Física I

Semana 09 - Aula 2 Teorema do Trabalho e energia

Prof. Henrique Antonio Mendonça Faria

 O trabalho total realizado pelas forças externas sobre um corpo é relacionado com o deslocamento do corpo.

- O trabalho total realizado pelas forças externas sobre um corpo é relacionado com o deslocamento do corpo.
- Contudo, o trabalho total também é relacionado com a velocidade do corpo.

Sem atrito!

(a) Um bloco desliza da esquerda para a direita sobre uma superfície sem atrito.

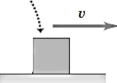
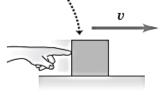


Figura 6.8 A relação entre o trabalho total realizado sobre um corpo e a variação da velocidade escalar do corpo.

Sem atrito!

(a) Um bloco desliza da esquerda para a direita sobre uma superfície sem atrito.



Quando você empurra da esquerda para a direita o bloco em movimento, a força resultante sobre o bloco está direcionada para a direita.

Figura 6.8 A relação entre o trabalho total realizado sobre um corpo e a variação da velocidade escalar do corpo.

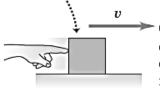
Sem atrito!

(a) Um bloco desliza da esquerda para a direita sobre uma superfície sem atrito. Quando você empurra da esquerda para a direita o bloco em movimento, a força resultante sobre o bloco está direcionada para a direita.

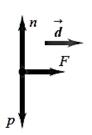
Figura 6.8 A relação entre o trabalho total realizado sobre um corpo e a variação da velocidade escalar do corpo.

Sem atrito!

(a) Um bloco desliza da esquerda para a direita sobre uma superfície sem atrito.



Quando você empurra da esquerda para a direita o bloco em movimento, a força resultante sobre o bloco está direcionada para a direita.



- O trabalho total realizado sobre o bloco durante um deslocamento d é positivo: W_{tot} > 0.
- · O bloco aumenta a velocidade.

Figura 6.8 A relação entre o trabalho total realizado sobre um corpo e a variação da velocidade escalar do corpo.

Sem atrito!

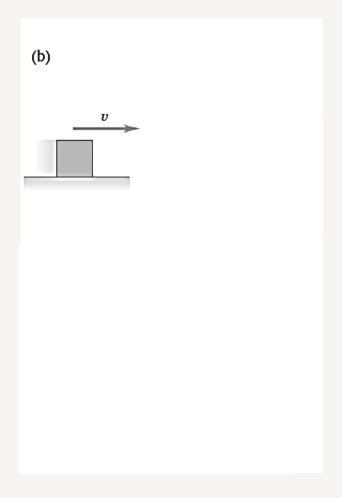


Figura 6.8 A relação entre o trabalho total realizado sobre um corpo e a variação da velocidade escalar do corpo.

Sem atrito!

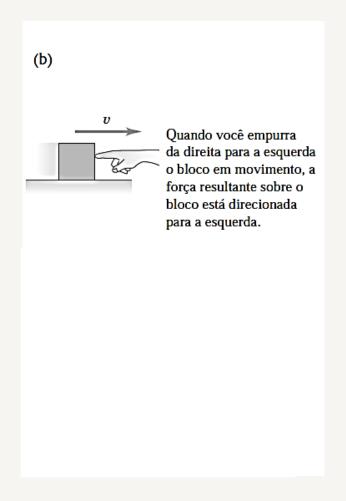


Figura 6.8 A relação entre o trabalho total realizado sobre um corpo e a variação da velocidade escalar do corpo.

Sem atrito!

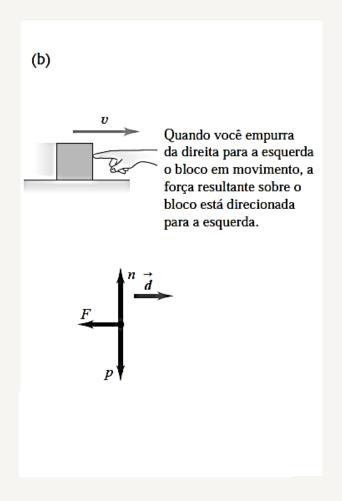


Figura 6.8 A relação entre o trabalho total realizado sobre um corpo e a variação da velocidade escalar do corpo.

Sem atrito!

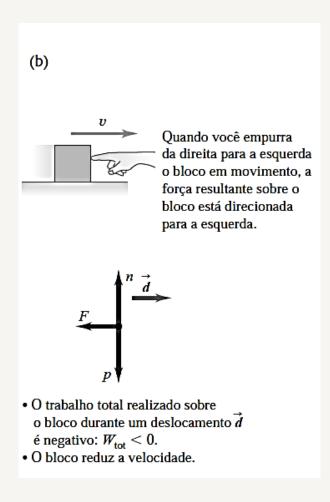


Figura 6.8 A relação entre o trabalho total realizado sobre um corpo e a variação da velocidade escalar do corpo.

Sem atrito!

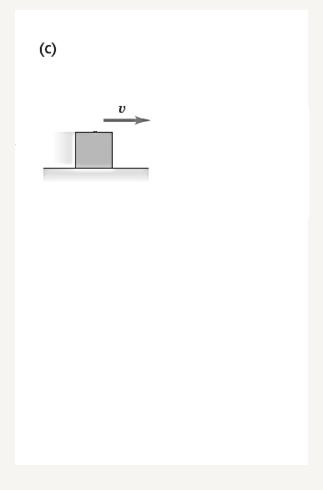


Figura 6.8 A relação entre o trabalho total realizado sobre um corpo e a variação da velocidade escalar do corpo.

Sem atrito!



Figura 6.8 A relação entre o trabalho total realizado sobre um corpo e a variação da velocidade escalar do corpo.

Sem atrito!

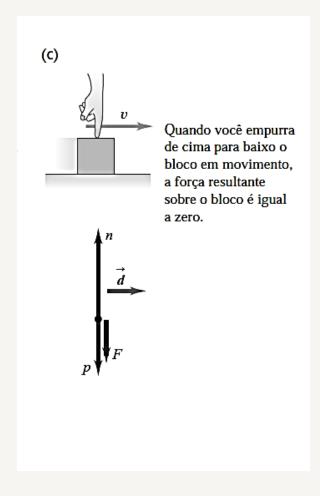
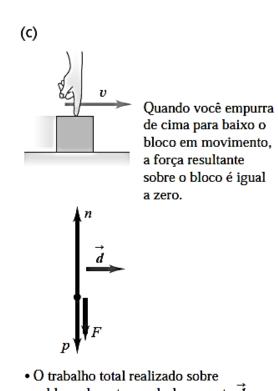


Figura 6.8 A relação entre o trabalho total realizado sobre um corpo e a variação da velocidade escalar do corpo.

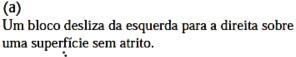
Sem atrito!



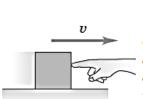
- O trabalho total realizado sobre
 o bloco durante um deslocamento d
 é nulo: W_{tot} = 0.
- · A velocidade do bloco não varia.

Figura 6.8 A relação entre o trabalho total realizado sobre um corpo e a variação da velocidade escalar do corpo.

Sem atrito!

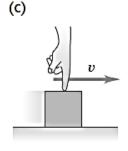


Quando você empurra
da esquerda para a direita
o bloco em movimento, a
força resultante sobre o bloco
está direcionada para a direita.

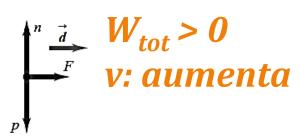


(b)

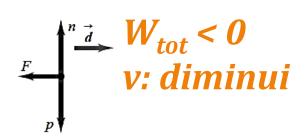
Quando você empurra da direita para a esquerda o bloco em movimento, a força resultante sobre o bloco está direcionada para a esquerda.



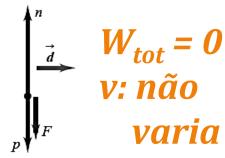
Quando você empurra de cima para baixo o bloco em movimento, a força resultante sobre o bloco é igual a zero.



- O trabalho total realizado sobre o bloco durante um deslocamento \vec{d} é positivo: $W_{\text{tot}} > 0$.
- · O bloco aumenta a velocidade.



- O trabalho total realizado sobre o bloco durante um deslocamento d é negativo: W_{tot} < 0.
- O bloco reduz a velocidade.



- O trabalho total realizado sobre o bloco durante um deslocamento d é nulo: W_{tot} = 0.
- · A velocidade do bloco não varia.

Figura 6.8 A relação entre o trabalho total realizado sobre um corpo e a variação da velocidade escalar do corpo.

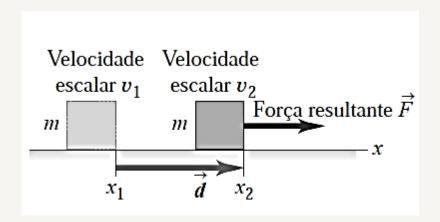
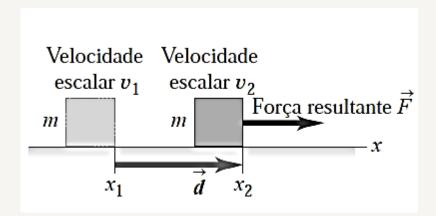


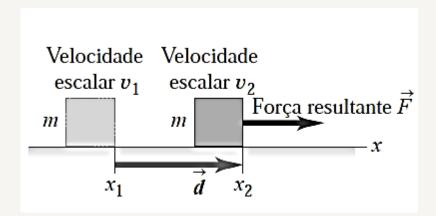
Figura 6.9 Uma força resultante constante realiza um trabalho sobre um corpo.



- Força constante:

$$F = ma_x$$

Figura 6.9 Uma força resultante constante realiza um trabalho sobre um corpo.

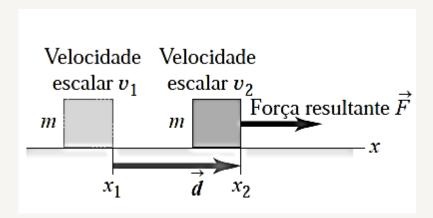


- Força constante:

$$F = ma_{x}$$

- Velocidade variável.

Figura 6.9 Uma força resultante constante realiza um trabalho sobre um corpo.



- Força constante:

$$F = ma_x$$

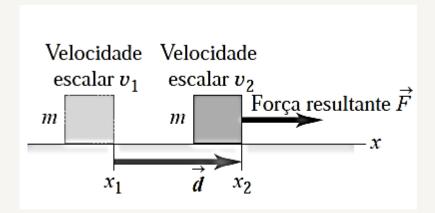
- Velocidade variável.
- Possível usar equação para aceleração constante.

Figura 6.9 Uma força resultante constante realiza um trabalho sobre um corpo.

20

$${v_2}^2 = {v_1}^2 + 2a_x d$$

21

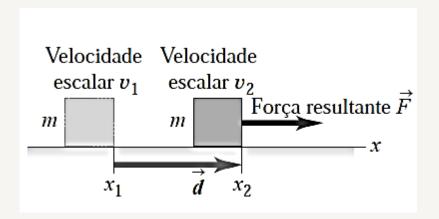


- Força constante:

$$F = ma_x$$

- Velocidade variável.
- Possível usar equação para aceleração constante.

Figura 6.9 Uma força resultante constante realiza um trabalho sobre um corpo.



$$v_2^2 = v_1^2 + 2a_x d$$

$$a_x = \frac{v_2^2 - v_1^2}{2d}$$

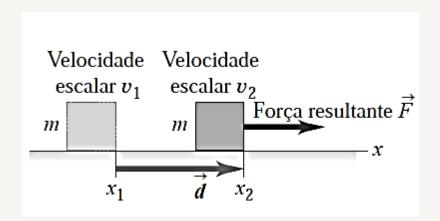
22

- Força constante:

$$F = ma_x$$

- Velocidade variável.
- Possível usar equação para aceleração constante.

Figura 6.9 Uma força resultante constante realiza um trabalho sobre um corpo.



$$v_2^2 = v_1^2 + 2a_x d$$

$$a_x = \frac{v_2^2 - v_1^2}{2d}$$

$$ma_x = m \frac{v_2^2 - v_1^2}{2d}$$

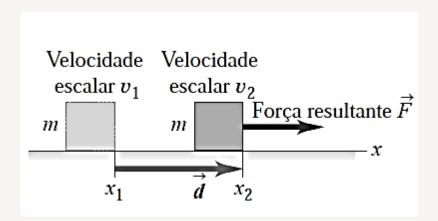
23

- Força constante:

$$F = ma_x$$

- Velocidade variável.
- Possível usar equação para aceleração constante.

Figura 6.9 Uma força resultante constante realiza um trabalho sobre um corpo.



- Força constante:

$$F = ma_x$$

- Velocidade variável.
- Possível usar equação para aceleração constante.

$$v_2^2 = v_1^2 + 2a_x d$$

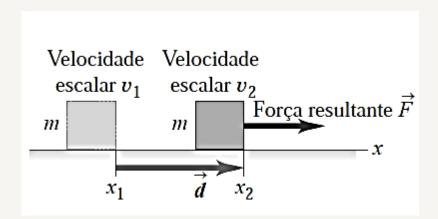
$$a_x = \frac{v_2^2 - v_1^2}{2d}$$

$$ma_x = m \frac{v_2^2 - v_1^2}{2d}$$

$$Fd = m \frac{{v_2}^2 - {v_1}^2}{2}$$

24

Figura 6.9 Uma força resultante constante realiza um trabalho sobre um corpo.



- Força constante:

$$F = ma_x$$

- Velocidade variável.
- Possível usar equação para aceleração constante.

$$v_2^2 = v_1^2 + 2a_x d$$

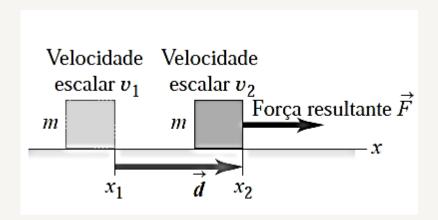
$$a_x = \frac{v_2^2 - v_1^2}{2d}$$

$$ma_x = m \frac{v_2^2 - v_1^2}{2d}$$

$$Fd = m \frac{{v_2}^2 - {v_1}^2}{2}$$

$$Fd = \frac{1}{2}m{v_2}^2 - \frac{1}{2}m{v_1}^2$$

Figura 6.9 Uma força resultante constante realiza um trabalho sobre um corpo.



- Força constante:

$$F = ma_x$$

- Velocidade variável.
- Possível usar equação para aceleração constante.

$$v_2^2 = v_1^2 + 2a_x d$$

$$a_x = \frac{v_2^2 - v_1^2}{2d}$$

$$ma_x = m \frac{v_2^2 - v_1^2}{2d}$$

$$Fd = m \frac{{v_2}^2 - {v_1}^2}{2}$$

$$Fd = \frac{1}{2}mv_2^2 - \frac{1}{2}mv_1^2$$

K: energia cinética

Figura 6.9 Uma força resultante constante realiza um trabalho sobre um corpo.

$$K = \frac{1}{2}mv^2 \quad [J] \ (joule)$$

$$K = \frac{1}{2}mv^2 \quad [J] \ (joule)$$

Grandeza escalar.

$$K = \frac{1}{2}mv^2 \quad [J] \ (joule)$$

- Grandeza escalar.
- Depende somente da massa e do módulo da velocidade da partícula.

$$K = \frac{1}{2}mv^2 \quad [J] \ (joule)$$

- Grandeza escalar.
- Depende somente da massa e do módulo da velocidade da partícula.
- Não depende da direção do movimento.

$$K = \frac{1}{2}mv^2 \quad [J] \ (joule)$$

- Grandeza escalar.
- Depende somente da massa e do módulo da velocidade da partícula.
- Não depende da direção do movimento.
- A energia cinética nunca pode ser negativa.

$$K_2 = \frac{1}{2}mv_2^2$$
 (energia final da partícula)

$$K_2 = \frac{1}{2}mv_2^2$$
 (energia final da partícula)

$$K_1 = \frac{1}{2}mv_1^2$$
 (energia inicial da partícula)

$$K_2 = \frac{1}{2}mv_2^2$$
 (energia final da partícula)

$$K_1 = \frac{1}{2}mv_1^2$$
 (energia inicial da partícula)

$$K_2 - K_1 = \Delta K$$
 (variação da energia cinética)

$$K_2 = \frac{1}{2}mv_2^2$$
 (energia final da partícula)

$$K_1 = \frac{1}{2}mv_1^2$$
 (energia inicial da partícula)

$$K_2 - K_1 = \Delta K$$
 (variação da energia cinética)

$$Fd = \frac{1}{2}m{v_2}^2 - \frac{1}{2}m{v_1}^2$$

$$K_2 = \frac{1}{2}mv_2^2$$
 (energia final da partícula)

$$K_1 = \frac{1}{2}mv_1^2$$
 (energia inicial da partícula)

$$K_2 - K_1 = \Delta K$$
 (variação da energia cinética)

$$Fd = \frac{1}{2}mv_2^2 - \frac{1}{2}mv_1^2$$

$$W_{tot} = K_2 - K_1 = \Delta \mathbf{K}$$

$$K_2 = \frac{1}{2}mv_2^2$$
 (energia final da partícula)

$$K_1 = \frac{1}{2}mv_1^2$$
 (energia inicial da partícula)

$$K_2 - K_1 = \Delta K$$
 (variação da energia cinética)

$$Fd = \frac{1}{2}m{v_2}^2 - \frac{1}{2}m{v_1}^2$$

$$W_{tot} = K_2 - K_1 = \Delta \mathbf{K}$$

Teorema do trabalho – energia

$$K_2 = \frac{1}{2}mv_2^2$$
 (energia final da partícula)

$$K_1 = \frac{1}{2}mv_1^2$$
 (energia inicial da partícula)

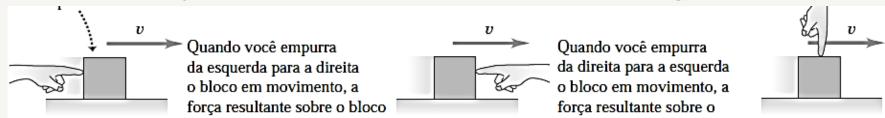
$$K_2 - K_1 = \Delta K$$
 (variação da energia cinética)

$$Fd = \frac{1}{2}m{v_2}^2 - \frac{1}{2}m{v_1}^2$$

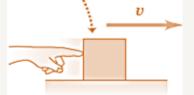
$$W_{tot} = K_2 - K_1 = \Delta \mathbf{K}$$

Teorema do trabalho – energia

O trabalho realizado pela força resultante sobre a partícula fornece a variação da sua energia cinética.

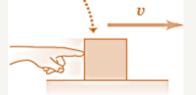


$$W_{tot} = K_2 - K_1 = \Delta \mathbf{K}$$



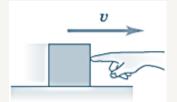
	Trabalho total W_{tot}	Energia cinética <i>K</i>	Relação entre as energias cinéticas
L		and Hamieus Ferie	40

$$W_{tot} = K_2 - K_1 = \Delta \mathbf{K}$$



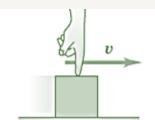
Trabalho total W_{tot}	Energia cinética <i>K</i>	Relação entre as energias cinéticas
> 0	a umenta	$K_2 > K_1$

$$W_{tot} = K_2 - K_1 = \Delta \mathbf{K}$$



Trabalho total \boldsymbol{W}_{tot}	Energia cinética <i>K</i>	Relação entre as energias cinéticas
> 0	a umenta	$K_2 > K_1$
< 0	diminui	$K_2 < K_1$

$$W_{tot} = K_2 - K_1 = \Delta \mathbf{K}$$



Trabalho total W_{tot}	Energia cinética <i>K</i>	Relação entre as energias cinéticas
> 0	a umenta	$K_2 > K_1$
< 0	diminui	$K_2 < K_1$
= 0	Não se altera	$K_2 = K_1$

• Empregamos as leis de Newton para deduzi-lo.

- Empregamos as leis de Newton para deduzi-lo.
- Podemos usá-lo somente para um sistema de referência inercial.

- Empregamos as leis de Newton para deduzi-lo.
- Podemos usá-lo somente para um sistema de referência inercial.
- Porém os valores do trabalho podem diferir de um sistema de referência inercial para outro.

- Empregamos as leis de Newton para deduzi-lo.
- Podemos usá-lo somente para um sistema de referência inercial.
- Porém os valores do trabalho podem diferir de um sistema de referência inercial para outro.
- Mostraremos na próxima aula que o teorema é válido no caso geral, mesmo quando as forças não são constantes e a trajetória é uma curva.

Identificar

1. O Teorema do trabalho - energia é extremamente útil para relacionar as velocidades escalares de um corpo em movimento em dois pontos da trajetória.

Identificar

- O Teorema do trabalho energia é extremamente útil para relacionar as velocidades escalares de um corpo em movimento em dois pontos da trajetória.
- Mas, o teorema não envolve tempo e não é útil em problemas que envolvam a grandeza temporal.

Preparar

1. Escolha a posição inicial e a posição final do corpo.

Preparar

- 1. Escolha a posição inicial e a posição final do corpo.
- Desenhe um diagrama do corpo livre mostrando todas as forças que atuam sobre o corpo.

Preparar

- 1. Escolha a posição inicial e a posição final do corpo.
- Desenhe um diagrama do corpo livre mostrando todas as forças que atuam sobre o corpo.
- 3. Escolha um sistema de coordenadas e oriente os eixos.

Preparar

- 1. Escolha a posição inicial e a posição final do corpo.
- Desenhe um diagrama do corpo livre mostrando todas as forças que atuam sobre o corpo.
- 3. Escolha um sistema de coordenadas e oriente os eixos.
- 4. Faça uma lista de todas as grandezas conhecidas e desconhecidas, definindo as incógnitas.

- 1. Calcule o trabalho W realizado por cada força.
- 2. Certifique-se de verificar os sinais:

- 1. Calcule o trabalho W realizado por cada força.
- 2. Certifique-se de verificar os sinais:
 - Componente da força na mesma direção e no mesmo sentido do deslocamento, W é positivo.

- 1. Calcule o trabalho W realizado por cada força.
- 2. Certifique-se de verificar os sinais:
 - Componente da força na mesma direção e no mesmo sentido do deslocamento, W é positivo.
 - ➤ Componente da força na mesma direção e sentido contrário do deslocamento, W é negativo.

- 1. Calcule o trabalho W realizado por cada força.
- 2. Certifique-se de verificar os sinais:
 - Componente da força na mesma direção e no mesmo sentido do deslocamento, W é positivo.
 - ➤ Componente da força na mesma direção e sentido contrário do deslocamento, W é negativo.
 - Quando uma força é ortogonal ao deslocamento, o trabalho é igual a zero.

Executar

3. Para calcular o trabalho total, faça a soma de todos os trabalhos realizados pelas forças individuais que atuam sobre o corpo.

- Para calcular o trabalho total, faça a soma de todos os trabalhos realizados pelas forças individuais que atuam sobre o corpo.
- Ou calcular a soma vetorial de todas as forças que atuam sobre esse corpo e a seguir, calcular o trabalho.

- Para calcular o trabalho total, faça a soma de todos os trabalhos realizados pelas forças individuais que atuam sobre o corpo.
- Ou calcular a soma vetorial de todas as forças que atuam sobre esse corpo e a seguir, calcular o trabalho.
- 5. Escreva expressões para a energia cinética inicial e para a energia cinética final.

- 3. Para calcular o trabalho total, faça a soma de todos os trabalhos realizados pelas forças individuais que atuam sobre o corpo.
- 4. Ou calcular a soma vetorial de todas as forças que atuam sobre esse corpo e a seguir, calcular o trabalho.
- 5. Escreva expressões para a energia cinética inicial e para a energia cinética final.
- 6. Finalmente, use teorema do trabalho-energia para encontrar a incógnita.

Avaliar

√ É fundamental lembrar que a energia cinética nunca pode ser negativa.

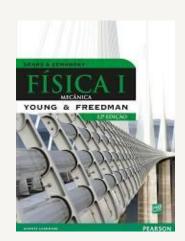
Avaliar

- √ É fundamental lembrar que a energia cinética nunca pode ser negativa.
- ✓ Se você chegar a um valor negativo de K, talvez tenha trocado as energias cinética inicial e final na equação ou cometido um erro de sinal em algum dos cálculos do trabalho.

Referências

H.D. YOUNG, R.A. FREEDMAN, Sears e Zemansky,
 Física I – Mecânica, Addison Wesley Ed, São Paulo,
 Edição, 2008. Disponível em:

https://plataforma.bvirtual.com.br/Acervo/Publicacao/270



2. M. ALONSO e, E.J. FINN, Física: Um Curso Universitário. v.1, Editora Edgard Blucher Ltda, São Paulo, 1999. Disponível em:

https://plataforma.bvirtual.com.br/Acervo/Publicacao/158847

Contatos

profhenriquefaria.com

henrique.faria@unesp.br