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Teorema de existéncia e unicidade.
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Equacoes algébricas do segundo grau.
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» As eq. dif. de 22 ordem possuem estrutura tedrica
rica relacionada com diversos aspectos sistematicos
de resolucao de equacdes diferenciais.

» Grande parte desses métodos é compreensivel no
nivel da matematica elementar.



» As eq. dif. de 22 ordem possuem estrutura tedrica
rica relacionada com diversos aspectos sistematicos
de resolucao de equacdes diferenciais.

» Grande parte desses métodos é compreensivel no
nivel da matematica elementar.

» As eq. dif. de 22 ordem sdo essenciais para qualquer
investigacao preliminar em areas como mecanica de
fluidos, conducao de calor, movimento oscilatorio e
fendmenos eletromagneéticos.
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» Uma eq. dif. de 22 ordem tem a forma geral:

__f(t'de_y (1)
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» Sendo t a variavel independente e y a variavel
dependente.

» A funcao f inclui essas duas varidveis e uma
possivel derivada de primeira ordem de y.



Uma eq. dif. de 22 ordem tem a forma geral:
Y _ 4y
dt2 f@&y, dt (1)

Sendo t a variavel independente e y a variavel
dependente.

A funcao f inclui essas duas varidveis e uma
possivel derivada de primeira ordem de y.

A equacao (1) sera linear se apresentar a forma:

y'+p@®)y +q(®)y = g(t) (2)

* D, q,eg sdo fungbes somente da variavel t.
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» Um problema de valor inicial (PVI) consiste da
equacao diferencial e um par de condicdes iniciais.

y(to) =yo e Y'(to) =0

» Onde y, e ¥’y sdo niUmeros reais constantes.
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Um problema de valor inicial (PVI) consiste da
equacao diferencial e um par de condicdes iniciais.

y(to) =yo e y'(to) =0
Onde y, e y'; sdo nimeros reais constantes.

Essas duas condicdes iniciais indicam um ponto
particular (ty, o) e a derivada neste ponto.
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Um problema de valor inicial (PVI) consiste da
equacao diferencial e um par de condicdes iniciais.

y(to) =yo e y'(to) =0
Onde y, e y'; sdo nimeros reais constantes.

Essas duas condicdes iniciais indicam um ponto
particular (ty, o) e a derivada neste ponto.

A eq. dif. de 22 ordem é homogénea quando g = 0:

y'+p)y +q(t)y =0 (3)
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>

Inicialmente, consideremos as funcoes
substituidas por coeficientes constantes.

ay" + by ' +cy =0 (4)

de t
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» Inicialmente, consideremos as funcdes de t
substituidas por coeficientes constantes.

ay" + by ' +cy =0 (4)

» A eq. dif. de 22 ordem a coeficientes constantes (4)
pode ser resolvida por calculos elementares.
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» Inicialmente, consideremos as funcdes de t
substituidas por coeficientes constantes.

ay" + by ' +cy =0 (4)

» A eq. dif. de 22 ordem a coeficientes constantes (4)
pode ser resolvida por calculos elementares.

> Supondo uma solucdo do tipo exponencial y = e
em que 7 € um parametro a ser determinado.
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» Inicialmente, consideremos as funcdes de t
substituidas por coeficientes constantes.

ay" + by ' +cy =0 (4)

» A eq. dif. de 22 ordem a coeficientes constantes (4)
pode ser resolvida por calculos elementares.

> Supondo uma solucdo do tipo exponencial y = e
em que 7 € um parametro a ser determinado.

Se y=et
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» Inicialmente, consideremos as funcdes de t
substituidas por coeficientes constantes.

ay" + by ' +cy =0 (4)

» A eq. dif. de 22 ordem a coeficientes constantes (4)
pode ser resolvida por calculos elementares.

> Supondo uma solucdo do tipo exponencial y = e
em que 7 € um parametro a ser determinado.

Sey=e™ -5 1y =re
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» Inicialmente, consideremos as funcdes de t
substituidas por coeficientes constantes.

ay" + by ' +cy =0 (4)

» A eq. dif. de 22 ordem a coeficientes constantes (4)
pode ser resolvida por calculos elementares.

> Supondo uma solucdo do tipo exponencial y = e
em que 7 € um parametro a ser determinado.

2 2

Sey=e” N y’=7‘€rt N y''=r rt

e
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Inicialmente, consideremos as funcdoes de t
substituidas por coeficientes constantes.

ay" + by ' +cy =0 (4)

A eq. dif. de 22 ordem a coeficientes constantes (4)
pode ser resolvida por calculos elementares.

Supondo uma solu¢do do tipo exponencial y = et
em que 7 € um parametro a ser determinado.

I/

Sey=e > gy =re™ - y'=r2em
Substituindo-se y e suas derivadas em (4) tem-se:

ar?e’ + pre’ 4 ce't =
20
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ar?e’™ + pre™ 4 ce’t = (

prof. Henrique A M Faria

21



ar?e™ + bre"™ + ce’ =0

(ar* + br +c)e™ =0
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ar?e™ + bre' + ce’t =

(ar* + br +c)e™ =0

como:e™ =0 V t
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ar?e™ + bre' + ce’t =

(ar* + br +c)e™ =0 como:e™ 0 V t

(Equacdo caracteristica

2 _
Zie G E = da eq. dif. de 22 ordem)

prof. Henrique A M Faria
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ar?e™ + bre' + ce’t =

(ar* + br +c)e™ =0 como:e™ 0 V t

(Equacdo caracteristica

2 _
Zie G E = da eq. dif. de 22 ordem)

» A equacdo caracteristica € uma equacao algébrica
do segundo grau em .
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ar?e™ + bre' + ce’t =

(ar* + br +c)e™ =0 como:e™ 0 V t

(Equacdo caracteristica

2 _
zir e = da eq. dif. de 22 ordem)

» A equacdo caracteristica € uma equacao algébrica
do segundo grau em .

» Pode apresentar duas raizes reais distintas, raizes
repetidas ou raizes complexas conjugadas.
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ar?e™ + bre' + ce’t =

(ar* + br +c)e™ =0 como:e™ 0 V t

(Equacdo caracteristica

2 _
zir e = da eq. dif. de 22 ordem)

» A equacdo caracteristica € uma equacao algébrica
do segundo grau em .

» Pode apresentar duas raizes reais distintas, raizes
repetidas ou raizes complexas conjugadas.

» Para o caso de raizes reais distintas, tem-se duas
solucdes para a equacao diferencial.
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> Raizes reais distintas r{ e { da eq. caracteristica.

(Eq. dif. 22 ordem a

n !/ —_
ay"+by +cy =0 coeficientes constantes.)

prof. Henrique A M Faria 2



> Raizes reais distintas r{ e { da eq. caracteristica.

(Eq. dif. 22 ordem a

n !/ —_
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y = e (solucdo proposta)

prof. Henrique A M Faria 2@



> Raizes reais distintas r{ e { da eq. caracteristica.

(Eq. dif. 22 ordem a

n !/ —_
ay"+by +cy =0 coeficientes constantes.)

y = e (solucdo proposta)

ar? + br + ¢ = 0 (Equac3o caracteristica)

prof. Henrique A M Faria g@



> Raizes reais distintas r{ e { da eq. caracteristica.

(Eq. dif. 22 ordem a

n !/ —_
ay"+by +cy =0 coeficientes constantes.)

y = e (solucdo proposta)

ar? + br + ¢ = 0 (Equac3o caracteristica)

t t

y; =e’tt e y, =e™2" (solucdes para eq. dif.)

prof. Henrique A M Faria 31



> Raizes reais distintas r{ e { da eq. caracteristica.

(Eq. dif. 22 ordem a

n !/ —_
ay"+by +cy =0 coeficientes constantes.)

y = e (solucdo proposta)

ar? + br + ¢ = 0 (Equac3o caracteristica)

t t

y; =e’tt e y, =e™2" (solucdes para eq. dif.)
Solucao geral
y = Ciy1 + Cyy, = Cie™t + C,e™"  daeq. dif de
22 ordem.

prof. Henrique A M Faria 32



y = C1y1 + Gy, = Ce™t 4 Cye™t

prof. Henrique A M Faria

Solucao geral
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y = Cyyq + C,y, = C;e™t + C,e™t  Solucio geral

» Uma solucao particular pode ser encontrada
substituindo-se as condicoes iniciais:

V(to) =yo e y'(to) =¥0
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y = Cyyq + C,y, = C;e™t + C,e™t  Solucio geral

» Uma solucao particular pode ser encontrada
substituindo-se as condicoes iniciais:

V(to) =yo e y'(to) =¥0

» Independentemente dos valores das condicOes
iniciais € sempre possivel determinar as constantes

Cye(C,.
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y = Cyyq + C,y, = C;e™t + C,e™t  Solucio geral

» Uma solucao particular pode ser encontrada
substituindo-se as condicoes iniciais:

V(to) =yo e y'(to) =¥0

» Independentemente dos valores das condicOes
iniciais € sempre possivel determinar as constantes

Cye(C,.

» Além disso, existe apenas uma escolha possivel
para cada par de condicoes iniciais.
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Exemplo 1: Encontrar a solucdo do PVI e seu gréfico.
y"+5y"+6y=0 y(0)=2 e y'(0)=3

prof. Henrique A M Faria
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Exemplo 1: Encontrar a solucdo do PVI e seu gréfico.
y"+5y"+6y=0 y(0)=2 e y'(0)=3

v" Propor a solugdo do tipo exponencial:

y = et
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Exemplo 1: Encontrar a solucdo do PVI e seu gréfico.
y"+5y"+6y=0 y(0)=2 e y'(0)=3

v" Propor a solugdo do tipo exponencial:

y=e" = y =re’t

39



Exemplo 1: Encontrar a solucdo do PVI e seu gréfico.
y"+5y"+6y=0 y(0)=2 e y'(0)=3

v" Propor a solugdo do tipo exponencial:

y=e™ = y' =re™ = " =r2em



Exemplo 1: Encontrar a solucdo do PVI e seu gréfico.

y"+5y"+6y=0 y(0)=2 e y'(0)=3

v" Propor a solugdo do tipo exponencial:

y=e™ = y' =re™ = " =r2em

v’ Substituir a proposta na eq. dif. de 22 ordem.

r?e™ + 5re™ + 6e’t =

a1



Exemplo 1: Encontrar a solucdo do PVI e seu gréfico.

y"+5y"+6y=0 y(0)=2 e y'(0)=3

v" Propor a solugdo do tipo exponencial:

y=e™ = y' =re™ = " =r2em

v’ Substituir a proposta na eq. dif. de 22 ordem.

rée’™ 4+ 5re’ 4 6e't = mas, et 0 V t
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Exemplo 1: Encontrar a solucdo do PVI e seu gréfico.
y"+5y"+6y=0 y(0)=2 e y'(0)=3

v" Propor a solugdo do tipo exponencial:

y=e™ = y' =re™ = " =r2em

v’ Substituir a proposta na eq. dif. de 22 ordem.
rée’™ 4+ 5re’ 4 6e't = mas, et 0 V t

r’+5r+6=0

a3



Exemplo 1: Encontrar a solucdo do PVI e seu gréfico.
y"+5y"+6y=0 y(0)=2 e y'(0)=3

v" Propor a solugdo do tipo exponencial:

y=e™ = y' =re™ = " =r2em

v’ Substituir a proposta na eq. dif. de 22 ordem.
rée’™ 4+ 5re’ 4 6e't = mas, et 0 V t

r’+5r+6=0 > (@T+2)T+3)=0



Exemplo 1: Encontrar a solucdo do PVI e seu gréfico.
y"+5y"+6y=0 y(0)=2 e y'(0)=3

v" Propor a solugdo do tipo exponencial:

y=e™ = y' =re™ = " =r2em

v’ Substituir a proposta na eq. dif. de 22 ordem.
rée’™ 4+ 5re’ 4 6e't = mas, et 0 V t
r’+5r+6=0 > (@T+2)T+3)=0

rn=—2er,=-3
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Exemplo 1: Encontrar a solucdo do PVI e seu gréfico.
y"+5y"+6y=0 y(0)=2 e y'(0)=3

v" Propor a solugdo do tipo exponencial:

y=e™ = y' =re™ = " =r2em

v’ Substituir a proposta na eq. dif. de 22 ordem.
rée’™ 4+ 5re’ 4 6e't = mas, et 0 V t
r’+5r+6=0 > (@T+2)T+3)=0

n=-2er,=-3 = y,=e?te y, =73

46



Exemplo 1: Encontrar a solucdo do PVI e seu gréfico.
y"+5y"+6y=0 y(0)=2 e y'(0)=3

v" Propor a solugdo do tipo exponencial:

y=e™ = y' =re™ = " =r2em

v’ Substituir a proposta na eq. dif. de 22 ordem.
rée’™ 4+ 5re’ 4 6e't = mas, et 0 V t

r’+5r+6=0 > (@T+2)T+3)=0

n=-2er,=-3 = y,=e?te y, =73

Solucao geral

_ -2t _3¢
y = La® o g da eq. dif.
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Exemplo 1: Encontrar a solucdo do PVI e seu gréfico.

v' Derivar a solucdo geral e compor um sistema:

y = Cie %t + C,e 3t
y' = —=2C,e %t —3C,e 3¢



Exemplo 1: Encontrar a solucdo do PVI e seu gréfico.

v’ Derivar a solucdo geral e compor um sistema:
Inserindo:

= Cie ?t + C,e 3t = ,
), 2 .~ y(0)=2ey(0) =3

y' = —=2C,e %t —3C,e 3

49



Exemplo 1: Encontrar a solucdo do PVI e seu gréfico.

v' Derivar a solucdo geral e compor um sistema:

Inserindo:

=Cie ?t + C,e 3t = ,
{y ! 2 y(0) =2 e y'(0) = 3

y' = —=2C,e %t —3C,e 3¢

2:C1+CZ
3:_2C1_3C2
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Exemplo 1: Encontrar a solucdo do PVI e seu gréfico.

v' Derivar a solucdo geral e compor um sistema:

Inserindo:

= Cie ?t + C,e 3t = ,
), 2 y(0) =2 e y'(0) =3

y' = —=2C,e %t —3C,e 3¢

jz =C; + C,

\3 — _2C1 _3C2

{‘C1 =2-C,

L 3 — _Z(Z_Cz)_3C2
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Exemplo 1: Encontrar a solucdo do PVI e seu gréfico.

v' Derivar a solucdo geral e compor um sistema:

Inserindo:

= Cie ?t + C,e 3t = ,
), 2 y(0) =2 e y'(0) =3

y' = —=2C,e %t —3C,e 3¢

jz =C, +C,

3 =-2C; -3,

{‘C1 =2-C,

| 3=-2(2-Cp) - 3C,
jcl =9

Cy = =7
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Exemplo 1: Encontrar a solucdo do PVI e seu gréfico.

v' Derivar a solucdo geral e compor um sistema:

Inserindo:

_ —2t —3t
{y—Cle + Cye :y(0)=2ey’(0)=3

y' = —2C,e7%t —3C,e 3t

jz =C, +C,

13 =201 — 3(;

; C,=2-0C,

- 3=-2(2-C(;) —3C;

jcl =9

C; = =7

y = 9e 4t — 773t

Solucao do PVI
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Exemplo 1: Encontrar a solucdo do PVI e seu gréfico.

v' Derivar a solucdo geral e compor um sistema:

{ y = Cie %t + C,e 3t

Y

{

y' = —2C,e7%t —3C,e 3t
(2=0C, +C,

3 =-2C; — 3G,

; C,=2-0C,

| 3=-2(2-Cp) - 3C,
(C, =9

Cy = =7

y = 9e 4t — 773t
Solucao do PVI

R Inserindo:
y(0)=2ey'(0)=3

Grafico da
solucao do PVI
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Teorema 3.2.1 (Existéncia e unicidade)

Seja o PVI:
y'+p@®)y +q)y =g) | y(te) =yoey'(ts) =¥

Onde p, q e g sao continuas em um intervalo aberto I que
contémo pontot = t,.

Entdo, existe exatamente, uma solugcao y = ¢(t) deste
problema em todo intervalo I.
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Teorema 3.2.1 (Existéncia e unicidade)

Seja o PVI:
y'+p@®)y +q)y =g) | y(te) =yoey'(ts) =¥

Onde p, q e g sao continuas em um intervalo aberto I que
contémo pontot = t,.

Entdo, existe exatamente, uma solugcao y = ¢(t) deste
problema em todo intervalo I.

O teorema diz que:

» O PVI tem solucdo.
» A solucgdo é unica.
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Teorema 3.2.1 (Existéncia e unicidade)

Seja o PVI:
' +p@y" +q@®)y =g9@) | y(o) =yoey'(te) =¥
Onde p, q e g sao continuas em um intervalo aberto I que

contémo pontot = t,.

Entdo, existe exatamente, uma solugcao y = ¢(t) deste
problema em todo intervalo I.

O teorema diz que:

» O PVI tem solucdo.

» A solucgdo é unica.

» A solucdo* estd definida em todo intervalo onde os
coeficientes sdo continuos.
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Teorema 3.2.1 (Existéncia e unicidade)

Seja o PVI:
y'+p@®)y +q)y =g) | y(te) =yoey'(ts) =¥

Onde p, q e g sao continuas em um intervalo aberto I que
contémo pontot = t,.

Entdo, existe exatamente, uma solugcao y = ¢(t) deste
problema em todo intervalo I.

O teorema diz que:

» O PVI tem solucdo.

» A solucgdo é unica.

» A solucdo* estd definida em todo intervalo onde os
coeficientes sdo continuos.

> vy = ¢@(t) é pelo menos duas vezes diferencidvel.



Teorema 3.2.1 (Existéncia e unicidade)

Seja o PVI:
y'+p@®)y +q)y =g) | y(te) =yoey'(ts) =¥

Onde p, q e g sao continuas em um intervalo aberto I que
contémo pontot = t,.

Entdo, existe exatamente, uma solugcao y = ¢(t) deste
problema em todo intervalo I.

O teorema diz que: * Para a maioria dos
> O PVI tem solucéo. problemas ndo e possivel
> A solucdo é tnica escrever solugao util.

» A solugcdo* estd definida em todo intervalo onde os
coeficientes sdo continuos.

> vy = ¢@(t) é pelo menos duas vezes diferencidvel.



» Estudar secoes 3.1 e 3.2 do livro texto (Boyce).
» Resolver o exercicio proposto.

» Praticar: exercicios da secdes 3.1 e 3.2 do Boyce.

» Eqg. dif. de 22 ordem, raizes repetidas e complexas.

61



1. BOYCE, W.E.; DIPRIMA, R.C. Equacoes
Diferenciais Elementares e Problemas de Valores
de Contorno. 9. ed. Rio de Janeiro: LTC, 2010.
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11. ed. Rio de Janeiro: LTC, 2020.
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