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Introdução



➢ As eq. dif. de 2ª ordem possuem estrutura teórica
rica relacionada com diversos aspectos sistemáticos
de resolução de equações diferenciais.

➢ Grande parte desses métodos é compreensível no
nível da matemática elementar.

prof. Henrique A M Faria



➢ As eq. dif. de 2ª ordem possuem estrutura teórica
rica relacionada com diversos aspectos sistemáticos
de resolução de equações diferenciais.

➢ Grande parte desses métodos é compreensível no
nível da matemática elementar.

➢ As eq. dif. de 2ª ordem são essenciais para qualquer
investigação preliminar em áreas como mecânica de
fluidos, condução de calor, movimento oscilatório e
fenômenos eletromagnéticos.

prof. Henrique A M Faria



Equações homogêneas 
a coeficientes 

constantes



➢ Uma eq. dif. de 2ª ordem tem a forma geral:

prof. Henrique A M Faria

𝑑2𝑦

𝑑𝑡2 = 𝑓(𝑡, 𝑦,
𝑑𝑦

𝑑𝑡
) (1)



➢ Uma eq. dif. de 2ª ordem tem a forma geral:
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𝑑2𝑦

𝑑𝑡2 = 𝑓(𝑡, 𝑦,
𝑑𝑦

𝑑𝑡
) (1)

➢ Sendo 𝑡 a variável independente e 𝑦 a variável
dependente.



➢ Uma eq. dif. de 2ª ordem tem a forma geral:

prof. Henrique A M Faria

𝑑2𝑦

𝑑𝑡2 = 𝑓(𝑡, 𝑦,
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➢ Sendo 𝑡 a variável independente e 𝑦 a variável
dependente.

➢ A função 𝑓 inclui essas duas variáveis e uma
possível derivada de primeira ordem de 𝑦.



➢ Uma eq. dif. de 2ª ordem tem a forma geral:

prof. Henrique A M Faria

𝑑2𝑦

𝑑𝑡2 = 𝑓(𝑡, 𝑦,
𝑑𝑦

𝑑𝑡
) (1)

➢ Sendo 𝑡 a variável independente e 𝑦 a variável
dependente.

➢ A função 𝑓 inclui essas duas variáveis e uma
possível derivada de primeira ordem de 𝑦.

➢ A equação (1) será linear se apresentar a forma:

𝑦" + 𝑝(𝑡)𝑦′ + 𝑞(𝑡)𝑦 = 𝑔(𝑡) (2)

• 𝑝, 𝑞, e 𝑔 são funções somente da variável 𝑡.



➢ Um problema de valor inicial (PVI) consiste da
equação diferencial e um par de condições iniciais.

prof. Henrique A M Faria

𝑦 𝑡0 = 𝑦0 e   𝑦′ 𝑡0 = 𝑦′0

➢ Onde 𝑦0 e 𝑦′0 são números reais constantes.



➢ Um problema de valor inicial (PVI) consiste da
equação diferencial e um par de condições iniciais.

prof. Henrique A M Faria

𝑦 𝑡0 = 𝑦0 e   𝑦′ 𝑡0 = 𝑦′0

➢ Onde 𝑦0 e 𝑦′0 são números reais constantes.

➢ Essas duas condições iniciais indicam um ponto
particular (𝑡0, 𝑦0) e a derivada neste ponto.



➢ Um problema de valor inicial (PVI) consiste da
equação diferencial e um par de condições iniciais.

prof. Henrique A M Faria

𝑦 𝑡0 = 𝑦0 e   𝑦′ 𝑡0 = 𝑦′0

➢ Onde 𝑦0 e 𝑦′0 são números reais constantes.

➢ Essas duas condições iniciais indicam um ponto
particular (𝑡0, 𝑦0) e a derivada neste ponto.

➢ A eq. dif. de 2ª ordem é homogênea quando 𝑔 = 0:

𝑦" + 𝑝(𝑡)𝑦′ + 𝑞(𝑡)𝑦 = 0 (3)



➢ Inicialmente, consideremos as funções de 𝑡
substituídas por coeficientes constantes.

𝑎𝑦" + 𝑏𝑦′ + 𝑐𝑦 = 0 (4)



➢ Inicialmente, consideremos as funções de 𝑡
substituídas por coeficientes constantes.

➢ A eq. dif. de 2ª ordem a coeficientes constantes (4)
pode ser resolvida por cálculos elementares.

𝑎𝑦" + 𝑏𝑦′ + 𝑐𝑦 = 0 (4)



➢ Inicialmente, consideremos as funções de 𝑡
substituídas por coeficientes constantes.

➢ A eq. dif. de 2ª ordem a coeficientes constantes (4)
pode ser resolvida por cálculos elementares.

➢ Supondo uma solução do tipo exponencial 𝑦 = 𝑒𝑟𝑡

em que 𝑟 é um parâmetro a ser determinado.

𝑎𝑦" + 𝑏𝑦′ + 𝑐𝑦 = 0 (4)



➢ Inicialmente, consideremos as funções de 𝑡
substituídas por coeficientes constantes.

Se  𝑦 = 𝑒𝑟𝑡

➢ A eq. dif. de 2ª ordem a coeficientes constantes (4)
pode ser resolvida por cálculos elementares.

➢ Supondo uma solução do tipo exponencial 𝑦 = 𝑒𝑟𝑡

em que 𝑟 é um parâmetro a ser determinado.

𝑎𝑦" + 𝑏𝑦′ + 𝑐𝑦 = 0 (4)



➢ Inicialmente, consideremos as funções de 𝑡
substituídas por coeficientes constantes.

Se  𝑦 = 𝑒𝑟𝑡  →  𝑦′ = 𝑟𝑒𝑟𝑡

➢ A eq. dif. de 2ª ordem a coeficientes constantes (4)
pode ser resolvida por cálculos elementares.

➢ Supondo uma solução do tipo exponencial 𝑦 = 𝑒𝑟𝑡

em que 𝑟 é um parâmetro a ser determinado.

𝑎𝑦" + 𝑏𝑦′ + 𝑐𝑦 = 0 (4)



➢ Inicialmente, consideremos as funções de 𝑡
substituídas por coeficientes constantes.

Se  𝑦 = 𝑒𝑟𝑡  →  𝑦′ = 𝑟𝑒𝑟𝑡  → 𝑦′′ = 𝑟2𝑒𝑟𝑡 

➢ A eq. dif. de 2ª ordem a coeficientes constantes (4)
pode ser resolvida por cálculos elementares.

➢ Supondo uma solução do tipo exponencial 𝑦 = 𝑒𝑟𝑡

em que 𝑟 é um parâmetro a ser determinado.

𝑎𝑦" + 𝑏𝑦′ + 𝑐𝑦 = 0 (4)



➢ Inicialmente, consideremos as funções de 𝑡
substituídas por coeficientes constantes.

Se  𝑦 = 𝑒𝑟𝑡  →  𝑦′ = 𝑟𝑒𝑟𝑡  → 𝑦′′ = 𝑟2𝑒𝑟𝑡 

➢ A eq. dif. de 2ª ordem a coeficientes constantes (4)
pode ser resolvida por cálculos elementares.

➢ Supondo uma solução do tipo exponencial 𝑦 = 𝑒𝑟𝑡

em que 𝑟 é um parâmetro a ser determinado.

𝑎𝑦" + 𝑏𝑦′ + 𝑐𝑦 = 0 (4)

➢ Substituindo-se 𝑦 e suas derivadas em (4) tem-se:

𝑎𝑟2𝑒𝑟𝑡 + 𝑏𝑟𝑒𝑟𝑡 + 𝑐𝑒𝑟𝑡 = 0



𝑎𝑟2𝑒𝑟𝑡 + 𝑏𝑟𝑒𝑟𝑡 + 𝑐𝑒𝑟𝑡 = 0

prof. Henrique A M Faria



𝑎𝑟2𝑒𝑟𝑡 + 𝑏𝑟𝑒𝑟𝑡 + 𝑐𝑒𝑟𝑡 = 0

(𝑎𝑟2 + 𝑏𝑟 + 𝑐)𝑒𝑟𝑡 = 0

prof. Henrique A M Faria



como: 𝑒𝑟𝑡 ≠ 0 ∀ 𝑡

𝑎𝑟2𝑒𝑟𝑡 + 𝑏𝑟𝑒𝑟𝑡 + 𝑐𝑒𝑟𝑡 = 0

(𝑎𝑟2 + 𝑏𝑟 + 𝑐)𝑒𝑟𝑡 = 0

prof. Henrique A M Faria



como: 𝑒𝑟𝑡 ≠ 0 ∀ 𝑡

𝑎𝑟2𝑒𝑟𝑡 + 𝑏𝑟𝑒𝑟𝑡 + 𝑐𝑒𝑟𝑡 = 0

(𝑎𝑟2 + 𝑏𝑟 + 𝑐)𝑒𝑟𝑡 = 0

𝑎𝑟2 + 𝑏𝑟 + 𝑐 = 0
(Equação característica
da eq. dif. de 2ª ordem) 

prof. Henrique A M Faria



como: 𝑒𝑟𝑡 ≠ 0 ∀ 𝑡

➢ A equação característica é uma equação algébrica
do segundo grau em 𝑟.

𝑎𝑟2𝑒𝑟𝑡 + 𝑏𝑟𝑒𝑟𝑡 + 𝑐𝑒𝑟𝑡 = 0

(𝑎𝑟2 + 𝑏𝑟 + 𝑐)𝑒𝑟𝑡 = 0

𝑎𝑟2 + 𝑏𝑟 + 𝑐 = 0
(Equação característica
da eq. dif. de 2ª ordem) 

prof. Henrique A M Faria



como: 𝑒𝑟𝑡 ≠ 0 ∀ 𝑡

➢ A equação característica é uma equação algébrica
do segundo grau em 𝑟.

➢ Pode apresentar duas raízes reais distintas, raízes
repetidas ou raízes complexas conjugadas.

𝑎𝑟2𝑒𝑟𝑡 + 𝑏𝑟𝑒𝑟𝑡 + 𝑐𝑒𝑟𝑡 = 0

(𝑎𝑟2 + 𝑏𝑟 + 𝑐)𝑒𝑟𝑡 = 0

𝑎𝑟2 + 𝑏𝑟 + 𝑐 = 0
(Equação característica
da eq. dif. de 2ª ordem) 

prof. Henrique A M Faria



como: 𝑒𝑟𝑡 ≠ 0 ∀ 𝑡

➢ A equação característica é uma equação algébrica
do segundo grau em 𝑟.

➢ Pode apresentar duas raízes reais distintas, raízes
repetidas ou raízes complexas conjugadas.

➢ Para o caso de raízes reais distintas, tem-se duas
soluções para a equação diferencial.

𝑎𝑟2𝑒𝑟𝑡 + 𝑏𝑟𝑒𝑟𝑡 + 𝑐𝑒𝑟𝑡 = 0

(𝑎𝑟2 + 𝑏𝑟 + 𝑐)𝑒𝑟𝑡 = 0

𝑎𝑟2 + 𝑏𝑟 + 𝑐 = 0
(Equação característica
da eq. dif. de 2ª ordem) 

prof. Henrique A M Faria



➢ Raízes reais distintas 𝒓𝟏 e 𝒓𝟏 da eq. característica.

prof. Henrique A M Faria

𝑎𝑦" + 𝑏𝑦′ + 𝑐𝑦 = 0
(Eq. dif. 2ª ordem a 
coeficientes constantes.) 



➢ Raízes reais distintas 𝒓𝟏 e 𝒓𝟏 da eq. característica.

prof. Henrique A M Faria

𝑎𝑦" + 𝑏𝑦′ + 𝑐𝑦 = 0
(Eq. dif. 2ª ordem a 
coeficientes constantes.) 

𝑦 = 𝑒𝑟𝑡 (solução proposta) 



➢ Raízes reais distintas 𝒓𝟏 e 𝒓𝟏 da eq. característica.

𝑎𝑟2 + 𝑏𝑟 + 𝑐 = 0 (Equação característica) 

prof. Henrique A M Faria

𝑎𝑦" + 𝑏𝑦′ + 𝑐𝑦 = 0
(Eq. dif. 2ª ordem a 
coeficientes constantes.) 

𝑦 = 𝑒𝑟𝑡 (solução proposta) 



➢ Raízes reais distintas 𝒓𝟏 e 𝒓𝟏 da eq. característica.

𝑎𝑟2 + 𝑏𝑟 + 𝑐 = 0 (Equação característica) 

prof. Henrique A M Faria

𝑎𝑦" + 𝑏𝑦′ + 𝑐𝑦 = 0
(Eq. dif. 2ª ordem a 
coeficientes constantes.) 

𝑦 = 𝑒𝑟𝑡 (solução proposta) 

𝑦1 = 𝑒𝑟1𝑡 e 𝑦2 = 𝑒𝑟2𝑡 (soluções para eq. dif.) 



➢ Raízes reais distintas 𝒓𝟏 e 𝒓𝟏 da eq. característica.

𝑎𝑟2 + 𝑏𝑟 + 𝑐 = 0 (Equação característica) 

prof. Henrique A M Faria

𝑎𝑦" + 𝑏𝑦′ + 𝑐𝑦 = 0
(Eq. dif. 2ª ordem a 
coeficientes constantes.) 

𝑦 = 𝑒𝑟𝑡 (solução proposta) 

𝑦1 = 𝑒𝑟1𝑡 e 𝑦2 = 𝑒𝑟2𝑡 (soluções para eq. dif.) 

𝑦 = 𝐶1𝑦1 + 𝐶2𝑦2 = 𝐶1𝑒𝑟1𝑡 + 𝐶2𝑒𝑟2𝑡
Solução geral 
da eq. dif. de 

2ª ordem. 



prof. Henrique A M Faria

𝑦 = 𝐶1𝑦1 + 𝐶2𝑦2 = 𝐶1𝑒𝑟1𝑡 + 𝐶2𝑒𝑟2𝑡 Solução geral



➢ Uma solução particular pode ser encontrada
substituindo-se as condições iniciais:

prof. Henrique A M Faria

𝑦 = 𝐶1𝑦1 + 𝐶2𝑦2 = 𝐶1𝑒𝑟1𝑡 + 𝐶2𝑒𝑟2𝑡 Solução geral

𝑦 𝑡0 = 𝑦0 e   𝑦′ 𝑡0 = 𝑦′0



➢ Uma solução particular pode ser encontrada
substituindo-se as condições iniciais:

prof. Henrique A M Faria

𝑦 = 𝐶1𝑦1 + 𝐶2𝑦2 = 𝐶1𝑒𝑟1𝑡 + 𝐶2𝑒𝑟2𝑡 Solução geral

𝑦 𝑡0 = 𝑦0 e   𝑦′ 𝑡0 = 𝑦′0

➢ Independentemente dos valores das condições
iniciais é sempre possível determinar as constantes
𝐶1 e 𝐶2.



➢ Uma solução particular pode ser encontrada
substituindo-se as condições iniciais:

prof. Henrique A M Faria

𝑦 = 𝐶1𝑦1 + 𝐶2𝑦2 = 𝐶1𝑒𝑟1𝑡 + 𝐶2𝑒𝑟2𝑡 Solução geral

𝑦 𝑡0 = 𝑦0 e   𝑦′ 𝑡0 = 𝑦′0

➢ Independentemente dos valores das condições
iniciais é sempre possível determinar as constantes
𝐶1 e 𝐶2.

➢ Além disso, existe apenas uma escolha possível
para cada par de condições iniciais.



Encontrar a solução do PVI e seu gráfico.

prof. Henrique A M Faria

Exemplo 1:

𝑦′′ + 5𝑦′ + 6𝑦 = 0 𝑦 0 = 2 e   𝑦′ 0 = 3



Encontrar a solução do PVI e seu gráfico.

prof. Henrique A M Faria

Exemplo 1:

𝑦′′ + 5𝑦′ + 6𝑦 = 0

✓ Propor a solução do tipo exponencial:

𝑦 = 𝑒𝑟𝑡

𝑦 0 = 2 e   𝑦′ 0 = 3



Encontrar a solução do PVI e seu gráfico.

prof. Henrique A M Faria

Exemplo 1:

𝑦′′ + 5𝑦′ + 6𝑦 = 0

✓ Propor a solução do tipo exponencial:

𝑦 = 𝑒𝑟𝑡  ⇒  𝑦′ = 𝑟𝑒𝑟𝑡

𝑦 0 = 2 e   𝑦′ 0 = 3



Encontrar a solução do PVI e seu gráfico.

prof. Henrique A M Faria

Exemplo 1:

𝑦′′ + 5𝑦′ + 6𝑦 = 0

✓ Propor a solução do tipo exponencial:

𝑦 = 𝑒𝑟𝑡  ⇒  𝑦′ = 𝑟𝑒𝑟𝑡  ⇒  𝑦′′ = 𝑟2𝑒𝑟𝑡 

𝑦 0 = 2 e   𝑦′ 0 = 3



Encontrar a solução do PVI e seu gráfico.

prof. Henrique A M Faria

Exemplo 1:

𝑦′′ + 5𝑦′ + 6𝑦 = 0

✓ Propor a solução do tipo exponencial:

✓ Substituir a proposta na eq. dif. de 2ª ordem.

𝑦 = 𝑒𝑟𝑡  ⇒  𝑦′ = 𝑟𝑒𝑟𝑡  ⇒  𝑦′′ = 𝑟2𝑒𝑟𝑡 

𝑟2𝑒𝑟𝑡 + 5𝑟𝑒𝑟𝑡 + 6𝑒𝑟𝑡 = 0

𝑦 0 = 2 e   𝑦′ 0 = 3



Encontrar a solução do PVI e seu gráfico.

prof. Henrique A M Faria

Exemplo 1:

𝑦′′ + 5𝑦′ + 6𝑦 = 0

✓ Propor a solução do tipo exponencial:

✓ Substituir a proposta na eq. dif. de 2ª ordem.

𝑦 = 𝑒𝑟𝑡  ⇒  𝑦′ = 𝑟𝑒𝑟𝑡  ⇒  𝑦′′ = 𝑟2𝑒𝑟𝑡 

𝑟2𝑒𝑟𝑡 + 5𝑟𝑒𝑟𝑡 + 6𝑒𝑟𝑡 = 0

𝑦 0 = 2 e   𝑦′ 0 = 3

mas, 𝑒𝑟𝑡 ≠ 0 ∀ 𝑡



Encontrar a solução do PVI e seu gráfico.

prof. Henrique A M Faria

Exemplo 1:

𝑦′′ + 5𝑦′ + 6𝑦 = 0

✓ Propor a solução do tipo exponencial:

✓ Substituir a proposta na eq. dif. de 2ª ordem.

𝑦 = 𝑒𝑟𝑡  ⇒  𝑦′ = 𝑟𝑒𝑟𝑡  ⇒  𝑦′′ = 𝑟2𝑒𝑟𝑡 

𝑟2𝑒𝑟𝑡 + 5𝑟𝑒𝑟𝑡 + 6𝑒𝑟𝑡 = 0

𝑟2 + 5𝑟 + 6 = 0

𝑦 0 = 2 e   𝑦′ 0 = 3

mas, 𝑒𝑟𝑡 ≠ 0 ∀ 𝑡



Encontrar a solução do PVI e seu gráfico.

prof. Henrique A M Faria

Exemplo 1:

𝑦′′ + 5𝑦′ + 6𝑦 = 0

✓ Propor a solução do tipo exponencial:

✓ Substituir a proposta na eq. dif. de 2ª ordem.

𝑦 = 𝑒𝑟𝑡  ⇒  𝑦′ = 𝑟𝑒𝑟𝑡  ⇒  𝑦′′ = 𝑟2𝑒𝑟𝑡 

𝑟2𝑒𝑟𝑡 + 5𝑟𝑒𝑟𝑡 + 6𝑒𝑟𝑡 = 0

𝑟2 + 5𝑟 + 6 = 0 ⇒ (𝑟 + 2)(𝑟 + 3) = 0

𝑦 0 = 2 e   𝑦′ 0 = 3

mas, 𝑒𝑟𝑡 ≠ 0 ∀ 𝑡



Encontrar a solução do PVI e seu gráfico.

prof. Henrique A M Faria

Exemplo 1:

𝑦′′ + 5𝑦′ + 6𝑦 = 0

✓ Propor a solução do tipo exponencial:

✓ Substituir a proposta na eq. dif. de 2ª ordem.

𝑦 = 𝑒𝑟𝑡  ⇒  𝑦′ = 𝑟𝑒𝑟𝑡  ⇒  𝑦′′ = 𝑟2𝑒𝑟𝑡 

𝑟2𝑒𝑟𝑡 + 5𝑟𝑒𝑟𝑡 + 6𝑒𝑟𝑡 = 0

𝑟2 + 5𝑟 + 6 = 0 ⇒ (𝑟 + 2)(𝑟 + 3) = 0

𝑟1 = −2 e  𝑟2 = −3

𝑦 0 = 2 e   𝑦′ 0 = 3

mas, 𝑒𝑟𝑡 ≠ 0 ∀ 𝑡



Encontrar a solução do PVI e seu gráfico.

prof. Henrique A M Faria

Exemplo 1:

𝑦′′ + 5𝑦′ + 6𝑦 = 0

✓ Propor a solução do tipo exponencial:

✓ Substituir a proposta na eq. dif. de 2ª ordem.

𝑦 = 𝑒𝑟𝑡  ⇒  𝑦′ = 𝑟𝑒𝑟𝑡  ⇒  𝑦′′ = 𝑟2𝑒𝑟𝑡 

𝑟2𝑒𝑟𝑡 + 5𝑟𝑒𝑟𝑡 + 6𝑒𝑟𝑡 = 0

𝑟2 + 5𝑟 + 6 = 0 ⇒ (𝑟 + 2)(𝑟 + 3) = 0

𝑟1 = −2 e  𝑟2 = −3 ⇒ 𝑦1 = 𝑒−2𝑡 e 𝑦2 = 𝑒−3𝑡

𝑦 0 = 2 e   𝑦′ 0 = 3

mas, 𝑒𝑟𝑡 ≠ 0 ∀ 𝑡



Encontrar a solução do PVI e seu gráfico.

prof. Henrique A M Faria

Exemplo 1:

𝑦′′ + 5𝑦′ + 6𝑦 = 0

✓ Propor a solução do tipo exponencial:

✓ Substituir a proposta na eq. dif. de 2ª ordem.

𝑦 = 𝑒𝑟𝑡  ⇒  𝑦′ = 𝑟𝑒𝑟𝑡  ⇒  𝑦′′ = 𝑟2𝑒𝑟𝑡 

𝑟2𝑒𝑟𝑡 + 5𝑟𝑒𝑟𝑡 + 6𝑒𝑟𝑡 = 0

𝑟2 + 5𝑟 + 6 = 0 ⇒ (𝑟 + 2)(𝑟 + 3) = 0

𝑟1 = −2 e  𝑟2 = −3 ⇒ 𝑦1 = 𝑒−2𝑡 e 𝑦2 = 𝑒−3𝑡

𝑦 0 = 2 e   𝑦′ 0 = 3

𝑦 = 𝐶1𝑒−2𝑡 + 𝐶2𝑒−3𝑡 
Solução geral 

da eq. dif. 

mas, 𝑒𝑟𝑡 ≠ 0 ∀ 𝑡



Encontrar a solução do PVI e seu gráfico.Exemplo 1:

✓ Derivar a solução geral e compor um sistema:

൝
𝑦 = 𝐶1𝑒−2𝑡 + 𝐶2𝑒−3𝑡 

𝑦′ = −2𝐶1𝑒−2𝑡 − 3𝐶2𝑒−3𝑡

prof. Henrique A M Faria



Encontrar a solução do PVI e seu gráfico.Exemplo 1:

✓ Derivar a solução geral e compor um sistema:

൝
𝑦 = 𝐶1𝑒−2𝑡 + 𝐶2𝑒−3𝑡 

𝑦′ = −2𝐶1𝑒−2𝑡 − 3𝐶2𝑒−3𝑡

Inserindo: 

𝑦 0 = 2 e  𝑦′ 0 = 3
⇒

prof. Henrique A M Faria



Encontrar a solução do PVI e seu gráfico.Exemplo 1:

✓ Derivar a solução geral e compor um sistema:

൝
𝑦 = 𝐶1𝑒−2𝑡 + 𝐶2𝑒−3𝑡 

𝑦′ = −2𝐶1𝑒−2𝑡 − 3𝐶2𝑒−3𝑡

Inserindo: 

𝑦 0 = 2 e  𝑦′ 0 = 3

ቊ
2 = 𝐶1 + 𝐶2 
3 = −2𝐶1 − 3𝐶2

⇒

prof. Henrique A M Faria



Encontrar a solução do PVI e seu gráfico.Exemplo 1:

✓ Derivar a solução geral e compor um sistema:

൝
𝑦 = 𝐶1𝑒−2𝑡 + 𝐶2𝑒−3𝑡 

𝑦′ = −2𝐶1𝑒−2𝑡 − 3𝐶2𝑒−3𝑡

Inserindo: 

𝑦 0 = 2 e  𝑦′ 0 = 3

ቊ
2 = 𝐶1 + 𝐶2 
3 = −2𝐶1 − 3𝐶2

ቊ
𝐶1 = 2 − 𝐶2 

3 = −2(2 − 𝐶2) − 3𝐶2

⇒

prof. Henrique A M Faria



Encontrar a solução do PVI e seu gráfico.Exemplo 1:

✓ Derivar a solução geral e compor um sistema:

൝
𝑦 = 𝐶1𝑒−2𝑡 + 𝐶2𝑒−3𝑡 

𝑦′ = −2𝐶1𝑒−2𝑡 − 3𝐶2𝑒−3𝑡

Inserindo: 

𝑦 0 = 2 e  𝑦′ 0 = 3

ቊ
2 = 𝐶1 + 𝐶2 
3 = −2𝐶1 − 3𝐶2

ቊ
𝐶1 = 2 − 𝐶2 

3 = −2(2 − 𝐶2) − 3𝐶2

ቊ
𝐶1 = 9 
𝐶2 = −7

⇒

prof. Henrique A M Faria



Encontrar a solução do PVI e seu gráfico.Exemplo 1:

✓ Derivar a solução geral e compor um sistema:

൝
𝑦 = 𝐶1𝑒−2𝑡 + 𝐶2𝑒−3𝑡 

𝑦′ = −2𝐶1𝑒−2𝑡 − 3𝐶2𝑒−3𝑡

𝑦 = 9𝑒−2𝑡 − 7𝑒−3𝑡 

Inserindo: 

𝑦 0 = 2 e  𝑦′ 0 = 3

ቊ
2 = 𝐶1 + 𝐶2 
3 = −2𝐶1 − 3𝐶2

ቊ
𝐶1 = 2 − 𝐶2 

3 = −2(2 − 𝐶2) − 3𝐶2

ቊ
𝐶1 = 9 
𝐶2 = −7

Solução do PVI

⇒



Encontrar a solução do PVI e seu gráfico.Exemplo 1:

✓ Derivar a solução geral e compor um sistema:

൝
𝑦 = 𝐶1𝑒−2𝑡 + 𝐶2𝑒−3𝑡 

𝑦′ = −2𝐶1𝑒−2𝑡 − 3𝐶2𝑒−3𝑡

𝑦 = 9𝑒−2𝑡 − 7𝑒−3𝑡 

Inserindo: 

𝑦 0 = 2 e  𝑦′ 0 = 3

ቊ
2 = 𝐶1 + 𝐶2 
3 = −2𝐶1 − 3𝐶2

ቊ
𝐶1 = 2 − 𝐶2 

3 = −2(2 − 𝐶2) − 3𝐶2

ቊ
𝐶1 = 9 
𝐶2 = −7

Solução do PVI

Gráfico da 
solução do PVI

𝑦 = 9𝑒−2𝑡 − 7𝑒−3𝑡 

⇒



Teorema de existência 
e unicidade



Seja o PVI:

𝑦′′ + 𝑝 𝑡 𝑦′ + 𝑞 𝑡 𝑦 = 𝑔 𝑡 | 𝑦 𝑡0 = 𝑦0 e 𝑦′ 𝑡0 = 𝑦′0

Onde 𝑝, 𝑞 e 𝑔 são contínuas em um intervalo aberto 𝐼 que
contém o ponto 𝑡 = 𝑡𝑜.

Então, existe exatamente, uma solução 𝑦 = 𝜙(𝑡) deste
problema em todo intervalo 𝐼.

Seja o PVI:

𝑦′′ + 𝑝 𝑡 𝑦′ + 𝑞 𝑡 𝑦 = 𝑔 𝑡 | 𝑦 𝑡0 = 𝑦0 e 𝑦′ 𝑡0 = 𝑦′0

Onde 𝑝, 𝑞 e 𝑔 são contínuas em um intervalo aberto 𝐼 que
contém o ponto 𝑡 = 𝑡𝑜.

Então, existe exatamente, uma solução 𝑦 = 𝜙(𝑡) deste
problema em todo intervalo 𝐼.



Seja o PVI:

𝑦′′ + 𝑝 𝑡 𝑦′ + 𝑞 𝑡 𝑦 = 𝑔 𝑡 | 𝑦 𝑡0 = 𝑦0 e 𝑦′ 𝑡0 = 𝑦′0

Onde 𝑝, 𝑞 e 𝑔 são contínuas em um intervalo aberto 𝐼 que
contém o ponto 𝑡 = 𝑡𝑜.

Então, existe exatamente, uma solução 𝑦 = 𝜙(𝑡) deste
problema em todo intervalo 𝐼.

Seja o PVI:

𝑦′′ + 𝑝 𝑡 𝑦′ + 𝑞 𝑡 𝑦 = 𝑔 𝑡 | 𝑦 𝑡0 = 𝑦0 e 𝑦′ 𝑡0 = 𝑦′0

Onde 𝑝, 𝑞 e 𝑔 são contínuas em um intervalo aberto 𝐼 que
contém o ponto 𝑡 = 𝑡𝑜.

Então, existe exatamente, uma solução 𝑦 = 𝜙(𝑡) deste
problema em todo intervalo 𝐼.

➢ O PVI tem solução.
➢ A solução é única.

O teorema diz que:



Seja o PVI:

𝑦′′ + 𝑝 𝑡 𝑦′ + 𝑞 𝑡 𝑦 = 𝑔 𝑡 | 𝑦 𝑡0 = 𝑦0 e 𝑦′ 𝑡0 = 𝑦′0

Onde 𝑝, 𝑞 e 𝑔 são contínuas em um intervalo aberto 𝐼 que
contém o ponto 𝑡 = 𝑡𝑜.

Então, existe exatamente, uma solução 𝑦 = 𝜙(𝑡) deste
problema em todo intervalo 𝐼.

Seja o PVI:

𝑦′′ + 𝑝 𝑡 𝑦′ + 𝑞 𝑡 𝑦 = 𝑔 𝑡 | 𝑦 𝑡0 = 𝑦0 e 𝑦′ 𝑡0 = 𝑦′0

Onde 𝑝, 𝑞 e 𝑔 são contínuas em um intervalo aberto 𝐼 que
contém o ponto 𝑡 = 𝑡𝑜.

Então, existe exatamente, uma solução 𝑦 = 𝜙(𝑡) deste
problema em todo intervalo 𝐼.

➢ O PVI tem solução.
➢ A solução é única.
➢ A solução* está definida em todo intervalo onde os 

coeficientes são contínuos.

O teorema diz que:



Seja o PVI:

𝑦′′ + 𝑝 𝑡 𝑦′ + 𝑞 𝑡 𝑦 = 𝑔 𝑡 | 𝑦 𝑡0 = 𝑦0 e 𝑦′ 𝑡0 = 𝑦′0

Onde 𝑝, 𝑞 e 𝑔 são contínuas em um intervalo aberto 𝐼 que
contém o ponto 𝑡 = 𝑡𝑜.

Então, existe exatamente, uma solução 𝑦 = 𝜙(𝑡) deste
problema em todo intervalo 𝐼.

Seja o PVI:

𝑦′′ + 𝑝 𝑡 𝑦′ + 𝑞 𝑡 𝑦 = 𝑔 𝑡 | 𝑦 𝑡0 = 𝑦0 e 𝑦′ 𝑡0 = 𝑦′0

Onde 𝑝, 𝑞 e 𝑔 são contínuas em um intervalo aberto 𝐼 que
contém o ponto 𝑡 = 𝑡𝑜.

Então, existe exatamente, uma solução 𝑦 = 𝜙(𝑡) deste
problema em todo intervalo 𝐼.

➢ O PVI tem solução.
➢ A solução é única.
➢ A solução* está definida em todo intervalo onde os 

coeficientes são contínuos.
➢ 𝑦 = 𝜙(𝑡) é pelo menos duas vezes diferenciável.

O teorema diz que:



Seja o PVI:

𝑦′′ + 𝑝 𝑡 𝑦′ + 𝑞 𝑡 𝑦 = 𝑔 𝑡 | 𝑦 𝑡0 = 𝑦0 e 𝑦′ 𝑡0 = 𝑦′0

Onde 𝑝, 𝑞 e 𝑔 são contínuas em um intervalo aberto 𝐼 que
contém o ponto 𝑡 = 𝑡𝑜.

Então, existe exatamente, uma solução 𝑦 = 𝜙(𝑡) deste
problema em todo intervalo 𝐼.

Seja o PVI:

𝑦′′ + 𝑝 𝑡 𝑦′ + 𝑞 𝑡 𝑦 = 𝑔 𝑡 | 𝑦 𝑡0 = 𝑦0 e 𝑦′ 𝑡0 = 𝑦′0

Onde 𝑝, 𝑞 e 𝑔 são contínuas em um intervalo aberto 𝐼 que
contém o ponto 𝑡 = 𝑡𝑜.

Então, existe exatamente, uma solução 𝑦 = 𝜙(𝑡) deste
problema em todo intervalo 𝐼.

➢ O PVI tem solução.
➢ A solução é única.
➢ A solução* está definida em todo intervalo onde os 

coeficientes são contínuos.
➢ 𝑦 = 𝜙(𝑡) é pelo menos duas vezes diferenciável.

O teorema diz que: * Para a maioria dos 
problemas não é possível 

escrever solução útil.



➢ Estudar seções 3.1 e 3.2 do livro texto (Boyce).

➢ Resolver o exercício proposto.

➢ Praticar: exercícios da seções 3.1 e 3.2 do Boyce.

➢ Eq. dif. de 2ª ordem, raízes repetidas e complexas.

prof. Henrique A M Faria



1. BOYCE, W.E.; DIPRIMA, R.C. Equações 
Diferenciais Elementares e Problemas de Valores 
de Contorno. 9. ed. Rio de Janeiro: LTC, 2010.

Numeração dos exercícios 

com base na 9ª ed.    ►

BOYCE, W.E.; DIPRIMA, R.C. Equações Diferenciais 
Elementares e Problemas de Valores de Contorno. 
11. ed. Rio de Janeiro: LTC, 2020.

prof. Henrique A M Faria
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