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Aula 15
Raízes complexas e 

repetidas da Eq. 2ª ordem



1. Raízes complexas na equação característica.

2. Raízes repetidas.

- Equações algébricas do segundo grau.
- Diferenciação e integração.

prof. Henrique A M Faria



Raízes complexas na 
equação característica



➢ Seja a equação característica da equação diferencial
de segunda ordem.

prof. Henrique A M Faria

𝑎𝑦" + 𝑏𝑦′ + 𝑐𝑦 = 0
(Eq. dif. 2ª ordem a 
coeficientes constantes.) 



➢ Seja a equação característica da equação diferencial
de segunda ordem.

𝑎𝑟2 + 𝑏𝑟 + 𝑐 = 0 (Equação característica) 

prof. Henrique A M Faria

𝑎𝑦" + 𝑏𝑦′ + 𝑐𝑦 = 0
(Eq. dif. 2ª ordem a 
coeficientes constantes.) 



➢ Seja a equação característica da equação diferencial
de segunda ordem.

𝑎𝑟2 + 𝑏𝑟 + 𝑐 = 0 (Equação característica) 

prof. Henrique A M Faria

𝑎𝑦" + 𝑏𝑦′ + 𝑐𝑦 = 0
(Eq. dif. 2ª ordem a 
coeficientes constantes.) 

➢ Se o discriminante 𝑏2 − 4𝑎𝑐 < 0, então as raízes
são números complexos conjugados da forma:

𝑟1 = λ + 𝑖𝜇 e   𝑟2 = λ − 𝑖𝜇,  



➢ Seja a equação característica da equação diferencial
de segunda ordem.

𝑎𝑟2 + 𝑏𝑟 + 𝑐 = 0 (Equação característica) 

prof. Henrique A M Faria

𝑎𝑦" + 𝑏𝑦′ + 𝑐𝑦 = 0
(Eq. dif. 2ª ordem a 
coeficientes constantes.) 

➢ Se o discriminante 𝑏2 − 4𝑎𝑐 < 0, então as raízes
são números complexos conjugados da forma:

𝑟1 = λ + 𝑖𝜇 e   𝑟2 = λ − 𝑖𝜇,  ቊ
λ 𝑒 𝜇: números reais

𝑖 = −1 



➢ Seja a equação característica da equação diferencial
de segunda ordem.

𝑎𝑟2 + 𝑏𝑟 + 𝑐 = 0 (Equação característica) 

prof. Henrique A M Faria

𝑎𝑦" + 𝑏𝑦′ + 𝑐𝑦 = 0
(Eq. dif. 2ª ordem a 
coeficientes constantes.) 

➢ Se o discriminante 𝑏2 − 4𝑎𝑐 < 0, então as raízes
são números complexos conjugados da forma:

𝑦1 = 𝑒(λ+𝑖𝜇)𝑡 e 𝑦2 = 𝑒(λ−𝑖𝜇)𝑡 (soluções da eq. dif.) 

𝑟1 = λ + 𝑖𝜇 e   𝑟2 = λ − 𝑖𝜇,  ቊ
λ 𝑒 𝜇: números reais

𝑖 = −1 



➢ Um exponencial complexo pode ser expresso por
uma combinação de seno e cosseno por meio da
relação de Euler:

prof. Henrique A M Faria



➢ Um exponencial complexo pode ser expresso por
uma combinação de seno e cosseno por meio da
relação de Euler:

prof. Henrique A M Faria

𝑒𝑖𝜇𝑡 = 𝑐𝑜𝑠𝜇𝑡 + 𝑖𝑠𝑒𝑛𝜇𝑡



➢ Um exponencial complexo pode ser expresso por
uma combinação de seno e cosseno por meio da
relação de Euler:

prof. Henrique A M Faria

𝑒𝑖𝜇𝑡 = 𝑐𝑜𝑠𝜇𝑡 + 𝑖𝑠𝑒𝑛𝜇𝑡 𝑒−𝑖𝜇𝑡 = 𝑐𝑜𝑠𝜇𝑡 − 𝑖𝑠𝑒𝑛𝜇𝑡



➢ Um exponencial complexo pode ser expresso por
uma combinação de seno e cosseno por meio da
relação de Euler:

prof. Henrique A M Faria

➢ As soluções 𝑦1 e 𝑦2 podem ser reescritas por:

𝑒𝑖𝜇𝑡 = 𝑐𝑜𝑠𝜇𝑡 + 𝑖𝑠𝑒𝑛𝜇𝑡

𝑒(λ±𝑖𝜇)𝑡

𝑒−𝑖𝜇𝑡 = 𝑐𝑜𝑠𝜇𝑡 − 𝑖𝑠𝑒𝑛𝜇𝑡



➢ Um exponencial complexo pode ser expresso por
uma combinação de seno e cosseno por meio da
relação de Euler:

prof. Henrique A M Faria

➢ As soluções 𝑦1 e 𝑦2 podem ser reescritas por:

𝑒𝑖𝜇𝑡 = 𝑐𝑜𝑠𝜇𝑡 + 𝑖𝑠𝑒𝑛𝜇𝑡

𝑒(λ±𝑖𝜇)𝑡 = 𝑒λ𝑡 . 𝑒±𝑖𝜇𝑡

𝑒−𝑖𝜇𝑡 = 𝑐𝑜𝑠𝜇𝑡 − 𝑖𝑠𝑒𝑛𝜇𝑡



➢ Um exponencial complexo pode ser expresso por
uma combinação de seno e cosseno por meio da
relação de Euler:

prof. Henrique A M Faria

➢ As soluções 𝑦1 e 𝑦2 podem ser reescritas por:

𝑒𝑖𝜇𝑡 = 𝑐𝑜𝑠𝜇𝑡 + 𝑖𝑠𝑒𝑛𝜇𝑡

𝑒(λ±𝑖𝜇)𝑡 = 𝑒λ𝑡 . 𝑒±𝑖𝜇𝑡 = 𝑒λ𝑡(𝑐𝑜𝑠𝜇𝑡 ± 𝑖𝑠𝑒𝑛𝜇𝑡)

𝑒−𝑖𝜇𝑡 = 𝑐𝑜𝑠𝜇𝑡 − 𝑖𝑠𝑒𝑛𝜇𝑡



➢ Um exponencial complexo pode ser expresso por
uma combinação de seno e cosseno por meio da
relação de Euler:

prof. Henrique A M Faria

➢ As soluções 𝑦1 e 𝑦2 podem ser reescritas por:

𝑒𝑖𝜇𝑡 = 𝑐𝑜𝑠𝜇𝑡 + 𝑖𝑠𝑒𝑛𝜇𝑡

𝑒(λ±𝑖𝜇)𝑡 = 𝑒λ𝑡 . 𝑒±𝑖𝜇𝑡 = 𝑒λ𝑡(𝑐𝑜𝑠𝜇𝑡 ± 𝑖𝑠𝑒𝑛𝜇𝑡)

𝑒−𝑖𝜇𝑡 = 𝑐𝑜𝑠𝜇𝑡 − 𝑖𝑠𝑒𝑛𝜇𝑡

➢ A parte real e imaginária da solução está

representada pelas funções reais 𝑒λ𝑡𝑐𝑜𝑠𝜇𝑡 e

𝑒λ𝑡𝑠𝑒𝑛𝜇𝑡, respectivamente.



Encontrar a solução do PVI e seu gráfico.Exemplo 1:

4𝑦′′ + 4𝑦′ + 37𝑦 = 0 𝑦 0 = 2 e   𝑦′ 0 = 8



Encontrar a solução do PVI e seu gráfico.Exemplo 1:

4𝑦′′ + 4𝑦′ + 37𝑦 = 0

✓ Resolver a equação característica:

4𝑟2 + 4𝑟 + 37 = 0

𝑦 0 = 2 e   𝑦′ 0 = 8



Encontrar a solução do PVI e seu gráfico.Exemplo 1:

4𝑦′′ + 4𝑦′ + 37𝑦 = 0

✓ Resolver a equação característica:

4𝑟2 + 4𝑟 + 37 = 0 ⇒ 𝑎 = 4, 𝑏 = 4, 𝑐 = 37

𝑦 0 = 2 e   𝑦′ 0 = 8



Encontrar a solução do PVI e seu gráfico.Exemplo 1:

4𝑦′′ + 4𝑦′ + 37𝑦 = 0

✓ Resolver a equação característica:

4𝑟2 + 4𝑟 + 37 = 0 ⇒ 𝑎 = 4, 𝑏 = 4, 𝑐 = 37

𝑦 0 = 2 e   𝑦′ 0 = 8

𝑟 =
−𝑏 ± 𝑏2 − 4𝑎𝑐 

2𝑎



Encontrar a solução do PVI e seu gráfico.Exemplo 1:

4𝑦′′ + 4𝑦′ + 37𝑦 = 0

✓ Resolver a equação característica:

4𝑟2 + 4𝑟 + 37 = 0 ⇒ 𝑎 = 4, 𝑏 = 4, 𝑐 = 37

𝑦 0 = 2 e   𝑦′ 0 = 8

𝑟 =
−𝑏 ± 𝑏2 − 4𝑎𝑐 

2𝑎
=

−4 ± 42 − 4.4.37 

2.4



Encontrar a solução do PVI e seu gráfico.Exemplo 1:

4𝑦′′ + 4𝑦′ + 37𝑦 = 0

✓ Resolver a equação característica:

4𝑟2 + 4𝑟 + 37 = 0 ⇒ 𝑎 = 4, 𝑏 = 4, 𝑐 = 37

𝑦 0 = 2 e   𝑦′ 0 = 8

𝑟 =
−𝑏 ± 𝑏2 − 4𝑎𝑐 

2𝑎
=

−4 ± 42 − 4.4.37 

2.4

𝑟 =
−4 ± 4 1 − 37 

8



Encontrar a solução do PVI e seu gráfico.Exemplo 1:

4𝑦′′ + 4𝑦′ + 37𝑦 = 0

✓ Resolver a equação característica:

4𝑟2 + 4𝑟 + 37 = 0 ⇒ 𝑎 = 4, 𝑏 = 4, 𝑐 = 37

𝑦 0 = 2 e   𝑦′ 0 = 8

𝑟 =
−𝑏 ± 𝑏2 − 4𝑎𝑐 

2𝑎
=

−4 ± 42 − 4.4.37 

2.4

𝑟 =
−4 ± 4 1 − 37 

8
= −1/2 ± 1/2 −36



Encontrar a solução do PVI e seu gráfico.Exemplo 1:

4𝑦′′ + 4𝑦′ + 37𝑦 = 0

✓ Resolver a equação característica:

4𝑟2 + 4𝑟 + 37 = 0 ⇒ 𝑎 = 4, 𝑏 = 4, 𝑐 = 37

𝑦 0 = 2 e   𝑦′ 0 = 8

𝑟 =
−𝑏 ± 𝑏2 − 4𝑎𝑐 

2𝑎
=

−4 ± 42 − 4.4.37 

2.4

𝑟 =
−4 ± 4 1 − 37 

8
= −1/2 ± 1/2 −36

𝑟 = −1/2 ± 3𝑖



Encontrar a solução do PVI e seu gráfico.Exemplo 1:

4𝑦′′ + 4𝑦′ + 37𝑦 = 0

✓ Resolver a equação característica:

4𝑟2 + 4𝑟 + 37 = 0 ⇒ 𝑎 = 4, 𝑏 = 4, 𝑐 = 37

𝑦 0 = 2 e   𝑦′ 0 = 8

𝑟 =
−𝑏 ± 𝑏2 − 4𝑎𝑐 

2𝑎
=

−4 ± 42 − 4.4.37 

2.4

𝑟 =
−4 ± 4 1 − 37 

8
= −1/2 ± 1/2 −36

𝑟 = −1/2 ± 3𝑖 Onde: −36



Encontrar a solução do PVI e seu gráfico.Exemplo 1:

4𝑦′′ + 4𝑦′ + 37𝑦 = 0

✓ Resolver a equação característica:

4𝑟2 + 4𝑟 + 37 = 0 ⇒ 𝑎 = 4, 𝑏 = 4, 𝑐 = 37

𝑦 0 = 2 e   𝑦′ 0 = 8

𝑟 =
−𝑏 ± 𝑏2 − 4𝑎𝑐 

2𝑎
=

−4 ± 42 − 4.4.37 

2.4

𝑟 =
−4 ± 4 1 − 37 

8
= −1/2 ± 1/2 −36

𝑟 = −1/2 ± 3𝑖 Onde: −36 = 6 −1 = 6𝑖



Encontrar a solução do PVI e seu gráfico.Exemplo 1:

4𝑦′′ + 4𝑦′ + 37𝑦 = 0

✓ Resolver a equação característica:

✓ Portanto, as soluções da eq. característica são:

4𝑟2 + 4𝑟 + 37 = 0 ⇒ 𝑎 = 4, 𝑏 = 4, 𝑐 = 37

𝑦 0 = 2 e   𝑦′ 0 = 8

𝑟 =
−𝑏 ± 𝑏2 − 4𝑎𝑐 

2𝑎
=

−4 ± 42 − 4.4.37 

2.4

𝑟 =
−4 ± 4 1 − 37 

8
= −1/2 ± 1/2 −36

𝑟 = −1/2 ± 3𝑖 Onde: −36 = 6 −1 = 6𝑖

𝑟1 = −
1

2
+ 3𝑖 𝑟2 = −

1

2
− 3𝑖



prof. Henrique A M Faria

Exemplo 1:

✓ As soluções da equação diferencial ficam:

4𝑦′′ + 4𝑦′ + 37𝑦 = 0



prof. Henrique A M Faria

Exemplo 1:

✓ As soluções da equação diferencial ficam:

𝑦1 = 𝑒(−
1
2

+3𝑖)𝑡

4𝑦′′ + 4𝑦′ + 37𝑦 = 0



prof. Henrique A M Faria

Exemplo 1:

✓ As soluções da equação diferencial ficam:

𝑦1 = 𝑒(−
1
2

+3𝑖)𝑡 = 𝑒−
𝑡
2 (𝑐𝑜𝑠3𝑡 + 𝑖𝑠𝑒𝑛3𝑡)

4𝑦′′ + 4𝑦′ + 37𝑦 = 0



prof. Henrique A M Faria

Exemplo 1:

✓ As soluções da equação diferencial ficam:

𝑦1 = 𝑒(−
1
2

+3𝑖)𝑡 = 𝑒−
𝑡
2 (𝑐𝑜𝑠3𝑡 + 𝑖𝑠𝑒𝑛3𝑡)

𝑦2 = 𝑒(−
1
2

−3𝑖)𝑡

4𝑦′′ + 4𝑦′ + 37𝑦 = 0



prof. Henrique A M Faria

Exemplo 1:

✓ As soluções da equação diferencial ficam:

𝑦1 = 𝑒(−
1
2

+3𝑖)𝑡 = 𝑒−
𝑡
2 (𝑐𝑜𝑠3𝑡 + 𝑖𝑠𝑒𝑛3𝑡)

𝑦2 = 𝑒(−
1
2

−3𝑖)𝑡 = 𝑒−
𝑡
2 (𝑐𝑜𝑠3𝑡 − 𝑖𝑠𝑒𝑛3𝑡)

4𝑦′′ + 4𝑦′ + 37𝑦 = 0



prof. Henrique A M Faria

Exemplo 1:

✓ As soluções da equação diferencial ficam:

✓ Pelo teorema de Abel, o wronskiano não se anula.

𝑦1 = 𝑒(−
1
2

+3𝑖)𝑡 = 𝑒−
𝑡
2 (𝑐𝑜𝑠3𝑡 + 𝑖𝑠𝑒𝑛3𝑡)

𝑦2 = 𝑒(−
1
2

−3𝑖)𝑡 = 𝑒−
𝑡
2 (𝑐𝑜𝑠3𝑡 − 𝑖𝑠𝑒𝑛3𝑡)

4𝑦′′ + 4𝑦′ + 37𝑦 = 0

𝑊 = 𝑐𝑒− ׬ 𝑝(𝑡)𝑑𝑡



prof. Henrique A M Faria

Exemplo 1:

✓ As soluções da equação diferencial ficam:

✓ Pelo teorema de Abel, o wronskiano não se anula.

𝑦1 = 𝑒(−
1
2

+3𝑖)𝑡 = 𝑒−
𝑡
2 (𝑐𝑜𝑠3𝑡 + 𝑖𝑠𝑒𝑛3𝑡)

𝑦2 = 𝑒(−
1
2

−3𝑖)𝑡 = 𝑒−
𝑡
2 (𝑐𝑜𝑠3𝑡 − 𝑖𝑠𝑒𝑛3𝑡)

4𝑦′′ + 4𝑦′ + 37𝑦 = 0

𝑊 = 𝑐𝑒− ׬ 𝑝(𝑡)𝑑𝑡 = 𝑐𝑒− ׬ 4𝑑𝑡



prof. Henrique A M Faria

Exemplo 1:

✓ As soluções da equação diferencial ficam:

✓ Pelo teorema de Abel, o wronskiano não se anula.

𝑦1 = 𝑒(−
1
2

+3𝑖)𝑡 = 𝑒−
𝑡
2 (𝑐𝑜𝑠3𝑡 + 𝑖𝑠𝑒𝑛3𝑡)

𝑦2 = 𝑒(−
1
2

−3𝑖)𝑡 = 𝑒−
𝑡
2 (𝑐𝑜𝑠3𝑡 − 𝑖𝑠𝑒𝑛3𝑡)

4𝑦′′ + 4𝑦′ + 37𝑦 = 0

𝑊 = 𝑐𝑒− ׬ 𝑝(𝑡)𝑑𝑡 = 𝑐𝑒− ׬ 4𝑑𝑡 = 𝑐𝑒−4𝑡 ≠ 0 ∀ 𝑡



prof. Henrique A M Faria

Exemplo 1:

✓ As soluções da equação diferencial ficam:

✓ Pelo teorema de Abel, o wronskiano não se anula.

𝑦1 = 𝑒(−
1
2

+3𝑖)𝑡 = 𝑒−
𝑡
2 (𝑐𝑜𝑠3𝑡 + 𝑖𝑠𝑒𝑛3𝑡)

𝑦2 = 𝑒(−
1
2

−3𝑖)𝑡 = 𝑒−
𝑡
2 (𝑐𝑜𝑠3𝑡 − 𝑖𝑠𝑒𝑛3𝑡)

𝑦 = 𝐶1𝑦1 + 𝐶2𝑦2

4𝑦′′ + 4𝑦′ + 37𝑦 = 0

𝑊 = 𝑐𝑒− ׬ 𝑝(𝑡)𝑑𝑡 = 𝑐𝑒− ׬ 4𝑑𝑡 = 𝑐𝑒−4𝑡 ≠ 0 ∀ 𝑡

✓ Logo o conjunto solução da eq. dif. pode ser escrito
como combinação linear das soluções.



prof. Henrique A M Faria

Exemplo 1:

𝑦 = 𝐶1𝑒−
𝑡
2 (𝑐𝑜𝑠3𝑡 + 𝑖𝑠𝑒𝑛3𝑡) + 𝐶2𝑒−

𝑡
2 (𝑐𝑜𝑠3𝑡 − 𝑖𝑠𝑒𝑛3𝑡)

4𝑦′′ + 4𝑦′ + 37𝑦 = 0

✓ Conjunto solução da eq. dif.:



prof. Henrique A M Faria

Exemplo 1:

𝑦 = 𝐶1𝑒−
𝑡
2 (𝑐𝑜𝑠3𝑡 + 𝑖𝑠𝑒𝑛3𝑡) + 𝐶2𝑒−

𝑡
2 (𝑐𝑜𝑠3𝑡 − 𝑖𝑠𝑒𝑛3𝑡)

4𝑦′′ + 4𝑦′ + 37𝑦 = 0

✓ Conjunto solução da eq. dif.:

𝑦 = 𝐶1 + 𝐶2  𝑐𝑜𝑠3𝑡 𝑒−
𝑡
2 + 𝑖𝐶1 − 𝑖𝐶2  𝑠𝑒𝑛3𝑡 𝑒−

𝑡
2



prof. Henrique A M Faria

Exemplo 1:

✓ As constantes 𝐶1 e 𝐶2 e a combinação com a

notação complexa 𝑖 = −1 podem ser substituídas
pelas constantes 𝑘1 e 𝑘2.

𝑦 = 𝐶1𝑒−
𝑡
2 (𝑐𝑜𝑠3𝑡 + 𝑖𝑠𝑒𝑛3𝑡) + 𝐶2𝑒−

𝑡
2 (𝑐𝑜𝑠3𝑡 − 𝑖𝑠𝑒𝑛3𝑡)

4𝑦′′ + 4𝑦′ + 37𝑦 = 0

✓ Conjunto solução da eq. dif.:

𝑦 = 𝐶1 + 𝐶2  𝑐𝑜𝑠3𝑡 𝑒−
𝑡
2 + 𝑖𝐶1 − 𝑖𝐶2  𝑠𝑒𝑛3𝑡 𝑒−

𝑡
2



prof. Henrique A M Faria

Exemplo 1:

✓ As constantes 𝐶1 e 𝐶2 e a combinação com a

notação complexa 𝑖 = −1 podem ser substituídas
pelas constantes 𝑘1 e 𝑘2.

𝑦 = 𝐶1𝑒−
𝑡
2 (𝑐𝑜𝑠3𝑡 + 𝑖𝑠𝑒𝑛3𝑡) + 𝐶2𝑒−

𝑡
2 (𝑐𝑜𝑠3𝑡 − 𝑖𝑠𝑒𝑛3𝑡)

4𝑦′′ + 4𝑦′ + 37𝑦 = 0

✓ Conjunto solução da eq. dif.:

𝑦 = 𝐶1 + 𝐶2  𝑐𝑜𝑠3𝑡 𝑒−
𝑡
2 + 𝑖𝐶1 − 𝑖𝐶2  𝑠𝑒𝑛3𝑡 𝑒−

𝑡
2

Se 𝐶1 + 𝐶2 = 𝑘1



prof. Henrique A M Faria

Exemplo 1:

✓ As constantes 𝐶1 e 𝐶2 e a combinação com a

notação complexa 𝑖 = −1 podem ser substituídas
pelas constantes 𝑘1 e 𝑘2.

𝑦 = 𝐶1𝑒−
𝑡
2 (𝑐𝑜𝑠3𝑡 + 𝑖𝑠𝑒𝑛3𝑡) + 𝐶2𝑒−

𝑡
2 (𝑐𝑜𝑠3𝑡 − 𝑖𝑠𝑒𝑛3𝑡)

4𝑦′′ + 4𝑦′ + 37𝑦 = 0

✓ Conjunto solução da eq. dif.:

𝑦 = 𝐶1 + 𝐶2  𝑐𝑜𝑠3𝑡 𝑒−
𝑡
2 + 𝑖𝐶1 − 𝑖𝐶2  𝑠𝑒𝑛3𝑡 𝑒−

𝑡
2

Se 𝐶1 + 𝐶2 = 𝑘1 e 𝑖𝐶1 − 𝑖𝐶2 = 𝑘2,  então:



prof. Henrique A M Faria

Exemplo 1:

✓ As constantes 𝐶1 e 𝐶2 e a combinação com a

notação complexa 𝑖 = −1 podem ser substituídas
pelas constantes 𝑘1 e 𝑘2.

𝑦 = 𝐶1𝑒−
𝑡
2 (𝑐𝑜𝑠3𝑡 + 𝑖𝑠𝑒𝑛3𝑡) + 𝐶2𝑒−

𝑡
2 (𝑐𝑜𝑠3𝑡 − 𝑖𝑠𝑒𝑛3𝑡)

4𝑦′′ + 4𝑦′ + 37𝑦 = 0

✓ Conjunto solução da eq. dif.:

𝑦 = 𝐶1 + 𝐶2  𝑐𝑜𝑠3𝑡 𝑒−
𝑡
2 + 𝑖𝐶1 − 𝑖𝐶2  𝑠𝑒𝑛3𝑡 𝑒−

𝑡
2

Se 𝐶1 + 𝐶2 = 𝑘1 e 𝑖𝐶1 − 𝑖𝐶2 = 𝑘2,  então:

𝑦 = 𝐾1𝑐𝑜𝑠3𝑡 𝑒−
𝑡
2 +  𝐾2𝑠𝑒𝑛3𝑡 𝑒−

𝑡
2

Conjunto solução 
da eq. dif.



prof. Henrique A M Faria

Exemplo 1: 4𝑦′′ + 4𝑦′ + 37𝑦 = 0

✓ Inserindo as condições iniciais:

𝑦 = 𝐾1𝑐𝑜𝑠3𝑡 𝑒−
𝑡
2 + 𝐾2𝑠𝑒𝑛3𝑡 𝑒−

𝑡
2

𝑦 0 = 2 ,   𝑦′ 0 = 8:



prof. Henrique A M Faria

Exemplo 1: 4𝑦′′ + 4𝑦′ + 37𝑦 = 0

✓ Inserindo as condições iniciais:
𝑦 0 = 2 ,   𝑦′ 0 = 8:

2 = 𝐾1𝑐𝑜𝑠0 𝑒0 +  𝐾2𝑠𝑒𝑛0 𝑒0
✓

𝑦 = 𝐾1𝑐𝑜𝑠3𝑡 𝑒−
𝑡
2 + 𝐾2𝑠𝑒𝑛3𝑡 𝑒−

𝑡
2



prof. Henrique A M Faria

Exemplo 1: 4𝑦′′ + 4𝑦′ + 37𝑦 = 0

✓ Inserindo as condições iniciais:
𝑦 0 = 2 ,   𝑦′ 0 = 8:

2 = 𝐾1𝑐𝑜𝑠0 𝑒0 +  𝐾2𝑠𝑒𝑛0 𝑒0 ⇒ 𝐾1 = 2✓

𝑦 = 𝐾1𝑐𝑜𝑠3𝑡 𝑒−
𝑡
2 + 𝐾2𝑠𝑒𝑛3𝑡 𝑒−

𝑡
2



prof. Henrique A M Faria

Exemplo 1: 4𝑦′′ + 4𝑦′ + 37𝑦 = 0

✓ Inserindo as condições iniciais:

𝑦 = 𝐾1𝑐𝑜𝑠3𝑡 𝑒−
𝑡
2 + 𝐾2𝑠𝑒𝑛3𝑡 𝑒−

𝑡
2

𝑦 0 = 2 ,   𝑦′ 0 = 8:

2 = 𝐾1𝑐𝑜𝑠0 𝑒0 +  𝐾2𝑠𝑒𝑛0 𝑒0 ⇒ 𝐾1 = 2

𝑦′ =
𝐾1

−2
𝑐𝑜𝑠3𝑡 𝑒−

𝑡
2 − 3𝐾1𝑠𝑒𝑛3𝑡 𝑒−

𝑡
2 +

𝐾2

−2
𝑠𝑒𝑛3𝑡 𝑒−

𝑡
2 + 3𝐾2𝑐𝑜𝑠3𝑡 𝑒−

𝑡
2

✓

✓



prof. Henrique A M Faria

Exemplo 1: 4𝑦′′ + 4𝑦′ + 37𝑦 = 0

✓ Inserindo as condições iniciais:
𝑦 0 = 2 ,   𝑦′ 0 = 8:

2 = 𝐾1𝑐𝑜𝑠0 𝑒0 +  𝐾2𝑠𝑒𝑛0 𝑒0 ⇒ 𝐾1 = 2

8 =
𝐾1

−2
𝑐𝑜𝑠0 𝑒0 − 3𝐾1𝑠𝑒𝑛0 𝑒0 +

𝐾2

−2
𝑠𝑒𝑛0 𝑒0 + 3𝐾2𝑐𝑜𝑠0 𝑒0

✓

✓ 𝑦′ =
𝐾1

−2
𝑐𝑜𝑠3𝑡 𝑒−

𝑡
2 − 3𝐾1𝑠𝑒𝑛3𝑡 𝑒−

𝑡
2 +

𝐾2

−2
𝑠𝑒𝑛3𝑡 𝑒−

𝑡
2 + 3𝐾2𝑐𝑜𝑠3𝑡 𝑒−

𝑡
2

𝑦 = 𝐾1𝑐𝑜𝑠3𝑡 𝑒−
𝑡
2 + 𝐾2𝑠𝑒𝑛3𝑡 𝑒−

𝑡
2



prof. Henrique A M Faria

Exemplo 1: 4𝑦′′ + 4𝑦′ + 37𝑦 = 0

✓ Inserindo as condições iniciais:
𝑦 0 = 2 ,   𝑦′ 0 = 8:

2 = 𝐾1𝑐𝑜𝑠0 𝑒0 +  𝐾2𝑠𝑒𝑛0 𝑒0 ⇒ 𝐾1 = 2

8 =
𝐾1

−2
𝑐𝑜𝑠0 𝑒0 − 3𝐾1𝑠𝑒𝑛0 𝑒0 +

𝐾2

−2
𝑠𝑒𝑛0 𝑒0 + 3𝐾2𝑐𝑜𝑠0 𝑒0

8 =
𝐾1

−2
+ 3𝐾2

✓

✓ 𝑦′ =
𝐾1

−2
𝑐𝑜𝑠3𝑡 𝑒−

𝑡
2 − 3𝐾1𝑠𝑒𝑛3𝑡 𝑒−

𝑡
2 +

𝐾2

−2
𝑠𝑒𝑛3𝑡 𝑒−

𝑡
2 + 3𝐾2𝑐𝑜𝑠3𝑡 𝑒−

𝑡
2

𝑦 = 𝐾1𝑐𝑜𝑠3𝑡 𝑒−
𝑡
2 + 𝐾2𝑠𝑒𝑛3𝑡 𝑒−

𝑡
2



prof. Henrique A M Faria

Exemplo 1: 4𝑦′′ + 4𝑦′ + 37𝑦 = 0

✓ Inserindo as condições iniciais:
𝑦 0 = 2 ,   𝑦′ 0 = 8:

2 = 𝐾1𝑐𝑜𝑠0 𝑒0 +  𝐾2𝑠𝑒𝑛0 𝑒0 ⇒ 𝐾1 = 2

8 =
𝐾1

−2
𝑐𝑜𝑠0 𝑒0 − 3𝐾1𝑠𝑒𝑛0 𝑒0 +

𝐾2

−2
𝑠𝑒𝑛0 𝑒0 + 3𝐾2𝑐𝑜𝑠0 𝑒0

8 =
𝐾1

−2
+ 3𝐾2 ⇒ 8 = −1 + 3𝐾2

✓

✓ 𝑦′ =
𝐾1

−2
𝑐𝑜𝑠3𝑡 𝑒−

𝑡
2 − 3𝐾1𝑠𝑒𝑛3𝑡 𝑒−

𝑡
2 +

𝐾2

−2
𝑠𝑒𝑛3𝑡 𝑒−

𝑡
2 + 3𝐾2𝑐𝑜𝑠3𝑡 𝑒−

𝑡
2

𝑦 = 𝐾1𝑐𝑜𝑠3𝑡 𝑒−
𝑡
2 + 𝐾2𝑠𝑒𝑛3𝑡 𝑒−

𝑡
2



prof. Henrique A M Faria

Exemplo 1: 4𝑦′′ + 4𝑦′ + 37𝑦 = 0

✓ Inserindo as condições iniciais:
𝑦 0 = 2 ,   𝑦′ 0 = 8:

2 = 𝐾1𝑐𝑜𝑠0 𝑒0 +  𝐾2𝑠𝑒𝑛0 𝑒0 ⇒ 𝐾1 = 2

8 =
𝐾1

−2
𝑐𝑜𝑠0 𝑒0 − 3𝐾1𝑠𝑒𝑛0 𝑒0 +

𝐾2

−2
𝑠𝑒𝑛0 𝑒0 + 3𝐾2𝑐𝑜𝑠0 𝑒0

8 =
𝐾1

−2
+ 3𝐾2 ⇒ 8 = −1 + 3𝐾2 ⇒ 𝐾2 = 3

✓

✓ 𝑦′ =
𝐾1

−2
𝑐𝑜𝑠3𝑡 𝑒−

𝑡
2 − 3𝐾1𝑠𝑒𝑛3𝑡 𝑒−

𝑡
2 +

𝐾2

−2
𝑠𝑒𝑛3𝑡 𝑒−

𝑡
2 + 3𝐾2𝑐𝑜𝑠3𝑡 𝑒−

𝑡
2

𝑦 = 𝐾1𝑐𝑜𝑠3𝑡 𝑒−
𝑡
2 + 𝐾2𝑠𝑒𝑛3𝑡 𝑒−

𝑡
2



prof. Henrique A M Faria

Exemplo 1: 4𝑦′′ + 4𝑦′ + 37𝑦 = 0

✓ Inserindo as condições iniciais:
𝑦 0 = 2 ,   𝑦′ 0 = 8:

2 = 𝐾1𝑐𝑜𝑠0 𝑒0 +  𝐾2𝑠𝑒𝑛0 𝑒0 ⇒ 𝐾1 = 2

8 =
𝐾1

−2
𝑐𝑜𝑠0 𝑒0 − 3𝐾1𝑠𝑒𝑛0 𝑒0 +

𝐾2

−2
𝑠𝑒𝑛0 𝑒0 + 3𝐾2𝑐𝑜𝑠0 𝑒0

8 =
𝐾1

−2
+ 3𝐾2 ⇒ 8 = −1 + 3𝐾2 ⇒ 𝐾2 = 3

Solução do PVI𝑦 = 𝑒−
𝑡
2 (2𝑐𝑜𝑠3𝑡 + 3𝑠𝑒𝑛3𝑡)

✓

✓ 𝑦′ =
𝐾1

−2
𝑐𝑜𝑠3𝑡 𝑒−

𝑡
2 − 3𝐾1𝑠𝑒𝑛3𝑡 𝑒−

𝑡
2 +

𝐾2

−2
𝑠𝑒𝑛3𝑡 𝑒−

𝑡
2 + 3𝐾2𝑐𝑜𝑠3𝑡 𝑒−

𝑡
2

𝑦 = 𝐾1𝑐𝑜𝑠3𝑡 𝑒−
𝑡
2 + 𝐾2𝑠𝑒𝑛3𝑡 𝑒−

𝑡
2



Exemplo 1: Valores em pontos extremos da solução:

P/ 𝑡 = 0:     𝑦 = 𝑒0 2𝑐𝑜𝑠0 + 3𝑠𝑒𝑛0 = 2

prof. Henrique A M Faria

✓



Exemplo 1: Valores em pontos extremos da solução:

P/ 𝑡 = 0:     𝑦 = 𝑒0 2𝑐𝑜𝑠0 + 3𝑠𝑒𝑛0 = 2

lim
𝑡→∞

𝑒−
𝑡
2 (2𝑐𝑜𝑠3𝑡 + 3𝑠𝑒𝑛3𝑡)

prof. Henrique A M Faria

✓

✓



Exemplo 1: Valores em pontos extremos da solução:

P/ 𝑡 = 0:     𝑦 = 𝑒0 2𝑐𝑜𝑠0 + 3𝑠𝑒𝑛0 = 2

lim
𝑡→∞

𝑒−
𝑡
2 (2𝑐𝑜𝑠3𝑡 + 3𝑠𝑒𝑛3𝑡) =

lim
𝑡→∞

𝑒−
𝑡
2 lim

𝑡→∞
2𝑐𝑜𝑠3𝑡 + 3𝑠𝑒𝑛3𝑡 = 0

prof. Henrique A M Faria

✓

✓



Exemplo 1: Valores em pontos extremos da solução:

P/ 𝑡 = 0:     𝑦 = 𝑒0 2𝑐𝑜𝑠0 + 3𝑠𝑒𝑛0 = 2

Gráfico da solução

lim
𝑡→∞

𝑒−
𝑡
2 (2𝑐𝑜𝑠3𝑡 + 3𝑠𝑒𝑛3𝑡) =

lim
𝑡→∞

𝑒−
𝑡
2 lim

𝑡→∞
2𝑐𝑜𝑠3𝑡 + 3𝑠𝑒𝑛3𝑡 = 0

𝑦 = 𝑒−
𝑡
2 (2𝑐𝑜𝑠3𝑡 + 3𝑠𝑒𝑛3𝑡)

prof. Henrique A M Faria

✓

✓



Exemplo 1: Valores em pontos extremos da solução:

P/ 𝑡 = 0:     𝑦 = 𝑒0 2𝑐𝑜𝑠0 + 3𝑠𝑒𝑛0 = 2

Gráfico da solução

lim
𝑡→∞

𝑒−
𝑡
2 (2𝑐𝑜𝑠3𝑡 + 3𝑠𝑒𝑛3𝑡) =

lim
𝑡→∞

𝑒−
𝑡
2 lim

𝑡→∞
2𝑐𝑜𝑠3𝑡 + 3𝑠𝑒𝑛3𝑡 = 0

𝑦 = 𝑒−
𝑡
2 (2𝑐𝑜𝑠3𝑡 + 3𝑠𝑒𝑛3𝑡)

prof. Henrique A M Faria

Exp. 
decrescente

✓

✓



Exemplo 1: Valores em pontos extremos da solução:

P/ 𝑡 = 0:     𝑦 = 𝑒0 2𝑐𝑜𝑠0 + 3𝑠𝑒𝑛0 = 2

Gráfico da solução

lim
𝑡→∞

𝑒−
𝑡
2 (2𝑐𝑜𝑠3𝑡 + 3𝑠𝑒𝑛3𝑡) =

lim
𝑡→∞

𝑒−
𝑡
2 lim

𝑡→∞
2𝑐𝑜𝑠3𝑡 + 3𝑠𝑒𝑛3𝑡 = 0

𝑦 = 𝑒−
𝑡
2 (2𝑐𝑜𝑠3𝑡 + 3𝑠𝑒𝑛3𝑡)

prof. Henrique A M Faria

Termo oscilatórioExp. 
decrescente

✓

✓



Raízes repetidas



➢ Seja a equação característica da eq. dif. a
coeficientes constantes.

prof. Henrique A M Faria

𝑎𝑦" + 𝑏𝑦′ + 𝑐𝑦 = 0



➢ Seja a equação característica da eq. dif. a
coeficientes constantes.

𝑎𝑟2 + 𝑏𝑟 + 𝑐 = 0

prof. Henrique A M Faria

𝑎𝑦" + 𝑏𝑦′ + 𝑐𝑦 = 0 ⇒



➢ Seja a equação característica da eq. dif. a
coeficientes constantes.

𝑎𝑟2 + 𝑏𝑟 + 𝑐 = 0

prof. Henrique A M Faria

𝑎𝑦" + 𝑏𝑦′ + 𝑐𝑦 = 0

➢ Se 𝑏2 − 4𝑎𝑐 = 0, então as raízes serão repetidas e
geram a mesma solução.

𝑟1 = 𝑟2 =
−𝑏

2𝑎

⇒



➢ Seja a equação característica da eq. dif. a
coeficientes constantes.

𝑎𝑟2 + 𝑏𝑟 + 𝑐 = 0

prof. Henrique A M Faria

𝑎𝑦" + 𝑏𝑦′ + 𝑐𝑦 = 0

➢ Se 𝑏2 − 4𝑎𝑐 = 0, então as raízes serão repetidas e
geram a mesma solução.

𝑦1 = 𝑒
−𝑏

2𝑎
𝑡𝑟1 = 𝑟2 =

−𝑏

2𝑎

⇒

⇒



➢ Seja a equação característica da eq. dif. a
coeficientes constantes.

𝑎𝑟2 + 𝑏𝑟 + 𝑐 = 0

prof. Henrique A M Faria

𝑎𝑦" + 𝑏𝑦′ + 𝑐𝑦 = 0

➢ Se 𝑏2 − 4𝑎𝑐 = 0, então as raízes serão repetidas e
geram a mesma solução.

𝑦1 = 𝑒
−𝑏

2𝑎
𝑡

𝑦 = 𝑣 𝑡 𝑦1 𝑡 = 𝑣(𝑡)𝑒
−𝑏
2𝑎𝑡

𝑟1 = 𝑟2 =
−𝑏

2𝑎

⇒

⇒

➢ O conjunto solução pode ser encontrado pelo
produto de uma função 𝑣 pela primeira solução.



➢ A função 𝑣(𝑡) mais simples, linearmente
independente da exponencial, é um polinômio.

prof. Henrique A M Faria

𝑣(𝑡) = 𝐶1 + 𝐶2𝑡



➢ A função 𝑣(𝑡) mais simples, linearmente
independente da exponencial, é um polinômio.

prof. Henrique A M Faria

➢ Portanto, um conjunto solução será:

𝑣(𝑡) = 𝐶1 + 𝐶2𝑡

𝑦 = 𝐶1𝑒
−𝑏
2𝑎𝑡 + 𝐶2𝑡𝑒

−𝑏
2𝑎𝑡 𝐶1 e 𝐶2: constantes



➢ A função 𝑣(𝑡) mais simples, linearmente
independente da exponencial, é um polinômio.

prof. Henrique A M Faria

➢ Portanto, um conjunto solução será:

𝑣(𝑡) = 𝐶1 + 𝐶2𝑡

➢ O wronskiano dessas soluções nunca se anula:

𝑦 = 𝐶1𝑒
−𝑏
2𝑎𝑡 + 𝐶2𝑡𝑒

−𝑏
2𝑎𝑡 𝐶1 e 𝐶2: constantes

𝑊 =
𝑦1 𝑦2

𝑦′1 𝑦′2



➢ A função 𝑣(𝑡) mais simples, linearmente
independente da exponencial, é um polinômio.

prof. Henrique A M Faria

➢ Portanto, um conjunto solução será:

𝑣(𝑡) = 𝐶1 + 𝐶2𝑡

➢ O wronskiano dessas soluções nunca se anula:

𝑦 = 𝐶1𝑒
−𝑏
2𝑎𝑡 + 𝐶2𝑡𝑒

−𝑏
2𝑎𝑡 𝐶1 e 𝐶2: constantes

𝑊 =
𝑦1 𝑦2

𝑦′1 𝑦′2
= 𝑦1𝑦′

2
− 𝑦′1𝑦2



➢ A função 𝑣(𝑡) mais simples, linearmente
independente da exponencial, é um polinômio.

prof. Henrique A M Faria

➢ Portanto, um conjunto solução será:

𝑣(𝑡) = 𝐶1 + 𝐶2𝑡

➢ O wronskiano dessas soluções nunca se anula:

𝑦 = 𝐶1𝑒
−𝑏
2𝑎𝑡 + 𝐶2𝑡𝑒

−𝑏
2𝑎𝑡 𝐶1 e 𝐶2: constantes

𝑊 =
𝑦1 𝑦2

𝑦′1 𝑦′2
= 𝑦1𝑦′

2
− 𝑦′1𝑦2

𝑊 = 𝑒
−𝑏
2𝑎𝑡 −𝑏

2𝑎
𝑡𝑒

−𝑏
2𝑎𝑡 + 𝑒

−𝑏
2𝑎𝑡 −

−𝑏

2𝑎
𝑒

−𝑏
2𝑎𝑡 𝑡𝑒

−𝑏
2𝑎𝑡



➢ A função 𝑣(𝑡) mais simples, linearmente
independente da exponencial, é um polinômio.

prof. Henrique A M Faria

➢ Portanto, um conjunto solução será:

𝑣(𝑡) = 𝐶1 + 𝐶2𝑡

➢ O wronskiano dessas soluções nunca se anula:

𝑦 = 𝐶1𝑒
−𝑏
2𝑎𝑡 + 𝐶2𝑡𝑒

−𝑏
2𝑎𝑡 𝐶1 e 𝐶2: constantes

𝑊 =
𝑦1 𝑦2

𝑦′1 𝑦′2
= 𝑦1𝑦′

2
− 𝑦′1𝑦2

𝑾 = 𝑒
−𝑏
2𝑎𝑡 −𝑏

2𝑎
𝑡𝑒

−𝑏
2𝑎𝑡 + 𝑒

−𝑏
2𝑎𝑡 −

−𝑏

2𝑎
𝑒

−𝑏
2𝑎𝑡 𝑡𝑒

−𝑏
2𝑎𝑡 = 𝒆

−𝒃
𝒂 𝒕



Encontrar a solução do PVI e seu gráfico.Exemplo 2:

4𝑦′′ − 4𝑦′ + 𝑦 = 0 𝑦 0 = 2 e   𝑦′ 0 = 1/3

prof. Henrique A M Faria



Encontrar a solução do PVI e seu gráfico.Exemplo 2:

4𝑦′′ − 4𝑦′ + 𝑦 = 0

✓ Resolução da equação característica:

4𝑟2 − 4𝑟 + 1 = 0

𝑦 0 = 2 e   𝑦′ 0 = 1/3

prof. Henrique A M Faria



Encontrar a solução do PVI e seu gráfico.Exemplo 2:

4𝑦′′ − 4𝑦′ + 𝑦 = 0

✓ Resolução da equação característica:

4𝑟2 − 4𝑟 + 1 = 0 ⇒ ∆= 42 − 4.4.1 = 0

𝑦 0 = 2 e   𝑦′ 0 = 1/3

prof. Henrique A M Faria



Encontrar a solução do PVI e seu gráfico.Exemplo 2:

4𝑦′′ − 4𝑦′ + 𝑦 = 0

✓ Resolução da equação característica:

✓ Portanto, as soluções da eq. característica são:

4𝑟2 − 4𝑟 + 1 = 0 ⇒ ∆= 42 − 4.4.1 = 0

𝑦 0 = 2 e   𝑦′ 0 = 1/3

𝑟1 = 𝑟2 =
−(−4)

2.4
=

1

2

prof. Henrique A M Faria



Encontrar a solução do PVI e seu gráfico.Exemplo 2:

4𝑦′′ − 4𝑦′ + 𝑦 = 0

✓ Resolução da equação característica:

✓ Portanto, as soluções da eq. característica são:

4𝑟2 − 4𝑟 + 1 = 0 ⇒ ∆= 42 − 4.4.1 = 0

𝑦 0 = 2 e   𝑦′ 0 = 1/3

𝑟1 = 𝑟2 =
−(−4)

2.4
=

1

2

✓ A solução geral proposta é:

𝑦 = 𝐶1𝑒
𝑡
2 + 𝐶2𝑡𝑒

𝑡
2

prof. Henrique A M Faria



Encontrar a solução do PVI e seu gráfico.Exemplo 2:

4𝑦′′ − 4𝑦′ + 𝑦 = 0

✓ Resolução da equação característica:

✓ Portanto, as soluções da eq. característica são:

4𝑟2 − 4𝑟 + 1 = 0 ⇒ ∆= 42 − 4.4.1 = 0

𝑦 0 = 2 e   𝑦′ 0 = 1/3

𝑟1 = 𝑟2 =
−(−4)

2.4
=

1

2

✓ A solução geral proposta é:

𝑦 = 𝐶1𝑒
𝑡
2 + 𝐶2𝑡𝑒

𝑡
2

✓ Inserindo a primeira condição inicial tem-se:

𝑦 0 = 2 = 𝐶1𝑒
0
2 + 𝐶20𝑒

0
2

prof. Henrique A M Faria



Encontrar a solução do PVI e seu gráfico.Exemplo 2:

4𝑦′′ − 4𝑦′ + 𝑦 = 0

✓ Resolução da equação característica:

✓ Portanto, as soluções da eq. característica são:

4𝑟2 − 4𝑟 + 1 = 0 ⇒ ∆= 42 − 4.4.1 = 0

𝑦 0 = 2 e   𝑦′ 0 = 1/3

𝑟1 = 𝑟2 =
−(−4)

2.4
=

1

2

✓ A solução geral proposta é:

𝑦 = 𝐶1𝑒
𝑡
2 + 𝐶2𝑡𝑒

𝑡
2

✓ Inserindo a primeira condição inicial tem-se:

⇒ 𝐶1 = 2
prof. Henrique A M Faria

𝑦 0 = 2 = 𝐶1𝑒
0
2 + 𝐶20𝑒

0
2



Exemplo 2: 4𝑦′′ − 4𝑦′ + 𝑦 = 0

✓ Inserindo a segunda condição
inicial tem-se:

𝑦 0 = 2,  𝑦′ 0 = 1/3

𝑦 = 𝐶1𝑒
𝑡
2 + 𝐶2𝑡𝑒

𝑡
2

𝐶1 = 2

prof. Henrique A M Faria



Exemplo 2: 4𝑦′′ − 4𝑦′ + 𝑦 = 0

✓ Inserindo a segunda condição
inicial tem-se:

𝑦 0 = 2,  𝑦′ 0 = 1/3

𝑦′ =
1

2
𝐶1𝑒

𝑡
2 + 𝐶2

1

2
𝑡𝑒

𝑡
2 + 𝑒

𝑡
2

𝑦 = 𝐶1𝑒
𝑡
2 + 𝐶2𝑡𝑒

𝑡
2

𝐶1 = 2

prof. Henrique A M Faria



Exemplo 2: 4𝑦′′ − 4𝑦′ + 𝑦 = 0

✓ Inserindo a segunda condição
inicial tem-se:

𝑦 0 = 2,  𝑦′ 0 = 1/3

𝑦′ =
1

2
𝐶1𝑒

𝑡
2 + 𝐶2

1

2
𝑡𝑒

𝑡
2 + 𝑒

𝑡
2

𝑦 = 𝐶1𝑒
𝑡
2 + 𝐶2𝑡𝑒

𝑡
2

𝑦′ 0 =
1

3
=

1

2
𝐶1𝑒

0
2 + 𝐶2

1

2
0𝑒

0
2 + 𝑒

0
2

𝐶1 = 2

prof. Henrique A M Faria



Exemplo 2: 4𝑦′′ − 4𝑦′ + 𝑦 = 0

✓ Inserindo a segunda condição
inicial tem-se:

𝑦 0 = 2,  𝑦′ 0 = 1/3

𝑦′ =
1

2
𝐶1𝑒

𝑡
2 + 𝐶2

1

2
𝑡𝑒

𝑡
2 + 𝑒

𝑡
2

𝑦 = 𝐶1𝑒
𝑡
2 + 𝐶2𝑡𝑒

𝑡
2

𝑦′ 0 =
1

3
=

1

2
𝐶1𝑒

0
2 + 𝐶2

1

2
0𝑒

0
2 + 𝑒

0
2

𝐶1 = 2

1/3 =
1

2
2 + 𝐶2

prof. Henrique A M Faria



Exemplo 2: 4𝑦′′ − 4𝑦′ + 𝑦 = 0

✓ Inserindo a segunda condição
inicial tem-se:

𝑦 0 = 2,  𝑦′ 0 = 1/3

𝑦′ =
1

2
𝐶1𝑒

𝑡
2 + 𝐶2

1

2
𝑡𝑒

𝑡
2 + 𝑒

𝑡
2

⇒ 𝐶2 = −2/3

𝑦 = 𝐶1𝑒
𝑡
2 + 𝐶2𝑡𝑒

𝑡
2

𝑦′ 0 =
1

3
=

1

2
𝐶1𝑒

0
2 + 𝐶2

1

2
0𝑒

0
2 + 𝑒

0
2

𝐶1 = 2

1/3 =
1

2
2 + 𝐶2

prof. Henrique A M Faria



Exemplo 2: 4𝑦′′ − 4𝑦′ + 𝑦 = 0

✓ Inserindo a segunda condição
inicial tem-se:

𝑦 0 = 2,  𝑦′ 0 = 1/3

𝑦′ =
1

2
𝐶1𝑒

𝑡
2 + 𝐶2

1

2
𝑡𝑒

𝑡
2 + 𝑒

𝑡
2

⇒ 𝐶2 = −2/3

𝑦 = 𝐶1𝑒
𝑡
2 + 𝐶2𝑡𝑒

𝑡
2

𝑦′ 0 =
1

3
=

1

2
𝐶1𝑒

0
2 + 𝐶2

1

2
0𝑒

0
2 + 𝑒

0
2

𝐶1 = 2

1/3 =
1

2
2 + 𝐶2

✓ Assim, a solução do PVI é:

𝑦 = 2𝑒
𝑡
2 −

2

3
𝑡𝑒

𝑡
2

prof. Henrique A M Faria



Exemplo 2: 4𝑦′′ − 4𝑦′ + 𝑦 = 0

𝑦 0 = 2,  𝑦′ 0 = 1/3

𝑦 = 2𝑒
𝑡
2 −

2

3
𝑡𝑒

𝑡
2

Valores em pontos extremos:

prof. Henrique A M Faria



Exemplo 2: 4𝑦′′ − 4𝑦′ + 𝑦 = 0

𝑦 0 = 2,  𝑦′ 0 = 1/3

𝑦 = 2𝑒
𝑡
2 −

2

3
𝑡𝑒

𝑡
2

Valores em pontos extremos:

P/ 𝑡 = 0:     𝑦 = 2𝑒0 −
2

3
. 0. 𝑒0 = 2

prof. Henrique A M Faria

✓



Exemplo 2: 4𝑦′′ − 4𝑦′ + 𝑦 = 0

𝑦 0 = 2,  𝑦′ 0 = 1/3

𝑦 = 2𝑒
𝑡
2 −

2

3
𝑡𝑒

𝑡
2

Valores em pontos extremos:

P/ 𝑡 = 0:     𝑦 = 2𝑒0 −
2

3
. 0. 𝑒0 = 2

lim
𝑡→∞

2𝑒
𝑡
2 −

2

3
𝑡𝑒

𝑡
2

prof. Henrique A M Faria

✓

✓



Exemplo 2: 4𝑦′′ − 4𝑦′ + 𝑦 = 0

𝑦 0 = 2,  𝑦′ 0 = 1/3

𝑦 = 2𝑒
𝑡
2 −

2

3
𝑡𝑒

𝑡
2

Valores em pontos extremos:

P/ 𝑡 = 0:     𝑦 = 2𝑒0 −
2

3
. 0. 𝑒0 = 2

lim
𝑡→∞

2𝑒
𝑡
2 −

2

3
𝑡𝑒

𝑡
2 = lim

𝑡→∞
𝑒

𝑡
2 lim

𝑡→∞
2 −

2

3
lim
𝑡→∞

𝑡 = −∞

prof. Henrique A M Faria

✓

✓



Exemplo 2: 4𝑦′′ − 4𝑦′ + 𝑦 = 0

𝑦 0 = 2,  𝑦′ 0 = 1/3

𝑦 = 2𝑒
𝑡
2 −

2

3
𝑡𝑒

𝑡
2

Valores em pontos extremos:

P/ 𝑡 = 0:     𝑦 = 2𝑒0 −
2

3
. 0. 𝑒0 = 2

Pto max:  𝑦′ = 0 = 2.
1

2
𝑒

𝑡

2

prof. Henrique A M Faria

✓

✓

✓

lim
𝑡→∞

2𝑒
𝑡
2 −

2

3
𝑡𝑒

𝑡
2 = lim

𝑡→∞
𝑒

𝑡
2 lim

𝑡→∞
2 −

2

3
lim
𝑡→∞

𝑡 = −∞



Exemplo 2: 4𝑦′′ − 4𝑦′ + 𝑦 = 0

𝑦 0 = 2,  𝑦′ 0 = 1/3

𝑦 = 2𝑒
𝑡
2 −

2

3
𝑡𝑒

𝑡
2

Valores em pontos extremos:

P/ 𝑡 = 0:     𝑦 = 2𝑒0 −
2

3
. 0. 𝑒0 = 2

Pto max:  𝑦′ = 0 = 2.
1

2
𝑒

𝑡

2 −
2

3

1

2
𝑡𝑒

𝑡

2 +
2

3
𝑒

𝑡

2

prof. Henrique A M Faria

✓

✓

✓

lim
𝑡→∞

2𝑒
𝑡
2 −

2

3
𝑡𝑒

𝑡
2 = lim

𝑡→∞
𝑒

𝑡
2 lim

𝑡→∞
2 −

2

3
lim
𝑡→∞

𝑡 = −∞



Exemplo 2: 4𝑦′′ − 4𝑦′ + 𝑦 = 0

𝑦 0 = 2,  𝑦′ 0 = 1/3

𝑦 = 2𝑒
𝑡
2 −

2

3
𝑡𝑒

𝑡
2

Valores em pontos extremos:

P/ 𝑡 = 0:     𝑦 = 2𝑒0 −
2

3
. 0. 𝑒0 = 2

Pto max:  𝑦′ = 0 = 2.
1

2
𝑒

𝑡

2 −
2

3

1

2
𝑡𝑒

𝑡

2 +
2

3
𝑒

𝑡

2

𝑡

3
= 1 −

2

3

prof. Henrique A M Faria

✓

✓

✓

lim
𝑡→∞

2𝑒
𝑡
2 −

2

3
𝑡𝑒

𝑡
2 = lim

𝑡→∞
𝑒

𝑡
2 lim

𝑡→∞
2 −

2

3
lim
𝑡→∞

𝑡 = −∞



Exemplo 2: 4𝑦′′ − 4𝑦′ + 𝑦 = 0

𝑦 0 = 2,  𝑦′ 0 = 1/3

𝑦 = 2𝑒
𝑡
2 −

2

3
𝑡𝑒

𝑡
2

Valores em pontos extremos:

P/ 𝑡 = 0:     𝑦 = 2𝑒0 −
2

3
. 0. 𝑒0 = 2

Pto max:  𝑦′ = 0 = 2.
1

2
𝑒

𝑡

2 −
2

3

1

2
𝑡𝑒

𝑡

2 +
2

3
𝑒

𝑡

2

𝑡

3
= 1 −

2

3

𝑡 = 1,  𝑦 ≅ 2,2

prof. Henrique A M Faria

✓

✓

✓

lim
𝑡→∞

2𝑒
𝑡
2 −

2

3
𝑡𝑒

𝑡
2 = lim

𝑡→∞
𝑒

𝑡
2 lim

𝑡→∞
2 −

2

3
lim
𝑡→∞

𝑡 = −∞



Exemplo 2: 4𝑦′′ − 4𝑦′ + 𝑦 = 0

𝑦 0 = 2,  𝑦′ 0 = 1/3

𝑦 = 2𝑒
𝑡
2 −

2

3
𝑡𝑒

𝑡
2

Valores em pontos extremos:

P/ 𝑡 = 0:     𝑦 = 2𝑒0 −
2

3
. 0. 𝑒0 = 2

Pto max:  𝑦′ = 0 = 2.
1

2
𝑒

𝑡

2 −
2

3

1

2
𝑡𝑒

𝑡

2 +
2

3
𝑒

𝑡

2

𝑡

3
= 1 −

2

3

𝑡 = 1,  𝑦 ≅ 2,2

prof. Henrique A M Faria

Pto intersecção em 𝑡 (𝑦 = 0):

2𝑒
𝑡
2 = 2/3𝑡𝑒

𝑡
2 ⇒ 𝑡 = 3

✓

✓

✓

✓

lim
𝑡→∞

2𝑒
𝑡
2 −

2

3
𝑡𝑒

𝑡
2 = lim

𝑡→∞
𝑒

𝑡
2 lim

𝑡→∞
2 −

2

3
lim
𝑡→∞

𝑡 = −∞



Exemplo 2: 4𝑦′′ − 4𝑦′ + 𝑦 = 0

𝑦 0 = 2,  𝑦′ 0 = 1/3

𝑦 = 2𝑒
𝑡
2 −

2

3
𝑡𝑒

𝑡
2

Valores em pontos extremos:

P/ 𝑡 = 0:     𝑦 = 2𝑒0 −
2

3
. 0. 𝑒0 = 2

Pto max:  𝑦′ = 0 = 2.
1

2
𝑒

𝑡

2 −
2

3

1

2
𝑡𝑒

𝑡

2 +
2

3
𝑒

𝑡

2

𝑡

3
= 1 −

2

3

𝑡 = 1,  𝑦 ≅ 2,2

prof. Henrique A M Faria

Pto intersecção em 𝑡 (𝑦 = 0):

2𝑒
𝑡
2 = 2/3𝑡𝑒

𝑡
2 ⇒ 𝑡 = 3

✓

✓

✓

✓

Gráfico 
da

solução

lim
𝑡→∞

2𝑒
𝑡
2 −

2

3
𝑡𝑒

𝑡
2 = lim

𝑡→∞
𝑒

𝑡
2 lim

𝑡→∞
2 −

2

3
lim
𝑡→∞

𝑡 = −∞



➢ Estudar seções 3.3 e 3.4 do livro texto (Boyce).

➢ Resolver o exercício proposto.

➢ Praticar: exercícios da seções 3.3 e 3.4 do Boyce.

➢ Método dos coeficientes indeterminados.

prof. Henrique A M Faria



1. BOYCE, W.E.; DIPRIMA, R.C. Equações 
Diferenciais Elementares e Problemas de Valores 
de Contorno. 9. ed. Rio de Janeiro: LTC, 2010.

Numeração dos exercícios 

com base na 9ª ed.    ►

BOYCE, W.E.; DIPRIMA, R.C. Equações Diferenciais 
Elementares e Problemas de Valores de Contorno. 
11. ed. Rio de Janeiro: LTC, 2020.

prof. Henrique A M Faria
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