Cálculo I

Licenciatura em Química

Aula 03 Funções - B

Prof. Henrique Antonio Mendonça Faria henrique.faria@unesp.br

Funções Trigonométricas

Modelos periódicos

Muitos fenômenos da natureza se repetem após certo intervalo de tempo;

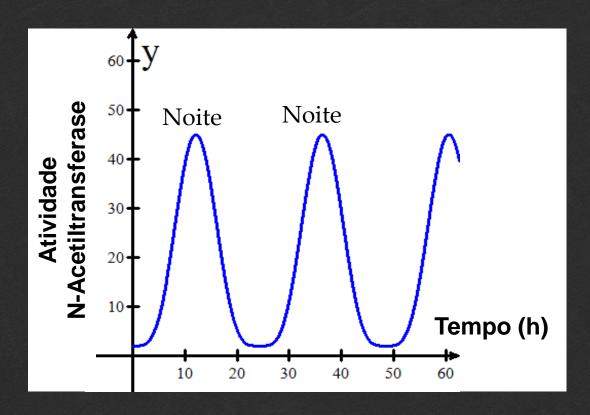
Exemplos:

- Rotação da terra em torno do seu eixo;
- Circunvolução dos planetas em torno do sol.

No campo biológico:

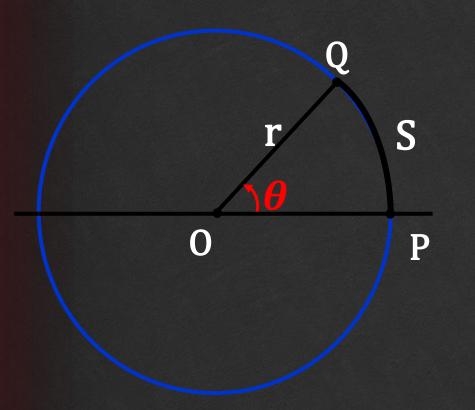
- Ciclos circadianos (se repetem no intervalo de 24 h);
- Ciclos circanuais (ritmos sazonais em um ano).

Atividade circadiana da glândula pineal



$$y = 18,125 + 21,5 \left[\cos\frac{\pi}{12}(t+12) + \frac{1}{4}\cos\frac{\pi}{6}(t+12)\right]$$

3.1 Medida angular

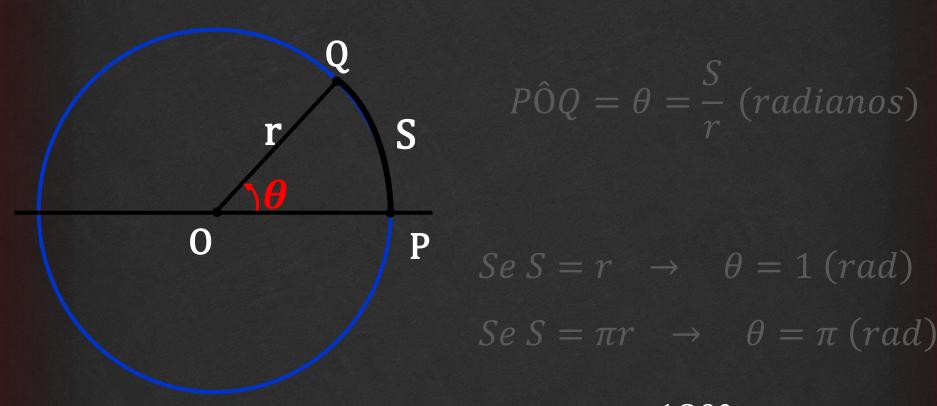


$$P\hat{O}Q = \theta = \frac{S}{r} (radianos)$$

$$Se S = r \rightarrow \theta = 1 (rad)$$

$$Se S = \pi r \rightarrow \theta = \pi (rad)$$

3.1 Medida angular



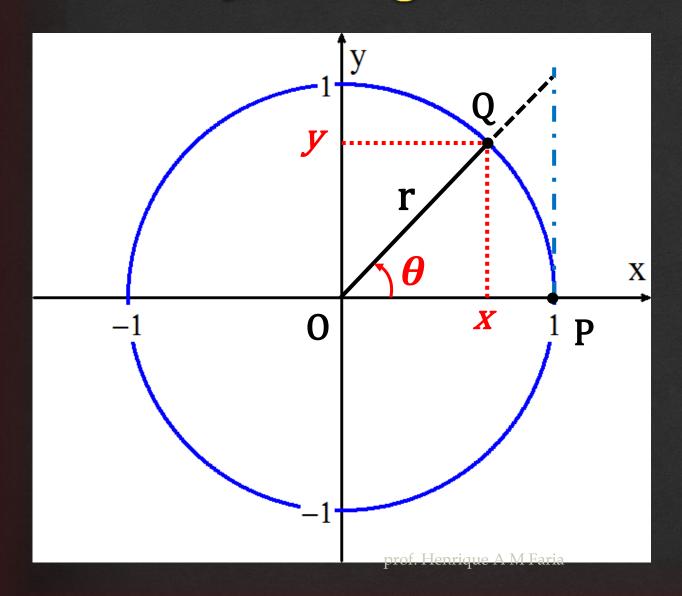
$$180^{\circ} \rightarrow \pi \, (rad) \quad ent\~ao, 1 \, rad = \frac{180^{\circ}}{\pi} \cong 57,3^{\circ}$$

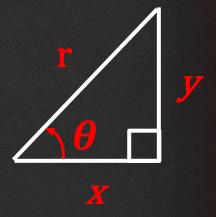
$$\theta' = \theta + 2k\pi$$

$$k = 0, 1, 2, \dots$$

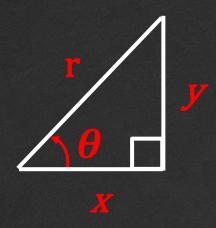
6

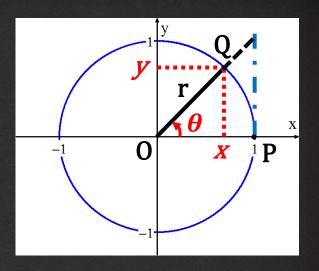
3.2 Funções trigonométricas





Da trigonometria:





$$cos\theta = \frac{cat\ adjascente}{hipotenusa} = \frac{x}{r}$$

$$sen\theta = \frac{cat\ oposto}{hipotenusa} = \frac{y}{r}$$

$$tg\theta = \frac{cat\ oposto}{cat\ adjascente} = \frac{y}{x} = \frac{sen\theta}{cos\theta}$$

$$\forall x \neq 0 (ou \theta \neq \frac{\pi}{2} \pm k\pi)$$

Para alguns valores especiais de θ

θ (graus)	θ (rad)	$\operatorname{sen} heta$	$\cos \theta$	$tg\theta = \frac{sen\theta}{cos\theta}$
30	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
45	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$

Periodicidade das funções

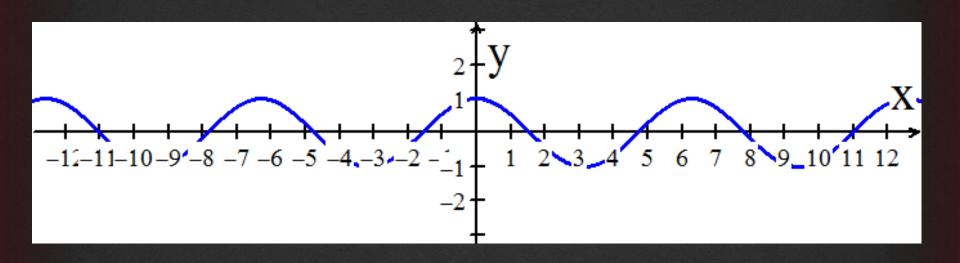
$$\cos\theta = \cos(\theta + 2\pi)$$

$$sen\theta = sen(\theta + 2\pi)$$

$$tg\theta = tg(\theta + \pi)$$

Função Cosseno

$$y = f(x) = \cos(x)$$
 ou $y = f(\theta) = \cos(\theta)$

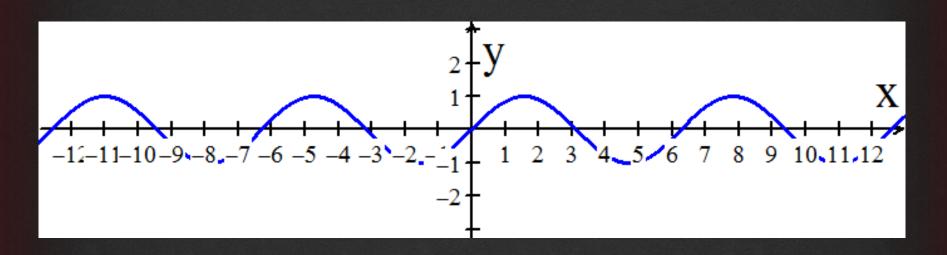


Domínio: $x \in \mathbb{R}$ ou $\theta \in \mathbb{R}$

Imagem: $\{y \in \mathbb{R} \mid -1 \le y \le 1\}$

Função Seno

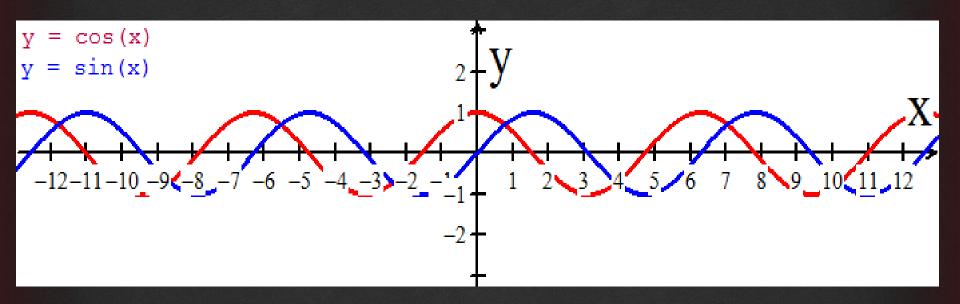
$$y = f(x) = sen(x)$$
 ou $y = f(\theta) = sen(\theta)$



Domínio: $x \in \mathbb{R}$ ou $\theta \in \mathbb{R}$

Imagem: $\{y \in \mathbb{R} \mid -1 \le y \le 1\}$

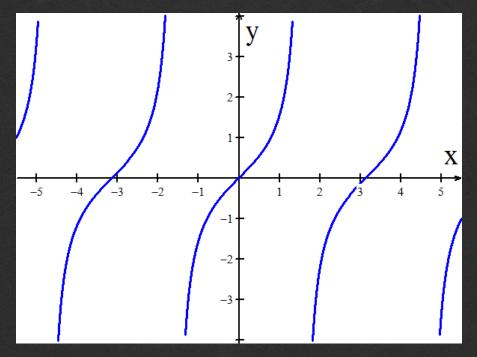
Funções Cosseno e Seno



Domínio:
$$x \in \mathbb{R}$$
 ou $\theta \in \mathbb{R}$
 $-1 \le \cos(x) \le 1$ $-1 \le \sin(x) \le 1$

Função Tangente

$$y = f(x) = tg(x)$$
 ou $y = f(\theta) = tg(\theta)$

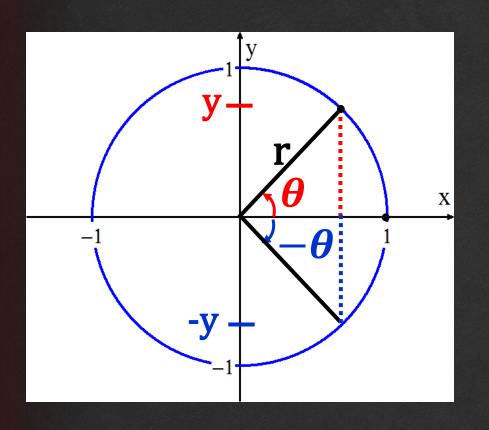


Domínio:
$$\left\{ x \in \mathbb{R}, \ x \neq 0 \ ou \ \theta \neq \frac{\pi}{2} + k\pi \right\}$$

Imagem: $y \in \mathbb{R}$

$$k = 1, 2, 3, ...$$

3.3 Identidades trigonométricas



$$\cos(-\theta) = \cos(\theta)$$

$$sen(-\theta) = -sen(\theta)$$

$$\cos(\theta) = \sin(\frac{\pi}{2} \pm \theta)$$

$$\operatorname{sen}(\theta) = \cos(\frac{\pi}{2} \pm \theta)$$

$$sen(\theta_1 \pm \theta_2) = sen\theta_1 cos\theta_2 \pm cos\theta_1 sen\theta_2$$

$$\cos(\theta_1 \pm \theta_2) = \cos\theta_1 \cos\theta_2 \mp \sin\theta_1 \sin\theta_2$$

3.4 Período e frequência

O período T de uma função periódica $y = g(\theta)$ É um número real T tal que:

$$g(\theta + T) = g(\theta)$$

O recíproco do período é a frequência *f* :

$$f = \frac{1}{T}$$

3.4 Período e frequência

 $\frac{\text{Período}(T)}{\text{composition}}$: tempo para completar um ciclo quando a função depende do tempo.

Frequência (f): números de ciclos completos por unidade de tempo transcorrido.

Nas funções trigonométricas

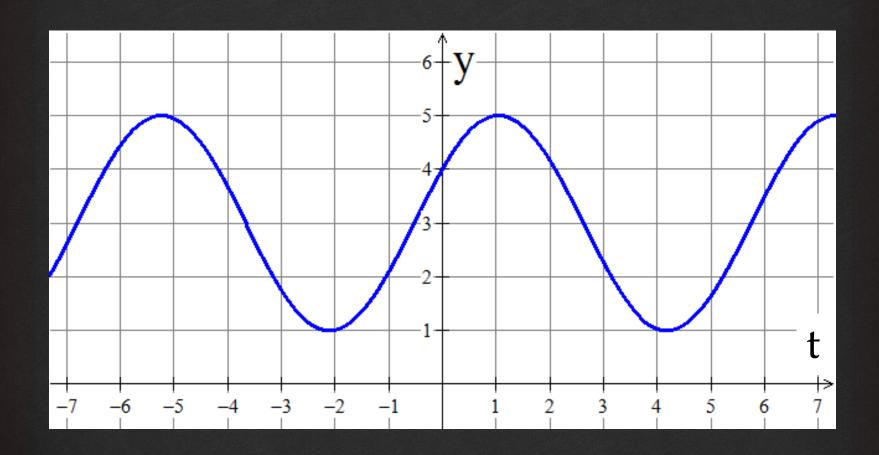
Função	Período angular
seno	2π
cosseno	2π
tangente	π

Exemplo 1

Determinar o período, a frequência, a amplitude, o valor máximo e esboçar o gráfico da função abaixo em que o tempo *t* está em segundos e *y* em *cm*.

$$y(t) = 3 + 2sen(t + \frac{\pi}{6})$$

Gráfico
$$y(t) = 3 + 2sen(t + \frac{\pi}{6})$$



Funções exponenciais e logarítmicas

Funções exponenciais e logarítmicas

- Crescimento de populações;
- > Tempo de meia-vida de um elemento químico;
- Crescimento de células e organismos;
- Decaimento radiotivo;
- Curvas de aprendizagem.

5.1 Função exponencial

Funções da forma:

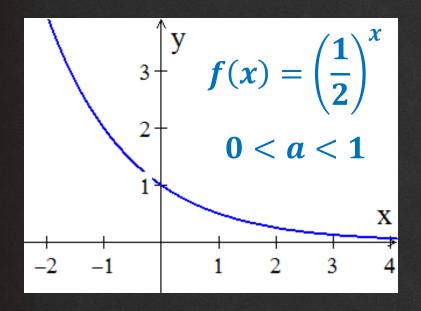
$$f(x) = a^x$$
 $a > 0$ (base)

Exemplo: $f(x) = 2^x$

- Na função exponencial a variável x é o expoente;
- Não deve ser confundida com a função potência, do tipo $f(x) = x^2$.

Função exponencial

Como a base α é sempre positiva, tem-se três tipos básicos de gráficos.



 $f(x) = 2^{x} \quad 3$ $a > 1 \quad 2$ $-3 \quad -2 \quad -1 \quad 1 \quad 2$

Decrescente

Crescente

O terceito tipo, constante, ocorre quando a base é igual a 1.

Exemplo de função exponencial

Encontrar o gráfico de: $y = f(x) = 2^x$

X	y
-3.0	0.1
-2.0	0.2
-1.0	0.5
0.0	1.0
1.0	2.0
2.0	4.0
3.0	8.0
4.0	16.0
5.0	32.0

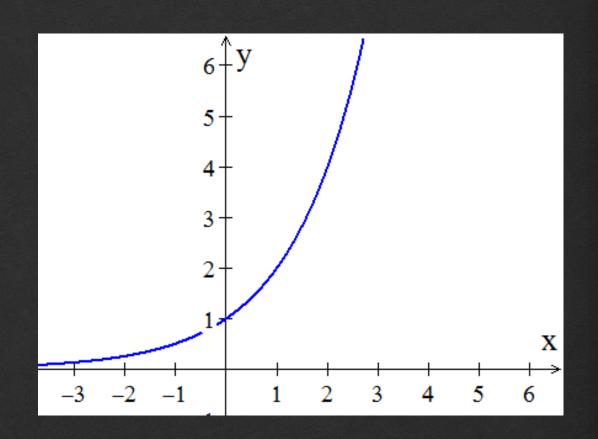


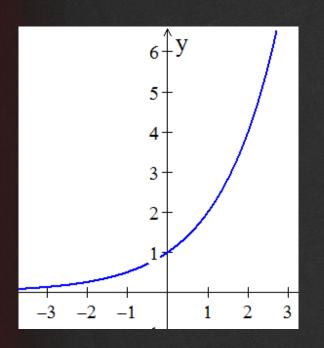
Imagem da função exponencial

Será sempre positiva, mesmo para x < 0, pois:

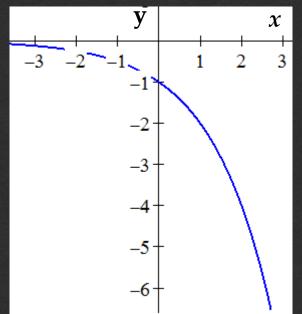
$$a^{-x} = \frac{1}{a^x} = \left(\frac{1}{a}\right)^x > 0$$

A menos que a exponencial seja combinada com outras funções.

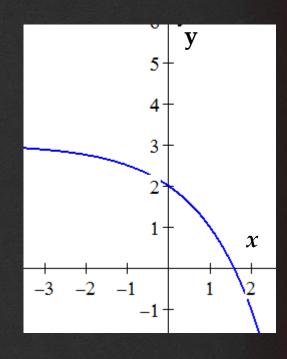
Combinações com a função exponencial



$$f(x)=2^x$$

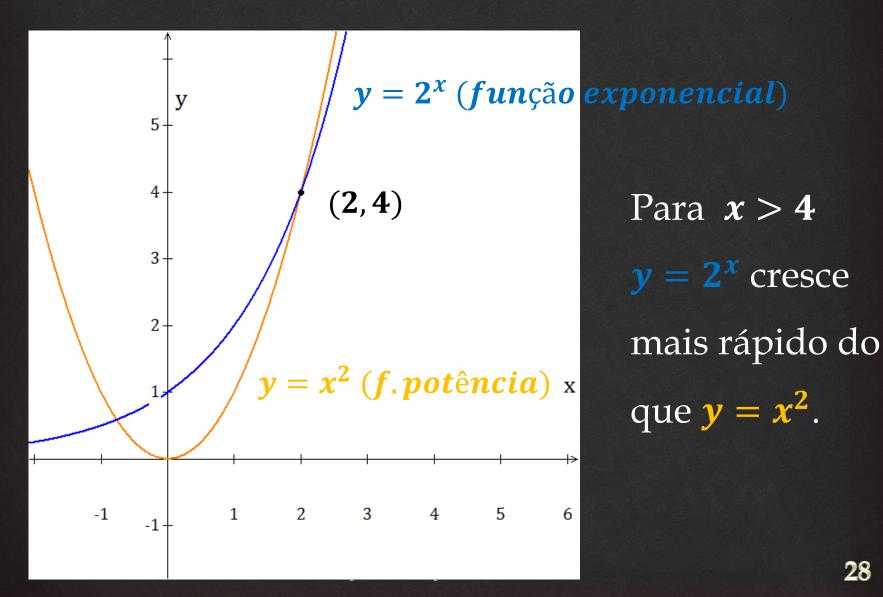


$$f(x) = -2^x$$



$$f(x) = 3 - 2^x$$

Função exponencial e função potência



Propriedades dos expoentes

Sejam a e b números positivos e x e t números reais arbitrários. Valem as seguintes propriedades:

1.
$$a^{x+t} = a^x \times a^t$$

$$2. \quad \boldsymbol{a}^{x-t} = \frac{a^x}{a^t}$$

3.
$$(a^x)^t = a^{xt}$$

4.
$$(ab)^x = a^x b^x$$

Exemplo 2

a.
$$y = 2^5 \rightarrow y = 2^{3+2} = 2^3 \times 2^2$$

b.
$$y = (3.5)^2$$

Número e (Constante de Euler)

- A escolha da base afeta a forma com que $f(x) = a^x$ cruza o eixo y;
- \triangleright Há enorme simplificação, no cálculo, quando a base α fornece uma reta tangente de inclinação m=1 no ponto (0,1);
- Essa base existe e foi descoberta pelo matemático suíço Euler, em 1727.

Número e (Constante de Euler)

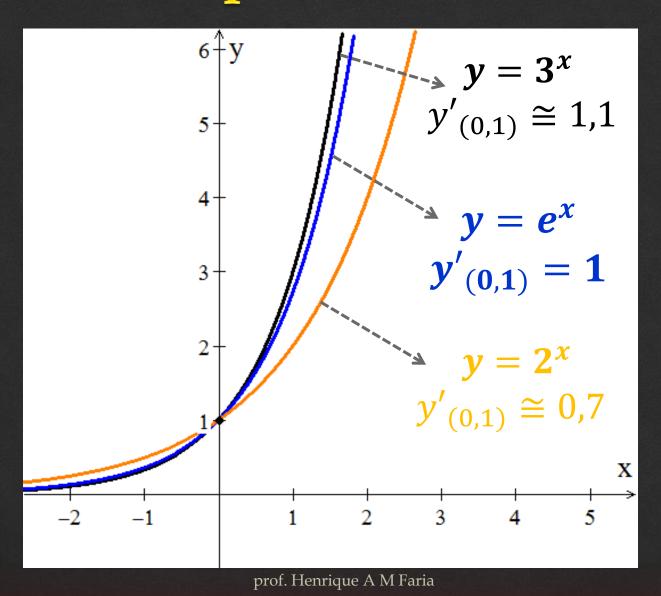
- A função $f(x) = e^x$ é chamada exponencial natural;
- A base e é um número irracional constante definido pelo limite:

$$\lim_{x \to \infty} \left[1 + \frac{1}{x} \right]^x = e \cong 2,71828 \dots$$

Número e (Constante de Euler)

X	$e = \lim_{x \to \infty} \left[1 + \frac{1}{x} \right]^x$
1	2
10	2,59374
100	2,70481
1.000	2,71692
10.000	2,71827
1.000.000	2,71828

Gráficos comparativos



Função logarítmica

Função logarítmica

Funções da forma:

$$y = f(x) = \log_a x$$
 $com: \begin{cases} a > 0 \\ a \neq 1 \\ x > 0 \end{cases}$

A função logarítmica é a inversa da exponencial:

$$y = \log_a x \iff x = a^y$$

Função logarítmica

Na base e (logarítimo natural ou neperiano):

$$\log_e x = \ln x$$
 $com: x > 0$

$$y = \ln x \iff x = e^y$$

A função logarítmica natural será:

$$y = f(x) = \ln x$$
 $x > 0$

Propriedades dos logaritmos

Sejam a, b, c e d números positivos, x > 0 e n > 0.

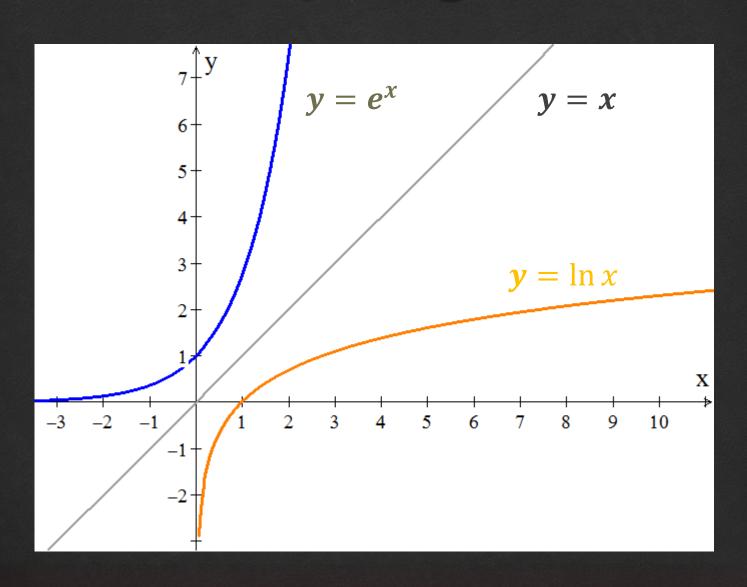
- 1. $\log_a 1 = 0$
- 2. $\log_a a = 1$
- 3. $\log_a(bc) = \log_a b + \log_a c$
- 4. $\log_a\left(\frac{b}{c}\right) = \log_a b \log_a c$
- 5. $\log_a b^n = n \log_a b$

Propriedades dos logaritmos neperianos

Sejam a, b, c e d números positivos, x > 0 e n > 0.

- 1. ln 1 = 0
- 2. ln e = 1
- 3. ln(bc) = lnb + lnc
- 4. $ln\left(\frac{b}{c}\right) = ln b ln c$
- 5. $\ln b^n = n \ln b$
- 6. $\ln e^{x} = x$
- 7. $e^{\ln x} = x$

Gráfico da função logarítmica

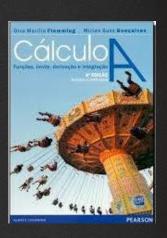


Próxima aula teórica:

Conceito de Limites;

Bibliografia

3. GONÇALVES, Mirian B.; FLEMMING, Diva M. Cálculo A. 6. ed. São Paulo: Pearson, 2007.



Contatos e material de apoio

profhenriquefaria.com

henrique.faria@unesp.br