Equações diferenciais

Equações diferenciais ordinárias

Aula 13

Teoremas de existência e unicidade

Henrique Antonio Mendonça Faria Henrique.faria@unesp.br

Tópicos desta aula

- 1. Teoremas de existência e unicidade.
- 2. Exemplos.
- 3. Equações exatas.

Pré-requisitos

- Diferenciação e Integração de funções.
- Derivadas parciais.
- Resolução de equações algébricas com logaritmo.

- Foram estudados até o momento os problemas de valor inicial com equações diferenciais de 1º ordem.
- Foi visto que nem toda equação diferencial tem solução analítica.

- Foram estudados até o momento os problemas de valor inicial com equações diferenciais de 1º ordem.
- Foi visto que nem toda equação diferencial tem solução analítica.
- Então, antes de resolver um PVI analiticamente, não seria interessante saber se existe solução?

- Foram estudados até o momento os problemas de valor inicial com equações diferenciais de 1º ordem.
- Foi visto que nem toda equação diferencial tem solução analítica.
- Então, antes de resolver um PVI analiticamente, não seria interessante saber se existe solução?
- Além disso, verificar se a solução será única?

- Foram estudados até o momento os problemas de valor inicial com equações diferenciais de 1º ordem.
- Foi visto que nem toda equação diferencial tem solução analítica.
- Então, antes de resolver um PVI analiticamente, não seria interessante saber se existe solução?
- Além disso, verificar se a solução será única?
- Os teoremas seguintes respondem estas duas perguntas.

Se as funções p e g são contínuas em um intervalo aberto I, contendo o ponto $t=t_o$,

Então, existe uma única função $y=\phi(t)$ que satisfaz a equação:

$$y' + p(t)y = g(t)$$

E a condição inicial $y(t_o) = y_o$ para cada t em I.

Se as funções p e g são contínuas em um intervalo aberto I, contendo o ponto $t=t_o$,

Então, existe uma única função $y=\phi(t)$ que satisfaz a equação:

$$y' + p(t)y = g(t)$$

E a condição inicial $y(t_o) = y_o$ para cada t em I.

O teorema diz que:

 \triangleright O PVI tem solução única se p(t)e g(t) são contínuas.

Se as funções p e g são contínuas em um intervalo aberto I, contendo o ponto $t=t_o$,

Então, existe uma única função $y=\phi(t)$ que satisfaz a equação:

$$y' + p(t)y = g(t)$$

E a condição inicial $y(t_o) = y_o$ para cada t em I.

O teorema diz que:

- \triangleright O PVI tem solução única se $p(t)e\ g(t)$ são contínuas.
- A solução existe em qualquer intervalo I, contendo a condição inicial e no qual p(t)e g(t) são contínuas.

Se as funções p e g são contínuas em um intervalo aberto I, contendo o ponto $t=t_o$,

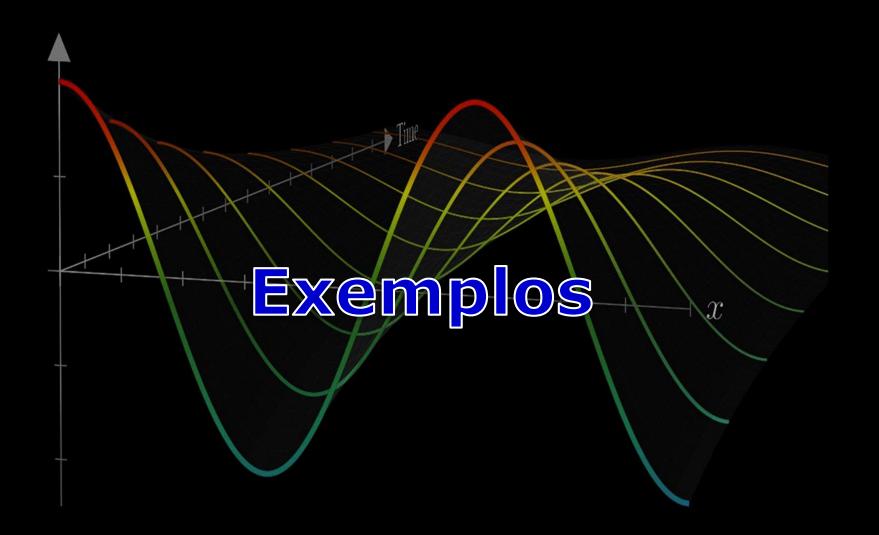
Então, existe uma única função $y=\phi(t)$ que satisfaz a equação:

$$y' + p(t)y = g(t)$$

E a condição inicial $y(t_o) = y_o$ para cada t em I.

O teorema diz que:

- \triangleright O PVI tem solução única se p(t)e g(t) são contínuas.
- A solução existe em qualquer intervalo I, contendo a condição inicial e no qual p(t)e g(t) são contínuas.
- Poderá haver descontinuidade da solução nos pontos em que p(t)e g(t) forem descontínuas.



$$ty' + 2y = 4t^2$$
 $y(1) = 2$

$$ty' + 2y = 4t^2$$
 $y(1) = 2$

✓ Colocar a eq. dif. na forma padrão.

$$y' + \frac{2}{t}y = 4t,$$

$$ty' + 2y = 4t^2$$
 $y(1) = 2$

✓ Colocar a eq. dif. na forma padrão.

$$y' + \frac{2}{t}y = 4t$$
, $p(t) = \frac{2}{t}$ $e \ g(t) = 4t$

$$ty' + 2y = 4t^2$$
 $y(1) = 2$

✓ Colocar a eq. dif. na forma padrão.

$$y' + \frac{2}{t}y = 4t$$
, $p(t) = \frac{2}{t}$ $e \ g(t) = 4t$

✓ A eq. dif. é linear, g é contínua em \mathbb{R} e p é contínua para todo $t \neq 0$ (t < 0 ou t > 0).

$$ty' + 2y = 4t^2$$
 $y(1) = 2$

✓ Colocar a eq. dif. na forma padrão.

$$y' + \frac{2}{t}y = 4t$$
, $p(t) = \frac{2}{t}$ $e \ g(t) = 4t$

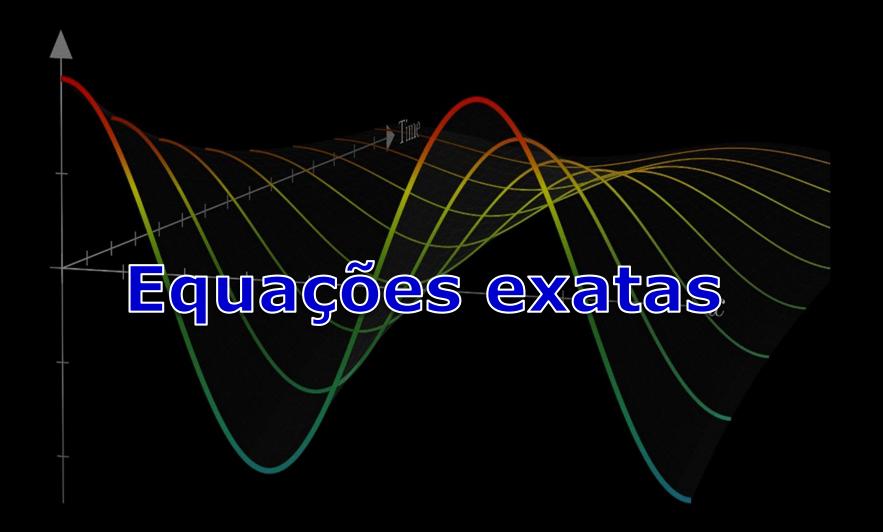
- ✓ A eq. dif. é linear, g é contínua em \mathbb{R} e p é contínua para todo $t \neq 0$ (t < 0 ou t > 0).
- ✓ O intervalo t > 0 contém a condição y(1) = 2

$$ty' + 2y = 4t^2$$
 $y(1) = 2$

✓ Colocar a eq. dif. na forma padrão.

$$y' + \frac{2}{t}y = 4t$$
, $p(t) = \frac{2}{t}$ $e \ g(t) = 4t$

- ✓ A eq. dif. é linear, g é contínua em \mathbb{R} e p é contínua para todo $t \neq 0$ (t < 0 ou t > 0).
- ✓ O intervalo t > 0 contém a condição y(1) = 2
- ✓ Então, o Teorema 2.4.1 garante que o PVI tem uma única solução no intervalo $(0, +\infty)$ para t.



Equações exatas

- As equações exatas são uma subclasse das eq. dif. de 1º ordem.
- Existe um método bem definido para sua resolução.

Equações exatas

- As equações exatas são uma subclasse das eq. dif. de 1º ordem.
- Existe um método bem definido para sua resolução.
- Inicialmente, é necessário determinar se a equação é exata.

Equações exatas

- As equações exatas são uma subclasse das eq. dif. de 1º ordem.
- Existe um método bem definido para sua resolução.
- Inicialmente, é necessário determinar se a equação é exata.
- O teorema seguinte fornece as condições para a classificação de eq. dif. de 1º ordem em exata.

Teorema 2.6.1 (Eq. dif. exatas)

Sejam as funções M, N, $\frac{\partial M}{\partial y}$ e $\frac{\partial N}{\partial x}$ contínuas em uma região retangular $\alpha < x < \beta$, $\gamma < y < \delta$.

Teorema 2.6.1 (Eq. dif. exatas)

Sejam as funções M, N, $\frac{\partial M}{\partial y}$ e $\frac{\partial N}{\partial x}$ contínuas em uma região retangular $\alpha < x < \beta$, $\gamma < y < \delta$.

A equação
$$M(x, y) + N(x, y)y' = 0$$
 (1)

É uma equação exata se, e somente se:

$$\frac{\partial M(x,y)}{\partial y} = \frac{\partial N(x,y)}{\partial x}$$

Teorema 2.6.1 (Eq. dif. exatas)

Sejam as funções M, N, $\frac{\partial M}{\partial y}$ e $\frac{\partial N}{\partial x}$ contínuas em uma região retangular $\alpha < x < \beta$, $\gamma < y < \delta$.

A equação
$$M(x, y) + N(x, y)y' = 0$$
 (1)

É uma equação exata se, e somente se:

$$\frac{\partial M(x,y)}{\partial y} = \frac{\partial N(x,y)}{\partial x}$$

Isto é, existe uma função ψ tal que:

$$\frac{\partial \psi(x,y)}{\partial x} = M(x,y) \text{ e } \frac{\partial \psi(x,y)}{\partial y} = N(x,y)$$

Se, e somente se, M e N satisfazem a eq. dif. (1).

$$(y\cos x + 2xe^y) + (sen x + x^2e^y - 1)y' = 0$$

$$(y\cos x + 2xe^y) + (senx + x^2e^y - 1)y' = 0$$

✓ Identificar as funções de duas variáveis M e N:

$$M(x,y) = (y\cos x + 2xe^y),$$

$$(y\cos x + 2xe^y) + (sen x + x^2e^y - 1)y' = 0$$

✓ Identificar as funções de duas variáveis M e N:

$$M(x,y) = (y\cos x + 2xe^y), \quad N(x,y) = (senx + x^2e^y - 1)$$

$$(y\cos x + 2xe^y) + (sen x + x^2e^y - 1)y' = 0$$

✓ Identificar as funções de duas variáveis M e N:

$$M(x,y) = (y\cos x + 2xe^y), \quad N(x,y) = (senx + x^2e^y - 1)$$

✓ Calcular as derivadas:

$$\frac{\partial M}{\partial y} = \cos x + 2xe^y$$

$$(y\cos x + 2xe^y) + (sen x + x^2e^y - 1)y' = 0$$

✓ Identificar as funções de duas variáveis M e N:

$$M(x,y) = (y\cos x + 2xe^y), \quad N(x,y) = (senx + x^2e^y - 1)$$

✓ Calcular as derivadas:

$$\frac{\partial M}{\partial y} = \cos x + 2xe^y \qquad \frac{\partial N}{\partial x} = \cos x + 2xe^y$$

$$(y\cos x + 2xe^y) + (sen x + x^2e^y - 1)y' = 0$$

✓ Identificar as funções de duas variáveis M e N:

$$M(x,y) = (y\cos x + 2xe^y), \quad N(x,y) = (senx + x^2e^y - 1)$$

✓ Calcular as derivadas:

$$\frac{\partial M}{\partial y} = \cos x + 2xe^y \qquad \frac{\partial N}{\partial x} = \cos x + 2xe^y$$

✓ Como as derivadas parciais são iguais, haverá uma função ψ tal que :

$$\frac{\partial \psi}{\partial x} = M(x, y) = y \cos x + 2x e^y \tag{1}$$

$$\frac{\partial \psi}{\partial y} = N(x, y) = senx + x^2 e^y - 1 \tag{2}$$

Integrar a eq. (1) em x:

$$\frac{\partial \psi}{\partial x} = M(x, y) = y \cos x + 2x e^y \tag{1}$$

$$\frac{\partial \psi}{\partial x} = M(x, y) = y\cos x + 2xe^{y}$$

$$\frac{\partial \psi}{\partial y} = N(x, y) = \sin x + x^{2}e^{y} - 1$$
(2)

✓ Integrar a eq. (1) em x:

$$\frac{\partial \psi}{\partial x} = M(x, y) = y\cos x + 2xe^{y}$$
 (1)
$$\frac{\partial \psi}{\partial y} = N(x, y) = \sin x + x^{2}e^{y} - 1$$
 (2)

$$\int \frac{\partial \Psi}{\partial x} dx = \int (y \cos x + 2x e^y) dx$$

✓ Integrar a eq. (1) em x:

$$\frac{\partial \psi}{\partial x} = M(x, y) = y\cos x + 2xe^{y}$$
(1)
$$\frac{\partial \psi}{\partial y} = N(x, y) = \sin x + x^{2}e^{y} - 1$$
(2)

$$\int \frac{\partial \psi}{\partial x} dx = \int (y \cos x + 2x e^y) dx$$

$$\psi = ysenx + x^2e^y + g(y)$$
 (3)

✓ Integrar a eq. (1) em x:

$$\frac{\partial \psi}{\partial x} = M(x, y) = y\cos x + 2xe^{y}$$
 (1)
$$\frac{\partial \psi}{\partial y} = N(x, y) = \sin x + x^{2}e^{y} - 1$$
 (2)

$$\int \frac{\partial \Psi}{\partial x} dx = \int (y \cos x + 2x e^{y}) dx$$

$$\psi = ysenx + x^2e^y + g(y)$$
 (3)

Derivar a eq. (3) em relação a y:

$$\frac{\partial \psi}{\partial y} = senx + x^2 e^y + g'(y) \tag{4}$$

✓ Integrar a eq. (1) em x:

$$\frac{\partial \psi}{\partial x} = M(x, y) = y\cos x + 2xe^{y}$$
(1)
$$\frac{\partial \psi}{\partial y} = N(x, y) = \sin x + x^{2}e^{y} - 1$$
(2)

$$\int \frac{\partial \Psi}{\partial x} dx = \int (y \cos x + 2x e^y) dx$$

$$\psi = ysenx + x^2e^y + g(y)$$
 (3)

 \checkmark Derivar a eq. (3) em relação a y:

$$\frac{\partial \psi}{\partial y} = senx + x^2 e^y + g'(y) \tag{4}$$

 \checkmark Igualar eq. (4) com eq. (2):

$$sen x + x^2 e^y + g'(y) = sen x + x^2 e^y - 1$$

✓ Integrar a eq. (1) em x:

$$\frac{\partial \psi}{\partial x} = M(x, y) = y\cos x + 2xe^{y}$$
 (1)
$$\frac{\partial \psi}{\partial y} = N(x, y) = \sin x + x^{2}e^{y} - 1$$
 (2)

$$\int \frac{\partial \Psi}{\partial x} dx = \int (y \cos x + 2x e^{y}) dx$$

$$\psi = ysenx + x^2e^y + g(y)$$
 (3)

✓ Derivar a eq. (3) em relação a y:

$$\frac{\partial \psi}{\partial y} = senx + x^2 e^y + g'(y) \tag{4}$$

 \checkmark Igualar eq. (4) com eq. (2):

$$sen x + x^2 e^y + g'(y) = sen x + x^2 e^y - 1$$

 $g'(y) = -1$

✓ Integrar a eq. (1) em x:

$$\frac{\partial \psi}{\partial x} = M(x, y) = y\cos x + 2xe^{y}$$
 (1)
$$\frac{\partial \psi}{\partial y} = N(x, y) = \sin x + x^{2}e^{y} - 1$$
 (2)

$$\int \frac{\partial \Psi}{\partial x} dx = \int (y \cos x + 2x e^{y}) dx$$

$$\psi = ysenx + x^2e^y + g(y)$$
 (3)

✓ Derivar a eq. (3) em relação a y:

$$\frac{\partial \psi}{\partial y} = senx + x^2 e^y + g'(y) \tag{4}$$

 \checkmark Igualar eq. (4) com eq. (2):

$$sen x + x^2 e^y + g'(y) = sen x + x^2 e^y - 1$$

$$g'(y) = -1$$
 \Rightarrow $g(y) = -y + C$

$$\psi = ysenx + x^2e^y + g(y) \quad (3)$$

✓ Substituir g(y) = -y + C na eq. (3)

$$\psi = ysenx + x^2e^y + g(y) \quad (3)$$

Substituir
$$g(y) = -y + C$$
 na eq. (3)
$$\psi = ysenx + x^2e^y - y + C$$

$$\psi = ysenx + x^2e^y + g(y) \quad (3)$$

✓ Substituir g(y) = -y + C na eq. (3)

$$\psi = ysenx + x^2e^y - y + C$$

✓ Conferência das derivadas parciais de ψ :

$$\frac{\partial \psi}{\partial x} = y \cos x + 2x e^y = M(x, y)$$

$$\psi = ysenx + x^2e^y + g(y) \quad (3)$$

Substituir g(y) = -y + C na eq. (3) $\psi = ysenx + x^2e^y - y + C$

✓ Conferência das derivadas parciais de ψ :

$$\frac{\partial \psi}{\partial x} = y \cos x + 2x e^y = M(x, y)$$

$$\frac{\partial \psi}{\partial y} = senx + x^2 e^y - 1 = N(x, y)$$

$$\psi = ysenx + x^2e^y + g(y) \quad (3)$$

Substituir g(y) = -y + C na eq. (3) $\psi = ysenx + x^2e^y - y + C$

✓ Conferência das derivadas parciais de ψ :

$$\frac{\partial \psi}{\partial x} = y\cos x + 2xe^y = M(x, y)$$
$$\frac{\partial \psi}{\partial y} = \sin x + x^2 e^y - 1 = N(x, y)$$

✓ Portanto, a solução geral para eq. dif. original é:

$$ysenx + x^2e^y - y = C$$
 C: constante

Para depois desta aula:

- Estudar seções 2.4 e 2.6 do livro texto (Boyce).
- Resolver o exercício proposto.
- Praticar: exercícios da seções 2.4 e 2.6 do Boyce.

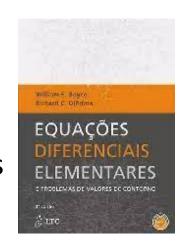
Próxima aula:

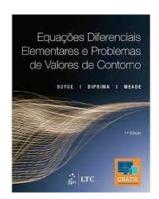
➤ Equações diferenciais de 2ª ordem.

Bibliografia

1. BOYCE, W.E.; DIPRIMA, R.C. Equações Diferenciais Elementares e Problemas de Valores de Contorno. 9. ed. Rio de Janeiro: LTC, 2010.

Numeração dos exercícios com base na 9ª ed.





BOYCE, W.E.; DIPRIMA, R.C. Equações Diferenciais Elementares e Problemas de Valores de Contorno. **11. ed**. Rio de Janeiro: LTC, 2020.