Geometria Analítica Licenciatura em Química

Semana 04 – aula 2 Projeção de um vetor e Produto escalar no R2

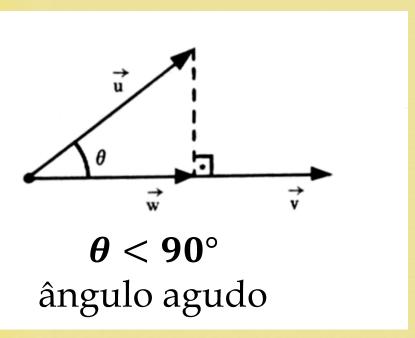
Prof. Henrique Antonio Mendonça Faria

Sejam: \vec{u} e \vec{v} dois vetores não nulos e θ o ângulo formado entre eles.

A projeção (\overrightarrow{w}) de \overrightarrow{u} sobre \overrightarrow{v} permite duas situações:

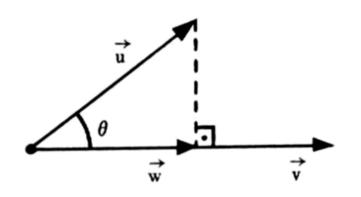
Sejam: \vec{u} e \vec{v} dois vetores não nulos e θ o ângulo formado entre eles.

A projeção (\overrightarrow{w}) de \overrightarrow{u} sobre \overrightarrow{v} permite duas situações:

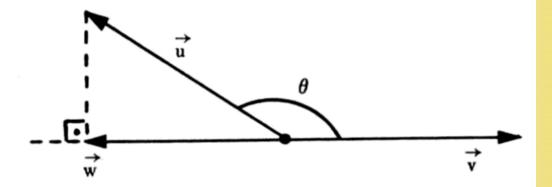


Sejam: \vec{u} e \vec{v} dois vetores não nulos e θ o ângulo formado entre eles.

A projeção (\vec{w}) de \vec{u} sobre \vec{v} permite duas situações:



 $heta < 90^\circ$ ângulo agudo



 $90^{\circ} < \theta < 180^{\circ}$ ângulo obtuso

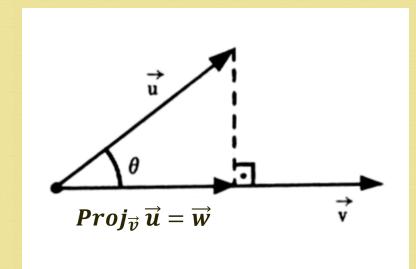
A projeção (\overrightarrow{w}) de \overrightarrow{u} sobre \overrightarrow{v} é denotada por:

$$Proj_{\overrightarrow{v}} \overrightarrow{u} = \overrightarrow{w}$$

A projeção (\overrightarrow{w}) de \overrightarrow{u} sobre \overrightarrow{v} é denotada por:

$$Proj_{\overrightarrow{v}} \overrightarrow{u} = \overrightarrow{w}$$

E calculada por:



$$Proj_{\overrightarrow{v}} \overrightarrow{u} = \left(\frac{\overrightarrow{u} \cdot \overrightarrow{v}}{\overrightarrow{v} \cdot \overrightarrow{v}}\right) \overrightarrow{v}$$

Exemplo 1

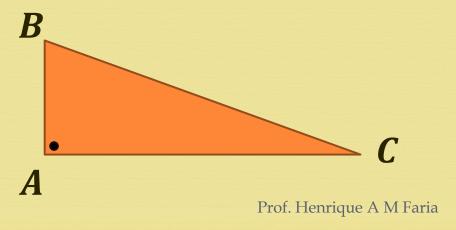
Determinar o vetor projeção de $\vec{u}=(2,3,4)$ sobre $\vec{v}=(1,-1,0)$.

$$Proj_{\overrightarrow{v}} \overrightarrow{u} = \left(\frac{\overrightarrow{u} \cdot \overrightarrow{v}}{\overrightarrow{v} \cdot \overrightarrow{v}}\right) \overrightarrow{v}$$

Exercício

Sejam os pontos A(1,2,-1), B(-1,0,-1) e C(2,1,2), vértices de um triângulo.

- a) Mostrar que o triângulo *ABC* é retângulo em *A*.
- b) Calcular a medida da projeção do cateto *AB* sobre a hipotenusa *BC*.



Todas as propriedades e operações definidas para o espaço (R³) são válidas para o R² (plano).

Todas as propriedades e operações definidas para o espaço (R³) são válidas para o R² (plano).

Sejam os vetores $\vec{u}=(x_1,y_1), \ \vec{v}=(x_2,y_2), \ \propto \in \mathbb{R}$

 $\vec{u} \cdot \vec{v} = x_1 x_2 + y_1 y_2$ (produto escalar);

Todas as propriedades e operações definidas para o espaço (R³) são válidas para o R² (plano).

- $\vec{u} \cdot \vec{v} = x_1 x_2 + y_1 y_2$ (produto escalar);
- $|\vec{u}| = \sqrt{(x_1)^2 + (y_1)^2}$ (módulo do vetor);

Todas as propriedades e operações definidas para o espaço (R³) são válidas para o R² (plano).

- $\vec{u} \cdot \vec{v} = x_1 x_2 + y_1 y_2$ (produto escalar);
- $|\vec{u}| = \sqrt{(x_1)^2 + (y_1)^2}$ (módulo do vetor);
- > Se $\vec{u} \neq \vec{0}$ e $\vec{v} \neq \vec{0}$ o ângulo θ entre os vetores é:

$$cos\theta = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|}$$

Sejam os vetores $\vec{u}=(x_1,y_1), \ \vec{v}=(x_2,y_2), \ \propto \in \mathbb{R}$

 $ightharpoonup \vec{u} \perp \vec{v}$ se e somente se $\vec{u} \cdot \vec{v} = 0$;

- $ightharpoonup \vec{u} \perp \vec{v}$ se e somente se $\vec{u} \cdot \vec{v} = 0$;
- $ightharpoonup Proj_{\overrightarrow{v}} \overrightarrow{u} = \left(\frac{\overrightarrow{u} \cdot \overrightarrow{v}}{\overrightarrow{v} \cdot \overrightarrow{v}}\right) \overrightarrow{v}$ (projeção de \overrightarrow{u} sobre \overrightarrow{v});

- $ightharpoonup \vec{u} \perp \vec{v}$ se e somente se $\vec{u} \cdot \vec{v} = 0$;
- $ightharpoonup Proj_{\overrightarrow{v}} \overrightarrow{u} = \left(\frac{\overrightarrow{u} \cdot \overrightarrow{v}}{\overrightarrow{v} \cdot \overrightarrow{v}}\right) \overrightarrow{v}$ (projeção de \overrightarrow{u} sobre \overrightarrow{v});
- Valem todas as propriedades do produto escalar (comutativa, distributivas e outras).

Exemplo 2

Calcular a soma dos módulos dos vetores no plano $|\vec{u} + \vec{v}|$, sabendo que $|\vec{u}| = 4$, $|\vec{v}| = 3$ e o ângulo entre \vec{u} e \vec{v} é 60° . Considerar $\vec{u} = (a, b)$ e $\vec{v} = (x, y)$.

Resposta: $\sqrt{37}$

Exercício

Sabendo que $|\vec{u}|=2$, $|\vec{v}|=3$ e o ângulo entre

$$\overrightarrow{u} e \overrightarrow{v} \in \frac{3\pi}{4} [rad].$$

Determine:
$$|(2\vec{u} - \vec{v}) \cdot (\vec{u} - 2\vec{v})|$$

Resposta: $26 + 15\sqrt{2}$

Resolver os problemas propostos:

p. 90: 2, 3, 5, 6, 12*, 14, 15, 17, 23, 27, 29*, 33 e 34.

p. 92: 35, 36, 40, 41

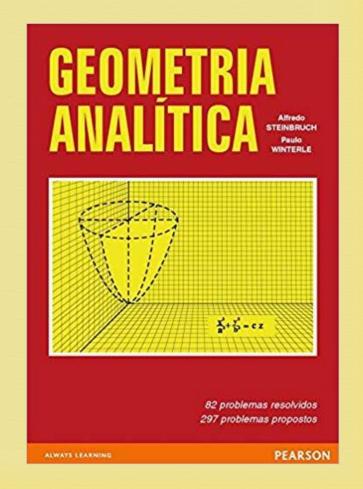
Entregar os exercícios marcados com asterisco

Bibliografia - GA

STEINBRUCH, A.; WINTERLE, P.

Geometria Analítica. 2. Ed. São Paulo: Pearson Makron Books, 1987.

Numeração dos exercícios com base na 2ª ed. ---->>



Contatos e material de apoio

profhenriquefaria.com

henrique.faria@unesp.br

http://lattes.cnpq.br/1614784455223743