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1. Raizes complexas na equacao caracteristica.

2. Raizes repetidas.

- Equacoes algébricas do segundo grau.
- Diferenciacao e integracao.
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» Seja a equacao caracteristica da equacao diferencial

de segunda ordem.
(Eq. dif. 22 ordem a

ay" +by +cy =0 coeficientes constantes.)
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» Seja a equacao caracteristica da equacao diferencial

de segunda ordem.
(Eq. dif. 22 ordem a

" / —_—
ay" +by +cy =0 coeficientes constantes.)

ar’ +br+c=0 (Equacdo caracteristica)
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» Seja a equacao caracteristica da equacao diferencial

de segunda ordem.
(Eq. dif. 22 ordem a

" / —_—
ay" +by +cy =0 coeficientes constantes.)

ar’ +br+c=0 (Equacdo caracteristica)

> Se o discriminante b* — 4ac < 0, entdo as raizes
sao numeros complexos conjugados da forma:

rn=A+iue r,=A—1iu,



» Seja a equacao caracteristica da equacao diferencial

de segunda ordem.
(Eq. dif. 22 ordem a

" / —_—
ay" +by +cy =0 coeficientes constantes.)

ar’ +br+c=0 (Equacdo caracteristica)

> Se o discriminante b* — 4ac < 0, entdo as raizes
sao numeros complexos conjugados da forma:

ro=A+ige 1, =A—iL {Aeu: nGmeros reais

i =v-1



» Seja a equacao caracteristica da equacao diferencial

de segunda ordem.
(Eq. dif. 22 ordem a

" / —_—
ay" +by +cy =0 coeficientes constantes.)

ar’ +br+c=0 (Equacdo caracteristica)

> Se o discriminante b* — 4ac < 0, entdo as raizes
sao numeros complexos conjugados da forma:

ro=A+ige 1, =A—iL {Aeu: nGmeros reais

I =vV—1
y, = eIt oy = oA=L (solucBes da eq. dif.)



» Um exponencial complexo pode ser expresso por
uma combinacao de seno e cosseno por meio da
relacao de Euler:



» Um exponencial complexo pode ser expresso por
uma combinacao de seno e cosseno por meio da
relacao de Euler:

et = cosut + isenut
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» Um exponencial complexo pode ser expresso por
uma combinacao de seno e cosseno por meio da
relacao de Euler:

et = cosut + isenut e Mt = cosut — isenut
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» Um exponencial complexo pode ser expresso por
uma combinacao de seno e cosseno por meio da

relacao de Euler:

et = cosut + isenut e Mt = cosut — isenut

» As solucdes y; e y, podem ser reescritas por:

p(Atip)t
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Um exponencial complexo pode ser expresso por
uma combinacao de seno e cosseno por meio da
relacao de Euler:

et = cosut + isenut e Mt = cosut — isenut

As solugdes y, e y, podem ser reescritas por:

oLt — oAt ,tiut
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Um exponencial complexo pode ser expresso por
uma combinacao de seno e cosseno por meio da
relacao de Euler:

et = cosut + isenut e Mt = cosut — isenut
As solucBes y; e y, podem ser reescritas por:

e ALUDL — oAt oXIUt — oAl(cogut + isenut)
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» Um exponencial complexo pode ser expresso por
uma combinacao de seno e cosseno por meio da
relacao de Euler:

et = cosut + isenut e Mt = cosut — isenut
> As solucdes y; e y, podem ser reescritas por:
e ALUDL — oAt oXIUt — oAl(cogut + isenut)
» A parte real e imaginaria da solucdo estd

representada pelas funcgdes reais e*cosut e
eMsenut, respectivamente.
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Exemplo 1: Encontrar a solucdo do PVI e seu gréfico.
4y" + 4y"' + 37y =0 y(0) =2 e y'(0) =8
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Exemplo 1: Encontrar a solucdo do PVI e seu gréfico.
4y" + 4y"' + 37y =0 y(0) =2 e y'(0) =8

v Resolver a equacdo caracteristica:
4r? +4r +37 =0
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Exemplo 1: Encontrar a solucdo do PVI e seu gréfico.
4y" + 4y"' + 37y =0 y(0) =2 e y'(0) =8

v Resolver a equacdo caracteristica:
Ar’ +4r+37=0 = a=4b=4,c=37
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Exemplo 1: Encontrar a solucdo do PVI e seu gréfico.
4y" + 4y"' + 37y =0 y(0) =2 e y'(0) =8

v Resolver a equacdo caracteristica:
Ar’ +4r+37=0 = a=4b=4,c=37

—b +Vb? — dac
'r':
2a
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Exemplo 1: Encontrar a solucdo do PVI e seu gréfico.
4y" + 4y"' + 37y =0 y(0) =2 e y'(0) =8

v Resolver a equacdo caracteristica:
Ar’ +4r+37=0 = a=4b=4,c=37

B —b + Vb2 — 4qc B —4 ++/42 — 4.4.37
r= 2a = 2.4
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Exemplo 1: Encontrar a solucdo do PVI e seu gréfico.
4y" + 4y"' + 37y =0 y(0) =2 e y'(0) =8

v Resolver a equacdo caracteristica:
Ar’ +4r+37=0 = a=4b=4,c=37

B —b + Vb2 — 4qc B —4 ++42 — 4437
r= 2a = 2.4
_ —4+4¥1-37

"= 3
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Exemplo 1: Encontrar a solucdo do PVI e seu gréfico.
4y" + 4y"' + 37y =0 y(0) =2 e y'(0) =8

v Resolver a equacdo caracteristica:
Ar’ +4r+37=0 = a=4b=4,c=37

—b++vVb%2 —4ac —4+V4?2 —4.4.37
T = p—

2a 2.4
—4 4+ 4+/1 — 37
r = . =—1/2+1/2V/-36
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Exemplo 1: Encontrar a solucdo do PVI e seu gréfico.
4y" + 4y"' + 37y =0 y(0) =2 e y'(0) =8

v Resolver a equacdo caracteristica:
Ar’ +4r+37=0 = a=4b=4,c=37

—b++vVb%2 —4ac —4+V4?2 —4.4.37
T = p—

2a 2.4
—4 4+ 4+/1 — 37

r = . =—1/2+1/2V/-36

r=-1/2 1 3i
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Exemplo 1: Encontrar a solucdo do PVI e seu gréfico.
4y" + 4y"' + 37y =0 y(0) =2 e y'(0) =8

v Resolver a equacdo caracteristica:
Ar’ +4r+37=0 = a=4b=4,c=37

—b++vVb%2 —4ac —4+V4?2 —4.4.37
T = p—

2a 2.4
—4 4+ 4+/1 — 37
r = . =—1/2+1/2V/-36

r=-1/2+3i Onde: V—36

24



Exemplo 1: Encontrar a solucdo do PVI e seu gréfico.
4y" + 4y"' + 37y =0 y(0) =2 e y'(0) =8

v Resolver a equacdo caracteristica:
Ar’ +4r+37=0 = a=4b=4,c=37

—b++vVb%2 —4ac —4+V4?2 —4.4.37
'r' p— p—

2a 2.4
—4 + 4+/1 — 37
r = . =—1/2+1/2V/-36

r=-1/2+3i Onde: v—36 = 6vV—1 = 61
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Exemplo 1: Encontrar a solucdo do PVI e seu gréfico.
4y" + 4y"' + 37y =0 y(0) =2 e y'(0) =8

v Resolver a equacdo caracteristica:
Ar’ +4r+37=0 = a=4b=4,c=37

B —b++vVb%2 —4ac —4+V4?2 —4.4.37

"= 2a - 2.4
—4 + 4+/1 — 37
= . =—1/2+1/2V—36

r=-1/2+3i Onde: v—36 = 6vV—1 = 61

v’ Portanto, as solucdes da eq. caracteristica s3o:

1 1
r1=—§+31 r2=—§—31
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Exemplo 1: 4y" +4y"' + 37y =0

v As solucdes da equacao diferencial ficam:

prof. Henrique A M Faria 27



Exemplo 1: 4y" +4y" + 37y =0

v As solucdes da equacao diferencial ficam:
1 _.
yl — e(—§+3l)t

prof. Henrique A M Faria 2



Exemplo 1: 4y" +4y" + 37y =0

v As solucdes da equacao diferencial ficam:

1 t

y, = ezt = g2 (cos3t + isen3t)

prof. Henrique A M Faria 2@



Exemplo 1: 4y" +4y" + 37y =0

v As solucdes da equacao diferencial ficam:

1, .. t
y, = ezt = g2 (cos3t + isen3t)
v, = o (—3-30t

30



Exemplo 1: 4y" +4y" + 37y =0

v As solucdes da equacao diferencial ficam:

1, .. t
y, = ezt = g2 (cos3t + isen3t)
t

1 ..
Y, = el"2730t = o732 (cos3t — isen3t)
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Exemplo 1: 4y" +4y" + 37y =0

v As solucdes da equacao diferencial ficam:

1. t
Yy = el 72130t = o732 (cos3t + isen3t)

t

1 ..
Y, = el"2730t = o732 (cos3t — isen3t)

v' Pelo teorema de Abel, o wronskiano n3o se anula.

W = Ce_fp(t)dt
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Exemplo 1: 4y" +4y" + 37y =0

v As solucdes da equacao diferencial ficam:

1, .. t
y, = ezt = g2 (cos3t + isen3t)
t

1 ..
Y, = el"2730t = o732 (cos3t — isen3t)

v' Pelo teorema de Abel, o wronskiano n3o se anula.

W = Ce—fp(t)dt _ Ce—f4dt
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Exemplo 1: 4y" +4y" + 37y =0

v As solucdes da equacao diferencial ficam:

1. t
Yy = el 72130t = o732 (cos3t + isen3t)

t

1 ..
Y, = el"2730t = o732 (cos3t — isen3t)

v' Pelo teorema de Abel, o wronskiano n3o se anula.

W = ce~ I p®)dt — o= J4dt _ o-4t L (g y¢
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Exemplo 1: 4y" +4y" + 37y =0

v As solucdes da equacao diferencial ficam:

1., t
y, = ezt = g2 (cos3t + isen3t)
t

1 ..
Y, = el"2730t = o732 (cos3t — isen3t)

v' Pelo teorema de Abel, o wronskiano n3o se anula.
W = ce™ JPMDAt — o= 4dt — (p=4t 4 ( v ¢
v Logo o conjunto solucdo da eq. dif. pode ser escrito
como combinacao linear das solucdes.

y = Cy; + Gy,
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Exemplo 1: 4y" +4y" + 37y =0

v" Conjunto solucdo da eq. dif.:

t t
y = Ci1e 2 (cos3t + isen3t) + C,e 2 (cos3t — isen3t)
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Exemplo 1: 4y" +4y" + 37y =0

v" Conjunto solucdo da eq. dif.:

t t
y = Ci1e 2 (cos3t + isen3t) + C,e 2 (cos3t — isen3t)

t t
y = (C; + C,) cos3te™2 + (iC; — iC,) sen3t e 2
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Exemplo 1: 4y" +4y" + 37y =0

v" Conjunto solucdo da eq. dif.:

t t
y = Ci1e 2 (cos3t + isen3t) + C,e 2 (cos3t — isen3t)

t t
y = (C; + C,) cos3te™2 + (iC; — iC,) sen3t e 2

v' As constantes C;e C, e a combinacdo com a

notacdo complexa i = v—1 podem ser substituidas
pelas constantes k; e k,.
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Exemplo 1: 4y" +4y" + 37y =0

v" Conjunto solucdo da eq. dif.:

t t
y = Ci1e 2 (cos3t + isen3t) + C,e 2 (cos3t — isen3t)

t t
y = (C; + C,) cos3te™2 + (iC; — iC,) sen3t e 2

v' As constantes C;e C, e a combinacdo com a

notacdo complexa i = v—1 podem ser substituidas
pelas constantes k; e k,.

Se (Cl + Cz) — k1
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Exemplo 1: 4y" +4y" + 37y =0

v" Conjunto solucdo da eq. dif.:

t t
y = Ci1e 2 (cos3t + isen3t) + C,e 2 (cos3t — isen3t)

t t
y = (C; + C,) cos3te™2 + (iC; — iC,) sen3t e 2

v' As constantes C;e C, e a combinacdo com a

notacdo complexa i = v—1 podem ser substituidas
pelas constantes k; e k,.

Se (C;+C,)=k; e (iC;—1iCy) =k,, entdo:



Exemplo 1: 4y" +4y" + 37y =0

v" Conjunto solucdo da eq. dif.:
t t
y = Cie 2 (cos3t + isen3t) + C,e 2 (cos3t — isen3t)

t t
y = (C; + C,) cos3te™2 + (iC; — iC,) sen3t e 2

v' As constantes C;e C, e a combinacdo com a

notacdo complexa i = v—1 podem ser substituidas
pelas constantes k; e k,.

Se (C;+C,)=k; e (iC;—1iCy) =k,, entdo:

¢ + Conjunto solucao
y = K;cos3te 2 + K,sen3te 2 da eq. dif.

a1



Exemplo 1: 4y" +4y' +37y =0

. e e 0)=2, y'(0) =8:
v’ Inserindo as condicBes iniciais: y(0) v (0)

t t
y = K;cos3te 2 4+ K,sen3te 2

prof. Henrique A M Faria 42



Exemplo 1: 4y" +4y' +37y =0

. e e 0)=2, y'(0) =8:
v’ Inserindo as condicBes iniciais: y(0) v (0)

t t
y = K;cos3te 2 4+ K,sen3te 2

v’ 2=K;cos0e’ + K,sen0 e’
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Exemplo 1: 4y" +4y' +37y =0

. e e 0)=2, y'(0) =8:
v’ Inserindo as condicBes iniciais: y(0) v (0)

t t
y = K;cos3te 2 4+ K,sen3te 2

v’ 2=K;cos0e’ + K,sen0 e’ =

iy
I
(NS

prof. Henrique A M Faria @.@



Exemplo 1: 4y" +4y' +37y =0

. o 0)=2, y'(0) =8:
v Inserindo as condicdes iniciais: y(0) v (0)

t t
y = K;cos3te 2 4+ K,sen3te 2

v’ 2=K;cos0e’ + K,sen0 e’ = K, =2

K; _t _t K _t _t
v y =—2cos3te 2 — 3K sen3te 2 +—Zsen3te 2 + 3K,cos3te 2
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Exemplo 1: 4y" +4y' +37y =0

. e e 0)=2, y'(0) =8:
v’ Inserindo as condicBes iniciais: y(0) v (0)

t t
y = K;cos3te 2 4+ K,sen3te 2

v’ 2=K;cos0e’ + K,sen0 e’ = K, =2
K; _t _t K _t _t
vy =_—2cos3te 2 — 3K ;sen3te 2 +_—Zsen3te 2 + 3K,cos3te 2
K K
8 =_—12COSO e’ — 3K;sen0 e +_—Zzsen0 eV + 3K,cos0 e’
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Exemplo 1: 4y" +4y' +37y =0

. e e 0)=2, y'(0) =8:
v’ Inserindo as condicBes iniciais: y(0) v (0)

t t
y = K;cos3te 2 4+ K,sen3te 2

v’ 2=K;cos0e’ + K,sen0 e’ = K, =2
K; _t _t K _t _t
vy =_—2cos3te 2 — 3K ;sen3te 2 +_—Zsen3te 2 + 3K,cos3te 2
K K
8 = _—12COSO e’ —3K;sen0e® + _—ZzsenO eV + 3K,cos0 e’
K,
8 = _—2 + 3K2
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Exemplo 1: 4y" +4y' +37y =0

. e e 0)=2, y'(0) =8:
v’ Inserindo as condicBes iniciais: y(0) v (0)

t t
y = K;cos3te 2 4+ K,sen3te 2

v’ 2=K;cos0e’ + K,sen0 e’ = K, =2
K; _t _t K _t _t
vy =_—2cos3te 2 — 3K ;sen3te 2 +_—Zsen3te 2 + 3K,cos3te 2
K K
8 = _—12COSO e’ —3K;sen0e® + _—ZzsenO eV + 3K,cos0 e’
K,
8=_—2+3K2 = 8 =—1+ 3K,



Exemplo 1: 4y" +4y' +37y =0

. e e 0)=2, y'(0) =8:
v’ Inserindo as condicBes iniciais: y(0) v (0)

t t
y = K;cos3te 2 4+ K,sen3te 2

v’ 2=K;cos0e’ + K,sen0 e’ = K, =2
K; _t _t K _t _t
vy =_—2cos3te 2 — 3K ;sen3te 2 +_—Zsen3te 2 + 3K,cos3te 2
K K
8 = _—12COSO e’ —3K;sen0e® + _—ZzsenO eV + 3K,cos0 e’
K,
8=—+3K, = 8=-1+3K, = K =3
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Exemplo 1: 4y" +4y' +37y =0

. e e 0)=2, y'(0) =8:
v’ Inserindo as condicBes iniciais: y(0) v (0)

t t
y = K;cos3te 2 4+ K,sen3te 2

v’ 2=K;cos0e’ + K,sen0 e’ = K, =2
K; _t _t K _t _t
vy =_—2cos3te 2 — 3K ;sen3te 2 +_—Zsen3te 2 + 3K,cos3te 2
K K
8 = _—12COSO e’ —3K;sen0e® + _—ZzsenO eV + 3K,cos0 e’
K,
8=—+3K, = 8=-1+3K, = K =3

y = e~ 2 (2cos3t + 3sen3t) Solugao do PVI
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Exemplo 1: Valores em pontos extremos da solugdo:

v P/t=0: y=e%(2cos0+ 3sen0) = 2

prof. Henrique A M Faria 51



Exemplo 1: Valores em pontos extremos da solugdo:

v P/t=0: y=e%(2cos0+ 3sen0) = 2

t
v lime 2 (2cos3t + 3sen3t)

t—o oo

prof. Henrique A M Faria 52



Exemplo 1:

Valores em pontos extremos da solucao:

v P/t=0: y=e%(2cos0+ 3sen0) = 2

t
v lim e 2 (2cos3t + 3sen3t) =

t—o oo
t

lime 2 lim(2cos3t + 3sen3t) =0

t—o0 t—o0
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Exemplo 1: Valores em pontos extremos da solugdo:

v P/t=0: y=e%(2cos0+ 3sen0) = 2
¢
v lim e 2 (2cos3t + 3sen3t) =

t—o oo
t

lime 2 lim(2cos3t + 3sen3t) =0

t—o0 t—o0

Grafico da solucao
/\ I/\\ | | |

2 4 R T8 10 t
v
y =e 2 (2cos3t + 3sen3t)

prof. Henrique A M Faria 5@



Exemplo 1: Valores em pontos extremos da solugdo:

v

v

P/t=0: y=e"(2cos0+ 3sen0) =2

t
lime 2 (2cos3t + 3sen3t) =

t—o oo
t

lime 2 lim(2cos3t + 3sen3t) =0

t—o0 t—o0

~ o
~o
-

Fali

y =e 2 (2cos3t + 3sen3t)
Exp.
decrescente
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Exemplo 1: Valores em pontos extremos da solugdo:

v P/t=0: y=e%(2cos0+ 3sen0) = 2

t
v lim e 2 (2cos3t + 3sen3t) =

t—oo
t
z,]im e 2 L]im (2cos3t + 3sen3t) = 0

y =e 2 (2cos3t + 3sen3t)

Exp. Termo oscilatorio
decrescente

prof. Henrique A M Faria 56
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» Seja a equacao caracteristica da eq. dif.
coeficientes constantes.

ay"+ by +cy =0

prof. Henrique A M Faria
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» Seja a equacdo caracteristica da eq. dif.
coeficientes constantes.

ay"+by +cy=0 = ar’+br+c=0

prof. Henrique A M Faria

d
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» Seja a equacao caracteristica da eq. dif. a
coeficientes constantes.

ay"+by +cy=0 = ar’+br+c=0

> Se b? — 4ac = 0, entdo as raizes serdo repetidas e

geram a mesma solucao.
—b

7"1:7"2:%
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» Seja a equacao caracteristica da eq. dif. a
coeficientes constantes.

ay"+by +cy=0 = ar’+br+c=0

> Se b? — 4ac = 0, entdo as raizes serdo repetidas e

geram a mesma solucao.
—b
=7 =2 = = ol
1 2 2a Yy =¢€

61



» Seja a equacao caracteristica da eq. dif. a
coeficientes constantes.

ay"+by +cy=0 = ar’+br+c=0

> Se b? — 4ac = 0, entdo as raizes serdo repetidas e

geram a mesma solucao.
~b =l
7"1=7"2=% = y1=32a
» 0O conjunto solucao pode ser encontrado pelo
produto de uma funcao v pela primeira solucao.
—by
y =v(t)y1(t) = v(t)e2a

62



» A funcdao wv(t) mais simples, linearmente
independente da exponencial, € um polindbmio.
U(t) = C]_ + Czt

63



» A funcdao wv(t) mais simples, linearmente
independente da exponencial, € um polindbmio.
U(t) = C]_ + Czt

» Portanto, um conjunto solucao sera:

b b
y = Cye2a’ + C,tezat C, e C,: constantes

@D
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» A funcdao wv(t) mais simples, linearmente
independente da exponencial, € um polindbmio.
U(t) = C]_ + Czt

» Portanto, um conjunto solucao sera:

b b
y = Cye2a’ + C,tezat C, e C,: constantes

» 0O wronskiano dessas solucdes nunca se anula:

yi Y2

W: / /
Y1 Y2
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» A funcdao wv(t) mais simples, linearmente
independente da exponencial, € um polindbmio.
U(t) = C]_ + Czt

» Portanto, um conjunto solucao sera:

b b
y = Cye2a’ + C,tezat C, e C,: constantes

» 0O wronskiano dessas solucdes nunca se anula:

yi Y2

W: / /
Y1 Y2

=y1y', —¥Y'1¥2
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» A funcdao wv(t) mais simples, linearmente
independente da exponencial, € um polindbmio.
U(t) = C]_ + Czt
» Portanto, um conjunto solucdo sera:

b b
y = Cye2a’ + C,tezat C, e C,: constantes

» 0O wronskiano dessas solucdes nunca se anula:

Y1 Y2 , ,
W = vy, = V1Y , =YYz
b [— —b —b —p -b —b
W = eZa" —bteﬁt +e2a"| — —beﬁt te%t]
2a 2a
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» A funcdao wv(t) mais simples, linearmente
independente da exponencial, € um polindbmio.
U(t) = C]_ + Czt

» Portanto, um conjunto solucao sera:

b b
y = Cye2a’ + C,tezat C, e C,: constantes

» 0O wronskiano dessas solucdes nunca se anula:

yi Y2

W: / /
Y1 Y2

=y1y', —¥Y'1¥2

-b [—p -b —b —p -b —b —b
W = eZ2a’ |—teZa® + eZa'| — —eZa’ teﬁt] —ea!
2a 2a
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Exemplo 2: Encontrar a solucdo do PVI e seu gréfico.
Ay" —4y" +y =0 y(0) =2 e y'(0)=1/3

prof. Henrique A M Faria @@



Exemplo 2: Encontrar a solucdo do PVI e seu gréfico.
4y" —4y'+y =0 y(0)=2 e y'(0)=1/3
v Resolucdo da equacdo caracteristica:
4r* —4r+1 =0
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Exemplo 2: Encontrar a solucdo do PVI e seu gréfico.
4y" —4y'+y =0 y(0)=2 e y'(0)=1/3
v Resolucdo da equacdo caracteristica:
4r2 —4r+1=0 = A=+42-441=0
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Exemplo 2: Encontrar a solucdo do PVI e seu gréfico.
4y" —4y'+y =0 y(0)=2 e y'(0)=1/3
v Resolucdo da equacdo caracteristica:
4r2 —4r+1=0 = A=+42-441=0

v Portanto, as solucdes da eq. caracteristica s3o:
—(—4) _ 1

2.4 2

7"1=T2=
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Exemplo 2: Encontrar a solucdo do PVI e seu gréfico.
4y" —4y'+y =0 y(0)=2 e y'(0)=1/3
v Resolucdo da equacdo caracteristica:
4r2 —4r+1=0 = A=+42-441=0

v Portanto, as solucdes da eq. caracteristica s3o:
—(—4) _ 1

2.4 2

7"1 — TZ —
v A solucdo geral proposta é:

t t
Yy = C]_eE + Cztei
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Exemplo 2: Encontrar a solucdo do PVI e seu gréfico.
4y" —4y'+y =0 y(0)=2 e y'(0)=1/3
v Resolucdo da equacdo caracteristica:
4r2 —4r+1=0 = A=+42-441=0

v Portanto, as solucdes da eq. caracteristica s3o:
—(—4) _ 1

2.4 2

7"1=T2=

v A solucdo geral proposta é:

t t
Yy = CleE + Cztei

v Inserindo a primeira condicdo inicial tem-se:

0 0
y(0) =2 = Cie2 + C,0e2
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Exemplo 2: Encontrar a solucdo do PVI e seu gréfico.
4y" —4y'+y =0 y(0)=2 e y'(0)=1/3
v Resolucdo da equacdo caracteristica:
4r2 —4r+1=0 = A=+42-441=0

v Portanto, as solucdes da eq. caracteristica s3o:
—(—4) _ 1

2.4 2

7"1=T2=

v A solucdo geral proposta é:

t t
Yy = CleE + Cztei

v Inserindo a primeira condicdo inicial tem-se:

0 0
y(0) =2 = C,e2 + C,0e2 = C, =2
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4y" —4y' +y =0

v’ Inserindo a segunda condicdo y(0) =2, y(0) =1/3

inicial tem-se: C, =2
t t
y = C;e2 + Cyte2

Exemplo 2:

prof. Henrique A M Faria ?@



Exemplo 2:

v’ Inserindo a segunda condicdo

inicial tem-se:
t t
y = C;e2 + Cyte2

1t 1 ¢t ¢t
y' =§C1€2 + C, Stez +e2

4y" —4y"' +y =0
y(0) =2, y'(0) =1/3
Cl — 2
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4y" —4y"' +y =0

Exemplo 2:
y(0) =2, y'(0) =1/3

v’ Inserindo a segunda condicdo

inicial tem-se: C, =2
t t
y = C;e2 + Cyte2
1 t 1 ¢t t
y’=§CleZ+CZ Et62+62

p—
o

, 1 1 o o 0
y'(0) =§=EC1€2+C2 EOeZ+eZ
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4y" —4y"' +y =0

Exemplo 2:
y(0) =2, y'(0) =1/3

v’ Inserindo a segunda condicdo

inicial tem-se: C, =2
t t
y = C;e2 + Cyte2
1t 1 ¢t ¢t
y =§C182+C2 5t62+62
, 1 1 o0 1 0 0
y'(0) = 3= ECleZ + C, EOeZ + e2
1
1/3 = 52 + C,
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4y" —4y"' +y =0

Exemplo 2:
y(0) =2, y'(0) =1/3

v’ Inserindo a segunda condicdo

inicial tem-se: C, =2
t t
y = C;e2 + Cyte2
1t 1 ¢t ¢t
y =§C182+C2 5t62+62
, 1 1 o0 1 0 0
y'(0) = 3= ECleZ + C, EOeZ + e2
1
1/3=§2+C2 = C, =-2/3
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4y" —4y"' +y =0

Exemplo 2: ,
v’ Inserindo a segunda condic3o y(0) =2, y(0) =1/3
inicial tem-se: C, =2

t
y = C;e2 + Cyte

N

1 1 t t
y=§C162+C2 E ez + ez
1 1 0 1 O 0
0)====Cez+C,[=0eZ +e2
y'(0)=5=7 5 0
1
1/3—52+C2 = C, =—2/3
v Assim, a solucdo do PVI é:
t 2t

y = 2e2 — §te§
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Exemplo 2: oAy Ay =0
y(0) =2, y(0) =1/3
Valores em pontos extremos:

t 2t
y=2€2—§t€2

prof. Henrique A M Faria
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Exemplo 2: oAy Ay =0
y(0) =2, y(0) =1/3
Valores em pontos extremos:

t 2t
vV P/t=0: y=2e° —%.o.e":z y=2€2—§tez

prof. Henrique A M Faria
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Exemplo 2: 4y" —4y"'+y =0

y(0) =2, y'(0) =1/3
Valores em pontos extremos:
t 2t
vV P/t=0: y=2e° —%.O.eO =2 y=2€2—§tez
t 2t
v’ lim 2e2 — —te2
t—oo 3

prof. Henrique A M Faria



Exemplo 2: oAy Ay =0
y(0) =2, y(0) =1/3
Valores em pontos extremos:

t 2t
vV P/t=0: y=2e° —%.o.e":z y=282—§te2

t 2t t 2
/tlim262—5t62= lime2 || Iim 2 —=limt | = —

t—o0 t—o0 3 t—o0

prof. Henrique A M Faria
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Exemplo 2: 4y" —4y"'+y =0

y(0) =2, ¥y'(0) =1/3
Valores em pontos extremos:

t 2t
vV P/t=0: y=2e° —%.O.eO =2 y=2€2—§tez
t 2t t 2
v’ lim 2e2 — —te2 lime2 || lim 2 —=limt | = —oo
t—oo 3 t—oo t—oo 3 tooo

t
v  Ptomax: y' =0 = 2.%65

prof. Henrique A M Faria
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Exemplo 2: byt -4y +y =0

y(0) =2, ¥y'(0) =1/3
Valores em pontos extremos:

t 2t
v P/t=0: y=2e" —%.O.eO =2 y=2€2—§t€2
t 2t t 2
v lim 2ez2 ——=te2 = | lime2 || lim 2 —=limt | = —o0
t—co 3 t—o0 t—00 3 tooo

1 t 21 t ot
v' Pto max: y’=0=2.—ez—(——tez +—€2)

2 32 3

prof. Henrique A M Faria
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Exemplo 2: byt -4y +y =0

y(0) =2, ¥y'(0) =1/3
Valores em pontos extremos:

t 2t
v P/t=0: y=2e" —%.O.eO =2 y=2€2—§t€2
t 2t t 2
v lim 2ez2 ——=te2 = | lime2 || lim 2 —=limt | = —o0
t—co 3 t—o0 t—00 3 tooo
1 t 21 t ot
v' Pto max: y’=0=2.—ez—(——tez +—€2)
2 32 3
3

prof. Henrique A M Faria

88



Exemplo 2: byt -4y +y =0

y(0) =2, ¥y'(0) =1/3
Valores em pontos extremos:

t 2t
vV P/t=0: y=2e° —%.O.e(’:z y=2€2—§t€2
t 2t t 2
v lim 2e2 — —te2 = | lime2 || lim 2 —=limt | = —o0
t—co 3 t—o0 t—00 3 tooo
1 t 21 t ot
v' Pto max: y’=0=2.—ez—(——tez +—€2)
2 32 3
t_4_2
3 3
t=1, y=22

prof. Henrique A M Faria
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Exemplo 2: byt Ay +y =0

y(0) =2, ¥y'(0) =1/3
Valores em pontos extremos:

t 2t
vV P/t=0: y=2e° —%.O.e0 = 2 y=282—§te2
t 2t t 2
v lim 2ez2 ——=te2 = | lime2 || lim 2 —=limt | = —o0
t—oo 3 t—oo t— o0 3 tooo
1 t 21 L 92 1t
v' Pto max: y’=0=2.—ez—(——tez +—€2)
2 32 3
t_ 42
3 3
t=1, y=22

v’ Ptointerseccaoemt (y = 0):

t t
2e2 =2/3tez = t=3

prof. Henrique A M Faria
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Exemplo 2: byt Ay +y =0

y(0) =2, ¥y'(0) =1/3
Valores em pontos extremos:

t 2t
vV P/t=0: y=2e° —%.O.eO = 2 y=2€2—§tez
t 2t t 2
v lim 2ez2 ——=te2 = | lime2 || lim 2 —=limt | = —o0
t—oo 3 t—oo t— o0 3 tooo
1 t 21 L 92 1t
v' Pto max: y’=0=2.—ez—(——tez +—€2)
2 32 3
f_q1-2 | Grafico
3 3 )
- z]r/_’ da
t=1y=22 solucdo

v’ Ptointerseccaoemt (y = 0):

t t
2e2 =2/3tez = t=3

prof. Henrique A M Faria 1




» Estudar secoes 3.3 e 3.4 do livro texto (Boyce).
» Resolver o exercicio proposto.

» Praticar: exercicios da secdes 3.3 e 3.4 do Boyce.

» Meétodo dos coeficientes indeterminados.
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1. BOYCE, W.E.; DIPRIMA, R.C. Equacoes
Diferenciais Elementares e Problemas de Valores
de Contorno. 9. ed. Rio de Janeiro: LTC, 2010.

UACOES

IFERENCIAIS

Numeracao dos exercicios Eiayanrs o

com basena92ed. P

BOYCE, W.E.; DIPRIMA, R.C. Equacoes Diferenciais

Elementares e Problemas de Valores de Contorno.
11. ed. Rio de Janeiro: LTC, 2020.
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