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➢ As equações diferenciais são estudadas há três
séculos pelos maiores matemáticos do mundo.

➢ Elas continuam sendo uma área de pesquisa
dinâmica nos dias atuais.
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➢ As equações diferenciais são estudadas há três
séculos pelos maiores matemáticos do mundo.

➢ Elas continuam sendo uma área de pesquisa
dinâmica nos dias atuais.

• Exemplos: reações químicas, reatores químicos,
cinética química, entre outras.

➢ As equações diferenciais são aplicadas em diversas
áreas de estudo.

prof. Henrique A M Faria
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➢ Muitos dos princípios, ou leis, que regem o mundo
físico são relações entre taxas de variação.

➢ As relações são as equações e as taxas de variação
são as derivadas.

prof. Henrique A M Faria



➢ Muitos dos princípios, ou leis, que regem o mundo
físico são relações entre taxas de variação.

➢ As relações são as equações e as taxas de variação
são as derivadas.

➢ Equações contendo derivadas são chamadas de
equações diferenciais.

➢ Uma equação diferencial que descreve algum
processo físico é chamada, muitas vezes, de um
modelo matemático do processo.

prof. Henrique A M Faria



Exemplo 1: Objeto em queda livre 
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Exemplo 1: Objeto em queda livre 

➢ Queda na atmosfera.

➢ Próximo à superfície.

➢ Força de arraste é
considerada. Fonte: Sears e Zemansky (2008)
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Exemplo 1: Objeto em queda livre 

➢ Queda na atmosfera.

➢ Próximo à superfície.

➢ Força de arraste é
considerada. Fonte: Sears e Zemansky (2008)

𝒕: variável independente.

𝒗(𝒕): variável dependente (?).

𝑹: força de arraste (resistência do ar).

𝒈: aceleração devido à gravidade.

𝒎: massa do corpo.

𝜸: coeficiente de resistência do ar.

𝑅

𝑎𝑦

𝑚 Ԧ𝑔
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Exemplo 1: Objeto em queda livre 

𝑅

𝑎𝑦

𝑚 Ԧ𝑔

✓ Lei do movimento: 2ª Lei Newton.

෍ Ԧ𝐹 = 𝑚 Ԧ𝑎
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Exemplo 1: Objeto em queda livre 

𝑅

𝑎𝑦

𝑚 Ԧ𝑔
෍ 𝐹𝑦 = 𝑚𝑔 + (−𝑅) = 𝑚𝑎𝑦

✓ Lei do movimento: 2ª Lei Newton.

෍ Ԧ𝐹 = 𝑚 Ԧ𝑎
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Exemplo 1: Objeto em queda livre 

𝑅

𝑎𝑦

𝑚 Ԧ𝑔
෍ 𝐹𝑦 = 𝑚𝑔 + (−𝑅) = 𝑚𝑎𝑦

✓ Lei do movimento: 2ª Lei Newton.

෍ Ԧ𝐹 = 𝑚 Ԧ𝑎

✓ Supondo o arraste proporcional à velocidade: 𝑹 = 𝜸𝒗

𝑚𝑔 − 𝛾𝑣 = 𝑚
𝑑𝑣

𝑑𝑡

prof. Henrique A M Faria



Exemplo 1: Objeto em queda livre 

𝑅

𝑎𝑦

𝑚 Ԧ𝑔
෍ 𝐹𝑦 = 𝑚𝑔 + (−𝑅) = 𝑚𝑎𝑦

✓ Lei do movimento: 2ª Lei Newton.

෍ Ԧ𝐹 = 𝑚 Ԧ𝑎

✓ Supondo o arraste proporcional à velocidade: 𝑹 = 𝜸𝒗

𝑚𝑔 − 𝛾𝑣 = 𝑚
𝑑𝑣

𝑑𝑡

𝑑𝑣

𝑑𝑡
= 𝑔 −

𝛾

𝑚
𝑣

Modelo matemático do 
corpo em quedaprof. Henrique A M Faria



✓ Resolver o modelo é encontrar uma função 𝑣 =
𝑣 𝑡 que substituída satisfaz a equação.

✓ Em muitas problemas reais as soluções analíticas,
ou explícitas, são de difícil obtenção.

Exemplo 1: Objeto em queda livre 
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✓ Resolver o modelo é encontrar uma função 𝑣 =
𝑣 𝑡 que substituída satisfaz a equação.

✓ Em muitas problemas reais as soluções analíticas,
ou explícitas, são de difícil obtenção.

✓ Em outros casos a expressão analítica é tão
complicada que não fornece interpretação válida.

Exemplo 1: Objeto em queda livre 
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✓ Resolver o modelo é encontrar uma função 𝑣 =
𝑣 𝑡 que substituída satisfaz a equação.

✓ Em muitas problemas reais as soluções analíticas,
ou explícitas, são de difícil obtenção.

✓ Em outros casos a expressão analítica é tão
complicada que não fornece interpretação válida.

✓ No entanto, é possível extrair do modelo muitas
informações sem resolver a equação diferencial
analiticamente.

Exemplo 1: Objeto em queda livre 

prof. Henrique A M Faria



➢ O objetivo é descobrir características relevantes
sobre as soluções sem encontrá-las diretamente.
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➢ O objetivo é descobrir características relevantes
sobre as soluções sem encontrá-las diretamente.

➢ Supondo os seguintes valores numéricos para as
constantes do exemplo 1:

𝑔 = 9,8
𝑚

𝑠2
;  𝛾 = 2

𝑘𝑔

𝑠
;  𝑚 = 10 𝑘𝑔 
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➢ O objetivo é descobrir características relevantes
sobre as soluções sem encontrá-las diretamente.
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➢ Para cada valor de 𝑣

pode-se encontrar
𝑑𝑣

𝑑𝑡
.
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➢ O objetivo é descobrir características relevantes
sobre as soluções sem encontrá-las diretamente.
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➢ Para cada valor de 𝑣

pode-se encontrar
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𝑠) 𝑑𝑣
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40 1,8
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➢ O objetivo é descobrir características relevantes
sobre as soluções sem encontrá-las diretamente.

➢ Supondo os seguintes valores numéricos para as
constantes do exemplo 1:

𝑔 = 9,8
𝑚
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➢ Para cada 𝑣 a derivada
independe de 𝑡.

𝑑𝑣

𝑑𝑡
= 9,8 −

𝑣

5
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➢ Atribuindo valores para 𝑣 constrói-se o gráfico 𝑣 × 𝑡.

Figura 1.1.3: Campo de direções para o modelo do corpo em queda.
Fonte: Boyce 11ª ed. (2020) prof. Henrique A M Faria



➢ Atribuindo valores para 𝑣 constrói-se o gráfico 𝑣 × 𝑡.

Figura 1.1.3: Campo de direções para o modelo do corpo em queda.
Fonte: Boyce 11ª ed. (2020)

Solução 
de 

equilíbrio
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➢ Cada segmento é tangente ao gráfico da solução.

➢ Se 𝑣 < valor de equilíbrio todos os segmentos têm
coeficiente angular positivo e 𝑣 aumenta enquanto
o corpo cai.
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➢ Cada segmento é tangente ao gráfico da solução.

➢ Se 𝑣 < valor de equilíbrio todos os segmentos têm
coeficiente angular positivo e 𝑣 aumenta enquanto
o corpo cai.

➢ O valor de equilíbrio (crítico) pode ser determinado:

𝑑𝑣

𝑑𝑡
= 0 →  9,8 −

𝑣

5
= 0 →  𝑣𝑐 = 49 𝑚/𝑠
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➢ Cada segmento é tangente ao gráfico da solução.

➢ Se 𝑣 < valor de equilíbrio todos os segmentos têm
coeficiente angular positivo e 𝑣 aumenta enquanto
o corpo cai.

➢ O valor de equilíbrio (crítico) pode ser determinado:

➢ O valor 𝒗𝒄 = 𝟒𝟗 𝒎/𝒔 é chamado de solução de 
equilíbrio entre as forças da gravidade e de arraste.

𝑑𝑣

𝑑𝑡
= 0 →  9,8 −

𝑣

5
= 0 →  𝑣𝑐 = 49 𝑚/𝑠

prof. Henrique A M Faria
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➢ São representações gráficas úteis para o estudo das
soluções de equações diferenciais da forma:

𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦)

prof. Henrique A M Faria



➢ São representações gráficas úteis para o estudo das
soluções de equações diferenciais da forma:

➢ Primeiro passo para investigar um modelo.

➢ Para construí-lo não é necessário resolver a equação 
diferencial.

𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦)
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➢ São representações gráficas úteis para o estudo das
soluções de equações diferenciais da forma:

➢ Primeiro passo para investigar um modelo.

➢ Para construí-lo não é necessário resolver a equação 
diferencial.

➢ A utilização de softwares é recomendada para 
construção de campos de direções.

𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦)

Ex.: https://homepages.bluffton.edu/~nesterd/apps/slopefields.html
prof. Henrique A M Faria

https://homepages.bluffton.edu/~nesterd/apps/slopefields.html
https://homepages.bluffton.edu/~nesterd/apps/slopefields.html


1. Identificar as variáveis independente e dependente.

2. Escolher as unidades de medida para cada variável.
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investigado.

4. Expressar a lei em função das variáveis escolhidas.
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dimensionalmente correto.

6. Em problemas complexos é necessário um sistema 
com várias equações diferenciais.
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1. Identificar as variáveis independente e dependente.

2. Escolher as unidades de medida para cada variável.

3. Usar o princípio ou a lei que rege o fenômeno a ser 
investigado.

4. Expressar a lei em função das variáveis escolhidas.

5. Certificar que cada termo da equação está 
dimensionalmente correto.

6. Em problemas complexos é necessário um sistema 
com várias equações diferenciais.

7. Comparar o resultado do modelo com resultados 
experimentais.

prof. Henrique A M Faria



Resolução do modelo do corpo em queda

O objeto parte do repouso e cai de uma altura de 300 m.
(a) Qual é a velocidade em um instante qualquer?
(b) Quanto tempo leva para atingir o solo?
(c) Qual a velocidade no momento do impacto?

𝑑𝑣

𝑑𝑡
= 9,8 −

𝑣

5
𝑣(𝑜) = 0 (condição inicial)

prof. Henrique A M Faria
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➢ Distinguir propriedades das soluções das equações
diferencias (E.D.).

➢ Descrever métodos eficazes para resolver essas E.D.

prof. Henrique A M Faria



➢ Distinguir propriedades das soluções das equações
diferencias (E.D.).

➢ Descrever métodos eficazes para resolver essas E.D.

➢ Em alguns casos, encontrar uma solução
aproximada para o problema.
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➢ Distinguir propriedades das soluções das equações
diferencias (E.D.).

➢ Descrever métodos eficazes para resolver essas E.D.

➢ Em alguns casos, encontrar uma solução
aproximada para o problema.

➢ A classificação das E.D. é útil para aplicação do
método adequado de resolução.

➢ Existem, pelo menos, quatro maneiras para
classificar as E.D., como indicadas a seguir.
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➢ Equação diferencial ordinária: a função incógnita
depende de uma única variável independente.
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➢ Equação diferencial ordinária: a função incógnita
depende de uma única variável independente.

➢ Equação diferencial parcial: as derivadas são
parciais, ou seja, a função depende de duas ou mais
variáveis.

prof. Henrique A M Faria



➢ A ordem da E.D. é definida pela derivada de ordem
mais alta.

(Orden 𝑛)

(Primeira orden)

(Segunda orden)

(Terceira orden)

prof. Henrique A M Faria



➢ Equações lineares: os termos da E.D., ou seja, as
funções aparecem elevadas à primeira potência.
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➢ Equações lineares: os termos da E.D., ou seja, as
funções aparecem elevadas à primeira potência.
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➢ Equações NÃO lineares:

• As funções incógnitas estão elevadas à potências
maiores do que a unidade ou,

• contém produtos das funções incógnitas ou,

• contém funções trancendentes (𝑒, log, 𝑠𝑒𝑛𝑜,
𝑐𝑜𝑠𝑠𝑒𝑛𝑜, etc).

prof. Henrique A M Faria
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➢ Composto de mais de uma equação.

• As equações seguem as classificações anteriores.

prof. Henrique A M Faria



➢ Solução analítica de uma E.D.: qualquer função da
variável independente que satisfaça a equação.
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➢ Solução analítica de uma E.D.: qualquer função da
variável independente que satisfaça a equação.

➢ Solução de um problema de valor inicial.: qualquer
solução da E.D. que satisfaça a condição inicial.
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➢ Solução analítica de uma E.D.: qualquer função da
variável independente que satisfaça a equação.

➢ Solução de um problema de valor inicial.: qualquer
solução da E.D. que satisfaça a condição inicial.

➢ Existência de solução: nem sempre uma E.D. tem
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➢ Existem teoremas que, em certas condições, podem
garantir a solução analítica da E.D.
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➢ Solução analítica de uma E.D.: qualquer função da
variável independente que satisfaça a equação.

➢ Solução de um problema de valor inicial.: qualquer
solução da E.D. que satisfaça a condição inicial.

➢ Existência de solução: nem sempre uma E.D. tem
solução analítica.

➢ Existem teoremas que, em certas condições, podem
garantir a solução analítica da E.D.

➢ Mesmo que existam soluções pode não ser possível
expressá-las por meio de funções elementares
(polinômios, trigonométricas, exp., log. e
hiperbólicas).

prof. Henrique A M Faria



➢ Os softwares podem ser ferramentas extremamente
úteis para o estudo de equações diferenciais.
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➢ Os softwares podem ser ferramentas extremamente
úteis para o estudo de equações diferenciais.

➢ As apresentações gráficas são, muitas vezes, mais
claras e úteis para compreender e interpretar a
solução de uma equação diferencial.

➢ Pacotes computacionais mais robustos: Maple, o
Mathematica (Wolfram) e o MATLAB.

➢ Para utilizá-los é essencial compreender como os
métodos de solução funcionam.

➢ Delegar os detalhes de rotina a um computador, e
focar mais a atenção à formulação correta do
problema e à interpretação da solução.

prof. Henrique A M Faria



➢ Estudar seções 1.1 a 1.3 do livro texto (Boyce).

➢ Resolver os exemplos dados em aula.

➢ Praticar: exercícios da seções 1.1 a 1.3 do Boyce.

➢ Equações diferenciais de primeira ordem.

prof. Henrique A M Faria



1. BOYCE, W.E.; DIPRIMA, R.C. Equações 
Diferenciais Elementares e Problemas de Valores 
de Contorno. 9. ed. Rio de Janeiro: LTC, 2010.

Numeração dos exercícios 

com base na 9ª ed.    ►

BOYCE, W.E.; DIPRIMA, R.C. Equações Diferenciais 
Elementares e Problemas de Valores de Contorno. 
11. ed. Rio de Janeiro: LTC, 2020.

prof. Henrique A M Faria
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