Física I Bacharelado

Vetores no plano e no espaço

Henrique Antonio Mendonça Faria

Tópicos da aula de hoje

- 1. Conceito de vetor.
- 2. Representação geométrica.
- 3. Representação algébrica.
- 4. Operações e propriedades:
 - Adição de vetores.
 - Multiplicação de vetor por escalar.
 - Produto escalar.
 - Produto vetorial.

1. Conceito de vetor

 No tratamento matemático de fenômenos evidenciam dois tipos de grandezas:

Escalar

(número real e unidade)

Comprimento, tempo massa, corrente elétrica, temperatura, quantidade de matéria, intensidade luminosa.

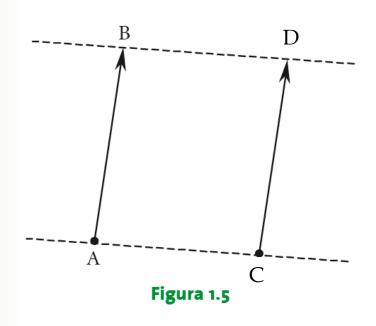
Vetorial

(intensidade, direção e sentido)

Força, velocidade, aceleração, campo elétrico, dentre outras.

1. Conceito de vetor

"Vetor é o conjunto de todos os segmentos orientados equipolentes a um seguimento AB."

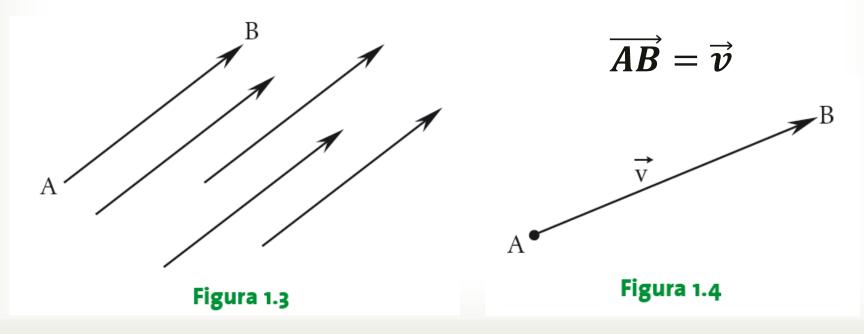


Segmentos equipolentes

AB ~ CD são segmentos equipolentes se AB || CD e AC = BD

Fonte das figuras: WINTERLE, P. 2014.

- Um mesmo vetor \overrightarrow{AB} pode ser determinado por uma série de segmentos orientados.
- Todos os segmentos orientados paralelos, de mesmo sentido e mesmo comprimento representam o mesmo vetor.



Módulo de um vetor

$$|\vec{v}| = |\overrightarrow{AB}| = ||\overrightarrow{AB}||$$

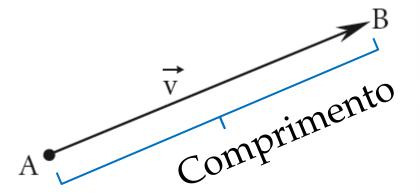
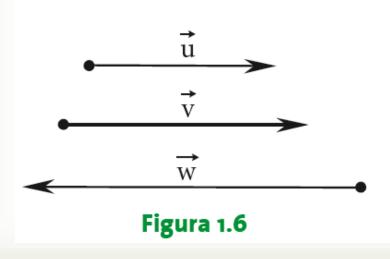


Figura 1.4

> Casos particulares de vetores



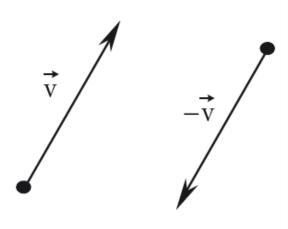
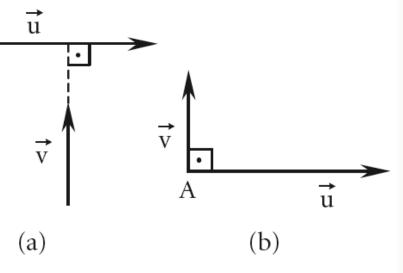


Figura 1.7

Versor (\vec{u}) \vec{v} \vec{u} : vetor unitário e de mesmo sentido de \vec{v} .

Ortogonalidade

 $\vec{u} \perp \vec{v}$ se \vec{u} faz um ângulo reto com algum representante de \vec{v} .



> Vetores coplanares

Dois vetores serão sempre coplanares

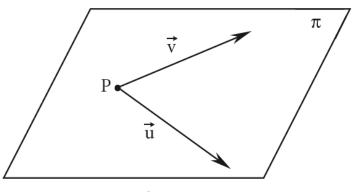


Figura 1.10

Três vetores podem ser coplanares ou não.

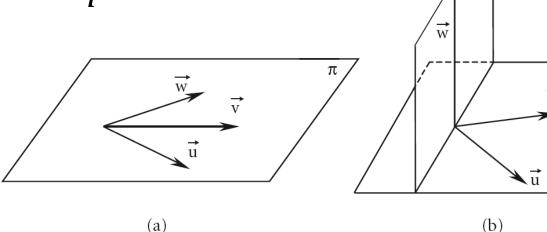


Figura 1.11

> Adição de dois vetores

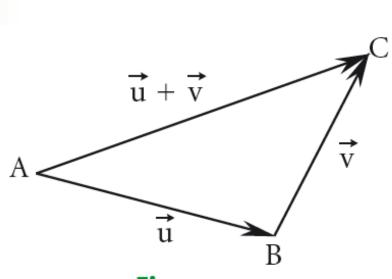


Figura 1.14

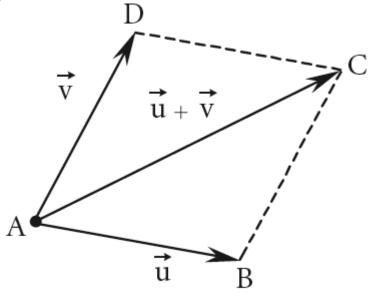
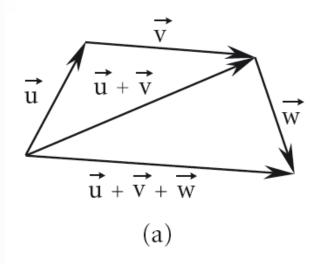


Figura 1.16

Regra do paralelogramo

> Adição de três ou mais vetores



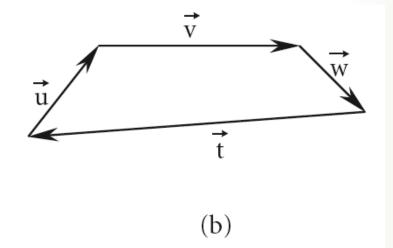
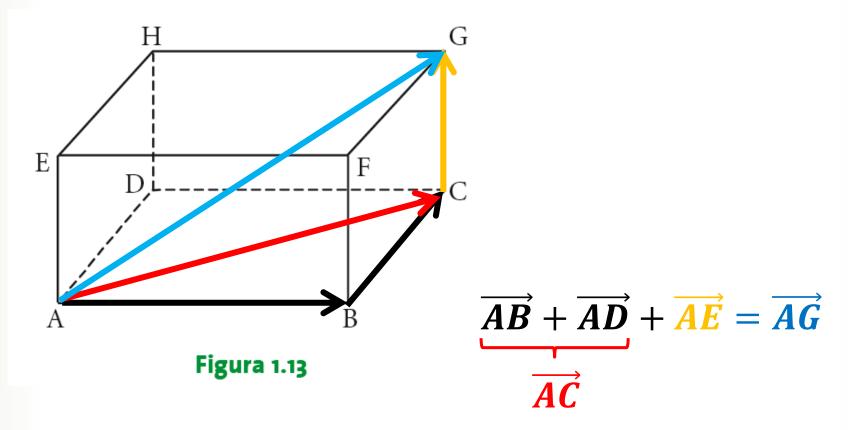


Figura 1.17

Exemplo 1 - soma de vetores



> Multiplicação de vetor por escalar

Dado um vetor $\vec{v} \neq \vec{0}$ e um número real $\propto \neq 0$, Chama-se multiplicação do número real \propto pelo vetor \vec{v} , o vetor $\propto \vec{v}$ tal que:

- a) $|\propto \vec{v}| = |\propto||\vec{v}||$
- b) $\propto \vec{v}$ é paralelo a \vec{v}
- c) Se $\propto > 0$, $\propto \vec{v}$ tem mesmo sentido de \vec{v} .

Se $\propto < 0$, $\propto \vec{v}$ tem sentido contrário de \vec{v} .

Se $\propto = 0$ ou $\vec{\boldsymbol{v}} = \vec{\boldsymbol{0}}$, então: de $\propto \vec{\boldsymbol{v}} = \vec{\boldsymbol{0}}$.

Exemplo 2 – multiplicação por escalar

$$\alpha(\vec{u} + \vec{v}) = \alpha \vec{u} + \alpha \vec{v} \rightarrow 2(\vec{u} + \vec{v}) = 2\vec{u} + 2\vec{v}$$

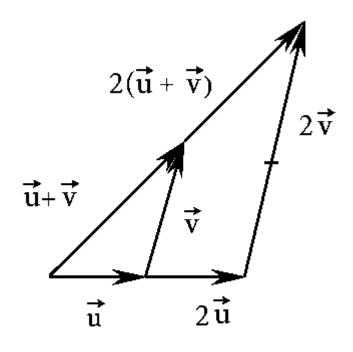
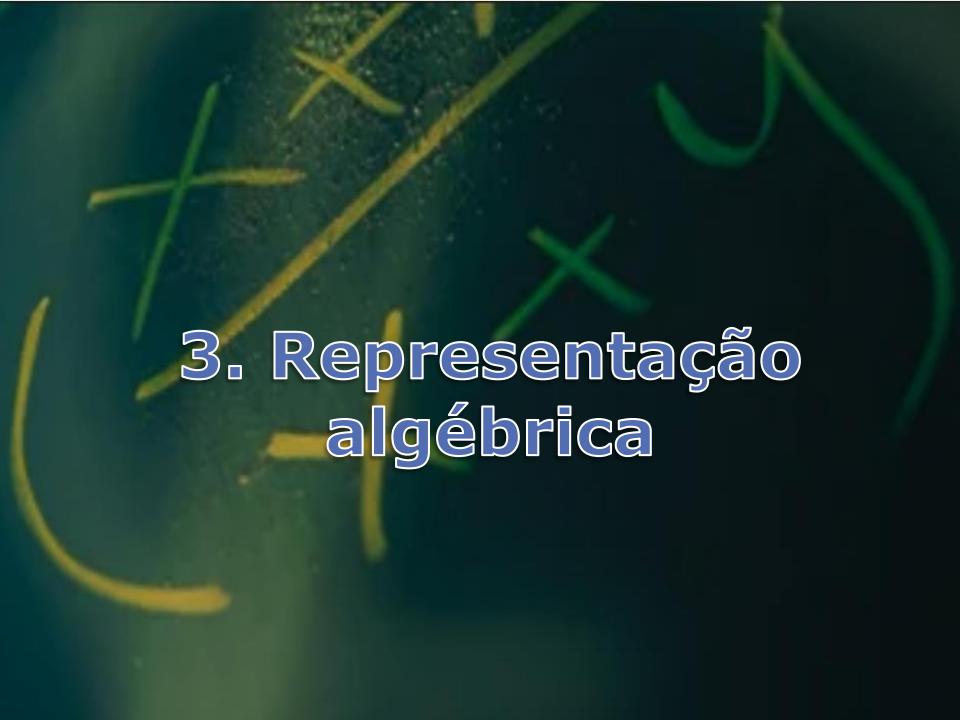
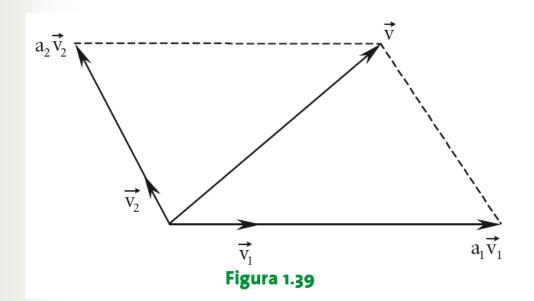


Figura 1.24



> Combinação linear de dois vetores

Um vetor \vec{v} pode ser escrito como combinação linear de dois vetores \vec{v}_1 e \vec{v}_2 não paralelos.



$$\vec{\boldsymbol{v}} = a_1 \vec{\boldsymbol{v}}_1 + a_2 \vec{\boldsymbol{v}}_2$$

 a_1 e a_2 : componentes ou coordenadas de \vec{v} na base $\{\vec{v}_1, \vec{v}_2\}$.

$$\vec{v} = (a_1, a_2) = \langle a_1, a_2 \rangle$$
 (representação algébrica)

> Bases ortonormais

 $B = \{\overrightarrow{e_1}, \overrightarrow{e_2}\}$ é uma base ortonormal se:

$$\overrightarrow{e_1} \perp \overrightarrow{e_2}$$
 e $|\overrightarrow{e_1}| = |\overrightarrow{e_2}| = 1$

- Existem infinitas bases ortonormais no plano *xoy*.
- A mais conveniente é chamada de canônica.
- Os vetores da base canônica {*i*, *j*} são ortogonais entre si e coincidem com a direção e sentido dos eixos cartesianos.

> Vetor representado na base canônica

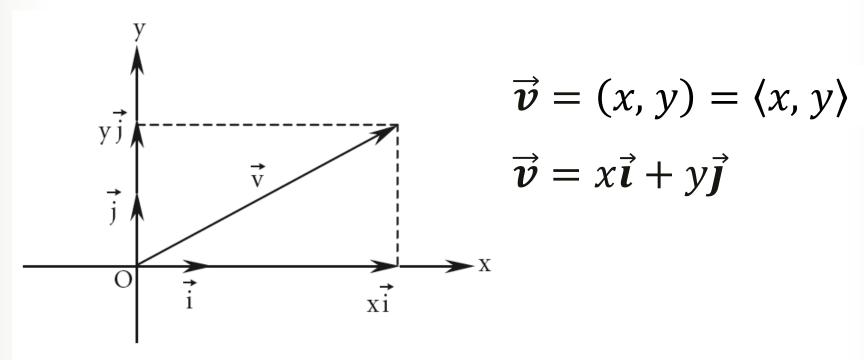
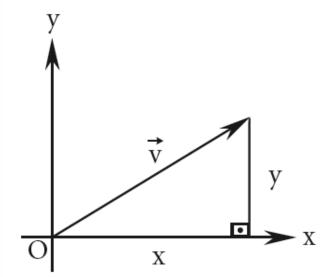


Figura 1.41

 $x\vec{i}$: projeção ortogonal de \vec{v} sobre o eixo x.

 $y\vec{j}$: projeção ortogonal de \vec{v} sobre o eixo y.

Módulo de um vetor



Versor

(Versor de
$$\vec{v}$$
) = $\frac{\vec{v}}{|\vec{v}|}$

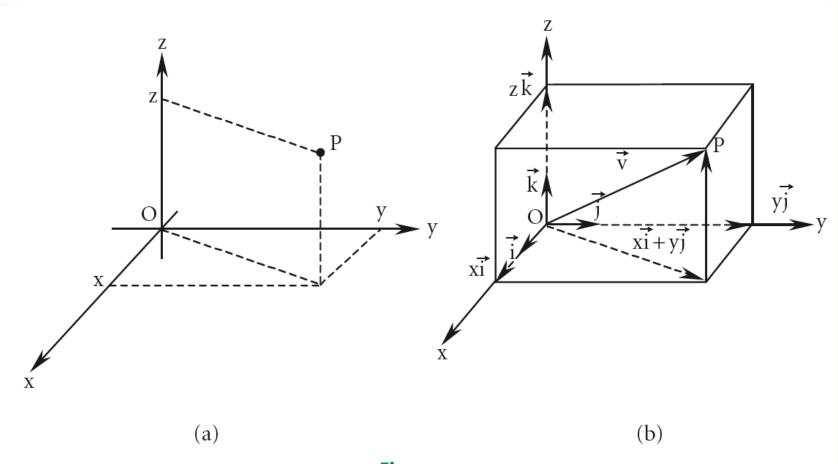
$$\vec{v} = (x, y)$$

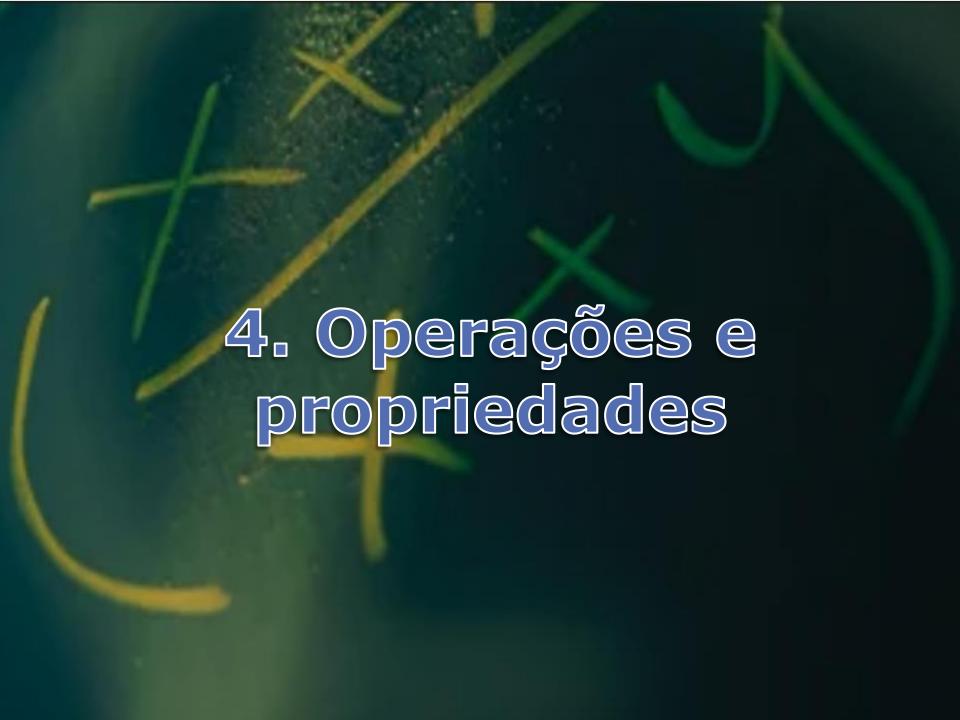
$$|\vec{v}| = \sqrt{x^2 + y^2}$$

Vetores no espaço

- Acrescenta-se uma terceira coordenada e o terceiro elemento da base $\vec{k} = \langle 0, 0, 1 \rangle$.
- Base canônica no espaço: $C = \{\vec{i}, \vec{j}, \vec{k}\}.$
- Representação algébrica do vetor no espaço: $\vec{v} = (x, y, z) = \langle x, y, z \rangle = x\vec{i} + y\vec{j} + z\vec{k}$
- O conjunto formado pela origem O e a base $\{\vec{\imath}, \vec{\jmath}, \vec{k}\}$ é chamado sistema cartesiano ortogonal Oxyz.

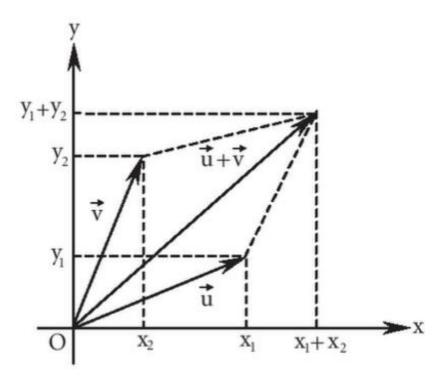
> Vetores no espaço

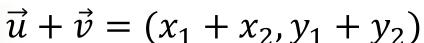


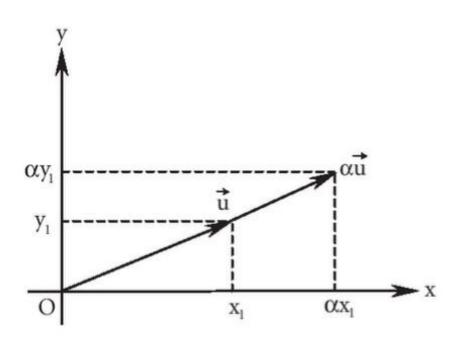


> Soma e multiplicação por escalar

Sejam
$$\vec{u}=(x_1,y_1), \ \vec{v}=(x_2,y_2)$$
 e $\alpha \in \mathbb{R}$







$$\alpha \vec{u} = (\alpha x_1, \alpha y_1)$$

> Propriedades da soma de vetores

Sejam \vec{u} , \vec{v} e \vec{w} três vetores quaisquer.

- I) Comutativa: $\vec{u} + \vec{v} = \vec{v} + \vec{u}$
- II) Associativa: $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$
- III) Elemento neutro: $\vec{u} + \vec{0} = \vec{u}$
- IV) Elemento oposto: $\vec{u} + (-\vec{u}) = \vec{0}$

Propriedades da multiplicação de vetor por escalar

Sejam \vec{u}, \vec{v} vetores quaisquer e \propto , β números reais.

I)
$$(\alpha\beta)\vec{v} = \alpha(\beta\vec{v})$$
 (Associativa)

II)
$$(\alpha + \beta)\vec{v} = \alpha\vec{v} + \beta\vec{v}$$
 (Distributiva)

III)
$$\alpha(\vec{u} + \vec{v}) = \alpha \vec{u} + \alpha \vec{v}$$
 (Distributiva)

IV)
$$1\vec{v} = \vec{v}$$
 (Identidade)

> Paralelismo entre dois vetores

Se $\vec{u} = (x_1, y_1)$ e $\vec{v} = (x_2, y_2)$ são paralelos, existe um número real \propto tal que:

$$\vec{u} = \alpha \vec{v}$$

$$(x_1, y_1) = \alpha(x_2, y_2)$$

$$(x_1, y_1) = (\alpha x_2, \alpha y_2)$$

$$x_1 = \alpha x_2 \text{ e } y_1 = \alpha y_2 \quad \Rightarrow \quad \frac{x_1}{x_2} = \frac{y_1}{y_2} = \alpha$$

Exemplo 3 – dados dois vetores $\vec{u} = (3, -1) e$ $\vec{v} = (-2, 4)$ encontrar o vetor \vec{x} da soma $3\vec{x} + 2\vec{u} = \frac{1}{2}\vec{v} + \vec{x}$

> Produto escalar

Sejam:
$$\vec{u} = x_1 \vec{i} + y_1 \vec{j} + z_1 \vec{k} \ e \ \vec{v} = x_2 \vec{i} + y_2 \vec{j} + z_2 \vec{k}$$

O produto escalar, denotado por $\vec{u} \cdot \vec{v}$, é a operação:

$$\vec{u} \cdot \vec{v} = x_1 x_2 + y_1 y_2 + z_1 z_2$$

O resultado do produto escalar é um número real.

> Propriedades do produto escalar

Sejam os vetores
$$\vec{u}=(x_1,y_1,z_1),\ \vec{v}=(x_2,y_2,z_2),$$
 $\vec{w}=(x_3,y_3,z_3)\ \mathrm{e}\ \alpha\in\mathbb{R}$

- 1. $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$ (comutativa)
- 2. $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$ (distributiva)
- 3. $\alpha(\vec{u} \cdot \vec{v}) = (\alpha \vec{u}) \cdot \vec{v} = \vec{u} \cdot (\alpha \vec{v})$ (distributiva)
- 4. $\vec{u} \cdot \vec{u} \ge 0$ $\vec{u} \cdot \vec{u} = 0$ se e somente se $\vec{u} = \vec{0}$
- 5. $\vec{u} \cdot \vec{u} = |\vec{u}|^2$

> Interpretação geométrica do produto escalar

Seja um triângulo ABC definido pela soma de dois vetores \vec{v} e \vec{u} , como na Figura 2.1.

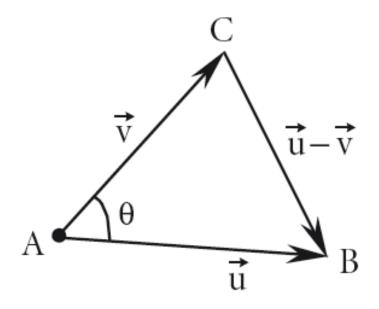


Figura 2.1

> Interpretação geométrica do produto escalar

Aplicando a propriedade do módulo:

$$|\overrightarrow{u} - \overrightarrow{v}|^2 = |\overrightarrow{u}|^2 - 2\overrightarrow{u} \cdot \overrightarrow{v} + |\overrightarrow{v}|^2$$

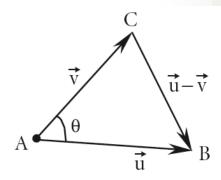


Figura 2.1

Por outro lado, da lei dos cossenos:

$$|\overrightarrow{u} - \overrightarrow{v}|^2 = |\overrightarrow{u}|^2 - 2|\overrightarrow{u}||\overrightarrow{v}|\cos\theta + |\overrightarrow{v}|^2$$

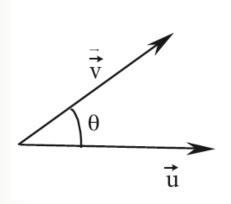
Igualando as duas equações:

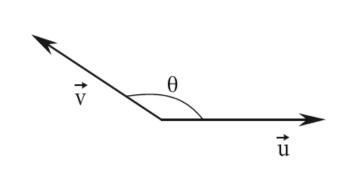
$$\vec{u} \cdot \vec{v} = |\vec{u}||\vec{v}| \cos\theta$$

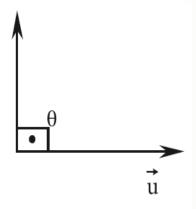
$$0^{\circ} < \theta \leq 180^{\circ}$$

> Interpretação geométrica

$$cos\theta = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|}$$







Se
$$\vec{u} \cdot \vec{v} > 0$$
,
 $\cos \theta > 0$
 $0 \le \theta < 90^{\circ}$

Se
$$\vec{u} \cdot \vec{v} < 0$$
,
 $\cos \theta < 0$
 $90^{\circ} < \theta \le 180^{\circ}$

Se
$$\vec{u} \cdot \vec{v} = 0$$

 $\cos \theta = 0$
 $\theta = 90^{\circ}$

Exemplo 4 aplicação na física – Calcular o trabalhor realizado pela força $\vec{F} = 8\vec{\imath} + 6\vec{\jmath}$ para deslocar um corpo de A até B, sabendo que $|\vec{AB}| = 20 \, m$.

> Produto vetorial

Sejam
$$\vec{u} = (x_1, y_1, z_1), \quad \vec{v} = (x_2, y_2, z_2)$$

- O produto vetorial: $\vec{u} \wedge \vec{v}$ ou $\vec{u} \times \vec{v}$.
- Resulta em outro vetor, ortogonal a \vec{u} e \vec{v} .
- Para calculá-lo utiliza-se o determinante:

$$\vec{\boldsymbol{u}} \times \vec{\boldsymbol{v}} = \begin{vmatrix} \vec{\iota} & \vec{\jmath} & \vec{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix} = VETOR$$

> Produto vetorial

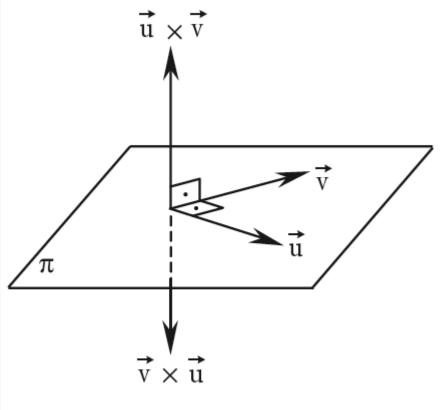


Figura 3.2

• O vetor $\vec{u} \times \vec{v}$ é ortotogonal a \vec{u} e \vec{v} .

• O comprimento de $\vec{u} \times \vec{v}$ é definido por: $|\vec{u} \times \vec{v}| = |\vec{u}| |\vec{v}| sen\theta$

Produto vetorial

O sentido de $\vec{u} \times \vec{v}$ é definido pela regra da mão direita.

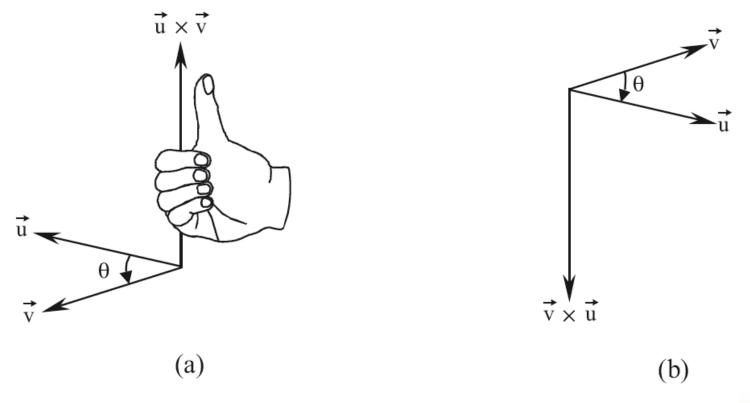


Figura 3.3

> Produto vetorial

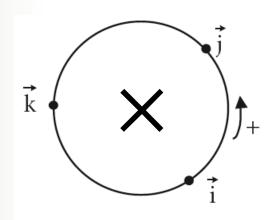
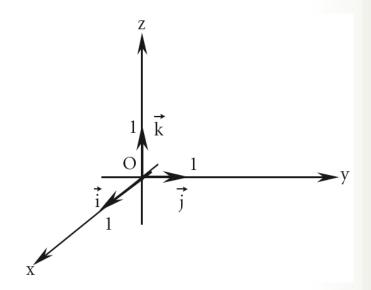


Figura 3.4

$$\vec{i} \times \vec{j} = \vec{k}$$

$$\vec{j} \times \vec{k} = \vec{\iota}$$

$$\vec{k} \times \vec{\iota} = \vec{j}$$



> Propriedades do produto vetorial

Sejam \vec{u} , \vec{v} e \vec{w} três vetores quaisquer e \propto um escalar.

I)
$$\vec{u} \times (\vec{v} + \vec{w}) = (\vec{u} \times \vec{v}) + (\vec{u} \times \vec{w})$$

 $(\vec{u} + \vec{v}) \times \vec{w} = (\vec{u} \times \vec{w}) + (\vec{v} \times \vec{w})$

II)
$$\alpha(\vec{u} \times \vec{v}) = (\alpha \vec{u}) \times \vec{v} = \vec{u} \times (\alpha \vec{v})$$

III)
$$\vec{u} \cdot (\vec{v} \times \vec{w}) = (\vec{u} \times \vec{v}) \cdot \vec{w}$$

Nota:
$$(\vec{u} \times \vec{v}) \times \vec{w} \neq \vec{u} \times (\vec{v} \times \vec{w})$$

Não Associativo Exemplo 5 – Sejam $\vec{u} = (5, 4, 3), \vec{v} = (1, 0, 1)$ Calcular o produto $\vec{u} \times \vec{v}$.

$$\begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 5 & 4 & 3 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 4 & 3 \\ 0 & 1 \end{vmatrix} \vec{i} - \begin{vmatrix} 5 & 3 \\ 1 & 1 \end{vmatrix} \vec{j} + \begin{vmatrix} 5 & 4 \\ 1 & 0 \end{vmatrix} \vec{k}$$

$$\begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 5 & 4 & 3 \\ 1 & 0 & 1 \end{vmatrix} = (4)\vec{i} - (5 - 3)\vec{j} + (-4)\vec{k}$$

$$\begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 5 & 4 & 3 \\ 1 & 0 & 1 \end{vmatrix} = \vec{u} \times \vec{v} = 4\vec{i} - 2\vec{j} - 4\vec{k} = \langle 4, -2, -4 \rangle$$

> Interpretação geométrica do produto vetorial

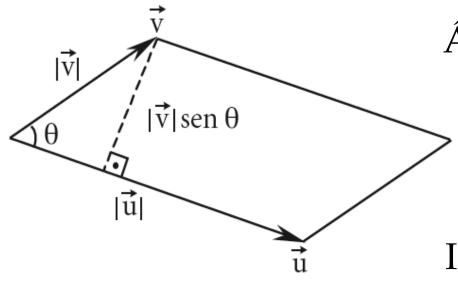


Figura 3.5

Área do paralelogramo:

$$A = Base \times altura$$

$$A = |\vec{u}| |\vec{v}| sen\theta$$

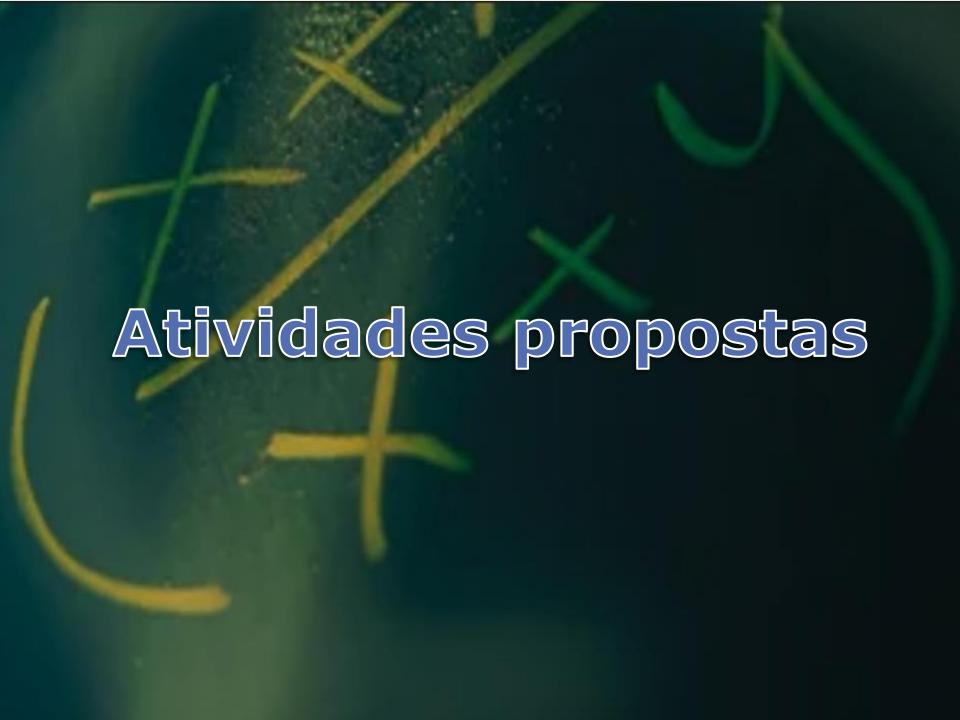
Identidade de Lagrange

$$|\vec{u} \times \vec{v}|^2 = |\vec{u}|^2 |\vec{v}|^2 - (\vec{u} \cdot \vec{v})^2$$

$$|\vec{u} \times \vec{v}| = |\vec{u}||\vec{v}|sen\theta = A$$

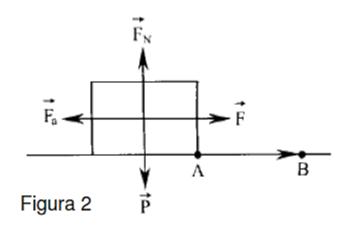
Área numericamente igual ao comprimento do vetor $|\vec{u} \times \vec{v}|$.

Exemplo 6 aplicação na engenharia – Calcular o torque máximo sobre uma barra de comprimento $\vec{r} = 2\vec{j}$ [m] sujeita a uma força $\vec{F} = 10\vec{i}$ [N]. Indicar o sentido de rotação.



Atividades propostas

a) Um bloco está sob a ação das forças constantes \vec{F} , $\vec{F_a}$, $\vec{F_N}$ e \vec{P} , como mostra a figura 2, a seguir.



Sabe-se que

$$|\overrightarrow{F}| = 10N, |\overrightarrow{F}_a| = 8N, |\overrightarrow{F}_N| = 3N,$$

 $|\overrightarrow{P}| = 3N, \overrightarrow{d} = \overrightarrow{AB} e |\overrightarrow{d}| = 10m.$

Utilizando a expressão para o trabalho, $W = |\vec{F}| \cdot |\vec{d}| \cos \theta$, calcule o trabalho realizado para deslocar o bloco de A até B pelas forças constantes.

Atividades propostas

Um parafuso é apertado aplicando-se uma força de 40N a uma chave de boca de 0,25m, como mostra a Figura 9.

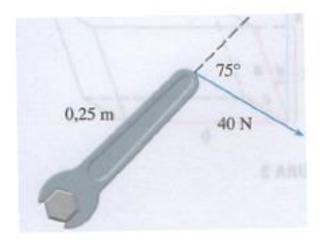


Figura 9

a) Determine o módulo do torque em relação ao centro do parafuso.

Fonte: Adaptado: STEWART, J. Cálculo. Volume 2. 7. ed. São Paulo. Thomson Learning, 2013.

Bibliografia

WINTERLE, P. Vetores e Geometria Analítica. 2a ed. São Paulo: Pearson, 2014.

STEINBRUCH, A.; WINTERLE, P. Geometria Analítica. 2. Ed. São Paulo: Pearson Makron Books, 1987.