Cálculo diferencial e integral

Sequências e séries infinitas

Aula 01 Sequências

Henrique Antonio Mendonça Faria Henrique.faria@unesp.br

Tópicos desta aula

- 1. Introdução sobre sequências.
- 2. Identificação de padrões.
- 3. Limites e convergência.
- 4. Sequências monótonas.

Pré-requisitos

Cálculo I: Estudo de funções reais e limites.

Introdução

Introdução

- Sequências e séries surgem da ideia da representação de funções como soma de termos.
- Muitas funções utilizadas na Física-Matemática e Química são definidas como somas de séries.
 - Exemplos: Taylor, Bessel, Fourie e outras.
- Sequências numéricas fornecem os conceitos fundamentais para a definição de séries.

Identificação de padrões

Definições de sequências numéricas

Sequência: lista de números em ordem definida.

$$a_1, a_2, a_3, a_4, \ldots, a_n, \ldots$$

 \succ O número a_n é chamado termo da sequência.

Definições de sequências numéricas

Sequência: lista de números em ordem definida.

$$a_1, a_2, a_3, a_4, \ldots, a_n, \ldots$$

- \succ O número a_n é chamado termo da sequência.
- Outras notações para sequência:

$$\{a_n\}$$
 ou $\{a_n\}_{n=1}^{\infty}$

 \blacktriangleright Algumas sequências numéricas são definidas por uma fórmula para o n-ésimo termo.

(a)
$$\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}$$

$$a_n = \frac{n}{n+1}$$

(a)
$$\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}$$
 $a_n = \frac{n}{n+1}$ $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots, \frac{n}{n+1}, \dots\right\}$

(a)
$$\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}$$
 $a_n = \frac{n}{n+1}$ $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots, \frac{n}{n+1}, \dots\right\}$

(c)
$$\left\{\sqrt{n-3}\right\}_{n=3}^{\infty}$$
 $a_n = \sqrt{n-3}, \ n \ge 3\left\{0, 1, \sqrt{2}, \sqrt{3}, \dots, \sqrt{n-3}, \dots\right\}$

(a)
$$\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}$$
 $a_n = \frac{n}{n+1}$ $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots, \frac{n}{n+1}, \dots\right\}$

(c)
$$\left\{\sqrt{n-3}\right\}_{n=3}^{\infty}$$
 $a_n = \sqrt{n-3}, \ n \ge 3\left\{0, 1, \sqrt{2}, \sqrt{3}, \dots, \sqrt{n-3}, \dots\right\}$

Exemplo 2 Encontre uma fórmula para o termo geral a_n da sequência:

$$\left\{\frac{3}{5}, -\frac{4}{25}, \frac{5}{125}, -\frac{6}{625}, \frac{7}{3.125}, \ldots\right\}$$

(a)
$$\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}$$
 $a_n = \frac{n}{n+1}$ $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots, \frac{n}{n+1}, \dots\right\}$

(c)
$$\left\{\sqrt{n-3}\right\}_{n=3}^{\infty}$$
 $a_n = \sqrt{n-3}, \ n \ge 3\left\{0, 1, \sqrt{2}, \sqrt{3}, \dots, \sqrt{n-3}, \dots\right\}$

Exemplo 2 Encontre uma fórmula para o termo geral a_n da sequência:

$$\left\{\frac{3}{5}, -\frac{4}{25}, \frac{5}{125}, -\frac{6}{625}, \frac{7}{3.125}, \ldots\right\} a_1 = \frac{3}{5}, a_2 = -\frac{4}{25}, a_3 = \frac{5}{125} \ldots$$

(a)
$$\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}$$
 $a_n = \frac{n}{n+1}$ $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots, \frac{n}{n+1}, \dots\right\}$

(c)
$$\left\{\sqrt{n-3}\right\}_{n=3}^{\infty}$$
 $a_n = \sqrt{n-3}, \ n \ge 3\left\{0, 1, \sqrt{2}, \sqrt{3}, \dots, \sqrt{n-3}, \dots\right\}$

Exemplo 2 Encontre uma fórmula para o termo geral a_n da sequência:

$$\left\{\frac{3}{5}, -\frac{4}{25}, \frac{5}{125}, -\frac{6}{625}, \frac{7}{3.125}, \ldots\right\} a_1 = \frac{3}{5}, a_2 = -\frac{4}{25}, a_3 = \frac{5}{125} \ldots$$

numerador n + 2

$$a_{\cdot \cdot} = \frac{n+2}{n+2}$$

(a)
$$\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}$$
 $a_n = \frac{n}{n+1}$ $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots, \frac{n}{n+1}, \dots\right\}$

(c)
$$\left\{\sqrt{n-3}\right\}_{n=3}^{\infty}$$
 $a_n = \sqrt{n-3}, \ n \ge 3\left\{0, 1, \sqrt{2}, \sqrt{3}, \dots, \sqrt{n-3}, \dots\right\}$

Exemplo 2 Encontre uma fórmula para o termo geral a_n da sequência:

$$\left\{\frac{3}{5}, -\frac{4}{25}, \frac{5}{125}, -\frac{6}{625}, \frac{7}{3.125}, \ldots\right\} a_1 = \frac{3}{5}, a_2 = -\frac{4}{25}, a_3 = \frac{5}{125} \ldots$$

numerador n + 2denominador 5^n $a_n = \frac{n+2}{5^n}$

(a)
$$\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}$$
 $a_n = \frac{n}{n+1}$ $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots, \frac{n}{n+1}, \dots\right\}$

(c)
$$\left\{\sqrt{n-3}\right\}_{n=3}^{\infty}$$
 $a_n = \sqrt{n-3}, \ n \ge 3\left\{0, 1, \sqrt{2}, \sqrt{3}, \dots, \sqrt{n-3}, \dots\right\}$

Exemplo 2 Encontre uma fórmula para o termo geral a_n da sequência:

$$\left\{\frac{3}{5}, -\frac{4}{25}, \frac{5}{125}, -\frac{6}{625}, \frac{7}{3.125}, \ldots\right\} a_1 = \frac{3}{5}, a_2 = -\frac{4}{25}, a_3 = \frac{5}{125} \ldots$$

numerador n + 2denominador 5^n sinais dos termos alternam

$$a_n = (-1)^{n-1} \frac{n+2}{5^n}$$

Exemplo 3 - Sequência de Fibonacci $\{f_n\}$

Essa sequência $\{f_n\}$ é definida recursivamente pelas condições:

$$f_1 = 1$$
 $f_2 = 1$ $f_n = f_{n-1} + f_{n-2}$ $n \ge 3$

Cada termo é a soma dos dois termos precedentes. Os primeiros termos são:

$$\{1, 1, 2, 3, 5, 8, 13, 21, \ldots\}$$

Exemplo 3 - Sequência de Fibonacci $\{f_n\}$

Essa sequência $\{f_n\}$ é definida recursivamente pelas condições:

$$f_1 = 1$$
 $f_2 = 1$ $f_n = f_{n-1} + f_{n-2}$ $n \ge 3$

Cada termo é a soma dos dois termos precedentes. Os primeiros termos são:

$$\{1, 1, 2, 3, 5, 8, 13, 21, \ldots\}$$

Essa sequência surgiu quando o matemático italiano Fibonacci (Leonardo de Pisa — 1170 a 1250) exemplificou, no Libre Abaci (1202), um problema hipotético envolvendo a reprodução de coelhos.

Mês	Par 5	Par 7	Par 2	Par 6	Par 1	Par 4	Par 3	Par 8	f_n
1					00				$f_1 = 1$

Mês	Par 5	Par 7	Par 2	Par 6	Par 1	Par 4	Par 3	Par 8	f_n
1					00				$f_1 = 1$
2					00				$f_2 = 1$

Mês	Par 5	Par 7	Par 2	Par 6	Par 1	Par 4	Par 3	Par 8	f_n
1					00				$f_1 = 1$
2					_ 00				$f_2 = 1$
3			00		00				$f_3 = 2$

Mês	Par 5	Par 7	Par 2	Par 6	Par 1	Par 4	Par 3	Par 8	f_n
1					00				$f_1 = 1$
2					_ 00				$f_2 = 1$
3			00		00 ~				$f_3 = 2$
4			00		00		00		$f_4 = 3$

Mês	Par 5	Par 7	Par 2	Par 6	Par 1	Par 4	Par 3	Par 8	f_n
1					00				$f_1 = 1$
2					_ 00				$f_2 = 1$
3			00		00 ~				$f_3 = 2$
4			- 00		00 _	_	00		$f_4 = 3$
5	00		00		00	00	00		$f_5 = 5$

Mês	Par 5	Par 7	Par 2	Par 6	Par 1	Par 4	Par 3	Par 8	f_n
1					00				$f_1 = 1$
2					_ 00				$f_2 = 1$
3			00		00 ~		,		$f_3 = 2$
4			– 00		00 ~	_	00		$f_4 = 3$
5	00	4	- 00	,	_ 00	00	00~		$f_5 = 5$
6	00	00	00	00	00	00	00	00	$f_6 = 8$

Limites e convergência

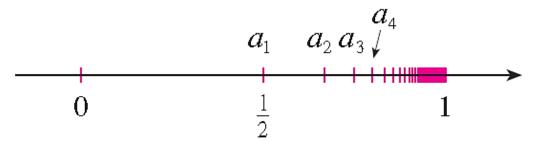
Representação de sequências

(a)
$$\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}$$
 $a_n = \frac{n}{n+1}$ $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots, \frac{n}{n+1}, \dots\right\}$

Representação de sequências

(a)
$$\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}$$
 $a_n = \frac{n}{n+1}$ $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots, \frac{n}{n+1}, \dots\right\}$

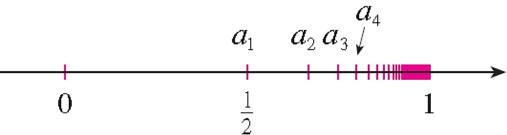
Representação na reta real.



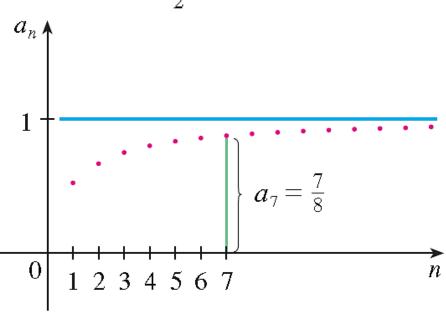
Representação de sequências

(a)
$$\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}$$
 $a_n = \frac{n}{n+1}$ $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots, \frac{n}{n+1}, \dots\right\}$

Representação na reta real.



Representação no plano cartesiano.



Definição Uma sequência $\{a_n\}$ tem **limite** L e escrevemos

$$\lim_{n\to\infty} a_n = L \quad \text{ou} \quad a_n \to L \text{ quando } n \to \infty$$

se, para cada $\varepsilon > 0$ existir um inteiro correspondente N tal que

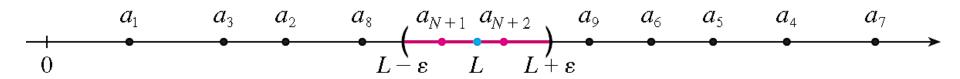
se
$$n > N$$
 então $|a_n - L| < \varepsilon$

Definição Uma sequência $\{a_n\}$ tem **limite** L e escrevemos

$$\lim_{n\to\infty} a_n = L \quad \text{ou} \quad a_n \to L \text{ quando } n \to \infty$$

se, para cada $\varepsilon > 0$ existir um inteiro correspondente N tal que

se n > N então $|a_n - L| < \varepsilon$

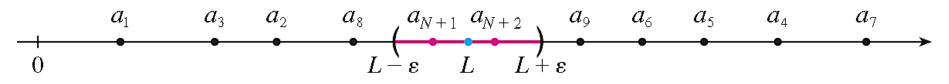


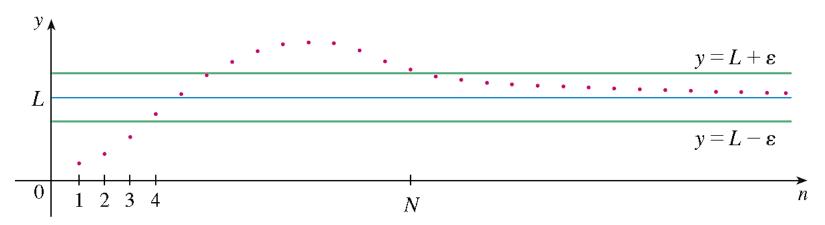
Definição Uma sequência $\{a_n\}$ tem **limite** L e escrevemos

$$\lim_{n\to\infty} a_n = L \quad \text{ou} \quad a_n \to L \text{ quando } n \to \infty$$

se, para cada $\varepsilon > 0$ existir um inteiro correspondente N tal que

se n > N então $|a_n - L| < \varepsilon$





Definição $\lim_{n\to\infty} a_n = \infty$ significa que para cada número positivo M existe um inteiro N tal que

se n > N então $a_n > M$

Definição $\lim_{n\to\infty} a_n = \infty$ significa que para cada número positivo M existe um inteiro N tal que

se n > N então $a_n > M$

- ➤ Se $\lim_{n\to\infty} a_n = \infty$, então a sequência $\{a_n\}$ é divergente, Dizemos que $\{a_n\}$ diverge para ∞ .
- ➤ As Propriedades do Limite também valem para os limites de sequências

Se $\{a_n\}$ e $\{b_n\}$ forem sequências convergentes e c for uma constante, então

$$\lim_{n\to\infty} (a_n \pm b_n) = \lim_{n\to\infty} a_n \pm \lim_{n\to\infty} b_n$$

$$\lim_{n\to\infty} ca_n = c \lim_{n\to\infty} a_n \qquad \lim_{n\to\infty} c = c$$

Se $\{a_n\}$ e $\{b_n\}$ forem sequências convergentes e c for uma constante, então

$$\lim_{n\to\infty} (a_n \pm b_n) = \lim_{n\to\infty} a_n \pm \lim_{n\to\infty} b_n$$

$$\lim_{n\to\infty} ca_n = c \lim_{n\to\infty} a_n \qquad \lim_{n\to\infty} c = c$$

$$\lim_{n\to\infty} (a_n b_n) = \lim_{n\to\infty} a_n \cdot \lim_{n\to\infty} b_n$$

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\frac{\lim_{n\to\infty}a_n}{\lim_{n\to\infty}b_n}\quad\text{se }\lim_{n\to\infty}b_n\neq0$$

$$\lim_{n\to\infty} a_n^p = \left[\lim_{n\to\infty} a_n\right]^p \text{ se } p > 0 \text{ e } a_n > 0$$

Exemplo 5 Encontre $\lim_{n\to\infty} \frac{n}{n+1}$

Exemplo 5 Encontre $\lim_{n\to\infty} \frac{n}{n+1}$

Utiliza-se método semelhante ao cálculo de limites de funções:

$$\lim_{n\to\infty}\frac{n}{n+1}=\lim_{n\to\infty}\frac{1}{1+\frac{1}{n}}$$

Exemplo 5 Encontre $\lim_{n\to\infty} \frac{n}{n+1}$

Utiliza-se método semelhante ao cálculo de limites de funções:

$$\lim_{n \to \infty} \frac{n}{n+1} = \lim_{n \to \infty} \frac{1}{1 + \frac{1}{n}}$$

$$= \frac{\lim_{n \to \infty} 1}{\lim_{n \to \infty} 1 + \lim_{n \to \infty} \frac{1}{n}}$$

$$= \frac{1}{1+0} = 1$$

Exemplo 6 Calcule
$$\lim_{n\to\infty} \frac{\ln n}{n}$$

Exemplo 6 Calcule $\lim_{n\to\infty} \frac{\ln n}{n}$

- \blacktriangleright Numerador e denominador se aproximam do infinito quando $n \to \infty$.
- A regra de L'Hôspital não pode ser usada diretamente.

Exemplo 6 Calcule
$$\lim_{n\to\infty} \frac{\ln n}{n}$$

- ightharpoonup Numerador e denominador se aproximam do infinito quando $n \to \infty$.
- A regra de L'Hôspital não pode ser usada diretamente.
- Pode-se usar a regra na função relacionada utilizando-se o seguinte teorema:

Se $\lim_{x\to\infty} f(x) = L$ e $f(n) = a_n$ quando n é um inteiro, então $\lim_{n\to\infty} a_n = L$.

Exemplo 6 Calcule
$$\lim_{n\to\infty} \frac{\ln n}{n}$$

- ightharpoonup Numerador e denominador se aproximam do infinito quando $n \to \infty$.
- A regra de L'Hôspital não pode ser usada diretamente.
- Pode-se usar a regra na função relacionada utilizando-se o seguinte teorema:

Se $\lim_{x\to\infty} f(x) = L$ e $f(n) = a_n$ quando n é um inteiro, então $\lim_{n\to\infty} a_n = L$.

$$\lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{1/x}{1} = 0$$

$$\lim_{n\to\infty}\frac{\ln n}{n}=0$$

Sabemos dos gráficos das funções exponenciais que:

> Sabemos dos gráficos das funções exponenciais que:

$$\lim_{x\to\infty} a^x = \infty$$
 para $a > 1$ e

$$\lim_{x\to\infty} a^x = 0$$
 para $0 < a < 1$. Logo,

> Sabemos dos gráficos das funções exponenciais que:

$$\lim_{x \to \infty} a^x = \infty$$
 para $a > 1$ e $\lim_{x \to \infty} a^x = 0$ para $0 < a < 1$. Logo,

com a = r e usando o Teorema, temos

$$\lim_{n \to \infty} r^n = \begin{cases} \infty & \text{se } r > 1 \\ 0 & \text{se } 0 < r < 1 \end{cases} \qquad \lim_{n \to \infty} 1^n = 1 \text{ e}$$

$$\lim_{n \to \infty} 0^n = 0$$

> Sabemos dos gráficos das funções exponenciais que:

$$\lim_{x \to \infty} a^x = \infty$$
 para $a > 1$ e $\lim_{x \to \infty} a^x = 0$ para $0 < a < 1$. Logo,

com a = r e usando o Teorema, temos

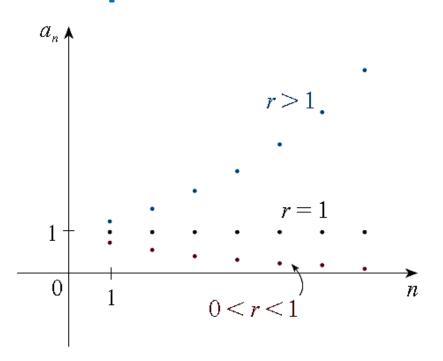
$$\lim_{n \to \infty} r^n = \begin{cases} \infty & \text{se } r > 1 \\ 0 & \text{se } 0 < r < 1 \end{cases} \qquad \lim_{n \to \infty} 1^n = 1 \text{ e}$$

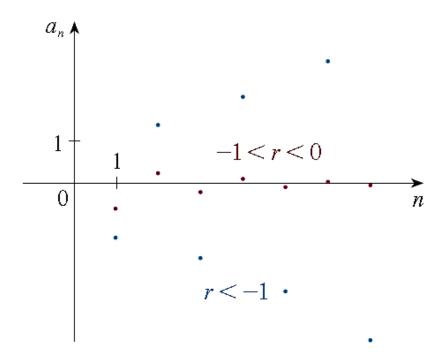
$$\lim_{n \to \infty} 0^n = 0$$

Se
$$-1 < r < 0$$
 então $0 < |r| < 1$ então

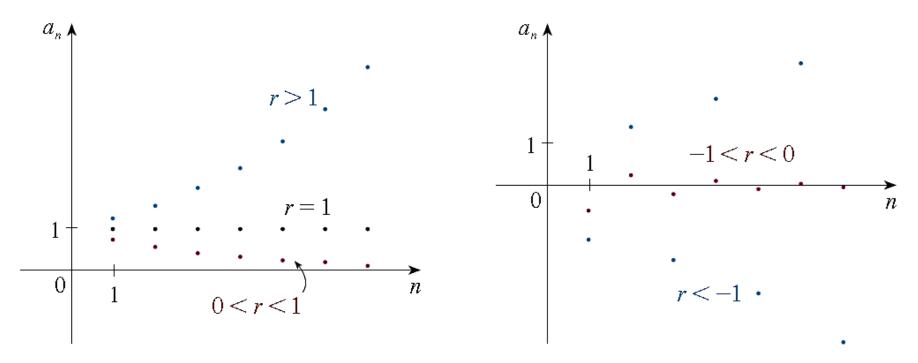
$$\lim_{n\to\infty}|r^n|=\lim_{n\to\infty}|r|^n=0$$

Exemplo 7 Gráficos da sequência $a_n = r^n$





Exemplo 7 Gráficos da sequência $a_n = r^n$



A sequência $\{r^n\}$ é convergente se $-1 < r \le 1$ e divergente para todos os outros valores de r.

$$\lim_{n \to \infty} r^n = \begin{cases} 0 & \text{se } -1 < r < 1 \\ 1 & \text{se } r = 1 \end{cases}$$

Definição

Uma sequência $\{a_n\}$ é chamada **crescente** se $a_n < a_{n+1}$ para todo $n \ge 1$,

isso é, $a_1 < a_2 < a_3 < \cdots$.

É chamado **decrescente** se $a_n > a_{n+1}$ para todo $n \ge 1$.

Uma sequência é monótona se for crescente ou decrescente.

Definição

Uma sequência $\{a_n\}$ é chamada **crescente** se $a_n < a_{n+1}$ para todo $n \ge 1$,

isso é, $a_1 < a_2 < a_3 < \cdots$.

É chamado **decrescente** se $a_n > a_{n+1}$ para todo $n \ge 1$.

Uma sequência é **monótona** se for crescente ou decrescente.

Exemplo 8

A sequência $\left\{\frac{3}{n+5}\right\}$ é decrescente porque

$$\frac{3}{n+5} > \frac{3}{(n+1)+5} = \frac{3}{n+6}$$

e, portanto, $a_n > a_{n+1}$ para todo $n \ge 1$.

Definição

Uma sequência $\{a_n\}$ é **limitada superiormente** se existir um número M tal que $a_n \le M$ para todo $n \ge 1$

Ela é **limitada inferiormente** se existir um número m

tal que $m \le a_n$ para todo $n \ge 1$

Se ela for limitada superior e inferiormente, então $\{a_n\}$ é uma **sequência limitada**.

Teorema da Sequência Monótona

Toda sequência monótona limitada é convergente.

Teorema da Sequência Monótona

Toda sequência monótona limitada é convergente.

Nem sempre é possível determinar se uma sequência é monótona pelos primeiros termos.

Teorema da Sequência Monótona

Toda sequência monótona limitada é convergente.

- Nem sempre é possível determinar se uma sequência é monótona pelos primeiros termos.
- Uma maneira de verificar a monoticidade consiste da razão de termos sucessivos.

RAZÃO DE TERMOS SUCESSIVOS	CONCLUSÃO
$a_{n+1}/a_n > 1$	Estritamente crescente
$a_{n+1}/a_n < 1$	Estritamente decrescente
$a_{n+1}/a_n \ge 1$	Crescente
$a_{n+1}/a_n \le 1$	Decrescente

Mostrar que a sequência é estritamente crescente.

$$a_n = \frac{n}{n+1}$$

Mostrar que a sequência é estritamente crescente.

$$a_n = \frac{n}{n+1} \implies a_{n+1} = \frac{n+1}{n+2}$$

$$\frac{a_{n+1}}{a_n} = \frac{(n+1)/(n+2)}{n/(n+1)}$$

Mostrar que a sequência é estritamente crescente.

$$a_n = \frac{n}{n+1} \implies a_{n+1} = \frac{n+1}{n+2}$$

$$\frac{a_{n+1}}{a_n} = \frac{(n+1)/(n+2)}{n/(n+1)}$$

$$= \frac{n+1}{n+2} \cdot \frac{n+1}{n} = \frac{n^2 + 2n + 1}{n^2 + 2n}$$

Mostrar que a sequência é estritamente crescente.

$$a_n = \frac{n}{n+1} \implies a_{n+1} = \frac{n+1}{n+2}$$

$$\frac{a_{n+1}}{a_n} = \frac{(n+1)/(n+2)}{n/(n+1)}$$

$$= \frac{n+1}{n+2} \cdot \frac{n+1}{n} = \frac{n^2+2n+1}{n^2+2n}$$

vemos que $a_{n+1}/a_n > 1$ se $n \ge 1$.

Isso prova que a sequência é estritamente crescente.

Mostrar que a sequência é estritamente crescente.

$$a_n = \frac{n}{n+1} \implies a_{n+1} = \frac{n+1}{n+2}$$

$$\frac{a_{n+1}}{a_n} = \frac{(n+1)/(n+2)}{n/(n+1)}$$

$$= \frac{n+1}{n+2} \cdot \frac{n+1}{n} = \frac{n^2+2n+1}{n^2+2n}$$

Do ex. 5:

$$\lim_{n\to\infty}\frac{n}{n+1}=1$$

Também é convergente!

vemos que $a_{n+1}/a_n > 1$ se $n \ge 1$.

Isso prova que a sequência é estritamente crescente.

Para depois desta aula:

- Estudar seção 11.1 do livro texto (Stewart).
- Resolver os exemplos dados em aula.
- Praticar: exercícios Seção 11.1 do Stewart.

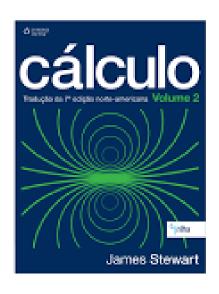
Próxima aula:

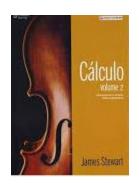
Sequências conhecidas e aplicações.

Bibliografia

1. STEWART, James. Cálculo - volume 2. 7. ed. São Paulo: Cengage, 2013.

Numeração dos exercícios com base na 7º ed.





STEWART, James. Cálculo - volume 2. **8. ed.** São Paulo: Cengage, 2016.