
Equações diferenciais 
ordinárias

Aula 11
Equações diferenciais 

de 1ª ordem



1. Introdução às equações diferenciais de 1ª ordem.
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Introdução

3prof. Henrique A M Faria



➢ Uma equação diferencial (eq. dif.) de primeira
ordem tem a forma geral:

➢ O objetivo é determinar uma função diferenciável
𝑦 = 𝜙(𝑡) que satisfaça a equação.

prof. Henrique A M Faria

𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦)



➢ Uma equação diferencial (eq. dif.) de primeira
ordem tem a forma geral:

➢ O objetivo é determinar uma função diferenciável
𝑦 = 𝜙(𝑡) que satisfaça a equação.

➢ Caso essa função solução exista, serão desenvolvidos
métodos para encontrá-la.

➢ Não existe método geral, mas métodos que se
aplicam a alguma subclasse das eq. dif. de 1ª ordem.

prof. Henrique A M Faria

𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦)



Método do fator 
integrante

6prof. Henrique A M Faria



➢ Algumas equações diferenciais lineares de 1ª ordem
podem ser escritas na forma padrão:

➢ Em que 𝑝 e 𝑔 são funções dadas da variável
independente 𝑡.

prof. Henrique A M Faria

𝑑𝑦

𝑑𝑡
+ 𝑝 𝑡 𝑦 = 𝑔(𝑡)



➢ Algumas equações diferenciais lineares de 1ª ordem
podem ser escritas na forma padrão:

➢ Em que 𝑝 e 𝑔 são funções dadas da variável
independente 𝑡.

➢ O método direto de integração não pode ser
aplicado diretamente nessa equação.

prof. Henrique A M Faria

𝑑𝑦

𝑑𝑡
+ 𝑝 𝑡 𝑦 = 𝑔(𝑡)



➢ Algumas equações diferenciais lineares de 1ª ordem
podem ser escritas na forma padrão:

➢ Em que 𝑝 e 𝑔 são funções dadas da variável
independente 𝑡.

➢ O método direto de integração não pode ser
aplicado diretamente nessa equação.

➢ A alternativa é encontrar um fator multiplicativo
que torna possível a integração.

prof. Henrique A M Faria

𝑑𝑦

𝑑𝑡
+ 𝑝 𝑡 𝑦 = 𝑔(𝑡)



➢ O método do fator integrante é devido a Leibniz.

➢ Consiste em multiplicar cada termo da eq. dif. por
uma função 𝝁(𝒕).

prof. Henrique A M Faria



➢ O método do fator integrante é devido a Leibniz.

➢ Consiste em multiplicar cada termo da eq. dif. por
uma função 𝝁(𝒕).

➢ Essa multiplicação torna a eq. dif. integrável.

➢ A função 𝝁(𝒕) é chamada de fator integrante.

prof. Henrique A M Faria



➢ O método do fator integrante é devido a Leibniz.

➢ Consiste em multiplicar cada termo da eq. dif. por
uma função 𝝁(𝒕).

➢ Essa multiplicação torna a eq. dif. integrável.

➢ A função 𝝁(𝒕) é chamada de fator integrante.

➢ Após a aplicação desse fator multiplicativo a eq. dif.
é resolvida por integração, em semelhança ao
método aplicado no modelo do corpo em queda.

prof. Henrique A M Faria



➢ Seja a eq. dif. de 1a ordem na forma padrão:

prof. Henrique A M Faria

𝑑𝑦

𝑑𝑡
+ 𝑝 𝑡 𝑦 = 𝑔(𝑡)



➢ Seja a eq. dif. de 1a ordem na forma padrão:

prof. Henrique A M Faria

➢ Multiplica-se cada termo pelo fator 𝝁(𝒕):

𝑑𝑦

𝑑𝑡
+ 𝑝 𝑡 𝑦 = 𝑔(𝑡)

𝜇(𝑡)
𝑑𝑦

𝑑𝑡
+ 𝑝 𝑡 𝜇(𝑡)𝑦 = 𝜇(𝑡)𝑔(𝑡)



➢ Seja a eq. dif. de 1a ordem na forma padrão:

prof. Henrique A M Faria

➢ Multiplica-se cada termo pelo fator 𝝁(𝒕):

➢ O lado esquerdo da eq. dif. é a derivada do produto
𝝁 𝒕 𝒚, então a derivada de 𝝁 𝒕  deve ser:

𝑑𝑦

𝑑𝑡
+ 𝑝 𝑡 𝑦 = 𝑔(𝑡)

𝜇(𝑡)
𝑑𝑦

𝑑𝑡
+ 𝑝 𝑡 𝜇(𝑡)𝑦 = 𝜇(𝑡)𝑔(𝑡)

𝑑𝜇(𝑡)

𝑑𝑡
= 𝑝 𝑡 𝜇(𝑡)



➢ Seja a eq. dif. de 1a ordem na forma padrão:

prof. Henrique A M Faria

➢ Multiplica-se cada termo pelo fator 𝝁(𝒕):

➢ O lado esquerdo da eq. dif. é a derivada do produto
𝝁 𝒕 𝒚, então a derivada de 𝝁 𝒕  deve ser:

𝑑𝑦

𝑑𝑡
+ 𝑝 𝑡 𝑦 = 𝑔(𝑡)

𝜇(𝑡)
𝑑𝑦

𝑑𝑡
+ 𝑝 𝑡 𝜇(𝑡)𝑦 = 𝜇(𝑡)𝑔(𝑡)

𝑑𝜇(𝑡)

𝑑𝑡
= 𝑝 𝑡 𝜇(𝑡)

1

𝜇(𝑡)

𝑑𝜇(𝑡)

𝑑𝑡
= 𝑝 𝑡⇒



➢ Seja a eq. dif. de 1a ordem na forma padrão:

prof. Henrique A M Faria

➢ Multiplica-se cada termo pelo fator 𝝁(𝒕):

➢ O lado esquerdo da eq. dif. é a derivada do produto
𝝁 𝒕 𝒚, então a derivada de 𝝁 𝒕  deve ser:

𝑑𝑦

𝑑𝑡
+ 𝑝 𝑡 𝑦 = 𝑔(𝑡)

𝜇(𝑡)
𝑑𝑦

𝑑𝑡
+ 𝑝 𝑡 𝜇(𝑡)𝑦 = 𝜇(𝑡)𝑔(𝑡)

𝑑𝜇(𝑡)

𝑑𝑡
= 𝑝 𝑡 𝜇(𝑡)

1

𝜇(𝑡)

𝑑𝜇(𝑡)

𝑑𝑡
= 𝑝 𝑡

𝑙𝑛 𝜇(𝑡) = න 𝑝 𝑡 𝑑𝑡 + 𝑘

⇒



➢ Seja a eq. dif. de 1a ordem na forma padrão:

prof. Henrique A M Faria

➢ Multiplica-se cada termo pelo fator 𝝁(𝒕):

➢ O lado esquerdo da eq. dif. é a derivada do produto
𝝁 𝒕 𝒚, então a derivada de 𝝁 𝒕  deve ser:

𝑑𝑦

𝑑𝑡
+ 𝑝 𝑡 𝑦 = 𝑔(𝑡)

𝜇(𝑡)
𝑑𝑦

𝑑𝑡
+ 𝑝 𝑡 𝜇(𝑡)𝑦 = 𝜇(𝑡)𝑔(𝑡)

𝑑𝜇(𝑡)

𝑑𝑡
= 𝑝 𝑡 𝜇(𝑡)

1

𝜇(𝑡)

𝑑𝜇(𝑡)

𝑑𝑡
= 𝑝 𝑡

𝑙𝑛 𝜇(𝑡) = න 𝑝 𝑡 𝑑𝑡 + 𝑘 𝜇(𝑡) = 𝑒𝑥𝑝 න 𝑝 𝑡 𝑑𝑡

⇒

⇒



➢ Então, a eq. dif. original pode ser reescrita como:

prof. Henrique A M Faria

𝑑

𝑑𝑡
[𝜇 𝑡 𝑦] = 𝜇(𝑡)𝑔(𝑡)



➢ Então, a eq. dif. original pode ser reescrita como:

prof. Henrique A M Faria

➢ Integrando em 𝑑𝑡 em ambos os lados:

𝜇 𝑡 𝑦 = න 𝜇 𝑡 𝑔 𝑡 𝑑𝑡 + 𝑐

𝑑

𝑑𝑡
[𝜇 𝑡 𝑦] = 𝜇(𝑡)𝑔(𝑡)



➢ Então, a eq. dif. original pode ser reescrita como:

prof. Henrique A M Faria

➢ Integrando em 𝑑𝑡 em ambos os lados:

➢ Portanto, a expressão para o cálculo de 𝑦 será:

𝜇 𝑡 𝑦 = න 𝜇 𝑡 𝑔 𝑡 𝑑𝑡 + 𝑐

𝑑

𝑑𝑡
[𝜇 𝑡 𝑦] = 𝜇(𝑡)𝑔(𝑡)

𝑦 =
1

𝜇 𝑡
න 𝜇 𝑡 𝑔 𝑡 𝑑𝑡 + 𝑐



➢ Então, a eq. dif. original pode ser reescrita como:

prof. Henrique A M Faria

➢ Integrando em 𝑑𝑡 em ambos os lados:

➢ Portanto, a expressão para o cálculo de 𝑦 será:

𝜇 𝑡 𝑦 = න 𝜇 𝑡 𝑔 𝑡 𝑑𝑡 + 𝑐

𝑦 =
1

𝜇 𝑡
න 𝜇 𝑡 𝑔 𝑡 𝑑𝑡 + 𝑐 𝜇(𝑡) = 𝑒𝑥𝑝 න 𝑝 𝑡 𝑑𝑡

𝑑

𝑑𝑡
[𝜇 𝑡 𝑦] = 𝜇(𝑡)𝑔(𝑡)



Exemplo 1 Resolver o P.V.I. (problema de valor inicial)
pelo método do fator integrante.

𝑡𝑦′ + 2𝑦 = 4𝑡2 𝑦(1) = 2 (condição inicial)



✓ Escrever a eq. dif. de 1a ordem na forma padrão:

prof. Henrique A M Faria

Solução ex. 1

𝑦′ +
2

𝑡
𝑦 = 4𝑡 𝑝 𝑡 =

2

𝑡
⇒



✓ Escrever a eq. dif. de 1a ordem na forma padrão:

prof. Henrique A M Faria

✓ Calcular o fator integrante 𝝁(𝒕):

Solução ex. 1

𝑦′ +
2

𝑡
𝑦 = 4𝑡

𝜇 𝑡 = 𝑒𝑥𝑝 න
2

𝑡
𝑑𝑡 = 𝑒2𝑙𝑛 𝑡 = 𝑒𝑙𝑛𝑡2

= 𝑡2

𝑝 𝑡 =
2

𝑡
⇒



✓ Escrever a eq. dif. de 1a ordem na forma padrão:

prof. Henrique A M Faria

✓ Calcular o fator integrante 𝝁(𝒕):

Solução ex. 1

𝑦′ +
2

𝑡
𝑦 = 4𝑡

𝜇 𝑡 = 𝑒𝑥𝑝 න
2

𝑡
𝑑𝑡 = 𝑒2𝑙𝑛 𝑡 = 𝑒𝑙𝑛𝑡2

= 𝑡2

𝑝 𝑡 =
2

𝑡
⇒

𝑡2= 𝑒𝑙𝑛𝑡2
 

 𝑙𝑛𝑡2= 𝑙𝑛𝑒𝑙𝑛𝑡2
 

𝑙𝑛𝑡2 = 𝑙𝑛𝑡2𝑙𝑛𝑒
𝑙𝑛𝑡2 = 𝑙𝑛𝑡2 

Demonstração



✓ Escrever a eq. dif. de 1a ordem na forma padrão:

prof. Henrique A M Faria

✓ Calcular o fator integrante 𝝁(𝒕):

✓ Multiplicar a equação pelo fator integrante:

Solução ex. 1

𝑦′ +
2

𝑡
𝑦 = 4𝑡

𝑡2𝑦′ + 2𝑡𝑦 = 4𝑡3

𝑝 𝑡 =
2

𝑡
⇒

𝑡2= 𝑒𝑙𝑛𝑡2
 

 𝑙𝑛𝑡2= 𝑙𝑛𝑒𝑙𝑛𝑡2
 

𝑙𝑛𝑡2 = 𝑙𝑛𝑡2𝑙𝑛𝑒
𝑙𝑛𝑡2 = 𝑙𝑛𝑡2 

Demonstração

𝜇 𝑡 = 𝑒𝑥𝑝 න
2

𝑡
𝑑𝑡 = 𝑒2𝑙𝑛 𝑡 = 𝑒𝑙𝑛𝑡2

= 𝑡2



✓ Escrever a eq. dif. de 1a ordem na forma padrão:

prof. Henrique A M Faria

✓ Calcular o fator integrante 𝝁(𝒕):

✓ Multiplicar a equação pelo fator integrante:

Solução ex. 1

𝑦′ +
2

𝑡
𝑦 = 4𝑡

𝑡2𝑦′ + 2𝑡𝑦 = 4𝑡3 න
𝑑

𝑑𝑡
𝑡2𝑦 𝑑𝑡 = න 4𝑡3 𝑑𝑡⇒

𝑝 𝑡 =
2

𝑡
⇒

𝑡2= 𝑒𝑙𝑛𝑡2
 

 𝑙𝑛𝑡2= 𝑙𝑛𝑒𝑙𝑛𝑡2
 

𝑙𝑛𝑡2 = 𝑙𝑛𝑡2𝑙𝑛𝑒
𝑙𝑛𝑡2 = 𝑙𝑛𝑡2 

Demonstração

𝜇 𝑡 = 𝑒𝑥𝑝 න
2

𝑡
𝑑𝑡 = 𝑒2𝑙𝑛 𝑡 = 𝑒𝑙𝑛𝑡2

= 𝑡2



✓ Escrever a eq. dif. de 1a ordem na forma padrão:

prof. Henrique A M Faria

✓ Calcular o fator integrante 𝝁(𝒕):

✓ Multiplicar a equação pelo fator integrante:

Solução ex. 1

𝑦′ +
2

𝑡
𝑦 = 4𝑡

𝑡2𝑦′ + 2𝑡𝑦 = 4𝑡3 න
𝑑

𝑑𝑡
𝑡2𝑦 𝑑𝑡 = න 4𝑡3 𝑑𝑡

𝑡2𝑦 = 𝑡4 + c 𝑦 = 𝑡2 +
𝑐

𝑡2

⇒

⇒

𝑝 𝑡 =
2

𝑡
⇒

𝑡2= 𝑒𝑙𝑛𝑡2
 

 𝑙𝑛𝑡2= 𝑙𝑛𝑒𝑙𝑛𝑡2
 

𝑙𝑛𝑡2 = 𝑙𝑛𝑡2𝑙𝑛𝑒
𝑙𝑛𝑡2 = 𝑙𝑛𝑡2 

Demonstração

𝜇 𝑡 = 𝑒𝑥𝑝 න
2

𝑡
𝑑𝑡 = 𝑒2𝑙𝑛 𝑡 = 𝑒𝑙𝑛𝑡2

= 𝑡2



✓ Escrever a eq. dif. de 1a ordem na forma padrão:

prof. Henrique A M Faria

✓ Calcular o fator integrante 𝝁(𝒕):

✓ Multiplicar a equação pelo fator integrante:

Solução ex. 1

𝑦′ +
2

𝑡
𝑦 = 4𝑡

𝑡2𝑦′ + 2𝑡𝑦 = 4𝑡3 න
𝑑

𝑑𝑡
𝑡2𝑦 𝑑𝑡 = න 4𝑡3 𝑑𝑡

𝑡2𝑦 = 𝑡4 + c 𝑦 = 𝑡2 +
𝑐

𝑡2
𝑦 = 𝑡2 +

1

𝑡2
𝑦 > 0

⇒

⇒ ⇒
𝑦(1) = 2

𝑝 𝑡 =
2

𝑡
⇒

𝑡2= 𝑒𝑙𝑛𝑡2
 

 𝑙𝑛𝑡2= 𝑙𝑛𝑒𝑙𝑛𝑡2
 

𝑙𝑛𝑡2 = 𝑙𝑛𝑡2𝑙𝑛𝑒
𝑙𝑛𝑡2 = 𝑙𝑛𝑡2 

Demonstração

𝜇 𝑡 = 𝑒𝑥𝑝 න
2

𝑡
𝑑𝑡 = 𝑒2𝑙𝑛 𝑡 = 𝑒𝑙𝑛𝑡2

= 𝑡2



Exemplo 2 Resolver o P.V.I. (problema de valor inicial)
pelo método do fator integrante.

2𝑦′ + 𝑡𝑦 = 2 𝑦(0) = 1 (condição inicial)



Exemplo 2 Resolver o P.V.I. (problema de valor inicial)
pelo método do fator integrante.

2𝑦′ + 𝑡𝑦 = 2 𝑦(0) = 1 (condição inicial)

𝑦 = 𝑒−
 𝑡2

4 න 𝑒
 𝑡2

4 𝑑𝑡 + 𝑐𝑒−
 𝑡2

4

Solução geral (conjunto de curvas):



Exemplo 2 Resolver o P.V.I. (problema de valor inicial)
pelo método do fator integrante.

2𝑦′ + 𝑡𝑦 = 2 𝑦(0) = 1 (condição inicial)

𝑦 = 𝑒−
 𝑡2

4 න 𝑒
 𝑡2

4 𝑑𝑡 + 𝑐𝑒−
 𝑡2

4

Solução geral (conjunto de curvas):



Equações 
separáveis

34prof. Henrique A M Faria



➢ Na aula 1 foi utilizado o processo de integração para
resolver a eq. dif. de 1ª ordem da forma:

prof. Henrique A M Faria

𝑑𝑦

𝑑𝑡
= 𝑎𝑦 + 𝑏



➢ Na aula 1 foi utilizado o processo de integração para
resolver a eq. dif. de 1ª ordem da forma:

➢ Esse processo pode ser utilizado para uma classe
muito maior de equações.

prof. Henrique A M Faria

𝑑𝑦

𝑑𝑡
= 𝑎𝑦 + 𝑏



➢ Na aula 1 foi utilizado o processo de integração para
resolver a eq. dif. de 1ª ordem da forma:

➢ Esse processo pode ser utilizado para uma classe
muito maior de equações.

➢ Utilizando a variável 𝑥 para variável independente, a
eq. dif. geral de 1ª ordem fica:

prof. Henrique A M Faria

𝑑𝑦

𝑑𝑡
= 𝑎𝑦 + 𝑏

𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦)



➢ Escrevendo a eq. dif. na forma:

prof. Henrique A M Faria

𝑀 𝑥, 𝑦 + 𝑁(𝑥, 𝑦)
𝑑𝑦

𝑑𝑥
= 0



➢ Escrevendo a eq. dif. na forma:

➢ Considerando o caso especial em que 𝑀 = 𝑀(𝑥) e
𝑁 = 𝑁(𝑦) tem-se:

prof. Henrique A M Faria

𝑀 𝑥, 𝑦 + 𝑁(𝑥, 𝑦)
𝑑𝑦

𝑑𝑥
= 0

𝑀 𝑥 + 𝑁(𝑦)
𝑑𝑦

𝑑𝑥
= 0



➢ Escrevendo a eq. dif. na forma:

➢ Considerando o caso especial em que 𝑀 = 𝑀(𝑥) e
𝑁 = 𝑁(𝑦) tem-se:

prof. Henrique A M Faria

➢ Esta equação é separável, pois os termos podem ser
colocados em lados opostos na forma diferencial:

Integrando ambos os 
lados tem-se a solução.

𝑀 𝑥, 𝑦 + 𝑁(𝑥, 𝑦)
𝑑𝑦

𝑑𝑥
= 0

𝑀 𝑥 + 𝑁(𝑦)
𝑑𝑦

𝑑𝑥
= 0

𝑀 𝑥 𝑑𝑥 = −𝑁(𝑦)𝑑𝑦



Exemplo 3 Encontrar a solução da equação diferencial.

𝑑𝑦

𝑑𝑥
=

𝑥2

1 − 𝑦2



✓ Escrevendo na forma separável:

prof. Henrique A M Faria

Solução ex. 3

−𝑥2 + (1 − 𝑦2)
𝑑𝑦

𝑑𝑥
= 0



✓ Escrevendo na forma separável:

prof. Henrique A M Faria

✓ Separando as variáveis:

Solução ex. 3

−𝑥2 + (1 − 𝑦2)
𝑑𝑦

𝑑𝑥
= 0

(1 − 𝑦2)𝑑𝑦 = 𝑥2𝑑𝑥



✓ Escrevendo na forma separável:

prof. Henrique A M Faria

✓ Separando as variáveis:

✓ Integrando em ambos os lados tem-se:

Solução ex. 3

−𝑥2 + (1 − 𝑦2)
𝑑𝑦

𝑑𝑥
= 0

(1 − 𝑦2)𝑑𝑦 = 𝑥2𝑑𝑥

න(1 − 𝑦2)𝑑𝑦 = න 𝑥2𝑑𝑥



✓ Escrevendo na forma separável:

prof. Henrique A M Faria

✓ Separando as variáveis:

✓ Integrando em ambos os lados tem-se:

Solução ex. 3

−𝑥2 + (1 − 𝑦2)
𝑑𝑦

𝑑𝑥
= 0

(1 − 𝑦2)𝑑𝑦 = 𝑥2𝑑𝑥

න(1 − 𝑦2)𝑑𝑦 = න 𝑥2𝑑𝑥 𝑦 −
𝑦3

3
=

𝑥3

3
+ 𝑐⇒



✓ Escrevendo na forma separável:

prof. Henrique A M Faria

✓ Separando as variáveis:

✓ Integrando em ambos os lados tem-se:

Solução ex. 3

−𝑥2 + (1 − 𝑦2)
𝑑𝑦

𝑑𝑥
= 0

(1 − 𝑦2)𝑑𝑦 = 𝑥2𝑑𝑥

න(1 − 𝑦2)𝑑𝑦 = න 𝑥2𝑑𝑥 𝑦 −
𝑦3

3
=

𝑥3

3
+ 𝑐

3𝑦 − 𝑦3 − 𝑥3 = 𝑐
A constante c é determinada 

da condição inicial.

⇒



prof. Henrique A M Faria

Ex. 3: campos de direção e curvas integrais

3𝑦 − 𝑦3 − 𝑥3 = 𝑐



➢ Estudar seções 2.1 e 2.2 do livro texto (Boyce).

➢ Resolver os exemplos dados em aula.

➢ Praticar: exercícios da seções 2.1 e 2.2 do Boyce.

➢ Modelagem com eq. dif. de 1ª ordem.

prof. Henrique A M Faria



1. BOYCE, W.E.; DIPRIMA, R.C. Equações 
Diferenciais Elementares e Problemas de Valores 
de Contorno. 9. ed. Rio de Janeiro: LTC, 2010.

Numeração dos exercícios 

com base na 9ª ed.    ►

BOYCE, W.E.; DIPRIMA, R.C. Equações Diferenciais 
Elementares e Problemas de Valores de Contorno. 
11. ed. Rio de Janeiro: LTC, 2020.

prof. Henrique A M Faria
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