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1. Introducao as equacoes diferenciais de 12 ordem.
2. Método do fator integrante.

3. Meétodo das equacoes separaveis.

- Diferenciacao e Integracao de funcdes de uma
variavel.
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» Uma equacdo diferencial (eq. dif.) de primeira
ordem tem a forma geral:

T=fEy)

» O objetivo é determinar uma funcao diferenciavel
y = ¢(t) que satisfaca a equacgao.



Uma equacao diferencial (eq. dif.) de primeira
ordem tem a forma geral:

2 = f(t)

O objetivo € determinar uma funcao diferenciavel
y = ¢(t) que satisfaca a equacgao.

Caso essa funcao solucao exista, serao desenvolvidos
métodos para encontra-la.

Nao existe meétodo geral, mas meétodos que se
aplicam a alguma subclasse das eq. dif. de 12 ordem.
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» Algumas equacoes diferenciais lineares de 12 ordem
podem ser escritas na forma padrao:

2 4 p(©)y = g(t)

» Em que p e g sao fungdes dadas da variavel
independente t.



» Algumas equacoes diferenciais lineares de 12 ordem
podem ser escritas na forma padrao:

2 4 p(©)y = g(t)

» Em que p e g sao fungdes dadas da variavel
independente t.

» O método direto de integracdo nao pode ser
aplicado diretamente nessa equacao.



Algumas equacoes diferenciais lineares de 12 ordem
podem ser escritas na forma padrao:

2 4 p(©)y = g(t)

Em que p e g sao fungdes dadas da variavel
independente t.

O método direto de integracao nao pode ser
aplicado diretamente nessa equacao.

A alternativa é encontrar um fator multiplicativo
que torna possivel a integracao.



» O método do fator integrante é devido a Leibniz.

» Consiste em multiplicar cada termo da eq. dif. por
uma funcao u(t).
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» O método do fator integrante é devido a Leibniz.

» Consiste em multiplicar cada termo da eq. dif. por
uma funcao u(t).

» Essa multiplicacdo torna a eq. dif. integravel.

» Afuncdo u(t) é chamada de fator integrante.
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O método do fator integrante € devido a Leibniz.

Consiste em multiplicar cada termo da eq. dif. por
uma funcao u(t).

Essa multiplicacao torna a eq. dif. integravel.
A funcao u(t) é chamada de fator integrante.

ApoOs a aplicacao desse fator multiplicativo a eq. dif.
é resolvida por integracao, em semelhanca ao
meétodo aplicado no modelo do corpo em queda.

12



» Seja a eq. dif. de 12 ordem na forma padrao:

% +p(y = g(t)
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» Seja a eq. dif. de 12 ordem na forma padrao:
2 4 p©)y = g(t)
» Multiplica-se cada termo pelo fator u(t):
() 2+ p(Or®)y = n(®)g(t)
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» Seja a eq. dif. de 12 ordem na forma padrao:
% +p(y = g(t)
» Multiplica-se cada termo pelo fator u(t):
() 2+ p(Or®)y = n(®)g(t)

» 0O lado esquerdo da eq. dif. é a derivada do produto
u(t)y, entdo a derivada de u(t) deve ser:

au(t)
dt

= p(t)u(t)
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» Seja a eq. dif. de 12 ordem na forma padrao:
% +p(y = g(t)
» Multiplica-se cada termo pelo fator u(t):
() 2+ p(Or®)y = n(®)g(t)

» 0O lado esquerdo da eq. dif. é a derivada do produto
u(t)y, entdo a derivada de u(t) deve ser:

1 du(t
WO —pOr®) = s =P
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» Seja a eq. dif. de 12 ordem na forma padrao:
% +p(y = g(t)
» Multiplica-se cada termo pelo fator u(t):
() 2+ p(Or®)y = n(®)g(t)

» 0O lado esquerdo da eq. dif. é a derivada do produto
u(t)y, entdo a derivada de u(t) deve ser:

1 du(t
WO —pOr®) = s =P

nlu(e)] = f p(E)dt + k
17



» Seja a eq. dif. de 12 ordem na forma padrao:
% +p(y = g(t)
» Multiplica-se cada termo pelo fator u(t):
() 2+ p(Or®)y = n(®)g(t)

» 0O lado esquerdo da eq. dif. é a derivada do produto
u(t)y, entdo a derivada de u(t) deve ser:

1 du(t
WO —pOr®) = s =P

nlu(e)] = f p(Odt+k = u(t) = exp f p(6)dt
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» Entdo, a eq. dif. original pode ser reescrita como:

= [u(®)y] = g (t)
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» Entdo, a eq. dif. original pode ser reescrita como:
d
= [u®)y] = u®)g(®)

» Integrando em dt em ambos os lados:

u(©)y = j WO g(D)dt + ¢
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» Entdo, a eq. dif. original pode ser reescrita como:
= [u(®)y] = g (t)

» Integrando em dt em ambos os lados:
u(©y = | uOg@de +c

» Portanto, a expressao para o calculo de y sera:

y—@fm)g(t) f4c
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» Entdo, a eq. dif. original pode ser reescrita como:
d
2 [u®)y] = u®Og®)

» Integrando em dt em ambos os lados:

u(©y = | uOg@de +c
» Portanto, a expressao para o calculo de y sera:

1
Y= f WOgDdt+c  u(t) = exp f p(t)dt
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Exemplo 1 Resolver o PV.. (problema de valor inicial)
pelo método do fator integrante.

ty' + 2y =4t*>  y(1) =2 (condigdo inicial)




Solucao ex. 1

v’ Escrever a eq. dif. de 12 ordem na forma padr3o:

2

2
y'toy=4 = pl) =<

prof. Henrique A M Faria
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Solucao ex. 1

v’ Escrever a eq. dif. de 12 ordem na forma padr3o:

2

2
y'toy=4 = pl) =<

v' Calcular o fator integrante u(t):

2
u(t) = expf?dt = e2inltl = plnt® — 42

prof. Henrique A M Faria
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Solucao ex. 1

v’ Escrever a eq. dif. de 12 ordem na forma padr3o:

2 2
!
+=y=4t = pt)=-
Y t Y p( ) t Demonstragio
. l 2
v Calcular o fator integrante u(t): ti=em
’ Int?= Ine'™t
u(t) = expf dt = e2nltl = glnt® — ¢2 | Int® = Int*Ine
Int* = Int*
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Solucao ex. 1

v’ Escrever a eq. dif. de 12 ordem na forma padr3o:

2 2
!/
g t ’ p( ) t Demonstragao
. l 2
v" Calcular o fator integrante u(t): ti=e™ 2
2 Int?= Ine'™
u(t) = GXPf dt = e2Wnltl = pint? — 2 | Int® = Int®lne
Int? = Int?

v" Multiplicar a equacdo pelo fator integrante:

t2y' + 2ty = 4t3
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Solucao ex. 1

v’ Escrever a eq. dif. de 12 ordem na forma padr3o:

2 2
!
+=y=4t = p(t)=-
Y t Y p( ) t Demonstragio
. l 2
v Calcular o fator integrante u(t): ti=em
’ Int?= Ine'™t
u(t) = expf dt = e2nltl — pint? — ¢2 | Int* = Int®Ine
Int* = Int*

v" Multiplicar a equacdo pelo fator integrante:

247 = 4¢3 i(t2 )dt = | 4¢3 dt
tey’ + 2ty = 4t = qr oY
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Solucao ex. 1

v’ Escrever a eq. dif. de 12 ordem na forma padr3o:

2 2
!/
+—-y =4t = t) = —
Y t Y p( ) t Demonstragio
. l 2
v Calcular o fator integrante u(t): te=e™
2 _ Int?
7 Int“= Ilne
u(t) = expf dt = e2nltl = glnt® — 42 | Int® = Int’Ine
Int? = Int?

v" Multiplicar a equacdo pelo fator integrante:
d 2 3
t2y’ + 2ty = 4t = E(t y)dt = | 4t3dt

C
t’y=t*+c= y=1&2+t—2
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Solucao ex. 1

v’ Escrever a eq. dif. de 12 ordem na forma padr3o:

2 2
!/
+—-y =4t = t) = —
Y t Y p( ) t Demonstragio
. l 2
v Calcular o fator integrante u(t): te=e™
2 _ Int?
7 Int“= Ilne
u(t) = expf dt = e2nltl = glnt® — 42 | Int® = Int’Ine
Int? = Int?

v" Multiplicar a equacdo pelo fator integrante:
d 2 3
t2y’ + 2ty = 4t = E(t y)dt = | 4t3dt

c y()=2 . 1
2 = y=t +t—2y>0

tly=t*+c=> y=t*+
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Exemplo 2 Resolver o PV.. (problema de valor inicial)
pelo método do fator integrante.

2y +ty = 2 y(0) =1 (condigdo inicial)




Exemplo 2 Resolver o PV.. (problema de valor inicial)
pelo método do fator integrante.

2y +ty = 2 y(0) =1 (condigdo inicial)

Solugéo geral (conjunto de curvas):

S M _t*
y=e 4fe4dt+ce 4
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Exemplo 2

Resolver o PV.l. (problema de valor inicial)
pelo método do fator integrante.

2y +ty = 2 y(0) =1 (condigdo inicial)

T

\‘.

ANk,

o=
f

]
3] (5]

N

N N OOV

) olucdo geral (conjunto de curvas):
b t2 t2 tZ
y = e_Tf eddt+ce 4

FIGURA 2.1.4 Curvas integrais para 2y + fy = 2;
curva em cinza-escuro: solucdo particular que satisfaz a condic¢é@o inicial y(0) = 1. 33







» Na aula 1 foi utilizado o processo de integracao para
resolver a eq. dif. de 12 ordem da forma:

ay _
dt—ay+b
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» Na aula 1 foi utilizado o processo de integracao para
resolver a eq. dif. de 12 ordem da forma:

ay _
dt—ay+b

» Esse processo pode ser utilizado para uma classe
muito maior de equacoes.
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» Na aula 1 foi utilizado o processo de integracao para
resolver a eq. dif. de 12 ordem da forma:

ay _
dt—ay+b

» Esse processo pode ser utilizado para uma classe
muito maior de equacoes.

» Utilizando a variavel x para variavel independente, a
eq. dif. geral de 12 ordem fica:

o =fxy)
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» Escrevendo a eq. dif. na forma:

M(x,y) + N(x, y)d—— 0
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» Escrevendo a eq. dif. na forma:

M(x,y) + N(x, y)d—— 0

» Considerando o caso especial em que M = M(x) e
N = N(y) tem-se:

d
MG +NG) =~ =
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» Escrevendo a eq. dif. na forma:

dy
MQx,y) + N(x,y) 7~ =0

» Considerando o caso especialem que M = M(x) e
N = N(y) tem-se:

d

v _

dx

» Esta equacao é separavel, pois os termos podem ser
colocados em lados opostos na forma diferencial:

M(x) + N(y)

Integrando ambos os

M(x)dx = =N(Y)Ay |,q0s tem-se a solucéo.
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Exemplo 3 Encontrar a solugdao da equagdo diferencial.
2

dy  x
dx 1—1y2




Solucao ex. 3

v Escrevendo na forma separavel:

—x% 4+ (1 — yz)——O

prof. Henrique A M Faria
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Solucao ex. 3

v Escrevendo na forma separavel:

—x%+ (1 — yz)— =0
v Separando as variaveis:

(1 —vy2)dy = x%dx

prof. Henrique A M Faria
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Solucao ex. 3

v Escrevendo na forma separavel:

—x% 4+ (1 — yz)——O

v Separando as variaveis:

v

(1 —vy2)dy = x%dx

ntegrando em ambos os lados tem-se:

r(1 —y3)dy = fxzdx

prof. Henrique A M Faria



Solucao ex. 3

v Escrevendo na forma separavel:

—x% 4+ (1 — yz)——O

v Separando as variaveis:

v

(1 —vy2)dy = x%dx

prof. Henrique A M Faria

ntegrando em ambos os lados tem-se:

r(1—312)dy= fxzdx = y—y?
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Solucao ex. 3

v Escrevendo na forma separavel:
—x% 4+ (1 — yz)— =0

v’ Separando as variaveis:
(1 —vy2)dy = x%dx

v Integrando em ambos os lados tem-se:
3 3

f(l—yz)dyzfxzdx = y—y?=?+c

A constante c é determinada
da condigéo inicial.

3y—y3—x3=c

prof. Henrique A M Faria @@



Ex. 3: campos de direcao e curvas integrais

_I.-" .-"" __.-"'__.-f_.-'_d-_—_-. oy

\
) _ 3y — 3 _ A3 —
FIGURA 2.2.1 Campo de direcies e curvas integrais para i = x2(1 — y=). y y X~ =C
a7
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» Estudar secoes 2.1 e 2.2 do livro texto (Boyce).

» Resolver os exemplos dados em aula.

» Praticar: exercicios da secdes 2.1 e 2.2 do Boyce.

» Modelagem com eq. dif. de 12 ordem.



1. BOYCE, W.E.; DIPRIMA, R.C. Equacoes
Diferenciais Elementares e Problemas de Valores
de Contorno. 9. ed. Rio de Janeiro: LTC, 2010.

UACOES

IFERENCIAIS

Numeracao dos exercicios Eiayanrs o

com basena92ed. P

BOYCE, W.E.; DIPRIMA, R.C. Equacoes Diferenciais

Elementares e Problemas de Valores de Contorno.
11. ed. Rio de Janeiro: LTC, 2020.
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