Atualizado em: 27/08/2022

Curso: Farmácia-Bioquímica

Disciplina: Física aplicada à Farmácia

Docente Responsável: Henrique Antonio Mendonça Faria

Lista de exercícios 06 - CI Fundamentos de Eletricidade

Duran Capítulo 8

- **11.** Uma carga q_1 exerce uma força de 100 N sobre uma carga-teste $q_2 = 2 \times 10^{-5}$ C localizada a 0,2 m de q_1 . Determine:
 - a) a intensidade do campo elétrico em virtude de q_1 no ponto em que está q_2 ; $k = 9 \times 10^9 \, N \cdot m^2 / C^2$;
 - b) o valor da carga q₁.

Respostas: a) 5×10^6 N/C; b) 2.2×10^{-5} C;

12. Determine a intensidade do campo elétrico a 0,2 m, 0,5 m e 0,8 m de uma carga com 2 × 10⁻¹⁰ C e faça um desenho em escala para os vetores campo elétrico nesses pontos.

Respostas: 45 N/C; 7,2 N/C; 2,5 N/C;

23. Duas placas paralelas estão separadas 2,00 cm. A intensidade do campo elétrico entre as placas é de 20.000 N/C. Qual é a diferença de potencial existente entre as placas?

Dado: $\varepsilon_{ar} = \varepsilon_0 = 8,85.\,10^{-12} [C^2/Nm^2]$ Resposta: 400 V;

27. Um capacitor com placas paralelas tem uma separação de 0,1 mm entre as placas. Qual deve ser a área das placas para que alcance uma capacitância de 1 F?

Dado: $\varepsilon_{ar} = \varepsilon_0 = 8,85.\,10^{-12} [C^2/Nm^2]$ Resposta: 1,1.10⁷ m²

31. A biomembrana é essencialmente um lipídio de permissividade relativa 3,0; sua capacitância por unidade de área é da ordem de 1 μF/cm². Qual será sua espessura efetiva?

Dado: $\varepsilon_0 = 8,85.\,10^{-12} [C^2/Nm^2]$ Resposta: 26,5 Å;