact.
Q. And there has to be a differential between the two of them?
A. Well, there has to be two different contributions. You could think of the source -- or the contact resistance going into the animal and the contact resistance coming out of the animal.
Q. All right.
A. Just for completeness, then you've got the resistance of the path back from the animal as well to complete the circuit.
Q. Right. Okay. So I want to move back a little bit then to this concept of the contact. The idea of -- to get the true body resistance of a cow,

1 you're going to want to make the best contact possible;
right? Because if you have -- if you're measuring under dry conditions, you don't -- what you're showing then in terms of the number you're coming up with for the body resistance is going to be higher, or am I wrong on that?
A. Well, the body resistance itself is certainly going to be dependent on where you contact the body; and then if you want to get the true resistance of that path independent of the contact resistance, then you would want to minimize the contact resistance for that particular path.
Q. All right. But in order to do that, to get true body resistance, what we want to do is -- not "we" because I'm not a scientist, but you, as a scientist, you would want to minimize contact resistance in that to get true body resistance?
A. Yes; for whatever path you're trying to deal with, yes.
Q. So what you want to do then is like where the hoof makes contact, you want to make that almost zero or as close as you can get it to zero?
A. Yes; you like to minimize that.
Q. And you could do that by, you know, putting the cow in some salty water that goes up on their hoof

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 probably just do a telephone depo or something to find out what his opinions are?

MR. O'BRIEN: Sure.
(Recess taken.)
BY MR. BIRD:
Q. I want to go to the distinction you're drawing between so-called traditional stray voltage and earth current, you know, that was -- I think earth current was the subject of this Science Advisors thing in Minnesota.

What is the distinction between those two from your perspective?

MR. O'BRIEN: Objection to form.
A. I would distinguish -- An earth current deals with a current flowing in the earth, somehow then, hypothesize, get tangled up with the animal, as contrasted to a circuit that deals with the grounded neutral system and the animal directly.
Q. You don't have debate with the idea that neutral current that's grounded into the earth is present; I mean, neutral current can be in the earth.
A. Correct.
Q. And you don't have a problem with the notion that if that current somehow makes contact with the animal, that it could have adverse effects depending on

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 the magnitude of the current?
A. Depending on the magnitude, certainly.
Q. And it's then a question of determining
A. And at what magnitude.
Q. And at what magnitude; right?
A. Yes.
Q. All right. I've seen in some of the prior
A. Well, you mixed current and voltage, but --
Q. I'm sorry. I did.
A. I would just correct it to say that if voltage less than something like that on whatever facility you're working with. of perception at a half a volt?

MR. O'BRIEN: I'll object to form and foundation.
A. I believe it had a level of action something whether or not the current can get to the animal? testimony that you've done that you felt that it was a reasonable goal to get neutral-to-earth current without a resistor down to .35 volt? Am I saying that right? you're designing a system or modifying a system, that that's an achievable goal to have the neutral-to-earth
Q. And you're familiar with the recommendations coming out of the Wisconsin Public Service Commission before this 1991 report that had, you know, the level

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

21 A. That's correct. volt; is that true? their procedure.
Q. You're not a veterinarian.
A. No.
A. No. electric current, at what level? behavioral representations. you get to response, yes.
Q. And then the Public Service Commission of Wisconsin in response or partly as a result of the red book report that we've marked here raised that to a
A. Right; they modified their recommendation of
Q. And you're not an animal physiologist.
Q. You don't know actually where cows perceive
A. Well, I have done research on perception level for animals of electrical current, so, yes, I have studied the perception, primarily through
Q. But you don't -- Because you're not a cow, you can't be hooked up. There's some level before they jump and twitch that they might perceive it?
Q. And you don't know what that level is?
A. There may be a level of perception before
Q. Right. And what's been documented in the

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 literature is the actual behavioral response?

18 A. Of the four components we've talked about
A. Yes, that has been well documented in the literature.
Q. Okay. Again, going back to this 3-4 graph or chart, which is most certainly going to be given to the jury in this case in one form or another and probably many, many, many times, this 500 ohm and then 1,000 ohm, that's noted there; correct?
A. Yes.
Q. Just so we're clear what l'm talking about -- I don't know if you have a copy of it, but if you could go to page 3-22, figure 3-4, the note there, it says, "Voltage, right vertical axis, were estimated using a worst case circuit impedance 500 ohms and a more realistic impedance 1,000 ohms."

Now, the circuit impedance is a combination of all of the four; right? before, yes, that could be the definition of circuit impedance.
Q. So that 500 ohms represents the entire circuit?
A. In a worst case condition, yes.
Q. Right. But the literature -- Much of the literature imposes $\mathbf{5 0 0}$-ohm resistor for the cow, to

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.
Q. He's got that chart there showing the total circuit impedance is the source and the path and the contact and the cow?
A. Yes.
Q. And what you're saying is the cow has represented -- well, for the circuit, is at least
90 percent?
A. In the worst case conditions, yes.
Q. Now I want to go back to the chart. Does the 500 ohms that's shown on the chart represent the cow impedance or the whole circuit, in your understanding?
A. In my understanding, this would represent impedance where the cow is, so that would be probably the contact, the body of the cow, the contact part of the circuit.
Q. Not the source and the path?
A. It's assuming a worst case, so assuming those would be very small.
Q. Well, worst case, the way they're saying worst case, that would be like -- that would be like the minimum that it could ever be; right?
A. That would be what one would expect as a low value for the path resistance, yes.
Q. But the worst case to me means like that it just can't ever go below that. Is that true?
A. Well, I wouldn't -- I suppose you could set up configurations where you might get something lower than that, but it's not what I, in my judgment, would expect to see under normal operating conditions.
Q. Well, but, I mean, in your research, you had significant minority percentage of cows that you tested that were less than $\mathbf{5 0 0}$ ohms; is that true?
A. For the body resistance.
Q. But you're saying that's what we've got here; the $\mathbf{5 0 0}$ ohms represents the body resistance?
A. That's the primary part of it, yes.
Q. That's where I'm kind of a little bit confused, Dr. Gustafson, because worst case then isn't 500 ohms, is it?
A. If l've got to make a judgment, which is what this is, and how to interpret current to voltage as to what values one would use to convert that to working in this area, I think 500 ohms is a good value to use for the worst case condition.
Q. Maybe you'd better explain that to me. How did you come up with that? I mean, did you come up with that number or did somebody else come up -- Who wrote this chart, by the way? Is that you?
A. Well, this chart is the -- has the preface as it's a consensus of the group. The principal author on this particular segment was Aneshansley and Gorewit, so they probably did some of the writing, but --
Q. But are they the ones who -- you know, in the methodology that was explained on how you guys did it, which is I think set out somewhere in the preface or something, what happened on a particular chapter was that the two principal authors would, you know, do the first draft, so to speak, and then send out; right?
A. Uh-huh.
Q. And is that what happened here, that this graph was created by those two fellows, and then you looked at it and then concurred with it?
A. I don't recall the exact processes of, you know, what iterations were made on this particular chart, but that may well have been that they originated it. I know we -- you know, a number of us responded to it.
Q. Okay. I want to ask you to do the same thing you did with regard to milk production, you know, where you go to the bibliography. Can you go to that bibliography and tell me what are the studies that are included in the bibliography that support this 500-ohm as being worst case? And, again, worst case, just so

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 we're clear, means that you would not expect under normal field conditions for there to be cows that would have resistances less than $\mathbf{5 0 0}$ ohms; right? Or is it a combination of the body and the contact?
A. It would be -- In my mind, it would be the body and the contact.
Q. Let's go to the bibliography, and tell me which are the research studies that you believe support that conclusion, because l'd like to read those studies to see if, in fact, they're -- you know, which I assume you did at the time; right?
A. Yes.
Q. You read those studies?
A. Yes.
Q. And you kind of put it all in your mind and --
A. That, along with the experience of working in the field sorts of things too.
Q. Okay.
A. Certainly the set that's at the bottom of page 3-5, the bottom of the left-hand column, the series there.
Q. Where are we at?
A. Page 3-5, bottom of left column, there's a series of articles that are cited there that would

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 certainly be a starting point. There may well be some 2 references embedded within others that I'd have to dig deeper and get back to you.
Q. Well, it seems like the lowest there is mouth to all hooves done by Norell, of which you were an author.
A. Correct.
Q. And that showed your N was 28. That's the number of cows you tested; right?
A. Yes.
Q. And those varied from 244 to 525 ?
A. Yes.
Q. How many of those $\mathbf{2 8}$ were under $\mathbf{5 0 0}$ ohms?
A. I couldn't answer that without going back and looking at the paper and the data.
Q. That's Norell, 1983, huh? Is that an ASAE paper?
A. No. That was a Transactions of ASAE, 1983.
Q. I have one here that was in '82.
A. That may indeed have the same data. That's, as we mentioned earlier, likely the meeting presentation of much of the same information that was then later refereed and published.
Q. The cows that you used, where were they? Where did you get them?

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

Page 91

1 A. University of Minnesota.
Q. Where at?
A. St. Paul.
Q. So you went over to the St. Paul campus.

Were there any sick animals?
A. Not that I recall.
Q. Were there any animals with any hoof problems?
A. I'd have to look at it, but I doubt if there were any with any serious visible hoof problems.

And, thereupon, Exhibit No. 320 was marked for purposes of identification.

BY MR. BIRD:
Q. Take a look at that just for a minute. Is this the ' 83 article that's referenced there? I'll just show it to you to see if that is it.
A. Yes.

MR. BIRD: Let's get that marked.

And, thereupon, Exhibit No. 321 was marked for purposes of identification.

BY MR. BIRD:

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 Q. Have you had a chance to look at that, Exhibit 320, in front of you?
A. Yes.
Q. Can you tell me how many cows were tested there?
A. It depends on which experiment we're talking about, but -- Let's see. There were 10 Jerseys in one experiment or part of the experiment; and then in the second part of the experiment there were 28 Holstein cows.
Q. All right. And the Norell, is that the same experiment then that's in Exhibit 321? I think it is, but take a peak at that.
A. Yes.
Q. The way I'm reading this, the abstract from Exhibit 321 says that the mean path resistances range from 359 ohms for mouth to all hooves pathway to 738 ohms for front-rear hooves pathway.
A. That's correct.
Q. And the distribution for the mouth-all hooves pathway showed 25 percent of the population below 302 ohms and 75 percent below 441 ohms.
A. Correct.
Q. The mouth to all hooves pathway is not an unusual pathway, is it?

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.
A. No.
Q. It's a very common pathway?
A. Yes.
Q. Well, given that, your own research, how can you let them get away with putting 500 ohms as the minimum, the worst case?

MR. O'BRIEN: Objection to form.
A. In my judgment, under field conditions,

500 ohms would be a reasonable value to assume as a worst case condition.
Q. Yeah, but you tested and found that 75 percent are below 441 ohms. How do you discount your own research then? Tell me why that is --

MR. O'BRIEN: Objection to form.
Q. -- that you discounted your own research and made the number higher than 75 percent of the cows that you personally tested that were healthy cows?

MR. O'BRIEN: Objection to form.
A. In an experimental setting, we could get down to those kind of values. That's not what I would expect to see in an actual facility when cows are being exposed.
Q. Are you aware of any testing that's been done in an actual facility with cows being exposed?
A. I couldn't point to which ones right now,

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 but there are some values there, yes.
Q. In an actual facility with cows being exposed, would you expect some percentage of those cows -- Strike that.

All right. I see where you're going.
You're saying that because the contact resistances would vary, that's why you're thinking the $\mathbf{5 0 0}$ ohms is --
A. Yes.
Q. All right. But you've told me that the 500 ohms represents body resistance and contact.
A. That would be my interpretation, yes.
Q. And you've also told me that it's common in farm situations for cows to have contact resistances with manure and salt and urine and combinations of that of five ohms or less.
A. Well, it could be, for a given hoof, somewhere in that magnitude, yes.
Q. For all four hooves, it could be that?
A. Well, I wouldn't expect that.
Q. It would be common under field conditions
that cows would be standing all four hooves in manure and urine, a combination.
A. In my judgment, I still would not expect it to get down to values much under that 500 ohms as a

District Court - Minnesota
Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 total value.

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.
A. For worst case condition, yes.
Q. And then for the most sensitive cows, which in your report was 244 ohms, a worst case scenario -Well, let's put it that way. Twenty-five percent of the population was below 302 ohms, so for 25 percent of those cows, a worst case scenario is that the contact resistance is 198 ohms.
A. In that order of magnitude, yes.
Q. And for that --
A. May I correct part of what you said, just so we're not --
Q. Yeah.
A. Sensitivity and resistance are not one and the same, so the sensitivity which you've correctly identified earlier is based on the current value.
Resistance is not really the indicator of sensitivity. It's the indicator of what level of current would flow through the animal.
Q. Did I say sensitivity?
A. Yes.
Q. I shouldn't have said that. I meant resistance.

Have you measured contact resistance on a dry surface?
A. Yes.

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.
Q. What is it?
A. It can be thousands of ohms.
Q. Have you measured contact resistance on a wet surface?
A. That's what we ultimately did in this particular research, for example, is get a very wet surface that you're trying to make contact to.
Q. Then what was the contact resistance that you came up with for a wet surface?
A. That would be embedded within what's measured here.
Q. Show me what your numbers were. Where are they?
A. Well, it's part of that total number.
Q. It's part of the $\mathbf{3 0 2}$ ohms?
A. Yes.
Q. That includes contact and body resistance?
A. Well, that -- that includes contact in the way we had it set up, yes.
Q. So what I'm saying is -- Let me just be sure -- that 25 percent of the 28 cows that you measured had contact plus body resistance of less than 302 ohms?
A. Yes, under the situation, the types of contacts we were trying to make.

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 Q. And 75 percent had contact and body resistance below 441 ohms?
A. Correct.
Q. What percent of that total was contact resistance and what percent was body resistance?
A. We can't determine that from this experiment.
Q. Did you ever try to determine that?
A. What we attempted to do was minimize the contact resistance by having this very wet floor, expanded metal, for the foot contact, and the bit in the mouth, but we did not try and measure that independently.
Q. Well, let me ask you this. Let's just say a cow is standing in manure, all four hooves, with urine combo, and puts the nose into the waterer. What would you expect the contact resistance to be in that scenario?
A. The contact or the total path?
Q. No. The contact.
A. I'd have to go back and think about that a little bit, just the area of contact and the resistivity of the material, go back through that. I don't have a number I could give you right now.
Q. Well, gosh; I'm really frustrated.

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 A. What I am telling you is that, you know, in the judgment, we came to the consensus that that difference would be in the orders that you just talked about, the difference between what we can get to as a minimum value compared to what we would expect under real field conditions.
Q. I'm trying to get from you what I think is a hypothetical based on real field conditions. You would agree with me that under real field conditions, it would be common for cows to be standing on a wet surface that would include some saline portion because of presence of urine and manure and putting its nose into a waterer. That is not at all uncommon on a dairy farm, is it?
A. That is correct.
Q. And what I'm asking you is what is the contact resistance in that circumstance? And are you telling me that it's going to be $\mathbf{2 0 0}$ ohms?
A. It wouldn't surprise me to see 200 ohms, yes.
Q. Would it surprise you to see five ohms?
A. Yes, it would surprise me to see it that low.
Q. Have you ever done any tests on that?
A. We tried some things, but I couldn't point

1 to a specific one right now. It's been too long since 2 I worked in that particular topic.
Q. Has anybody studied contact resistances with respect to dairy cows under field conditions?
A. That would be embedded, I think, in some of the data that's been done in some of the experiments where they put a known level of current and they have measured the voltage drop created by that current, so you can go back and get an estimate of that.
Q. When a 500 -ohm resistor is used in testing, that's in addition to the contact impedance; right?
A. Yes, it is.
Q. What is the contact impedance in that testing scenario?
A. Well, if, indeed, you're making metal to metal contact at the one end, expect that to be very low, and then if you're using a salted, wet pad under pressure at the other end, I'd expect that to be low too. I've not sat down and tried to calculate what value that would actually be, but it would be pretty modest.
Q. Well, how much? Less than five ohms?
A. I don't know. I'd have to -- have to go
back and play with the numbers on that.
Q. But for purposes of the research data that

21 that's a dotted line. Do you see that? It kind of 22 goes from zero all the way up to vertical access of
makes up this chart, much of it is based upon the use of a resistor with 500 -ohm impedance; right?
A. Of which?
Q. On the chart.
A. No. The chart is not based on that as far as the data that's collected. The data is collected measuring the level of current and sensitivity.
Q. But it's a calculated level of current; right?
A. Well, it's a measured level of current often in experimental setup done by measuring voltage drop across a known resistance.
Q. And that known resistance is $\mathbf{5 0 0}$ ohms?
A. No, not necessarily. It might be -- The value there is really not critical. You're just trying to set up a known value so that you know the current flow through the animal.
Q. Let's take a look at that chart then because maybe I'm just totally misunderstanding the chart.
Let's go to 3-22. I mean, there's a straight line eight on the other end in terms of milk production response.
A. Yes.

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 Q. And off to the right side, it says $\mathbf{5 0 0}$ ohms and 1,000 ohms.
A. Yes.
Q. And then it goes one, two, three, four.

What does that one, two, three, four represent?
Voltage?
A. Yes.
Q. So if somebody's going to measure -- If they measured two volts across a 500 -ohm resistor, that's going to equate to -- to what? Is that going to equate to a milk production loss under this chart?
A. It's going to equate to four milliamps.
Q. And what does that give us in terms of production loss?
A. That puts you right in this domain that says "moderate behavioral" and just right at the cusp of where the intersection is between no loss of production anticipated and loss of production due to change -- not due to change in the animals.
Q. Production loss may be due to change in the animals. Does that mean it's due to electric current?

MR. O'BRIEN: I object. Misstatement of his previous testimony.
A. Well, my interpretation of this at this point in time is that, you know, where we have moderate

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

Page 103
1 behavior, we may or may not have production loss, which 2 you can see at the bottom, and any production loss in the animals."
$24 \quad$ Q. But that says the production loss may be due to change in the animals, not to the current; right?

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

2 A. Well, their behavior is going to be severe
$21 \quad$ Q. At four milliamps? enough that you're going to get into production problems.
Q. So where do you have to -- How many milliamps is that under this chart?
A. Under this chart, that roughly starts at six milliamps.
Q. Under this chart, you have to have six milliamps to get any milk production loss?
A. Well, it's -- We would expect it at that level. My interpretation is you might get some down here in the moderate, depending on the situation, but at that point we'd certainly start to expect that that would be common.

Q. At four milliamps?

A. In my experience, yeah, if we can see the equivalent of four milliamps, depending on other conditions, we may start seeing some behavioral problems that then relate to production problems.
A. At four milliamps.
Q. But not at two milliamps.
A. I wouldn't expect it at that level, no.
Q. Have you ever seen it at that level?
A. No, not that I'm comfortable saying it happened because of the two milliamps.
Q. So it's a function of current?
A. It's a function of current, correct.
Q. And is this chart based on Ohm's Law?
A. Well, the conversion from current, which is really what the animal senses, to voltage is based on Ohm's Law. It's just strictly an application of Ohm's Law, assuming 500 ohms, assuming 1,000 ohms.
Q. So it would be simply a calculation that if the resistance was really $\mathbf{2 5 0}$ ohms, your current would double; right?
A. Well, if you assume 250 ohms, you could put another column here, and where this one says 400-500, it would say 200-250 would be half the value for the voltage to get the equivalent current. So if you have the resistance, you're going to have the voltage required to get that same current value.
Q. All right. But if you're measuring two volts at $\mathbf{2 5 0}$ ohms, you're going to get eight milliamps; right?
A. Yes; if we've done the math right, yes.
Q. Yeah. So really what this study -- is this study -- I mean, the chart, is it based upon -- I'm not sure why you have the ohms on there then if you're

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

Page 106
saying the information is based upon current. But the current -- Let me back up.

The current is a calculated number based upon a known voltage and an assumption on resistance?
A. No.
Q. Okay. What's it based on?
A. The current is based on a measured or controlled value used in the experiment. You have to measure it to know what's occurring there. But that's the controlled variable in trying to determine the animal's sensitivity is the current. Then what this does, if you want to then know what that current level would be in terms of voltage, then you have to use Ohm's Law to convert back, and you have to assume a resistance value to do that.
Q. All right. So in order to get a decline in milk production, all we've got to do is get four milliamps to the cow. That's what you're saying; right?
A. Well, at that level, you may or may not create a production problem for the cow.
Q. But, I mean, if I have a cow that's 200 ohms resistance and minimal to no contact resistance and I get two volts, I'm going to exceed your threshold of four milliamps; right?

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 A. I think the way you're going is that the -2 the current through the animal is the critical value.
Q. Right.
A. Yes.
Q. So in order to win one of these cases, the farmer has got to prove -- in your view, the minimum he's got to prove is he's got to get four milliamps into the cow at the cow contact point.
A. Well, it has to be shown that you've got a source, that source is getting to the animal, and it is a magnitude large enough that it's going to impact the animals.
Q. Okay. Now, going back to those two cows that were taken out of that full lactation study, do you know at what level of current that they had a violent reaction?
A. I don't recall.
Q. Would that be something you might want to know?
A. Well, I could look that up. It's just for that one particular study.
Q. One of the things that you mentioned is that cows -- you know, that the behavioral response is cows might not want to go in and get milked; right?
A. That's correct, yes; reluctance to enter a

1 milking facility is an observed phenomenon, yes.
Q. If cows don't go in and get milked, I mean, there's a cow behind that cow; right?
A. Unless it's the last cow, yes.
Q. That can screw up not only the cow that's reluctant, but all the other cows that are behind it?
A. It can certainly impact your flow of cows through the parlor and your whole milking routine.
Q. Right. And if a cow happens to get mastitis, just one or two or three or -- Let's say five percent of the herd gets mastitis from the stray voltage, in other words, gets a disease response. Do you recognize that that provides a pathway to transfer that pathogen to all the other cows, even cows that don't have a behavioral response?

MR. O'BRIEN: I'll object to the form.

Q. Right?

A. Well, I'm not a mastitis expert, but just from my lay knowledge of that, if you've got a mastitis problem in the herd from any particular source, then you can have increased mastitis because of transmission between animals, depending on your milking routine and those sorts of things, yes.
Q. But, I mean, through the use of the stray voltage, I mean, you can have indirect effects on cows

1 that are actually not affected by the current itself.

Do you agree with that?
A. Secondary impact.
Q. Sure.
A. With the example you used, yeah, if -- if you've got a contagious element and you've got the potential to transfer that from one to another, then that would be a secondary impact.
Q. From the farmer's perspective looking at this, he's got sort of a witch's brew of cause and effect; you don't know what preceded what; you know, what's the cart and what's the horse. He's trying to kill the mastitis, but if a few cows are continuing to produce the pathogen because of the stray voltage, it could be continually reinfecting the otherwise healthy parts of the herd; right?

MR. O'BRIEN: I'll object to form and foundation.
BY MR. BIRD:
Q. You'd agree with that, wouldn't you?
A. Well, there's nothing unique to that relative to stray voltage. That's true with any sort of source of mastitis, and then depending on how that's dealt with.
Q. Right. Then what percent of the herd, you

1 know, having a behavioral response to stray voltage are you comfortable with?
A. Well, l'd like to not see that condition or have any animals responding to stray voltage. I don't think it's necessary to tolerate a certain percentage responding.
Q. So you're saying it should be zero percent?
A. I think if you -- you know, if you want it
to be, you could set up a condition there maybe, you know, by doing modifications to the farmstead or the wiring system. The inverse of that question, at what point do you take action, is a judgment or a management call that the producer would have to make.
Q. You accept the notion that the farm -- you know, one given farmer can have stray voltage on his farm in the same magnitude as another guy down the road, but one farmer will be a better manager and be able to manage around the stray voltage?
A. That certainly can happen.
Q. That doesn't mean the farmer that's not able to manage around the stray voltage is necessarily a bad farmer. He's just not as good as the guy down the road.
A. Yeah; doesn't have the same ways of dealing with it; I agree.
Q. One of the things I wanted to talk to you about was transients, and I'm more interested in definitional things here in terms of transients. What is the duration, time duration, of a transient, in your view?
A. Generally, when we're talking about electrical transients, we're talking about things that are less than one AC half cycle, so down in that less than 13 milliseconds, something like that, time frame.
Q. Is there a difference -- and then -- So we talk about transients on the one hand, and then on the other hand we talk about steady state. What does that mean?
A. Well, steady state means that you usually have a fairly constant value over time, that you're not having -- Transient usually represents kind of -- you can think of it like a spike occurs; where steady state, you know, for a reasonable period of time you're going to have a pretty steady value, and the changes of it are going to be fairly smooth, so to speak, rather than having sharp transient or sharp changes.
Q. So transient would be expressed in microseconds?
A. Yes, that's a time frame that often is used for transients. It may be up as large as in the

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 millisecond range and still be a transient, but most
transients that we'd characterize we'd characterize in the millisecond range.
Q. Right. And a millisecond is a millionth of a second?
A. No. A thousandth of a second.
Q. It is? What's a microsecond then?
A. That would be 10 to the minus sixth or a millionth of a second.
Q. All right. So I got my terms right. I'm just trying to get it right.
A. Sure.
Q. Is there a difference between a transient and short-term?
A. Here we're getting into definitions, and these get to be used sometimes a little bit sloppily in practice.
Q. That's why I'm trying to --
A. But a transient would really be a short-term event. You may have short-term events that are longer than a transient. For example, a motor start is really kind of a short-term event. It is transient in that it changes, but it's not what electrically we'd usually call a transient event.
Q. All right. What do you call it when like --

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

Page 113

1 Let's say in a given area at 5:00 everybody turns on 2 their air conditioners, and so the load on the line, I mean, changes, and, you know, if a farmer is graphing, you know, all of a sudden you've got voltage higher; what do you call that? Is that steady state?
A. That's just a change in the steady state level of voltage, yes. As the load changes on a distribution system or on the farmstead, you'd expect to see a change in the neutral-to-earth voltage level, and that's really a change in the steady state, what we call the steady state value.
Q. Okay.
A. So steady state does not mean it's constant for all time.
Q. All right. And, you know -- What's his name? Reinemann did some research on what he called short duration events. Those were transients as you've defined them; right?
A. He's -- Some of them are kind of long
transients because they're one cycle or half cycle sorts of things. He's done a range of different things. So he's done some in what we call the true transient, very short, so he's done some things that are in the cycle, units of cycles, AC cycles, which are like one cycle, you could call it a transient, but it's
not a short-term transient; and then he's done some that would be more steady state, longer term.
Q. Well, but the -- when he did the intermittent exposure study, that was -- he was doing transients; correct? Isn't that true?
A. If we're thinking of the same study, I don't think so. The intermittent was intermittent in whether or not the current was there, but when the current -an animal was exposed to the current, it was at a constant value.
Q. For more than the time of a transient?
A. Yes.
Q. Okay. Are you sure about that?
A. Well, there's several different studies there, but the one where they were making -- I'd have to go back and look now because there's been a couple different protocols on that.
Q. Okay. Is there anything -- I mean, do you scientists have a name for, let's say, a short-term increase in current that would be, let's say, anywhere from a quarter of a second up to five seconds? Is there a name for that, or is that just called steady state?
A. In most terminologies, that would be thought of as a value that would be reasonably steady state

1 because it's quite a few AC cycles long.
Q. You see, one of the things I'm struggling with is this. I'll just put it to you. The recording data that they've got out there will take a sample, you know, once every -- it will store data once every 10 seconds or something, or once every 15 seconds, but you might have a motor start in there that would bring current way up, but then they have a ceiling on what they record, and then over that period, they average it out to come up with a number, and so we never see what that actual current was in the way these recording devices work. Are you familiar with that, --

MR. O'BRIEN: I'Il object to form and foundation, but answer if you're able.
Q. -- that problem with the recording devices?
A. You certainly have to understand and deal with the characteristics of whatever recording equipment you're doing, and in some cases how you configure that is going to be important to interpreting what's on that graph; whether that's a, as you pointed out, a peak value of the transient or peak value within a specified period of time, you know, is important to understand when you're looking at those charts.
Q. I mean, do you try to account for that, I mean, in the information that you look at?

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

	Page 116		
1	A.	Yes	
2	Q.	Th	
3	recording devices?		
4	MR. O'BRIEN: I'll object to the form of the		
5	question.		
6	A. You certainly have to understand the characteristics of the recorder and then the system		
7			
8			
9	Q. Going to that page that you looked at in		
10	this 3-5, it says dairy cows have much lower body		
11	impedance than humans, less than one-tenth. Is that		
12	true?		
13	A. Here I'd rely on Pat Reilly's information,		
14			
15	but under what we'd see in normal circumstances, in my experience, where you're dealing with the skin		
16	impedance, common paths, that would be true.		
17	Q. And contact impedances for cows are likely to be lower than for humans?		
18			
19	A. Correct.		
20	Q. Because cows are nearly always in contact with moisture; right?		
21			
22	A. They commonly are, yes.		
23	Q. Therefore, hooves are in close association with urine, water, and feces on concrete surfaces; is that true?		
24			
25			

	Page 117
1	A. Correct.
2	Q. Okay. Now, does this red book study have
3	anything in the bibliography that discusses contact
4	impedances where four hooves are in close association
5	with urine, water and feces on concrete surfaces? We
6	know your studies, but yours didn't involve four hooves
7	in close association with urine, water and feces on
8	concrete surfaces, did they?
9	A. No. We tried to actually make it worse than
10	that by using expanded metal and salty water at that
11	point, so -- Quite frankly, I'd have to go back and
12	look at the various measurements recorded at that point
13	in time and see what's there in the literature. I
14	couldn't point to things right now.
15	Q. Well, can you do that and give that to
16	Mr. O'Brien? I mean, I'm interested in knowing what
17	research you folks had at the time this was published
18	that showed what the contact impedances were in that
19	scenario where the cows are in contact with moisture
20	and their hooves are in close association with urine,
21	water and feces on concrete surfaces, and eating and
22	drinking with moist mouths. That's not an unusual
23	situation for a field condition, is it?
24	A. Correct.
25	Q. Can you do that?

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 A. I will certainly attempt to.
Q. And then, in addition, you think there's been some research done on that since this was published in 1991?
A. There may have, but I will certainly agree to explore that also.

MR. BIRD: Okay. Great. Thank you.
All right. Should we take a break?
MR. O'BRIEN: Sure.
(Recess taken.)
--
And, thereupon, Exhibit No. 318 was marked for purposes of identification.

MR. BIRD: Just for the record, we have
Exhibit 318 marked. And can we have the same agreement on that we did on the other two exhibits where we just mark the front page?

MR. O'BRIEN: Correct.
BY MR. BIRD:
Q. Okay. Sorry for the delay, Dr. Gustafson.

We're back on the record, and I wanted to ask you about Exhibit 321. Going to the second page of that, 1507, it's Table 1 I'm looking at, and it's entitled "Average Pathway Resistance Measured Under Dry and Wet Hoof-Grid

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 Contact Conditions," and it says, "Outlier Removed." 2 What does that all mean?
A. As I recall, there was statistical tests on the data collected, and they had removed an outlier based on statistical tests done. Usually means a misrecorded number or something like that.
Q. Okay. This was for the -- looks like it was done with Jerseys; right?
A. That particular part of the experiment, yes.
Q. Now, the pathway that we're talking about resistance is, again, the combo of the contact resistance and the body resistance of those Jersey cows?
A. Yes.
Q. All right. And what's the number for dry for, let's say, front to rear hooves?
A. Front to rear hooves would be 1,562 ohms.
Q. And then in wet conditions, it's 1,479 ?
A. Correct.
Q. That's got an X with a line over it. Does that mean the average or statistical mean or what?
A. That means the mean.
Q. With a standard deviation of 470?
A. Correct.
Q. The mean difference then is $\mathbf{8 3}$--

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

Page 120			
1	A.	Yes.	
2	Q.	-- bet	
3	A.	Yes.	
4	Q.	And	
5	it was actually a negative $\mathbf{2 6}$ mean difference from dry		
6	to wet?		
7	A.	Yes.	
8		Whic	
9	counterintuitively, your contact got better when you		
10	went to wet or when -- when you were at dry conditions?		
11	A. Yes. It's a small value, but --		
12	Q. And, strangely enough, the resistance path		
13	in a Jersey seems to be significantly less from mouth		
14	to rear hoof than from mouth to front hoof; right?		
15	A. Yes.		
16	Q. And does that give you any insight into what		
17	the contact resistances are typically? Seems to me		
18	like they're all less than a hundred going from dry to wet conditions.		
19			
20	MR. O'BRIEN: I'll object to the form and		
21	foundation.		
22	A. That's just the difference in the contact		
23	resistance between those two conditions, so it wouldn't		
24	be the contact resistance itself.		
25	Q.	Well,	

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

Page 121

1 what's the difference between that? It's a difference 2 in contact, isn't it?

21 the body resistance?
22 A. Yes, that would be the way we've described

24 Q. And these were all done under wet
25
A. The difference in contact resistance, right.

It's not the resistance itself. It's the difference in contact resistance.
Q. All right. From dry to wet?
A. Yes.
Q. Now, if I compare that Table 1 with Table 3 -- This is the \mathbf{N} equals 28 Holsteins -- I'm getting front to rear hoof readings of significantly less than Jerseys; right?
A. Yes.
Q. Do you attribute that to just a different body makeup then of the particular breed of cattle, or how do you account for that?
A. It's probably most accountable just by size of the animal, and I don't recall if they were on exactly the same surface or not.
Q. Okay. But this is, again, total pathway resistance, which is a combination of the contact and
it. conditions?

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

21 A. That means there were 65 animals used in the
Q. You didn't happen to repeat the experiment you did with the Jerseys, that is, test them under both dry and wet conditions?
A. I don't believe we did.
Q. The data that you created, does that exist somewhere, like at the University of Minnesota?
A. If any of the raw data is available, it would probably be through Dr. Norell.
Q. In Idaho?
A. In Idaho.
Q. Is he older or younger than you?
A. Younger.
Q. Okay. Did you teach him or something?
A. I was on his Ph.D. dissertation committee.

Dr. Appleman was actually his major professor.
Q. Okay. I wanted to then ask you about Table
7. That's entitled, "Observed Percent Response by Current Level for Mouth-All Hooves Shocks (n equals 65)." What does that mean? experiment.
Q. Did you use some of them twice?
A. Well, there were repeated measurements, but I believe that would be 65 different animals.

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.
Q. It would be 65 different animals? Because it says, "Experiment 2B," seven cows were -- Well, did you use seven cows, but shock them multiple times, so you got the \mathbf{N} up higher or -- I'm just confused about the statistics here.
A. I stand corrected. It was seven cows with multiple observations.
Q. And what is this table showing me? I mean, at one milliamp, it shows a response percent of 13.8. Is that like one cow or is that like 13.8 percent of the $\mathbf{6 5}$ individual tests?
A. It would mean that you would expect cows to respond 13.8 percent of the time at one milliamp.
Q. And how are they responding?
A. This was after training with five milliamps to open the mouth.
Q. To what?
A. To open the mouth. Then we come back with randomized levels between zero and five, and when they would open the mouth due to current, that would be considered a positive response.
Q. Opening the mouth, is that a response that you saw to current?
A. That's essentially a trained response to the current.

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

Page 124
1 Q. Well, what causes the cow to open its mouth?

21 the idea there is to get a better handle on when
22 they're actually perceiving the current?
A. It's just a response to the exposure to the current.
Q. Meaning you get shocked and I'll open my mouth?
A. Yes.
Q. Like, "Oh, what's going on" type of thing?
A. Well, this is with a bit in the mouth, so the mouth is part of the pathway for the current.
Q. So maybe trying to get it out of there type?
A. Right.
Q. Okay. So you trained them at five amps.
A. Milliamps.
Q. Milliamps.
A. You wouldn't have very many cows at five amps.
Q. Yeah. I'm sorry. Point taken.

You trained them at five milliamps, and then repeated this experiment to see when they would open their mouth, at what current level, and that would --

A. Correct.

Q. And your finding was that 13.8 percent perceived the current at an amp?

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

22 A. Well, again, here the animals were trained
Q. If one were to look at this chart here, Figure 4, and try to -- Does it correlate with the chart at 3-4 of the red book?
A. It's certainly a piece of data that was available and used as part of what we used to develop that consensus presented in that table.
Q. That table just shows a straight line, and there would be standard deviations off of that line; right?
A. There would certainly be variability.
Q. And so you plotted sort of a mean on that chart or what?
A. One could think of it in terms of a mean, yeah, or expect it.
Q. So there would be a confidence interval on both sides of the line that was plotted then in 3-4?
A. Yes.
Q. Then if I could take you up to Table 6, this is the front to rear hooves. I was a little confused because it -- You're referring there to escapes. What with a five milliamp current, that if they would raise a hoof, we would turn the current off, and so they're really escaping any further exposure to the current.

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

Page 127

Q. Okay. And what you found out is when you trained them -- and then escape, the escape would mean once you put the bit in their mouth, do they raise the hoof or not?
A. This is front to rear hoof, so there's no bit involved here.
Q. Oh. But once you applied the two things, then they'd raise their hoof?
A. Correct. Well, you'd have them standing on two independent grates front to rear hoof, apply the current; they would learn that if they raised a hoof, then the current would be shut off.
Q. Well, I'm trying to figure out why at zero current they're raising their hoof.
A. Because cows, when they're just standing there, move around as well.
Q. Oh, so that's like -- that's like the meaningless part of this.
A. Yes. It's an unavoidable kind of baseline of movement.
Q. Okay. And then the different percentages, those are additive from the previous category or not?
A. No. They're differences between two
categories, between, for example, zero and one, one and two; then looking whether that is a statistically

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

Page 128
1 significant difference between the two categories.
$2 \quad$ Q. All right. So if I were to take 43 minus

21 A. Yes. Yes.
18.3 -cow hoof lifting incidence? that it? sized number. milliamps? was less than .01 ; right?
than .05; is that it?
A. \quad No. 43.3 minus 25 should give you 18.3.
Q. All right. So what you found from this particular observation is that at a milliamp, you were getting an increase of five percent over just normal
A. Yeah, that's what the data showed, although it was not a statistically significant difference.
Q. And it wasn't because your \mathbf{N} was only 60 ; is
A. I wouldn't think so. Sixty is a reasonably
Q. Okay. So the first time you found a statistically significant difference was at what; three
A. Versus two milliamps, yes.
Q. And then at four milliamps, you found your P
Q. What you're looking for is a \mathbf{P} less
A. That's often considered a kind of a threshold value for statistical significance.

District Court - Minnesota
Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

21 March 25th, 1994. Is that true?
22 A. Yes. milliamp range?
A. Correct. perceiving it even earlier?
A. It's possible, although not -- certainly not proven by this data.
Q. All right. for purposes of identification.

BY MR. BIRD:
Q. I'm showing you what's marked as

Exhibit 322. Can you identify that, please? April 6, 1994, to me.
Q. As I read this, apparently you wrote a
Q. Do you have a copy of that letter that you wrote?
A. Probably in a file somewhere.
Q. Do you conclude from this the cows were actually perceiving things then for sure in that three
Q. And then some suggestive data that they were

And, thereupon, Exhibit No. 322 was marked
A. This is a memo written by Gerry Bodman dated letter to the Minnesota Public Utilities Commission on
Q. What file might that be in? Do you kind of keep a file of like, you know, important papers related to stray voltage or something?
A. Yes, l've got copies basically by state for some of the different publications.
Q. And apparently you wrote that letter in response to something that Bodman had written to the Minnesota PUC about the Minnesota study; is that true?
A. I'm going to have to re-read this a bit to make sure I'm correct.
Q. Have you finished reading?

First of all, is this, to the best of your knowledge, a true and accurate copy of that letter that was sent to you by Mr. Bodman?
A. Yes.
Q. And then you may have a copy in your possession of the letter that you sent to the Minnesota Public Utilities Commission about that?
A. Yes.
Q. And, apparently, if I'm reading this right, previous to your letter to the Minnesota PUC,
Mr. Bodman had written something that you interpreted as being critical about the USDA handbook, which we're referring to here as the red book?
A. I believe that's correct.
Q. Do you have a copy of that letter, in other words, the one that you were responding to when you wrote to the PUC?
A. I think I should have that as well.
Q. I'd like to get that as well, please.

Now, did you ever respond to this letter
that was written to you by Mr. Bodman?
A. No, I don't believe we ever did.
Q. Did you ever talk to Mr. Bodman about it?
A. Not that I recall.
Q. The way I'm reading this, at least from my limited knowledge of it, he was speaking to you as an expert in the field and wanted to assure you that he was not challenging your integrity, that he considered you somebody on the other side of the stray voltage controversy, but, nevertheless, a respected adversary. Is that the way you interpreted it?
A. That's the way I interpreted what he said, yes. I certainly didn't take any personal response or personal offense in the way he said it.
Q. Well, do you likewise consider him a respected member of the, you know, stray voltage community that happens to differ with your opinion?
A. I certainly respect Gerry, but I don't agree with many of the things or some of the things he said.

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.
Q. Has he, in fact, appeared in a number of cases with depositions in lawsuits where he was on the opposite side?
A. Yes, there has been.
Q. Did you ever in your own mind attempt to answer any of these questions that he posed, the list of eight questions?
A. Not in any formal way, no.
Q. Well, just so we're clear, you did get this letter around the time frame of April 6, 1994?
A. Yes, I'm sure I did.
Q. Have you ever since that time up to now attempted to look at the data used in preparing the graph, which is his request in number one?
A. Well, yes, from time to time l've gone back to different elements of the data just to refresh my memory, not necessarily to challenge what's said.
Q. Well, one of the things you may have looked back on is Exhibit 321, right, which is your initial research along with Dr. Norell?
A. Correct.
Q. I mean, you're not saying that your information in Exhibit 321 is bad data, are you?
A. No.
Q. Then if I can go to question two in the

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

Page 133
1 letter, on page 2 he says, "Accepting for the moment 2 that the graph in the handbook represents a trend

21 since 1994?
A. No.
A. No. the chart; right?
A. Correct.
A. No. line," what's the standard deviation of the data from the normal that was published? Did you ever go back and try to figure that out?
Q. Do you think that's possible?
Q. Because you didn't use statistics to create
A. That's correct.
Q. You, instead, used the judgment of the people that participated in preparing that publication?
Q. Then he asks you in question four: How do you account for the two cows that were thrown out of the Cornell and USDA studies because of their violent and/or other reactions which led researchers to fear for the animals' well-being?

Have you done anything to figure that out
Q. Did you do enough to find out that there, in fact, were two cows that were thrown out because of their violent reaction?

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

Page 134
1 A. I believe in discussions with others, that 2 was confirmed, that there were two cows that were

18 A. That would be his opinion. I don't agree eliminated.
Q. Did you speak with Gorewit or Aneshansley or somebody to confirm that?
A. I probably did, but I couldn't specifically recall that right now.
Q. Well, as you sit here today, you're not challenging the premise of his question, are you, question number four, that there were two cows that were thrown out?
A. No.
Q. Then on question five, he's saying he's concerned about the fact that the data shown on the chart doesn't fit with the reports that you've published about your field findings. Do you disagree with that or agree with it? with that opinion.
Q. So you feel that your research as shown in Exhibit 321 squares with that?
A. I think it's consistent, yes.
Q. I take it you would concede that your chart could be wrong; right?
A. I wouldn't anticipate, but, theoretically,

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 yes, you can come up with other data.
2 Q. In question seven he asks you to explain the linear relationship of animal response to current and voltages shown in the handbook since your own data regarding animal response to current and voltage show a non-linear response; correct?
A. Correct.
Q. And we just went through that, I mean, in

Exhibit 321. We showed that on Figure 4, that you have a non-linear response there.
A. Yes. And if we did a much more detailed description of that, you might be able to refine that, but in presenting conceptually how this works and what to apply by the data, I still think that linear is a reasonable approximation.
Q. Well, but, I mean, defense attorneys are using this in courtrooms to tell, as I said, jurors that this is literally the gospel truth in perception levels and when you can ever get a milk response. I mean, do you think that that chart was intended to be used for that purpose?

MR. O'BRIEN: Objection to form, foundation.
A. I think that chart was intended to be used for educational purposes. If you want to include that as part of educating, then it would be available for

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 that kind of use.

21 scientific investigator, is he not?
22 A. I would question him.
Q. So you think it's fair to use it in a courtroom?
A. Yes.
Q. Is it true from your perspective that the publication of that chart in the red book was controversial in the agricultural engineering community?
A. I didn't view it as controversial. I think it did force us to come up with kind of a consistent way of describing things, and that took some time.
Q. Well, there's been significant criticism of the chart by credible scientists. You're aware of that?

MR. O'BRIEN: Objection to form.
A. There has been criticism.
Q. But the people who have criticized it are credible scientists, aren't they?
A. I don't know which --
Q. You don't think he is?
A. I think he has shown at times that he's not credible in his techniques and approaches.
Q. Well, how about Mr. Bodman? He's a credible

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.
Q. Is he credible with respect to his criticisms of that chart and the questions he's asking about the chart?
A. I didn't think so, no.
Q. So you don't think these are even legitimate questions to ask about the chart?
A. They're fine questions to ask. I don't think that they represent anything that is in error or incorrect about what was presented.
Q. Now, he refers there to LaVerne Stetson.

And LaVerne Stetson and Mr. Bodman were colleagues at University of Nebraska; right?
A. Yes. LaVerne was with USDA Ag Research located at the University of Nebraska, Lincoln, and Jerry was with University of Nebraska Extension Service based in Lincoln.
Q. And you know LaVerne Stetson has been hired on numerous occasions, just as you have been, by utilities to provide testimony?
A. I know he's done some expert witness work, yes.
Q. But where he's come from is he's been hired by utilities, not farmers?
A. I don't know details of what cases he's
done. The ones that I am aware of I think were

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.
utility.
Q. He was the main reporter for the Science Advisors group; right?
A. He was a member of that board or that Science Advisory board, yes.
Q. Do you know what role he played in it?
A. I don't know the details of what all he did within it. I know he was an active member of it.

MR. BIRD: What exhibit is that? We marked just the cover page, I think. Yeah. Exhibit 316. I don't know. You probably have that here, don't you?

MR. O'BRIEN: No, I don't have that.
MR. BIRD: Do you have it, a copy of it?
(Witness nodded head.)
BY MR. BIRD:
Q. Okay. Now, did you participate at all in any of the research that was done to create this report?
A. No.
Q. As I understand it, this, the research end of it, was contracted to Dr. Reinemann. Is that right?
A. Part of the research was contracted to him, the part that dealt with animal sensitivity. I think there may have been some other elements that were done by other parties.

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 Q. Now, this particular paper is simply a report to the Minnesota PUC?
A. Yes.
Q. Do you know whether it's been adopted by the Minnesota PUC to be accurate and to have the force of law in Minnesota?
A. Not that I'm aware of.
Q. Well, it says here that these are recommendations of the Science Advisors and do not necessarily reflect the views of the Commission.
A. Yes.
Q. Do you know anybody that works for the

Minnesota Public Utilities Commission?
A. No, I don't think I do at this point.
Q. You don't recall?
A. I --

MR. BIRD: What was the name of that guy?
MR. O'BRIEN: Mr. Bierbaum.
Q. Do you know Bierbaum, Al Bierbaum?
A. Oh, yes; I met AI. I'm not sure he worked
for them at the time that this would have been created, though.
Q. I think he testified that he did.
A. Really? Okay. I don't know Al well. I've met him.

District Court - Minnesota
Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

Page 140

Q. You know that he came from the industry in lowa?
A. Yes.
Q. And then one of the people was Charles Polk from Rhode Island?
A. Correct.
Q. Polk did a paper that we've marked here pointing out some potential problems with the Science Advisors' report; right?

MR. O'BRIEN: Object to form.
A. He pointed out some things he thought could be looked at further.
Q. And it's your contention that Reinemann, in fact, did look at those things?
A. From the animal sensitivity question that he raised, yes.
Q. All right. I'm showing you Exhibit 311. What is it that, in looking at that, you believe Dr. Polk has raised as a concern?

MR. O'BRIEN: Objection to form.
A. I believe it would stem from his item number eight in the conclusion section on page 16 of the article. Want me to just read it?
Q. Yeah; read it into the record so we know what you're talking about.
A. "At present it is not known whether and how the long-term exposure to step voltages above nine millivolts can affect health and/or milk production of dairy cows. This can only be established by laboratory experiments where major variables known to affect animal health can be controlled."
Q. Let me just take a look at that.

Do you know what he meant by "long-term exposure" there?
A. That would be exposure over a time period of days, likely, to weeks.
Q. Did you ever talk to him about what he meant by "long-term exposure"?
A. No.
Q. What research did Dr. Reinemann do to answer that question posed in number eight on page $16 ?$
A. He had research experiments that he followed up from the Minnesota Science Advisory Committee that's been published later. I'd have to do a little digging to find out the specific publication right now that tie to that part.
Q. Is that something you can add to your list there so I can look at it?
A. Certainly.
Q. Is there more than one study that he did?

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

Page 142
1 A. As we sit here right now, I don't recall whether it was all in kind of one package or in parts that he may have done. I'd have to go back and look.
Q. Okay. And the research that he did, do you know how long the trial was?
A. I don't have that right off the top of my head. I'd have to go back to the paper to be reliable in answering.
Q. Well, don't you think Dr. Polk, when he was talking about long-term, he was talking about certainly over a period of months or years?
A. I don't know specifically right now what he meant by long-term.
Q. You never talked to him about it?
A. No. I've never met Dr. Polk.
Q. Unfortunately, he's no longer with us.

I mean, what is it; .09 millivolts, is that what he -- or nine millivolts, or what does he say?
A. Nine millivolts, yes.
Q. That's nine thousandths of a volt?
A. Correct.
Q. That's pretty low.
A. Very low.
Q. I mean, on your chart, on table 3-4 in the red book on page 3-22, that wouldn't even hardly show

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 up on your chart, would it?
A. That's correct. That would be orders of magnitude lower than what we're displaying in that chart.
Q. His concern was that, you know, there were a lot of short-term experiments that were in the literature and nobody had bothered to go look at long-term.

MR. O'BRIEN: Objection. Form, foundation.
A. I think his concern was exposure at this particular level, not all levels, but this particular level, and characteristic of a longer term exposure.
Q. You mean at precisely that number? Is that what you're saying?
A. No, not precisely, but in that range of value.
Q. Well, if he was concerned about nine millivolts, presumably he would be more concerned about a hundred millivolts; right? Would that make sense to you?
A. That would make sense to me, yes.
Q. All right. So given that your level of concern, so to speak, doesn't even begin until two volts, he was at a lot lower -- I mean, he was looking for long-term data for a smaller voltage

District Court - Minnesota
Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

Page 145
1 of any published research on the topic of stray voltage

21 A. Not that I'm aware of. since 2003?
A. I haven't got precisely in my mind what the IEEE would have been since then.
Q. Oh, you mean the --
A. Zipse article.
Q. Zipse and your response?
A. Correct. reviewed; right?
A. Correct. research since 2003. of search, but I don't think of any right now. published? on right now in the field of stray voltage? that I'm aware of. papers were produced when, but there's not -- wouldn't be very many. The couple articles we referred to in
Q. Okay. That's published, but not peer
Q. Let me amend it to say peer reviewed
A. I don't recall specifically doing that kind
Q. Are you aware if there's any research that has been done where there hasn't been anything
Q. Are you aware of any research that's going
A. As far as from animal aspects of things, not

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

21 A. Yes.
A. Yes.
A. No.
A. I hope so. testify to?
A. Correct.
Q. Looking at the Science Advisors, I mean, that is one of the things that you were going to be talking about according to the letter that we got on your opinions, Exhibit 309. Maybe I should just ask you. On Exhibit 309, if I'm reading this right -- Did you write this, by the way?
Q. I mean, somebody didn't write it for you and then you adopted it as your own?
Q. Okay. So it's reasonable to expect that you knew what you were doing when you wrote it; right?
Q. Okay. And I'm just reading from the first sentence. "After reviewing materials received to date regarding this case, I would expect to testify regarding the following opinions." What are those opinions that are following? Where are they? Are they the dotted items there? Is that what you're going to
Q. So your opinions in this case are limited to Zipse's work is not in accord with the scientific community? Is that one of your opinions?

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.
Q. That the field bucket test does not document any hazardous situation, but it could be used to measure AC current through the animal?
A. Correct.
Q. Then the third is that the summary of the measurements on the farmstead, document MT06-114, would not demonstrate voltages expected to create a herd response?
A. Correct.
Q. Do you have any other opinions you think you're going to testify to in this case?
A. I don't know if it's an opinion or just related to interpretation of the documents structured above, the USDA handbook, Minnesota report.
Q. I mean, you're going to be offering an opinion that the handbook is a good source of information; is that what you're saying?
A. Yes.
Q. And you're going to be offering an opinion the Science Advisory Report on earth current is a source of --
A. Good information.
Q. -- good information? And then the research studies from the University of Wisconsin Madison since issuing of the Minnesota Science Advisory Report?

23 want to have you come up with something that I haven't
Q. Okay. "These are also supported by a variety of publications based both on field studies and other research."
A. Correct.
Q. I'm interested then in knowing what are the other research studies from University of Wisconsin that you're going to be telling this jury are good, credible scientific research.
A. Yes; we had that on the list here.
Q. Oh, we already did?
A. Yes.
Q. Is it true that anything that has

Reinemann's name on you're going to think is good research?
A. I have great respect for the work he's done.

That would generally be true.
Q. And then you're talking about a variety of publications based upon field studies and other research. That's expanding this base of things that you're going to testify about, and I would like to get that. The reason I'm saying that is because I don't looked at and see it for the first time when you get on the witness stand, so if you could give me that. What

District Court - Minnesota
Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 I'm looking for is those things that you feel are credible and can be relied upon from your perspective with respect to stray voltage that you intend to use to support your opinions.
A. Okay.

MR. BIRD: And, for the record, Mike, I
would have expected that list to be here today so I could at least look at it, but, depending on what it is, I may or may not want to ask him some further questions about particular studies. I'm just making a record here.

MR. O'BRIEN: Well, he told you basically at the beginning of the deposition where those lists would be found, and they just haven't been compiled.

MR. BIRD: I didn't know. Did I have specific reference to his report, though? I'm not sure if I did.
Q. But, in any event, is there anything else that you intend to offer opinions on besides what we've just discussed?

MR. O'BRIEN: I may have him review that resistance testing.

MR. BIRD: Okay.

Q. Then besides that?

A. Not that I'm aware of.

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.
Q. Okay. I take it you're not going to testify about specific levels of voltage or current at the Siewert farm; correct?
(Deposition interrupted.)
Q. Do you have the question in mind?
A. Yes. The only thing I might be asked to respond to is, as I noted here, the summary document of measurements.
Q. What summary document? I'm not sure what you're saying.
A. It's --
Q. Oh, yeah. Okay. We marked that, didn't we?

MR. O'BRIEN: 314.
MR. BIRD: 314. This is from Metatec
Associates. Who is Metatec?
MR. O'BRIEN: Reilly.
A. So this -- I mean this --
Q. You're going to comment on that?
A. I may comment on it.
Q. Okay. What are you going to testify to about that document? And that's Exhibit 314.
A. It would be, to summarize really the statement, it just does not demonstrate voltages I would expect to create a herd response.
Q. What do you mean by herd response?

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 A. Production problems or health problems in a herd.
Q. Are you an expert in the area of milk production related to stray voltage?
A. I've certainly had a lot of experience in that area, worked with a lot of farms in that area.
Q. Are you saying that -- Would those measurements account for behavioral responses?
A. There may be some component of time here that are approaching levels that might be some perception level responses, but that's all I've seen.
Q. And your basis for saying that is what?
A. Just my experience working in the area.
Q. So it's based upon -- Strike that. I mean, you're not currently going out on extension visits, are you, for stray voltage?
A. Yes.
Q. For stray voltage?
A. Yes.
Q. How often do you do that?
A. Probably three, four times a year.
Q. When is the last time you did it?
A. It would have been sometime in November.
Q. Did you find any voltages there at that place?

1 A. We found some voltage at a fairly low level, although we were there after some other corrections or changes had been made to the system, so I'm not sure what had been there prior to when we were there.
Q. Well, let me see this. Maybe you can help me to read this first line here. It says, "Loafing barn" -- Can you just read what that means?
A. Loafing barn .086 volts without -- without an Rs, without a resistor; 0.42 volts with shunt resistor; and then Ro 548 ohms.
Q. What does that mean?
A. I'd have to go back and look at that right now to be -- I'm speculating, but I think that might be the source resistance in the circuit. I'd have to go back and confirm that.
Q. Let me just try to read this over here. I didn't get this with your report, so I, frankly, didn't see it until this morning, actually, first time I saw it.

MR. O'BRIEN: Well, you got it with
Mr. Reilly's report.
MR. BIRD: Well, then, I guess I didn't put
two and two together maybe because it says -- it said document MT06-114, and it doesn't -- I have no idea what that is, so, I mean --

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

	Page 153		
1		THE W	
2	bein	lear on	
3		MR. BI	
4	Reil	r some	
5	all I'	elling y	
6	abo	what to	
7		Withou	
8	resi	nce?	
9		Yes.	
10		And t	
11	548	ms. W	
12		I think	
13	calc	tion wh	
14	sour	resista	
15		Does	
16		Certai	
17	whe	ve talk	
18	cert	resista	
19	whe	the con	
20	is on	way of	
21	of th	value.	
22		Okay	
23	with	t resis	
24	A.	Correc	
25	Q.	Then	

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

Page 154
$1 \quad 35$ ohms?
A. Correct.
Q. What does that mean?
A. That means that the source resistance in that particular circuit was smaller than the similar source resistance out in the loafing barn area.
Q. And what was the resistance?
A. Well, the second case, it was the 35 ohms.
Q. No, no, no. But the .42 with resistance, what was that?
A. That would be the shunt across the meter, like the 500 -ohm shunt.
Q. Do you know what that was, what the number was, though?
A. Not without going back to the other -- to the original data.
Q. When you say original -- So you don't know that as you sit here today?
A. No, I couldn't tell you what the value is, specific value is, on that.
Q. Well, then, it would be important for you to know that to express a competent opinion, wouldn't it?
A. In that particular measurement, well, to replicate it, I'd have to know the value, but knowing that's kind of a standard approach to things, I don't

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

Page 155
1 have any reason to question it.
Q. So you're assuming $\mathbf{5 0 0}$ ohms resistance, give or take a little?
A. Well, you could use a value different from 500 ohms to make that calculation. It would still give you a valid result.
Q. Because you need the voltage and --
A. You need the open circuit voltage, and then you need the voltages with a known resistance; then you can calculate that source resistance.
Q. Then the water cup to the floor is .58 volts without resistance and .461 volts with resistance.
A. Correct.
Q. You're going to be able to confirm for me what that Ro represents; right?
A. I can do that, yes.

MR. O'BRIEN: May I cut in? Are you asking the last figure?

MR. BIRD: Yeah.
MR. O'BRIEN: Patrick Reilly said that was source resistance in his deposition.

MR. BIRD: He did?
MR. O'BRIEN: Yeah.
Q. How does the source resistance affect how the cow -- I mean, the actual measurement, with

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.
A. It affects that in when you look at the resistance of the total circuit, which is going to control how much current gets to the animal, it makes a difference there, so it's an additional kind of restriction, you can think about it, as in current getting to the animal. A high value here might represent an object that's not electrically bonded, so that you have a high resistance and very low probability of getting current through that circuit to the animal.
Q. I mean, if there's a voltage there, where are you measuring? At the cow contact point then?
A. Yes. Yes. An analogy here might be looking to see whether you've got a dead battery source there which would have a high source impedance.
Q. All right. Now, the strip chart recordings on the Metrosonics, do you know what the resistance was there?
A. As I look at this right now, no, I don't recall.
Q. Would you want to know that?
A. It would be helpful.

MR. BIRD: Do you know that answer? What's that answer?

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

MR. O'BRIEN: It's either 470 or 500 . I
can't remember. It's one of those two.
BY MR. BIRD:
Q. So what that is is that they put a shunt resistor in and then took the measurement and got a volt for about 20 minutes around 6:00 p.m.?
A. Correct.
Q. It was around that time, or don't you know, that Mr. Siewert disconnected the system?
A. I think I knew that when I was looking at this particular data, yes.
Q. Okay. This $\mathbf{1 0 6}$ pages of voltages versus time recordings and other related data, you, I take it, haven't looked at this information yourself.
A. I haven't looked at the data behind this,
no.
Q. What you're saying is that your opinion is going to be based upon Reilly's summary of the data?
A. Correct.
Q. And it's based upon the summary of the data that you don't think there's a problem?
A. It's not consistent with what l'd expect to see for a problem.
Q. And it looks like the water tank to the floor is a half to 1.4 volts with a 470 -ohm resistor?

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.
A. For a 15-minute period, yes.
Q. Right. And that's around 5:42:33?
A. Yes.
Q. Now, is that the same data as the one volt RMS? Excuse me. I'm sorry. I'm having trouble here.
The one volt on the strip, Metrosonics strip, or is that different data?

MR. BIRD: Did I go through all of this in
his --
MR. O'BRIEN: I think so.
MR. BIRD: I can't remember if I did or didn't.

MR. O'BRIEN: To speed it up, the bottom one is the Neubauer testing.

MR. BIRD: It is?
MR. O'BRIEN: Yeah.
MR. BIRD: All right. Metrosonics is
Gunther; right?
MR. O'BRIEN: Yes.
MR. BIRD: All right.
BY MR. BIRD:
Q. In order to make sense out of the data, you've got to convert the measurements of volts and resistance to current because what you're looking at, frankly, is current?

		Page 159
1	A. Correct; that's -- you have to recognize	
2	that what the animal senses is current, and you're	
3	going to have to translate voltage back into --	
4	MR. O'BRIEN: I'll just tell you for the	
5	record I'm going to send that portion of Mr. Forster's	
6	deposition that you took in which he interprets	
7	Mr. Neubauer's testing differently than Mr. Reilly.	
8	MR. BIRD: What?	
9	MR. O'BRIEN: I don't even know if I've got	
10	Forster's deposition back yet. I don't think we do, do	
11	we?	
12	MR. BIRD: I don't know.	
13	MR. O'BRIEN: He interpreted Mr. Neubauer's	
14	testing results differently than Mr. Reilly did.	
15	MR. BIRD: You mean like better in your	
16	favor?	
17	MR. O'BRIEN: He thought it was a peak	
18	reading.	
19	MR. BIRD: As opposed to RMS?	
20	MR. O'BRIEN: As opposed to RMS.	
21	MR. BIRD: Did you ask that about Pat	
22	Neubauer? What did he say?	
23	MR. O'BRIEN: I can't remember.	
24	BY MR. BIRD:	
25	Q. Do you know whether these are -- that the	

District Court - Minnesota
Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 readings that you're getting here -- or maybe it 2 doesn't make any difference to you -- whether it's peak
$23 \quad$ Q. Just in my mind, I don't get the source readings or RMS?
A. I don't know at this point whether they are peak or RMS.
Q. Wouldn't make any difference from the numbers, though; right?
A. From the numbers, I think my bottom line conclusion would be the same. I wouldn't expect for this to be creating a herd problem.
Q. Are you going to be testifying specifically that there was never a stray voltage problem at the Siewert farm?
A. No.
Q. Are you going to be testifying at all why the cows wouldn't cross the threshold into the parlor at the Siewert farm?

MR. O'BRIEN: Objection to form, foundation.
A. I don't -- I hadn't anticipated doing that.

MR. BIRD: Let's take five.
(Recess taken.)
BY MR. BIRD: impedance thing, so I want to take another stab at it.
A. Okay.

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.
Q. If you can go to 3-22 in the red book, I mean, what you're listing there, the 500 ohms column I think you've told me is a combination of the contact resistance and the cow resistance. For any given source resistance, would those numbers change at all?
A. If we assume these are measurements in the cow contact domain, no.
Q. I mean, if it's in the cow contact, can we basically, you know, eliminate the consideration of source resistance?
A. No.
Q. Why not?
A. We have to confirm using something like the resistor that the source has current producing capability that's going to remain adequate when you make that type of measurement.

That's not being helpful to you. I'm sorry. Let me describe this more carefully.
Q. You have to confirm the current going through?
A. You have to confirm that the source has the current producing capability of maintaining that current through the animal when the animal is actually there. That's what putting in the shunt resistor does for you.

District Court - Minnesota
Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.
Q. But if a shunt resistor is used -- Let me just take a, you know, "what if" type thing. In this chart, you're not even considering source resistance by definition; right?
A. By definition, we're assuming insignificant source resistance.
Q. What does that mean?
A. That whatever source you're measuring has a current producing capability; it's going to create those kinds of numbers.

I've got to think how to say that in a different way that might be helpful to you.

If we go back to 3.5 -- Could we do that for a moment?

Q. Yeah. 2.5?

A. Page 3.5. The source resistance we're talking about is listed here and says Z sub source.

Q. Right.

A. If we make a voltage measurement without the resistor to simulate the cow contact and cow contact resistances there, we're measuring what we call an open circuit voltage, and because the internal impedance of our measurement device is very high, this path doesn't have to be very good, so to speak, to give you a voltage measurement there; so we then put in the shunt

1 resistor to reduce that path resistance of the part
where we're measuring to the known value, and that then combined with the open circuit voltage allows us to calculate what the source resistance would be. An extreme case might be a metal object that is not grounded, and you measure to that, and you measure, let's say, a half a volt; and then you put the resistor on, and it goes down to essentially zero; what you've then detected is that you don't have a path there; you have what we call a very high source resistance.

An example of that might be if you connected to one of the switch boxes here on the wall to the floor, if measuring open circuit, you might measure voltage there. If the box is not grounded or had that green or bare wire tied, when you put that shunt resistor in, that voltage is probably going to go down to zero because it has a high source impedance there.
Q. All right. So is it necessary to measure the voltage without the resistor first? Is that what you're saying?
A. If you want to estimate the source impedance, you need to make both measurements. It doesn't matter which order you do them in.
Q. Well, but if you had the resistor on and you get a voltage, what difference does it make if you know

1 the source resistance?
A. Well, you don't know at that point without making the second measurement.
Q. Well, that's the point. Why do you care about the source resistance if you're getting voltage with the 500-ohm resistor in place? You know that you've got -- By definition, you know that you've got enough current to go by the -- go through the resistor.
A. At one level, that's correct, but to really understand the electrical circuit and what you're dealing with, you would want to do the second measurement and know that source impedance as well.
Q. All right. So if somebody is getting with a 500-ohm resistor a volt, will the current change based upon what the source resistance is?
A. Yes.
Q. How does that work? Tell me how that works. This is probably Electrical Engineering 101, but --
A. A little bit.
Q. Yeah.
A. Well, if you make a specific measurement,
it's going to be dependent on whatever the source resistance is, and if that source resistance changes, then that may change the value that you measure. I'm going to give you an example of that.

	Page 165
1	If we measured from this ungrounded object
2	to the floor and measured a voltage, open circuit, put
3	the shunt, and it goes away, we might come back and now
4	bond that box, tie it to the grounding system like it's
5	supposed to be via code, and then we would -- could
6	dramatically change the source resistance. So by
7	changing things in the electrical system, you might
8	change that source resistance, so it's important to
9	know, you know, what characteristic that is when you're
10	making your measurements there.
11	Q. All right. But that involves a change in
12	the source resistance by virtue of some repair?
13	A. Repair or some other change in the system,
14	yeah.
15	Q. All right. But let me just say this. Let's
16	assume two different cases. In case number one, the
17	result is one volt with a 500 -ohm resistor, and the
18	source impedance, let's say, is $\mathbf{2 0 0}$ ohms; and then the
19	second one, it's one volt with a 500 -ohm resistor, and
20	the source impedance is 400 ohms. Okay? Do you have
21	that in mind?
22	A. Okay.
23	Q. Is there any difference in those two cases
24	in the current actually going to the cow?
25	A. In your simulated cow there, no.

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.
Q. Current is the same?
A. Correct.
Q. That's all I wanted to know. Okay. Now I think I'm understanding why you want to know the -- All right.

The research from Ontario that you referred to several times, is that in that red book, or is there some since that red book was published?
A. I'm not immediately seeing it, so it may well have been subsequent to the publication that that work was actually published.
Q. And you're looking for Gumprich as the author; is that it?
A. Yes, that's where I was starting.
Q. Now, you've on several times told me you were going to get me the list of publications that support your opinion that you rely upon. I'm assuming you're going to include those that were either authored by or in which Gumprich was the second author to come from Ontario?
A. I will do that.
Q. You've got another guy in here that's from Ontario, Hockin. There's maybe even a third.
A. There may have been an Extension person from Ontario, but he was not related to the particular

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 research done at New Liskeard.
Q. Gumprich, is he an agricultural engineer?
A. Yes, I believe he is.
Q. Do you know what the source resistance would be for, let's say, wet, salty earth?
A. That's -- It's not a question I can answer because the source resistance usually deals with the path from the electrical system to whatever object you're measuring from. Are you asking me to assume that that's through the earth itself --

Q. Right.

A. -- to get there?
Q. Right.
A. That would be dependent on the distance, the conductivity of the -- or resistivity of the materials, so I couldn't give you a specific number in just a general sense.
Q. You would agree with me that the issue here is current going through the cow, and it doesn't make a whole lot of difference how it gets there if we can measure current going through the cow?
A. Well, current through the cow is from the animal responses; I would agree there. To me, I still want to understand how that current is getting to the animal as well and make sure that that's validly

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

Page 168
1 described as well.
Q. Right. Well, I mean, there is such a thing as earth current; right?
A. There is current that flows in the earth, yes.
Q. Right. And if that current were at sufficient levels and made contact with a cow, depending on the level of that cow contact, it may or may not cause problems?
A. If that current could produce a voltage differential between two points that the cow sees such that it's going to create a current through the cow at a problematic level, then you could get into problems.
Q. So whatever way we look at it, we're looking at an application of Ohm's Law really?
A. Absolutely.
Q. Okay. There's nothing controversial about that. We talked about that already.
A. Right.
Q. Okay. I take it you don't have much knowledge of distribution systems and design of those?
A. I have a basic understanding, but l've not done systems design. I wouldn't consider myself an expert in system design.
Q. Are you able to, you know, competently talk

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 about the difference in neutral-to-earth voltages in, 2 let's say, a single-phase versus a three-phase system?

21 A. Yes. It's difficult to get an absolute
balance over time.
Q. That doesn't mean the power company shouldn't at least try to get it in balance.
A. Correct.

District Court - Minnesota
Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 Q. Because it can be more out of balance or less out of balance; right?
A. Sure.
Q. And then if it's way out of balance, that can have an effect on the neutral-to-earth voltage; right?
A. Correct.
Q. And those neutral-to-earth voltages in a grounded system can be greater where there's heavy demand?
A. They can be, yes.
Q. And that affects the loading on the system? Is that the right word to use?
A. Well, you've got to factor loading on the system and then the system characteristics itself, so for a given system, as you increase the load or, in the three-phase system, the imbalance of load, you would expect an increase of neutral-to-earth voltage.
Q. Are you familiar with line sizes or not?
A. Wire sizing?
Q. Like a 6A copperweld?
A. I have a rudimentary knowledge of the different wire sizes, yes.
Q. I mean, if you're not going to be testifying about something -- Are you going to be testifying at
A. Not that I'm aware of.

MR. O'BRIEN: I don't anticipate. We've got other people to address that issue.
Q. Do you have any opinion as to use of 6A copperweld?
A. From the modeling work I've done, that's -depending on the load, it can be very adequate. It's when you get to higher levels of load or current on the line that you've got to look at whether that wire size is adequate or not.
Q. What are the problems that can be caused by having 6A copperweld with higher levels of load?

MR. O'BRIEN: I'll object to form.
A. It would just be the resistance of the conductor itself.
Q. Would that have any tendency to increase or decrease neutral-to-earth voltages if you were using 6A copperweld where there was a heavy load?

MR. O'BRIEN: I'll object to the form, foundation.
A. Well, the magnitude of neutral-to-earth voltage is going to be dependent upon the resistance of the grounded neutral system, and one factor within that is the size of the neutral conductor itself, so as we

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 increase the size of that wire, we have some effect on 2 the neutral-to-earth voltage.
Q. Are you currently working on any other cases?
A. I think I may have been requested to look at one other, but I don't have anything active at this point.
Q. Who made that request?
A. I think it may be Stuart Mondschein's firm.

I can check that out if you want me to.
MR. BIRD: Yeah. That's Vogel and those
guys in Madison; right?
MR. O'BRIEN: Yeah.
THE WITNESS: Yes; Denis Vogel.
BY MR. BIRD:
Q. Have you ever given any kind of testimony to Minnesota Public Service Commission?
A. I don't recall giving any testimony there.
Q. Have you given any testimony to the Wisconsin Public Service Commission?
A. Yes.
Q. Do you have that testimony, a copy of it?
A. I may have that.
Q. If you have that, I'd like a copy of that.

One of the things that l've looked at and I

1 think you might be referring to is Reinemann came out with some kind of a paper, and I think it was around 2003, in which there was a two-week study, and it was intermittent application of current for a couple of weeks, and there was 12 mid-lactation cows being used. Do you recall that?
A. Yes. I don't recall the details without looking back at the paper itself.
Q. And one of the things he commented on was that the serum interleukin-1 went up and serum interleukin-2 went down. Do you recall that?
A. I don't recall that specifically. I recall that type of information being in the paper.
Q. Well, do you have any knowledge as to whether or not -- well, first of all, what that is, serum interleukin-1 and serum interleukin-2?
A. It's hormone responses of the animal. I rely on my animal science and veterinary medicine colleagues to interpret the meaning of that.
Q. Okay. And do you know if serum interleukin-1 and 2 have anything to do with immune response?
A. I don't recall the connections on those particular ones.
Q. Is that -- that study I just talked about,

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

Page 174
1 is that one of the research studies that --
A. Yes.
Q. -- you feel is reliable?
A. Yes.
Q. And we talked a couple of times about the two cows that were removed from the Cornell research because of their violent reaction, and you said you had followed up on it and found that, indeed, there were a couple of cows that had been removed; right?
A. That's my recollection at the moment. I think I did. It's a little vague right now, I must admit.
Q. Well, I thought you'd testified -- and the record will reflect what you said, but certainly you had the opportunity to call up Gorewit or Aneshansley and find out the answer; right?
A. Yes.
Q. They ought to know.
A. Yes. Yes.
Q. And one of the things that I read was that there actually was a video tape of those two cows and the video tape itself was destroyed. Do you know that?
A. I have no knowledge of whether there were or weren't tapes or what may or may not have happened to them.

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 Q. Again, that's something that you could call

18 A. Which publication were you referring to? up Gorewit and Aneshansley and get an answer to?
A. Probably could.
Q. Were you involved at all in the peer review of the Gorewit and Aneshansley articles that were referred to in the red book?
A. Truthfully, right now I don't recall that

I -- I can't confirm that I was or wasn't. I know I've seen their papers in different contexts. Whether I was officially a reviewer on any of those, I just don't recall.
Q. Were those the publications, the Gorewit and Aneshansley, that were published in the Journal of Science and peer reviewed?
A. What?
Q. Journal of Science. Were they in the Journal of Science?
Q. I'm looking at -- Are you looking at the bibliography there?
A. Yes.

MR. O'BRIEN: Just to help, you mean Journal
of Dairy Science?
MR. BIRD: Is that what it was?
A. I think that's what you're referring to,

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

Page 176
1 yes. On page 8-4, at the top of the right-hand 2 column --
Q. Is that one in the Journal of Dairy Science?
A. That is a Journal of Dairy Science article.

As we sit here right now, I'm not sure if that's the precise one you're referring to.
Q. Did you review that one as a member of the team?
A. I don't recall that I did.
Q. Did you ever review any of Gorewit or Aneshansley's work for ASAE?
A. I may well have. I'm not sure that they -whether they submitted any for the Transactions or not.
Q. Well, if you reviewed somebody's work, would you keep a file on it, on what your review was?
A. Not necessarily, no. I would submit it back to the division editor, and they would take it from there.
Q. So you wouldn't keep your notes?
A. Not necessarily, no.
Q. Well, you say "Not necessarily." Does that mean it's possible that you did keep the notes? I'm just trying to --
A. My general practice would be no.
Q. Have you ever peer reviewed any of

1	Reinemann's work?
2	A. Yes, I've handled articles from Doug.
3	Q. How does that work on peer review? Can a
4	writer request that a particular individual be on the
5	review panel?
6	A. An author can suggest reviewers. In our
7	system, they have an option to suggest reviewers. The
8	division editor will assign those papers generally to
9	an associate editor. That associate editor would
10	identify the appropriate set of reviewers, which may or
11	may not include those suggested persons.
12	Q. Do you know if you were suggested by 13
Reinemann as being one of the reviewers? 14	A. I don't recall specifically. I think for 15
16	some of his papers I probably was a division editor at
that point in time, so it would have gone through me	

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

Page 178

1 task of picking the reviewers to the associate editor?
A. That would be the general process, yes.
Q. And you would have -- Along with that, I
mean, would be -- because the paper would come to you, and along with that, the author's request, if he had any, on who the author wanted to review the paper?
A. Yeah. I wouldn't characterize it as a request, but there is an opportunity to suggest reviewers.
Q. They suggest reviewers.
A. Correct.
Q. As division editor, would you also be able to make suggestions to the associate editor as to the reviewers?
A. That does happen from time to time, yes.
Q. But the ultimate decision is up to the associate editor as to who to pick for reviewers?
A. Yes.
Q. And then it comes back to you, and you can approve those selections for reviewers?
A. Generally you're not -- Unless the associate editor requests it, generally the associate editor does it on their own, doesn't come back and request approval of reviewers.
Q. As a division editor for Reinemann's papers,

1 would you also have the opportunity to act as a reviewer?
A. Yes.
Q. So in that sense, you're wearing two hats?
A. Yes.
Q. Do you recall that happening with regard to Reinemann's work?
A. Well, I should correct that. I would be a reviewer in the sense that I would review the paper and look at the reviews of the people that reviewed it, you know, as they try and make that decision on whether or not to be recommended for publication or what changes might be necessary to make it acceptable for publication.
Q. So as a division editor, you don't get to be a reviewer other than reviewing other reviews; right?
A. Basically, that's correct, yes.
Q. All right. But in addition -- and what --
A. But in doing that, I mean, you're almost acting like a reviewer too because you've got to get into the details and understand it as well.
Q. Right. And if somebody wants to get something published, it behooves them to suggest to the division editor reviewers that he thinks might be friendly to their point of view; would that be true?

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

21 not sure what I still have in my files from that period 22 of time.
23 Q. Is there something about the integrity of
MR. O'BRIEN: I'Il object to the form.
A. I suppose a person could use that as a strategy if they so desired.
Q. Well, you've seen that, haven't you?
A. I haven't seen very much of that in this community. Most of our authors don't take the time to recommend reviewers, so --
Q. Has Reinemann ever taken the time to recommend reviewers as far as you know?
A. I really don't recall. I actually wish they would take more time and suggest persons.
Q. Is that information public information?
A. Generally, no.
Q. Would it be possible to go back and find out who did reviews on any particular piece of work by Reinemann?
A. I wouldn't have the data because I file those back to the author in an anonymous -- You know, the reviewers are not identified unless they self identify, so I'm not -- at that point in time -- I'm the process that you want to keep those people's names confidential? Is that it?

1 A. Correct. You want them done confidentially so they can give you their honest opinion or will give you their honest opinion.
Q. Do you know the names of typical reviewers for this type of work? Not isolating to any particular one, but if you were division editor now and something came in on stray voltage from Reinemann, who would be the people that would come to your mind?
A. People that come to mind could be some of the people at Cornell.
Q. Gorewit and Aneshansley?
A. Gorewit, Aneshansley, could be, but my general practice would be go look who's published in a particular area or who has presented papers in a particular area, would be knowledgeable of that particular topic, so that's kind of where you start looking for reviewers. And then in these animal topics, sometimes we will go outside of our own society if there's somebody in animal sciences perhaps or veterinary medicine that understands the topic to give a review from their perspective, so it may be a multidisciplinary review as well.
Q. If you know the topic is controversial, like stray voltage, do you ever consciously seek to get what you know is likely to be a contrary opinion?

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 A. I haven't personally done it. I view it as 2 my own personal integrity of trying to get people who are going to give it a fair review. That's always been my goal.
Q. But, I mean, like picking Gorewit for

Reinemann, do you consider that a fair review in this field that's very controversial? You're picking somebody from the industry side that you know has already been involved in a lawsuit with Mike Behr and all kinds of stuff, you know.

MR. O'BRIEN: I'll object to the form of the question.
Q. That's what I'm saying. How do you get away from it in this field?
A. It's a challenge because it is a relatively modest number of folks who are really heavily engaged in it.
Q. Well, if you've peer reviewed any of Reinemann's work either as an editor or as a reviewer, would you be able to give me a list of those that you've done that?
A. I may be able to give you -- I wouldn't know whether it would be a really complete list or not, but I may have some files.
Q. Would you be able to give me any of your

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 notes or your suggestions as a reviewer if they exist?
A. I would be willing to do that if I have it.

I'd probably need to check with my society to make sure they're comfortable with that.
Q. Certainly. Okay. It's Dr. Appleman that's deceased; right?
A. He is.
Q. And he apparently died while this red book was in process.
A. That is correct.
Q. What was his field of expertise?
A. Animal science.
Q. Would you call him an expert in the area of stray voltage and its effect on animals?
A. Yes. He, as a dairy scientist, brought that type of expertise to the table.
Q. What is a type two error in a statistical study?
A. Oh, boy; it's been a while since I taught statistics. Type of error when you assume something is correct and it's not, or you reject it when it is true, and I can't, to tell you the truth, right now tell you which one is which, type one or type two error.
Q. Right now you don't --
A. I just haven't got that on the top of my

22 the technical papers of the IEEE is not in accord with

A. Correct.
Q. And are your comments on that reflected in

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

22 A. The opportunity would be there to do that,
Exhibit 305?
A. Yes.
Q. All right. You submitted your response to Equipotential Planes after you got the initial proposal from IEEE on Zipse's paper; right?
A. Yes.
Q. All right. And then if I'm understanding this process correctly, the person who submits the paper as part of discussion can, you know, again, as part of the discussion, respond to the responses. Is that what happens?
A. In this particular society, they do that, yes.
Q. All right. And, in fact, that shows up here in Exhibit 306. There's a long discussion part where there's -- about the reviewers and so on and so forth.
A. Yes.
Q. And after that, do you get to then amend your response? In other words, do you see that discussion and then go back and change your response yes.
Q. Did you do that in this case?
A. There may have been some modest changes

1 like, you know -- I couldn't tell you exactly what they 21 for the contact, why he wasn't creating a galvanic or a 22 battery, so to speak. are. There weren't any fundamental changes.
Q. Well, one of the things that you'd discussed was that, in referring to the so-called test that Neubauer did, that all he was doing was creating a galvanic cell.
A. Correct.
Q. And then I think in response to that, at least from what I saw in the initial paper that you might have got and what was finally published, is that on Neubauer's test -- You can see this on page 6 of the Exhibit 306, that he specifically recognized galvanic action; tried to take that out by using the same metal or not dissimilar metals for contact points?

MR. O'BRIEN: I'll object to the form.
A. Yeah, he referred to or added that particular segment, I think. I don't think it changed my opinion of what's actually happening in the test.
Q. Explain that to me, why -- you know, given what he explained there of not using dissimilar metals
A. In this particular paragraph, he just simply makes or states the opinion, "In this case, electric energy is used to force nonspontaneous chemical

1 reactions, the opposite of a galvanic cell." That

22 the concrete, and to do that, the current level
23 required to do that, given the resistance values, is doesn't convince me that what they were actually measuring wasn't due to the galvanic action.
Q. So you fundamentally disagree with the so-called bucket test?
A. As proof that the equipotential plane doesn't work, yes.
Q. Can you give me that reasoning of yours in a nutshell? Why doesn't the bucket test -- why isn't it an accurate measurement?
A. Well, it would apply a voltage differential -- Let me start over again. If that was created by a voltage differential across points of the cow, they're on equipotential plane, it would have to be of a magnitude that just is not reasonable or not measured in what the system has set up.
Q. Well, explain that.
A. If you go back to my own paper, you'd have to see that you'd have to have a voltage differential across the two sets of legs of the cow, and that means a voltage difference across the reinforcement mesh in just way too high to say that this is a likely or probable source.
Q. But they're measuring it, aren't they? Why isn't it a valid measurement if they're, in fact, measuring?
A. They're measuring, but how they're interpreting their measurements is not correct.
Q. And why is their interpretation off?
A. Because they're assuming that the source is a differential voltage across the concrete when that just is not a reasonable assumption.
Q. And why is that not a reasonable assumption?
A. Because the resistance of the concrete between those points or the rebar in the concrete would be too low or the acquired current through that because of the resistance would be too high to develop that kind of voltage across the animal.
Q. So what, in fact, were they measuring? The battery? Is that what you're saying?
A. Yes.
Q. And the battery is created because they're what; using dissimilar metals? Is that it?
A. Dissimilar materials, yes.
Q. I thought he addressed that by saying that they changed it to put, you know, copper and copper or, you know, the same metal.
A. No. That doesn't mean that the rest of the

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 circuit doesn't have different types of metals in it in 2 the circuit as well. that, yes.
Q. Well, is it possible to eliminate it?
A. That's the technique of using this half cell is to try and take that parameter out of the circuit. Q. Well, didn't they do that, use a half cell?
A. No, not that I'm aware of.
Q. If they had used a half cell, then would their readings be correct?
A. Well, they could get more correct readings.

You still have to do it right to get -- Just throwing a half cell in there doesn't -- It's got to be used appropriately.
Q. But the half cell has the benefit of taking out the galvanic action due to dissimilar metals; right?
A. Yes, or you can -- in your measurement technique, as I understand it from primarily the corrosion people, that's a way of getting kind of a uniform testing procedure.
Q. So your assumption now is they did not create a half cell, and that what their readings are, they're simply representative of galvanic action?
A. As I recall the data I saw, yes.

MR. BIRD: Do you intend on giving him any
further data in that regard? I mean if he's -- I understood that in response to this that they --

MR. O'BRIEN: They have never used the half cell --

MR. BIRD: Okay.
MR. O'BRIEN: -- to my understanding. I

1 believe I asked that of Mr. Neubauer and Mr. Zipse, and they both said they did not use the half cell.

MR. BIRD: Okay.
MR. O'BRIEN: If I'm wrong, give me some information, and we'll get you the information.

MR. BIRD: All right. I thought they had.
MR. O'BRIEN: They changed the type of conductor in the bottom of the bucket. That was my recall.

I'll do a formal request to you by letter asking that.

MR. BIRD: Sure. Good point.
BY MR. BIRD:
Q. Then looking again at Exhibit 309, you say, "Although this approach could be used to measure the AC current flow through an animal, it is not an accepted approach to measurement of DC currents or AC stray voltage investigation." What do you mean by that?
A. The circuit they've set up you could use to do an AC current determination. That's possible with what they've done. But you've then got to eliminate the DC part of that to make the AC measurement work.
Q. But if all they're doing is measuring AC steady state, that doesn't have any DC component to it, does it?

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 A. Correct, if you're just measuring true AC.
2 You could with an oscilloscope look at that and see if there is a DC offset, you know, if you set your instrumentation up to do that as well.
Q. Isn't that what they did?
A. I don't believe that's what they did in this particular paper. They may have done something like that subsequently.

MR. BIRD: Okay. You might want to add that to your letter.

MR. O'BRIEN: I might have to have him explain that one to me. BY MR. BIRD:
Q. All right. But to measure AC current through the cow, that's an acceptable method?
A. What is acceptable?
Q. This approach could be used to measure the AC current flow through an animal?
A. Oh, the instrumentation configuration that they used?

Q. Right.

A. Yes, you could do that.
Q. You could do it, but did they do it right?
A. To measure the AC component? I don't
believe in what's reported in this paper that they

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

Page 193
1 actually measured the AC component.
Q. Well, the DC would show up as DC and the AC would show up as AC; right?
A. Correct.
Q. So the DC part of it is the galvanic part; right?
A. That's what I would hypothesize was happening, yes.
Q. All right. Now, if they were getting AC current through this bucket test, and all the power is off at the farm and the farm is isolated, where is the AC coming from?

MR. O'BRIEN: I'll object to form and foundation.
A. I'd have to know what kind of magnitudes they're talking about, but you'd have to look carefully, make sure that the instrumentation system itself is not creating something you're measuring at a very low level there.
Q. What if they're getting . 4 volts, for example, AC ?
A. That could be a voltage gradient in the earth depending on the setup where you're looking. That sounds like a fairly high value, but, you know, you want to see the data behind that.
Q. Okay. And you haven't really looked at that data?
A. That's not familiar data to me on the AC measurements that you're talking -- that you seem to be talking about.

MR. BIRD: Are you intending to have him look at that?

MR. O'BRIEN: I'm not even sure what you're talking about now.

MR. BIRD: I think he testified that they got .4 volts out at the north end of the farm, power off.

MR. O'BRIEN: That's not a bucket test, though.

MR. BIRD: Well, I don't know what test they did. They got .4 volts out there. Am I wrong on that? I don't know.

MR. O'BRIEN: Now it's me testifying, but it's my understanding the bucket test measures current, not voltage.

MR. BIRD: Okay. Maybe it was -- You're right. Might have been milliamps; 4 milliamps it might have been.
Q. Let's amend my question to .4 milliamps.
A. I simply haven't seen what you seem to be

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 referring to as the data here to be able to understand what that might be.

MR. BIRD: All right. Well, if you submit
to him new data along those lines, are you going to let me know --

MR. O'BRIEN: Yeah.
MR. BIRD: -- so I can come back again for a follow-up? All right.
BY MR. BIRD:
Q. One of the things I thought you had testified to previously or written somewhere is that if .7 volts can find a pathway to the cow, that can be a problem. Is that true or not?
A. There may be a statement in one of the early papers that we'd like to maintain an environment where we don't have that occurring. I don't think it says that that creates a problem.

And, thereupon, Exhibit No. 323 was marked for purposes of identification.

BY MR. BIRD:
Q. Showing you what's been marked as Exhibit 323, November 1984, Issue 70, Appleman and
Gustafson, and just look at that for a second to

1 familiarize yourself with it. I don't want to ask you 2 questions without looking at it. But that looks to me

21 and a quarter, I don't anticipate problems. So this
22 was more conservative at that point in time than I
23 would be now. like a publication that you were one of the authors, you and Appleman.
A. Correct.
Q. All right. And then let me just read to you what I'm talking about. In the first sentence, it says, quote, "In dairy cows, two distinct and important aspects of the interrelationship between stray voltage problems on the farm and dairy cow productivity can be identified. One is behavioral modification that increases in intensity when currents associated with neutral-to-earth voltages above .7 volts find a pathway through the cow." Right?
A. That's what we wrote back in '84, yes.
Q. Does that continue to be your point of view?
A. Be above that level, yes.
Q. Is it . 7 volts or above?
A. Well, what I recommend to producers that I work with now, if I don't see things above about a volt would be now.
Q. At least based upon your research at that point, it was .7 volts. And you're saying you're not

District Court - Minnesota
Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 comfortable with that anymore, that's too conservative?

23 A. The whole body of knowledge we've worked
A. I think that's a little more conservative than I am now, yes.
Q. But, nevertheless, that's what you wrote at that time --
A. Yes.
Q. -- based upon the information that you had at that time?
A. Yes.
Q. What you've done since then -- You did some research, independent research, up to '87?
A. Correct.
Q. And then you participated in this red book?
A. Correct.
Q. And then you read the stuff Reinemann did at Madison?
A. That and other work that's come out.
Q. And Gorewit and so on that we've talked about?
A. Correct.
Q. Has that other stuff caused you to change your mind? Is that it? with, yes.
Q. And this was neutral-to-earth voltages that

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

18 A. Correct.

21 A. Yes, before I would start exploring more
22 indepth or think you might have a problem.
23 Q. So one of the things you do when you go to a 24 farm is you measure neutral-to-earth voltages --
Q. And that's neutral-to-earth voltages of . 7 volts measured without a resistor?
A. Protocol for measuring that would be without a resistor, yes.
Q. And you're saying you're amending that now to one and a quarter volts without a resistor to neutral-to-earth voltages?
A. Well, or above.
Q. That's your threshold?
A. That's my threshold of -- Really I think today we would more likely use the cow contact voltages and make recommendations based on that rather than neutral-to-earth voltage.
Q. Here it was . 7 volts neutral-to-earth voltage.
Q. And your testimony is that today you're looking at one and a quarter volts?
A. Yes.

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

Page 199
Q. -- without a resistor.
A. Yes.
Q. All right. And that helps you give some at least preliminary foundation as to whether you ought to take it further?
A. That's one parameter, yes.
Q. Do you know what the NEV's were measured in this case?
A. What l've seen is in that summary sheet.
Q. I don't think -- This one?
A. Yes.
Q. 314?
A. Yes.
Q. I don't think he's written any neutral-to-earth voltages down here.
A. Oh, excuse me. These were the cow contact type voltages.
Q. Right.
A. Right now I don't recall looking at those.
Q. Other than what we've talked about, that

Mr. O'Brien may send you some more stuff, is there anything further that you personally would like to do, you know, given the questions l've asked so far, in order to prepare for your testimony at trial?
A. Not beyond answering the questions for you.

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

21 A. From time to time we consulted with our
22 statistical service. Probably the person who did most
Q. Beyond answering the questions that l've raised right now?
A. Correct.
Q. Do you know the type of isolation that was used at the Siewert farm?
A. No, I'm not sure I know which device was used.
Q. Now, what is a gradient?
A. A gradient would be a difference in a value between one point and another point.
Q. Does that mean -- When they talk about step potential, is that the same thing?
A. That would be a type of gradient, yes.
Q. Now, the studies that you did, you know, that you did you in collaboration with Cloud or Appleman or -- is it Norell?
A. (Witness nodded head.)
Q. Did you have somebody from the statistics people help develop a statistical model that had predictive value? of that would be Norell in design for his thesis work.
Q. Did you know Dr. Martin, statistician at the university?

District Court - Minnesota
Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

Page 201
1 A. I knew him, not well, but know the name.
Q. Would he be one of the guys that would be helpful to go to in terms of statistical modeling?
A. He could be. I don't recall whether he was doing that sort of consulting at that point in time or not.
Q. Now, we've talked quite a bit about contact resistance in this deposition. Would one of the things that affects contact resistance be the weight of the cow?
A. That would be -- Yes.
Q. Certainly a heavier cow would have an ability to, you know, press down or make firmer contact with a particular surface?
A. Yes.
Q. And would moisture also be one of the variables?
A. Yes.
Q. Would the presence of salt be one of the variables?
A. Yes.
Q. Would the depth of the material that's being stepped in be one of the variables?
A. Yes.
Q. Would the presence of like sores and things

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

Page 202
1 on the cow's hoof be a variable?
A. That could be a variable in two different ways; one, from the sensitivity aspect, and then, second, from the actual resistivity of the material.
Q. Okay. Well, the skin itself as a pathway has a certain resistance?
A. Correct.
Q. And if we cut through the skin, then you're going to eliminate that part of the cow's resistance?
A. Correct.
Q. Does it make any difference if the cut -- If it's exposed to the contact area, does it make any difference whether the cut is a millimeter or 10 millimeters?
A. Well, it would depend on where it is relative to nerves or things that would be sensitive.
Q. No. I'm talking about in terms of the cow's resistance.
A. It would -- it would make some difference, the magnitude of the area, yes.
Q. You've never quantified that?
A. No, I have not tried to quantify that specifically.
Q. Are you aware of any studies that have been done on cows that have foot or leg problems to

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

Page 203
1 determine whether or not their resistance is changed at all by that condition?
A. I don't recall any that come to mind at the moment.
Q. You're aware that cows that have laminitis, for example, can get sores or abscesses that would expose them to the --
A. Just makes their foot more sensitive, whether it's electrical or not, yes.
Q. And it might have the effect of lowering the resistance of the cow?
A. It may.
Q. Is there anything else that would be a variable in the contact resistance?
A. I think you've hit the major ones. The material, the geometry of it would be the primary ones.
Q. Now, in order to get a differential, I mean, would it be -- If a cow has hind feet outside the barn and front feet on the wet concrete, would that be more likely to have a step potential or a gradient?
A. More likely depends on whether or not you -what's in the concrete in the two different areas and whether or not that's connected to the electrical system or not.
Q. Okay.

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

Page 204
1 A. So I can't say it would be more without, you

16 A. I don't believe he's involved in it. He was

21 A. That's a particular type of design, know, a little bit more information.
Q. And if a cow's hind legs were outside the parlor and front legs were inside the parlor, would that have -- would it be more likely to have a step potential there or a gradient?
A. It could be, depending on how the parlor is constructed and how the holding area is constructed.
Q. You've never been to the Siewert farm, so you don't know that?
A. That is correct.
Q. How old is Cloud now, just ballparkish?
A. Seventies.
Q. Is he still involved at all in doing any research or teaching or reviewing? primarily extension and worked with us some in research. I don't think he's engaged in that anymore.
Q. Have you heard about switch-back modeling to the statistical research? experimental design, switch-back design, yes.
Q. Can you explain what that is in your understanding?
A. Crudely, it would be when you have a

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 treatment, you go to the control condition and then 2 switch back to a treatment. You're switching between the treatment and the control aspect.
Q. Has there been any switch-back modeling in any of the stray voltage work done by Reinemann?
A. I couldn't tell you right now.
Q. How about Gorewit and Aneshansley?
A. That may well be. I couldn't confirm that right now without going back and looking at the papers.
Q. Well, do you have any reason to believe that if a cow has a loss of production because of being exposed to current that's in a particular lactation and then the current goes away, that the production is going to come back such that it will pick up what was lost?
A. That may not happen, in a general sense, where we'd expect a recovery, so to speak.

MR. BIRD: I might be done, but I just want to look through what I've got here.

And, thereupon, Exhibit No. 324 was marked for purposes of identification.

BY MR. BIRD:
Q. What I have here is -- I don't know exactly

1 what it is. It's called "Behavioral Experiments
Quantifying Animal Sensitivity to AC and DC Current." Do you recognize that?
A. Yes. This is a paper that was done --

Dr. Appleman and I collaborated on. Unfortunately, I'm not finding this in my own vitae to try and confirm exactly where this appeared.
Q. Do you recognize it, though, to be something that you participated in writing?
A. It certainly looks familiar.

MR. O'BRIEN: And now he's expecting the royalty.
Q. I just need to know whether you wrote it or didn't.
A. It's all materials that are familiar to me.

Where it was -- you know, whether -- whether Bob put my name on this without really consulting me in detail, I couldn't say without trying to confirm more where it showed up or look through it in more detail.
Q. Well, I mean --
A. It's been quite a few years ago now.
Q. I would just simply like to know whether you acknowledge that this is something that you coauthored with Appleman or not, and I -- You're going to be able to get a copy of it. Can you review it in more detail

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

1 and just simply give me an answer to that question?
A. Certainly.
Q. All right. I wanted to read for you --
A. What was the exhibit number on that, please?
Q. 324. And there's a section about field observed responses. Okay? And there's a whole list of them that come from Williams in '76, Appleman and Cloud 1978, Fairbank in '77, Lillemars, Surbrook in '80, Jones in '81, Kirk and others in 1984, Stevens in '82 and White in 1981. Okay? And some of those things are, one, intermittent periods of poor production, unexplained poor production, increased incidence of mastitis, elevated somatic cell count, increased milking times, incomplete milk letdown, extreme nervousness while in the milking parlor, reluctance to enter the milking parlor, rapid exit from the parlor, reluctance to use water bowls or metallic feeders, altered consummatory behavior such as lapping of water from the watering device.

Are those all things that you agree that you've seen from your own field observations or have seen in the literature?
A. Yes.

MR. BIRD: All right. Thank you. I'm done.

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

		Page 208
1	And, thereupon, the deposition concluded at	
2	approximately 4:47 p.m.	
3	-- -	
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		

JANE ROSE REPORTING

 1-800-825-3341| | Page 209 |
| :---: | :---: |
| 1 | CERTIFICATE |
| 2 | State of Ohio |
| | SS: |
| 3 | County of Pickaway |
| 4 | I, Kendra Johnston, Notary Public in and for |
| 5 | the State of Ohio, duly commissioned and qualified, |
| 6 | certify that the within named ROBERT J. GUSTAFSON was by |
| 7 | me duly sworn to testify to the whole truth in the cause |
| 8 | aforesaid; that the testimony was taken down by me in |
| 9 | stenotypy in the presence of said witness, afterwards |
| 10 | transcribed upon a computer; that the foregoing is a |
| 11 | true and correct transcript of the testimony given by |
| 12 | said witness taken at the time and place in the |
| 13 | foregoing caption specified. |
| 14 | I certify that I am not a relative, |
| 15 | employee, or attorney of any of the parties hereto, or |
| 16 | of any attorney or counsel employed by the parties, or |
| 17 | financially interested in the action. |
| 18 | IN WITNESS WHEREOF, I have set my hand and |
| 19 | affixed my seal of office at Columbus, Ohio, on this |
| 20 | 5th day of February, 2007. |
| 21 | |
| 22 | Kendra Johnston, RMR, RPR, and Notary Public in and for |
| 23 | the State of Ohio. |
| 24 | |
| 25 | My commission expires July 14, 2007. |

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007
Robert Gustafson, Ph.D.

		Page 210
1	ACKNOWLEDGMENT OF DEPONENT	
2		
3	I, Robert J. Gustafson,	
4	do hereby certify that I have read the	
5	foregoing pages and that the same is a	
6	correct transcription of the answers given	
7	by me to the questions therein propounded,	
8	except for the corrections or changes in form	
9	or substance, if any, noted in the attached	
10	Errata Sheet.	
11		
12		
13		
14	Robert J. Gustafson	
15	Signed this ___ day of ___ , 2007.	
16		
17	---	
18	ERRATA	
19	---	
20	PAGE LINE CHANGE REASON THEREFOR	
21		
22		
23		
24		
25		

JANE ROSE REPORTING 1-800-825-3341

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

			Page 211
1	---		
2	ERRATA		
3	---		
4	PAGE LINE CHANGE	REASON THEREFOR	
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			

JANE ROSE REPORTING 1-800-825-3341

District Court - Minnesota Siewert v. Xcel Energy

FINAL - January 29, 2007 Robert Gustafson, Ph.D.

		Page 212
1	NOTICE TO READ AND SIGN	
2		
3	A copy of this deposition transcript	
4	is being provided to counsel for the witness	
5	by JANE ROSE REPORTING for signature.	
6		
7		
8		
9		
10		
11	JANE ROSE REPORTING 74 Fifth Avenue	
12	New York, New York 10011 1-800-825-3341	
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		

A	addition 100:11 118:2		apologize 14:23 35:16	
ability 201:13				asking 13:19 19:2
1-20:3	53:12 156.5			
50:23 53:1 59:3	additive 127:22	:15,16	48:15	155:17
(2)	ad	通	130:6,20 183:8	
:14 168:25	addressed 66:14,1	$\text { al 30:1 } 37$	APPE	asks 133:15 135:2
8:12 182:20,22,25			app	aspect 39:21 20 205:3
5:1 206:24	adequate 171:8,11	$\begin{gathered} \text { Aneshansley 33:15,16 } \\ 34: 235: 2238: 10,12 \end{gathered}$	App	aspects 11:4 $18: 9$
olutely 48	ad	$34: 4174: 151$	207:7	6:
absolutely 48:11 76 168:16	ad	5:5,13 181:11,		
tract 3:13,15,17	adopted 139:4 1	5:7	application 105:8	sign 177:8,25
4:20,25 92:15	Adrenalin $38: 19$	Aneshansley's 176:11		associate 7:8 25:17
:5 38:21 111		5:5 38:17 60:15	Applications	177:9,9,20 178:1,13
3:24 115:1 147	se 66:4,17 81:25	16,20,21 61:2,4	applied 25:25 26	8:17,21,22
91:15,17,20,22,23	Advisors 4:11 6:10	4:25 66:9,25 67:13	38:13 127:7	ciated 25:13
1,14,18,24	0:12 81:9 138:3	68:17,24 70:13 77:7	apply 74:2 127:10	1:21 63:24 64:4
193:1,2,3,9,12,21				
:3 206:2	Advisory 50:6 138		ach 154:25	8150
55:20 65:1 73	$\begin{aligned} & 41: 18 \\ & 84: 7,8 \end{aligned}$	1:17 103:16 105:7	1:15,17 192:17	association 41:23 116:23 117:4,7,20
	af	107:2,10 114:9	approaching 151:10	ciations 42:13,17
$2: 11,16$	155:24 156	11:17 135:3	7:1010	assume 89:10 93:9
acceptance	affirmative 56:5	38:23 140:15 141:6	appropriately 190	5:24 105:13 106:14
ed 62:10 71:2	affixed 209:19	:315	approval 178:23	10:6 165:16 167:9
16	aforesaid 209	6:4,7,11 159:2	approve 17	3:20
Accepting 133:1	ag 7:10 137:13	:23,	approximately 2	assuming 15:
	ago 39:12 41:9 206:21	173:17,18 181:17,19	approximatio	:8 78:1 86:19
184:2	agree 29:8, 19 30:16 54:20 69:6 73:8 9	$\begin{aligned} & \text { 183:12 184:15 } \\ & \text { 188:15 191:16 } \end{aligned}$	April 4:22 9:14 129:18	$\begin{aligned} & \text { 105:9,9 155:2 } 162 \\ & 166: 17188: 7 \end{aligned}$
unt 115:2		18.15	-132.10	,
	8:5 131:24 134:17	animals 4:13 6:19 67:3	28:18 33:9 36	2 74:15,
rate $56 \cdot 1523$	44:18 167:18,23	3:15 91:5,7 102:19	0:21 46:21 59:4	6:4 188:9,1
130:13 139:5	207:20	102:21 103:4,4,9,23	7:21	0:15
187:10	agreeable 6:23 80:13	103:25 104:1 107:12	151:3,6,6,13 154:6	
evable 8	agreed 6:11	0:4 122:21	1:14,15 183:1	57:15,1
acknowledge 31:18	agricultural 7:21 9:9	122:25 123:1 126:22 133:19 183:14	areas 203:22	attempt 118:1 132:5
206:23	$25: 2134: 1446: 17$			mpted 98:9 132:13
KNOWLEDGMENT		180:	arrangements 22:8,11	68:13 85:2
210:1 acquired		a	arrived 43:18	attend 20:22
$\text { act } 46: 1$	ahead 19:21,24 35:16		article 3:11,23 18	
179:20	air 113	4132	19	orney 2:2,6,11 41
41:6 82:25	Al 139:19,20	41:15 156:24,25	91:17 140:23	209:15,16
12 186:13 187	1-2	167:6 174:16 175:2	17	ys 135:16
:8,19 190:9,17	allow 31:2	7:	articles 12:13,20	ute 1
209:17		answering 142:8	13:11,13,14 26:25 27:13 65:20 89:25	
$\begin{aligned} & \text { 46:20,20 } \\ & 8170.6 \end{aligned}$	amend 145:14 185:18			$90: 6 \text { 166:13,19 }$
	4:24	answers 19:4 210	ASA 25:20 26:23	178:6 180:1
94:2 115:11 155:25	amending 198	171:319	26:16	authored 166:18
22.4	American 25:21 26:14	171:3 196:21	48:4	:13 31:16
39:17 63:3 14		cipated 102:	AE 90:17,18 176:11	7,11 88:9
added 51:768:19		anybody 20:18 100:3 139:12	$\begin{aligned} & 18: 22 \text { 20:9 } 26: 9 \\ & 34: 2441: 16,20 \end{aligned}$	
186:16	ampere $72: 10$ amperes $72: 7,8,13$	$\begin{gathered} \text { 100:3 139:12 } \\ \text { anymore 197:1 204:18 } \end{gathered}$	$\begin{aligned} & 34: 24 \text { 41:16,20 } \\ & 53: 1780: 25 ~ 150: 6 \end{aligned}$	available 18:8 29:24 50:18 122:8 126:5

135:25
Avenue 2:3,12 212:11
average 115:9 118:24 119:21
aware 28:7,11 40:22 52:4 93:23 136:13 137:25 139:7 144:25 145:18,21,22,25 149:25 171:2 190:1 202:24 203:5
axis $84: 13$
A-n 60:22,23
A-s 60:24
B
back 15:4 17:20 19:10 19:22 25:3 39:5,25 40:10,25 41:2 42:6 45:4,22 46:23 51:8 51:13,15,23 52:1,12 53:20 58:23 59:23 67:20 69:17 70:20 73:17 77:20 78:21 78:23 84:4 85:15 86:10 90:3,14 98:21 98:23 100:9,24 106:2,14 107:13 114:16 117:11 118:22 123:18 132:15,19 133:4 142:3,7 152:12,15 154:15 159:3,10 162:13 165:3 173:8 176:16 177:17,22 178:19,23 180:14,18 185:20 187:18 195:7 196:15 205:2,9,14
backs 32:20
bad 110:21 132:23
balance 169:17,22,24 170:1,2,4
ballparkish 204:12
bare 163:15
barn 56:18 57:23 58:8
152:7,8 154:6 203:18
base 148:20
based 10:5 29:18 32:2 32:19,23 36:8,22 37:2 38:2 71:8 96:15 99:8 101:1,5 105:5,7 105:24 106:1,3,6,7 119:5 137:16 148:3 148:19 151:14 153:12 157:18,20 164:14 196:24 197:7 198:14
baseline 127:19
bases 33:21
basic 168:22
basically 130:4 149:12 161:9 179:17
basis 50:18,22 52:20 53:1 151:12
battery 77:14 156:15 186:22 188:17,19
began $47: 2$
beginning 47:3 149:13
behalf 2:5,10,14 43:3 44:9,24
behavior 39:1 64:25 103:1,4,16,17 104:2 207:18
behavioral 4:18,20 5:4 61:4,7 62:4 63:4 64:10 83:17 84:1 102:16 104:19 107:23 108:15 110:1 151:8 196:11 206:1
behooves 179:23
Behr 182:9
believe 9:24 13:1 17:13 18:2 23:1,6 32:16 37:24 39:19 40:5,16,18 43:4 45:19 47:21 48:4 50:19 64:6 66:22 73:21 74:1 75:11 82:25 89:8 122:1,5 122:25 130:25 131:8 134:1 140:18,21 167:3 191:1 192:6 192:25 204:16 205:10
belong 27:21
Beltsville 33:10 34:2
benefit 190:8
best 29:24 38:4 45:10 79:1 130:12
better 37:13 87:22 110:17 120:9 124:21 159:15
beyond 199:25 200:1
bibliographies 12:24
bibliography 12:12,21 13:9 14:4 31:8,14 36:9 37:22 40:1 88:22,23,24 89:7 117:3 175:20
Bierbaum 139:18,19 139:19
bill 22:22 34:20
biological 7:11 25:22 46:17
Bird 1:21,22 2:2,2 3:5 6:7 7:5 8:24 9:2,5,12 10:12 18:25 19:3,6 42:23 47:18 49:3

75:12,15,18 80:21 81:5 91:15,20,25 109:19 118:7,15,20 129:14 138:9,13,15 139:17 149:6,15,23 150:14 152:22 153:3 155:19,22 156:24 157:3 158:8,11,15 158:17,20,21 159:8 159:12,15,19,21,24 160:20,22 172:11,15 175:24 190:19,24 191:3,6,12,13 192:9 192:13 194:6,10,15 194:21 195:3,7,9,22 205:18,24 207:24
bit 25:11 38:1 41:1 74:25 76:2 78:24 87:14 98:11,22 112:16 124:8 125:16 127:3,6 130:9 153:5 164:19 201:7 204:2
blind $30: 13$
Blockade 38:19
board 25:16 50:6 138:4,5
Bob 206:16
Bodman 4:23 129:17 130:7,14,22 131:7,9 136:20 137:11
body 40:6 67:13,14 68:3,14,16 70:21,23 70:25 72:22 73:10 73:14,16 74:23 76:14,15,21 78:25 79:5,7,9,14,17 80:6 80:15 85:7,11 86:16 87:10,12 89:4,6 94:11 95:3,9 97:17 97:22 98:1,5 116:10 119:12 121:14,21 197:23
bond 165:4
bonded 78:2 156:8
book 6:16 8:9 12:21
13:9,15 14:4 15:11
16:22 17:19 27:2
28:20 30:23 31:9
34:8, 12 36:3 37:18 37:23 46:24 50:8,11 67:23 71:5,7 77:1 83:4 117:2 126:3
130:24 136:6 142:25 161:1 166:7,8 169:16 175:6 183:8 197:13
bothered 143:7 bottom 89:20,21,24 103:2 158:13 160:8

191:8
bowls 38:21 207:17
box 2:8 16:13 163:14 165:4
boxes 163:12
boy 183:19
break 9:2 118:8
breed 66:24 121:14
brew 109:10
Brian 46:8
bring 14:11 38:9 41:11 115:7
brought 10:4 13:24
53:24 183:15
bucket 147:1 187:5,9
191:8 193:10 194:13 194:19
bulk 20:8
bunch 169:20
business 11:21,24 22:7
bypass 80:3
C

C 6:1

Cableman's 60:11
calculate 69:17 72:17
75:6 100:19 155:10 163:4
calculated 101:8 106:3
calculation 105:10 153:13 155:5
calendar 19:23 42:11
calendars 42:6,8,9 45:4
call $9: 3,5$ 22:24 23:1 43:12 54:2 57:21 59:6 80:24 110:13 112:24,25 113:5,11 113:22,25 162:21 163:10 174:15 175:1 183:13
called 6:18 9:15 26:2 26:18 30:7 113:16 114:22 144:11 206:1
calls 15:17
campus 91:4
capability $161: 15,22$ 162:9 184:14
caption 209:13
capture 68:13
care 164:4
careful 27:20 59:17
72:15 80:2 189:20
carefully 51:17 54:19 161:18 193:17
cart 109:12
case 1:14 9:22 10:1,14

11:4 18:1 19:15 28:22 30:1 43:2,14 43:15 44:8 45:2,12 45:20 47:13 53:2
74:1 75:10 84:6,14 84:23 85:10,13 86:9 86:19,21,22 87:1,15
87:21 88:25,25 93:6
93:10 95:14,19,25
96:1,3,6 146:16,22
147:11 154:8 163:5
165:16 171:1 184:3
185:24 186:24 199:8
cases 41:3 42:19,20
45:8,15,18,25 48:5
107:5 115:18 132:2
137:24 165:16,23
172:4
categories 127:24 128:1
category 127:22
cattle 4:18,21 38:20 121:14
causal 64:25
cause 12:16,16 60:15 109:10 168:9 209:7
caused 64:21 171:12 197:21
causes 55:8 61:22 63:6 65:15 124:1
causing 64:11
caveat 63:3
ceiling 115:8
cell 186:6 187:1 189:23,25 190:2,6,8 190:16,23 191:2 207:13
centuries 71:19
certain 8:10 49:18 66:3 77:14 110:5 153:18 202:6
certainly 16:24 23:16 28:6 30:17,20 31:13 42:16 46:4 50:5 51:1 51:17 59:17 62:9 66:7,13,18 68:7,23 69:5 71:1 76:13 79:8 82:2 84:5 89:20 90:1 104:14 108:7 110:19 115:16 116:6 118:1 118:5 126:4,10 129:7 131:19,24 141:24 142:10 151:5 153:16 174:14 183:5 201:12 206:10 207:2

CERTIFICATE 209:1

certified 7:2
certify 209:6,14 210:4 challenge 132:17

182:15
challenging 131:14 134:9
chance 39:14 66:19 92:1
change 9:10 74:21 102:18,19,20 103:3 103:9,22,25 104:1
113:6,9,10 161:5 164:14,24 165:6,8 165:11,13 185:20 197:21 210:20 211:4
changed 186:17 188:23 191:7 203:1
changes 111:19,21 112:23 113:3,7 152:3 164:23 179:12 185:25 186:2 210:8
changing 165:7
chapter 88:8
characteristic 67:12 143:12 165:9
characteristics 77:16 115:17 116:7 170:15
characterization 8:12
characterize 30:24 112:2,2 178:7
charge $11: 13,16,19$
Charles 1:21 2:2 140:4
chart 31:22,23 32:17 32:19,25 84:5 85:7 86:2,10,11 87:25 88:1,17 101:1,4,5,18 101:19 102:11 103:12,19 104:6,7,9 105:5,24 125:10 126:1,3,12 133:10 134:15,23 135:20,23 136:6,13 137:2,3,6 142:24 143:1,4 156:17 162:3
charts 115:23
check 16:24 17:1 19:10,23 40:10 172:10 183:3
chemical 186:25
circuit 58:16 68:8 76:18,25 77:10 78:22 81:17 84:14 84:16,19,22 85:9,20 86:3,7,12,17 152:14 153:14 154:5 155:8 156:3,10 162:22 163:3,13 164:10 165:2 189:1,2,18,24 191:19
circuits 58:17 circumstance 99:17 circumstances 48:1

68:24 116:14 cited 16:11 46:24 89:25
CIVIL 1:2
Claire 2:8,12
clarify $18: 21 \quad 23: 19$
class 7:18
classes $7: 15,17$
classification 29:19
clear 14:1 36:6 84:10
89:1 132:9 153:2
clinician's 29:23
clips 75:23
close 56:18 69:13
79:22 80:14 116:23
117:4,7,20
closer 56:9
Cloud 200:15 204:12 207:7
coauthored 206:23
coauthors 35:24
code 165:5
cognizant 28:8
collaborate 47:4
collaborated 8:10 206:5
collaboration 8:7 20:2 20:4 200:15
colleagues 20:10 46:18 137:11 173:19
collected 71:8 101:6,6 119:4
collective 32:10,20 33:24 36:10,17
College 7:10 34:13
Columbus 1:20 11:20 209:19
column 89:21,24 103:20,21 105:14 161:2 176:2
combination 29:22 62:15,23 69:9 84:16 85:21 89:4 94:23 121:20 161:3
combinations 76:10 94:15
combine 37:21
combined 31:3 163:3
combines 30:9
combo 76:2 98:16 119:11
come 17:5 24:4 39:16 45:22 53:11 55:14 55:17 56:16 60:9 61:3,14 63:4,13 73:22 87:23,23,24 115:10 123:18 135:1 136:10 137:22 148:23 165:3 166:19

177:17 178:4,23 181:8,9 195:7
197:17 203:3 205:14 207:7
comes 25:10 60:16 178:19
comfortable 59:25
76:20 105:1 110:2
183:4 197:1
coming 26:25 31:5 56:13 78:18 79:4 82:20 193:12
comment 150:18,19
commented 173:9
comments 21:15 184:25
Commercial 23:25
commission 6:11 82:20 83:2 129:20 130:18 139:10,13 172:17,20 184:5 209:25
commissioned 209:5
committee 122:15 141:18
committees 24:12
common 27:13 62:9 67:10,16 93:2 94:13 94:21 99:10 104:15 116:16
commonly 61:21,23 71:4 116:22
communication 20:11 20:13,14 23:12,15
communications 14:12,17,22,24 20:18
community $28: 12$ 54:25 55:6 62:22 66:3,10 131:23 136:8 146:24 180:6 184:23
companies 42:14,15
company 41:22,23 169:23
compare 121:8
compared 99:5
comparing 28:4
competent 154:22
competently 168:25
compiled 149:14
complete 78:22 182:23
completed 15:7,22
completeness 78:20
component 85:11 151:9 191:24 192:24 193:1
components 84:18
comprehensive 13:10 13:12
computer 209:10
concede 134:23
concept 76:25 78:24
conceptually 135:13
concern 140:19 143:5 143:10,23
concerned 134:14 143:17,18
conclude 129:1
concluded 55:6 57:9 58:14 208:1
conclusion 55:14 62:24 64:19 65:4,22 89:9 140:22 160:9
conclusions 54:17 67:4 184:4
concrete 116:24 117:5 117:8,21 187:22 188:8,11,12 189:4 203:19,22
concur 37:15
concurred 88:14
condition 62:24 75:3
84:23 87:21 93:10 95:13 96:1 110:3,9 117:23 203:2 205:1
conditioners 113:2
conditions 58:22 61:22 63:4 76:8,13 79:3 80:10 85:10 86:9 87:6 89:2 93:8 94:21 99:6,8,9 100:4 104:19 119:1,18 120:2,10,19,23 121:25 122:4 125:13 125:15
conductivity 167:15
conductor 171:16,25 191:8
conductors 189:10,15 conference 15:17 22:23 23:4
conferences 11:11 15:13
confidence 125:23 126:15
confidential 180:25
confidentially 181:1
configuration 192:19
configurations 87:4
configure 115:19
confirm 134:5 152:15
155:14 161:13,19,21
175:8 205:8 206:6 206:18
confirmation 18:4
confirmed 134:2
confused 87:15 123:4 126:19 153:5
connected 163:11 203:23
connection 17:25 26:19 31:12 44:3 55:25 56:8 57:14,20 58:4 59:1 64:9
connections 173:23
consciously 181:24
consensus 88:2 99:2 126:6
conservative 196:22 197:1,2
consider 48:10 131:21 168:23 182:6
consideration 161:9
considered 24:8 25:8 29:25 31:11 123:21 128:24 131:14
considering 162:3
consistent 134:22 136:10 157:22
constant 111:15 113:13 114:10
constructed 204:8,8
consultant 46:1
consulted 200:21
consulting 201:5 206:17
consummatory 207:18
contact 18:4 22:14 28:3 56:19,21 58:22 59:4,11 60:16 68:6 68:14,18,19,20,23 68:25 69:4,12,23 70:4 71:1 76:16,23 77:7,19,25 78:8,10 78:12,17,18,24 79:1 79:8,10,11,16,21 80:8,12 81:24 85:2 86:4,16,16 89:4,6 94:6,11,14 95:14 96:6,23 97:3,7,8,17 97:18,22 98:1,4,10 98:11,17,19,20,22 99:17 100:3,11,13 100:16 106:23 107:8 116:17,20 117:3,18 117:19 119:1,11 120:9,17,22,24 121:2,3,5,20 153:19 156:13 161:3,7,8 162:20,20 168:7,8 184:15 186:14,21 198:13 199:16 201:7 201:9,13 202:12 203:14
contacted 17:25 18:2 22:21 70:2
contacting 23:18
contacts 97:25
contagious 109:6
contained 71:22
contention 140:13
contents 28:20
context 11:9 38:9
contexts 175:9
contingencies 51:8
continually 109:15
continue 66:14 196:16
continuing 109:13
contracted 138:21,22
contrary 181:25
contrasted 81:17
contribute 20:10 34:24 64:12 65:2
contributed 20:9 36:2
contributions 78:16
contributor 34:15
contributors 36:2 38:7
control 30:15 80:11 156:4 205:1,3
controlled 33:4 106:8 106:10 141:6
controversial 136:7,9 168:17 181:23 182:7
controversy 131:16
conversation 23:11 35:1
conversations 52:23
conversion 105:6
convert 71:10 87:19 106:14 158:23
convince 187:2
convinced 74:19
coordinating 20:20
copies 6:14 12:13 14:12 130:4
copper 188:23,23 189:10,14,14
copperweld 170:21 171:6,13,19
copy 20:17 22:4,5 84:11 129:23 130:13 130:16 131:1 138:13 172:22,24 206:25 212:3
Cornell 33:8 133:17 174:6 181:10
corporation 41:22
correct 6:24 9:17 10:2 10:19,20 15:12,14 15:15 17:9 19:16 22:15,16 24:9,17 29:3 32:2,4 33:17 34:2,3 43:11 44:6

45:20 48:20,21 49:10,11,13,20,21
53:21 55:1 57:4,7,10
59:12 62:17 63:7,19
64:17 65:13,16,25
66:21 69:10 71:6
72:19 77:8 81:22
82:14 83:21 84:8
90:7 92:19,23 95:8
95:11 96:10 98:3
99:15 105:4 107:25
114:5 116:19 117:1
117:24 118:19
119:19,24 122:1
124:23 125:22 127:9
129:4 130:10,25
132:21 133:11,14
135:6,7 140:6
142:21 143:2 144:4
144:12 145:10,13
146:25 147:4,9
148:1,5 150:3
153:24 154:2 155:13
157:7,19 159:1
164:9 166:2 169:18
169:25 170:7 178:11
179:8,17 181:1
183:10,21 184:23,24
186:7 188:5 190:3,4
192:1 193:4 196:5
197:12,14,20 198:18
200:3 202:7,10
204:11 209:11 210:6
corrected 9:10,11 123:6
corrections 152:2 210:8
correctly 24:6 60:19 96:14 185:8
correlate 126:2
correlates 125:21
corresponded 22:17
correspondence
14:12 15:8 16:1,7 17:22
corrosion 190:13
counsel 6:11,23 19:4 41:5 209:16 212:4
count 207:13
counterintuitively 120:9
County 1:1 209:3
couple 21:13 40:11 41:9 43:22 114:16 145:5 173:4 174:5,9
course 8:14 22:7 42:18 46:18 63:3
court 1:2 29:3 32:9
courtroom 31:24

136:3
courtrooms 135:17
cover 4:11,13,15 6:12
6:21 8:24 9:6 40:5 40:13 138:10
cow 28:3 33:2 56:19
56:21 57:2,12,14,18
58:1,4,6,10,21,24
59:4,10,11 61:10
63:11 66:23,23
67:10,19 68:2,14
69:2,8,25 70:8,18,25
72:23 74:23 75:1,25
76:1,9,14 77:24 78:9
78:12,25 79:25
80:16 83:18 84:25
85:1,8 86:4,6,12,15 86:16 98:15 106:18 106:21,22 107:8,8 108:3,3,4,5,9 123:10 124:1 128:8 155:25 156:13 161:4,7,8 162:20,20 165:24,25 167:19,21,22 168:7 168:8,11,12 187:14 187:20 192:15 195:12 196:10,14 198:13 199:16 201:10,12 203:11,18 205:11
cows 3:23 27:25 39:2 52:9,13,20,22 54:7,7
54:12 55:24 61:11
62:14 70:11,15 73:9
73:13,22 74:6,16
83:12 87:8 89:2 90:9
90:24 92:4,10 93:16
93:17,21,24 94:2,4
94:14,22 96:2,6
97:21 99:10 100:4 107:13,23,23 108:2 108:6,7,14,14,25
109:13 116:10,17,20
117:19 119:13 123:2 123:3,6,12 124:15 127:15 129:1 133:16 133:24 134:2,10
141:4 144:14 160:16 173:5 174:6,9,21
196:8 202:25 203:5
cow's 202:1,9,17 204:3
co-op 41:23 42:16
co-ops 42:13
create 13:15 58:11 59:1,3 67:17 106:21 133:9 138:17 147:7 150:24 162:9 168:12 169:12 184:19

189:18 190:16
created 36:8 88:13
100:8 122:6 139:21
187:13 188:19
creates 195:17
creating 160:10
184:14 186:5,21 193:18
credibility $37: 11$
credible 13:2,21 14:9 14:19 27:8 28:20
29:4 33:23 37:2,5
48:10,19 49:6,7,19 51:3 65:23 74:16 136:13,18,20,25
137:1 148:9 149:2
criteria 27:14
critical 101:15 107:2 130:23
criticism 136:12,16
criticisms 137:2
criticized 136:17
cross 160:16 Crudely 204:25 cup 60:14 155:11 current 7:6,8 11:13 38:17 41:17 55:24
56:7,17 57:25 58:1,3 58:6,19,21 59:10 60:15 64:3,9 65:12 65:14,18,24 66:4,4,8 66:11,16 71:11 72:2 72:5,13 75:4 76:11 77:15 78:10 81:8,9 81:14,15,20,21,24 82:1,4,10,12 83:13 83:15 87:18 96:15 96:17 100:7,8 101:7 101:8,10,16 102:21 103:10,25 105:3,4,6 105:11,16,18 106:1 106:2,3,7,11,12 107:2,15 109:1 114:8,8,9,20 115:8 115:11 122:19 123:20,23,25 124:3 124:9,20,22,25 126:23,24,25 127:11 127:12,14 135:3,5 147:3,20 150:2 156:4,6,10 158:24 158:25 159:2 161:14 161:19,22,23 162:9 164:8,14 165:24 166:1 167:19,21,22 167:24 168:3,4,6,10 168:12 169:11 171:9 173:4 184:3,6,18,18 187:22 188:13

191:16,20 192:14,18 193:10 194:19
205:12,13 206:2
currently 7:18 25:15
68:10 151:15 172:3
currents 3:16 4:19,21
5:5 39:3 191:17 196:12
curriculum 3:9 13:2
curve 74:8,9
cusp 102:16
customers 169:20
cut 155:17 202:8,11,13
CV 41:14,18
cycle 111:8 113:20,20 113:24,25
cycles 113:24,24 115:1
C5-04-498 1:14
D
D 3:1 4:1 5:1 6:1
Dagenhart 47:17,19 47:20
dairy $4: 15,18,20,24$ 9:13 12:17,17 26:13 38:20 40:18 67:10 72:23 73:9,13 74:15 74:23 99:13 100:4 116:10 141:4 175:23 176:3,4 183:15 196:8,10
Dangerous 3:16
data 17:3 23:14 27:17 29:24,24 30:18 31:19 32:3 34:7 36:14,18 37:21 38:7 40:9 41:10 43:22 50:18,19 51:9,10,14 51:25 52:15,21 54:8 54:11,12,18 67:2,4 67:18,20 70:20 71:7 71:8 73:17,21,24 90:15,20 100:6,25 101:6,6 115:4,5 119:4 122:6,8 126:4 128:9 129:5,8 132:13,16,23 133:3 134:14 135:1,4,14 143:25 144:6 153:20 154:16 157:11,13,15 157:18,20 158:4,7 158:22 180:17 190:18,20 193:25 194:2,3 195:1,4 database 52:15 date 18:5 40:23 146:15 dated 6:11 129:17 dates 19:10
day 11:19 209:20 210:15
days 42:5 43:22 141:11
dba 1:6
DC 5:5 191:17,22,24 192:3 193:2,2,5 206:2
dead 156:15
deal 36:21 39:6 79:18 115:16
dealing 110:24 116:15 164:11 189:11
deals 38:14 39:9 81:15 81:17 167:7
dealt 11:3 34:15,16 109:24 138:23
Dean 7:8
debate 57:6 66:3,10 71:16 81:19 95:4
deceased 183:6
December 19:11
decide 80:6
decision 178:16 179:11
decline 106:16
decrease 70:1 171:18
deeper 90:3
defecating 61:12
Defendant 1:12 2:10 2:14
defense 135:16
deficiencies 116:2
define 60:2 76:20
defined 60:12 113:18
defines 60:12
Definitely 27:12
definition 60:3,4,9 84:19 162:4,5 164:7
definitional 111:3
definitions 112:15
delay 118:21
delight 48:6
delta-open 169:4,9
demand 170:10
demonstrate 147:7 150:23
Denis 172:14
Department 6:17
depend 202:15
dependent 79:8 164:22 167:14 171:23
depending 56:18 81:25 82:2 104:13 104:18 108:22 109:23 149:8 168:8 171:8 193:23 204:7
depends 92:6 203:21
depo 81:1
DEPONENT 210:1
deposes 7:3
deposition 1:17 3:21
10:23 39:14 41:2,4 66:20 149:13 150:4 155:21 159:6,10 201:8 208:1 212:3
depositions 11:17 132:2
depth 201:22
derives 29:17
describe 18:19 55:11 58:18 161:18
described 30:22 31:4 77:5 121:22 168:1 184:13
describing 57:15 58:17 74:12 80:3 136:11
description 56:15,24 59:18 75:21 135:12
design 168:21,23,24 200:23 204:21,22,22
designed 30:10
designing 82:15
desired 180:3
destroyed 174:22
detail 10:19,21 25:12 53:15 206:17,19,25
detailed 135:11
details 34:21 38:3 137:24 138:7 173:7 179:21
Detect 6:19
detected 163:9
determination 52:14 191:20
determine 98:6,8 106:10 203:1
determining 82:3
develop 27:19 126:5 188:14 200:19
developing 37:4
development 14:25 18:10
developmental 15:23
deviation 119:23 133:3
deviations 126:8
device 162:23 200:6 207:19
devices 115:12,15 116:3
diagram 153:17
died 183:8
differ 76:6 131:23
difference 66:22 99:3 99:4 111:10 112:13

119:25 120:5,22
121:1,1,3,4 128:1,10
128:16 153:15 156:5
160:2,6 163:25
165:23 167:20 169:1
184:14 187:21 200:9
202:11,13,19
differences 28:7
127:23
different 27:25,25 28:1
28:2 29:12 40:11
47:8 48:8 54:14,16
67:2,6 75:24 76:3,23
78:15 80:3 85:5
113:21 114:14,17
121:13 122:25 123:1
127:21 130:5 132:16
144:4 155:4 158:7
162:12 165:16
170:23 175:9 189:1
189:11,12 202:2
203:22
differential 78:13
168:11 184:19
187:12,13,19 188:8
203:17
differently 159:7,14
difficult 56:4 169:21
difficulty 56:14 64:18
dig 90:2
digging 141:19 144:15
digital 17:3,11
directly 12:2,3 64:7,25 81:18
disagree 34:5 134:16 187:4
disavow 74:17
disconnected 157:9
Discontinuous 38:12
discount 93:12
discounted 93:15
discussed 22:13 77:1 149:20 186:3
discusses 117:3
discussing 29:14
discussion 13:20 21:14 185:9,10,15 185:20
discussions 134:1
disease 61:19 63:24 108:12
display 32:24 74:20
displaying 143:3
dispute 44:5
dissertation 122:15
dissimilar 186:14,20 188:20,21 189:17 190:9
distance 76:3 167:14
distinct 196:8
distinction 81:6,11
distinguish 81:14
distributed 184:18
distribution 3:15
92:20 113:8 168:21
DISTRICT 1:2
division 1:2 25:18
26:23,23 27:1 176:17 177:8,15,18 177:22,25 178:12,25
179:15,24 181:6
document 4:8 6:15 15:22 51:18 55:11 147:1,6 150:7,9,21 152:24
documented 83:25 84:2
documenting 10:16
documents 10:3,14,17
11:2,17 12:14 13:1 14:4 147:13
doing 27:12 28:6,17 31:3 35:14,19 38:1
42:7 46:18,23 54:10
58:12 63:15 68:21 73:6 74:22 95:22 110:10 114:4 115:18 145:16 146:12
160:19 179:19 186:5
191:23 201:5 204:14
domain 27:13 102:15 161:7
dotted 101:21 146:19
double 105:12
doubt 17:21 91:9
Doug 47:7 177:2
Dr 12:22 13:23 14:6,8
46:10 80:22 87:15
118:21 122:9,16
132:20 138:21
140:19 141:15 142:9
142:15 183:5 200:24
206:5
draft 19:19 88:10
drafting 20:20
dramatically 67:5
165:6
draw 67:4
drawer 16:14
drawing 64:19 81:7
Drenkard 38:25
DREW 2:11
drinking 60:14 117:22
drop 75:6 100:8
101:11
dry 69:5 75:25 79:3
96:24 118:25 119:15
120:2,5,10,18,25

121:6 122:4
due 102:18,19,20,21
103:3,4,9,10,16,17
103:22,24 123:20
187:3 190:9
duly 7:2 209:5,7
duration 111:4,4 113:17

E 3:14:15:16:1,1 210:18 211:2
earlier 71:11 90:21 96:15 129:6 184:13
early 17:20 67:9 195:14
earn 12:1,4
earth 3:23 55:24 56:3
56:10,11,13 57:25
58:1,7,13,20 77:23 81:8,8,14,15,20,21
147:20 167:5,10
168:3,4 184:3,6
193:23
easiest 57:13
eating 117:21
Eau 2:8, 12
editor 25:17 26:23 176:17 177:8,9,9,15 177:18,20,22,25 178:1,12,13,17,22 178:22,25 179:15,24
181:6 182:19
editorial 25:15 26:6
educating 135:25
Education 7:9 26:14
educational 135:24
effect 66:17 69:1 70:5 109:11 170:5 172:1 183:14 203:10
effects 4:13 6:18 38:11,12,16,21 39:7 66:5 81:25 108:25
eight 49:24 101:23
103:13,13 105:20
132:7 140:22 141:16
either 8:8 19:4 46:2 52:5,19 157:1 166:18 182:19
Ejection 38:20 39:8
electric 83:13 102:21 103:10 186:24
electrical $4: 13,19,21$
6:18 11:3 18:9 38:17 39:2,8 59:18 83:15 111:7 164:10,18 165:7 167:8 184:9 203:9,23
electrically $78: 1$

112:23 156:8
electricity 12:16 43:17
electronic 42:11
Electronic/Electrical 25:18
element 37:4 109:6
elements 132:16 138:24
elevated 207:13
eliminate 161:9
189:22 191:21 202:9
eliminated 134:3
embedded 90:2 97:10 100:5
embeds 31:15
employed 209:16
employee 209:15
encounter 76:9
Endocrine 39:2
energy 1:10 41:22 46:2 186:25
engaged 7:20,23 182:16 204:18
engineer 40:17 55:21 167:2
engineering $7: 10,11$ 7:21 9:7,9 26:1,2,14 95:22 136:7 164:18
Engineers 25:22 46:17
enter 61:5 107:25 207:16
entire 84:21 85:8
entirely 29:11
entitled 118:24 122:18
entity 11:21 46:2
environment 69:11 195:15
equals 72:2 121:9 122:19 153:10,25
equate 102:10,10,12
equation 189:8
equipment 63:10 115:18
equipotential $3: 11,13$ 18:15 185:4 187:6 187:14
equivalent 71:12 104:18 105:16
Eric 47:13
Errata 210:10
error 137:8 183:17,20 183:23
escape 126:21 127:2,2
escapes 126:20
escaping 126:25
Esquire 1:21
essentially 123:24 163:8
establish 65:7
established 141:4
estimate 100:9 153:20 163:21
estimated 84:13
evaluate $30: 11$
evaluated 50:4,14
51:5,7,16
evaluation 29:24
event 112:20,22,24 149:18
events 112:20 113:17
everybody 113:1
evidence 29:18
evidence-based 29:14 29:15,22 30:3
exact $88: 15$
exactly 75:22 121:18 186:1 205:25 206:7
EXAMINATION 3:5 7:4
example 15:10 52:4 57:18,19 60:14 63:9 77:21 80:4 97:6 109:5 112:21 127:24 163:11 164:25
193:21 203:6
exceed 106:24
Excel 46:2
exclude 62:6
excuse 11:19 60:11 158:5 199:16
exhaustive 30:4
exhibit $3: 9,10,12,14$ 3:17,19,21,22 4:4,6 4:7,9,10, 12, 14, 16, 18 4:20,22,24 5:4 6:3 6:16,22 9:3 10:9,13 12:9 16:22 17:8,24 18:16 19:7,20 22:13 23:11 34:9 50:2 60:7 60:8 91:12,22 92:2 92:12,16 118:12,16 118:23 125:10
129:11,16 132:19,23
134:21 135:9 138:9 138:10 140:17 146:4 146:5 150:21 185:1
185:15 186:12
191:14 195:19,24
205:21 207:4
exhibits 3:8 4:3 5:3 6:7 8:17 10:22 11:1 118:17
exist 22:1 122:6 183:1
existence 54:23 55:4
existing 59:14
exists 54:21 55:6 57:9 64:9
exit 207:16
expanded 75:2 98:11

117:10 125:16
expanding 148:20
expect 58:5 61:3 63:1
63:2 73:18 74:13
76:5,9 86:24 87:6
89:1 93:21 94:3,20
94:24 98:17 99:5
100:16,18 103:15
104:11,14,24 113:8
123:12 126:14
146:11,16 150:24
157:22 160:9 170:18 205:17
expected 147:7 149:7
expecting 206:11
experience 29:17,23
31:15 33:7,20 36:21 36:24 89:17 104:17 116:15 151:5,13
experiment 92:6,8,8,9 92:12 98:7 106:8 119:9 122:2,22 123:2 124:19 125:15
experimental 93:19 101:11 204:22
experiments 5:4 31:2 40:11 100:6 141:5 141:17 143:6 206:1
expert 30:5 46:1
108:18 131:13
137:20 151:3 168:24 183:13
expertise 183:11,16
experts $13: 5$
expires 209:25
explain 18:19 87:22 135:2 186:19 187:17 192:12 204:23
explained 88:6 186:20 explore 118:6
exploring 198:21
expose 203:7
exposed 39:2 93:22 93:24 94:3 114:9 202:12 205:12
exposure 114:4 124:2 126:25 141:2,9,10 141:13 143:10,12 144:1,5,21
express 31:21 154:22
expressed 61:9 65:11 72:5 74:11 111:22
extension 40:18 44:3 137:15 151:15 166:24 204:17
extent 72:25 78:4
extreme 163:5 207:14
e-mail 17:5,8,9,14,22 22:25

felt 13:21 33:22 82:9
field 8:14 13:5 29:12 36:21,24 37:3 52:2 64:1 76:8 80:10 89:2 89:18 93:8 94:21 95:13 99:6,8,9 100:4 117:23 131:13 134:16 145:23 147:1 148:3,19 182:7,14 183:11 207:5,21
Fifth 212:11
Figment 3:11,13 18:15
figure 76:19 80:9 84:12 95:2 125:19 125:19 126:2 127:13 133:5,20 135:9 155:18
file 16:6, 14, 16 17:11 129:25 130:1,2 176:15 180:17
files 14:22 15:4,6,7 16:17 180:21 182:24
final 1:24 4:11 6:9,9 51:19
finally 20:21 63:12 186:10
financially 209:17
find 14:18 25:2 43:17 52:13 63:18 67:16 67:19 81:1 133:23 141:20 151:24 174:16 180:14 195:12 196:13
finder 28:21
finding 68:2 124:24 206:6
findings 134:16
fine 137:7
finished 49:23 130:11
fired 71:21
firm 1:22 172:9
firmer 201:13
first 7:2 17:25 19:8,19 20:16 40:6 47:18 49:23 53:24 54:6 63:23 74:16 77:19 88:10 128:15 130:12 146:14 148:24 152:6 152:18 163:19 173:15 196:7
fit $134: 15$
five 69:20 94:16 99:21 100:22 108:11 114:21 123:15,19 124:12,16,18 125:5 126:23 128:7 134:13 160:20
floor 98:10 125:17 155:11 157:25

163:13 165:2
flow 60:15 96:17 101:17 108:7 191:16 192:18
flowing 81:15
flows 168:4
fluid 70:2
folks 31:11 117:17 182:16
follow 24:20
followed 35:2 141:17 174:8
following 21:14 46:19 146:17,18
follows 7:3
follow-up 195:8
food 7:10
fooled 48:23
foot 61:20 69:25 98:11 202:25 203:8
force 136:10 139:5 186:25
foregoing 209:10,13 210:5
forgot 41:10
form 27:18 35:12
36:19 48:25 50:21
56:1,22 58:2,25 63:14 64:22 66:6,12 68:22 74:3,18 81:13 82:23 84:6 93:7,14 93:18 108:16 109:17 115:13 116:4 120:20 135:22 136:15 140:10,20 143:9 144:2 160:18 171:14 171:20 180:1 182:11 186:15 193:13 210:8
formal 7:25 132:8 191:10
formally $8: 2$
former 7:13
forming 12:15
forms 50:18
Forster 46:6
Forster's 159:5,10
forth 15:5 185:16
found 93:11 127:1 128:5,15,19 149:14 152:1 174:8
foundation 32:16 50:22 64:22 74:4 82:24 109:18 115:14 120:21 135:22 143:9 144:3 160:18 171:21 193:14 199:4
four 36:11 41:3 53:21 77:9 84:17,18 85:21 94:19,22 98:15

102:4,5,12 104:16 104:18,21,22 106:17 106:25 107:7 117:4 117:6 125:5,6,8,9,13 128:19 133:15 134:10 151:21
frame 14:15 25:8 53:23 111:9,24 132:10
frankly 28:1 117:11 152:17 158:25
friend 35:9
friendly 179:25
front 75:3 92:2 118:18 119:16,17 120:14 121:10 125:20 126:19 127:5,10 203:19 204:4
front-rear 92:18
frustrated 98:25
full 52:6 70:13 76:18 107:14 144:11
function 76:15,16 105:3,4
fundamental 186:2
fundamentally 187:4
funded 8:3,4 46:23 47:11
further 51:4,8 70:4 126:25 140:12 149:9 190:20 199:5,22

G

G 6:1
galvanic 186:6,12,21 187:1,3 189:8,19 190:9,17 193:5
gathered 12:18 29:25
gathering 51:25
general 28:13 61:3
74:12 167:17 176:24 178:2 181:13 205:16
generally 29:1 57:13 111:6 148:17 177:8 178:21,22 180:13 189:6
geometry 203:16
George 71:20
Gerald 4:23
Gerry 129:17 131:24
getting 32:18 39:18 45:12 56:7 107:10 112:15 121:9 125:6 128:7 153:18 156:7 156:10 160:1 164:5 164:13 167:24 190:13 193:9,20
give 10:1 42:20 49:19 50:1 98:24 102:13

117:15 120:16 128:4 148:25 153:13,20
155:2,5 162:24
164:25 167:16 181:2 181:2,20 182:3,20 182:22,25 187:8 191:4 199:3 207:1
given 42:12 68:24 84:5 93:4 94:17 110:15 113:1 143:22 161:4 170:16 172:16,19 186:19 187:23
199:23 209:11 210:6
giving 49:25 172:18 190:19
go 10:6 12:1,2 13:12
14:10 19:10,22 25:3
31:8 35:16 37:22
39:5 40:10 41:1,2
42:6 43:10 45:3,22
50:9,24 51:4 52:12
56:18 58:1,3 62:2
63:20 67:20 69:17
70:20 73:17 74:22
77:20 81:6 84:12
85:15 86:10 87:2
88:22,22 89:7 98:21
98:23 100:9,23
101:20 107:24 108:2
114:16 117:11 120:4 132:25 133:4 142:3 142:7 143:7 152:12 152:14 158:8 161:1 162:13 163:16 164:8 164:8 180:14 181:13 181:18 185:20 187:18 198:23 201:3 205:1
goal 82:10,16 182:4
goes 12:3 77:24 79:25 101:22 102:4 163:8 165:3 205:13
going 6:12,20 9:3 11:17 27:16,19,23 29:6,8 31:24 32:8,14 33:22 39:15,24
42:19 45:5 47:12
50:1 51:8,13 53:7,14
53:20 56:15 57:25
58:3,20 62:5,6 66:8
66:9 68:20,24 69:3
69:10,12,14,18,19
76:13,14 77:22
78:17 79:1,5,8 80:23
80:24 84:4,5 85:11
90:14 94:5 95:10
99:18 102:8,10,10
102:12 103:15 104:2 104:3 105:17,20

106:24 107:1,11,13 111:19,20 115:19 116:9 118:23 120:18 120:25 124:7 130:9 144:25 145:22 146:2 146:19 147:11,15,19 148:8,14,21 150:1 150:18,20 151:15
154:15 155:14 156:3 157:18 159:3,5
160:11,15 161:15,19 162:9 163:16 164:22 164:25 165:24
166:16,18 167:19,21 168:12 169:13
170:24,25 171:23
182:3 184:2,20
189:18 195:4 202:9
205:9,14 206:24
good 12:21 36:20 49:1
57:19 60:4 87:20
110:22 147:16,22,23
148:8,14 162:24
191:12
Gorewit 33:14 34:1
35:22 38:16,18,20
38:23 52:5 53:25
88:3 134:4 144:11
174:15 175:2,5, 12
176:10 181:11,12
182:5 197:18 205:7
gosh 98:25
gospel 31:24 135:18
gradient 193:22 200:8
200:9,13 203:20
204:6
Graham 26:20
graph $31: 12,12,15$
32:2,8 33:17 36:7
37:24 38:8 39:20 71:5 73:1,3 74:2,17
84:4 88:13 115:20
125:18,19 132:14
133:2
graphed 125:24
graphing 113:3
grate 125:17
grates 127:10
great 118:7 148:16
greater 70:18 170:9
green 163:15
Greg 1:5
ground 3:23 56:17,20
58:9,23 77:22,24
grounded 56:9 57:12
57:15,19,24 58:4
59:2,9 78:2 81:17,20
163:6,14 170:9 171:24
grounding 3:17 57:2
77:21 165:4
group 36:11 37:16
41:24 88:2 138:3
groups 42:16
guess 18:21 152:22
guessing 15:16
Gumprich 34:14 35:10 35:14,23 166:12,19 167:2
Gumz 45:19 46:3
Gunther 46:8 158:18
Gustafson 1:18 3:4,20 4:4,9,22 7:1 80:22 87:15 118:21 195:25 209:6 210:3,14
guy 34:4 77:2 110:16 110:22 139:17 166:22
guys $31: 25$ 32:18 80:24 88:6 172:12 201:2
guy's 33:14
G-u-m-z 45:19
H
hair 63:18
half 82:22 105:15 111:8 113:20 125:2 157:25 163:7 189:23 189:25 190:2,6,8,16 190:22 191:2
hand 32:15 95:4 111:11,12 209:18 handbook 50:6 60:10 60:11,11 130:23 133:2 135:4 147:14 147:16
handle 26:24 124:21
handled 177:2
handles 177:21
Handwritten 4:6
Happe 2:11
happen 39:16 74:13 110:19 122:2 178:15 205:16
happened 21:6,9 51:24 52:13 54:7 88:8,12 105:2 174:24
happening 179:6 186:18 193:8
happens 56:24 108:9
131:23 185:11
hard 29:2 169:19
Harlan 1:5
hats 179:4
hazardous 3:15 147:2 head 29:7 138:14

$142: 7144: 18$ 184:1
$200: 17$
health $38: 1839: 1$
$141: 3,6151: 1$
healthy $93: 17109: 15$
heard $31: 5204: 19$
heavier 201:12
heavily 182:16
heavy 170:9 171:19
help 23:19 50:10 152:5
$175: 22$ 200:19
helpful 36:25 37:9
$50: 7156: 23161: 17$
$162: 12201: 3$

helps 199:3
Henke 38:25
herd 61:24 73:20 74:2 108:11,20 109:16,25 147:7 150:24,25 151:2 160:10
hereinafter 7:2
hereto 209:15
hierarchical 29:16
high 64:3,9 65:10 66:7 156:7,9,16 162:23 163:10,17 187:24 188:14 193:24
higher 79:5 93:16 95:15 113:4 123:4 171:9,13
highest 30:2,20 31:7 31:10
highly 58:13
Hillman 26:20
Hills 2:7
hind 203:18 204:3
hired 41:6 43:24 44:11 44:15,19,22 45:9 46:1 137:17,22
history 18:10
hit 29:7 203:15
Hockin 166:23
hold 13:8
holding 204:8
Holstein 66:23 92:9
Holsteins 1:6 38:22 121:9
home 16:17
honest 181:2,3
hoof 61:20 62:6 76:2,3 76:12,17 79:21,25 80:4,4 91:7,10 94:17 120:14,14 121:10 126:24 127:4,5,8,10 127:11,14 128:8 202:1
Hoof-Grid 118:25
hooked 83:19
hooves 60:14 75:3,4

90:5 92:17,18,21,24 94:19,22 98:15
116:23 117:4,6,20
119:16,17 120:4
122:19 125:20,20 126:19
hope 38:23 71:17 146:13
hormone 173:17
horse 109:12
hour 11:15
huh 90:16
humans 116:11,18
hundred 40:12 120:18 143:19
Hydro 35:5,5
hypothesis 37:14
hypothesize 81:16 193:7
hypothetical 99:8

I
Idaho 40:16 122:10,11

idea 78:25 81:19 124:21 152:24
ideas 20:10
identification 6:4
10:10 91:13,23
118:13 129:12
195:20 205:22
identified 33:13 96:15 180:19 196:11
identify $30: 10$ 31:9,13 33:22 129:16 177:10 180:20
IEEE 8:16 19:8 20:18 22:14 23:19,24 24:1 24:21 25:12 145:6 184:22 185:5
IET 26:23
iffy $38: 1$
Imagination 3:11,13 18:16
imbalance 170:17
immediately 26:15 166:9
immune 173:21
impact 66:8,9 107:11 108:7 109:3,8
impedance 59:7,8,9 77:6,6,7,7,10,12,15 77:17,23 78:6,6,8 84:14,15,16,20 85:9 85:20 86:3,12,15 100:11,13 101:2 116:11,16 156:16 160:24 162:22 163:17,22 164:12 165:18,20
impedances 116:17 117:4,18
important 17:17 36:24 71:2 115:19,22 130:2 154:21 165:8 184:10 196:8
importantly 29:23
imposes 84:25
impossible 58:20
incidence 128:8 207:12
include 53:3,6,8 99:11 135:24 166:18 177:11
included 30:7 36:9 41:18 54:13,18 61:18 88:24
includes 31:19 97:17 97:18
including 12:17 14:14 41:4,24 52:21
incomplete 207:14
incorrect 137:9
increase 70:1 114:20 128:7 170:16,18 171:17 172:1
increased 62:1 108:21 207:12,13
increases 196:12
independent 52:14,17 79:10 127:10 197:11
independently 98:13
indepth 198:22
indicate 6:13
indicated 24:7 67:9
indicator 96:16,17
indirect 65:4 108:25
individual 22:20 123:11 177:4
Induced 38:19
Industrial 23:24
industry 62:10 140:1 182:8
information 13:3 17:2 18:11 25:18 30:3,11 30:12 33:2 36:12 37:8 80:22 90:22 106:1 115:25 116:13 132:23 147:17,22,23 157:14 173:13 180:12,12 191:5,5 197:7 204:2
informed 24:7
initial 25:9 132:19 185:4 186:9
input 33:17
inquiry 23:11
inside 204:4
insight 120:16
insignificant 162:5 inspected 51:15
instrumentation 192:4
192:19 193:17
insurance 41:23 42:13 42:15
integrity 50:4,14,23 51:6 131:14 180:23 182:2
intend 149:3,19 190:19
intended 135:20,23
intending 10:1 194:6
intensity 196:12
intention 9:21 75:12
interested 10:25 20:16
39:18 75:15 111:2 117:16 148:6 209:17
interleukin-1 173:10 173:16,21
interleukin-2 173:11 173:16
intermittent 39:7 114:4,7,7 173:4 207:11
internal 162:22
international 71:23
interpret 87:18 173:19
interpretation 94:12
102:24 104:12
147:13 188:6
interpreted 130:22
131:17,18 159:13
interpreting $34: 7$
115:19 188:5
interprets 159:6
interrelationship 196:9
interrupted 35:16 150:4
intersection 102:17
interval 125:24 126:15
invalid 73:2,4
Inventory 4:17
inverse 110:11
investigated 53:13
investigation 63:8 191:18
investigator 136:21
invited 20:19 48:3
involve 117:6
involved 7:12 8:2
18:18 25:7 35:19,20
36:11 38:19 42:21
43:2,8,13,25 44:2
45:12 127:6 144:14
175:4 182:9 204:14
204:16
involvement 16:21
involves 63:9 165:11 Iowa 140:2
Ironwood 2:3
Island 140:5
isolated 193:11
isolating 181:5
isolation 200:4
issue 68:20 167:18 171:4 195:24
issues $7: 2434: 15,16$
issuing 147:25
item 12:12 14:10 41:2 49:24 140:21
items 14:11,13 146:19
iterations 88:16
i.e $30: 13$

J
J 1:18 3:4 7:1 209:6

210:3,14
Jackson 47:13
Jacobsen 1:22 2:2
JANE 1:25 212:5,11
January 1:19 19:12
Jerry 137:15
Jersey 66:23 119:12 120:13
Jerseys 92:7 119:8 121:11 122:3
Johnny 47:19,20
Johnston 209:4,22
Jones 207:9
journal 26:3,13 175:13 175:16,17,22 176:3 176:4
journals 25:12
judgment 31:21 32:23
33:24 36:10,22 49:14 87:5,17 93:8
94:24 95:22 99:2 110:12 133:12
July 3:19 6:11 209:25
jump 83:20
jumps 44:17
jurors 135:17
jury 32:10,15 73:25 84:6 148:8
K
keep 14:21 15:6,22
16:1 40:23 70:23
130:2 176:15,19,22
180:24
Kendra 209:4,22
kicking 61:12
kill 109:13
kind 17:16 20:15, 15 21:4 30:25 31:6 70:24 71:2 77:5

87:14 89:15 93:20
101:21 111:16
112:22 113:19
127:19 128:24 130:1 136:1,10 142:2
145:16 154:25 156:5 172:16 173:2 181:16 188:15 189:17 190:13 193:15
kinds 63:12 162:10 182:10
Kirk 207:9
knew 146:12 157:10 201:1
know 6:13 8:6 11:5 12:4 14:1 15:6 17:6 19:23 24:5,10,20,21 24:23 25:6,6,11 27:6 27:7 32:16 33:25 34:21,24 35:15 37:6 37:12 39:7,14,19 40:12,20 45:6,14 46:23 47:5,15,22 48:7 50:16 53:7,17
53:20 55:22 56:14
58:21 61:25 62:14
63:9,17 68:9,21
71:18 72:16 75:14
75:15,20 76:2,10
77:21,22 79:24 80:4 80:11,24 81:8 82:21 83:12,22 84:11 85:18,20,24 88:5,9 88:16,18,18,21 89:10 95:2 99:1 100:23 101:16 102:25 106:9,12 107:15,19,23 109:11 109:11 110:1,8,10 110:15 111:18 113:3 113:4,15 115:5,22 117:6 120:8 130:2 131:22 136:19 137:17,20,24 138:6 138:7,8,11 139:4,12 139:19,24 140:1,24 141:8 142:5,12
143:5 144:13,14,16
147:12 149:15
154:13,17,22,24
156:18,22,24 157:8 159:9,12,25 160:4 161:9 162:2 163:25 164:2,6,7,12 165:9,9 166:3,4 167:4
168:25 173:20
174:18,22 175:8
177:12 179:11 180:9 180:18 181:4,23,25

182:8,10,22 184:13
185:9 186:1,19
188:23,24 192:3
193:15,24 194:15,17
195:5 199:7,23
200:4,6,14,24 201:1
201:13 204:2,10
205:25 206:13,16,22
knowing 20:16 117:16 148:6 154:24
knowledge 21:25
108:19 130:13
131:12 168:21
170:22 173:14
174:23 184:9 197:23
knowledgeable
181:15
known 75:4 100:7
101:12,13,16 106:4
141:1,5 155:9 163:2
knows 144:18
L
laboratory 141:4
lack 184:13
Lactating 38:21
lactation 52:6 107:14
144:11 205:12
laminitis 203:5
lapping 207:18
large 69:1 107:11 111:25
late 17:20 44:21,22
Laughlin 77:3
LaVerne 20:2,5,9 137:10,11,13,17
law 2:2,6,11 29:3 32:9 35:6,10 71:13,15,22 75:7 105:5,8,9 106:14 139:6 168:15 184:17
lawsuit 18:24 182:9
lawsuits 132:2
lay 108:19
layer 69:23
laying 16:13
Lead 1:21
leads 189:16
learn 74:14 127:11
led 133:18
Lefcourt 34:2 35:23 39:5,7
left 8:5 89:24
left-hand 89:21
leg 202:25
legitimate 137:5
legs 187:20 204:3,4
letdown 61:16,18 207:14
letter 3:19 4:4,22 129:20,23 130:6,13 130:17,21 131:1,6 132:10 133:1 146:3 191:10 192:10
letters 10:16 14:14 49:18
let's 9:2 10:5,7 26:8 32:19 89:7 91:20 92:7 96:4 98:14 101:18,20 108:10 113:1 114:19,20 119:16 160:20 163:7 165:15,18 167:5 169:2 194:24
level 30:20,25 31:1,7 53:15 64:3,9 65:10
65:11 66:8,11,16
76:11 82:21,25
83:13,15,19,22,23
96:17 100:7 101:7,8
101:10 104:12,24,25 106:12,20 107:15 113:7,9 122:19 124:20 143:11,12,22 151:11 152:1 164:9 168:8,13 187:22 193:19 196:17
levels 29:16 43:17
123:19 135:19 143:11 144:8 150:2 151:10 168:7 171:9 171:13
life 70:19
lifting 128:8
likelihood 64:12
likewise 131:21
Lillemars 207:8
limited 30:6 31:9 67:3 131:12 146:22
Lincoln 137:14,16
line 57:23 58:8 59:9
68:10 74:9 101:20
101:21 113:2 119:20 126:7,8,16 133:3 152:6 160:8 169:17 170:19 171:1,10 210:20 211:4
linear 74:10 135:3,14
Lineman 60:10
lines 195:4
Liskeard 34:13 167:1
list 10:5 12:13,18,19 13:16,18,23,24 14:19 16:8 33:6 39:17 41:3,9,10,20 42:25 45:7 50:13,24 132:6 141:22 148:10 149:7 166:16 182:20

182:23 207:6
listed 14:14 50:5 62:5 62:7,23 162:17
listen 21:6
listing 14:3 161:2
lists 149:13
literally 45:3 63:18 135:18
literature 14:7,8 28:17 29:15 30:5 65:21 84:1,3,24,25 117:13 143:7 169:14 207:22
litigation 8:14 11:10
little 13:17 38:1 76:2
78:24 87:14 98:22
112:16 126:19
141:19 153:5 155:3
164:19 174:11 197:2 204:2
Ioad 113:2,7 169:15 170:16,17 171:8,9 171:13,19
loading 170:12,14
loafing 152:6,8 154:6
located 137:14
location 47:9 78:4
locations 35:25
long 100:1 113:19 115:1 142:5 185:15
longer 54:24 66:2 112:20 114:2 142:16 143:12 144:21
Iongitudinal 30:14
long-term 141:2,8,13 142:10,13 143:8,25
look 10:6 12:9 21:21
34:8 39:11 42:25
45:4 48:22 51:23
52:12 54:19 63:13
66:19 70:20 75:13
76:18 78:11 91:9,16
92:1 101:18 107:20
114:16 115:25
117:12 126:1 132:13
140:14 141:7,23
142:3 143:7 149:8
152:12 156:2,20
168:14 171:10 172:5 179:10 181:13 192:2 193:16 194:7 195:25
205:19 206:19
looked 10:14,21 28:21 38:3 48:16 52:1 88:14 116:9 132:18 140:12 148:24 153:4 157:14,15 172:25 194:1
looking 8:21 14:3,17 17:2,3 19:7 37:6

38:5 41:3 46:23
58:16 63:9,10,11,12
75:5 85:21 90:15
109:9 115:23 118:24
127:25 128:22
140:18 143:25 144:4
146:1 149:1 156:14
157:10 158:24
166:12 168:14 173:8 175:19,19 181:17 191:14 193:23 196:2 198:20 199:19 205:9
looks 9:15 17:7 119:7 157:24 196:2 206:10
loss 65:8,18 102:11,14
102:17,18,20 103:1
103:2,3,9,14,17,22 103:24 104:10
205:11
lost 205:15
lot 143:6,24 151:5,6 167:20
Iow 43:19 59:1,6,7,7,8 69:3,15,15 70:12
73:18 85:18 86:24
99:23 100:17,18
142:22,23 144:8
152:1 156:9 188:13
193:19
lower 59:8 62:2 70:4
74:6,6 78:6 87:4
116:10,18 143:3,24
lowering 203:10
lowest 90:4
low-level 60:13 66:4 68:12 144:5
Ludington 77:3,5 153:17
Ludington's 85:21

M
Machine 38:11
Madison 46:11 50:8
147:24 172:12
197:16
magnitude 70:22 82:1
82:2,5,6 94:18 96:8
107:11 110:16 143:3
144:17 171:22
184:18 187:15
202:20
magnitudes 193:15
main 55:24 138:2
maintain 195:15
maintaining 161:22
major 38:7 122:16
141:5 203:15
makeup 121:14
making 49:17 68:25

```
    78:12 100:15 114:15
    149:10 164:3 165:10
manage 26:24 110:18
    110:21
management 110:12
manager 110:17
manure 69:23 76:9
        94:15,22 98:15
        99:12
    manure/urine 76:2
    manure/urine/water
        69:9
March 129:21
mark 6:12,20 8:24
        10:7 53:12 118:18
marked 3:8 4:3 5:3 6:3
        6:7 8:17 10:9,13
        17:6,24 19:20 50:2
        83:4 91:12,20,22
        118:12,16 129:11,15
        138:9 140:7 150:12
        195:19,23 205:21
    marking 9:5
    Martin 200:24
    Maryland 44:14
    mastitis 61:20 62:2,6
        63:23 64:4,7,12,15
        64:20 65:2 108:10
        108:11,18,19,21
        109:13,23 207:13
    material 15:23 27:9
        32:24 74:20 98:23
        201:22 202:4 203:16
materials 4:17 14:19
        29:4 48:6 146:15
        167:15 188:21
        189:12 206:15
```

 math 95:16 105:22
 matter 163:23
 mean 13:16 15:5 17:15
 19:1 20:8 21:3 28:3
 32:5 36:2,17 37:6,7
 42:8 48:18 56:17
 68:19 71:18 74:10
 74:14 75:19,20
 80:25 81:21 85:4
 87:7,23 92:16 95:4
 101:20 102:21 104:1
 105:24 106:22 108:2
 108:24,25 110:20
 111:13 113:3,13
 114:18 115:24,25
 117:16 119:2,21,21
 119:22,25 120:5
 122:20 123:8,12
 125:12 126:11,13
 127:2 132:22 135:8
 135:16,20 142:17,24
 143:13,24 144:10
 145:7 146:1,8
147:15 150:17,25
151:14 152:11,25
153:3,11 154:3
155:25 156:12
159:15 161:2,8
162:7 168:2 169:23
170:24 175:22
176:22 177:25 178:4 179:19 182:5 188:25 189:3,14 190:20
191:18 200:11
203:17 206:20
meaning 51:19 124:4 173:19
meaningless 127:18
means 16:4 17:3 87:1 89:1 111:14 119:5 119:22 120:8 122:21 152:7 154:4 187:20
meant 96:21 141:8,12 142:13 153:3
measure 75:5 80:6,15 98:12 102:8 106:9
147:3 163:6,6,13,18 164:24 167:21
191:15 192:14,17,24 198:24
measured 96:23 97:3 97:11,22 100:8 101:10 102:9 106:7 118:25 165:1,2 187:16 193:1 198:4 199:7
measurement 154:23 155:25 157:5 161:16 162:19,23,25 164:3 164:12,21 187:10 188:2 190:11 191:17 191:22
measurements 74:5 76:4 117:12 122:24 147:6 150:8 151:8 158:23 161:6 163:22 165:10 188:5 194:4
measures 194:19
measuring 79:2 101:7 101:11 105:19 156:13 162:8,21 163:2,13 167:9 187:3 188:1,3,4,16 191:23 192:1 193:18 198:5
Mechanisms 38:19
medals 71:23
mediate 44:5
mediation 43:12,25
medicine 173:18 181:20
meeting 20:22 23:20 25:9 36:2 40:7 90:21
member 131:22 138:4 138:8 176:7
memo 4:9 129:17
memoranda 14:15
memory 31:19 67:23 68:1 132:17
mentioned 90:21 107:22 144:22
merging 27:16
mesh 187:21
met 11:7,9 24:11 46:6 46:8,10 47:20,24 48:4 139:20,25 142:15
metal 58:23 75:2 98:11 100:15,16 117:10 125:17 163:5 186:13 188:24 189:4,18
metallic 59:2 207:17
metals 186:14,20 188:20 189:1,3 190:9
Metatec 4:8 150:14,15 153:3
meta-analysis 30:8,19 30:22,24 31:7 53:14
meta-statistical 32:1 37:12 53:8
meter 154:11
method 17:16 74:24 74:25 75:21 192:15
methodology 88:6
methods 27:7 28:2 63:10 76:6
Metrosonics 156:18 158:6,17
MICHAEL 2:6
microsecond 112:7
microseconds 111:23
mid-lactation 173:5
Mike 17:9 22:17,18 144:18 149:6 182:9
milk 33:3,5,9,12 36:12 38:17,20 39:1,6,8,21 39:23 52:15,21 54:11 61:16,18 65:6 65:7,8,18,24 66:5,17 88:21 101:23 102:11 103:5,14 104:10 106:17 135:19 141:3 151:3 207:14
milked 107:24 108:2
milking 33:9 38:11 39:3,9 61:5 63:10 108:1,8,22 207:14 207:15,16
milliamp 123:9,13

125:1,2,11,11 126:23 128:6 129:3
milliamperes $72: 8,9$
milliamps 72:6,14
102:12 103:13 104:6
104:8,10,16,18,21
104:22,23 105:2,21
106:18,25 107:7
123:15 124:13,14,18
125:8,9,13 128:17
128:18,19 194:22,22
194:24
millimeter 202:13
millimeters 202:14
millionth 112:4,9
millisecond 112:1,3,4
milliseconds 111:9
millivolts 72:14 141:3
142:17,18,19 143:18 143:19
mind $33: 19,20$ 38:6
44:17 53:12 61:14
73:17 76:19 89:5,15 132:5 145:3 150:5
160:23 165:21 181:8 181:9 197:22 203:3
mindset $36: 18$
mine 21:12
minimal 106:23
minimize 79:11,16,23 80:12 85:2 98:9
minimum 25:13 67:12 67:16,16 70:16,17 80:7 86:23 93:6 99:5 107:6
Minnesota 1:1 2:4 4:11,24 6:10 8:5 43:3,4 50:6 81:10 91:1 122:7 129:20 130:8,8,17,21 139:2 139:5,6,13 141:18 147:14,25 172:17 184:5
minority 87:8
minus 95:17 112:8
128:2,4
minute $91: 16$
minutes 157:6
mischaracterize 27:20
misprint 85:9
misrecorded 119:6
missed 38:23
Misstatement 102:22
misunderstanding 101:19
mixed 82:12
model 29:16,16,22 30:2,3 37:12 200:19
modeling 32:1 37:19

37:20 171:7 201:3 204:19 205:4
models 47:5
moderate 102:16,25 104:13
modest 100:21 182:16 185:25
modification 196:11 modifications 110:10 modified 83:6
modifying 82:15
moist 117:22
moisture 116:21 117:19 201:16
moment 62:7 133:1 162:14 174:10 203:4
Mondschein's 172:9 money 12:1
months 19:21,24 142:11 144:7
morning 152:18
motor 112:21 115:7
mouth 75:1,23 90:5 92:17,24 98:12 120:4,13,14 123:16 123:18,20,22 124:1 124:5,8,9,20 125:16 127:3
mouths 117:22
mouth-all 92:20 122:19
move 78:23 127:16 189:12
movement 127:20
moving 52:3
Moylan 22:22 23:3,9 23:18 24:10,11
MT06-114 4:8 147:6 152:24
multidisciplinary 181:22
Multigrounded 3:15
multiple 123:3,7

N

n 3:1 4:1 5:1 6:1 90:8 121:9 122:19 123:4 128:11
nail 29:7
name 9:10 21:19,22 23:22 25:23 26:2 33:14 45:8 47:13,18 49:19 77:2,2 113:16 114:19,22 139:17 148:14 201:1 206:17
named 209:6
names 41:5,5 45:17,23 45:24 180:24 181:4 Natural 9:6
nearly 116:20
Nebraska 137:12,14 137:15
necessarily 10:19
33:11 66:24 101:14
110:21 132:17
139:10 176:16,20,21
necessary 9:24 62:24 66:16 110:5 163:18 179:13
need 55:19 72:13,16 155:7,8,9 163:22 183:3 206:13
needs 28:7 66:13 80:2
negative 120:5
nerves 202:16
nervousness 61:5,9 207:15
Neubauer 73:19 75:9 158:14 159:22 186:5 191:1
Neubauer's 159:7,13 186:11
neutral 3:15 44:1,2 56:9 57:16,24 58:5 59:3,9 81:18,20,21 169:11 171:24,25
neutral-to-earth 55:25 56:16,20 57:1,22 58:9 77:21 82:10,16 113:9 169:1,8,13 170:5,8,18 171:18 171:22 172:2 196:13 197:25 198:3,9,15 198:16,24 199:15
never 44:23 47:8 115:10 142:14,15 160:12 190:22 202:21 204:9
nevertheless 131:16 197:4
NEV's 199:7
new 34:13,19 167:1 195:4 212:12,12
nine 141:2 142:18,19 142:20 143:17
nodded 138:14 200:17 nonspontaneous 186:25
non-linear 135:6,10
Norell 39:25 40:15 67:21 90:5,16 92:11 122:9 132:20 200:16 200:23
normal 22:7 87:6 89:2 116:14 128:7 133:4
normally 13:6 22:7
north 194:11
Northeast 9:8

Northern 45:15 46:3
Nos 6:3
nose 57:18 98:16 99:12
Notary 209:4,22
note 84:12 85:8
noted 6:21 26:17
39:24 84:8 150:7 210:9
notes 4:6 15:19 16:20 20:15 23:14 45:22 51:24 52:2 176:19 176:22 183:1
notice 3:21 41:2 212:1 notion 80:13 81:23 110:14
notwithstanding 49:9
November 151:23 195:24
NRAES 8:21
NRAES-149 4:15 9:13
number 14:14 30:6 31:10 53:9 79:4 87:24 88:18 90:9 93:16 97:14 98:24 106:3 115:10 119:6 119:15 128:14 132:1 132:14 134:10
140:21 141:16
143:13 154:13
165:16 167:16 182:16 207:4
numbers 67:24 97:12 100:24 160:7,8 161:5 162:10
numerous 137:18 nutshell 187:9
\square

0

O 6:1

Oakwood 2:7
oath 32:15
object 27:18 48:25
59:2 74:3,18 78:1 82:23 102:22 108:16 109:17 115:13 116:4 120:20 140:10 156:8 163:5 165:1 167:8 171:14,20 180:1 182:11 186:15 193:13
Objection 35:12 36:19 50:21 56:1,22 58:2 58:25 63:14 64:22 66:6,12 68:22 81:13 93:7,14,18 135:22 136:15 140:20 143:9 144:2 160:18
observation 128:6
observations 62:9 123:7 207:21
observed 108:1 122:18 207:6
obviously 23:8
occasions 137:18
occur 103:16
occurred 20:25 144:7
occurring 106:9 195:16
occurs 80:9 103:15 111:17
offense 131:20
offer 149:19
offering 147:15,19 184:2
office 16:14 209:19
officially 175:10
offset 192:3
off-farm 55:14
Oh 16:15 26:22 61:17 76:7 124:7 127:7,17 139:20 145:7 148:11 150:12 183:19 192:19 199:16
Ohio 1:20 7:6 43:8 209:2,5,19,23
ohm 2:12 68:2 69:16 69:18 71:20 84:7,8
ohms 67:11,19 68:10 69:20 70:6,11,15,18 71:9 72:12,22 73:8 73:14,23 74:15 76:22 84:14,15,21 85:6,7 86:11 87:9,12 87:16,20 89:3 90:13 92:17,18,22,22 93:5 93:9,12 94:7,11,16 94:25 95:10,15 96:3 96:5,7 97:2,15,23 98:2 99:18,19,21 100:22 101:13 102:1 102:2 103:13 105:9 105:9,11,13,20,25 106:22 119:17 152:10 153:11 154:1 154:8 155:2,5 161:2 165:18,20
Ohm's 71:13,15,22 75:7 105:5,8,8 106:14 168:15 184:17
okay 8:25 12:12 13:25 22:12 23:15 25:15 29:6,10,21 39:20 45:11 49:24 54:11 56:25 57:23 60:24 78:23 80:20 84:4 88:20 89:19 106:6

107:13 113:12
114:13,18 117:2 118:7,21 119:7
121:19 122:14,17
124:12 125:12,18,23
127:1,21 128:15
138:16 139:24 142:4
145:11 146:11,14
148:2 149:5,23
150:1,12,20 153:22
157:12 160:25
165:20,22 166:3
168:17,20 169:4
173:20 183:5 190:24
191:3 192:9 194:1
194:21 202:5 203:25
207:6,10
old 204:12
older 122:12
once 15:21 58:6 115:5 115:5,6 127:3,7
ones 13:19 15:1 16:11 38:5,24 39:6,17 61:14 88:5 93:25
137:25 173:24
203:15,16
one-tenth 116:11
ongoing 7:20
Ontario 33:11 34:4,18
35:5 144:20,23
166:6,20,23,25
open 54:13 123:16,18 123:20 124:1,4,19 155:8 162:21 163:3 163:13 165:2 169:4 169:9
Opening 123:22
operating 87:6
opinion 131:23 134:18 134:19 147:12,16,19 154:22 157:17
166:17 169:7 171:5
181:2,3,25 186:18 186:24
opinions 9:25 12:15 37:2,5 50:1,3 53:1 81:2 146:4,17,18,22 146:24 147:10 149:4 149:19 184:2,11
opportunity 80:25 174:15 178:8 179:1 185:22
opposed 159:19,20 opposite 132:3 187:1 option 177:7
order 9:25 27:16 28:4 28:12 29:3 48:19 49:19 70:22 72:17 79:13 80:12,15 96:8

106:16 107:5 144:17
158:22 163:23
199:24 203:17
orders 99:3 143:2
organization 17:18 41:24
organized 42:3
organizing 22:23
original 51:9 154:16 154:17
originally 71:22
originated 88:17
orthodontics 29:13 oscilloscope 192:2 ought 28:21 174:18 199:4
outlier 119:1,4
outside 8:14 26:15 57:23 181:18 203:18 204:3
overall 31:4 116:8
overlap 40:13
overview 9:16
O'Brien 2:6 3:19 4:5,9 6:24 9:1,4 10:7 13:18 14:6 18:2,21 19:2 22:18 27:18 34:11 35:12 36:19 42:22 45:11 47:14 47:19 48:25 50:21
56:1,22 58:2,25
63:14 64:22 66:6,12
68:22 74:3,18 75:13
75:14,16 81:3,13
82:23 93:7,14,18
102:22 108:16
109:17 115:13 116:4
117:16 118:9,19
120:20 135:22
136:15 138:12
139:18 140:10,20
143:9 144:2 149:12
149:21 150:13,16
152:20 155:17,20,23
157:1 158:10,13,16
158:19 159:4,9,13
159:17,20,23 160:18
171:3,14,20 172:13 175:22 180:1 182:11 186:15 190:22,25 191:4,7 192:11 193:13 194:8,13,18 195:6 199:21 206:11

P

P 6:1 128:19,22
package 142:2
pad 100:17
page 3:3 4:11,13,15

6:12,21 9:6 31:12 39:20 60:9 84:12 89:21,24 116:9 118:18,23 133:1 138:10 140:22 141:16 142:25 162:16 176:1 186:11 210:20 211:4
pages 6:15 157:12 210:5
paid 41:7
panel 21:13,14,16,18 30:5 177:5
paper 4:18 8:16 14:25 18:12 20:6,17,22 21:5,11 22:15 23:5,9 24:24 25:5 40:6 42:9 48:3 51:9,19 60:6 90:15,17 139:1 140:7 142:7 173:2,8 173:13 178:4,6 179:9 185:5,9 186:9 187:18 192:7,25 206:4
papers 15:4,7 16:9,17
18:13 21:1,2,20 23:5
23:20 24:14,18
31:14 32:22 33:18
33:21,23 35:25 38:3
38:10 39:25 40:3
48:9 50:25 51:17,21
51:25 55:10 130:2
145:4 175:9 177:8
177:15 178:25
181:14 184:22
195:15 205:9
paradigm 29:16
paragraph 186:23
parallel 63:15
parameter 189:24 199:6
paren 30:8
Parkway 2:7
parlor 61:6 108:8 153:22 160:16 204:4 204:4,7 207:15,16 207:16
parsing 95:3
part 8:9 10:22 19:16 22:22 29:19 34:6 47:10 53:7 56:11 57:21 59:2 64:21 65:1 68:5,7 80:4 86:16 87:13 92:8,9 96:10 97:14,15 119:9 124:9 126:5 127:18 135:25 138:22,23 141:21 153:16 163:1 185:9

185:10,15 191:22 193:5,5 202:9
partial 31:6
participate 138:16
participated 9:15
15:10 133:13 197:13
206:9
particular 17:19 18:20
18:20 21:1,3 23:6,7
23:10 24:21 25:4
26:25 31:16 47:6
48:5 50:25 53:2,3,11
79:12 88:3,8,16 97:6
100:2 107:21 108:20
119:9 121:14 128:6
139:1 143:11,11
149:10 154:5,23
157:11 166:25 171:1 173:24 177:4 180:15 181:5,14,15,16 185:12 186:17,23
192:7 201:14 204:21 205:12
particularly 18:12 144:8
parties 35:19 41:5 138:25 209:15,16
partly 83:3
parts 109:16 142:2
party 41:6
passed 34:19,23
passing 35:7
Pat 116:13 159:21
path 59:7,8 75:5 77:6 77:17,23 78:2,6,21 79:10,12,18 80:3,5,6 80:7,17 86:3,18,25 92:16 98:19 120:12 162:23 163:1,9 167:8
pathogen 108:14 109:14
paths 116:16
pathway $67: 13,14$ 92:17,18,21,24,25 93:2 108:13 118:25 119:10 121:19 124:9 195:12 196:13 202:5
Patrick 155:20
Paul 34:14 35:9 91:3,4
PC 2:2
peak 92:13 115:21,21 159:17 160:2,5
peer 25:16 26:10,19 26:24 27:3,4 29:2,5 55:5,9,11,13,19 57:8 57:8 59:16 62:8,10 62:19 65:23 71:18 145:11,14 175:4,14

176:25 177:3 182:18 pending 34:20
people 15:9 33:8,10 34:1 35:4,25 36:20 51:24 133:13 136:17 140:4 171:4 179:10 181:8,9,10 182:2 190:13 200:19
people's 180:24
perceive 83:12,20
perceived 124:25
perceiving 124:22 129:2,6
percent 7:14 40:12 86:8 92:21,22 93:12 93:16 95:9 96:4,5 97:21 98:1,4,5 108:11 109:25 110:7 122:18 123:9,10,13 124:24 125:7,14 128:7
percentage 7:12 73:13 73:18 85:13 87:8 94:3 110:5
percentages 127:21
percents $85: 16$
perception 82:22 83:14,16,23 135:18 151:11
performed 30:5
period 44:25 111:18 115:9,22 141:10 142:11 144:7 158:1 180:21
periodicals 26:9
periods 28:1 207:11
person 21:20,23 34:13 41:22 48:18 49:18 166:24 180:2 185:8 200:22
personal 14:12,21 16:1 29:17 33:2 131:19,20 182:2
personally 43:23 50:4 50:14 51:5,7 93:17 182:1 199:22
persons 14:18 32:24 177:11 180:11
perspective 18:9 81:12 109:9 136:5 149:2 181:21
pertinent 13:20
phases 169:17
phenomenon 54:21 55:2,3 57:9 59:13 108:1
phone 18:3 35:1 54:2
physiological 61:15
physiologist 83:10

Ph.D 1:18 48:15,19,24 49:2,10 122:15
pick 54:2 177:18 178:17 205:14
Pickaway 209:3
picking 178:1 182:5,7
picks 177:20
piece 126:4 180:15
place 28:12 34:18 70:7 151:25 164:6 209:12
places 15:5
plaintiff 43:3
Plaintiffs 1:8 2:5
plane 187:6,14
Planes 3:11,13 18:15 185:4
plates 75:2
play 100:24
played 138:6
please 129:16 131:5 207:4
plotted 32:17 38:7 126:11,16
plus 17:19 97:22
point 3:18 7:20 15:2 17:23 24:24 26:22 28:15,16 34:22 37:23 43:20 47:3 48:4,7 49:17 56:19 59:11 90:1 93:25 95:23 99:25 102:25 104:14 107:8 110:12 117:11,12,14 124:17 139:14 144:6 153:18 156:13 160:4 164:2 164:4 172:7 177:16 179:25 180:20 189:9 191:12 196:16,22,25 200:10,10 201:5
pointed 115:20 140:11
pointing 140:8
points 38:7 56:10
60:13,16 78:12
168:11 184:15
186:14 187:13
188:12
pole 57:24
Polk 140:4,7,19 142:9 142:15
poor 73:2 207:11,12
population 92:21 96:5
portion 99:11 159:5
posed 132:6 141:16
positive 123:21
possession 130:17
possibility 54:13
possible 79:1 129:7 133:7 176:22 180:14 189:22 191:20
possibly 80:14 potential 12:16 56:8

56:10 57:20 58:6,11
59:4 109:7 140:8
184:14 200:12
203:20 204:6
potentially 59:14
Potentials 3:23
power 3:17 23:25 45:15 46:3 169:23 193:10 194:11
Practical 3:18
practice 27:13 61:25 112:17 176:24 181:13
practitioner 29:18
preceded 51:22 109:11
preceding 51:21
precise 176:6
precisely 143:13,15 145:3
predictive $37: 13$ 200:20
preface 88:1,7
preliminary 199:4
premise 134:9
Prenn 2:7
prepare 199:24
prepared 18:19 32:11
preparing 20:2 23:5
132:13 133:13
prepping 63:11
presence 99:12
201:19,25 209:9
present 7:23 14:16 81:21 141:1
presentation 21:7,12 24:15 25:9 41:25 90:22
presentations 21:13 41:21 42:12,17
presented 19:9,12,14 20:23 21:2,2,11,12 21:20 22:15 23:20 24:14,18 25:6 32:9 40:7 60:13 126:6 137:9 181:14
presenting 135:13
press 201:13
pressure 100:18
presumably 143:18
pretty 100:20 111:19 142:22
previous 12:6 102:23 127:22 130:21
previously 8:8 85:6 195:11
primarily 16:17 18:8

```
    40:5 46:16 83:16
    190:12 204:17
primary 85:11 87:13
    203:16
prime 38:5
principal 25:24 35:19
        39:10 61:7 74:25
        88:2,9
```

principally 36:12
principle 71:25 72:1
print 41:11
printed 17:12
prior 23:4 26:18 82:8 152:4
probability 156:10
probable 187:25
probably 7:14,17 8:3 15:1 17:13 18:11 19:24 20:12 25:14 39:15 42:25 44:21 48:5 67:22 70:21 81:1 84:7 85:16,18 86:15 88:4 121:16 122:9 129:25 134:6 138:11 151:21 163:16 164:18 175:3 177:15 183:3 200:22
problem 31:23 33:1 58:12 63:17 64:13 65:2,15 81:23 106:21 108:20 115:15 157:21,23 160:10,12 195:13,17 198:22
problematic 168:13
problems 6:20 12:17 61:20 64:11 65:1 91:8,10 104:4,20,20 140:8 151:1,1 168:9 168:13 169:9 171:12 196:10,21 202:25
procedure 30:7 83:7 190:14
proceedings 9:14
process 25:7,12 27:11 34:6 177:17 178:2 180:24 183:9 185:8
processes 88:15
produce 64:7 109:14 168:10
produced 41:25 50:20 51:18 145:4
producer 110:13
producers 196:19
producing 15:10 161:14,22 162:9
production 33:3,5,12 34:15,16 35:21 36:12 38:15,17 39:1

39:6,21,23 52:15 54:12 62:3 65:6,8,8 65:18,25 66:5,9,17
88:21 101:23 102:11 102:14,17,18,20 103:1,2,3,5,9,14,17 103:22,24 104:3,10
104:20 106:17,21 141:3 151:1,4 205:11,13 207:11,12
productivity 196:10
professional 11:11
21:4 27:5
professor 7:10 122:16
project 8:3,4
projects 47:11
proof 187:6
proper 52:16
proposal 185:4
propounded 210:7
proprietorship 11:23
prospective 30:14
protocol 28:3,16 125:4 198:5
protocols 27:15 28:11 28:13 31:1 47:5 51:16,18 114:17
prove 107:6,7
proven 129:8
provide 20:14 45:7 48:19 50:13 80:22 137:19
provided 36:7 41:13 75:8 212:4
provides 108:13
providing 27:8 28:5
proving 37:14
public 6:10 82:20 83:2
129:20 130:18
139:13 172:17,20 180:12 184:5 209:4 209:22
publication 6:18 8:22
9:6 16:21 23:23 24:2 24:8 25:8,23 27:3 28:24 31:16 40:8 51:20 133:13 136:6 141:20 166:10 175:18 179:12,14 196:3
publications 12:13 23:21 25:16 26:5 35:20 39:11 62:19 65:23 130:5 148:3 148:19 166:16 175:12
published 12:14 24:19 24:24 27:5 36:23 46:25 90:23 117:17

118:4 133:4 134:16 141:19 145:1,11,20 166:8,11 175:13 179:23 181:13 186:10
PUC 4:11 130:8,21 131:3 139:2,5
pull 13:13 67:24
pulled 52:9
pulling 31:17 63:18
purpose 11:22 19:15 23:17 135:21
purposes 6:4 10:10 37:18 49:25 50:3 72:21 73:5 91:13,23 100:25 118:13 129:12 135:24 195:20 205:22
put 27:21 28:8 32:3 42:1,4,5 45:6 57:18 68:9 70:7 75:4 77:15 89:15 96:4 100:7 105:13 115:3 127:3 152:22 157:4 162:25 163:7,15 165:2 188:23 206:16
puts 98:16 102:15
putting 47:4 79:24
93:5 99:12 161:24
p.m 157:6 208:2
P. O 2:8

Q
qualified 209:5
quality $30: 12$ 31:11
quantified 202:21
quantify 202:22
Quantifying 5:4 206:2
quarter 114:21 196:21 198:8,20
question 18:22 49:3 53:12 54:6,6 56:4 66:13 82:3 110:11 116:5 132:25 133:15 134:9,10,13 135:2 136:22 140:15 141:16 150:5 155:1 167:6 182:12 194:24 207:1
questioned 54:24
questions 21:15 52:25 132:6,7 137:2,6,7 149:10 196:2 199:23 199:25 200:1 210:7
quick 35:18 39:11
quickly 10:6
quite 115:1 117:11 201:7 206:21
quote 196:8

R6:1 210:18,18 211:2 211:2
raise $32: 15$ 37:11 126:23 127:3,8
raised 83:4 127:11 140:16,19 200:2
raising 127:14
randomized 30:14 123:19
range 67:11,21 69:24 92:16 112:1,3
113:21 129:3 143:15
rapid 207:16
rate 125:18
raw 27:23 51:10,13 122:8
reaction 52:10 107:16 133:25 174:7
reactions 133:18 187:1
read 14:20 24:6 29:6 37:7 39:16 43:7 48:6 50:17 60:19 89:9,13
129:19 140:23,24
152:6,7,16 174:20
196:6 197:15 207:3
210:4 212:1
reading 60:6,8 92:15 130:11,20 131:11 146:5,14 159:18
readings 121:10 160:1 160:3 190:3,4,16
real 99:6,8,9
realistic $84: 15$
realize 32:7 80:10
really 13:19 14:21 16:3 16:4 29:18 31:6 37:17 44:4 47:16 56:10 58:11,22 61:4 71:12 96:16 98:25 101:15 105:7,11,23 112:19,21 113:10 126:25 139:24 150:22 164:9 168:15 180:10 182:16,23 184:12 194:1 198:12 206:17
rear 60:14 75:4 119:16 119:17 120:4,14 121:10 125:20 126:19 127:5,10
reason 10:25 148:22 155:1 205:10 210:20 211:4
reasonable 8:12 73:12 82:10 93:9 95:23 111:18 135:15

146:11 187:15 188:9 188:10
reasonably 114:25 128:13
reasoning 187:8
reasons 6:21 63:5,19
rebar 188:12 189:4,5
rebuilding 43:21
recall 21:9 26:20 42:15 44:10 45:3,17 47:7 51:13 52:23 54:1,10 70:12 88:15 91:6 107:17 119:3 121:17 131:10 134:7 139:15 142:1 145:16 156:21 172:18 173:6,7,11 173:12,12,23 175:7 175:11 176:9 177:14 179:6 180:10 190:18 191:9 199:19 201:4 203:3
received 4:17 12:15 20:17 146:15
Recess 81:4 118:10 160:21
recognize 32:7 59:14 67:15 108:13 159:1 206:3,8
recognized 71:11 186:12
recognizing 39:11 recollection 174:10 recommend 39:16 180:7,9 196:19
recommendation 83:6 177:22,23
recommendations 82:19 139:9 198:14 recommended 179:12 record 6:8 60:3 75:18 80:21 115:9 118:15 118:22 140:24 149:6 149:11 159:5 174:14 recorded 117:12 recorder 116:7 recording 21:25 22:1 115:3,11,15,17 116:3
recordings 156:17 157:13
records 16:20 17:17 23:13
recover 15:2
recovery 205:17
red 6:16 8:9 12:21 13:9,15 14:4 15:11 16:22 17:19 27:2 28:20 30:23 31:9 34:12 36:3 37:18,23

46:24 50:8,11 71:5,7 77:1 83:3 117:2
126:3 130:24 136:6 142:25 161:1 166:7 166:8 169:16 175:6 183:8 197:13
reduce 163:1
refereed 16:9 23:21,22 28:24 40:8 51:19 90:23
reference 149:16
referenced 91:17
references 90:2
referred 145:5 166:6 175:6 186:16
referring 16:22 22:25 30:19 34:9 126:20 130:24 144:23 173:1 175:18,25 176:6 186:4 195:1 198:1
refers 137:10
refine 135:12
reflect 71:5 139:10 174:14
reflected 184:21,25
refresh 67:23 132:16
regard 13:23 88:21 179:6 184:11 190:20
regarding 15:14 16:18 23:9 135:5 146:16 146:17
regimen 63:11
Regional 9:9
regular 21:4
regulation 34:19
Reilly 10:22 11:5 47:22,24 150:16 153:4 155:20 159:7 159:14
Reilly's 66:20 116:13 152:21 157:18
Reinemann 12:22 46:10,24 50:24 52:4 113:16 138:21 140:13 141:15 173:1 177:13 180:8,16 181:7 182:6 197:15 205:5
Reinemann's 13:23 14:6,8 51:12,25 148:14 177:1 178:25 179:7 182:19
reinfecting 109:15 reinforcement 187:21
reject 183:21
relate 104:20 184:6
related 16:9,20 23:11 39:8 64:24 65:8,9 130:2 147:13 151:4

157:13 166:25
relates 184:4
relating 65:20
relationship 65:4,17
65:17,24 74:10 135:3
relative 7:21 14:25 15:4 20:19 23:14,20 27:8 69:5 109:22 202:16 209:14
relatively 43:19 69:3 69:11,15,19 182:15 relevant 13:13 30:11 31:13 50:25 53:4
reliable 142:7 174:3
relied 12:15 13:15 36:12 149:2
reluctance 61:5,6 107:25 207:15,17
reluctant 61:11 108:6
rely 12:19,24 13:6,11 14:9 32:23 48:12 49:25 50:2 53:1 116:13 166:17 173:18
relying 12:25 73:5
remain 161:15
Remedy 6:20
remember 12:5 21:19 45:23,24 52:6 153:16 157:2 158:11 159:23
removed 52:22 54:8 119:1,4 174:6,9
removing 52:14
render 9:25
repair 165:12,13
repeat 122:2
repeated 122:24 124:19
replicate 154:24
report 4:11 6:9,9,14 32:11 82:21 83:4 96:3 138:18 139:2 140:9 147:14,20,25 149:16 152:17,21 184:5
reported 54:9 192:25
reporter 138:2
reporting 1:25 52:21 212:5,11
reports $30: 1$ 31:14 62:1 134:15
represent 13:2 57:20 68:11 70:7 85:1 86:11,14 102:5 137:8 156:8
representation 73:9
representations 83:17
representative 50:8 68:16 71:14 74:20 190:17
represented 32:10 76:22 86:7
representing 44:4
represents $56: 8$ 68:12 72:22 84:21 85:7 87:12 94:11 111:16 133:2 155:15
request 18:23 45:14 132:14 172:8 177:4 178:5,8,23 191:10
requested 9:23 23:10 172:5
requests 12:12 178:22
require 28:3
required 105:18 187:23
research 7:21,23,25 8:2,3,8 16:9 18:10 29:24 31:13 35:14 35:20 36:8,14,15,23 36:23 37:3 40:6 46:18,19 47:2,6,8 50:19 51:12 61:25 62:8 64:6 65:21 67:7 67:9 70:14 83:14 87:7 89:8 93:4,13,15 95:4,7 97:6 100:25 113:16 117:17 118:3 132:20 134:20 137:13 138:17,20,22 141:15,17 142:4 145:1,15,18,22 147:23 148:4,7,9,15 148:20 166:6 167:1 174:1,6 196:24 197:11,11 204:15,18 204:20
researchers 27:8 133:18
resistance 59:1,7 66:23 67:7,10,19 68:1,3,6,14,14,17,18 68:19,23 69:4,12,23 70:1,4,8,18,21,24,24 70:25 71:8 72:3,22 72:22 73:10,15,16 73:20,23 74:7,23 75:7,9,19 76:14,15 76:22,23,25 77:18 78:17,18,21,25 79:5 79:7,10,11,12,14,16 79:17 80:13,15 85:3 85:8,12 86:25 87:10 87:12 94:11 95:3,14 96:7,13,16,22,23 97:3,8,17,22 98:2,5

98:5,10,17 99:17 101:12,13 105:11,17 106:4,15,23,23
118:25 119:11,12,12
120:12,23,24 121:3
121:4,5,20,21
149:22 152:14 153:8
153:14,18,23,25
154:4,6,7,9 155:2,9
155:10,12,12,21,24
156:1,3,9,18 158:24
161:4,4,5,10 162:4,6
162:16 163:1,4,10
164:1,5,15,23,23
165:6,8,12 167:4,7
171:15,23 184:16
187:23 188:11,14
201:8,9 202:6,9,18
203:1,11,14
resistances $71: 1$
73:14 76:5 80:8 89:3 92:16 94:6,14 95:9
100:3 120:17 162:21
resistivity 3:23 98:23
167:15 202:4
resistor 68:9 71:3 82:11 84:25 100:10 101:2 102:9 152:9 152:10 157:5,25 161:14,24 162:1,20 163:1,7,16,19,24 164:6,8,14 165:17 165:19 198:4,6,8 199:1
Resource 9:6
respect 6:22 7:24 13:8 30:23 39:21 100:4
131:24 137:1 148:16 149:3
respected 131:16,22
respond 20:19 123:13 131:6 150:7 185:10
responded 88:18
responding 19:16 110:4,6 123:14 131:2
response 3:11 8:18 18:14,23 19:22 20:5 20:7,20,20 33:2 61:2 62:4,4 83:3,24 84:1 101:24 103:6 107:23 108:12,15 110:1 122:18 123:9,21,22 123:24 124:2 125:6 125:14,18 130:7
131:19 135:3,5,6,10 135:19 145:9 147:8 150:24,25 173:22 185:3,19,20 186:8

190:21
responses 39:2,8 61:4
61:15,19 62:7 63:4
151:8,11 167:23
173:17 185:10 207:6
responsibility 26:24
rest 188:25
restriction 156:6
result 83:3 155:6 165:17
results 27:23 30:9,13 54:14 159:14
resurrect 17:21
retained 15:21 19:15 retract 38:13
review 26:9,19,25
27:12 30:4,20 35:18
39:13 55:13,19
59:16 149:21 175:4
176:7,10,15 177:3,5
178:6 179:9 181:21
181:22 182:3,6 206:25
reviewed 10:4,19 14:19 25:16 26:10
27:3,4 29:2,5 51:17
55:5,9,11 57:8 62:8
62:11,19 65:23
71:19 145:12,14
175:14 176:14,25 179:10 182:18
reviewer 175:10 179:2 179:9,16,20 182:19 183:1
reviewers 57:8 177:6 177:7,10,13,19,21 178:1,9,10,14,17,20 178:24 179:24 180:7 180:9,19 181:4,17 185:16
reviewing 11:1,17 26:17 146:15 179:16 204:15
reviews 29:15 30:10 177:21 179:10,16 180:15
re-read 130:9
Rhode 140:5
Ricci 2:7
Rick 40:11
right 8:11 9:10,16,18
10:3 14:10 15:11
18:19 19:14 20:1
23:17 26:16 32:5
33:13 35:22 36:6,13
36:18 39:23 40:25 41:13 44:7,18 45:1 49:4,17 51:11 52:12 54:3,25 55:9,23

simulated 165:25
simultaneously 60:16
single-phase 169:2,12 169:20
sit 134:8 142:1 154:18 176:5
situation 58:16 69:13 71:2 97:24 104:13 117:23 147:2
situations $94: 14$
six 19:24 104:7,9
sixth 112:8
Sixty 128:13
size 27:24,24 66:25 72:15 121:16 171:10 171:25 172:1
sized 128:14
sizes 67:2 170:19,23 171:1
sizing 170:20
skin 70:3 116:15 202:5 202:8
sloppily 112:16
small 69:19,23 86:20 120:11
smaller 143:25 154:5
smooth 111:20
society 21:4 25:21
26:14 27:5 41:24
42:17 46:16 177:23
181:18 183:3 185:12
soil 78:4
sole 11:22
solely $36: 22$
somatic 207:13
somebody 22:14 87:24 131:15 134:5 146:8 164:13 179:22 181:19 182:8 200:18
somebody's 102:8 176:14
somewhat 12:7 54:15 68:16
sore 69:25 70:3
sores 201:25 203:6
sorry 16:6 61:17 82:13 118:21 124:17 158:5 161:17
sort 15:23 16:20 42:9 109:10,22 120:8 126:11 201:5
sorts 15:8 16:3 89:18 108:23 113:21
sounded 49:1
sounds 49:1 193:24
source 77:6,12,13,19 78:10,16 86:3,18 107:10,10 108:20 109:23 147:16,21

152:14 153:14,18
154:4,6 155:10,21
155:24 156:15,16
160:23 161:5,10,14
161:21 162:4,6,8,16
162:17 163:4,10,17
163:21 164:1,5,12
164:15,22,23 165:6
165:8,12,18,20
167:4,7 187:25 188:7
sources 55:15
so-called 6:16 52:6 81:7 186:4 187:5
speak 47:11 88:10
111:20 134:4 143:23
162:24 186:22
205:17
speaking 29:1 42:20 131:12
special 22:8
specific 28:11 50:11
52:24 67:24 100:1
141:20 149:16 150:2 154:20 164:21 167:16
specifically $38: 14$ 39:6 68:4 134:6 142:12 145:16 160:11 173:12 177:14 186:12 202:23
specified 115:22 209:13
speculating $25: 11$ 152:13
speed 158:13
spelling 45:20
spend 11:20 13:17
spike 111:17
spring 19:13
Square 2:3
squares 134:21
SS 209:2
St 91:3,4
stab 160:24
stand 9:10,11 19:5 38:6 123:6 148:25
standard 119:23 126:8 133:3 154:25
standing 69:2,9 75:1 80:5 94:22 98:15 99:10 125:16 127:9 127:15
standpoint 37:9
start 104:14,19 112:21 115:7 181:16 187:12 198:21
starting 90:1 166:14 starts 104:7
state 1:1 7:7 44:13 111:12,14,18 113:5 113:6,10,11,13 114:2,23,25 130:4 191:24 209:2,5,23
statement 12:20 34:5 36:7 150:23 195:14
states 6:17 45:15 46:3 186:24
statistical 30:7,8 31:4 32:4 37:18,20 119:3 119:5,21 128:25 183:17 200:19,22 201:3 204:20
statistically $31: 3$ 127:25 128:10,16
statistician 200:24
statistics 123:5 133:9 183:20 200:18
status 7:6,8
steady 111:12,14,17 111:19 113:5,6,10 113:11,13 114:2,22 114:25 191:24
steel 189:11
stem 140:21
stenotypy 209:9
step 51:4 141:2 200:11 203:20 204:5
stepped 201:23
Stetson 20:2 137:10 137:11,17
Stevens 1:22 2:2 207:9
store 115:5
stored 14:15 17:2,13
straight 74:9 101:20 126:7 177:24
strangely 120:12
strategy 180:3
straw 76:10
stray 3:16 4:15 7:24 8:2,15 9:13,16 16:9 16:16,18 18:11 34:19 38:10 41:17 41:17,21 42:22,24 45:2 54:20,23 55:4,8 55:14 58:12 59:21 59:24 60:5,12 61:1 61:24 62:15,25 63:5 63:8,13,17,20,24 64:4,7,15,21 65:9 73:6 81:7 108:11,24 109:14,22 110:1,4 110:15,18,21 130:3 131:15,22 145:1,23 149:3 151:4,16,18 160:12 181:7,24 183:14 191:17 196:9

205:5
strictly 105:8
Strike 94:4 151:14
strip 156:17 158:6,6
strongest 30:13
structure 30:17
structured 147:13
struggling 115:2
Stuart 172:9
Student 7:9
studied 64:2 65:19
67:1 83:16 100:3
studies 4:18,20 29:25
30:1,6,9,13,14 31:10
32:1 33:4 36:9 37:23
37:24 46:23 47:8
49:24 50:2,17,20
53:4 66:15 70:10
88:23 89:8,9,13
114:14 117:6 133:17
147:24 148:3,7,19
149:10 174:1 200:14
202:24
study 52:6 53:2,3,11
54:14 55:19 58:14
59:20 105:23,24
107:14,21 114:4,6
117:2 130:8 141:25
144:10 173:3,25
183:18
stuff 45:24 49:1 70:15
144:19 182:10
197:15,21 199:21
sub 162:17
subject 57:5 66:2 71:15 81:9
submission 24:8 26:20
submissions 26:9
submit 176:16 195:3
submits 185:8
submitted 19:8,11,22
29:3 176:13 185:3
submitting 20:21
subsequent 12:22
166:10
subsequently 48:8 192:8
substance 210:9
substantial 64:20
sudden 113:4
sued 46:2
sufficient 168:7
suggest 19:3 177:6,7
178:8,10 179:23
180:11
suggested 177:11,12
suggesting 61:22
suggestions 178:13

183:1
suggestive 129:5
summaries $8: 11$ 27:8
28:14 67:22
summarize $30: 12$ 150:22
summarizing 8:8
summary 10:15 14:6,8 27:19 28:5,6,8,17 147:5 150:7,9
157:18,20 199:9
summer 8:16
Summons 60:10
superior 30:1
support 29:17 39:19
54:17 88:24 89:8
149:4 166:17
supported 37:24 148:2
supports $50: 20$
suppose 35:6 87:3 180:2
supposed 165:5
Surbrook 207:8
sure 9:1 13:10 21:24
27:14 28:4,10,15
38:14 40:10 55:10
60:8 61:17 69:2,6
80:7 81:3 97:21
105:25 109:4 112:12
114:13 118:9 129:2
130:10 132:11
139:20 149:16 150:9
152:3 167:25 170:3
176:5,12 180:21
183:3 191:12 193:17
194:8 200:6
surface 3:23 69:5,22
76:1 96:24 97:4,7,9
99:11 121:18 201:14
surfaces 116:24 117:5 117:8,21
surprise 99:19,21,22
surprised 64:14
suspect $35: 8$
suspecting 15:16
switch 163:12 205:2
switching 205:2
switch-back 204:19 204:22 205:4
sworn 6:6 7:2 209:7
symptom 61:18
symptoms 59:20
60:25 61:3,7 62:23 62:24
system 3:15 17:14 26:16 43:20,21 56:9 56:11,11 57:16 58:5 59:3 81:18 82:15,15

110:11 113:8 116:7	taught 7:16 183:19	74:23 75:9,19 93:23	133:7 134:22 135:14	113:14 114:11
152:3 157:9 165:4,7	teach 7:16 122:14	100:10,14 149:22	135:20,23 136:2,9	115:22 117:13,17
165:13 167:8 168:24	teaching 7:15,17,18	158:14 159:7,14	136:23,24 137:4,5,8	123:13 128:15
169:2,9,12,19 170:9	204:15	189:16 190:14	137:25 138:10,23	132:10,12,15,15
170:12,15,15,16,17	team 22:23 176:8	tests 75:24 99:24	139:14,23 142:9	136:11 139:21
171:24 177:7 187:16	technical 21:4,5,5	119:3,5 123:11	143:10 145:17	141:10 148:24 151:9
189:13 193:17	27:5 42:17 48:9	Thank 41:13 118:7	147:10 148:14	151:22 152:18 157:8
203:24	184:22	184:8 207:24	152:13 153:12 156:6	157:13 169:22
systematic 29:15 30:4	technique 189:23	theoretically $134: 25$	157:10,21 158:10	177:16 178:15,15
30:10	190:12	THEREFOR 210:20	159:10 160:8 161:3	180:6,8,11,20,22
systems 3:17 23:25	techniques 136:25	211:4	162:11 166:4 169:15	196:22 197:5,8
25:18 59:18 168:21	Technology 34:14	thereto 31	172:5,9 173:1,2	200:21,21 201:5
168:23 184:9	telephone 2:1315:	th	174:11 175:25	209:12
		they'd 127:8	177:14 184:12 186:8	times 47:7 72:2 84:7
T	tell 14:1 26:12 45:4	thing 14:22 40:4,14	186:17,17 194:10	123:3 136:24 151:21
T 210:18 211:2	55:20 57:12 60:7	45:6 62:6 75:24	195:16 197:2 198:12	166:7,15 174:5
table 118:24 121:8,8	75:20 88:23 89:7	76:24 81:9 88:21	198:22 199:10,14	207:14
122:17 123:8 125:10	92:4 93:13 135:17	124:7 150:6 160:24	203:15 204:18	Timing-wise 19:17
125:21 126:6,7,18	154:19 159:4 164:17	162:2 168:2 200:12	thinking 94:7 114:6	titles 10:15 38:2
142:24 183:16	183:22,22 186:1	things 10:18 11:12	thinks 179:24	today 13:20 14:11
take 10:6 12:9 28:19	205:6	15:8,20 16:3,7 22:12	third 2:3 30:2 72:18	22:13 41:11 73:8
42:5 54:13 65:7	telling 99:1,18 148:8	27:21 28:1 37:7 48:9	76:24 147:5 166:23	75:17 134:8 149:7
73:20 74:16 91:16	153:5	48:12 52:2 62:14	thought 34:23 75:16	154:18 198:13,19
92:13 101:18 110:12	tendency 78:5 171:17	63:12,19 64:19	114:24 140:11	told 94:10,13 149:12
115:4 118:8 126:18	term 59:24 114:2	72:20 77:9 80:11	159:17 174:13	161:3 166:15
128:2 131:19 134:23	143:12 144:21	85:5,22 89:18 99:25	188:22 191:6 195:10	tolerate 110:5
141:7 150:1 155:3	terminologies 114:24	107:22 108:23 111:1	thousand 67:19 68:2	top 142:6 176:1
157:13 160:20,24	terminology 76:21	111:3,7 113:21,22	thousands 97:2	183:25
162:2 168:20 176:17	terms 33:2 37:11	113:23 115:2 117:14	thousandth 72:9	topic 17:19 41:17,21
180:6,11 186:13	46:22 57:6 61:1,1,16	127:7 129:2 131:25	112:6	51:1,3 100:2 145:1
189:24 199:5	65:6 66:16 79:4	131:25 132:18	thousand	181:16,20,23
taken 81:4 107:14	101:23 102:13	136:11 140:11,14	three 7:16 14:10 29:16	topics 181:18
118:10 124:17	106:13 111:3 112:10	145:24 146:2 148:20	30:3 31:1 53:20	total 86:2 95:1 97:14
160:21 180:8 209:8	126:13 201:3 202:17	149:1 154:25 165:7	72:17 102:4,5	98:4,19 121:19
209:12	test 122:3 147:1 186:4	169:14 172:25 173:9	108:10 125:5 128:16	156:3
talk 32:15 111:1,11,12	186:11,18 187:5,9	174:20 184:20 186:3	129:2 151:21 169:17	totally 101:19
131:9 141:12 168:25	193:10 194:13,15,19	195:10 196:20	three-phase 169:2,17	traditional 81:7
200:11	tested 87:8 90:9 92:4	198:23 201:8,25	170:17	trained 123:24 124:12
talked 10:3 35:10 48:8	93:11,17	202:16 207:10,20	threshold 106:24	124:18 126:22 127:2
52:19 53:24 76:24	testified 41:4 44:8,23	think 8:9,22 12:21	128:25 160:16	training 123:15
78:9 84:18 99:3	45:2,8,14 48:13 85:6	14:23,23,25 16:24	198:11,12	Transactions 23:24
142:14 153:17	139:23 174:13	16:25 19:4,9,10	threw 15:24	24:1,19,21,25 25:4
168:18 173:25 174:5	194:10 195:11	24:15,17 26:15,16	throwing 190:5	25:10,25 26:4 90:18
197:18 199:20 201:7	testify 9:22 18:25	29:7 30:25 31:5,6	thrown 133:16,24	176:13
talking 28:13 33:19	47:12 80:23 146:16	32:22 34:7 35:18	134:11	transcribed 209:10
36:1 47:7 68:5 69:22	146:20 147:11	36:4 38:9,18 39:10	tie 141:20 165:4	transcript 209:11
71:3 84:10 85:14	148:21 150:1,20	42:7 43:6,7,19 45:25	tied 163:15	212:3
92:6 111:6,7 119:10	184:21 209:7	47:8,10 48:5 50:25	time 7:12,14 8:1,13,20	transcription 210:6
125:13 140:25	testifying 160:11,15	51:3 52:5 53:20	11:20 13:17 14:15	transfer 108:13 109:7
142:10,10 144:8	170:24,25 194:18	56:23 60:4 62:13	15:2,21 17:12,23	transient 111:4,16,21
146:3 148:18 162:17	testimony 26:18 28:19	70:14 73:11,12	18:7 19:14 20:25	111:22 112:1,13,19
193:16 194:4,5,9	48:20 49:20,25	75:22,25 76:8,25	21:10,14 23:7 24:19	112:21,22,24 113:23
196:7 202:17	53:18 66:20 82:9	77:14 78:16 80:20	25:5,8,9 26:7,22	113:25 114:1,11
talks 169:14	102:23 137:19	81:8 85:6,15,25	28:1 33:5 40:15	115:21
tangled 81:16	172:16,18,19,22	87:20 88:7 92:12	43:18,20 44:15,25	transients 111:2,3,7
tank 157:24	198:19 199:24 209:8	95:23 98:21 99:7	45:1 47:3 48:4,7	111:11,25 112:2
tape 21:25 174:21,22	209:11	100:5 107:1 110:5,8	53:23,23	113:17,20 114
tapes 174:24	testing 28:2 43:13,15	$111: 17114: 7118: 2$ $126: 13128: 13131: 4$	89:11 102:25 111:4	translate 159:3
task 178:1	68:1,10 71:4 73:6,20	126:13 128:13 131:4	111:9,15,18,24	transmission 108:21

travel 56:20 59:10
travels 58:23
treatise 71:22
treatises 12:14
treatment 205:1,2,3
trend 133:2
trial 11:18 41:4 43:10 44:8,10,23 45:2
142:5 199:24
trials 30:15
tried 41:8 99:25
100:19 117:9 186:13 202:22
trouble 158:5
true 10:24 13:8 16:19 19:18 57:3 59:19
72:16 73:25 74:1 78:25 79:9,14,17 80:15 83:5 87:2,9 95:7 109:22 113:22 114:5 116:12,16,25 129:21 130:8,13 136:5 148:13,17
179:25 183:21 192:1 195:13 209:11
truth 135:18 183:22 209:7
Truthfully 175:7
try 15:22 19:23 42:1 52:17 63:13 98:8,12 115:24 125:2 126:2 133:5 152:16 169:24 179:11 189:24 206:6
trying 19:9 32:3 34:7 37:21 44:5 63:18,19 67:15 76:19 79:18 80:6,9,17 95:2 97:7 97:25 99:7 101:15 106:10 109:12 112:11,18 124:10 127:13 169:16 176:23 182:2 206:18
turn 63:23 126:24
turns 113:1
Twenty-five 96:4
twice 122:23
twitch 83:20
two 6:8 12:12 14:14 29:22 30:25 33:17 33:21 38:10 40:3,13 50:10 52:9,19,20,22 53:20 54:7,7,12 56:10 71:10,13 72:17 75:1,24 76:3,6 78:12,14,15 81:11 85:5 88:9,13 102:4,5 102:9 104:23 105:2 105:20 106:24 107:13 108:10

118:17 120:23 125:4 127:7,10,23,25
128:1,18 132:25
133:16,24 134:2,10
143:24 152:23,23
157:2 165:16,23
168:11 174:6,21
179:4 183:17,23
187:20 196:8 202:2
203:22
two-week 173:3
type 11:10 16:2 17:2
23:14 27:15 28:17
30:18 37:8 61:4 74:20 124:7,10
161:16 162:2 173:13
181:5 183:16,17,20
183:23,23 191:7
199:17 200:4,13
204:21
types 97:24 189:1,11
typical 25:5 63:8 80:10 85:13 181:4
typically 13:6 61:19 120:17
typographical 60:17 60:18,19,20
\mathbf{U}

Uh-huh 53:19 88:11 ultimate 178:16 ultimately $97: 5$ unavoidable 127:19 uncommon 99:13 Undergraduate 7:9 understand 28:7 34:20 36:1 39:13 50:1 52:11 53:5,15 80:20 115:16,23 116:6 138:20 164:10 167:24 179:21
190:12 195:1
understanding 22:2
22:10 86:13,14
166:4 168:22 185:7
190:25 194:19
204:24
understands 181:20
understood 56:25 190:21
unexplained 207:12
Unfortunately 142:16 206:5
ungrounded 165:1 uniform 190:14 uniformity 27:16 unique 109:21
United 6:17
units 72:15 113:24
university 4:24 7:7 8:4 12:2,23 40:16 50:7 71:21 91:1 122:7 137:12,14,15 147:24 148:7 200:25
unusual 69:8 92:25 117:22
Update 4:24
urine 76:9 94:15,23 98:15 99:12 116:24 117:5,7,20
urine/manure 69:3
USDA 12:21 15:11 33:10 50:5 67:23 130:23 133:17 137:13 147:14
use $72: 13,14$ 73:11 87:19,21 101:1 106:13 108:24 122:23 123:3 133:9 136:1,2 149:3 155:4 170:13 171:5 180:2 189:25 191:2,19 198:13 207:17
usually 11:19 111:14 111:16 112:23 119:5 167:7
utilities 6:10 129:20 130:18 137:19,23 139:13 184:5
utility 43:21 45:9 55:17 56:2 138:1

V
vague 174:11
valid 74:5 155:6 188:2
validly 167:25
value 67:13 69:15 70:12,16,17,17 71:11 86:25 87:20 93:9 95:1,23 96:15 99:5 100:20 101:15 101:16 105:15,18 106:8,15 107:2 111:15, 19 113:11 114:10,25 115:21,21 120:11 128:25 143:16 153:21 154:19,20,24 155:4 156:7 163:2 164:24 193:24 200:9,20
values 67:16,16,17 71:10,14 73:3 87:19 93:20 94:1,25 187:23
variability 66:18 126:10
variable 106:10 202:1 202:2 203:14
variables 72:17 141:5 201:17,20,23
varied 12:5 90:11
variety 63:5 148:3,18
various 15:5,20 16:8 31:1 42:13 117:12
vary 11:16 66:16 68:24 76:13 94:7
venue 41:5
versus 66:23 128:18 157:12 169:2
vertical 84:13 101:22
veterinarian 83:8
veterinary $173: 18$ 181:20
video 22:3,6 174:21,22
videotape 22:1 75:21
videotaped 22:2,9,11
view 3:18 13:19 27:3
28:20 36:17,25 52:16 73:14 107:6 111:5 136:9 179:25 182:1 196:16
viewed 23:19
views 139:10
violent 52:10 107:16 133:17,25 174:7
virtue 165:12
visible 61:18 91:10
visit 9:21,25
visited 47:9
visits 151:15
visualize 57:13
vitae $3: 9$ 12:20 13:2 16:12 48:17 206:6
Vogel 172:11,14
volt 43:19 72:2 82:11
82:22 83:5 142:20 157:6 158:4,6 163:7 164:14 165:17,19 196:20
voltage 4:15 7:24 8:2 8:15 9:13,16 16:10 16:16,18 18:11 34:19 38:10,21 41:17,22 42:22,24 45:2 54:20,23 55:4,8 55:14 56:20 57:1,22 58:12 59:21,24 60:5 60:12,13 61:1,24 62:15,25 63:5,8,13 63:17,20,25 64:5,7 64:16,21 65:9,14 71:13 72:5 73:6 75:5 77:13 81:7 82:12,17 84:13 87:18 100:8 101:11 102:6 105:7 105:16,17 106:4,13 108:12,25 109:14,22

110:1,4,15,18,21 113:4,7,9 130:3 131:15,22 135:5 143:25 145:1,23 149:3 150:2 151:4 151:16,18 152:1 155:7,8 156:12 159:3 160:12 162:19 162:22,25 163:3,14 163:16,19,25 164:5 165:2 168:10 169:9 169:13 170:5,18 171:23 172:2 181:7 181:24 183:14 184:19 187:11,13,19 187:21 188:8,15 191:18 193:22 194:20 196:9 198:15 198:17 205:5
voltages 38:13 135:4 141:2 147:7 150:23 151:24 155:9 157:12 169:1 170:8 171:18 196:13 197:25 198:3 198:9,13,24 199:15 199:17
Voltage/Current 4:13 6:19
volts 3:18 72:12 102:9 105:20 106:24 143:24 152:8,9 153:10,22 155:11,12 157:25 158:23
193:20 194:11,16 195:12 196:13,18,25 198:4,8,16,20
vs $1: 9$

W

WABASHA 1:1
wall 163:12
want 18:21 32:16,17 33:25 40:25 63:23 74:21 75:20 77:20 78:23 79:1,9,11,14 79:16,20,21 81:6 86:10 88:20 106:12 107:18,24 110:8 135:24 140:23 148:23 149:9 156:22 160:24 163:21 164:11 166:4 167:24 172:10 180:24 181:1 192:9 193:25 196:1 205:18
wanted 41:1 49:22 111:1 118:22 122:17 131:13 166:3 178:6 207:3
wants 179:22
wasn't 18:23 54:8 74:19 128:11 175:8 186:21 187:3
water 38:21 57:19 79:25 116:24 117:5 117:7,10,21 155:11 157:24 207:17,18
waterer 61:6 69:8 98:16 99:13
watering 207:19
Waters 38:13
way 14:22 18:22 20:14 31:4,7 37:20 40:12 42:6 55:24 57:13 61:9 74:10,12 86:21 87:25 92:15 96:4 97:19 101:22 107:1 115:8,11 121:22 131:11,17,18,20 132:8 136:11 146:6 153:20 162:12 168:14 170:4 187:24 190:13
ways 55:23 80:1 110:24 202:3
wearing 179:4
weeks 141:11 173:5
weight 201:9
Weld 2:7
well-being 133:19
went 91:4 120:10 135:8 173:10,11
weren't 44:4 174:24 186:2
wet 58:22 69:11 75:2 78:5 97:4,6,9 98:10 99:10 100:17 118:25 119:18 120:2,6,10 120:19,25 121:6,24 122:4 167:5 203:19
we'll 8:24 9:5 75:14 191:5
we're 6:12,20 9:5 36:6 39:15 53:14 58:17 68:8 76:21,21 84:10 89:1 92:6 95:2 96:11 111:6,7 112:15 114:6 118:22 119:10 125:13 130:23 132:9 143:3 162:5,16,21 163:2 168:14
we've 6:7 10:3 16:21 22:12 32:8 33:4 61:3 64:25 83:4 84:18 87:11 95:16 105:22 106:17 121:22 140:7 149:19 171:3 184:12 197:18,23 199:20

201:7
WHEREOF 209:18
whichever 75:5
White 207:10
William 22:22
Williams 207:7
willing 65:3 183:2
win 107:5
wire 57:2 77:21 163:15 170:20,23 171:10 172:1
wiring 110:11
Wisconsin 2:8,12 12:23 43:5 82:20 83:3 147:24 148:7 172:20
wisdom 32:10,20
wish 180:10
witch's 109:10
withdraw 49:3,5
witness 3:3 6:6 9:8 49:5 137:20 138:14 148:25 153:1 172:14 200:17 209:9,12,18 212:4
wondering 17:15 28:10 45:5
word 70:23 170:13
words 50:15 108:12 131:2 185:19
work 24:12 26:6,19 33:11 41:8 49:6,7,14 50:7,9,12 53:5 64:1 67:21 80:17 115:12 137:20 144:20,23 146:23 148:16 164:17 166:11 171:7 176:11,14 177:1,3 179:7 180:15 181:5 182:19 184:9,21 187:7 191:22 196:20 197:17 200:23 205:5
worked 25:13 33:9 46:13,15 100:2 139:20 151:6 197:23 204:17
working 31:16 36:21 68:8 82:18 87:20 89:17 151:13 172:3 works 39:4 135:13 139:12 164:17
worried 35:6
worse 117:9
worst 84:14,23 85:10 86:9,19,21,22 87:1 87:15,21 88:25,25 93:6,10 95:13,19,25 96:1,3,6 125:12
wouldn't 49:14 58:5 62:11 64:14,18 68:4 74:2 87:3 94:20 99:19 104:24 109:20 120:23 124:15 128:13 134:25 142:25 145:4 154:22 160:6,9,16 168:23 176:19 178:7 180:17 182:22
write 146:6,8
writer 177:4
writing 8:6,13 40:21 41:16 88:4 206:9
writings 41:24
written 15:4 62:19
129:17 130:7,22
131:7 195:11 199:14
wrong 72:25 73:1 74:15 79:6 134:24 189:7 191:4 194:16
wrote 20:7,8,8 87:25 129:19,24 130:6 131:3 146:12 169:15 196:15 197:4 206:13 wye 169:5,9

\mathbf{X}
$\mathbf{X} 3: 1$ 4:1 5:1 119:20
Xcel 1:10
\mathbf{Y}

yeah 17:7 26:3 34:12 39:23 51:11 68:7
69:6 77:4,5 93:11
95:17,18,18 96:12
104:17 105:23 109:5 110:24 124:17
125:11,20 126:14
128:9 138:10 140:24
150:12 155:19,23
158:16 162:15
164:20 165:14
172:11,13 178:7
186:16 195:6
year 7:16,17 12:4,5
25:14 151:21
years 12:6 16:2 26:8
26:13 39:12 41:9
42:10,10,24 48:23
53:21 142:11 144:7
206:21
York 212:12,12
younger 122:12,13

Z 162:17
zero 69:13,14 79:22,22

80:14 101:22 110:7 123:19 125:4 127:13 127:24 163:8,17
Zipse 14:25 18:12 20:17 21:19 22:10 24:7 145:8,9 184:21 191:1
Zipse's 8:18 19:16,19 21:7 22:15 23:9 24:24 146:23 185:5

\$
$\$ 1,000$ 12:6
$\$ 1,200$ 11:19
$\$ 120$ 11:15
$\mathbf{0}$
$\mathbf{0 . 4 2} 152: 9$
$\mathbf{0 1} 128: 20$
$\mathbf{0 5}$ 19:11 128:23
$\mathbf{0 6}$ 19:12 24:16
$\mathbf{0 8 5} 153: 25$
$\mathbf{0 8 6} 152: 8$
$\mathbf{0 9} 142: 17$
$\mathbf{0 9 1} 153: 22$

091 153:22

1 118:24 121:8

1,000 71:9 84:8,15
102:2 105:9
1,479 119:18
1,562 119:17
1-800-825-3341 1:25
212:12
1.4 157:25

10 4:16 26:8,13 27:24
92:7 112:8 115:5
144:16 202:14
10011 212:12
101 164:18
1030 2:8
106 157:12
118 4:14
12 173:5
129 4:22
13 111:9
13.8 123:9,10,13

124:24
14 209:25
15 39:12 115:6
15-minute 158:1
1507 118:23
16 140:22 141:16
1620 2:12
18.3 128:3,4

195 4:24
1978 207:8
198 96:7

1981 207:10
1982 39:25
1983 90:16,18
1984 38:16 195:24 207:9
1985 38:18,25 39:7
1987 8:6
1988 38:10
1989 38:20
1991 47:2 82:21 118:4
1994 4:22 46:25
129:18,21 132:10 133:21
1998 6:11

$\mathbf{2}$
2 133:1 173:21
2B 123:2
2.5 132:15
20 27:25 157:6
200 99:18.19 106:22

165:18
200-250 105:15
2003 8:22 9:14 145:2
145:15 173:3
2005 4:4 18:6
2006 3:19
2007 1:19 209:20,25 210:15
205 5:4
244 90:11 96:3
25 92:21 96:5 97:21 128:4
25th 129:21
250 67:10,11 70:11
105:11,13,20
26 4:4 18:6 120:5
28 3:19 90:8,13 92:9 97:21 121:9
282-1503 2:4
29 1:19

3

3 60:9 121:9 125:19,20
3-22 31:12 39:20 84:12 101:20 142:25 161:1
3-4 31:12 37:25 39:20
71:5,7 72:21 84:4,12 125:10,10 126:3,16 142:24
3-5 89:21,24 116:10
3.5 85:25 162:13,16

300 2:3
302 92:22 96:5 97:15 97:23
304 3:9 6:8
304-317 6:3
305 2:3 3:10 18:16,23 19:7 60:8 185:1

306 3:12 19:20 185:15	93:5,9 94:7,11,25	
186:12	95:17 101:13 102:1	9-11 9:14
307 3:14	105:9 155:2,5 157:1	90 17:20 85:16 86:8
308 3:17	161:2	90s 17:21 85:19
309 3:19 50:2 146:4,5	500-ohm 71:3,8 84:25	$91 \text { 4:18,20 46:25 47:1 }$
191:14	88:24 100:10 101:2	$47: 2$
316:11	102:9 154:12 164:6	92.3 125:7,14
310 3:21 12:9	164:14 165:17,19	95 7:14 85:14
311 3:22 140:17	507 2:4	99 85:14
312 4:4 17:24	525 90:11	
313 4:6	54702 2:12	
314 4:7 150:13,14,21	54702-1030 2:8	
199:12	548 152:10 153:11	
315 4:9 17:8 22:13	55904 2:4	
316 4:10 6:8,9,22	58 155:11	
138:10	59 95:15,17	
317 4:12 6:8,8,16		
16:22 34:11,12	6	
318 4:14 9:4,5 118:12	6 3:5,9,10,12,14,17,19	
118:16	3:21,22 4:4,6,7,9,10	
319 4:16 10:9,13	4:12,22 126:18	
320 4:18 91:12 92:2	129:18 132:10	
321 4:20 91:22 92:12	186:11	
92:16 118:23 132:19	6A 170:21 171:5,13,18	
132:23 134:21 135:9	6:00 157:6	
322 4:22 129:11,16	60 42:25 128:11	
323 4:24 195:19,24	600 3:18	
324 5:4 205:21 207:5	65 122:20,21,25 123:1	
35 82:11 154:1,8	123:11	
350 67:11,11		
359 92:17	7	
3624 2:7	7 122:18 125:21	
4	195:12 196:13,18,25	
4 125:19,20 126.2	198:3,16	
4 125:19,20 126:2	70 43:1 195:24	
135:9 193:20 194:11	700 70:15,18	
194:16,22,24	715 2:9	
4:47 208:2	738 92:18	
400 165:20	74 212:11	
400-500 105:14	75 92:22 93:12,16 95:9	
42 154:9	98:1	
43 128:2	76 207:7	
43.3 128:4	77 207:8	
441 92:22 93:12 95:10		
95:17 98:2	8	
461 155:12	8-4 176:1	
47 6:15	8-8 40:1	
470 119:23 157:1	8/23/06 4:9	
470-ohm 157:25	80 207:8	
	80s 17:20 44:21,22	
	81 207:9	
5th 209:20	82 90:19 207:9	
5:00 113:1	83 39:25 91:17 119:25	
5:42:33 158:2	839-7786 2:9	
500 68:10 70:6 72:22	84 196:15	
73:8,14,23 74:15	85 14:16	
76:22 84:7,14,21	87 8:5,7 46:23 197:11	
85:6,7 86:11 87:9,12		
87:16,20 89:3 90:13		

