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Motivacao.
Modelos matematicos.

Campos de direcdes e construcao de modelos.
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Classificacao das equacoes diferencias.

Calculo I: diferenciacao e integracao.
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» As equacoOes diferenciais sdao estudadas hda trés
séculos pelos maiores matematicos do mundo.

» Elas continuam sendo uma &rea de pesquisa
dinamica nos dias atuais.



» As equacoOes diferenciais sdao estudadas hda trés
séculos pelos maiores matematicos do mundo.

» Elas continuam sendo uma &rea de pesquisa
dinamica nos dias atuais.

» As equacOes diferenciais sao aplicadas em diversas
areas de estudo.

 Exemplos: reacdes quimicas, reatores quimicos,
cinética quimica, entre outras.






» Muitos dos principios, ou leis, que regem o mundo
fisico sao relacoes entre taxas de variacao.

» As relacOes sdo as equacOes e as taxas de variacao
sao as derivadas.



Muitos dos principios, ou leis, que regem o mundo
fisico sao relacoes entre taxas de variacao.

As relacdes sao as equacoes e as taxas de variacao
sao as derivadas.

Equacdes contendo derivadas sao chamadas de
equacoes diferenciais.

Uma equacgao diferencial que descreve algum
processo fisico € chamada, muitas vezes, de um
modelo matematico do processo.



Exemplo 1: Objeto em queda livre
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Exemplo 1: Objeto em queda livre

> Queda na atmosfera.
» Proximo a superficie.

» Forca de arraste é
considerada. Fonte: Sears e Zemansky (2008)
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Exemplo 1: Objeto em queda livre

> Queda na atmosfera.
» Proximo a superficie.

» Forca de arraste é
considerada. Fonte: Sears e Zemansky (2008)

t: variavel independente. R
v(t): varidavel dependente (?).

R: forca de arraste (resisténcia do ar). * Ay
g: aceleracdao devido a gravidade.

m: massa do corpo. mg

y: coeficiente de resisténcia do ar.
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Exemplo 1: Objeto em queda livre

(l)ﬁ v' Lei do movimento: 22 Lei Newton.
'} ay

Zﬁzm&

fmg

y
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Exemplo 1: Objeto em queda livre

(l)ﬁ v' Lei do movimento: 22 Lei Newton.
J’ ay z ﬁ =m5i

o
VI EFy=m9+(—R)=may

J.l
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Exemplo 1: Objeto em queda livre

(')13 v" Lei do movimento: 22 Lei Newton.
‘ Ay z ﬁ =mad

o

VI EFy=m9+(—R)=may

J.l

v Supondo o arraste proporcional a velocidade: R = yv

B dv
mg yv-mdt
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Exemplo 1: Objeto em queda livre

(')13 v" Lei do movimento: 22 Lei Newton.
J’ Ay z ﬁ =mad

o

VI EFy=m9+(—R)=may

J.l

v Supondo o arraste proporcional a velocidade: R = yv

dv dv 14
mg —yv=m-— - =g v
Modelo matematico do
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Exemplo 1: Objeto em queda livre

v' Resolver o modelo é encontrar uma funcdo v =
v(t) que substituida satisfaz a equacao.

v Em muitas problemas reais as solu¢des analiticas,
ou explicitas, sao de dificil obtencao.
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Exemplo 1: Objeto em queda livre

v' Resolver o modelo é encontrar uma funcdo v =
v(t) que substituida satisfaz a equacao.

v Em muitas problemas reais as solu¢des analiticas,
ou explicitas, sao de dificil obtencao.

v Em outros casos a expressdo analitica é tdo
complicada que nao fornece interpretacao valida.
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Exemplo 1: Objeto em queda livre

v

Resolver o modelo é encontrar uma funcao v =
v(t) que substituida satisfaz a equacao.

Em muitas problemas reais as solu¢oes analiticas,
ou explicitas, sao de dificil obtencao.

Em outros casos a expressao analitica é tao
complicada que nao fornece interpretacao valida.

No entanto, é possivel extrair do modelo muitas
informagdées sem resolver a equacao diferencial
analiticamente.
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» O objetivo é descobrir caracteristicas relevantes
sobre as solucdes sem encontra-las diretamente.
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» O objetivo é descobrir caracteristicas relevantes
sobre as solucdes sem encontra-las diretamente.

» Supondo os seguintes valores numéricos para as
constantes do exemplo 1:

m kg
929;85—2; )/=2?; m =10 kg
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» O objetivo é descobrir caracteristicas relevantes
sobre as solucdes sem encontra-las diretamente.

» Supondo os seguintes valores numéricos para as
constantes do exemplo 1:

m kg
929;85—2; )/=2?; m =10 kg

dv_ %

— =908 — —
dt ’ 5
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» O objetivo é descobrir caracteristicas relevantes
sobre as solucdes sem encontra-las diretamente.

» Supondo os seguintes valores numéricos para as
constantes do exemplo 1:

m kg
929;85—2; )/=2?; m =10 kg

dv _as %
dt =~ 5
» Para cada valor de v

dv
pode-se encontrar E
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» O objetivo é descobrir caracteristicas relevantes
sobre as solucdes sem encontra-las diretamente.

» Supondo os seguintes valores numéricos para as
constantes do exemplo 1:

m kg
g=9,85—2; y=2?; m =10 kg

m dv m
dv B v v ("/s) E( /2)

I - 28— ¢ 40 1,8

> Para cada valor de v

dv
pode-se encontrar E
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» O objetivo é descobrir caracteristicas relevantes
sobre as solucdes sem encontra-las diretamente.

» Supondo os seguintes valores numéricos para as
constantes do exemplo 1:

m kg
g=9,85—2; y=2?; m =10 kg

(% (m/s) @ (m/Sz)

dv 1% dt
I - 28— ¢ 40 1,8
44 1,0
» Para cada valor de v 50 — 02
pode-se encontrar %. 52 - 0,6

56 - 1,4 95



> Para cada v a derivada
independe de t.

dv_98 v
dt =~ 5
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> Para cada v a derivada
independe de t.

dv v

a3

v ("M/s) % (™)
40 1,8
44 1,0
50 ~0,2
52 — 0,6
56 — 1,4

27
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> Para cada v a derivada
independe de t.

dv_98 v
dt =~ 5

m dv .m
v(™s) 2 (my,)

40 1,8
44 1,0
50 — 0,2
52 — 0,6
56 — 1,4

28

¥

60
55
50
45
40-

Todas as inclinagoes 1,8

T

I
=]
%
b=
="

Vv i
60

55
50-
45

40.

(a)

Todas as inclinagoes -0,2

F

(D)
onte: Boyce 112 ed. (2020)



» Atribuindo valores para v constroéi-se o grafico v X t.

222NN RN RRRRRRNNN . =
77770 TTTTTETPVRAN AN
/77700 EV VNN
277700 TTTTELTEVA VN AN
222N R AR AR RN L
/77007 TTTFETEVR VNN
AN RN RERRRR N . b
22NN RRRR R RN
22NN AR RRRRRNN .
2700V

Figura 1.1.3: Campo de direcdes para o modelo do corpo em queda.

Fonte: Boyce 112 ed. (2020) prof. Henrique A M Faria
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Figura 1.1.3: Campo de direcdes para o modelo do corpo em queda.
30 Fonte: Boyce 112 ed. (2020) prof. Henrique A M Faria



» Cada segmento é tangente ao grafico da solucao.

» Se v < valor de equilibrio todos os segmentos tém
coeficiente angular positivo e v aumenta enquanto
O COrpo cai.
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» Cada segmento é tangente ao grafico da solucao.

» Se v < valor de equilibrio todos os segmentos tém
coeficiente angular positivo e v aumenta enquanto
O COrpo cai.

» 0O valor de equilibrio (critico) pode ser determinado:
dv %

E:O — 9,8—§=O — UC=49m/S

32



Cada segmento é tangente ao grafico da solucao.

Se v < valor de equilibrio todos os segmentos tém
coeficiente angular positivo e v aumenta enquanto
O COrpo cai.

O valor de equilibrio (critico) pode ser determinado:
av 0 9,8 v 0 49
= — 8 —== - V. = m/Ss
dt 5 ¢ /

O valor v, = 49 m/s é chamado de solugao de

equilibrio entre as forcas da gravidade e de arraste.
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» Sao representacoes graficas Uteis para o estudo das
solucdes de equacoes diferenciais da forma:

dy
i fty)
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» Sao representacoes graficas Uteis para o estudo das
solucdes de equacoes diferenciais da forma:

dy_
i fty)

» Primeiro passo para investigar um modelo.

» Para construi-lo ndo é necessario resolver a equacao
diferencial.
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Sao representacoes graficas uteis para o estudo das
solucdes de equacoes diferenciais da forma:

dy
i t,
2 =1GY)
Primeiro passo para investigar um modelo.

Para construi-lo nao é necessario resolver a equacao
diferencial.

A utilizacao de softwares € recomendada para
construcao de campos de direcdes.

EX.: https://homepages.bluffton.edu/~nesterd/apps/slopefields.html
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1. Identificar as variaveis independente e dependente.

2. Escolher as unidades de medida para cada variavel.
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|dentificar as variaveis independente e dependente.
Escolher as unidades de medida para cada variavel.

Usar o principio ou a lei que rege o fenbmeno a ser
investigado.
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|dentificar as variaveis independente e dependente.
Escolher as unidades de medida para cada variavel.

Usar o principio ou a lei que rege o fenbmeno a ser
investigado.

Expressar a lei em funcao das variaveis escolhidas.



|dentificar as variaveis independente e dependente.
Escolher as unidades de medida para cada variavel.

Usar o principio ou a lei que rege o fenbmeno a ser
investigado.

Expressar a lei em funcao das variaveis escolhidas.

Certificar que cada termo da equacao esta
dimensionalmente correto.

a1



|dentificar as variaveis independente e dependente.
Escolher as unidades de medida para cada variavel.

Usar o principio ou a lei que rege o fenbmeno a ser
investigado.

Expressar a lei em funcao das variaveis escolhidas.

Certificar que cada termo da equacao esta
dimensionalmente correto.

Em problemas complexos € necessario um sistema
com varias equacoes diferenciais.

A2



|dentificar as variaveis independente e dependente.
Escolher as unidades de medida para cada variavel.

Usar o principio ou a lei que rege o fenbmeno a ser
investigado.

Expressar a lei em funcao das variaveis escolhidas.

Certificar que cada termo da equacao esta
dimensionalmente correto.

Em problemas complexos € necessario um sistema
com varias equacoes diferenciais.

Comparar o resultado do modelo com resultados

xperimentais.
experimentais .



Resolucao do modelo do corpo em queda

O objeto parte do repouso e cai de uma altura de 300 m.
(a) Qual é a velocidade em um instante qualquer?
(b) Quanto tempo leva para atingir o solo?

(c) Qual a velocidade no momento do impacto?

d
d_’t’ =98—-  p(0) =0 (condicdo inicial)

prof. Henrique A M Faria
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» Distinguir propriedades das solucdoes das equacoes
diferencias (E.D.).

» Descrever métodos eficazes para resolver essas E.D.
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» Distinguir propriedades das solucdoes das equacoes
diferencias (E.D.).

» Descrever métodos eficazes para resolver essas E.D.

» Em alguns casos, encontrar uma solucdo
aproximada para o problema.
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Distinguir propriedades das solucdes das equacoes
diferencias (E.D.).

Descrever métodos eficazes para resolver essas E.D.

Em alguns casos, encontrar uma solucao
aproximada para o problema.

» A classificacdo das E.D. é util para aplicacdo do

>

método adequado de resolucao.

Existem, pelo menos, quatro maneiras para
classificar as E.D., como indicadas a seguir.



» Equacao diferencial ordindria: a funcao incdgnita
depende de uma unica variavel independente.

Q) | dt) 1 ..
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» Equacao diferencial ordindria: a funcao incdgnita
depende de uma unica variavel independente.

d’Q(t)  LdQt) 1 _ ..

» Equacao diferencial parcial: as derivadas sao

parciais, ou seja, a funcao depende de duas ou mais
variaveis.

, Pulx ) _ du(x, 1) 2 Bulnt) 32::(;:, 2}
ax? ot B o1

equacio de calor equacio de onda

X
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» A ordem da E.D. é definida pela derivada de ordem
mais alta.

P = f{fs}’,y’,y”,. Ly 3 (Orden n)

f p
_

ty' —y=t (Primeira orden)

y'—y=0  (Segunda orden)

H "r'f

y" +2¢'y" + yy' =t* (Terceira orden)

prof. Henrique A M Faria 51



» Equacgoes lineares: os termos da E.D., ou seja, as
funcdes aparecem elevadas a primeira poténcia.
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» Equacgoes lineares: os termos da E.D., ou seja, as
funcdes aparecem elevadas a primeira poténcia.

a, (1‘))1(”1I +a, (f)y(”‘” +-4a (t)y=g(t).

‘}”—J}-'zﬂ'
ty' —y=t"
d ?Jrg@:{]
dt- L
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> Equacdes NAO lineares:

* As funcdes incognitas estao elevadas a poténcias
maiores do que a unidade ou,

 contém produtos das funcdes incognitas ou,

 contém fungdes trancendentes (e, log, seno,
cosseno, etc).
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> Equacdes NAO lineares:

As funcdes incognitas estao elevadas a poténcias
maiores do que a unidade ou,

contém produtos das funcoes incognitas ou,

contém func¢des trancendentes (e, log, seno,
cosseno, etc).

dze ' 2') dz V dy i
0 Bengmo, (14932 Py
dt= L " Cdtt dt

problema do péndulo.

7
a-y

dt?

+sen (f + y)=senf

55



» Composto de mais de uma equacao.
 As equacoes seguem as classificacoes anteriores.

J.:i = X5,
1
..:'.E — —.,'li'l __..r"::
5
1
X, =—2X,

prof. Henrique A M Faria 5@



» Solucao analitica de uma E.D.: qualquer funcdo da
variavel independente que satisfaca a equacao.

57



» Solucao analitica de uma E.D.: qualquer funcdo da
variavel independente que satisfaca a equacao.

» Solucao de um problema de valor inicial.: qualquer
solucao da E.D. que satisfaca a condicao inicial.
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Solucao analitica de uma E.D.: qualquer funcao da
variavel independente que satisfaca a equacao.

Solucao de um problema de valor inicial.: qualquer
solucao da E.D. que satisfaca a condicao inicial.

Existéncia de solucao: nem sempre uma E.D. tem
solucao analitica.

Existem teoremas que, em certas condicoes, podem
garantir a solucao analitica da E.D.
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Solucao analitica de uma E.D.: qualquer funcao da
variavel independente que satisfaca a equacao.

Solucao de um problema de valor inicial.: qualquer
solucao da E.D. que satisfaca a condicao inicial.

Existéncia de solucao: nem sempre uma E.D. tem
solucao analitica.

Existem teoremas que, em certas condicoes, podem
garantir a solucao analitica da E.D.

Mesmo que existam solucoes pode nao ser possivel
expressa-las por meio de funcdes elementares
(polinbmios,  trigonométricas, exp., log. e

hiperbadlicas). "



» Os softwares podem ser ferramentas extremamente
Uteis para o estudo de equacoes diferenciais.
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» Os softwares podem ser ferramentas extremamente
Uteis para o estudo de equacoes diferenciais.

» As apresentacoes graficas sao, muitas vezes, mais
claras e uteis para compreender e interpretar a
solucao de uma equacao diferencial.
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» Os softwares podem ser ferramentas extremamente
Uteis para o estudo de equacoes diferenciais.

» As apresentacoes graficas sao, muitas vezes, mais
claras e uteis para compreender e interpretar a
solucao de uma equacao diferencial.

» Pacotes computacionais mais robustos: Maple, o
Mathematica (Wolfram) e o MATLAB.
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Os softwares podem ser ferramentas extremamente
Uteis para o estudo de equacoes diferenciais.

As apresentacoes graficas sao, muitas vezes, mais
claras e uteis para compreender e interpretar a
solucao de uma equacao diferencial.

Pacotes computacionais mais robustos: Maple, o
Mathematica (Wolfram) e o MATLAB.

Para utiliza-los é essencial compreender como os
meétodos de solucao funcionam.



Os softwares podem ser ferramentas extremamente
Uteis para o estudo de equacoes diferenciais.

As apresentacoes graficas sao, muitas vezes, mais
claras e uteis para compreender e interpretar a
solucao de uma equacao diferencial.

Pacotes computacionais mais robustos: Maple, o
Mathematica (Wolfram) e o MATLAB.

Para utiliza-los é essencial compreender como os
meétodos de solucao funcionam.

Delegar os detalhes de rotina a um computador, e
focar mais a atencao a formulacao correta do

problema e a interpretacao da solucao. .



» Estudar secoes 1.1 a 1.3 do livro texto (Boyce).
» Resolver os exemplos dados em aula.

» Praticar: exercicios da secdes 1.1 a 1.3 do Boyce.

» Equacoes diferenciais de primeira ordem.
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1. BOYCE, W.E.; DIPRIMA, R.C. Equacoes
Diferenciais Elementares e Problemas de Valores
de Contorno. 9. ed. Rio de Janeiro: LTC, 2010.

UACOES

IFERENCIAIS

Numeracao dos exercicios Eiayanrs o

com basena92ed. P

BOYCE, W.E.; DIPRIMA, R.C. Equacoes Diferenciais

Elementares e Problemas de Valores de Contorno.
11. ed. Rio de Janeiro: LTC, 2020.
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