Física Experimental I Bacharelado

Aula 02 Erros e incertezas

Prof. Henrique Antonio Mendonça Faria henrique.faria@unesp.br

Erro

- Dependendo das condições experimentais podemos obter o valor de uma grandeza através de uma ou várias medidas;
- As medidas podem conter erros associados à fatores externos, aos instrumentos, ou à falhas na execução do experimento.

Erro

"Resultado de uma medição menos o valor verdadeiro do mensurado" (Vuolo)

Ex.: medir a largura de uma folha de papel e comparar com a medida fornecida pelo fabricante.

Erro aleatório: provenientes de efeitos inesperados, são imprevisíveis;

Ex. temperatura; umidade

Erro sistemático: originam da calibração incorreta do instrumento, sendo previsíveis.

Ex. balança não zerada; paralaxe (observação)

Erro grosseiro: decorrentes de falhas humanas ou emprego de metodologia inadequada ou tratamento de dados errôneos

Incerteza

"Parâmetro associado ao resultado de uma medição. Caracteriza da dispersão de valores que podem ser atribuídos ao mensurado." (Vuolo)

Ex.: Trinta colegas medem a massa de uma esfera metálica em uma balança analógica.

Diferença entre erro e incerteza

Erro: o cálculo só é possível se o valor verdadeiro do mensurando for conhecido;

Incerteza: pode ser calculada mesmo não conhecendo ao valor verdadeiro.

A incerteza tem maior significado e aplicabilidade que o erro.

Quanto maior o valor da incerteza menor é a confiabilidade do resultado

Tipos de incerteza

Estatísticas (Tipo A): obtida por métodos estatísticos;

Ex. média e desvio padrão de um conjunto de medidas.

Não Estatística (Tipo B): incerteza de calibração do instrumento; estimativa da leitura em um instrumento com escala.

Ex. uso de réguas, vidraria graduada.

Propagação de incertezas

Para expressar a incerteza em uma grandeza derivada utilizam-se equações de propagação.

$w = w(x, y, \cdots)$	Expressões para σ_w
$w = x \pm y \pm \cdots$	$\sigma_w^2 = \sigma_x^2 + \sigma_y^2 + \cdots$

Fonte: Vuolo (1996).

 $\boldsymbol{x} \boldsymbol{e} \boldsymbol{y}$: grandezas; $\overline{\boldsymbol{x}} \boldsymbol{e} \overline{\boldsymbol{y}}$: médias das grandezas;

 $\sigma_x e \sigma_y$: desvio médio das grandezas (ou $\Delta_x e \Delta_y$).

ω: grandeza derivada;

 σ_{ω} : desvio médio da grandeza derivada (ou Δ_{ω}).

Exemplo de propagação de incertezas

$$a = (23.5 \pm 0.1)$$
 \rightarrow $\bar{a} = 23.5 \ e \ \Delta a = 0.1$

$$b = (17.8 \pm 0.4) \rightarrow \bar{b} = 17.8 \ e \ \Delta b = 0.4$$

Calcular $\omega = a + b$, com a incerteza.

Exemplo de propagação de incertezas

$$a = (23.5 \pm 0.1)$$
 \rightarrow $\bar{a} = 23.5 \ e \ \Delta a = 0.1$

$$b = (17.8 \pm 0.4) \rightarrow \bar{b} = 17.8 \ e \ \Delta b = 0.4$$

Calcular $\omega = a + b$, com a incerteza.

Sabendo que:
$$\omega = \bar{a} + \bar{b} \pm \sigma_{\omega}$$
 $\sigma_{\omega} = \pm \sqrt{\Delta a^2 + \Delta b^2}$

Então:

$$\sigma_{\omega} = \pm \sqrt{0.1^2 + 0.4^2} = 0.4$$

$$\omega = (23.5 + 17.8) \pm 0.4$$

$$\boldsymbol{\omega}=(41,3\pm0,4)$$

Equações para Propagação de incertezas

Expressões para σ_w
$\sigma_w^2 = \sigma_x^2 + \sigma_y^2 + \cdots$
$ \sigma_w = mx^{m-1} \sigma_x$ ou $ rac{\sigma_w}{w} = mrac{\sigma_x}{x} $
$\sigma_w = \mid a \mid \sigma_x \text{ou} \mid \frac{\sigma_w}{w} \mid = \mid \frac{\sigma_x}{x} \mid$
$\sigma_{w} = \mid a \mid \sigma_{x}$
$\sigma_w^2 = (ay)^2 \sigma_x^2 + (ax)^2 \sigma_y^2$ ou $(\frac{\sigma_w}{w})^2 = (\frac{\sigma_x}{x})^2 + (\frac{\sigma_y}{y})^2$

Equações para Propagação de incertezas

$w = w(x, y, \cdots)$	Expressões para σ_w
$w = a \frac{x}{y}$	$\sigma_w^2 = (\frac{a}{y})^2 \sigma_x^2 + (\frac{ax}{y^2})^2 \sigma_y^2$ ou $(\frac{\sigma_w}{w})^2 = (\frac{\sigma_x}{x})^2 + (\frac{\sigma_y}{y})^2$
$w = a x^p y^q$	$\sigma_w^2 = (a p x^{p-1} y^q)^2 \sigma_x^2 + (a x^p q y^{q-1})^2 \sigma_y^2$ ou $(\frac{\sigma_w}{w})^2 = (p \frac{\sigma_x}{x})^2 + (q \frac{\sigma_y}{y})^2$
w = a sen b x	$\sigma_w = ab \cos bx \sigma_x (\sigma_x \text{ em radianos})$
$w = b \log_a x$	$\sigma_w = \left \frac{b}{\ln a} \right \frac{\sigma_x}{x}$

Bibliografia

2. VUOLO, J. H.; Fundamentos da Teoria de Erros. 2nd ed., São Paulo: Edgar Blücher Ltda., 1996.

Contatos e material de apoio

profhenriquefaria.com

henrique.faria@unesp.br