

Aula 05 Produto escalar

Prof. Henrique Antonio Mendonça Faria

Aula 5

3.1 Definição de produto escalar

Sejam:
$$\vec{u} = x_1 \vec{i} + y_1 \vec{j} + z_1 \vec{k}$$
 e

$$\vec{v} = x_2 \vec{i} + y_2 \vec{j} + z_2 \vec{k}$$

O produto escalar, denotado por $\vec{u} \cdot \vec{v}$, é a operação:

$$\vec{u} \cdot \vec{v} = x_1 x_2 + y_1 y_2 + z_1 z_2$$

O resultado do produto escalar é um número real.

a) Sendo : $\vec{u} = 3\vec{i} - 5\vec{j} + 8\vec{k}$ e $\vec{v} = 4\vec{i} - 2\vec{j} - \vec{k}$ calcular o produto escalar $\vec{u} \cdot \vec{v}$.

b) Dados $\vec{u} = (4, \infty, -1)$ e $\vec{v} = (\infty, 2, 3)$ e os pontos A = (4, -1, 2) e B = (3, 2, -1) determinar ∞ tal que:

$$\overrightarrow{u}\cdot\left(\overrightarrow{v}+\overrightarrow{BA}\right)=5$$

3.2 Módulo de um vetor

Se
$$\vec{v} = x\vec{i} + y\vec{j} + z\vec{k}$$
 ou $\vec{v} = (x, y, z)$

Em que x, y, z são os componentes de \vec{v} na base canônica $\mathbf{C} = \{\vec{\imath}, \vec{\jmath}, \vec{k}\};$

O módulo desse vetor $(|\vec{v}|)$ é definido por:

$$|\overrightarrow{v}| = \sqrt{x^2 + y^2 + z^2}$$

Versor

O versor \vec{u} de um vetor \vec{v} é um vetor unitário na mesma direção e sentido de \vec{v} .

Calculado por:

Versor
$$\rightarrow$$
 $\vec{u} = \frac{\vec{v}}{|\vec{v}|}$

a) Dado o vetor $\vec{v} = (2, 1, -2)$, mostrar que seu versor \vec{u} é um vetor unitário de mesmo sentido de \vec{v} .

b) Determinar o número real \propto para que o vetor $\vec{v} = (\propto, -\frac{1}{2}, \frac{1}{2})$ seja unitário.

3.3 Propriedade do produto escalar

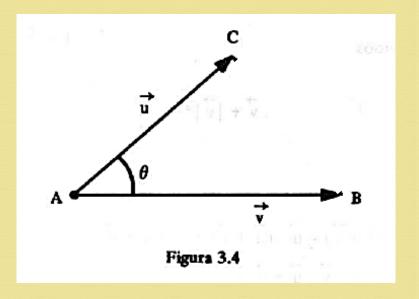
Sejam os vetores
$$\vec{u}=(x_1,y_1,z_1), \ \vec{v}=(x_2,y_2,z_2),$$
 $\vec{w}=(x_3,y_3,z_3) \ \mathrm{e} \ m \in \mathbb{R}$

- 1. $\vec{u} \cdot \vec{u} \ge 0$ $\vec{u} \cdot \vec{u} = 0$ se e somente se $\vec{u} = \vec{0}$
- 2. $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$ (comutativa)
- 3. $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$ (distributiva)
- 4. $(m \vec{u}) \cdot \vec{v} = m(\vec{u} \cdot \vec{v}) = \vec{u} \cdot (m \vec{v})$ (distributiva)
- 5. $\vec{u} \cdot \vec{u} = |\vec{u}|^2$

3.4 Ângulo entre dois vetores

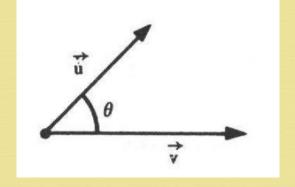
O cosseno do ângulo entre dois vetores \vec{u} e \vec{v} é definido pela razão entre o produto escalar e os módulos destes vetores.

$$cos\theta = \frac{\overrightarrow{u} \cdot \overrightarrow{v}}{|\overrightarrow{u}||\overrightarrow{v}|}$$

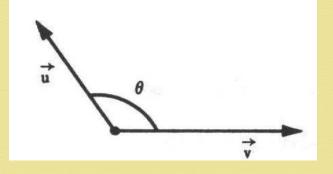


Há três situações para o ângulo

Se
$$\vec{u} \cdot \vec{v} > 0$$
, $\cos \theta > 0$
 $\mathbf{0} \le \theta < \mathbf{90}^{\circ}$

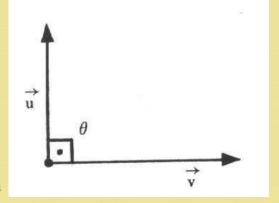


Se
$$\vec{u} \cdot \vec{v} < 0$$
, $\cos \theta < 0$
 $90^{\circ} < \theta \le 180^{\circ}$



Se
$$\vec{u} \cdot \vec{v} = 0 \cos \theta > 0$$

 $\theta = 90^{\circ}$



Ângulos notáveis

θ (graus)	θ (rad)	$\operatorname{sen} heta$	$\cos \theta$	$tg\theta = \frac{sen\theta}{cos\theta}$
30	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
45	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$

a) Calcular o ângulo entre os vetores $\vec{u}=(1,1,4)$ e $\vec{v}=(-1,2,2)$.

b) Determine um vetor \vec{v} ortogonal aos vetores $\vec{v}_1 = (1, -1, 0)$ e $\vec{v}_2 = (1, 0, 1)$.

c) Sabendo que $\vec{v} = (2, 1, -1)$ forma um ângulo de 60° com o vetor \overrightarrow{AB} , definido pelos pontos A(3, 1, -2) e B(4, 0, m), calcule m.

d) Calcule os produtos escalares entre os vetores da base canônica: $\vec{i} \cdot \vec{j}$, $\vec{j} \cdot \vec{k}$ e $\vec{k} \cdot \vec{i}$.

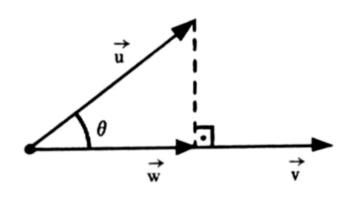
Aula 6

Projeção de um vetor e Produto escalar no R²

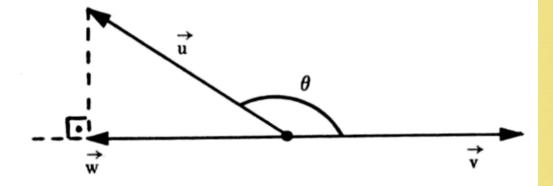
3.6 Projeção de um vetor

Sejam: \vec{u} e \vec{v} dois vetores não nulos e θ o ângulo formado entre eles.

A projeção (\vec{w}) de \vec{u} sobre \vec{v} permite duas situações:



 $heta < 90^\circ$ ângulo agudo



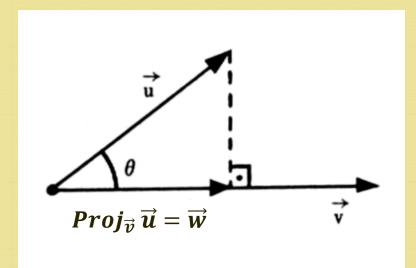
$$90^{\circ} < \theta < 180^{\circ}$$
 ângulo obtuso

3.6 Projeção de um vetor

A projeção (\overrightarrow{w}) de \overrightarrow{u} sobre \overrightarrow{v} é denotada por:

$$Proj_{\overrightarrow{v}} \overrightarrow{u} = \overrightarrow{w}$$

E calculada por:



$$Proj_{\overrightarrow{v}} \overrightarrow{u} = \left(\frac{\overrightarrow{u} \cdot \overrightarrow{v}}{\overrightarrow{v} \cdot \overrightarrow{v}}\right) \overrightarrow{v}$$

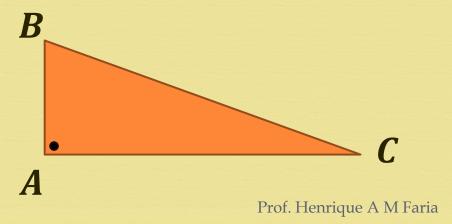
Determinar o vetor projeção de $\vec{u}=(2,3,4)$ sobre $\vec{v}=(1,-1,0)$.

$$Proj_{\overrightarrow{v}} \overrightarrow{u} = \left(\frac{\overrightarrow{u} \cdot \overrightarrow{v}}{\overrightarrow{v} \cdot \overrightarrow{v}}\right) \overrightarrow{v}$$

Exercício em classe

Sejam os pontos A(1,2,-1), B(-1,0,-1) e C(2,1,2), vértices de um triângulo.

- a) Mostrar que o triângulo *ABC* é retângulo em *A*.
- b) Calcular a medida da projeção do cateto *AB* sobre a hipotenusa *BC*.



3.7 Produto escalar no plano (R²)

Todas as propriedades e operações definidas para o espaço (R³) são válidas para o R² (plano).

Sejam os vetores $\vec{u}=(x_1,y_1), \ \vec{v}=(x_2,y_2), \ \propto \in \mathbb{R}$

- $\vec{u} \cdot \vec{v} = x_1 x_2 + y_1 y_2$ (produto escalar);
- $|\vec{u}| = \sqrt{(x_1)^2 + (y_1)^2}$ (módulo do vetor);
- > Se $\vec{u} \neq \vec{0}$ e $\vec{v} \neq \vec{0}$ o ângulo θ entre os vetores é:

$$cos\theta = \frac{\overrightarrow{u} \cdot \overrightarrow{v}}{|\overrightarrow{u}||\overrightarrow{v}|}$$

3.7 Produto escalar no plano (R²)

Sejam os vetores $\vec{u}=(x_1,y_1), \ \vec{v}=(x_2,y_2), \ \propto \in \mathbb{R}$

- $\vec{u} \perp \vec{v}$ se e somente se $\vec{u} \cdot \vec{v} = 0$;
- $ightharpoonup Proj_{\overrightarrow{v}} \overrightarrow{u} = \left(\frac{\overrightarrow{u} \cdot \overrightarrow{v}}{\overrightarrow{v} \cdot \overrightarrow{v}}\right) \overrightarrow{v}$ (projeção de \overrightarrow{u} sobre \overrightarrow{v});
- Valem todas as propriedades do produto escalar (comutativa, distributivas e outras).

Calcular a soma dos módulos dos vetores no plano $|\vec{u} + \vec{v}|$, sabendo que $|\vec{u}| = 4$, $|\vec{v}| = 3$ e o ângulo entre \vec{u} e \vec{v} é 60° . Considerar $\vec{u} = (a, b)$ e $\vec{v} = (x, y)$.

Resposta: $\sqrt{37}$

Sabendo que $|\overrightarrow{u}|=2$, $|\overrightarrow{v}|=3$ e o ângulo entre

$$\overrightarrow{u} e \overrightarrow{v} \in \frac{3\pi}{4} [rad].$$

Determine: $|(2\vec{u} - \vec{v}) \cdot (\vec{u} - 2\vec{v})|$

Resposta: $26 + 15\sqrt{2}$

Resolver os problemas propostos:

p. 90: 2, 3, 5, 6, 12, 14, 15, 17, 23, 27, 29, 33 e 34.

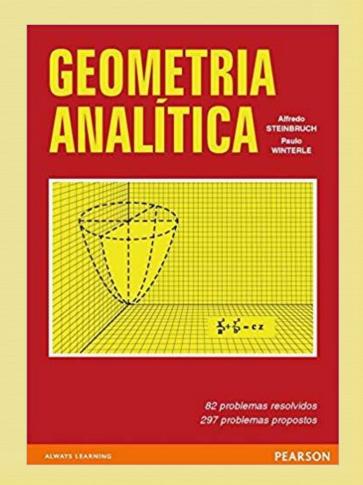
p. 92: 35, 36, 40, 41

Bibliografia - GA

STEINBRUCH, A.; WINTERLE, P.

Geometria Analítica. 2. Ed. São Paulo: Pearson Makron Books, 1987.

Numeração dos exercícios com base na 2ª ed. ---->>



Contatos e material de apoio

profhenriquefaria.com

henrique.faria@unesp.br

http://lattes.cnpq.br/1614784455223743